
NOAC Ex. 1018 Page 1

IW 7696177

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 17, 2018

’rfirflvaarivppgttzfiriiVH-trvvgttuavaaaatMmflrhpéptelt.9,335.6...1111!);

09/608,126APPLICATION NUMBER:

FILING DATE: June 30, 2000

6,839, 75]

ISSUE DATE: January 04, 2005

PATENT NUMBER:

By Authority of the

Under Secretary of Commerce for Intellectual Property
eand Director of the United States Patent and Trademark Offic

ERY4y . W. MONTG

Certifying Officer

NOAC Ex. 1018 Page 2

“1,.225. L -“;L. 2',

- , UTS'. UTILITY PatentAppncatrori”
FF- 0.I.P.E. PATENT‘DATE

scmnaofifim. Q :1. g

APPLICATION No. JCDNVPWOR >SUBCLAS‘S 'Ali-lTUNIT 7- EXAMINén ii. ‘m “A
i 09(608126 - D 709 4/74! ewe-9 I ' v ' ' . 'z A" .' .3 3" "i , ' I " 4,, v ’ I "

, _ ._ _ . . t 7% Woven—r. V1 \.*0. RL453§el'1:.,D’i:étz v ' “ " ' 2" 4 V,
E ij'SEgF-‘h: "Mai xner . X/ l I ' ‘2

i g Qrwgir'ew Koppenhaver' H , ' ’ ‘ ", :1
E . _ ~ . _ . . _ ‘ _ CeriIfIcate .-

‘ , ~ 'lil-i—usinia ir'i'for'matvi'uri .fNr-rn 35+: ' V. ‘ MAR 0 8 05 ‘ “.I .--. .. . _. . t---g.:l:. - ~' = '

F i 'stat1st1;5'1h network mumitpr-rilmgrv.Em a "lo-ha f“ {Mirtélnlnég f i-
I: . -. . 0 Correction " ‘ i',I Promo ;_

I . . . 12,99 (
l “-_-—..—.-A.--——»»TV__ «~-~—'--v—~-~ J —-—-— --- _. . a. ,1;_: L .;. 1: ‘

‘1. 1

,7; . x. I .- -' ‘ ORIGINAL ‘ -
II :)‘K ' .

I j _CLAss
‘ A v 7 o ‘1. .

I i '

1 -,

l I :5 "i
i i” :'\. a , Vl. ; ,

I l.

L'. I

TERMINAL ’ , 7 _ CLAIMSAITLOWED-v_ ,

. D'§CLA'MEB Sheets 9M9; * Total claims 3 Print Clalm‘forOG. "

i3 Thetenn ofthispatenl : ’ ' j l 'i - 3' _ Nance o'eALLOWANcé MAILEDf "
subsequent to (date) ' ' - ' '
has been disciaimed‘.‘ '

D The tern; of this patent shall .
not extend beyondlhe expiration’dale
of US Patent. No. ‘ ' 5 *

I AmountDue' ‘ Date Paid. ‘ i» I‘.'

, flls’so-ffi- ,- >
; Ill ' (Primary Examiner) L. ‘ . W 6 23 oqr_ Jm . .

. - V. , 0. .I ISSUE-BATCH NUMBER 11-.i ‘ “‘Thet 'l th l =--” ~
I: | j 5 J ermIna _‘___.mon so 4' '3 mil: patent have been disclaimed. ' V
i ' 3 _ . (Legal instmments Examiner) , H . ,I .‘ . v . .

. WARNING: . ._ t . . ._ -.
,1 ,' _ The information disclosed herein may be reslncted. Unauthorized disclosure may-be prohibited by the United States Code Title 35. Sections 122. 181 and 368.

E Possession oulside the us. Patent & Trademark Office is restricted to authorized employees and contractors only.
‘ Form PTO-436A . _ I

. |. (RHYME, . FILED WITH. |:] DISK (CFiF) E] FICHE C] CD ROM , i
} .- (Anached In pocket on right Inside flap) I

. . . .:, I
Iv _ I

ISSUE FEE IN FiLE- ‘

I’FACE) ‘

NOAC Ex. 1018 Page 3my.-.,

Page 1 of 1

UNITED STATES PATENT AND TRADEMARK OFFICE
COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON. D.C. ZOZSI

. ‘ www.uspto.gov

s||||||||l||||||||ll|l|||||l|||ll||||||||l|l|lllllllllllllllllllllllll
Bib Data Sheet

FILING DATE

I ATTORNEY

SERBIQIébhélIIIZIISBER _ 06/30/2000 CLASS GROUP ART UNIT DOCKET NO.
’ RULE _ 709 2755 APPT-001-3

APPLICANTS

Russell 8. Dietz, San Jose, CA ; ,;

Joseph R. Maixner. Aptos, CA ;

Andrew A. Koppenhaver, Fairfax, VA;

H: CONTINUING DATA ****i**i***‘ktktktiiktktki

THIS APPLN CLAIMS BENEFIT OF 60/141,903 06/30/1999

** FOREIGN APPLICATIONS ******i*************

IF REQUIRED, FOREIGN FILING LICENSE

EiRANTED ** 08/21/2000 , —

F'Wnpfioritydaimed D yes ‘1 ”° STATE OR SHEETS . TOTAL INDEPENDEN
fif§350119‘a'd’°°”d"‘°”5 U yes '2] no D Metafier COUNTRY DRAWING CLAIMS CLAIMS

Allowance , CA , 21 2r'erified and ’ \M/
cknowleded , Examiner's Sinature Initials

DDRESS

Dov Rosenfeld

Suite-2

5507 College Avenue

ikland ,CA 94618
ITLE

Rte—using information from data transactions for maintaining statistics in network monitoring

D All Fees

Cl 1.16 Fees (Filing)

FILING FEE FEES: Authority has been given in Paper CI 1.17 Fees (Processing Ext. of
RECEIVED No. to charge/credit DEPOSIT ACCOUNT time I

858 .___for following: D 1 18 Fees (Issue)

CI Credit

file://C:\APPS\PreExarn\correspondence\1_A.xml 12/ 1 4/00

NOAC EX. 1018 Page 3

NOAC Ex. 1018 Page 4

Our Ref./Docket No.: APPT-001-3

RE-USING INFORMATION FROM DATA TRANSACTIONS FOR MAINTAINING

STATISTICS IN NETWORK MONITORING

Inventor(s):

DlETZ, Russell S.

San Jose, CA

miifiLiI} MAIXNER, Joseph R.

Aptos, CA

KOPPENHAVER, Andrew A.

Fairfax, VA
2'.‘I.i!I:I!1;:im

‘Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as Express Mail

(Express Mail Label: EI417961927US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,
Washington, D. . 20231 on.

: <9 m Signed:
Name. ov Rosenfeld, Reg. NO. 38687

NOAC Ex. 1018 Page 5

II

munis

nunuI;1}‘Im

10

.15

20

25

l

RE-USING INFORMATION FROM DATA TRANSACTIONS FOR
MAINTAINING STATISTICS IN NETWORK MONITORING

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial N0.:

60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dieti, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference.

This application is related to the following U.S. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc., the

assignee of the present invention:

U.S. Patent Application Serial No. 0 GI / 50% l7ff‘for METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK, to inventors Dietz, et al., filed June 30,

2000, Attorney/Agent Reference Number APPT-OOl-l, and incorporated herein by

' reference.

U.S. Patent Application Serial No. 09 / MI I7jfor PROCESSING PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE, to inventors Koppenhaver, et al., filed June 30, 2000,

Attorney/Agent Reference Number APPT—001—2, and incorporated herein by

reference.

U.S. Patent Application Serial No. 04 mag Wfor ASSOCIATIVE CACHE
STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A

NETWORK MONITOR, to inventors Sarkissian, et al., filed June 30, 2000,

Attorney/Agent Reference Number APPT-001-4, and incorporated herein by

reference.

Z 6
U.S. Patent Application Serial No. SE] If”;3 for STATE PROCESSOR FOR

PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors

Sarkissian, et al., filed June 30, 2000, Attorney/Agent Reference Number APPT—OOI-

5, and incorporated herein by reference.

NOAC EX. 1018 Page 5

NOAC Ex. 1018 Page 6

u...”ruinit:Iml'ii"1:umn"muII3|
‘Iml!‘MI!

if"?!Ma”!5353'

10

15

20

25

3O

9 3

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real—time

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material that is

subject to copyright protection. The copyright owner has no objection to the facsimile

reproduction by anyone of the patent document or the patent disclosure, as it appears in

the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real—time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i.e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context (e.g., options selected, service

delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

a)?“
Related and incorporated by reference US. Patent application flfor

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to

NOAC EX. 1018 Page 6

NOAC Ex. 1018 Page 7

10

15

20

25

30

Q '3

inventors Dietz, et a1, Attomey/Agent Docket APPT—OOl—l, describes a network monitor

that includes carrying out protocol specific operations on individual packets including

extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

The flow signature of the packet, the hash and at least some of the payload are

passed to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem

includes a unified flow key buffer (UFKB) for receiving parts of packets from the parser

subsystem and for storing signatures in process, a lookup/update engine (LUE) to lookup

a database of flow records for previously encountered conversational flows to determine

whether a signature is from an existing flow, a state processor (SP) for performing state

processing, a flow insertion and deletion engine (FIDE) for inserting new flows into the

database of flows, a memory for storing the database of flows, and a cache for speeding

up access to the memory containing the flow database. The LUE, SP, and FIDE are all

coupled to the UFKB, and to the cache.

Each flow~entry includes one or more statistical measures, e.g., the packet count

related to the flow, the time of arrival of a packet, the time differential.

In the preferred hardware embodiment, each of the LUE, state processor, and

FIDE operate independently from the other two engines. The state processor performs

one or more operations specific to the state of the flow.

It is advantageous to collect statistics on packets passing through a point in a

network rather than to simply count each and every packet. By maintaining statistical

measures in the flow-entries related to a conversational flow, embodiments of the present

invention enable specific metrics to be collected in real~time that otherwise would not be

possible. For example, it is desirable to maintain metrics related to bi-directional

conversations based on the entire flow for each exchange in the conversation. By

maintaining the state of flow, embodiments of the present invention also enable certain

NOAC EX. 1018 Page 7

NOAC Ex. 1018 Page 8

..nI}y“1:it'nmytin-nn1|
It...“1,.

”ml!j)I!

HHI]llllll5]“:

10

15

20

25

o '3

metrics related to the states of flows to be determined.

Most prior-art network traffic monitors that use statistical metrics collect only

end—point and end-of-session related statistics. Examples of such commonly used metrics

include packet counts, byte counts, session connection time, session timeouts, session

and transport response times and others. All of these deal with events that can be directly

related to an event in a single packet. These prior-art systems cannot collect some

important performance metrics that are related to a complete sequence of packets of a

flow or to several disjointed sequences of the same flow in a network.

Time based metrics on application data packets are important. Such metrics could

be determined if all the timestamps and related data could be stored and forwarded for

later analysis. However when faced with thousands or millions of conversations per

second on ever faster networks, storing all the data, even if compressed, would take too

much processing, memory, and manager down load time to be practical.

Thus there is a need for maintaining and reporting time-base metrics from

statistical measures accumulated from packets in a flow.

Network data is properly modeled as a population and not a sample. Thus, all the

data needs to be processed. Because of the nature of application protocols, just sampling

some of the packets may not give good measured related to flows. Missing just one

critical packet, such as one the specified an additional port that data will be transmitted

on, or what application will be run, can cause valid data to be lost.

Thus there is also a need for maintaining and reporting time-base metrics from

statistical measures accumulated from every packet in a flow.

There also is a need to determine metrics related to a sequence of events. A good

example is relative jitter. Measuring the time from the end of one packet in one direction

to another packet with the same signature in the same direction collects data that relates

normal jitter. This type of jitter metric is good for measuring broad signal quality in a

packet network. However, it is not specific to the payload or data item being transported

in a cluster of packets.

Using the state processing described herein, because the state processor can

NOAC EX. 1018 Page 8

NOAC Ex. 1018 Page 9

'“Esta”;3.:rt

um.,

"ii
iii

10

15

20

25

30

3 3

search for specific data payloads, embodiments of monitor 300 can be programmed to

collect the same jitter metric for a group of packets in a flow that are all related to a

specific data payload. This allows the inventive system to provide metrics more focused

on the type of quality related to a set of packets. This in general is more desirable than

metrics related to single packets when evaluating the performance of a system in a

network.

Specifically, the monitor system 300 can be programmed to maintain any type of

metric at any state of a conversational flow. Also the system 300 can have the actual

statistics programmed into the state at any point. This enables embodiments of the

monitor system to collect metrics related to network usage and performance, as well as

metrics related to specific states or sequences of packets.

Some of the specific metrics that can be collected only with states are events

related to a group of traffic in one direction, events related to the status of a

communication sequence in one or both directions, events related to the exchange of

packets for a specific application in a specific sequence. This is only a small sample of

the metrics that requires an engine that can relate the state of a flow to a set of metrics.

In addition, because the monitor 300 provides greater visibility to the specific

application in a conversation or flow, the monitor 300 can be programmed to collect

metrics that may be specific to that type of application or service. In other word, if a flow

is for an Oracle Database server, an embodiment of monitor 300 could collect the

number of packets required to complete a transaction. Only with both state and

application classification can this type of metric be derived from the network.

Because the monitor 300 can be programmed to collect a diverse set of metrics,

the system can be used as a data source for metrics required in a number of

environments. In particular, the metrics may be used to monitor and analyze the quality

and performance of traffic flows related to a specific set of applications. Other

implementation could include metrics related to billing and charge—back for specific

traffic flow and events with the traffic flows. Yet other implementations could be

programmed to provide metrics useful for troubleshooting and capacity planning and

related directly to a focused application and service.

NOAC EX. 1018 Page 9

NOAC Ex. 1018 Page 10.5“a",..

m.“u
an”r
H

10

15

20

25

SUMMARY

Another aspect of the invention is determining quality of service metrics based on

each and every packet. A method of and monitor apparatus for analyzing a flow of

packets passing through a connection point on a computer network are disclosed that

may include such quality of service metrics. The method includes receiving a packet

from a packet acquisition device, and looking up a flow-entry database containing flow—

entries for previously encountered conversational flows. The looking up to determine if

the received packet is of an existing flow. Each and every packet is processed. If the

packet is of an existing flow, the method updates the flow-entry of the existing flow,

including storing one or more statistical measures kept in the flow-entry. If the packet is

of a new flow, the method stores a new flow-entry for the new flow in the flow—entry

database, including storing one or more statistical measures kept in the flow-entry. The

statistical measures are used to determine metrics related to the flow. The metrics may be

base metrics from which quality of service metrics are determined, or may be the quality

of service metrics.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

specific embodiment because such embodiments are provided only for the purposes of

explanation. The embodiments, in turn, are explained with the aid of the following

figures.

FIG. 1 is a functional block diagram of a network embodiment of the present

invention in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their

formats that might be exchanged in starting, as an illustrative example, a conversational

flow between a client and server on a network being monitored and analyzed. A pair of

flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be

NOAC EX. 1018 Page 10

NOAC Ex. 1018 Page 11

‘3!:”u

"-Lirp11

if1;5:up1.1:|---

10

15

20

25

Q :1)

generated and used in the process of analyzing packets and of recognizing the particular

server applications that produce the discrete application packet exchanges.

FIG. 3 is a functional block diagram of a process embodiment of the present

invention that can operate as the packet monitor shown in FIG. 1. This process may be

implemented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and

optimization prOCess, which in one embodiment may be used to generate data for

monitoring packets according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow—signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part

of the analyzer in an embodiment of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including

the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

NOAC EX. 1018 Page 11

NOAC Ex. 1018 Page 12

y)3grII1''ngin-

III"'I_\IIII 10

15

20

25

 '3

FIG. 14 is a simple functional block diagram of a process embodiment of the

present invention that can operate as the packet monitor shown in FIG. 1. This process

may be implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of

the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of

FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet

shown in FIGs. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used to store elements of

the pattern, parse and extraction database used by the parser subsystem in accordance to

one embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment

of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may

include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network

NOAC EX. 1018 Page 12

NOAC Ex. 1018 Page 13

*9:

Zing:3111"magpm“I!‘u
.ml-

n"

~1221a:

llllllfl“
It:111

o 3

102 that communicates packets (e.g., IP datagrams) between various computers, for

example between the clients 104—107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shown in the interior of

the cloud. A monitor 108 examines the packets passing in either direction past its

connection point 121 and, according to one aspect of the invention, can elucidate what

application programs are associated with each packet. The monitor 108 is shown

examining packets (i.e., datagrams) between the network interface 116 of the server 110

and the network. The monitor can also be placed at other points in the network, such as

connection point 123 between the network 102 and the interface 118 of the client 104, or

some other location, as indicated schematically by connection point 125 somewhere in

network 102. Not shown is a network packet acquisition device at the location 123 on

the network for converting the physical information on the network into packets for input

into monitor 108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communication, e.g., TCP/IP, etc. Any network activity—for example an

application program run by the client 104 (CLIENT 1) communicating with another

running on the server 110 (SERVER 2)——will produce an exchange of a sequence of

packets over network 102 that is characteristic of the respective programs and of the

network protocols. Such characteristics may not be completely revealing at the

individual packet level. It may require the analyzing of many packets by the monitor 108

to have enough information needed to recognize particular application programs. The

packets may need to be parsed then analyzed in the context of various protocols, for

example, the transport through the application session layer protocols for packets of a

type conforming to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol

stack. The ISO (International Standardization Organization) has defined a general model

that provides a framework for design of communication protocol layers. This model,

shown in table form below, serves as a basic reference for understanding the

functionality of existing communication protocols.

NOAC EX. 1018 Page 13

NOAC Ex. 1018 Page 14

=.

LII

10

15

10

ISO MODEL

Telnet, NFS, Novell NCP, HTTP,Application

H.323

2 Data Link Network Interface Card (Hardware

Interface). MAC layer

Physical

Different communication protocols employ different levels of the ISO model or

5

7

4

3

Ethernet, Token Ring, Frame Relay,

ATM, T1 (Hardware Connection)

may use a layered model that is similar to but which does not exactly conform to the ISO

model. A protocol in a certain layer may not be visible to protocols employed at other

layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2—3).

In some communication arts, the term “frame” generally refers to encapsulated

data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

“packet” generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the

term “datagram” is also used. In this specification, the term “packet” is intended to

encompass packets, datagrams, frames, and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for

transmission across a network. For example, a data packet typically includes an address

destination field, a length field, an error correcting code (ECC) field, or cyclic

redundancy check (CRC) field, as well as headers and footers to identify the beginning

NOAC EX. 1018 Page 14

NOAC Ex. 1018 Page 15

(wwxv.m

”31‘1"“'W‘mfivfli"~.’Ts‘!3‘."'sf€a"\-3<JV
H‘l-n!‘l‘11”ml!Mm]:111‘.

n)12|nHll

10

15

2O

25

30

11

and end of the packet. The terms “packet format” and “frame format,” also referred to as

“cell format,” are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packet carries the same information useful for recognizing all levels

of the protocol. For example, in a conversational flow associated with a particular

application, the application will cause the server to send a type-A packet, but so will

another. If, though, the particular application program always follows a type—A packet

with the sending of a type—B packet, and the other application program does not, then in

order to recognize packets of that application’s conversational flow, the monitor can be

available to recognize packets that match the type-B packet to associate with the type—A

packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

simultaneously also in partial completion of identifying other packet exchanges that are

parts of conversational flows associated with other applications. One aspect of monitor

108 is its ability to maintain the state of a flow. The state of a flow is an indication of all

previous events in the flow that lead to recognition of the content of all the protocol

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a

signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

In real-world uses of the monitor 108, the number of packets on the network 102

passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

and identify and maintain the state of the flows passing through the connection point.

The monitor 108 therefore masks out all the unimportant parts of each packet that will

not contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application

programs according to the packets that their executions produce, is a multi-step process

within the monitor 108. At a first level, for example, several application programs will

NOAC EX. 1018 Page 15

NOAC Ex. 1018 Page 16

$5.;«W-k‘.2,.x_.

irkmit:f~-'.~
~*1.t.«as;
,9

3%
if

...i)‘I

:1!limil... .zvuuu‘

u'mil"miln"i:

10

15

20

25

30

o «.3

12

all produce a first kind of packet. A first “signature” is produced from selected parts of a

packet that will allow monitor 108 to identify efficiently any packets that belong to the

same flow. In some cases, that packet type may be sufficiently unique to enable the

monitor to identify the application that generated such a packet in the conversational

flow. The signature can then be used to efficiently identify all future packets generated in

traffic related to that application.

In other cases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated

application program. In such a case, a subsequent packet of a second type—but that

potentially belongs to the same conversational flow—is recognized by using the

signature. At such a second level, then, only a few of those application programs will

have conversational flows that can produce such a second packet type. At this level in

the process of classification, all application programs that are not in the set of those that

lead to such a sequence of packet types may be excluded in the process of classifying the

conversational flow that includes these two packets. Based on the known patterns for the

protocol and for the possible applications, a signature is produced that allows recognition

of any future packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to

proceed to a third level of analysis using the second level signature. For each packet,

therefore, the monitor parses the packet and generates a signature to determine if this

signature identified a previously encountered flow, or shall be used to recognize future

packets belonging to the same conversational flow. In real time, the packet is further

analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

flows associated with different applications. A new signature for recognizing future

packets may also be generated. This process of analysis continues until the applications

are identified. The last generated signature may then be used to efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes

it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

NOAC EX. 1018 Page 16

NOAC Ex. 1018 Page 17

15

20AV:1",

25

30

Q :3

13

Another aspect of the invention is adding Eavesdropping. In alternative

embodiments of the present invention capable of eavesdropping, once the monitor 108

has recognized the executing application programs passing through some point in the

network 102 (for example, because of execution of the applications by the client 105 or

server 110), the monitor sends a message to some general purpose processor on the

network that can input the same packets from the same location on the network, and the

processor then loads its own executable copy of the application program and uses it to

read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present

invention that can be implemented with computer hardware and/or software. The system

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet

acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,

for example in an attempt to determine its characteristics, e.g., all the protocol

information in a multilevel model, including What server application produced the

packet.

The packet acquisition device is a common interface that converts the physical

signals and then decodes them into bits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what

operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing—parsing and extraction of selected portions—of

packets to generate an identifying signature—accomplished by parser subsystem 301 ,

and (3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

information to parser subsystem 301 and to analyzer subsystem 303. The initialization

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

NOAC EX. 1018 Page 17

NOAC Ex. 1018 Page 18

a,“

.wgmn..,

art-3r:«aw—«ma

l.

10

15

20

25

30

o z)

14

A flow is a stream of packets being exchanged between any two addresses in the

network. For each protocol there are known to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and other fields are used in

monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304

that parses the packet and determines the protocol types and associated headers for each

protocol layer that exists in the packet 302. An extraction process 306 in parser

subsystem 301 extracts characteristic portions (signature information) from the packet

302. Both the pattern information for parsing and the related extraction operations, e. g.,

extraction masks, are supplied from a parsing-pattern-structures and extraction-

operations database (parsing/extractions database) 308 filled by the compiler and

optimizer 3 10.

The protocol description language (PDL) files 336 describes both patterns and

states of all protocols that an occur at any layer, including how to interpret header

information, how to determine from the packet header information the protocols at the

next layer, and what information to extract for the purpose of identifying a flow, and

ultimately, applications and services. The layer selections database 338 describes the

particular layering handled by the monitor. That is, what protocols run on top of what

protocols at any layer level. Thus 336 and 338 combined describe how one would

decode, analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data

structures. The first is the set of parsing/extraction operations 308. The pattern structures

include parsing information and describe what will be recognized in the headers of

packets; the extraction Operations are what elements of a packet are to be extracted from

the packets based on the patterns that get matched. Thus, database 308 of

parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that

indicate a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state

NOAC EX. 1018 Page 18

NOAC Ex. 1018 Page 19

unli!Epnll"ii”1|..szpnin.”1‘
UL.”ll)1

 11”"):nnnn'135 m.”-....u

I”):gm]!

10

15

20

25

30

O :3

15

patterns and processes 326. These are the different states and state transitions that occur

in different conversational flows, and the state operations that need to be performed (e.g.,

patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the

information it needs to begin processing packets. In an alternate embodiment, the

contents of one or more of databases 308 and 326 may be manually or otherwise

generated. Note that in some embodiments the layering selections information is inherent

rather than explicitly described. For example, since a PDL file for a protocol includes the

child protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input

into a packet buffer. The pattern recognition process 304 is carried out by a pattern

analysis and recognition (PAR) engine that analyzes and recognizes patterns in the

packets. In particular, the PAR locates the next protocol field in the header and

determines the length of the header, and may perform certain other tasks for certain types

of protocol headers. An example of this is type and length comparison to distinguish an

IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also

called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures

and extraction operations database 308 to identify the next protocol and parameters

associated with that protocol that enables analysis of the next protocol layer. Once a

pattern or a set of patterns has been identified, it/they will be associated with a set of

none or more extraction operations. These extraction operations (in the form of

commands and associated parameters) are passed to the extraction process 306

implemented by an extracting and information identifying (EII) engine that extracts

selected parts of the packet, including identifying information from the packet as

required for recognizing this packet as part of a flow. The extracted information is put in

sequence and then processed in block 312 to build a unique flow signature (also called a

“key”) for this flow. A flow signature depends on the protocols used in the packet. For

some protocols, the extracted components may include source and destination addresses.

For example, Ethernet frames have end-point addresses that are useful in building a

better flow signature. Thus, the signature typically includes the client and server address

/- NOAC EX. 1018 Page 19

NOAC Ex. 1018 Page 20

I

z

E4i
i

16

pairs. The signature is used to recognize further packets that are or may be part of this

flow.

In the preferred embodiment, the building of the flow key includes generating a

hash of the signature using a hash function. The purpose if using such a hash is

5 conventional—to spread flow-entries identified by the signature across a database for

efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet—a parser record—

that includes the signature (i.e., selected portions of the packet), the hash, and the packet

10 itself to allow for any state processing that requires further data from the packet. An

improved embodiment of the parser subsystem might generate a parser record that has

some predefined structure and that includes the signature, the hash, some flags related to

some of the fields in the parser record, and parts of the packet’s payload that the parser

subsystem has determined might be required for further processing, e.g., for state

15 processing.

Note that alternate embodiments may use some function other than concatenation

of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal

20 data store of records of known flows that the system has already encountered, and

decides (in 316) whether or not this particular packet belongs to a known flow as

indicated by the presence of a flow—entry matching this flow in a database of known

flows 324. A record in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The

25 UFKB stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

stores the packet sequence number, and another is filled with state information in the

form of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already

30 exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses

NOAC EX. 1018 Page 20

NOAC Ex. 1018 Page 21

ac.

ie—

“mll51'"):IIII

10

15

20

25

30

O. D

17

the hash in the UFKB record to lookup if there is a matching known flow. In the

particular embodiment, the database of known flows 324 is in an external memory. A

cache is associated with the database 324. A lookup by the LUE for a known record is

carried out by accessing the cache using the hash, and if the entry is not already present

in the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow—

signature, state information, and extracted information from the packet for updating

flows, and one or more statistical about the flow. Each entry completely describes a flow.

Database 324 is organized into bins that contain a number, denoted N, of flow-entries

(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.

Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser

subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the

database to allow for fast lookups of entries, allowing shallower buckets. The designer

selects the bucket depth N based on the amount of memory attached to the monitor, and

the number of bits of the hash data value used. For example, in one embodiment, each

flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a

16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be

more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a

new flow, then a protocol and state identification process 318 further determines the

state and protocol. That is, process 318 determines the protocols and where in the state

sequence for a flow for this protocol’s this packet belongs. Identification process 318

uses the extracted information and makes reference to the database 326 of state patterns

and processes. Process 318 is then followed by any state operations that need to be

executed on this packet by a state processor 328.

If the packet is found to have a matching flow—entry in the database 324 (e.g., in

the cache), then a process 320 determines, from the looked—up flow-entry, if more

classification by state processing of the flow signature is necessary. If not, a process 322

NOAC EX. 1018 Page 21

NOAC Ex. 1018 Page 22

3:

’,‘M.

“5*;a’va

warn.n.

10

15

20

25

30

O D

18

updates the flow—entry in the flow-entry database 324 (e.g., via the cache). Updating

includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor

328 carries out any state operations specified for the state of the flow and updates the

state to the next state according to a set of state instructions obtained form the state

pattern and processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze

all levels of the protocol stack, ultimately classifying the flows by application (level 7 in

the ISO model). It does this by proceeding from state—to-state based on predefined state

transition rules and state operations as specified in state processor instruction database

326. A state transition rule is a rule typically containing a test followed by the next—state

to proceed to if the test result is true. An operation is an operation to be performed while

the state processor is in a particular state—for example, in order to evaluate a quantity

needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a

packet, and carrying out the operation or operations may leave one in a state that causes

exiting the system prior to completing the identification, but possibly knowing more

about what state and state processes are needed to execute next, i.e., when a next packet

of this flow is encountered. As an example, a state process (set of state operations) at a

particular state may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up

using the information from previously encountered flows, the network traffic monitor

300 provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub—flows that occur in server announcement type flows.

What may seem to prior art monitors to be some unassociated flOW, may be recognized

by the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

NOAC EX. 1018 Page 22

NOAC Ex. 1018 Page 23

“(an.In}.no»..

.4313313M,l':"ii

10

15

20

25

30

J 3

19

Thus, state processor 328 applies the first state operation to the packet for this

particular flow-entry. A process 330 decides if more operations need to be performed for

this state. If so, the analyzer continues looping between block 330 and 328 applying

additional state operations to this particular packet until all those operations are

completed—that is, there are no more operations for this packet in this state. A process

332 decides if there are further states to be analyzed for this type of flow according to the

state of the flow and the protocol, in order to fully characterize the flow. If not, the

conversational flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing

by using the last protocol recognized by the parser as an offset into a jump table (jump

vector). The jump table finds the state processor instructions to use for that protocol in

the state patterns and processes database 326. Most instructions test something in the

unified flow key buffer, or the flow—entry in the database of known flows 324, if the

entry exists. The state processor may have to test bits, do comparisons, add, or subtract

to perform the test. For example, a common operation carried out by the state processor

is searching for one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an

end state. If not at an end state, the flow—entry is updated (or created if a new flow) for

this flow—entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process

322.

The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically

maintains flow-entries, which in one aspect includes storing states. The monitor of

NOAC EX. 1018 Page 23

NOAC Ex. 1018 Page 24

4.
A;

i
‘7!

Mimmfianwwfim‘m
1’’l-“Hn

l1113mii' ..-.....-u.

rim}:

10

15

20

25

o \:>

20

FIG. 3 also generates characteristic parts of packets—the signatures—that can be used to

recognize flows. The flow-entries may be identified and accessed by their signatures.

Once a packet is identified to be from a known flow, the state of the flow is known and

this knowledge enables state transition analysis to be performed in real time for each

different protocol and application. In a complex analysis, state transitions are traversed

as more and more packets are examined. Future packets that are part of the same

conversational flow have their state analysis continued from a previously achieved state.

When enough packets related to an application of interest have been processed, a final

recognition state is ultimately reached, i.e., a set of states has been traversed by state

analysis to completely characterize the conversational flow. The signature for that final

state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.

Once a particular set of state transitions has been traversed for the first time and ends in a

final state, a short-cut recognition pattem—a signature—can be generated that will key

on every new incoming packet that relates to the conversational flow. Checking a

signature involves a simple operation, allowing high packet rates to be successfully

monitored on the network.

In improved embodiments, several state analyzers are run in parallel so that a

large number of protocols and applications may be checked for. Every known protocol

and application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the—fly, and as further packets in the conversational flow are

encountered, signatures are updated and the states of the set of state transitions for any

potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

NOAC EX. 1018 Page 24

NOAC Ex. 1018 Page 25

.1-m...“saga-6,242.“M,.fi'wxfl5.4.4,“,”mA149“1.
..Palofl.

Imxw~.v«193--..

-x~*«mrmmmmmmzut~..~.«~..
 joiiii;11ml!duh;xvi-":5amt]

unlit

I'L'lIiiai'“is

limitn""illimit‘53:"

10

15

20

25

30

D

21

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation

process. That is, part of the initialization generates the pattern structures and extraction

operations database 308 and the state instruction database 328. Such initialization can

occur off-line or from a central location.

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

level 0). Each protocol is either a parent node or a terminal node. A parent node links a

protocol to other protocols (child protocols) that can be at higher layer levels. Thus a

protocol may have zero or more children. Ethernet packets, for example, have several

variants, each having a basic format that remains substantially the same. An Ethernet

packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet

Type/Version 2 and a DIX (DIGITAL—Intel-Xerox packet)—or an IEEE 803.2 packet.

Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP

protocol, and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now shows the header information for the next level (level-2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

packet that indicates the next layer level is a two—byte type field 1702 containing the

child recognition pattern for the next level. The remaining information 1704 is shown

hatched because it not relevant for this level. The list 1712 shows the possible children

for an Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 17B shows the structure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern recognition database, or

PRD) 308 generated by compilation process 310, in one embodiment, is in the form of a

NOAC EX. 1018 Page 25

NOAC Ex. 1018 Page 26

.m,“a“

i
g
'5

§

1*}.-

:mu::~

10

15

20

25

30

o .3

22

three dimensional structure that provides for rapidly searching packet headers for the

next protocol. FIG. 18A shows such a 3-D representation 1800 (which may be

considered as an indexed set of 2-D representations). A compressed form of the 3-D

structure is preferred.

An alternate embodiment of the data structure used in database 308 is illustrated

in FIG. 18B. Thus, like the 3—D structure of FIG. 18A, the data structure permits rapid

searches to be performed by the pattern recognition process 304 by indexing locations in

a memory rather than performing address link computations. In this alternate

embodiment, the PRD 308 includes two parts, a single protocol table 1850 (PT) which

has an entry for each protocol known for the monitor, and a series of Look Up Tables

1870 (LUT’s) that are used to identify known protocols and their children. The protocol

table includes the parameters needed by the pattern analysis and recognition process 304

(implemented by PRE 1006) to evaluate the header information in the packet that is

associated with that protocol, and parameters needed by extraction process 306

(implemented by slicer 1007) to process the packet header. When there are children, the

PT describes which bytes in the header to evaluate to determine the child protocol. In

particular, each PT entry contains the header length, an offset to the child, a slicer

command, and some flags.

The pattern matching is carried out by finding particular “child recognition

codes” in the header fields, and using these codes to index one or more of the LUT’s.

Each LUT entry has a node code that can have one of four values, indicating the protocol

that has been recognized, a code to indicate that the protocol has been partially

recognized (more LUT lookups are needed), a code to indicate that this is a terminal

node, and a null node to indicate a null entry. The next LUT to lookup is also returned

from a LUT lookup.

Compilation process is described in FIG. 4. The source—code information in the

form of protocol description files is shown as 402. In the particular embodiment, the

high level decoding descriptions includes a set of protocol description files 336, one for

each protocol, and a set of packet layer selections 338, which describes the particular

layering (sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and—extract

NOAC EX. 1018 Page 26

NOAC Ex. 1018 Page 27

g

, 5

i

.3

10

x5 .~
1
l 2.2

=‘ Z. 15

 ii”'ia"wit u...”.......

i

t

l
25

30

 TD

operations 406 is generated (404), and a set of packet state instructions and operations

407 is generated (405) in the form of instructions for the state processor that implements

state processing process 328. Data files for each type of application and protocol to be

recognized by the analyzer are downloaded from the pattern, parse, and extraction

database 406 into the memory systems of the parser and extraction engines. (See the

parsing process 500 description and FIG. 5; the extraction process 600 description and

FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each

type of application and protocol to be recognized by the analyzer are also downloaded

from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links

the three dimensional structure (one embodiment) or the or all the lookup tables for the

PRD.

Because of the large number of possible protocol trees and subtrees, the compiler

process 400 includes optimization that compares the trees and subtrees to see which

children share common parents. When implemented in the form of the LUT’s, this

process can generate a single LUT from a plurality of LUT’s. The optimization process

further includes a compaction process that reduces the space needed to store the data of

the PRD.

As an example of compaction, consider the 3—D structure of FIG. 18A that can be

thought of as a set of 2-D structures each representing a protocol. To enable saving space

by using only one array per protocol which may have several parents, in one

embodiment, the pattern analysis subprocess keeps a “current header” pointer. Each

location (offset) index for each protocol 2—D array in the 3-D structure is a relative

location starting with the start of header for the particular protocol. Furthermore, each of

the two-dimensional arrays is sparse. The next step of the optimization, is checking all

the 2-D arrays against all the other 2-D arrays to find out which ones can share memory.

Many of these 2—D arrays are often sparsely populated in that they each have only a small

number of valid entries. So, a process of "folding" is next used to combine two or more

2-D arrays together into one physical 2—D array without losing the identity of any of the

original 2-D arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur

NOAC EX. 1018 Page 27

NOAC Ex. 1018 Page 28

“a!”A ‘‘‘

KWtvdgmxav

a«mWe?Wfiflfiwwm»

x

Fun:.m.

 .."nqua:m.4221;;put.r'i.
mill)m;-,

Jim}:limb11ml)‘ln -........1.u...“.

MR...“«mu-+2“2W'mmmm

10

15

20

25

30

24

between any 2—D arrays irrespective of their location in the tree as long as certain

conditions are met. Multiple arrays may be combined into a single array as long as the

individual entries do not conflict with each other. A fold number is then used to associate

each element with its original array. A similar folding process is used for the set of LUTs

1850 in the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting

at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next

(initially the first) packet component from the packet 302. The packet components are

extracted from each packet 302 one element at a time. A check is made (504) to

determine if the load—packet—component operation 503 succeeded, indicating that there

was more in the packet to process. If not, indicating all components have been loaded,

the parser subsystem 301 builds the packet signature (512)——the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to provide a set of patterns and

processes for that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determine if the fetch pattern node operation 505 completed

successfully, indicating there was a pattern node that loaded in 505. If not, step 511

moves to the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the component extracted in 503. A pattern match obtained in 507

(as indicated by test 508) means the parser subsystem 301 has found a node in the

parsing elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test

508), the parser subsystem 301 moves (510) to the next pattern node from the pattern

database 308 and to step 505 to fetch the next node and process. Thus, there is an

“applying patterns” loop between 508 and 505. Once the parser subsystem 301

completes all the patterns and has either matched or not, the parser subsystem 301 moves

to the next packet component (511).

Once all the packet components have been the loaded and processed from the

input packet 302, then the load packet will fail (indicated by test 504), and the parser

NOAC EX. 1018 Page 28

NOAC Ex. 1018 Page 29

.M:m%4fivxcr-5v?!”~«He-é

i?

,‘3”.

Wrwm«#§fl€m;axtrflu

10

15

20

25

3O

25

subsystem 301 moves to build a packet signature which is described in FIG. 6

FIG. 6 is a flow chart for extracting the information from which to build the

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this

point parser subsystem 301 has a completed packet component and a pattern node

available in a buffer (602). Step 603 loads the packet component available from the

pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there

was indeed another packet component, the parser subsystem 301 fetches in 605 the

extraction and process elements received from the pattern node component in 602. If the

fetch was successful (test 606), indicating that there are extraction elements to apply, the

parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this

component, and if not, the parser subsystem 301 moves back to 603 to load the next

packet component at hand and repeats the process. If the answer is yes, then the parser

subsystem 301 moves to the next packet component ratchet. That new packet component

is then loaded in step 603. As the parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component

if there is more to extract, or to a different packet component if there is no more to

extract.

The extraction process thus builds the signature, extracting more and more

components according to the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet component operation 603 fails (test

604), all the components have been extracted. The built signature is loaded into the

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301 loads the next

pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

hash elements that are found in the pattern node that is in the element database. In 706

/ NOAC Ex. 1018 Page 29

NOAC Ex. 1018 Page 30

m,,::.,,ii"'ii

10

15

2O

25

30

“O 3

26

the resulting signature and the hash are packed. In 707 the parser subsystem 301 moves

on to the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left

(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the

form of a UFKB record which is similar to a parser record, but with one or more

different fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine

(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with

the parser record that includes a signature, the hash and at least parts of the payload. In

802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the

lookup engine 314 computes a “record bin number” from the hash for a flow—entry. A

bin herein may have one or more “buckets” each containing a flow-entry. The preferred

embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the

hash. If the cache successfully returns with a bucket from the bin number, indicating

there are more buckets in the bin, the lookup/update engine compares (807) the current

signature (the UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry

signature). If the signatures match (test 808), that record (in the cache) is marked in step

810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the

UFKB—entry in 802 has a status of “found.” The “found” indication allows the state

processing 328 to begin processing this UFKB element. The preferred hardware

embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a

calculator for every packet analyzed. The statistical operations may include one or more

~’ NOAC EX. 1018 Page 30

NOAC Ex. 1018 Page 31

10

15

20

25

30

o :3

27

of counting the packets associated with the flow; determining statistics related to the size

of packets of the flow; compiling statistics on differences between packets in each

direction, for example using timestamps; and determining statistical relationships of

timestamps of packets in the same direction. The statistical measures are kept in the

flow-entries. Other statistical measures also may be compiled. These' statistics may be

used singly or in combination by a statistical processor component to analyze many

different aspects of the flow. This may include determining network usage metrics from

the statistical measures, for example to ascertain the network’s ability to transfer

information for this application. Such analysis provides for measuring the quality of

service of a conversation, measuring how well an application is performing in the

network, measuring network resources consumed by an application, and so forth.

To provide for such analyses, the lockup/update engine updates one or more

counters that are part of the flow-entry (in the cache) in step 812. The process exits at

813. In our embodiment, the counters include the total packets of the flow, the time, and

a differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again

looks up the cache for another bucket from that bin. The lockup/update engine thus

continues lookup up buckets of the bin until there is either a match in 808 or operation

804 is not successful (test 805), indicating that there are no more buckets in the bin and

no match was found.

If no match was found, the packet belongs to a new (not previously encountered)

flow. In 806 the system indicates that the record in the unified flow key buffer for this

packet is new, and in 812, any statistical updating operations are performed for this

packet by updating the flow—entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lockup engine ends with a UFKB—entry for the packet with a

“new” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash may be used that corresponds to a single flow-entry. In such an

NOAC EX. 1018 Page 31

NOAC Ex. 1018 Page 32

,Mr,..,

iwit

g.
5’
;

.§
3

‘g

fine}.

PKW*MamassewMei

10

15

20

25

30

o 3

28

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the

system are now described with reference to FIGS. 10 and 11. Note that while we are

describing a particular hardware implementation of the invention embodiment of FIG. 3,

it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be

implemented in software running on one or more general-purpose processors, or only

partly implemented in hardware. An implementation of the invention that can operate in

software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is

the extraction-operation database memory, in which the extraction instructions are

stored. Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3.

Typically, the system is initialized from a microprocessor (not shown) at which time

these memories are loaded through a host interface multiplexor and control register 1005

via the internal buses 1003 and 1004. Note that the contents of 1001 and 1002 are

preferably obtained by compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface

controller 1022. The buffer 1008 and interface control 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packet start

signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packet starts loading into the buffer memory 1008, pattern recognition engine (PRE)

1006 carries out the operations on the input buffer memory described in block 304 of

FIG. 3. That is, protocol types and associated headers for each protocol layer that exist in

the packet are determined.

NOAC EX. 1018 Page 32

NOAC Ex. 1018 Page 33

 10

15

20

25

30

o .3

29

The PRE searches database 1001 and the packet in buffer 1008 in order to

recognize the protocols the packet contains. In one implementation, the database 1001

includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.

The first lookup table is always at address zero. The Pattern Recognition Engine uses a

base packet offset from a control register to start the comparison. It loads this value into

a current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a

terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a

first stage that checks the protocol type field to determine if it is an 802.3 packet and the

field should be treated as a length. If it is not a length, the protocol is checked in a

second stage. The first stage is the only protocol level that is not programmable. The

second stage has two full sixteen bit content addressable memories (CAMS) defined for

future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for

the extraction engine (also called a “slicer”) 1007. The recognized patterns and the

commands are sent to the extraction engine 1007 that extracts information from the

packet to build the parser record. Thus, the operations of the extraction engine are those

carried out in blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to

slicer 1007 in the form of extraction instruction pointers which tell the extraction engine

1007 where to a find the instructions in the extraction operations database memory (i.e.,

slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol

identifier and a process code to the extractor. The protocol identifier is added to the flow

signature and the process code is used to fetch the first instruction from the instruction

database 1002. Instructions include an operation code and usually source and destination

offsets as well as a length. The offsets and length are in bytes. A typical operation is the

MOVE instruction. This instruction tells the slicer 1007 to copy 11 bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains

NOAC EX. 1018 Page 33

NOAC Ex. 1018 Page 34

::

ea
i5 =

:5:limit .u-.

xi"'x‘tn‘mi:limitElli."“I.-.a...“u..."..

10

15

20

25

30

Q J

30

a byte—wise barrel shifter so that the bytes moved can be packed into the flow signature.

The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the

input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already

processed by PRE 1006 while more (i.e., later arriving) packet information is being

simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory 1010. Any additional payload from

the packet that is required for further analysis is also included. The parser output memory

1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once

all the information of a packet is in the parser output buffer memory 1010, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is

initialized prior to operation, and initialization includes loading the state processing

information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPlD) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an

analyzer host interface controller 1118, which in turn has access to a cache system 1115.

The cache system has bi-directional access to and from the state processor of the system

1108. State processor 1108 is reSponsible for initializing the state processor instruction

database memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

NOAC EX. 1018 Page 34

NOAC Ex. 1018 Page 35

1."V-Vfie'rl-mm.

n:1“11311;lia'l‘nff”)!

.“Wi!”uni!.“m'i!:1”:awuwfiw~mxk~mwmwmmMmmamm» 31.1“...“.;:;:':::::"

10

15

20

25

30

Q 3

31

comprising packet signatures and payloads that come from the parser into the unified

flow key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB

records. A UFKB record is essentially a parser record; the UFKB holds records of

packets that are to be processed or that are in process. Furthermore, the UFKB provides

for one or more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:

the lockup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more

finite state machines (FSM's). There is bi-directional access between each of the finite

state machines and the unified flow key buffer 1103. The UFKB record includes a field

that stores the packet sequence number, and another that is filled with state information

in the form of a program counter for the state processor 1108 that implements state

processing 328. The status flags of the UFKB for any entry includes that the LUE is done

and that the LUE is transferring processing of the entry to the state processor. The LUE

done indicator is also used to indicate what the next entry is for the LUE. There also is

provided a flag to indicate that the state processor is done with the current flow and to

indicate what the next entry is for the state processor. There also is provided a flag to

indicate the state processor is transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been

processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB

record data may be processed by the flow insertion/deletion engine 1110 after being

processed by the state processor 1108 or only by the LUE. Whether or not a particular

engine has been applied to any unified flow key buffer entry is determined by status

fields set by the engines upon completion. In one embodiment, a status flag in the

UFKB—entry indicates whether an entry is new or found. In other embodiments, the LUE

issues a flag to pass the entry to the state processor for processing, and the required

operations for a new record are included in the SP instructions.

Note that each UFKB—entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

_ . NOAC EX. 1018 Page 35

NOAC Ex. 1018 Page 36

..‘Vfifi;.(new!».

Mae—’33:.~»»

thwlfifi‘“

.AJ

«waywamfiewvmmmammaommwm—‘v-
r"421:1.M.4223...:=..,“'1

mll

.123},1.3m

mmm5::

10

15

20

25

30

O D

32

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem

1115 that includes a caching engine. Cache 1115 is designed to have information flowing

in and out of it from five different points within the system: the three engines, external

memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and

a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host

interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor)

can thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content

addressable memory cells (CAMs) each including an address portion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.

The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The

bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom

CAM are replaced by the flow-entry from the flow—entry database 324. This now

becomes the most recently used entry, so the contents of the bottom CAM are moved to

the top CAM and all CAM contents are shifted down. Thus, the cache is an associative

cache with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the

operation of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate

that a “new” UFKB—entry is available. The LUE uses the hash in the UFKB-entry to read

a matching bin of up to four buckets from the cache. The cache system attempts to obtain

the matching bin. If a matching bin is not in the cache, the cache 1115 makes the request

to the UMC 1119 to bring in a matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket

and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from

the cache, a time stamp in set in the flow key of the UFKB record, a protocol

identification and state determination is made using a table that was loaded by

. NOAC EX. 1018 Page 36

NOAC Ex. 1018 Page 37

(E
i

it

10

15

20

25

3O

o 3

33

compilation process 310 during initialization, the status for the record is set to indicate

the LUE has processed the record, and an indication is made that the UFKB-entry is

ready to start state processing. The identification and state determination generates a

protocol identifier which in the preferred embodiment is a “jump vector” for the state

processor which is kept by the UFKB for this UFKB-entry and used by the state

processor to start state processing for the particular protocol. For example, the jump

vector jumps to the subroutine for processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a

previously encountered flow, then a calculator component enters one or more statistical

measures stored in the flow—entry, including the timestamp. In addition, a time difference

from the last stored timestamp may be stored, and a packet count may be updated. The

state of the flow is obtained from the flow-entry is examined by looking at the protocol

identifier stored in the flow—entry of database 324. If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

vector for the state processor to a subroutine to state processing the protocol, and no

more classification is indicated in the preferred embodiment by the jump vector being

zero. If the protocol identifier indicates more processing, then an indication is made that

the UFKB-entry is ready to start state processing and the status for the record is set to

indicate the LUE has processed the record.

The state processor 1108 processes information in the cache system according to

a UFKB-entry after the LUE has completed. State processor 1108 includes a state

processor program counter SPPC that generates the address in the state processor

instruction database 1109 loaded by compiler process 310 during initialization. It

contains an Instruction Pointer (SPIP) which generates the SPID address. The instruction

pointer can be incremented or loaded from a Jump Vector Multiplexor which facilitates

conditional branching. The SPIP can be loaded from one of three sources: (1) A protocol

identifier from the UFKB, (2) an immediate jump vector form the currently decoded

instruction, or (3) a value provided by the arithmetic logic unit (SPALU) included in the

state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

NOAC EX. 1018 Page 37

NOAC Ex. 1018 Page 38

rvM...”“”M
o 3

Q 34

..".4.«i- identifier, the Program Counter is initialized with the last protocol recognized by the

i. Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and

5 String Compare functions necessary to implement the State Processor instructions. The

main blocks of the SPALU are: The A and B Registers, the Instruction Decode & State
~05er~2~xvtgjw'..»

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register~WWW"~ The Search Engine in turn contains the Target Search Register set, the Reference

10 Search Register set, and a Compare block which compares two operands by exclusive—

.«u..1...“ or—ing them together.

m...-..-u11ximu‘wu[3li_
t~n“... Thus, after the UFKB sets the program counter, a sequence of one or more state

operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

15 FIG. 13 describes the operation of the state processor 1108. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB—entry is
in.n: mun-«m»1;mm»

new or corresponding to a found flow—entry. This UFKB-entry is retrieved from unified

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used
‘ II[II!MH mmv‘I-«I'.

to set the state processor’s instruction counter. The state processor 1108 starts the

20 process by using the last protocol recognized by the parser subsystem 301 as an offset

into a jump table. The jump table takes us to the instructions to use for that protocol.

Most instructions test something in the unified flow key buffer or the flow—entry if it

exists. The state processor 1108 may have to test bits, do comparisons, add or subtract to

perform the test.

25 The first state processor instruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performs the one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, a compare, etc.), so that many such instructionsrmed to be

performed on each unified flow key buffer entry. One aspect of the state processor is its

30 ability to search for one or more (up to four) reference strings in the payload part of the
.1

" - NOAC EX. 1018 Page 38

NOAC Ex. 1018 Page 39

10

15

 limitifnuu...”u“..--.

 20

25

30

Q 3

35

UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

In 1307, a check is made to determine if there are any more instructions to be

performed for the packet. If yes, then in 1308 the system sets the state processor

instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by

the SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet

has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is

fully determined. If indeed there are no more states to process for this flow, then in 1311

the processor finalizes the processing. Some final states may need to put a state in place

that tells the system to remove a flow——for example, if a connection disappears from a

lower level connection identifier. In that case, in 1311, a flow removal state is set and

saved in the flow-entry. The flow removal state may be a NOP (no—op) instruction which

means there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP

or otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in

1310 the system saves the state processor instruction pointer in the current flow-entry in

the current flow-entry. That will be the next operation that will be performed the next

time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer

1103 and the flow-entry in the cache. Once the state processor is done, a flag is set in the

UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be

r l NOAC EX. 1018 Page 39

NOAC Ex. 1018 Page 40

um

gm:n‘uwznu'93»;91‘;uum:-.m-nn
IIu-

an.» 3

Dim)!
O 3

36

inserted or deleted from the database of flows, control is then passed on to the flow

insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB—entry indicating that

the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the

flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are

grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that

may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin

(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that

matches the hash of the UFKB, so this bin may already have been sought for the UFKB-

entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be

maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the

bin/bucket is empty, step1207 inserts the flow signature (with the hash) into the bucket
and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp

that is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and

bucket record flow signature to the packet to verify that all the elements are in place to

complete the record. In 1211 the system marks the record bin and bucket as “in process”

and as “new” in the cache system (and hence in the external memory). In 1212, the initial

statistical measures for the flow-record are set in the cache system. This in the preferred

embodiment clears the set of counters used to maintain statistics, and may perform other

procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.‘

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next

bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid

bucket, the unified flow key buffer entry for the packet is set as “drop,” indicating that

the system cannot process the particular packet because there are no buckets left in the

NOAC EX. 1018 Page 40

NOAC Ex. 1018 Page 41

o o

37

system. The process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow

insertion and deletion operations are completed for this UFKB—entry. This also lets the

UFKB provide the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow key buffer entry by all of

5 the engines required to access and manage a particular packet and its flow signature, the

unified flow key buffer entry is marked as “completed.” That element will then be used

by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and some are maintained

10 in the cache 1115. The cache system 1115 is intelligent enough to access the flow

database and to understand the data structures that exists on the other side of memory

interface 1123. The lookup/update engine 1107 is able to request that the cache system

pull a particular flow or “buckets” of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate onman,....n mma“...n
15 information found in the cache system once it is looked up by means of the

um}!.i'p!
lookup/update engine request, and the flowltnsertion/deletion engine 1110 can create
new entries in the cache system if required ased on information in the unified flow key

m-flin.
buffer 1103. The cache retrieves information as required from the memory through the

x c E

‘2
.2,

.=:

memory interface 1123 and the unified memory controller 1119, and updates information

20 as required in the memory through the memory controller 1119.

There are several interfaces to components of the system external to the module

of FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

processing system such as a microprocessor or a multiplexor (MUX) system.

25 Consequently, one can connect the overall traffic classification system of FIGS. 11 and

12 into some other processing system to manage the classification system and to extract

data gathered by the system.

The memory interface 1123 is designed to interface to any of a variety of memory

systems that one may want to use to store the flow-entries. One can use different types of

30 memory systems like regular dynamic random access memory (DRAM), synchronous

DRAM, synchronous graphic memory (SGRAM), static random access memory

NOAC EX. 1018 Page 41

NOAC Ex. 1018 Page 42

30

O D

38

(SRAM), and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012—a general interface that works in tandem with the signals of the input buffer

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host

interface multiplexor and control registers 1005. This enables the parsing system to be

managed by an external system, for example a microprocessor or another kind of

external logic, and enables the external system to program and otherwise control the

parser.

The preferred embodiment of this aspect of the invention is described in a

hardware description language (HDL) such as VHDL or Verilog. It is designed and

created in an HDL so that it may be used as a single chip system or, for instance,

integrated into another general—purpose system that is being designed for purposes

related to creating and analyzing traffic within a network. Verilog or other HDL

implementation is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in

FIGS. 10 and 11 are implemented in a set of six field programmable logic arrays

(FPGA’s). The boundaries of these FPGA’s are as follows. The parsing subsystem of

FIG. 10 is implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and

1012, parts of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013,

1011 parts of 1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented

as a single FPGA. State processor 1108 and part of state processor instruction database

memory 1109 is another FPGA. Portions of the state processor instruction database

memory 1109 are maintained in external SRAM’s. The lookup/update engine 1107 and

the flow insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes

the cache system 1115, the unified memory control 1119, and the analyzer host interface

and control 1 118.

Note that one can implement the system as one or more VSLI devices, rather than

as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is

anticipated that in the future device densities will continue to increase, so that the

r' NOAC EX. 1018 Page 42

NOAC Ex. 1018 Page 43

10

15

20

25

30

O D

39

complete system may eventually form a sub-unit (a “core”) of a larger single chip unit.

Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets

from a connection point 121 on network 102 so that all packets passing point 121 in

either direction are supplied to monitor 300. Monitor 300 comprises the parser sub-

system 301, which determines flow signatures, and analyzer sub—system 303 that

analyzes the flow signature of each packet. A memory 324 is used to store the database

of flows that are determined and updated by monitor 300. A host computer 1504, which

might be any processor, for example, a general—purpose computer, is used to analyze the

flows in memory 324. As is conventional, host computer 1504 includes a memory, say

RAM, shown as host memory 1506. In addition, the host might contain a disk. In one

application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one

would, or example, implement an RMON probe, where a network interface card is used

to send RMON information to the network. Commercial SNMP implementations also

are available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state

analysis for packet exchanges that are commonly referred to as “server announcement”

type exchanges. Server announcement is a process used to ease communications between

a server with multiple applications that can all be simultaneously accessed from multiple

clients. Many applications use a server announcement process as a means of

multiplexing a single port or socket into many applications and services. With this type

of exchange, messages are sent on the network, in either a broadcast or multicast

NOAC EX. 1018 Page 43

NOAC Ex. 1018 Page 44

10

15

20

25

3O

40

approach, to announce a server and application, and all stations in the network may

receive and decode these messages. The messages enable the stations to derive the

appropriate connection point for communicating that particular application with the

particular server. Using the server announcement method, a particular application

communicates using a service channel, in the form of a TCP or UDP socket or port as in

the IP protocol suite, or using a SAP as in the Novell [PX protocol suite.

The analyzer 303 is also capable of carrying out “in—stream analysis” of packet

exchanges. The “in-stream analysis” method is used either as a primary or secondary

recognition process. As a primary process, in-stream analysis assists in extracting

detailed information which will be used to further recognize both the specific application

and application component. A good example of in-stream analysis is any Web—based

application. For example, the commonly used PointCast Web information application

can be recognized using this process; during the initial connection between a PointCast

server and client, specific key tokens exist in the data exchange that will result in a

signature being generated to recognize PointCast.

The in—stream analysis process may also be combined with the server

announcement process. In many cases in-stream analysis will augment other recognition

processes. An example of combining in-stream analysis with server announcement can

be found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires

an initial connection to a predefined socket or port number. This method of

communication is used in a variety of transport layer protocols. It is most commonly

seen in the TCP and UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

port to exchange the remainder of the data between the client and the server. The server

then replies to the request of the client using this newly created port. The original port

used by the client to connect to the server will never be used again during this data

exchange.

NOAC EX. 1018 Page 44

NOAC Ex. 1018 Page 45

14

‘{3:
Ltd

.,”a:

10

15

20

25

30

3 3

41

One example of session tracking is TFI‘P (Trivial File Transfer Protocol), a

version of the TCP/[P FTP protocol that has no directory or password capability. During

the client/server exchange process of TFI‘P, a specific port (port number 69) is always

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDP port 69. Once the server receives this request,

a new port number is created on the server. The server then replies to the client using the

new port. In this example, it is clear that in order to recognize TFI‘P; network monitor

300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for

monitoring the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular

connections in the network. Connection—oriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCP transport

protocol that provides a reliable means of sending information between a client and a

server. When a data exchange is initiated, a TCP request for synchronization message is

sent. This message contains a specific sequence number that is used to track an

acknowledgement from the server. Once the server has acknowledged the

synchronization request, data may be exchanged between the client and the server. When

communication is no longer required, the client sends a finish or complete message to

the server, and the server acknowledges this finish request with a reply containing the

sequence numbers from the request. The states of such a connection-oriented exchange

relate to the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the

basic underlying process remains similar. A typical server announcement message is sent

to one or more clients in a network. This type of announcement message has specific

content, which, in another aspect of the invention, is salvaged and maintained in the

database of flow-entries in the system. Because the announcement is sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announced is known, and an aspect of the inventive

3'1: NOAC Ex. 1018 Page 45

NOAC Ex. 1018 Page 46

‘1W“...$22591.4!
I)‘1'“. nv«a.«0‘

1
n9 n»)!«m.

i;

1
E
3,

§
§

10

15

20

25

30

42

monitor is that it too can make the same assumption,

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto,

California) of the Remote Procedure Call (RPC), a programming interface that allows

one program to use the services of another on a remote machine. A Sun-RPC example is

now used to explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must

establish a connection, for which the RFC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database

called the port Mapper. The port Mapper creates a direct association between a Sun-RPC

program or application and a TCP or UDP socket or port (for TCP or UDP

implementations). An application or program number is a 32-bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a Sun-RPC sewer can present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1)

making a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a

predefined UDP or TCP socket. Once the port Mapper process on the sun RPC server

receives the request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified,

and thus will use the TCP protocol for its reply.

NOAC Ex. 1018 Page 46

NOAC Ex. 1018 Page 47

 10

15

20

25

30

O D

43

3. The server 110 sends a TCP packet to port number 111, with an RPC

Bind Lookup Reply. The reply contains the specific port number (e.g., port

number ‘port’) on which future transactions will be accepted for the specific

RPC program identifier (e. g., Program ‘program’) and the protocol (UDP or

TCP) for use.

It is desired that from now on every time that port number ‘port’ is used, the

packet is associated with the application program ‘program’ until the number ‘port’ no

longer is to be associated with the program ‘program’. Network monitor 300 by creating

a flow—entry and a signature includes a mechanism for remembering the exchange so that

future packets that use the port number ‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways

that a particular program—say ‘program’—might be associated with a particular port

number, for example number ‘port’. One is by a broadcast announcement of a particular

association between an application service and a port number, called a Sun RPC

portMapper Announcement. Another, is when some server—say the same SERVER 2—

replies to some client—say CLIENT l—requesting some portMapper assignment with a

RPC portMapper Reply. Some other client—say CLIENT Z—Inight inadvertently see

this request, and thus know that for this particular server, SERVER 2, port number ‘port’

is associated with the application service ‘program’. It is desirable for the network

monitor 300 to be able to associate any packets to SERVER 2 using port number ‘port’

with the application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e. g., SERVER 2 in

FIG. 1) via the server’s interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow

900 starts with a step 910 that a Remote Procedure Call bind lookup request is issued by

client 106 and ends with the server state creation step 904. Such RPC bind lookup

request includes values for the ‘program,’ ‘version,’ and ‘protocol’ to use, e.g., TCP or

NOAC EX. 1018 Page 47

NOAC Ex. 1018 Page 48

 11;.“an.ii""u

3!film}?11...}!‘1:

:::gM.

11"?)it”)?u’"'i:-i.'l.'i: nu.........4mm:u...

10

15

2O

25

30

O Q

44

UDP. The process for Sun RPC analysis in the network monitor 300 includes the

following aspects. :

0 Process 909: Extract the ‘program,’ ‘version,’ and ‘protocol’ (UDP or TCP). Extract

the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

0 Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If value is

portMapper, save paired socket (i. e., dest for destination address, src for source

address). Decode ports and mapping, save ports with socket/addr key. There may be

more than one pairing per mapper packet. Form a signature (e.g., a key). A flow~

entry is created in database 324. The saving of the request is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lookup

the request (905). A new signature (i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow-

entry database. That signature now may be used to identify packets associated with the

SCI'VCI.

The server state creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol

can announce that it is able to provide a particular application service. Embodiments of

the present invention preferably can analyze when an exchange occurs between a client

and a server, and also can track those stations that have received the announcement of a

service in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such

causes various clients to execute a similar set of operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapper step 901

could be in reply to a portMapper request, and is also broadcast. It includes all the

service parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.
’4

NOAC Ex. 1018 Page 48

NOAC Ex. 1018 Page 49

 10

15W...,:,m...n.M:'.2:.34m9..“‘M3.2.,‘129‘.-fl‘.
(“N

20

25m-vwwmmrwmwfivfifi‘:' .'‘AT.“

o o
45

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodiment of the present

invention might generate a pair of flow signatures, “signature-l” 210 and “signature—2”

212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206

corresponds to such a request sent from CLIENT 3 to SERVER 2. This packet contains

important information that is used in building a signature according to an aspect of the

invention. A source and destination network address occupy the first two fields of each

packet, and according to the patterns in pattern database 308, the flow signature (shown

as KEYI 230 in FIG. 2) will also contain these two fields, so the parser subsystem 301

will include these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address

identifies the client 106 (shown also as 202), the label used in the drawing is “C1”. If

such address identifies the server 110 (shown also as server 204), the label used in the

drawing is “S1”. The first two fields 214 and 215 in packet 206 are “S1” and C1” because

packet 206 is provided from the server 110 and is destined for the client 106. Suppose

for this example, “S1” is an address numerically less than address “C1”. A third field

“pl” 216 identifies the particular protocol being used, e. g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate

port numbers that are used. The conversation direction determines where the port

number field is. The diagonal pattern in field 217 is used to identify a source-port

pattern, and the hash pattern in field 218 is used to identify the destination-port pattern.

The order indicates the client—server message direction. A sixth field denoted “i1” 219 is

an element that is being requested by the client from the server. A seventh field denoted

“sla” 220 is the service requested by the client from server 110. The following eighth

field “QA” 221 (for question mark) indicates that the client 106 wants to know what to

use to access application “sla”. A tenth field “QP” 223 is used to indicate that the client

wants the server to indicate what protocol to use for the particular application.

NOAC EX. 1018 Page 49

NOAC Ex. 1018 Page 50

10

15

20

25

30

o a

46

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

packets, and is transmitted to the server 110 on a well-known service connection

identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the

RFC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224—233. The destination and source addresses are

carried in fields 224 and 225, e.g., indicated “C 1” and “S1”, respectively. Notice the

order is now reversed, since the client-server message direction is from the server 110 to

the client 106. The protocol “p1” is used as indicated in field 226. The request “i1” is in

field 229. Values have been filled in for the application port number, e. g., in field 233

and protocol ““p2”” in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a

source address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the particular embodiment, the numerically

lower address is always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume “S1”<“C1”, the order is address “S1”

followed by client address “C1”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p1”. The next

field used for the signature is field 243, which contains the destination source port

number shown as a crosshatched pattern from the field 218 of the packet 206. This

pattern will be recognized in the payload of packets to derive how this packet or

sequence of packets exists as a flow. In practice, these may be TCP port numbers, or a

combination of TCP port numbers. In the case of the Sun RPC example, the crosshatch

represents a set of port numbers of UDS for p1 that will be used to recognize this flow

NOAC EX. 1018 Page 50

NOAC Ex. 1018 Page 51

213“.“If"»‘.~...’' ..'‘

15

20

25

30

Q 3

47

(e.g., port 111). Port 111 indicates this is Sun RPC. Some applications, such as the Sun

RPC Bind Lookups, are directly determinable (“known”) at the parser level. So in this

case, the signature KEY—l points to a known application denoted “a1” (Sun RPC Bind

Lookup), and a next-state that the state processor should proceed to for more complex

recognition jobs, denoted as state “stD” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY—1. Hence, when the signature

enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow-

entry is obtained, and in this flow-entry indicates state “stD”. The operations for state

“stD” in the state processor instruction database 326 instructs the state processor to build

and store a new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature

built by the state processor also includes the destination and a source addresses 250 and

251, respectively, for server “SI” followed by (the numerically higher address) client

“C1”. A protocol field 252 defines the protocol to be used, e.g., “p2” which is obtained

from the reply packet. A field 253 contains a recognition pattern also obtained from the

reply packet. In this case, the application is Sun RPC, and field 254 indicates this

application “a ”. A next-state field 255 defines the next state that the state processor

should proceed to for more complex recognition jobs, e. g., a state “stl”. In this particular

example, this is a final state. Thus, KEY-2 may now be used to recognize packets that

are in any way associated with the application “a2”. Two such packets 208 and 209 are

shown, one in each direction. They use the particular application service requested in the

original Bind Lookup Request, and each will be recognized because the signature KEY-2

will be built in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “S 1” followed by client “C1”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,

large collections of flow signatures are kept in a lookup table in a least—to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented

by request packet 208 and response packet 209. The client 106 sends packets 208 that

n,

NOAC EX. 1018 Page 51

NOAC Ex. 1018 Page 52

10
m...m...-f:

T:

 u:a...".a

:‘i 15

20

25

30

O D

48

have a destination and source address S1 and C1, in a pair of fields 260 and 261. A field

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

Some network—server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the

packet. Others require a sequence of state transitions to occur in order to match a known

and predefined climb from state-to-state.

Thus the flow signature for the recognition of application “a2” is automatically

set up by predefining what packet—exchange sequences occur for this example when a

relatively simple Sun Microsystems Remote Procedure Call bind lookup request

instruction executes. More complicated exchanges than this may generate more than two

flow signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a “final” resting state such as

“stl” in field 255 is reached. All these are used to build the final set of flow signatures

for recognizing a particular application in the future.

Fte-Using Information from Flows for Maintaining Metrics

The flow-entry of each flow stores a set of statistical measures for the flow,

including the total number of packets in the flow, the time of arrival, and the differential

time from the last arrival.

Referring again to FIG. 3, the state processing process 328 performs operations

defined for the state of the flow, for example for the particular protocol so far identified

for the flow. One aspect of the invention is that from time to time, a set of one or more

metrics related t the flow may be determined using one or more of the statistical

measures stored in the flow—entry. Such metric determining may be carried out, for

example, by the state processor running instructions in the state processor instruction and

pattern database 326. Such metrics may then be sent by the analyzer subsystem to a host

computer connected to the monitor. Alternatively, such metric determining may be

carried out by a processor connected to the flow-entry database 324. In our preferred

hardware implementation shown in FIG. 10, an analyzer host interface and control 1118

may be configured to configured to access flow—entry records via cache system 1115 to

output to a processor via the host bus interface. The processor may then do the reporting

_. l“ NOAC EX. 1018 Page 52

NOAC Ex. 1018 Page 53

f.5!

‘ 3
l

l

15

20

25

30

O 3

of the base metrics.

Fig. 15 describes how the monitor system can be set up with a host computer

1504. The monitor 300 sends metrics from time to time to the host computer 1504, and

the host computer 1504 carries out part of the analysis.

This following section describes how the monitor of the invention can be used to

monitor the Quality of Service (QOS) by providing QOS Metrics.

Quality of Service Traffic Statistics (Metrics)

This next section defines the common structure that may be applied for the

Quality of Service (QOS) Metrics according to one aspect of the invention. It also

defines the “original” (or “base”) set of metrics that may be determined in an

embodiment of the invention to support QOS. The base metrics are determined as part of

state processing or by a processor connected to monitor 300, and the QOS metrics are

determined from the base metrics by the host computer 1504. The main reason for the

breakdown is that the complete QOS metrics may be computationally complex,

involving square roots and other functions requiring more computational resources than

may be available in real time. The base functions are chosen to be simple to calculate in

real time and from which complete QOS metrics may be determined. Other breakdowns

of functions clearly are possible within the scope of the invention.

Such metric determining may be carried out, for example, by the state processor

running instructions in the state processor instruction and pattern database 326. Such

base metrics may then be sent by the analyzer subsystem via a microprocessor or logic

circuit connected to the monitor. Alternatively, such metric determining may be carried

out by a microprocessor (or some other logic) connected to the flow-entry database 324.

In our preferred hardware implementation shown in FIGS. 10 and 11, such a

microprocessor is connected cache system 1115 via an analyzer host interface and

control 1118 and host bus interface. These components may be configured to access

flow-entry records via cache system 1115 to enable the microprocessor to determine and

report the base metrics.

The QOS Metrics may broken into the following Metrics Groups. The names are

descriptive. The list is not exhaustive, and other metrics may be used. The QOS metrics
4:"

NOAC EX. 1018 Page 53

NOAC Ex. 1018 Page 54

O D

50

below include client-to-server (CS) and server—to-client (SC) metrics.

Traffic Metrics such as CSTraffic and SCTraffic.

Jitter Metrics such as CSTraffic and CS Traffic.

Exchange Response Metrics such as CSExchangeResponseTimeStartToStart,

CSExchangeResponseTimeEndToStart, CSExchangeResponseTimeStartToEnd,

SCExchangeResponseTimeStartToStart, SCExchangeResponseTimeEndToStart, and

SCExchangeResponseTimeStartToEnd.

Transaction Response Metrics such as CSTransactionResponseTimeStartToStart,

CSApplicationResponseTimeEndToStart, CSApplicationResponseTimeStartToEnd,

SCTransactionResponseTimeStartToStart, SCApplicationResponseTimeEndToStart,

and SCApplicationResponseTimeStartToEnd.

Connection Metrics such as ConnectionEstablishment and

ConnectionGracefulTermination, and ConnectionTimeoutTermination.

Connection Sequence Metrics such as CSConnectionRetransmissions,

SCConnectionRetransmissions, and CSConnectionOutOfOrders,

SCConnectionOutOfOrders.

Connection Window Metrics, CSConnectionWindow, SCConnectionWindow,

CSConnectionFrozenWindows, SCConnectionFrozenWindows,

CSConnectionClosedWindows, and SCConnectionClosedWindows

QOS Base Metrics

The simplest means of representing a group of data is by frequency distributions

in sub-ranges. In the preferred embodiment, there are some rules in creating the sub-

ranges. First the range needs to be known. Second a sub-range size needs to be

determined. Fixed sub-range sizes are preferred, alternate embodiments may use variable

sub-range sizes.

Determining complete frequenCy distributions may be computationally

expensive. Thus, the preferred embodiment uses metrics determined by summation

functions on the individual data elements in a population.

1. * NOAC EX. 1018 Page 54

NOAC Ex. 1018 Page 55

15

20

25

o :3

51

The metrics reporting process provides data that can be used to calculate useful

statistical measurements. In one embodiment, the metrics reporting process is part of the

state processing that is carried out from time to time according to the state, and in

another embodiment, the metrics reporting process carried out from time to time by a

microprocessor having access to flow records. Preferably, the metrics reporting process

provides base metrics and the final QOS metrics calculations are carried out by the host

computer 1504. In addition to keeping the real time state processing simple, the

partitioning of the tasks in this way provides metrics that are scalable. For example, the

base metrics from two intervals may be combined to metrics for larger intervals.

Consider, for example is the arithmetic mean defined as the sum of the data

divided by the number of data elements.

_ 2xX = ——
N

Two base metrics provided by the metrics reporting process are the sum of the x,

and the number of elements N. The host computer 1504 performs the division to obtain

the average. Furthermore, two sets base metrics for two intervals may be combined by

adding the sum of the x’s and by adding the number of elements to get a combined sum

and number of elements. The average formula then works just the same.

The base metrics have been chosen to maximize the amount of data available

while minimizing the amount of memory needed to store the metric and minimizing the

processing requirement needed to generate the metric. The base metrics are provided in a

metric data structure that contains five unsigned integer values.

0 N count of the number of data points for the metric.

o 22 X sum of all the data point values for the metric.

o 22 (X2) sum of all the data point values squared for the metric.

o Xmax maximum data point value for the metric.

0 Xmin minimum data point value for the metric.

A metric is used to describe events over a time interval. The base metrics are

NOAC Ex. 1018 Page 55

NOAC Ex. 1018 Page 56

5

R

‘4'

E2
222

10

.4 g”

.3‘.

"5 E23

3 23‘:

'2
“‘ 3:2 15

l :2

vi

2:5
'¢
’7

R

20

H,

\“

Qf‘ 1

O '3

52

determined from statistical measures maintained in flow-entries. It is not necessary to

cache all the events and then count them at the end of the interval. The base metrics have

also been designed to be easily scaleable in terms of combining adjacent intervals.

The following rules are applied when combining base metrics for contiguous

time intervals.

0 N EN

0 2X 2(2 (X))

. 2 (X2) 20: (X5)

0 Xmax MAX(Xmax)

' Xmin MIN(Xmm)

In addition to the above five values, a “trend” indicator is included in the

preferred embodiment data structure. This is provided by an enumerated type. The reason

for this is that the preferred method of generating trend information is by subtract an

initial first value for the interval from the final value for the interval. Only the sign of the

resulting number may have value, for example, to determine an indication of trend.

Typical operations that may be performed on the base metrics include:

0 Number N .

N
o Fre uenc —————-—.

q y TimeInterval

0 Maximum X m.

0 Minimum X m ’

0 Range R=Xm—X .rrun'

__ X

0 Arithmetic Mean X =Z'A—l—.

X 2
0 Root Mean SquareRMS = z .

1 , NOAC EX. 1018 Page 56

NOAC Ex. 1018 Page 57

0 Variance 0'2 =———-——=

4 {,3} _ — 2 2 — —2

0 Standard Deviation 0 = LEN—g)— = LEW-X—

0 Trend information, which may be the trend between polled intervals and the

trend within an interval. Trending between polled intervals is a management

5 application function. Typically the management station would trend on the

’5 average of the reported interval. The trend within an interval is presented as

an enumerated type and can easily be generated by subtracting the first value

3:? in the interval from the last and assigning trend based on the sign value.

~ it

‘53 Alternate Embodiments
. €33

‘ 3;; 10 One or more of the following different data elements may be included in various

3:: implementation of the metric.
a} t“

1 Q} 0 Sum of the deltas (i.e., differential values). The trend enumeration can be

E: based on this easy calculation.‘ H

a . 2:3
if; 0 Sum of the absolute values of the delta values. This would provide a

3:2 15 measurement of the overall movement within an interval.

0 Sum of positive delta values and sum of the negative delta values.

Expanding each of these with an associated count and maximum would give

nice information.

o The statistical measurement of skew can be obtained by adding 2(X3) to the

20 existing metric.

o The statistical measurement of kurtosis can be obtained by adding 2(X3)

and 2(X4) to the existing metric.

0 Data to calculate a slope of a least—squares line through the data..

Various metrics are now described in more detail.

’ NOAC EX. 1018 Page 57

NOAC Ex. 1018 Page 58

3
:5at

9...

5

'“ 10

I“; _
*2

%§

:1

3:3

15

20

54

Traffic Metrics

CSTraffic

Definition

This metric contains information about the volume of traffic measured for a

given application and either a specific Client—Server Pair or a specific Server and all of

its clients.

This information duplicates, somewhat, that which may be found in the standard,

RMON H, AL/NL Matrix Tables. It has been included here for convenience to

applications and the associated benefit of improved performance by avoiding the need to

access different functional RMON areas when performing QOS Analysis.

Metric Specification

Applicable Packets Count of the # of Packets from the C1ient(s) t0

the Server

Applicable Octets Sum total of the # of Octets in these packets
from the Client(s) to the Server.

Metric

 Maximum

Minimum

SCTraffic

Definition

This metric contains information about the volume of traffic measured for a

given application and either a specific Client-Server Pair or a specific Server and all of

its clients.

This information duplicates, somewhat, that which may be found in the standard,

RMON II, AL/NL Matrix Tables. It has been included here for convenience to

applications and the associated benefit of improved performance by avoiding the need to

access different functional RMON areas when performing QOS Analysis.

NOAC EX. 1018 Page 58

NOAC Ex. 1018 Page 59

10

55

Metric Specification

M

N Applicable Packets Count of the # of Packets from the Server to

the Client(s)

)3 Applicable Octets Sum total of the # of Octets in these packets
from the Server to the Client(s).

Jitter Metrics

CSJitter

Definition

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured

for data packets for a given application and either a specific Client-Server Pair or a

specific Server and all of its clients. Specifically, CSJitter measures the Jitter for Data

Messages from the Client to the Server.

A Data Message starts with the lSt Transport Protocol Data Packet/Unit (TPDU)

from the Client to the Server and is demarcated (or terminated) by 1St subsequent Data

Packet in the other direction. Client to Server Inter-packet Gaps are measured between

% packets within the Message. Note that in our implementaions, ACKnowledgements

are not considered within the measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out—0f-

order data packets. The interval between the last packet in a Data Message from the

Client to the Server and the 1St packet of the Next Message in the same direction is not

interpreted as an Inter-Packet Gap.

"1

a ;. NOAC EX. 1018 Page 59

NOAC Ex. 1018 Page 60

i o 3

56

3 Metric Specification

Count of the # of Inter—Packet Gaps measured
for Data from the C1ient(s) to the Server

Applicable

Applicable uSeconds Sum total of the Delta Times in these Inter—

Packet Gaps

Maximum Applicable uSeconds The maximum Delta Time of Inter-Packet

Gaps measured

Minimum Applicable uSeconds The minimum Delta Time of Inter-Packet

Gaps measured.

SCJitter

Applicability

 '1‘J
5‘

5 Definition

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured

.. J for data packets for a given application and either a specific Client-Server Pair or a

3 specific Server and all of its clients. Specifically, SCJitter measures the Jitter for Data

.. Messages from the Client to the Server.

; g 10 A Data Message starts with the 1St Transport Protocol Data Packet/Unit (TPDU)

2 from the Server to the Client and is demarcated (or terminated) by lSt subsequent Data

) Packet in the other direction. Server to Client Inter-packet Gaps are measured between

“ Data packets within the Message. Note that in our implementaions, ACKnowledgements

i are not considered within the measurement of this metric.

: 1’ 15 Metric Specification

Count of the # of Inter-Packet Gaps measured
for Data from the Server to the Client(s).

Applicable

2 Applicable uSeconds Sum total of theMm in these Inter-
Packet Gaps.

Maximum Applicable uSeconds The maximumQM of Inter-Packet
Gaps measured

Minimum Applicable uSeconds The minimum Mug of Inter-Packet
Gaps measured.

: NOAC Ex. 1018 Page 60

 ,pwt

NOAC Ex. 1018 Page 61

O D

57

Exchange Response Metrics

CSExchangeResponseTimeStartToStart

Definition

This metric contains information about the Transport-level response time

5 measured for data packets for a given application and either a specific Client-Server Pair

or a specific Server and all of its clients. Specifically,

CSExchangeResponseTimeStartToStart measures the response time between start of

Data Messages from the Client to the Server and the start of their subsequent response

Data Messages from the Server to the Client.

10 A Client—>Server Data Message starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by

lSt subsequent Data Packet in the other direction. The total time between the start of the

Client—>Server Data Message and the start of the Server->Client Data Message is

measured with this metric. Note that ACKnowledgements are not considered within the

15 measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out—of-

order data packets.

Metric Specification

N Applicable Client-> Count of the # Client->Server Messages

Server measured for Data Exchanges from the
Messages Client(s) to the Server

2 Applicable uSeconds Sum total of the Start—to-Start Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of
these Exchange Response Times

Minimum Applicable uSeconds The minimumWof
these Exchange Response Times

CSExchangeResponseTimeEndToStart

20

Definition

This metric contains informatiOn about the Transport—level response time

measured for data packets for a given application and either a specific Client-Server Pair

NOAC Ex. 1018 Page 61

NOAC Ex. 1018 Page 62

"'a?)JCr~4~31

O I)

or a specific Server and all of its clients. Specifically,

CSExchangeResponseTimeEndToStart measures the response time between end of Data

Messages from the Client to the Server and the start of their subsequent response Data

Messages from the Server to the Client.

A Client->Server Data Message starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by

lSt subsequent Data Packet in the other direction. The total time between the end of the

Client->Server Data Message and the start of the Server->Client Data Message is

measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of—

order data packets.

Metric Specification

N Applicable Client—> Count of the # Client—>Server Messages
Server measured for Data Exchanges from the
Messages Client(s) to the Server

2‘. Applicable uSeconds Sum total of the End-to-Start Delta______—_T_imes1n

these Exchange Response Times

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of

these Exchange Response Times

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of

these Exchange Response Times

CSExchangeResponseTimeStartToEnd

Definition

This metric contains information about the Transport-level response time

measured for data packets for a given application and either a specific Client—Server Pair

or a specific Server and all of its clients. Specifically,

CSExchangeResponseTimeEndToStart measures the response time between Start of

Data Messages from the Client to the Server and the End of their subsequent response

Data Messages from the Server to the Client.

NOAC EX. 1018 Page 62

NOAC Ex. 1018 Page 63

"“Ms;".m‘fm“A"W“
. 5.

’~
"g:

IY

10

't‘

' -

a

r 3
at

i a D. i

.. i
'i

y
.2 x

15

20

O D

A Client->Server Data Message starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by

lSt subsequent Data Packet in the other direction. The end of the Response Message in

the other direction (e.g. from the Server to the Client) is demarcated by the last data of

the Message prior to the lSt data packet of the next Client to Server Message. The total

time between the start of the Client->Server Data Message and the end of the Server-

>Client Data Message is measured with this metric. Note that ACKnowledgements are

not considered within the measurement of this metric.

Also, there is no consideration in the measurement for retransrnjssions or out-of-

order data packets.

Metric Specification

N Applicable C1ient-> Count of the # Client->Server and Server->
Server Client Exchange message pairs measured for

Message Data Exchanges from the Client(s) to the
Exchanges Server

2 Applicable uSeconds Sum total of the Start-to—End Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of
these Exchange Response Times

Minimum Applicable uSeconds The minimum Start-to-End Delta Time of

these Exchange Response Times

SCExchangeResponseTimeStartToStart

Definition

This metric contains information about the Transport-level response time

measured for data packets for a given application and either a specific Client—Server Pair

or a specific Server and all of its clients. Specifically,

SCExchangeResponseTimeStartToStart measures the response time between start of

Data Messages from the Server to the Client and the start of their subsequent response

Data Messages from the Client to the Server.

A Server->C1ient Data Message starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by

1St subsequent Data Packet in the other direction. The total time between the start of the

/- NOAC EX. 1018 Page 63

NOAC Ex. 1018 Page 64

5

{if}

j

git:
.

5:

}_

3 '

i;

“ , 10

.‘E‘M

15

20

0 D

60

Server—>Client Data Message and the start of the Client->Sever Data Message is

measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of—

order data packets.

Metric Specification

Applicable Server-> Count of the # Server->Client Messages
Client measured for Data Exchanges from the
Messages Client(s) to the Server

Applicable uSeconds Sum total of the Start-_t__o-Start DeltaT__i_mes1n

these Exchange Response Times

Maximum Applicable uSeconds The maximum Start-to-Start DeltaTi____me of
these Exchange Response Times

Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of

these Exchange Response Times

SCExchangeResponseTimeEndToStart

Definition

This metric contains information about the Transport-level response time

measured for data packets for a given application and either a specific Client-Server Pair

or a specific Server and all of its clients. Specifically,

SCExchangeResponseTimeEndToStart measures the response time between end of Data

Messages from the Server to the Client and the start of their subsequent response Data

Messages from the Client to the Server.

A Server—>C1ient Data Message starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by

1St subsequent Data Packet in the other direction. The total time between the end of the

Server->Client Data Message and the start of the Client->Server Data Message is

measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

.L ’ NOAC Ex. 1018 Page 64

NOAC Ex. 1018 Page 65

'r .

.3"v
f; . ?

t V 5
a,a t

‘ t.

3 x

i'

1%

a ,5.

: ‘9 10
r
1'

{9’

iv

..

i

‘ 15

.,

20

Q Q

61

order data packets.

Metric Specification

Applicable Server-> Count of the # Server->ClientMessaes
Client measured forgg—Data Exchanges from the
Messages Client(s) to the Server

Applicable uSeconds Sum total of the End-to-Start DeltaTimesIn
these Exchange Response Times

Maximum Applicable uSeconds The maximum End-to-Start DeltaTimeof

these Exchange Response Times

Minimum Applicable uSeconds The minimum End—to—Start DeltaTimeof

these Exchange Response Times

SCExchangeResponseTimeStartToEnd

Definition

This metric contains information about the Transport—level response time

measured for data packets for a given application and either a specific Client-Server Pair

or a specific Server and all of its clients. Specifically,

SCExchangeResponseTimeEndToStart measures the response time between Start of

Data Messages from the Server to the Client and the End of their subsequent response

Data Messages from the Client to the Server.

A Server->Client Data Message starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by

1St subsequent Data Packet in the other direction. The end of the Response Message in

the other direction (e.g. from the Server to the Client) is demarcated by the last data of

the Message prior to the 1St data packet of the next Server to Client Message. The total

time between the start of the Server->C1ient Data Message and the end of the Client-

>Server Data Message is measured with this metric. Note that ACKnowledgements are

not considered within the measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of—

order data packets.

\1
NOAC EX. 1018 Page 65

NOAC Ex. 1018 Page 66

10

15

20

62

Metric Specification

Applicable Client- Count of the #S_____—____erver->Clientand Client->
Server

Message

Exchanges

Server Exchange message pairssmeasured for
Data Exchanges from the Server to the
Client(s)

Applicable uSeconds Sum total of the Start—to-End Delta Times in

these Exchange Response Times

Maximum Applicable uSeconds The maximum Start-to-EndD_—_e—ltaTime of

these Exchange Response Times

Minimum Applicable uSeconds The minimum Start—to—End Delta Time of
these Exchange Response Times

Transaction Response Metrics

CSTransactionResponseTimeStartToStart

Definition

This metric contains information about the Application-level response time

measured for application transactions for a given application and either a specific Client—

Server Pair or a specific Server and all of its clients. Specifically,

CSTransactionResponseTimeStartToStart measures the response time between start of

an application transaction from the Client to the Server and the start of their subsequent

transaction response from the Server to the Client.

A Client->Server transaction starts with the lSt Transport Protocol Data

Packet/Unit (TPDU) of a transaction request from the Client to the Server and is

demarcated (or terminated) by 1St subsequent data packet of the response to the

transaction request. The total time between the start of the Client—>Server transaction

request and the start of the actual transaction response from the Server->Client is

measured with this metric.

This metric is considered a “best-effort” measurement. Systems implementing

this metric should make a “best-effort” to demarcate the start and end of requests and

responses with the specific application’s definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

CSExchangeResponseTimeStartToStart.

NOAC Ex. 1018 Page 66

NOAC Ex. 1018 Page 67

O 3

63

Metric Specification

Count of the # Client->Server Transaction

Requests measured for Application requests

N Applicable Client—>Svr
Transaction

Requests from the Client(s) to the Server

2 Applicable uSeconds Sum total of the Start-to—Start Delta Times in

these Application Response Times

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of

3 these Application Response Times

:fl Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of

:7 these Application Response Times
i
; /

CSApplicationResponseTimeEndToStart

5 Definition

This metric contains information about the Application-level response time

measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically,

CSApplicationResponseTimeEndToStart measures the response time between end of an

10 application transaction from the Client to the Server and the start of their subsequent

;. transaction response from the Server to the Client.
‘21.:

* “g A Client->Server transaction starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) of a transaction request from the Client to the Server and is

demarcated (or terminated) by 1St subsequent data packet of the response to the

i ' 15 transaction request The total time between the end of the Client—>Server transaction

request and the start of the actual transaction response from the Server—>Client is

measured with this metric

This metricris considered a “best—effort” measurement. Systems implementing

this metric should make a “best—effort” to demarcate the start and end of requests and

20 responses with the specific application’s definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

CSExchangeResponseTimeEndToStart.

NOAC EX. 1018 Page 67

NOAC Ex. 1018 Page 68

s 64

Metric Specification

Applicable Client->Svr Count of the # Client->Server Transaction

Transaction Requests measured for Application requests
Requests from the Client(s) to the Server

2 Applicable uSeconds Sum total of the End—to-Start Delta Times in

these Application Response Times

 Maximum Applicable uSeconds The maximum End-to-Start Delta Time of

these Application Response Times

3

a; these Application Response Times
W

‘3 a CSApplicationResponseTimeStartToEnd
Egg 5 Definition

E This metric contains information about the Application-level response time
i :: measured for application transactions for a given application and either a specific Client-

1 it Server Pair or a specific Server and all of its clients. Specifically,

: 5:3 CSTransactionResponseTimeStartToEnd measures the response time between Start of
1 £153 10 an application transaction from the Client to the Server and the End of their subsequent

~' E transaction response from the Server to the Client.
is: ,

1:1 A Client—>Server transaction starts with the 1St Transport Protocol Data

{A Packet/Unit (TPDU) a transaction request from the Client to the Server and is

demarcated (or terminated) by lSt subsequent data packet of the response to the

15 transaction request. The end of the Transaction Response in the other direction (e.g. from

the Server to the Client) is demarcated by the last data of the transaction response prior

3‘ 7 to the lSt data of the next Client to Server Transaction Request. The total time between

the start of the Client->Server transaction request and the end of the Server—>Client

transaction response is measured with this metric.

20 This metric is considered a “best-effort” measurement. Systems implementing

this metric should make a “best-effort” to demarcate the start and end of requests and

responses with the specific application’s definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

CSExchangeResponseTimeStartToEnd.

’ NOAC EX. 1018 Page 68

NOAC Ex. 1018 Page 69

."a,3

a.

.mamanearer-seamen.”
2‘Y

10

15

20

O D

65

Metric Specification

Count of the # Client<—>_____S__erver

request/response pairssmeasured for

N Applicable Client->
Server

Transactions transactions from the Client(s) to the Server

2 Applicable uSeconds Sum total of the Start—to-End Delta Times in

these Application Response Times

Maximum Applicable uSeconds The maximum Start-to—EndDeltaTime of
these Application Response Times

Minimum Applicable uSeconds The minimum Start—to-EndD______e__ltaTime of

these Application Response Times

SCTransactionResponseTimeStartToStart

Definition

This metric contains information about the Application-level response time

measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically,

SCTransactionResponseTimeStartToStart measures the response time between start of

an application transaction from the Server to the Client and the start of their subsequent

transaction response from the Client to the Server.

A Server->Client transaction starts with the lSt Transport Protocol Data

Packet/Unit (TPDU) of a transaction request from the Server to the Client and is

demarcated (or terminated) by lSt subsequent data packet of the response to the

transaction request. The total time between the start of the Server->C1ient transaction

request and the start of the actual transaction response from the Client~>Server is

measured with this metric.

This metric is considered a “best—effort” measurement. Systems implementing

this metric should make a “best—effort” to demarcate the start and end of requests and

responses with the specific application’s definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

SCExchangeResponseTimeStartToStart.

.' ’—, NOAC EX. 1018 Page 69

NOAC Ex. 1018 Page 70

O D

66

"r Metric Specification

N Applicable Svr->Client Count of the # Server->ClientTransaction

, Transaction Requestssmeasured for Application requests
4 ‘ Requests from the Server to the Client(s)

Applicable uSeconds Sum total of the Start-to-Start DeltaTimes1n

.3 these Application Response Times

t Maximum Applicable uSeconds The maximum Start- to—Start DeltaTimeof

$1 these Application Response Times
‘3 Minimum Applicable uSeconds The minimum Start-to-Start DeltaTimeof

these Application Response Times

SCApplicationResponseTimeEndToStart

: ii; 5 Definition
£‘

’ $3 This metric contains information about the Application-level response time

if gr; measured for application transactions for a given application and either a specific Client-

’ = :3; Server Pair or a spec1fic Server and all of 1ts chents. Spec1fically,

“gm: SCApplicationResponseTimeEndToStart measures the response time between end of an

) £31 10 application transaction from the Server to the Client and the start of their subsequent
2» ~ L5} . .
*5 _ g; transactlon response from the Chent to the Server.

2. ‘ E2

53 A Server->C1ient transaction starts with the 1St Transport Protocol Data

h Packet/Unit (TPDU) of a transaction request from the Server to the Client and is

demarcated (or terminated) by lSt subsequent data packet of the response to the

15 transaction request The total time between the end of the Server->Client transaction

A ’ request and the start of the actual transaction response from the Client->Server is

1 ‘ measured with this metric

This metric is considered a “best-effort” measurement. Systems implementing

this metric should make a “best—effort” to demarcate the start and end of requests and

20 responses with the specific application’s definition of a logical transaction. The lowestg,«Vflor-y’n
level of support for this metric would make this metric the equivalent of

SCExchangeResponseTimeEndToStart.s

NOAC EX. 1018 Page 70

NOAC Ex. 1018 Page 71

Kw»«

..‘.°'vr; m

Wu“.

m€32$23*2:magnum”
1w”, $3..

2;

2.

i
y

a”.

c

‘1‘?
2’3

x . '

.h’r‘ a“? :.

é}?.2

10

15

20

O 3

67

Metric Specification

N Applicable Svr->Client Count of the # Server->Client Transaction

Transaction Reguests measured for Application requests
Requests from the Server to the Client(s)

)3 Applicable uSeconds Sum total of the End-to-S tart Delta Times in

these Application Response Times

Maximum Applicable uSeconds The maximumWeof

these Application Response Times

Minimum Applicable uSeconds The minimum Mart—mm; of

these Application Response Times

SCApplicationResponseTimeStartToEnd

Definition

This metric contains information about the Application-level response time

measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically,

SCTransactionResponseTimeStartToEnd measures the response time between Start of

an application transaction from the Server to the Client and the End of their subsequent

transaction response from the Client to the Server.

A Server~>Client transaction starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) a transaction request from the Server to the Client and is

demarcated (or terminated) by 1St subsequent data packet of the response to the

transaction request. The end of the Transaction Response in the other direction (e.g. from

the Client to the Server) is demarcated by the last data of the transaction response prior

to the 1St data of the next Server to Client Transaction Request. The total time between

the start of the Server->Client transaction request and the end of the Client->Server

transaction response is measured with this metric.

This metric is considered a “best-effort” measurement. Systems implementing

this metric should make a “best-effort” to demarcate the start and end of requests and

responses with the specific application’s definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

SCExchangeReSponseTimeStartToEnd.

NOAC EX. 1018 Page 71

NOAC Ex. 1018 Page 72

~‘iauuka..
.5;

$39.4.

.”5,;,‘

“aw/«:53.
A“).vein

3“atw;233

pfi‘h'fe‘n'mfl,«w
J:‘

:guitar;as“~

10

15

20

O Q

68

Metric Specification

N Applicable Server-> Count of the # Server<->Client

Client request/response pairs measured for
Transactions transactions from the Server to the Client(s)

2 Applicable uSeconds Sum total of the Start—to-End Delta Times in

these Application Response Times

Maximum Applicable uSeconds The maximum Start—to—End Delta Time of

these Application Response Times

Minimum Applicable uSeconds The minimum Start-to—End Delta Time of

these Application Response Times

Connection Metrics

ConnectionEstablishment

Definition

This metric contains information about the transport—level connection

mmfor a given application and either a specific Client-Server Pair or a specific

Server and all of its clients. Specifically, ConnectionsEstablishment measures number of

connections established the Client(s) to the Server. The information contain, in essence,

includes:

0 # Transport Connections Successfully established

0 Set—up Times of the established connections

0 Max. # of Simultaneous established connections.

0 # Failed Connection establishment attempts (due to either timeout or

rejection)

Note that the “# of CURRENT Established Transport Connections” may be

derived from this metric along with the ConnectionGracefitlTermination and

ConnectionTimeoutTermination metrics, as follows:

current connections 1:: “# successfully established”

- “# terminated gracefully”

— “# terminated by time—out”

L NOAC EX. 1018 Page 72

NOAC Ex. 1018 Page 73

,v‘I .2

10

15

Q Q

69

The set-up time of a connection is defined to be the delta time between the first

transport-level, Connection Establishment Request (i. e., SYN, CR-TPDU, etc.) and the

first Data Packet exchanged on the connection.

Metric Specification

N Applicable Connections Count of the # Connections Established
from the Client(s) to the Server

2 Applicable uSeconds Sum total of the Connection Set-up Times in
these Established connections

Maximum Applicable Connections Count of the MAXIMUM simultaneous E
Connections Established from the Client(s)

Net Applicable

to the Server

ConnectionGracefulTermination

Count of the Failed simultaneous if

Connections Established from the Client(s)
to the Server

Definition

This metric contains information about the transport-level connections terminated

gracefully for a given application and either a specific Client-Server Pair or a specific

Server and all of its clients. Specifically, ConnectionsGracefulTermination measures

gracefully terminated connections both in volume and summary connection duration.

The information contain, in essence, includes:

0 # Gracefully terminated Transport Connections

0 Durations (lifetimes) of gracefully terminated connections.

NOAC EX. 1018 Page 73

NOAC Ex. 1018 Page 74

70

‘19s: Metric Specification

N Applicable Connections Count of the # Connections Gracefully
Terminated between Client(s) to the Server

2 Applicable mSeconds Sum total of the Connection Durations
(Lifetimes) of these terminated connections

, : 53 ConnectionTimeoutTermination

‘ Definition

xi“, 5 This metric contains information about the transport—level connections terminated

non—gracefully leg. Timed-Out) for a given application and either a specific Client—

Server Pair or a specific Server and all of its clients. Specifically,

ConnectionsTimeoutTermination measures previously established and timed—out ”A

connections both in volume and summary connection duration. The information contain,

10 in essence, includes:

0 # Timed—out Transport Connections

0 Durations (lifetimes) of timed-out terminated connections.

The duration factor of this metric is considered a “best-effort” measurement.

Independent network monitoring devices cannot really know when network entities

15 actually detect connection timeout conditions and hence may need to extrapolate or

estimate when connection timeouts actually occur.
NOAC EX. 1018 Page 74

NOAC Ex. 1018 Page 75

5

”: fiat

.:i'.‘5;:
9%“ 10
: g

15

20

71

Metric Specification

N Applicable Connections Count of the # Connections Timed-out
between Client(s) to the Server

2 Applicable mSeconds Sum total of the Connection Durations
gLifetimesl of these terminated connections

Connection Sequence Metrics

CSConnectionRetransmissions

Definition

This metric contains information about the transport—level connection health for a

given application and either a specific Client-Server Pair or a specific Server and all of

its clients. Specifically, CS ConnectionRetransmissions measures number of actual

events within established connection lifetimes in which Transport, data—bearing PDUs

(packets) from the Client->Server were retransmitted.

Note that retransmission events as seen by the Network Monitoring device

indicate the “duplicate” presence of a TPDU as observed on the network.

Metric Specification

Count of the # Data TPDU retransmissions

from the Client(s) to the Server

_—-—
—-—_
__——

SCConnectionRetransmissions

Definition

This metric contains information about the transport-level connection health for a

given application and either a specific Client—Server Pair Or a specific Server and all of

its clients. Specifically, SCConnectionRetransmissions measures number of actual

NOAC EX. 1018 Page 75

NOAC Ex. 1018 Page 76

10

15

O D

72

events within established connection lifetimes in which Transport, data—bearing PDUs

(packets) from the Server->Client were retransmitted.

Note that retransmission events as seen by the Network Monitoring device

indicate the “duplicate” presence of a TPDU as observed on the network.

Metric Specification

Applicable Events Count of the # Data TPDU retransmissions
from the Server to the Client(s)

Not Applicable

CSConnectionOutOfOrders

Definition

This metric contains information about the transport-level connection health for a

given application and either a specific Client-Server Pair or a specific Server and all of

its clients. Specifically, CS ConnectionOutOfOrders measures number of actual events

within established connection lifetimes in which Transport, data-bearing PDUs (packets)

from the Client->Server were detected as being out of sequential order.

Note that retransmissions (or duplicates) are considered to be different than out-

of—order events and are tracked separately in the CS ConnectionRetransmissions metric.

Metric Specification

N Applicable Events Count of the # Out-of-Order TPDU events
from the Client(s) to the Server

NOAC EX. 1018 Page 76

NOAC Ex. 1018 Page 77

i
3

’5 ~
5:4

(..t;
a.
v!:3

.3
2

15

20

o o

73

SCConnectionOutOfOrders

Definition

This metric contains information about the transport—level connection health for a

given application and either a specific Client-Server Pair or a specific Server and all of

its clients. Specifically, SCConnectionOutOfOrders measures number of actual events

within established connection lifetimes in which Transport, data—bearing PDUs (packets)

from the Server->Client were detected as being out of sequential order.

Note that retransmissions (or duplicates) are considered to be different than out—

of—order events and are tracked separately in the SCConnectionRetransmissions metric.

Metric Specification

N Applicable Events Count of the # Out-of-Order TPDU events
from the Server to the Client(s)

Connection Window Metrics

CSConnectionWindow

Definition

This metric contains information about the transport-level connection windows

for a given application and either a specific Client-Server Pair or a specific Server and all

of its clients. Specifically, CS ConnectionWindow measures number of Transport-level

Acknowledges within established connection lifetimes and their relative sizes from the

Client—>Server.

Note that the number of DATA TPDUs (packets) may be estimated by

differencing the Acknowledge count of this metric and the overall traffic from the Client

to the Server (see CSTrafi‘ic above). A slight error in this calculation may occur due to

Connection Establishment and Termination TPDUS, but it should not be significant.

: NOAC EX. 1018 Page 77

NOAC Ex. 1018 Page 78

if: 74
‘ 1%

i g M Metric Specification
,; x

i ; Z N Applicable Events Count of the # ACK TPDU retransmissions
from the C1ient(s) to the Server

’3 X Not Applicable Increments Sum total of the Window Sizes of the

xi .{t / Acknowledges

f. ‘ 3351 I ' Not Applicable Increments The maximum Window Size of these
3 '1‘ " Acknowledges
i Not Applicable Increments The minimum Window Size of these

Acknowledges

SCConnectionWindow

Definition

This metric contains information about the transport-level connection windows

for a given application and either a specific Client-Server Pair or a specific Server and all

of its clients. Specifically, SSConnectionWindow measures number of Transport—level

Acknowledges within established connection lifetimes and their relative sizes from the

Server—>Client.

Note that the number of DATA TPDUs (packets) may be estimated by

differencing the Acknowledge count of this metric and the overall traffic from the Client

to the Server (see SCTraflic above).. A slight error in this calculation may occur due to

Connection Establishment and Termination TPDUS, but it should not be significant.

Metric Specification

N Applicable Events Count of the # ACK TPDU retransmissions
from the Server to the C1ient(s)

2 Applicable Increments Sum total of the Window Sizes of the
Acknowledges

Maximum Applicable Increments The maximum Window Size of these
Acknowledges

Minimum Applicable Increments The minimum Window Size of these
Acknowledges

NOAC EX. 1018 Page 78

NOAC Ex. 1018 Page 79

15

O D

75

CSConnectionFrozenWindows

Definition

This metric contains information about the transport-level connection windows

for a given application and either a specific Client—Server Pair or a specific Server and all

of its clients. Specifically, CS ConnectionWindow measures number of Transport—level

Acknowledges from Client—>Server within established connection lifetimes which

validly acknowledge data, but either

0 failed to increase the upper window edge,

0 reduced the upper window edge

Metric Specification

Applicable E—vents Count of the # ACK TPDU with
frozen/reduced windows from the Client(s)
to the Server

2 ——

SCConnectionFrozenWindows

Definition

This metric contains information about the transport-level connection windows

for a given application and either a specific Client-Server Pair or a specific Server and all

of its clients. Specifically, SCConnectionWindow measures number of Transport-level

Acknowledges from Server->C1ient within established connection lifetimes which

validly acknowledge data, but either

0 failed to increase the upper window edge,

0 reduced the upper window edge

Z NOAC EX. 1018 Page 79

NOAC Ex. 1018 Page 80

Q .3

76

Metric Specification

-Applicable Events
Not Applicable_

 _Description

Count of the # ACK TPDU with

frozen/reduced windows from the Client(s)
to the Server

CSConnectionClosedWindows

5 Definition

This metric contains information about the transport—level connection windows

for a given application and either a specific Client—Server Pair or a specific Server and all

of its clients. Specifically, CS Connection Window measures number of Transport-level

Acknowledges from Client—>Server within established connection lifetimes which fully

10 closed the acknowledge/sequence window.

Metric Specification

Applicable Events Count of the # ACK TPDU with Closed
w___indows from the Client(s) to the Server

SCConnectionClosedWindows

15 Definition

This metric contains information about the transport—level connection windows

for a given application and either a specific Client-Server Pair or a specific Server and all

of its clients. Specifically, SCConnectionWindow measures number of Transport—level

Acknowledges from Server->Client within established connection lifetimes which fully

20 closed the acknowledge/sequence window.

NOAC EX. 1018 Page 80

NOAC Ex. 1018 Page 81

. 2}.»

<3. 77

Metric Specification

N Applicable Events Count of the # ACK TPDU with Closed

windows from the C1ient(s) to the Server

Embodiments of the present invention automatically generate flow signatures

with the necessary recognition patterns and state transition climb procedure. Such comes

5 from analyzing packets according to parsing rules, and also generating state transitions to

search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Note that one in the art will understand that computer networks are used to

connect many different types of devices, including network appliances such as

10 telephones, “Internet” radios, pagers, and so forth. The term computer as used herein

encompasses all such devices and a computer network as used herein includes networks

of such computers.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted

f": 15 as limiting. Various alterations and modifications will no doubt become apparent to

those or ordinary skill in the art after having read the above disclosure. Accordingly, it is

intended that the claims be interpreted as covering all alterations and modifications as

a” fall within the true spirit and scope of the present invention.

NOAC EX. 1018 Page 81

NOAC Ex. 1018 Page 82

10

15

20

25

O F)

78

CLAIMS

What is claimed is:

1. A method of analyzing a flow of packets passing through a connection point on a

computer network, the method comprising:

(a) receiving a packet from a packet acquisition device;

(b) looking up a flow—entry database comprising none or more flow—entries for

previously encountered conversational flows, the looking up to determine if

the received packet is of an existing flow;

(d) if the packet is of an existing flow, updating the flow-entry of the existing

flow including storing one or more statistical measures kept in the flow—entry;

and

(e) if the packet is of a new flow, storing a new flow—entry for the new flow in

the flow-entry database, including storing one or more statistical measures

kept in the flow-entry,

wherein every packet passing though the connection point is received by the packet

acquisition device.

2. A method according to claim 1, further including:

extracting identifying portions from the packet,

wherein the looking up uses a function of the identifying portions.

3. A method according to claim 1, wherein the steps are carried out in real time on

each packet passing through the connection point.

4. A method according to claim 1, wherein the one or more statistical measures

include measures selected from the set consisting of the total packet count for the

flow, the time, and a differential time from the last entered time to the present time.

5. A method according to claim 1, further including reporting one or more metrics

related to the flow of a flow-entry from one or more of the statistical measures in the

flow—entry.

NOAC EX. 1018 Page 82

NOAC Ex. 1018 Page 83

1“<3 5 '

1»: , ,
33 ' x ‘

’6 79

f. l 6. A method according to claim 7, wherein the metrics include one or more quality

§ ' of service (QOS) metrics.
; r

if g . 7. A method according to claim 5, wherein the reporting is carried out from time to

L time, and wherein the one or more metrics are base metrics related to the time

5f 5 interval from the last reporting time.

I” i 8. A method according to claim 7, further comprising calculating one or more quality

. of service (QOS) metrics from the base metrics.

9. A method according to claim 7, wherein the one or more metrics are selected to be

scalable such that metrics from contiguous time intervals may be combined to

‘5’w:
~-.n 10 determine respective metrics for the combined interval.

10. A method according to claim 1, wherein step (d) includes if the packet is of anfifi'lfi‘et‘4v5
 existing flow, identifying the last encountered state of the flow and performing any

<"x‘my.»

state operations specified for the state of the flow starting from the last encountered

state of the flow; and wherein step (e) includes if the packet is of a new flow,

15 performing any state operations required for the initial state of the new flow.

11. A method according to claim 10, further including reporting one or more metrics

related to the flow of a flow—entry from one or more of the statistical measures in the

flow-entry.

12. A method according to claim 11, wherein the reporting is carried out from time to

20 time, and wherein the one or more metrics are base metrics related to the time

interval from the last reporting time.

13. A method according to claim 12, wherein the reporting is part of the state

operations for the state of the flow.

14. A method according to claim 10, wherein the state operations include updating the

25 flow-entry, including storing identifying information for future packets to be

‘3“ 7’ identified with the flow—entry.

15. A method according to claim 14, further including receiving further packets,Nr‘r.:~
wherein the state processing of each received packet of a flow furthers the identifying1.42“

of the application program of the flow.
.3": z
{a :u

NOAC EX. 1018 Page 83

NOAC Ex. 1018 Page 84

16.

17.

18.

19.

o 3

80

A method according to claim 15, wherein one or more metrics related to the state

of the flow are determined as part of the state operations specified for the state of the

flow.

A packet monitor for examining packets passing through a connection point on a

computer network, each packets conforming to one or more protocols, the monitor

comprising:

(a) a packet acquisition device coupled to the connection point and configured

to receive packets passing through the connection point;

(b) a memory for storing a database comprising none or more flow—entries for

previously encountered conversational flows to which a received packet may

belong; and

(c) an analyzer subsystem coupled to the packet acquisition device configured

to lookup whether a received packet belongs to a flow-entry in the flow-entry

database, to update the flow-entry of the existing flow including storing one

or more statistical measures kept in the flow—entry in the case that the packet

is of an existing flow, and to store a new flow-entry for the new flow in the

flow-entry database, including storing one or more statistical measures kept in

the flow-entry if the packet is of a new flow.

A packet monitor according to claim 17, further comprising:

a parser subsystem coupled to the packet acquisition device and to the

analyzer subsystem configured to extract identifying information from a

received packet,

wherein each flow-entry is identified by identifying information stored in the flow—

entry, and wherein the cache lookup uses a function of the extracted identifying

information.

A packet monitor according to claim 17, wherein the one or more statistical

measures include measures selected from the set consisting of the total packet count

for the flow, the time, and a differential time from the last entered time to the present

time.

NOAC EX. 1018 Page 84

NOAC Ex. 1018 Page 85

5:”:

.nm.1!I)lIu-l'

20.

21.

O C)

8 1

A packet monitor according to claim 17, further including a statistical processor

configured to determine one or more metrics related to a flow from one or more of

the statistical measures in the flow-entry of the flow.

A packet monitor according to claim 20, wherein the statistical processor

determine and reports the one or more metrics from time to time.

NOAC EX. 1018 Page 85

NOAC Ex. 1018 Page 86

CS 1x : \x14

82

ABSTRACT

A method of and monitor apparatus for analyzing a flow of packets passing through a

connection point on a computer network. The method includes receiving a packet from a

packet acquisition device, and looking up a flow-entry database containing flow-entries

5 for previously encountered conversational flows. The looking up to determine if the

received packet is of an existing flow. Each and every packet is processed. If the packet is

of an existing flow, the method updates the flow-entry of the existing flow, including

storing one or more statistical measures kept in the flow-entry. If the packet is of a new

;: flow, the method stores a new flow-entry for the new flow in the flow-entry database,

is; s, 10 including storing one or more statistical measures kept in the flow-entry. The statistical

. measures are used to determine metrics related to the flow. The metrics may be base

metrics from which quality of service metrics are determined, or may be the quality of

service metrics.

/ NOAC Ex. 1018 Page 86

NOAC Ex. 1018 Page 87

if 0151'? éf‘léfl‘: . APEIg001-3QQLIFE" . .

1/18

—

100 CLIENT 4 108
W ANALYZER

107
116

— SERVER J

CLIENT 3

\ 121
106

W10

 DATA COMMUNICATIONS

NETWORK

11‘jln-A:1i"1!“31-13313-11limit
u..."1.“n

102

‘ 5 “I:

~ :5: 125

123

_ 118

SERVER A _ 105 —~/

fl CLIENT2 J CLIENT1 \
112 104

FIG. 1

NOAC EX. 1018 Page 87

NOAC Ex. 1018 Page 88

“Mil "Win limb '53:" ‘iiliil yi"'il "'mu “.m- umu um-. um!-

; CLIENT3

K260 K261 K262 K263 K264

42m :12“

65

datum request 1

"if" -i:::i~ M «.222, uh... M

2

8-Loo-13%‘
O

8L/Z

NOAC EX. 1018 Page 88

NOAC Ex. 1018 Page 89

I

I
ANALYZE AND I >

I RECOGNIZE IDEEfiTTfiéfiqlNG BUILD UNIQUE I I LOOKUP " 3
PATTERN INFORMATION CONVERSAT'O FROM NEW Hot/2V DATABASE "'7'

INFORMATION (EH) "FLOW" KEY KNOWN RECORD- OF FLOWS 8
(PAR) RECORDS -.*

(DB 324 co

310

DESCIPTIO

LANGUAGE

_.___r U
322 I

UPDATE

PATTERN, PARS. PROTOCOL MORE "FLOW" I
AND & STATE CLASSIFICATIO KNOWN

EXTRACTION IDENTIFICATION RECORD

|

I

I

DATABASE I

l
J

co\
—L

00

I I CLASSIFICATN
I FINALIZATION

PROCESSOR

INSTRUCTION

CORAh‘fIgLER DATABASE 34
OPTIMIZER

DATAG RAM

LAYER

PROCESSNe

OPERATION ‘
ANALYZER

1Q?

NOAC EX. 1018 Page 89

NOAC Ex. 1018 Page 90

fetal: f AIPPT-OO1-3:

O O

HIGH LEVEL

PACKET

DECODING

DESCRIPTION -.

V - A

PACKET

GENERATE

PACKET
COMPILE STATE

PARSE AND ESCRIPTION INSTRUCTION
EXTRACT AND

OPERATIONS OPERATIONS:11»?ITnu...“{Iv-u.IIII In.“-....-....-I-I...-A.

407

406 ZuAWERN’ PARS PROSgéTSESORA D

EXTRACTION INSTRUCTION
DATABASE DATABASE

I7"'iIII'""IIii"'iI~13?IiZJiI ..-.A"......-.I."

LOAD LOAD STATE
PARSING NSTRUCTION

SUBSYSTEM DATABASE
MEMORY MEMORY

400

NOAC EX. 1018 Page 90

NOAC Ex. 1018 Page 91

I”

’Tpi‘etz et al. 531?}901-3

. Q g3

5/18

501

M 502
503 LOAD PACKET

COMPONENT
512

= I I

504 PACKETORE IN PACKE V
KEY

11‘":33!“1!)3$171!5175“flunk}
FETCH NODE AN I

PROCESS FROM
PATTERN

513

min,..u

311111]11,111'
 NEXT

PACKET

COMPONE 51 1

MORE

PATTERN

NODES? 11"‘11limb91"‘11:57 u.-.....-”up

nu ' un Aw

PROCESS TO

COMPONENT

510 500

EXTRACT

509 ELEMENTS

FIG. 5

mi NOAC EX. 1018 Page 91

NOAC Ex. 1018 Page 92

’ 5}th Pet al. APPT—OO1—3

55‘ 1‘

603

NO

604

606

607

6/18

PACKET

COMPONENT AND

PATTERN NODE

LOAD PACKET

COMPONENT

MORE PACKE

COMPONENT

601

602

610

LOAD KEY
BUFFER

611

YES

FETCH EXTRACTION

‘ ND PROCESS FROM

PATTERNS 605

NEXT

PACKET

COMPONEN ORE EXTRACTIO ‘

ELEMENTS?
N O 609

YES

APPLY EXTRACTION

PROCESS TO

COMPONENT

’\
600

 MORE TO 608
EXTRACT?

YE

FIG. 6

NOAC EX. 1018 Page 92

NOAC Ex. 1018 Page 93

pietz et al. APPI—OO1-3

O 3

7/18

. 701

EY BUFFER AND 702

PATTERN NODE

LOAD PATTERN

703 NODE ELEMENT 708

704 MORE PATTERN OUTPUT To
NODES? ANALYZER

es
HASH KEY BUFFER

ELEMENT FROM 705
PATTERN NODE

PACK KEY & HAS

NEXT PACKET

COMPONENT

FIG. 7

'ii1“gm;TH;"1M;firm:yr")!
”.3;1,,”1,

709

u'”'h w.

700

706

707

NOAC EX. 1018 Page 93

NOAC Ex. 1018 Page 94

T Dietz et aI. APPT—OO1-3
O J

8/18

. 801

UFKB ENTRY FOR 2
PACKET 80

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/

BUCKET FROM CACHE 804 806

NO

ORE BUCKET
IN THE BIN?

SET UFKB FOR

PACKET AS 'NEW'
 805

YES

COMPARE CURRENT BIN 807

AND BUCKET RECORD KEY
TO PACKET

NEXTBUCKET No@ 808
YES

IIIIII;[IWII

II"If35'i3III,:1”

809 MARK RECORD BIN AND 810
BUCKET 'IN PROCESS' IN

CACHE AND TIMESTAMP

SET UFKB FOR PACKET
811 AS 'FOUND'

812 UPDATE STATISTICS FOR

RECORD IN CACHE

mm. FIG. 8

NOAC EX. 1018 Page 94

NOAC Ex. 1018 Page 95

Dietzvet aI. APPT—OO1-3

$131Zuni!I}'1hr""31«117.;Inn-I.II'I;
MeI'"I

ni:1I'11pm}!13--

9/18

901 902 910

RPC

BIND LOOKU "

REQUEST

 'ORTMAPP _ ‘NNOUNCME

909

EXTRACT PROGRAM

GET ‘PROGRAM',

'VERSION', 'PORT' AND

'PROTOCOL (TCP OR
UDP)

EXTRACT PORT

GET 'PROGRAM',
'VERSION' AND

'PROTOCOL (TCP OR

UDP)‘

903

SAVE REQUEST

SAVE 'PROGRAM',
CREATE SERVER STAT'

SAVE 'PROGRAM', 'VERSION‘ AND

904 'VERSION', 'PORT' AND 'PROTOCOL (TCP OR
'PROTOCOL (TCP OR UDP)I WITH

UDP)I WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

 STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

BOTH MAKE A KEY.

RPC

BIND

LOOKUP

REPLY

EXTRACT

PROGRAM

LOOKUP REQUE‘

FIND 'PROGRAM'

goo/f

AND 'VERSION' GET 'PORT' AND

WITH LOOKUP OF 'PROTOCOL (TCP
SOURCE NETWORK OR UDP)‘.

ADDRESS.

FIG. 9

NOAC EX. 1018 Page 95

NOAC Ex. 1018 Page 96

Dietz et‘ aI‘. APPT—QEO1-3

1 0/1 8

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 1001 MEMORY

100 1031
100

1 004

INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL N

1031

100 PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

100.

PARSER

PACKET PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOA!

MEMORY

1012

1021

PST/I??? INPUT BUFFER ANALYZER DATA REA'
INTERFACE INTERFACE
CONTROL CONTROL

ANALYZER
‘ .

PACKET READY

102

1023 FIG. 10 1027

NOAC EX. 1018 Page 96

NOAC Ex. 1018 Page 97

F'

pwfie‘w' Apppoova
O "3

11/18

1100 N

1101 1103 1115 1118 112
1107

ANALYZE" HOST

IN1HEOI§JAC BUSINTER-
“ AND h FACE

(HlB)

INSTRUCN

‘ DATABASE

PARSER
INTER- h

- FACE

= s
PROCESSR

(SP) 1119 112

flu?!‘11“‘1!H-1!:11“

h h INTER-

FLOW CONTROL FACE
INSERTION/ (WC)
DELETION

ENGINE

(FIDE)

1110

FIG. 11

g NOAC EX. 1018 Page 97

NOAC Ex. 1018 Page 98

pietz et {:11- APPT—OO1-3

O A)

12/18

1201

UFKB ENTRY FOR

PACKET WITH

STATUS 'NEW'

1202

1200
N ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204

:4 BUCKET FROM CACHE

REQUEST NEXT

BUCKET FROM 1205
1206 CACHE

1 207

Iun SO00 lull
Z0

11‘s!‘11"?!TH;fIL- OMPARE CURRENT BIN 1209
AND BUCKET RECORD

KEY TO PACKET

1210 SET UFKB FOR
PACKET AS

'DROP'

MARK RECORD BIN AND

BUCKET 'IN PROCESS'

AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1211

1213

FIG. 12

NOAC EX. 1018 Page 98

NOAC Ex. 1018 Page 99

Dietz et al. APPT—OO1—3
> jam”

0 3

13/18

1300 N UFKB ENTRY FOR
PACKET WITH STATUS

'NEW' OR ‘FOUND' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTIONH‘lu-J'IIII“IT-II;IIT-II:III;

7.)!,,II

SET STATE

PROCESSOR

_:; INSTRUCTION NO DONE PROCESSING 1307
POINTER TO STATES FOR THIS

5; VALUE FOUND IN PACKET?
CURRENT STATE

1303 YES
1310

SAVE STATE
PROCESSOR
INSTRUCTION 1309
POINTER IN

CURRENT FLOW
RECORD

SET AND SAVE FLOW REMOVA

STATE PROCESSOR J13“
INSTRUCTION IN CURRENT

FLOW RECORD

NOAC EX. 1018 Page 99

NOAC Ex. 1018 Page 100

IIMII n' ”i1 Ii"‘Ii ‘IIII ‘ ‘IuIII if”?! «ii-'31 $.35? ‘55” 13151: II'”I: xiii}: ”1:.“ Jim}:.m- m.“- mm: W m;- I-- W. n. H um. um.- mu u....- “.m-

T —————————————————— T I ——————————————————— I

12192:?

 LOOKUP
KNOWN

RECORDS

(DB 1424)

EXTRACT

IDENTIFYING

INFO & PROCL
/STATE

RECOGNIZE

PATTERN

INFORMATION

NEW “FLOW"

RECORD?

"FLOW” KEY

A‘J‘r8‘LOO-ladvDATABASE

OF FLOWS

O

UPDATE
l‘FLOW"

KNOWN

RECORD

PATTERN

STRUCTURES
AND

EXTRACTION

OPERATIONS

 CLASSIFICATION

PARSER

SUBSYSEM

STATE

MACHINE

SELECTOR

1426

CLASSIFICATN

FINALIZATION

STATE

ANALYSIS

ANALYZER

SUBSYSTEM

8I/I7I

NOAC EX. 1018 Page 100

NOAC Ex. 1018 Page 101

WW“(D--+
H 3.1:.“ .. 4.... m," 6'1?“ "2'", fin,“

M! 33 “55 EL}? .2:::,. ‘f‘...!! M? ...E rm. J l. !: ...:

N
(D.-+

9—)

idav§

swoo
J

8L/9L
NOAC EX. 1018 Page 101

NOAC Ex. 1018 Page 102

O 3

16/18

1602 0 - 3 Bytes

Dst MAC

Dst MAC Src MAC

Src MAC

1

_x C)O G)

_L C) O C)

in'1.-r[I13”ml;Hum31
Src MAC (6)“nu my} 1614 Src Hash (2

\Iet=12

FIG. 16

milg1;

1i1|5|:19|u:1”

NOAC EX. 1018 Page 102

NOAC Ex. 1018 Page 103

Digtz 61 al.

rna;""15pun:il11
um”,,..i

mirfi

."iii"'1!3'I!u

APPT—OO1-3

{rmmarmmmr-Mirrrlllm
WEI/Imam , we
warm—marinaded
_
—
Vlllllfil’iiiflWiiifiilllllllllllll

\-et =14

FIG. 17A
1712

Src Address

Dst Address

 Src Address

Src Hash (2)

-ow>

-et = L3 + (IHL/4)

FIG. 17B

IDP = OXOBOO"
IP = 0x0800*

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OXOBAD*

VLOOP = OXOBAE
VECHO = OXOBAF

NETBIOS-3COM = OX3C00 -
0X3COD#

DEC-MOP = OX6001
DEC-RC = 0x6002

DEC-DRP = 0X6003*
DEC-LAT = 0X6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP = 0X8035
ATALK = 0X809B*

VLOOP = 0X8OC4
VECHO = 0x8005
SNA—TH = 0X8OD5*

ATALKARP = 0X80F3
IPX = 0X8137*

SNMP = 0X814C#
IPv6 = 0x86DD*

LOOPBACK = OXQOOO

Apple = OXO80007

* L3 Decoding

L5 Decoding

1752

ICMP =1

IGMP = 2

GGP = 3

TOP = 6*

EGP = 8

IGRP = 9

PUP =12

CHAOS =16
UDP = 17*

IDP = 22#

ISO-TP4 = 29
DDP = 37#

ISO—1P = 80

VIP = 83#

EIGRP = 88

OSPF = 89

* L4 Decoding
L3 Re—Decoding

NOAC EX. 1018 Page 103

NOAC Ex. 1018 Page 104

18/18

A.

L)

PROTOCOL

Diéfi e't al. Aggy-001a

1802 1

UT NUM
____}

fig

mihiiii!L
1ihhint!

r.~§.....\\9mm“.0.‘§.‘.‘.\moooWEE
ifliiii!iihihii!.‘Ea1§...'4ll“NH§.....:...

FIG. 18A

O5m

n.

._OOO._.O

ID

1642

(TYPE

IHOZMJD._m=n_

NOAC EX. 1018 Page 104

FIG. 18B

NOAC Ex. 1018 Page 105

Our Ref/Docket No: APPT-001-3 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Title: RE-USING INFORMATION FROM DATA

TRANSACTIONS FOR MAINTAINING

STATISTICS IN NETWORK

MONITORING

Group Art Unit: unassigned

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON

SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:II“ml!II"'liIIII
Attached please find _l_8 sheets of formal drawings to be made of record for the above

identified patent application submitted herewith.

Respectfully Submitted,
“13.

029619 Date ov Rosenfeld, Reg. N0. 38687"12-111111
II'Im

Address for correspondence and attorney for applicant(s):

Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone: (510) 547—3378; Fax: (510) 653-7992

3213"iii11

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal

Service as Express Mail (Express Mail Label: EI417961927USin an envelope addressed to Box Patent
Application,‘

Date:
NOAC EX. 1018 Page 105

NOAC Ex. 1018 Page 106

M 0F DRAWLNG:)01-3

REGELALLY FILED

1/18

CLIENT 4
’\ ANALYZER

107 1 16

m " W_\ ' 10106 121

DATA COMMUNICATIONS

NETWORK

1%'I"-")111“Mil||"'nll
Ill

102

125

123

— 118
W ———- 105 ——/fl CUENT 2 J CLIENT1 fl

112 104

NOAC EX. 1018 Page 106

NOAC Ex. 1018 Page 107

W1» ‘1' 11)1'1; 111', ‘ -i'.§'h 11"“ 611'}, .2231 "ii" pl’Ii- nimh 1'74; "1%.. Win. ,. u l ,.,. ,1 u- u”. H... u... u ,.,, q“... m. -. ,.-

214 215 R216 217K218 219 220 221 222 223

81/3

65

*lIIIIIII

...........

NOAC EX. 1018 Page 107

b‘nchS‘v

cowuwa301mmMAW
8'L00

NOAC Ex. 1018 Page 108

1:. 1 Imm- MY 1 W F in? . J.-.. -

.3. T

M H M! ‘I.. "1:5! I! !? "1':!3.""‘ II 23:11 !! I? “(N I131. II“? a
300 ’ 0 9.

——————————————————— ‘E

I PARSER 301 ' ((-E __________ 324 I E
I 304 306 — I 314 I ‘5

302 ANALYZE AND I I '< L.

I RECOGNIZE IDEEflTFl‘éfiLG BUILD UNIQUE I I» LOOKUP .. :4
PATTERN INFORMATION CONVERSAT'O FROM NEW FLOW DATABASE "

INFORMATION "FLOW" KEY | KNOWN RECORD?

I I (DB 324 do
312 IA CACHE

DATABASE

I l
31 0 STATE

PROCESSOR

INSTRUCTION
COMPILER

AND DATABASE
OPTIMIZER

336 338

-
V

PROTOCOL DATAG RAM

DESCIPTIO LAYER

LANGUAGE SELECTION ‘
FIG. 3 ,

PROCESSNG

OPERATION‘

UPDATE

 AND & STATE CLASSIFICATIO KNOWN

EXTRACTION IDENTIFICATION RECORD

YE 8US

CLASSIFICATN

332 FINALIZATION

ANALYZE R

313

NOAC EX. 1018 Page 108

NOAC Ex. 1018 Page 109

(.5 Hum 05 memca 01-3
A5251}?LALLMYmm

3:":

HIGH LEVEL

PACKET

DECODING

II ESCRIPTION ‘

V ' A

GENERATE PACKET

OPERATIONS

’i' PACKET
COMPILE STATE

: PARSE AND .

:i‘ EXTRACT ll ESCRIPTION INSTRALNgTION
OPERATIONS

n.”,..,n

M!IIII 407

406 7/‘ATTERN, PARS
AND

EXTRACTION

DATABASE

STATE

PROCESSOR

INSTRUCTION

DATABASE

IIIIII

II1'

LOAD LOAD STATE
PARSING NSTRUCTION

SUBSYSTEM DATABASE
MEMORY MEMORY

«was:

400

NOAC EX. 1018 Page 109

NOAC Ex. 1018 Page 110

ram 05 DRAWING: ‘oo1-3

1 A5 OWQW
-r—‘_ -

4!

503

504

III"n9':I-I'II)2MI”53'“un
'III

'Iull

IIIII‘IIII:II'In

510
‘

PA'ITERN

NODE

5/18

. 501

LOAD PACKET

COMPONENT

512

: I I

ORE IN PACKE I" PACKET
KEY

FETCH NODE AN I

PROCESS FROM
PATTERN

513

 NEXT

PACKET

COMPONE 51 1

MORE

PA'ITERN

NODES?

 .n ' un Au‘

PROCESS TO

COMPONENT

500

EXTRACT

509 ELEMENTS

FIG. 5

NOAC EX. 1018 Page 110

NOAC Ex. 1018 Page 111

r

PRINT-0F DRAWLNG;

A5 omcw r-oo1-3
.-..——._- -‘

{‘3‘

6/18

0

PACKET 602
COMPONENT AND
PATI'ERN NODE

603

LOAD PACKET

COMPONENT
610

6044'III]”1v11L‘W1!

' YES

FETCH EXTRACTION 6ND PROCESS FROM
PATTERNS 605

”ullHH

NO 611

606

NEXT

N O PACKET 609

COMPON EN

{

:111!!I:nn'I'

ORE EXTRACTIO ‘
ELEMENTS?

AzA~_1s11.51%

YES

507 APPLY EXTRACTION

81330538“?
P NEN \

600

 MORE TO 608
EXTRACT?

 Ir?1

YE

FIG. 6

NOAC EX. 1018 Page 111

NOAC Ex. 1018 Page 112

PRLNT 0F memca

IIII

II'|--I'llH”u“1"”h
.4?-,.u

Ini]nI,

"nawwi

001-3

7/18

. 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN
703 NODE ELEMENT

704 MORE PATTER NODES?

YES

HASH KEY BUFFER
ELEMENT FROM 705
PATTERN NODE

‘ PACK KEY & HAS
706

NEXT PACKET

COMPONENT
707

FIG. 7

708

OUTPUT TO
ANALYZER

709

700

NOAC EX. 1018 Page 112

NOAC Ex. 1018 Page 113

‘PRLNT 0F DRAWLNG.) 2001-3
As mew

-—..————

.2}r.‘

\ . 8/18

. 801

UFKB ENTRY FOR 802
/ PACKET

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE 804

806

NO SET UFKB FOR
/ PACKET AS ‘NEW'

3:; COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

I i:- NEXTBUCKET New 8085
3

YES

.. 809 MARK RECORD BIN AND 810I BUCKET 'IN PROCESS' IN
5‘ CACHE AND TIMESTAMP

SET UFKB FOR PACKET
8“ AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

mm. FIG. 8

NOAC EX. 1018 Page 113

43‘“

 ORE BUCKET805 IN THE BIN?
III}'IuI:IIII-II'IIIl:"hII

 I».ll,..

YES,I

IIIIII;,'HI}
I

NOAC Ex. 1018 Page 114

Ff)

T

”Mw"I'S‘I"

Jim:E'IISL‘
I

’ mm or DRAWLNGS‘TT-001-3
A5 ORIGINALLY nun

---———-

,II:IIIIIIII‘I.

‘

9/18

901 ' 902 910

RPC

BIND LOOKU '

REQUEST

 .ORTMAPP . ‘NNOUNCME ,

909

EXTRACT PROGRAM

GET 'PROGRAM',

'VERSION', 'PORT' AND

'PROTOCOL (TCP OR

UDP)

EXTRACT PORT

GET 'PROGRAM‘,
'VERSION' AND

'PROTOCOL (TCP OR

UDP)“

908

SAVE REQUEST

SAVE 'PROGRAM'.
'VERSION' AND

CREATE SERVER STAT‘

SAVE 'PROGRAM',

904 'VERSION', 'PORT' AND 'PROTOCOL (TCP OR
'PROTOCOL (TCP OR UDP)‘ WITH

UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY

ON SERVER ADDRESS

AND TCP OR UDP PORT.

BOTH MAKE A KEY.

RPC

BIND

LOOKUP

REPLY

EXTRACT

PROG RAM
LOOKUP REQUE

FIND 'PROGRAM'

AND 'VERSION‘

WITH LOOKUP OF

SOURCE NETWORK

ADDRESS.

900/ GET 'PORT' AND

'PROTOCOL (TCP
OR UDP)‘.

FIG. 9

NOAC EX. 1018 Page 114

NOAC Ex. 1018 Page 115

)1-3

1 0/1 8

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 1001 MEMORY

,r'

100 1031
100

1 004

INFO OUT

CONTRL N

 HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS

.mmmnfiww«.,
II'vIII":: ,1.1..

,; 1031

‘ 100’ PATTERN 1007
‘? RECOGNITN EXTRACTION ENGINE
I ENGINE (SLICER)
g (PRE)

100.1013

‘1 . ~ PARSER
g PA KET PARSER INPUT BUFFER OUTPUT PACKET KEY
1 INPUT MEMORY BUFFER AND PAYLOA!
I MEMORY

: 1012

g; 1021

PA T

S19A(FZET INPUT BUFFER ANALYZER DATA REA I‘
INTERFACE INTERFACE
CONTROL CONTROL

ANALYZER

READY

‘ V

PACKET

102

1023 FIG. 10 1027

NOAC EX. 1018 Page 115

NOAC Ex. 1018 Page 116

1''M'u'u111”,»”m“uH
‘I'yph'l

I)1:n’1.

11/18

1115 1118112
1107

\ 1100 N

1101 1103

1109

UNIFIED

FLOW
PARSER KEY

INTER: ”-UFFER
FACE (UFKB)

PROCESS -‘
INSTRUCN
DATABASE

(SPID)

I 1108

STATE h»

PROCESSR

(SP)

 INSFELl$|'\/IVON/
DELETION _

CACHE

ANALYZE'

'13?
: INTER-” AND h FACE

CONTROL (HIB)
 (ACIC)

1119112

NOAC EX. 1018 Page 116

NOAC Ex. 1018 Page 117

T Dietz:eta|. APPT—OO1-3In?”N

12/18

1201

UFKB ENTRY FOR

PACKET WITH

STATUS 'NEW'

1202

1200 ”
N ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204

‘ 5- , BUCKET FROM CACHE

é REQUEST NEXT
BUCKET FROM <"IN/BUCKET EMPTY 1205

§ '2; 1206 CACHE
YES

NO INSERT KEY AND HASH
: N BUCKET, MARK ‘USED

1208 WITH TIMESTAMP

YES

..n“mu
1207

MW~ IDII

OMPARE CURRENT BIN 1209
AND BUCKET RECORD

KEY TO PACKET

w '‘.....__“:'"ILA!ILA!.I

1210

SET UFKB FOR

PACKET AS

'DROP'

MARK RECORD BIN AND

BUCKET 'IN PROCESS'

AND 'NEW' IN CACHE

SET INITIAL STATISTICS

FOR RECORD IN CACHE

I 1213

FIG. 12

1211

NOAC EX. 1018 Page 117

NOAC Ex. 1018 Page 118

‘Ii'h'x'w‘q VPRL‘ITOFDRAWLNG.) T—001-3

A5 0111qu nun

I .4?

“Wm

A.w...«..

.-—-~-

I:'ImvIIIIIII.”nwI
U

I-II

It
II

13/18

I @1301
1300 Tu UFKB ENTRY FOR

PACKET WITH STATUS
/ ‘NEW‘ oR ‘FO ND' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

PROCESSOR

INSTRUCTION NO DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

1308 YES
. 1310

SAVE STATE

PROCESSOR

INSTRUCTION NO DONE PROCESSING 1309

POINTER IN TATES FOR THIS FLOW’?
CURRENT FLOW

RECORD

YES

SET AND SAVE FLOW REMOVA

STATE PROCESSOR J13“
INSTRUCTION IN CURRENT

FLOW RECORD

@1313
FIG. 13

NOAC EX. 1018 Page 118

NOAC Ex. 1018 Page 119

:i' I: II I1 11"” 'IU .:,,,‘,', limit ' ”3|: TI-L" 'II'" ‘I-III' lImII Ii): II HIM, u”nm..- -. u-\- I4 I v u I u ... I. .p -..- I. I:

RECOGNIZE EXTRACT IRRIgIITII/JNP
IDENTIFYING .. u NEW "FLOW"

PATTERN INFO & PROCL FLOW KEY RECORD RECORD? DATABASE
INFORMATION /STATE (DB 1424)

OF FLOWS

 UPDATE

“FLOW“

PATTERN

STRUCTURES

AND KNOWN

EXTRACTION RECORD

OPERATIONS

PARSER

SUBSYSEM

STATE

MACHINE

SELECTOR

1426

 CLASSIFICATN
FINALIZATION

STATE

ANALYSIS

I PERATION ‘.

-8L/I7L
ANALYZER

SUBSYSTEM
L _________________________ |

NOAC EX. 1018 Page 119

If?

Amara9’ ‘ Conny-am301~Tfl3~,--——’o"

am

8‘L001

NOAC Ex. 1018 Page 120

PACKETS

”WW mu. ~ 0 m an“.

PACKET

‘ CQUISITION

DEVICE

Ii 'u)3in n‘u "w.. ,.., . ,I

L01

PARSER

-i..“ I? n ”

3.09

MONITOR

'I :I‘ lunil II“ 'IHI- {I |; II'III ”1:” If 'uv"I- I‘ In,” 'Iu"ul"‘I

ANALYZE '

1E3

 DATABASE

 NETWORK

INTERFACE DISK

CARD &
DB

1506

 HOST

MEMORY
 8L/9L

NOAC EX. 1018/Page 120

amANT/Eb???“
S'LOI

<‘9wuvuaJOmad"f
j

NOAC Ex. 1018 Page 121

r

§ pRLNT 0F DRAWLNG.» 001 3
ABE—19%

‘53!

16/18

‘ SrcHash (2

\Iemz

FIG. 16

’V‘mwn'w'm

NOAC EX. 1018 Page 121

NOAC Ex. 1018 Page 122

“an or muwmcs “1001-3
4 @115le

E

, 17/18
1702

IDP = 0x0600*' 1704

Ty e ‘ CHAOSNET = 0x080412 to 13I _Wllflllflll. ARP = Oxogos
VIP = OXOBAD"

VLOOP = OXOBAE
1705 VECHO = OXOBAF

NETBIOS-3COM = 0X3C00 -
0xscoo#

”"3F_‘2’ DE‘E’EABE =8x2881Hash 1 - = x1710 -) K1700 DEC-DRP=Ox6003*

_ DEC-LAT = 0x6004
L3 0'76“ ' ‘4 DEC-DIAG = 0x6005

DEC-LAVC = 0x6007
RARP = 0x8035

ATALK = 0x8098*
VLOOP = 0x80C4

Fl 7A ‘ ' VECHO = 0x80C5. /1/ SNA-TH = 0x80D5*
ATALKARP = 0x80F3

1712 IPX = 0x8137*
. 1 SNMP = 0x814C#
f" IPv6 = 0x86DD*

LOOPBACK = 0x9000

' ' Apple = 0x080007
. * L3 Decoding

L5 Decoding

ll”HP”"17II

1752H1'I!HII mm“. 7 7.5!: 11'plflfldfgfi’lmgl11gfliflbllllll

g L3 to o .' .3 ’ :fl’fl’E‘: ICMP = 1
1 [133,4 ”mm—17111117111111m 131$:3
1 :1] Top =6*
1 ,ggg :3
1 VIII/I591."WifiWififiil/[IIIIIIIM c1128: 3 1%

UDP E 17 *
k- 1750 ISO-11%|: ; 39211!

DDP = 37#

lSO-IP = 80

VIP = 83#

EIGRP = 88

OSPF = 89

Dst Address

Dst Hash (2)

Src Address

Src Hash (2) .
-°' (1) F I G . 1 7B #1.?» giggcgggding

-et = L3 + (lHL/4)

NOAC EX. 1018 Page 122

NOAC Ex. 1018 Page 123

PROTOCOL

Ihmvzm;DAME

 NOAC EX. 1018 Page 123

NOAC Ex. 1018 Page 124

Page 1 of 2

UNITED STATES PATENT AND TRADEMARK OFFICE
COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICE
\NASHINGTUN, D.C 2023I

www. uspto.gov

09/608,126 06/30/2000 Russell S. Dietz APPT—001-3

FORMALITIES LETTER

IIIIIIIIIIlIlIIII|||l||l|llI|||l||I|III
‘00000000005444855‘

Dov Rosenfeld

Suite 2

5507 College Avenue
Oakland, CA 94618

Date Mailed: 10/02/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below,

however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all

required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained
by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

o The statutory basic filing fee is missing.

Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming

such status (37 CFR 1.27).

0 Total additional claim fee(s) for this application is $18.

I $18 for 1 total claims over 20.

o The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the

above Application Number and Filing Date, is required.

o To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e)

of $130 for a non-small entity, must be submitted with the missing items identified in this letter.

1’

o The balance due by applicant is $ 838.

A copy of this notice MUST be returned with the reply.

Ni
Customer Service Center

Initial Patent Examination Division (703) 308—1202
PART 3 - OFFICE COPY

file;//C:\APPS\PreExam\correspondence\2_C.xml NOAC EX. 1018 Page 121‘9/2/00

NOAC Ex. 1018 Page 125

Page 2 of 2

file://C:\APPS\PreExam\correspondence\2_C.xml NOAC EX. 1018 Page lig/Z/OO

NOAC Ex. 1018 Page 126

Our Ref/Docket No: APPT-OC ‘ Patent
¢/'

6‘\\
(of \

”1’60@Afifilicanqs): Dietz, et al
zoofép‘plication No.: 09/608126

New“Filed: June 30, 2000

/;5\ IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
Group Art Unit: 2755

Examiner: (Unassigned)

Title: RE-USING INFORMATION FROM DATA

TRANSACTIONS FOR MAINTAINING

STATISTICS IN NETWORK

MONITORING

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(t).

Enclosed is a copy of said Notice and the following documents and fees to complete the filing

requirements of the above—identified application:

X Executed Declaration and Power of Attorney. The above—identified application is the
same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet.

A A credit card payment form in the amount of $ 898.00 is attached, being for:

X Statutory basic filing fee: Mg

X Additional claim fee of ' $_1_8

Assignment recordation fee of m

Extension Fee (1st Month) of $ 110

Missing Parts Surcharge § 130
*1M

X Applicant(s) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

overlooked the need for a petition for an extension of time.
Applicant(s) hereby petition(s) for an Extensiofi of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

envelope addressed to the Assistant Commissioner for Patents, Washington, DC. 20231 on. Date: M / W Signed:13%
/ Name: ov Rosenfeld, Reg. No. 38687

NOAC EX. 1018 Page 126

NOAC Ex. 1018 Page 127

,-fi-.,.,

-.W_..u....sz’mm”M“.

Mum»~m.

xwwagum-cumw-y.mn-
.~.-.W«was

.J,,«.y..._.,..‘.

Application 09/608126, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

__/1/M_Q_9£L__919_ fir
Date D Rosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547—3378; Fax: (510) 653—7992

NOAC EX. 1018 Page 127

NOAC Ex. 1018 Page 128

“‘5

(“W

W--«—»~m—.~._.,..W”.WWW.WMWWWWW.

.ge We»

PATENT APPLICATION

ATTORNEY DOCKET NO. APPT-001-3

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (ifplural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
RE-USING INFORMATION FROM DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK MONITORING

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608126 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above~identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

YES: NO:

YES: NO:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atented/o_endin abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Ser‘id Correspondence to: Direct Telephone Calls To:
. Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that w1llful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
valicfity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenber Drive San Jose CA 95120-273 6

Sa

a 7
Date

NOAC EX. 1018 Page 128

NOAC Ex. 1018 Page 129

-mMW”.vmum—"qm...rum-Wm»).~
mm“

,ar-w

0
Declaration and Power of Attorney (Continued)

Case No; «Case CaseNumber»

Page 2 '4’ - '

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Josegh R. Maixner

Residence: 121 Driftwood Cong Aptos, CA 95003

Post Office Address: Same

Inventor’s Signature

Name of Third Inventor: Andrew A. Kogpenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature

Citizenship: USA

Date

Citizenship: USA

Date

NOAC EX. 1018 Page 129

NOAC Ex. 1018 Page 130

PATENT APPLICATION

As a below name'- inventor, I hereby declare that: v

My residence/post office address'and citizenship are as stated below next to my name; .

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

RE-USING INFORMATION FROM DATA TRANSACI'I NS FOR MAINTAINING STATISTICS 1N NETWORK MONITORING

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608126 01 PCI‘ International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendrnent(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

—— s: __ NO
—— YES: _ NO: __

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) ofany United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

US Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS a atented/ . endin_ abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willfiil false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor’s Signature Date

NOAC EX. 1018 Page 130

NOAC Ex. 1018 Page 131

"-1)"’5th

PATENT APPLICATION

DECLARATION AND POWER OF ATTORNEY ATTORNEY DOCKET NO. APPT-001-3
FOR PATENT APPLICATION .

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name, ,

[believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

RE-USING INFORMATION FROM DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK MONITORING

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608126 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

_—— was: NO:
——— YES: NO:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section l.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS satentcd/ endin_ abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547—3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that w111ful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
Validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg DriveI San Jose, CA 95120-2736

Post Office Address: Same

——__—___________

First Inventor’s Signature Date

NOAC EX. 1018 Page 131

\

NOAC Ex. 1018 Page 132

Declaration and Power of Attorney (C04 .aed)

Case No; «Case CaseNumber»

Page 2 ’ ' '

ADDITIONAL INVENTOR SIGNATURES:

”1‘“...m.,
Name of Second Inventor: Joseph R. Maixner Citizenship: USA ‘

Residence: 121 Driftwood Con A tos CA 95003

Post Office Address: Same i

l, :0 f’zB/JXDG ;

Date

Name of Third Inventor: Andrew A. Kogpenhaver Citizenship: USA

Residence: 10400 Kenmore Drive: Fairfax, VA 22030 ;

Post Office Address: Same %

Inventor’s Signature Date

x‘r'.'

””5,

W.”_1
.w”

~um.var‘

:A\.«sump—en»

M4,"

“Hymnaim/w"
NOAC EX. 1018 Page 132

NOAC Ex. 1018 Page 133

t
i

\v e "so;‘9.

“51‘1““ E
iON AND PQWER or ATTORNEY

“HON

PATENT APPLICATION ‘ ;
ATTORNEY DOCKET NO'. APPT-001-3

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

RE-USING INFORMATION FROM DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK MONITORING

the specification ofwhich is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608126 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents ofthe above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the dut)l to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 1 19 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

——_ was; NO:
— was; NO:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

US. Priority Claim ‘

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims ofthis application is not disclosed in the prior United States application in the manner provided by the first
paragraph ofTitle 35, United States Code Section 1 12, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date ofthe prior application and the national or PCT international filing
date ofthis application:

 APPLICATION SERIAL NUMBER FILING DATE STATUS natented/ nendinelabandoned)

POWER OF ATTORNEY:

As a named inventor, I hereby appomt the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
In the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No, 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547—3378
Oakland, CA 94618

I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on information and beliefare believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 ofTitle 18 of the United States Code and that such willful false statements may Jeopardize the
Validity ofthe application or any patent issued thereon,

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: _S_a__m_e

M

"‘5! Inventor’s Signature Date

NOAC EX. 1018 Page 133

NOAC Ex. 1018 Page 134

wVVequ-unfls
‘ - I

(J;
.

Declaration and Power of Attorney (Continued)

Case No; «Case CaseNurnber»

Page2 [NWT—9‘91“}
“mus....m-..,an.“

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Josenh R. Maixner Citizenship: USA

Residence: 121 Driftwood CouLt, Aptog, CA 95003

Post Office Address: Same

....,..m.‘ymeW~W,wuww
Inventor’s Signature Date

Name of Third Inventor: Andrew A. Koppenhaver Citizenship: LISA

Residence: 9325 W. Hinsdale Place Littleton CO 0128

Post Office Address: Same

4:” % Lax “#001400
Inventor’s Signature

5;:

’

NOAC EX. 1018 Page 134

NOAC Ex. 1018 Page 135

7",

v i {r L . ' ‘

MRefi/Docket N0: APPT-6\E_3 3 Patent' \ ‘ O

O 65) IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

rev as 2000 5

fi§f§plicant(s): Dietz, et al.
W I

Application No.2 09/608126

Filed: June 30, 2000

Title: RE-USING INFORMATION FROM DATA

TRANSACTIONS FOR MAINTAINING

STATISTICS IN NETWORK

MONITORING

Group Art Unit:

Examiner: (Unassigned)

REQUEST FOR RECORDATION OF ASSIGNMENT

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Assignment

Dear Assistant Commissioner:

Enclosed herewith for recordation in the records of the US. Patent and Trademark Office is an

original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the

Assignment.

Respectfully Submitted,

[@4914 / W %
Date Do osenfeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653-7992

 Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commissioner for Patents, Washington, DC. 1 on.

Date:Mi Signed: osenfeld, Reg, No. 38687Name.

NOAC EX. 1018 Page 135

NOAC Ex. 1018 Page 136

”Wren“

Page 1 of 2

/UNITED STATES PATENT AND TRADEMARK OFFICE W
COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICE
VVASHINOTDN, D C. 2023!

. www.uspio.gov

09/608,126 06/30/2000 Russell S. Dietz APPT-001-3

FORMALITIES LETTER

gageRgsenfe'd HlllIlllllllllIllllllllllllllIllllllllllllllllllllll'OC000000005444855“

5507 College Avenue

Oakland, CA 94618

Date Mailed: 10/02/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all

required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained

by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

o The statutory basic filing fee is missing.

Applicant must submit $ 69010 complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1.27). ‘1\©

. Total additional claim fee(s) forthis application is $18.

I $18 for 1 total claims over 20.

o The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

0 To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e)
of $130 for a non-small entity, must be submitted with the missing items identified in this letter.

_/

o The balance due by applicant is $ 838.

«seam =5{ 98
100OF 130.00HP 18.000P

710

A copy ofthis notice MUST be returned with the reply.

Customer Service Center 7 0

Initial Patent Examination Division (703) 308-1202
PART 2 - COPY TO BE RETURNED WITH RESPONSE a/O'B/EOOOKZEHDIE0000003609606126

0%FC:101 FC:105 MFC:103
file://C:\APPS\PreExam\correspondence\2_B.xml NOAC Ex. 10 1316)/2/oo

NOAC Ex. 1018 Page 137

ocket/Ref. No.: APPT—Oo I —3 gag?
Patent /_

,2!) l

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group Art Unit:

Filed: June 30, 2000 Exarmner:

Title: RE-USING INFORMATION FROM

DATA TRANSACTIONS FOR

l MAINTAINING STATISTICS IN
, NETWORK MONITORING

Commissioner for Patents " ““29‘
Washington, DC. 20231 .

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

__X_ An Information Disclosure Statement for the above referenced patent application,
i together with PTO form 1449 and a copy of each reference cited in form 1449.

__ A check for petition fees.

X Return postcard.

l 2; The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF TIHS TRANSMITI‘AL IS ATTACHED

. Respectfully submitted,
Date: 39 Mg: Z oe‘L

E

; Dov Rosenfeld
l

Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address: _/
Dov Rosenfeld

5507 College Avenue, Suite 2

1 Oakland, CA 94618
g Telephone No.: +1-510—547—3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit: mfl-rvz 961 Siyamrefl. « ov Rosenfeld, Reg. No. 38,637

NOAC EX. 1018 Page 137

NOAC Ex. 1018 Page 138

#Sf
Patent

 Group Art Unit: 27 5—5-

Examiner:

Filed: June 30, 2000

Title: RE-USING INFORMATION FROM

DATA TRANSACTIONS FOR

MAINTAINING STATISTICS IN

NETWORK MONITORING

D.
V

Commissioner for Patents APR 1 7 2002

Washington, DC- 20231 Technology Center 2100

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

X Applicant(s) submit herewith Form PTO '1'449-Inforrnation Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

l (Certification) Each item of information contained in this information disclosure

statement was first cited in a formal communication from a foreign patent office in a counterpart

foreign application not more than three months prior to the filing of this information disclosure
statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR l.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is
Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit: 0 MM 109 bignamre:#
. — Dov R eld, Reg. No. 38,687

NOAC Ex. 1018 Page 138

NOAC Ex. 1018 Page 139

S/N: 09/608126 Page 2 IDS

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,
Date: 39 WM 296 L

osenfeld

Attomey/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1—510-547-3378

NOAC EX. 1018 Page 139

NOAC Ex. 1018 Page 140

SHEET 1 OF 1.
-..M-1449

SEWALNOA

09/608126

ATTY.DOCKETNO.

APPT—001—3

‘ :(o ' a. TION DISCLOSURE STATEMENT
 APPUCANT

Dietz et a1.
0

Q

790 HUNGDATE

6/30/2000
.4 Use several sheets if necessary)

5;.
a. F: E;E:

“F39
U.S. PATENT DOCUMENTS

DOCUMENT DATE NAME CLASS SU B-CLASS IF APPROPRIATE
NUMBER

1997 1995

1999 1996

S3E'9,

 INITIAL

< 'l

PUBLI-CATION
DATE

DOCUMENT

NUMBER

DATE CONSIDERED

'EXAMINER: initial it citation considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformanCe

and n_ot considered‘ Include a copy of this form with next communication to Applicant.

I
s

I

I NOAC EX. 1018 Page 140

NOAC Ex. 1018 Page 141

D

United States Patent [191
Nuber et al.

(0

llfllllllllllllllIlllflllllllllllllllllllllllllllllll
USOOS703877A

[11] Patent Number:

[45] Date of Patent:

5,703,877

*Dec. 30, 1997

[54] ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED
DATA STREAM

[75] Inventors: Ray Nuber, La lolla; Paul Moroney,
Olivenhain; G. Kent Walker,
Escondido. all of Calif.

[73] Assignee: General Instrument Corporation of
Delaware, Chicago, Ill.

["'] Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5.517.250.

[21] AppL No.: 561,611

[22] Filed: Nov. 22, 1995

[51] Int. Cl.‘5_............... H04] 3/06; H04N 7/12
[52] US. Cl. 370/395; 370/510; 370/514;

375/366; 348/423; 348/462; 348/466; 348/467
[58] Field of Search 370/389, 395,

370/503, 509. 510, 514, 516; 375/362,
365. 366, 368, 371; 348/423. 461, 462,

464, 466, 467

[56] Merencea Cited

U.S. PATENT DOCUMENTS

5,365,272 11/1994 Sincusa 348/461

5,376,969 121994 Zdepslti 348/466
5,467,342 11/1995 Logston et al. 370/253
5,517,150 5/1996 Hoogenboom et al. 348/467
5,537,409 7/1996 Moriyama et al. 370/471

Primary Examiner—Alpus H. Hsu
Attorney Agent, or Firm—Barry R. Lipsitz

[57] ABSTRACT

Audio data is processed from a packetized data stream
carrying digital television information in a succession of
fixed length transport packets. Some of the packets contain
a presentation time stamp (PI‘S) indicative of a time for
commencing the output of associated audio data. After the
audio data stream has been acquired, the detected audio
packets are monitored to locate subsequentPI‘S's for adjust—
ing the timing at which audio data is output. thereby
providing proper lip synchronization with associated video.
Errors in the audio data are processed in a manner which
attempts to maintain syndtronization of the audio data
stream while masking the mots. In the event that the
synchronization condition cannot be maintained. for
example in the presence of errors over more than one audio
frame, the audio data stream is reacquired while the audio
output is concealed. An uror condition is signaled to the
audio decoder by alta-ing the audio synchronization wm'd
associated with the audio frame in which the error has
occurred.

25 Claims, 4 Drawing Sheets

,- 1 00
COMMANDfORCE IDLE

10!

EVENT'NJDIO PTS AND DATA
RECENED

ERROR: PIS. SYNC. UV. ADP.
ENC. RS. AUD. PTRS FULL

ERRORSYNC. ENC.
RS. AUD. PTRS
FULL

ROR19'NC. ENC. RS.
AUO. PTRS FULL

ERROR: PTS. 9N6, 0V. ADP. ENC. RS. AUD. PTRS FULL

NOAC EX. 1018 Page 141

NOAC Ex. 1018 Page 142

XPT

HDR PAYLOAD \

188 BYTES(MPEG)
24

ELEMENTARY

STREAM mama'30

L661‘09'99(I

VJ0Imus

LLS‘SOL‘S

NOAC EX. 1018 Page 142

NOAC Ex. 1018 Page 143

42

DECODER

,u.P
VIDEO CONTROL DATA

ADDR. + CONTROL 52
48

w “950BUFFER “”50 DECODER

DATA PARSING AUDIO ‘ -
BUFFER AUD'O AUDIO \ AUDIO OUT

I ADDR + CONTROL“ DECODER- 54

AUDIO CONTROL DATA

FIG. 2

 TRANSPORT VIDEO OUT
_ STREAM

4o 44

DECODER

TIME

CLOCK

PROGRAM CLOCK

46

I" __ 1

COUNTER

68

46/ FIG. 3

PROGRAM
FOR .

CLOCK
60

‘4’” “‘ H. O..*. "2"” " LL.) ‘1 an. - . “4.1.5.; ” WW‘”" .4— ~wvx‘"w«-\wa.~w-—w .mewHLm: “

mama’S‘fl

L661‘0:ma

7J0Z190'18

LLS‘EOL‘S

NOAC EX. 1018 Page 143

NOAC Ex. 1018 Page 144

w I , ,,,M._W—«w W WWW
«Rm ~WMM.»M~ ~mw~WWmme w “W"”"' ' ' ' ' ‘ ' "" ”flM “V w v M,1‘ . I

.

I:

TRANSPORT 70 FIG 4 S0
PACKETS PID '1

- DETECT 9°
40 3

74 I:

72 MODIFIED SYNC AUDIO ”AUDIO PKTS DATA To
WORD INSERTER

DEMUX BUFFER

ERROR SYNC WORD 9 D
DETECT INVERTER .8

CONTROL VIDEO 5
PKTS PKTS "

/ SYNC WORDa I g“)LIP SYNC 5: 2
44 PCR a: PTS PTS OUTPUT TIMING Egfififi'SL 84 I";

DETECT COMPENSATOR 9.,
A

AUDIO SAMPLE

& BIT RATE CONTROL r)
CALCULATOR u. ‘

R 35 1‘
TO ADD E 8
PP as 31°

\]

NOAC EX. 1018 Page 144

NOAC Ex. 1018 Page 145

O 0

US. Patent Dec. 30, 1997 Sheet 4 of 4 5,703,877

COMMANDzFORCE IDLE _

102

COMMAND:ACQUIRE —@
INTERRUPTzDPTS REG 1

,—1OO

DELTA PTS WAIT

1 04

EVENT:|NPUT PROCESSOR WRITES DPTS—ACQ ERROR:SYNC,
ENC, RS. AUD.
PTRS FULL

PCR ACQUIRE

106

. ERROR:SYNC, ENC.

EVENT.AUD|O PCR RECEIVED 1 RS. AUD. PTRS
1 08 FULL

PTS ACQUIRE

1

EVENTzAUDIO PTS AND DATA IRECEIVED

ERROR:PCR D|S1

110 @
ERROR: PTS. SYNC, 0V, ADP,

EVENT:STC=PTS+DPTS ENC, RS. AUD. PTRS FULL

ERROR:SYNC, ENC, RS.

AUD. PTRS FULL

ERROR: PTS, SYNC, 0V, ADP, ENC, RS, AUD. PTRS FULL
FIG. 5

NOAC EX. 1018 Page 145

NOAC Ex. 1018 Page 146

O 0

5,703,877
1

ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED

DATA STREAM

BACKGROUND OF THE INVENTION

The present invention relates to a method and apparatus
for acquiring audio data from a packetized data stream and
recovuy from errors contained in such data.

Various standards have emerged for the transport of
digital data. such as digital television data. Examples of such
standards include the Moving Pictures Experts Group
(MPEG) standards and the DigiCipher® 11 standard propri—
etary to General Instrument Corporation of Chicago, 111..
U.S.A.. the assignee of the present invention. The DigiCi-
pher® II standard extends the MPEG-2 systems and video
standards, which are widely known and recognized as trans-
port and video compression specifications specified by the
International Standards Organization (ISO) in Document
series ISO 13818. 'Ihe MPEG-2 specification's systems
“layer" provides a transmission mediumindependent coding
tedmique to build bitstreams containing one or more MPEG
programs. The MPEG coding technique uses a formal gram-
mar (“syntax") and a set of semantic rules for the construc-
tion of bitstreams. The syntax and semantic rules include
provisions for demultiplexing, clock recovery, elementary
stream synchronization and error handling.

The MPEG transport seam is specifically designed for
use with media that can generate data errors. Many
programs, each comprised of one or mrxe elementary
streams, may be combined into a transport stream. Examples
of services that can be provided using the MPEG format are
television services broadcast over terrestrial. cable television

and satellite networks as well as interactive telephony-based
services. The primary mode of information carriage in
MPEG broadcast applications will be the MPEG-2 transport
stream. The syntax and semantics of the MPEG-2 n'ansport
stream are defined in International Organisation for
Standardisation, ISO/IEC 13818-1. International Standard,
1994 entitled “Generic Coding of Moving Pictures and
AssociatedAudio: Systems," recommendation H.222, incor-
porated herein by reference.

Multiplexing according to the MPEG-2 standard is
accomplished by segmenting and packaging elementary
streams such as compressed digital video and audio into
packetized elementary stream (PBS) packets which are then
segmented and packaged into transport packets. As noted
above. each MPEG tranmort packet is fixed at 188 bytes in
length. The first byte is a synchronization byte having a
specific eight-bit pattern. e.g.. 01000111. The sync byte
indicates the beginning of each transport packet.

Following the sync byte is a three-byte field which
includes a one—bit transport packet error indicator. a one-bit
payload unit start indicator, a one-bit transport priority
indicator. in 13-bit packet identifier (PID). a two-bit transport
scrambling control, a two—bit adaptation field control. and a
four-bit continuity counter. The remaining 184 bytes of the
packet may carry the data to be communicated. An optional
adaptation field may follow the prefix for carrying both
MPEG related and private information of relevance to a
given transput stream or the elementary stream carried
Within a given transport packet. Provisions for clock
recovery, such as a program clock reference (PCR), and
bitsn'eam splicing information are typical of the information
carried in the adaptation field. By placing such information
in an adaptation field. it becomes encapsulated with its

10

15

35

45

55

65

2

assodated data to facilitate remultiplexing and network
routing operations. When an adaptation field is used. the
payload is correspondingly shorter in length.

The PCR is a sample of the system time clock (SIC) for
the associated trogram at the time the PCR bytes are
received at the decoder. The decoder uses the PCR values to

synchronize a decoder system time clock (SI‘C) with the
enooder's system time clock. The lower nine bits of a 42-bit
STC provide a modulo-300 countr:r that is incremented at a
27 MHz clock rate. At each modulo-300 rollover. the count
in the upper 33 bits is incremented. such that the uppe' bits
of the SFC represent time in units of a 90 kHz clock period.
This enables presentation time stamps (PTS) and decode
time stamps (DTS) to be used to dictate the proper time for
the decoda' to decode access units and to present presenta-
tion units with the accuracy of one 90 kHz clock period.
Since each program or service carried by the data stream
may have its own PCR. the programs am be multiplexed
asynchronously.

Synchronization of audio. video and data presentation
within a program is accomplished using a time stamp
appoaeh. Presentation time stamps (PI‘Ss) and/or decode
time stamps (Ul‘Ss)are inserted into the transport stream for
the separate video and audio packets. The PTS and DTS
information is used by the decoder to determine when to
decode and display a picture and when to play an audio
segnent. The HS and DTS values are relative to the same
system time clock sampled to generate the P025.

All MPH} video and audio data must be formatted into a

packetized elementary stream (PBS) formed from a succes-
sion of PBS packets. Each PBS packet includes aPES header
followed by a payload The PES packets are then divided
into the payloads of successive fixed length transport pack-
ets.

PES packets are of variable and relatively long length.
Various optional fields. such as the presentation time stamps
and decode time stamps may be included in the PES header.
When the transport packets are formed from the PBS. the
PBS headers immediately follow the transport packet head-
ers. A single PES packet may span many transport packets
and the subsections of the PES packet must appear in
consecutive transport packets of the same PID value. It
should be appreciated. however, that these transport packets
may be freely multiplexed with other transport packets
having different Ple and carrying data from difi‘erent
elementary streams within the constraints of the MPEG-2
Systems specification.

Video programs are carried by placing coded MPEG
video streams into PBS packets which are then divided into
transport packets fa” insertion into a transport stream. Each
video PES packet contains one or more coded video
pictures, referred to as video “access units ." A PTS and/or a
DTS value may be placed into the PBS packet header that
encapsulates the associated access units. The DTS indicates
when the decoder should decode the access unit into a

presentation unit. The PI‘S is used to actuate the decoder to
present the assodatcd presentation unit.

Audio programs are provided in accordance with the
MPEG Systems specification using the same specification of
the PBS packet layer. PI‘S values may be included in those
PBS packets that contain the first byte of an audio access unit
(sync frame). The first byte of an audio access unit is part of
an audio sync word. An audio frame is defined as the data
between two consecutive audio sync words. including the
preceding sync word and not including the succeeding sync
word.

NOAC EX. 1018 Page 146

NOAC Ex. 1018 Page 147

0

5,703,877
3

In DigiCipher® 1]. audio transport packets include one or
both of an adaptation field and payload field. The adaptation
field may be used to transport the PCR values. The payload
field flanspcrts the audio PBS. consisting of PBS headers
and PBS data. PBS headers are used to transpat the audio
PI‘S values. Audio PBS data consists of audio flames as
specified. e.g., by the Dolby® AC-3 or Musicam audio
syntax specifications. The AC-3 specifications are set forth
in a document entitled Digital Audio Compression (AC-3).
ATSC Standard. Doc. A152. United States Advanced Tele-

vision Systems Committee. The Musicam specification can
be found in the document entitled “Coding of Moving
Pictures and Associamd Audio for Digital Stu-age Media at
Up to About 1.5 MBlT/s," Parr3 Audio. 11172—3 (MPEG~1)
published by ISO. Each syntax specifies an audio sync frame
as audio sync word, followed by audio information includ-
ing audio sample rate, bit rate and/or flame size. followed byaudio data.

In other to rwonstruet a television signal from the video
and audio information carried in an MPEG/DigiCiphuQ II
transportsfleam,adecoderisrequiredtoprocess the video
packets for output to a video decompression processor
(VDP) and the audio packets for output to an audio decom—
pression processes (ADP). In order to properly process the
mdiodataflredecoderisrequiredtosynchronizetothe
audio data packet stream. In particular, this is required to
enable audio data to be bufleted fa‘ continuous output to the
ADP and to enable the audio syntax to be rcadfor audio rate
information necessary to delay the audio output to achieve
proper lip synchronization with respect to the video of the
51m: program-

Several events can result in uror conditions with respect
to the audio Focusing. These include loss of audio trans-
port packets due to tranmission channel errors. Errors will
also result from the receipt of audio packets which are not
properly decrypted or are still encrypted. Adecoder must be
able to handle such errors without significantly degrading
the quality of the audio output.

The decoder must also be able to handle changes in the
audio sample rate and audio bit rate. The audio sample rate
for a given audio elementary stream will rarely change. The
audio bit rate, however, can often change at program
boundaries. and at the start and end of commacials. It is
diflicult to maintain synchronization to the audio stream
through such rate dranges, since the size of the audio sync
flames is dependent on the audio sample rate and bit rate
Handling undetected errors in the audio stream, partiurlarly
in systems who-e error detection is weak. complicates the
tracking of the audio stream through rate changes. When a
received bitstream indicates that an audio rate has dranged,
the rate may or may not have actually changed. If the
decoder responds to an indication from the bitstream that the
audio rate has changed when the indication is in error and
the rate has not changed. a loss of audio synchronization will
likely occur. This can result in an audio signal degradation
that is noticeable to an end user.

To support an audio sample rate change. the audio clock
rates utilized by the decodu must be changed. This process
can take signifitant time, again degrading the quality of the
audio output signal. Still further, such a sample rate change
will require the audio bufia's to be cleared to establish a
different sample-rate—dependent lip sync delay. Thus, it may
not be advantageous to trust a signal in the received bit-
strcam indicating that the audio sample rate has changed.

With respect to hit rate changes, the relative frequency of
such changes compared to undetected errors in the bit rate

10

15

35

45

55

65

4

information will be dominated by whether the receiver has
adequate error detection. Thus, it would be advantageous to
provide a decoder having two modes of operation. In a
robust error detection environment such as for satellite
communications or cable media, where error detection is

robust. a seamless mode of operation can be provided by
trusting a bit rate drange indication provided by the data. In
a less robust err-ca- detection environment. indications of bit
rate changes can be ignored, at the expense of requiring
resynchronization of the audio in the event that the bit rate
has actually changed.

It would be fin‘ther advantageous to provide an audio
decoder in which synchronization to the audio bitstream is
maintained when the audio data contains errors. Such a

decodm' should conceal the audio for those sync flames in
whidt an error has occurred. to minimize the aural impact of
audio data mots.

Itwouldbe still further advantageous to provide a decoder
in which the tinting at which audio data is output from the
decoder‘s audio buifu' is adjusted on an ongoing basis. The
intent of such adjustments would be to insure correct pre-
sentation time for audio elementary streams.

The present invention provides methods and apparatus for
decoding digital audio data florn a packetized transport
stream having the aforementioned and other- advantages.

SUMMARY OF THE INVENTION

In accordance with the [resent invention, a method is
provided for processing digital audio data from a packetized
data stream carrying television information in a succession
of fixed length transport packets. Each of the packets
includes a packet identiflq' (PID). Some of the packets
contain a program clock reference (PCR) value for synchro-
nizing a decoder system time clock (SI‘C). Some of the
packets contain a presentation time stamp (PI‘S) indicative
of a time fa- commencing the output of associated data for
use in reconstructing a television signal. In accordance with
the method, the PID's for the packets carried in the data
stream are monitored to identify audio packets associated
with the desired mm The audio paclrets are examined
to locate the occurrence of at least one audio synchroniza—
tion word thu'ein for use in achieving a synchronization
condition. The audio packets are monitored after the syn-
chronization condition has been achieved to locate an audio

PI‘S. After the [TS is locatedw the detected audio packets are
searched to locate the next audio syndtronization word.
Audio data following the next audio synchronization word is
stored in a buffer. The stored audio data is output from the
buffer when the decoder system time clock reaches a speci-
fied time derived from the PTS. The detected audio packets
are continually monitored to locate subsequent audio Pl‘S’s
for adjusting the timing at which the stored audio data is
output from the buifer on an ongoing basis.

A PPS points can be provided to maintain a current FI‘S
value and an address of the ME: identifying whae the sync
word of an audio flame referred to by the cunent P'I‘S is
stored. In order to provide the timing adjustment. the FIS
value in the PI‘S pointer is replaced with a new PTS value
after data stored at the address specifiedby the PPS pointer
has been output from the buffer. The address specified by the
FPS pointer is then replaced with a new address correspond—
ing to the sync word of an audio flame referred to by the new
I’I‘S value. The output of data flom the butter is suspended
when the new butfer address is reached during the peren-
ration process. The output of data flom the butter is recom-
menced when the decoder": system time clock reaches a
specified time derived from the new Pl‘S value.

NOAC EX. 1018 Page 147

NOAC Ex. 1018 Page 148

.."..a.~.“._«v‘

New“;1;.

7x3M.are;mitu
f:Fern»

O (3,

5,703,877
5

In an illustrated embodiment. the output of data from the
buffer is recommenced when the decoder's system time
clock reaches the time indicated by the sum of the new PI‘S
value and an oifset value. The ofiset value provides proper
lip synchronization by accounting for any decoder video
signal {accessing delay. In this manner, aftu' the audio and
video data has been decoded, the audio data can be presented
synchronously with the video data so that. for example, the
movement of a person's lips in the video picture will be
sufficiently synchronous to the sound reproduced

The method of the present invention can comprise the
further step of commencing a rmcquisition of the audio
synchronization condition if the decoda‘s system time clock
is beyond the specified time derived from the new PTS value
before the output of data fi'om the buifer is recommenced.
Thus, if a PPS designates that an audio frame should be
pesented at a time which has already passed, reacquisition
of the audio datawill automatically commence to ctrrect the
timing error, thus minimizing the duration of the resultant
audio artifact.

In the illustrated embodiment, two consewfive audio
synchronization words define an audio frame therebetween,
including the preceding sync word. but not including the
succeeding sync word. The occurrence of errors may be
detected in the audio pacbts. Upon detecting a first audio
packet ofa current audio frame containing an error, the write
pointer for the buffer is advanced by the maximum numbn-
of bytes (N) contained in one of the fixed length transport
pachets. At the same time, the cunent audio frame is
designated as being in error. The subsequent audio packets
of the current audio frame are monitored for the next audio
synchronization word after the error has been detected. Ifthe
synchronization Wil‘d is not received at the expected point in
the audio elementary stream. subsequent data is not stored in
the bufl’er until the sync word is located. Stuage of audio
data into the bufl'er is resumed with the next sync word if the
next audio synchronization wtrd is located within N bytes
after the commencement of the search therefor. If the next

audio synchronization word is not located within N bytes
after the commencement of the search therefor. a reacqui-
sition ofthe synchronization condition is commenced. These
steps will insure the buffer is maintained at the correct
fullness when as many as one transport packet is lost pd
audio sync flame. even with the sync frame size changes
such as with a sample rate of 44.1 ksps, and will resynchro-
nize the audio when too many audio transport packets are
lost.

Wheneva- the audio data from which the television audio

is being reconstructed is in mor. it is lxeferable to conceal
the error in the television audio. In the illustrated

embodiment, a current audio flame is designated as being in
error by altering the audio synchronization word for that
frame. Ftr example, every other bit of the audio synchro-
niution word can be inverted. The error in the television

audio for the corresponding audio frame may then be
concealed in response to an altered synchronization word
during the decoding and presentation process. This method
allows the bufi'eriug and error detection process to signal the
decoding and presentation process when errors occur via the
data itself, without the need for additional intu'process
signals.

The audio data can include information indicative of an

audio sample rate and audio bit rate, at least one of which is
variable. In such a situation, it is advantageous to maintain
synchronization within the audio elementary stream dining
a rate change indicated by the audio data. This can be
accomplished by ignoring an audio sample rate change

to

15

35

45

SS

6

indicated by the audio data on the assumption that the
sample rate has not actually changed, and concealing the
audio frame containing the data indicative of an audio
sample rate change while attempting to maintain the syn-
chronization condition. This strategy will properly respond
to an event in which the audio sample rate change or hit rate
change indication is the result of an en'or in the indication
itself, as opposed to an actual rate change.

Similarly, audio data can be processed in accordance with
a new rate indicated by the audio data in the absence of an
error indication pertaining to the audio frame containing the
new rate, while attempting to maintain the synchronization
condition. The audio data is processed without changing the
rate if an error indication patains to the audio frame
containing the new rate. At the same time, the audio frame
to which the error condition pertains is concealed while the
decoder attempts to maintain the synchronization condition.
If the synchronization condition cannot be maintained. a
reacquisition of the synchronization condition is
commenced, as desired when the sample rate actually
changes.

Apparatus in accordance with the present invention
acquires audio information carried by a packetized data
stream. The apparatus also handles errors contained in the
audio infca'man'on. Means are provided for identifying audio
packets in the data stream. An audio elementary stream is
recovu-ed from the detected audio packets for storage in a
bufl’er. An audio presentation time stamp (PI‘S) is located in
the detected audio packets. Means responsive to the PPS are
provided for commencing the output of audio data from the
bufier at a specified time. Means are provided for monitoring
the detected audio packets after the output of audio data
from the bufl’er has commenced, in add" to locate subse-
quent audio FFS's ftr use in governing the output of audio
data from the bulfer to instne audio is presented synchronous
to any other elementary streams of the same program and to
maintain correct bufier fullness.

The apparatus can furtha comprise means for maintain-
ingaPTSpointcrwlth a unrentPI‘Svalueandanaddi-ess
of the buffer identifying where a portion of audio data
referred to by the current H8 is stored. Means are govided
for replacing the PPS value in the PTS pointer with a new
current PI‘S value aftu' data stored at the address set forth in

the PI‘S pointer has been output from the bufier. The address
in the PTS pointer is then replaced with a new address
corresponding to a portion of audio data referred to by the
new current PPS value. Means responsive to the PI‘S pointer
are provided for suspending the output of data from the
buffer when the new address is reached. Means are govided
for recommenchrg the output of data from the bufl’tn' at a
time dta'ived from the new current P'I‘S value. In the event

that the new current PI‘S value is outside a predetermined
range, means provided in the apparatus conceal the audio
signal and reestablish synchronization.

In an illustrated embodiment, the audio transport packets
have a fixed length of M bytes. The transport packets carry
a succession of audio frames each contained wholly or
partially in said packets. The audio frames each begin with
an audio synchronization word. Means are provided for
detecting the occurrence of errors in the audio packets. A
write pointer for the buffer is advanced by the maximum
number of audio frame bytes per audio transport packet (N)
and a current audio frame is designated as being in error
upon detecting an error in an audio packet of the aurent
audio frame. Means are provided for monitoring the detected
audio packets of the eta-rent audio frame for the next audio
synchronization word after the error has been detected. Ifthe

NOAC EX. 1018 Page 148

NOAC Ex. 1018 Page 149

O 0

5,703,877
7

synchronization word is not received whee expected within
the audio elementary stream, subsequent audio data is not
buffered until the next audio synchronization word is
received. This process compensates for too many audio

bytes having been buifered when the err-cred audio packetwas detected. Such an event will occtn' each time the lost

packet does not carry the maximtnn number of possible
audio data bytes. Means are provided for resuming the
Sta-age of audio data in the butter if the next audio syn-
chronization word is located within N bytes after the com-
mencement of the search therefor. If the next audio syn-
chronization word is not located within said N bytes after the
commencement of the search therefor. the audio timing will
be reacquired. In this manner. the size of the sync flames
buffered will be maintained including for those flames that
are marked as being in error, unless the next sync word is not
located where expected in the audio elementary stream to
recover from the error before bufiering any of the next
successive flame. This algorithm allows the decode and
presentation processes to rely on buffered audio flames
being the correct size in bytes, even when data errors result
in the loss of an unknown amount of audio data.

Means can also be provided for concealing error in an
audio signal reproduced from data output from the bufa
when the data output from the buifer is in error. Means are
furtherprovided for altering the audio synchronization word
associated with 1 went audio frame. to signal the decode
and presentation process that a particular frame is in (nor.
The concealing means are responsive to altered synchroni-
zation words for concealing audio associated with the cor-
responding audio flame.

Decoder apparatus in accordance with the invention
acquires audio information united by a packetized data
stream and handles erras thaein. Means are provided for
identifying audio packets in the data stream. The successive
audio frames are extracted from the audio transport packets.
Fach audio frame is carried by one or more of the packets.
and the start of each audio flame is identified by an audio
synchronization wad. Means responsive to the synchroni-
zation words obtain a synchronization condition enabling
the recovery of audio data flom the detected audio packets
for storage in a bufi‘er. Means are provided for detecting the
presence of errors in the audio data. Means responsive to the
error detecting means control the flow of data through the
both: when an cm: is present, to attempt to maintain the
synchronization condition while masking the error. Means
are provided for reestablishing the audio timing if the
controlling means cannot maintain the synchronization con—
dition.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic illustration showing how audio
transport packets are formed from an elementary stream of
audio data;

FIG. 2 is a block diagram of decoder apparatus that can
be used in accordance with the present invention;

FIG. 3 is a mac detailed block diagram ofthe decoder
system time clock (SIC) illustrated in FIG. 2;

FIG. 4 is a more detailed block diagram of the demulti-
plexing and data parsing circuit of FIG. 2', and

FIG. 5 is a state diagram illustrating the processing of
audio data in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a diagrammatic illustration showing how one or
name digital programs can be multiplexed into a stream of

10

15

35

45

55

65

8

transport packets. Multiplexing is accomplished by seg-
menting elementary streams such as coded video and audio
into PBS packets and then segmenting these into transport
packets. The figure is illustrative only, since a PBS packet.
such as PES packet 16 illustrated, will commonly translate
into othu' than the six tranwort packets 24 illustrated

In the example of FIG. 1. an elementary stream generally
designated 10 contains audio data provided in audio flames
14 delineated by synchronization words 12. Similar elemen—
tary streams will be provided for video data and other data
to be transported.

The first step in forming a transport packet stream is to
reconfigure the elementary stream for each type of data into
a corresponding packetized elementary stream (PBS)
formed flom successive PES packets, such as packet 16
illustrated. Each PBS packet contains a PBS header 18
followed by a PBS payload 20. The payload comprises the
data to be communicated. The PES heads 18 will contain

information useful in processing the payload data. such as
the presentation time stamp (NS).

The header and payload data from each PBS packet are
enurpsulated into transport packets 24, each containing a
transport header 30 and payload data 32. The payload data
of the transport packet 24 will contain a portion of the
payload data 20 and/or PPS header 18 flom PIES packet 16.
In an MPEG implunentation, the transport headu' 30 will
contain the packet identifier (PID) which identifies the
transport packet. such as an audio transport packet 24, a
video transport packet 26, or other data packet 28. In FIG.
1, only the derivation of the audio transport packets 2A is
shown. In order to derive video packets 26 and other packets
28, corresponding elementary streams (not shown) are pro-
vided which are processed into PIE packets and transport
packets in essentially the same manner illustrated in FIG. 1
with respect to the formation of the audio transport packets

EachMPEG transportpacket contains 188 bytes of data.
formed flom the four-byte transport header 30 and payload
data32,whichcanbeupt0184bytes.lntheMPEG
implementation, an adaptation field of. e.g., eight bytes may
be provided between the transport header 30 and payload 32.
The variable length adaptation field can contain, for
example. the program clock reference (PCR) used for syn-
chronization of the decoder system time clock (SIC).

The plurality of audio transport packets 24. video trans-
port packets 26 and other packets 28 is multiplexed as
illustrated in FIG. 1 to form a transport stream 22 that is
communicated over the communication channel flom the

encoder to the decoder. The purpose of the decoda is to
demultiplex the different types of transport packets from the
transport stream. based on the PID's of the individual
packets. and to then process each of the audio. video and
other components for use in reconstructing a television
signal.

FIG. 2 is a block diagram of a decoder for recovering the
video and audio data. The transport stream 22 is input to a
demrrltiplexer and data parsing subsystem 44 via terminal
40. The demultiplexing and data parsing subsystem com—
municates with a decoder microprocessrr 42 via a data bus
88. Subsystem 44 recovers the video and audio transport
packets flom the transport packet stream and parses the
PCR, FPS and other necessary data therefrom for use by
other decoder components. For example. PCR’s are recov-
ered from adaptation fields of tranqut packets for use in
synchronizing a decoder system time clodr (S'I‘C) 46 to the
system time clock of the encoder. Presentation time stamps
for the video and audio data streams are recovered from the

NOAC EX. 1018 Page 149

NOAC Ex. 1018 Page 150

an.ewe»;ah...~st.ml}....._,..
a.

new...“aa-..”.1
as“.

Let-adv«2'»:saw».
‘Hp‘;

‘LJ,«,w

v...a."/_‘.‘.

1”Fe.,

«reari‘fi»J»

V‘5'.‘ can....
t

”r..~.

,.tw‘ifidasnh

 J ‘ ",3a

3 j;
z" 2‘"

g a

O 0

5,703,877
9

respective PES packet headers and communicated as video
or audio control data to the video decoder 52 and audio

decoder 54. respectively. ,
The decoder time clock 46 is illustrated in greater detail

in FIG. ‘3. An important function of the decoder is the
reconstruction of the clock associated with a particular
program. This clock is used to reconstruct, for example. the
proper horizontal scan rate for the video. The paper 11e-
sentation rate of audio and video presentation units must
also be assrrred. These are the audio sample rate and the
video frame rate. Synchronization of the audio to the video,
referred to as “lip sync”, is also required.

In order to generate a synchronized program clock. the
decoder system lime clock (STC) 46 receives the PCR‘s via
terminal 60. Before the commencement of the transport
stream decoding. a PCR value is used to preset a counter 68
for the decoder system time dock. As the clock runs, the
value of this count: is fed backto a subtracter 62. The local

feedback value is then compared with subsequent PCR's in
theh‘ansportsu'eamastheyan'iveatterminalfio.Whena
PCR arrives, it represents the cured STC value for the
program. The difi'erence between the PCR value and the
ETC value, as output from subtractcr 62, is filtered by a loop
filter 64 and used to drive the instantaneous frequency of a
voltage controlled oscillator 66 to either decrease or increase
the ETC frequency as necessary. The STC has both a 90 kHz
and 27 MHz component. and the loop filter 64 converts this
to units in the 27 Mhz domain. The output of the VCO 66
is a27MI-izoscillator signalwhichisusedastheprogrun
clock frequency output from the decoder system time clock.
Those sldlledintheartwillrecognizcthatthedecodertime
clock 46 illustrated in FIG. 3 is implemented using well
known phase locked loop (PLL) techniques.

Before beginning audio synchronization, the decoder of
FIG. 2. and particularly subsystem 44, will remain idle until
it is configured by decoder microprocessor 42. The configu-
ration consists of identifying the type of audio data stream
to be processed (e.g.. Dolby AC-3 or Musicam audio).
identifying the PID of packets from which the audio PCR
values are to be extracted, and identifying the PID for audio
packets.

During the idle state. subsystem 44 will instruct audio
decoder 54 to conceal the audio output. Concealment can be
accomplished by zeroing all of the audio samples. Subse-
quent digital signal processing will result in a smooth aural
transition from no sound to sound, and back to no sound.
The concealment of the audio output will be terminated
when the synchronization process reaches a tracking state.
Decoder microprocessor 42 configrnes the audio fumat as
AC—3 or Musicam, depending on whetha audio decode- 54
is an AC-3 or Musicam decoder. Mimprocessor 42 deter-
mines the audio PID and audio PCR PID from program map
infonnalion provided in the transport strearn. The program
map information is essentially a directory of PlD‘s. and is
identified via its own PID.

Once the demultiplexer and data parsing subsystem 44 is
commanded to enter 8 Frame Sync state via an acquire
command, it will begin searching for two consecutive audio
sync words and will supply the decoder microprocessor 42
with the audio sampling rate and audio bit rate indicated
within the audio elementary stream To locate the sync
words, subsystem 44 will receive transport packets on the
audio PID and extract the PBS data. searching for the
occurrence of the audio sync word, which is a
predetermined. fixed word. For example. the AC-S audio
sync word is 0000 1011 0111 0111 (16 hits) while the
Musicam sync word is 1111 1111 1111 (12 bits).

10

15

35

45

55

65

10
The number of bits between the first bit of two consecu-

tive audio sync words is referred to as the frame size. The
frame size depends on whether the audio stream is AC-3 or
Musicam and has a ditfaent value for each combination of

audio sample and bit rate. In a preferred embodiment.
subsystem 44 is required to synchronize to A03 and Musi-
cam sample rates of 44.1 ksps and 48 ksps. The A03 audio
syntax conveys the audio sample rate and audio frame size
while the Musicam audio syntax conveys the audio sample
rate and audio bit rate. Both AC-3 and Musicarn specify one
sync flame size for each bit rate when the sample rate is 48
ksps. However, AC-3 and Musicam specify two sync frame
sizes for each bit rate when the sample rate is 44.1 ksps. a
fact which complicates synchronization. especially through
packet loss. When the sample rate is 44.1 ksps. the correct
sync frame size between the two possibilities is indicated by
the least significant bit of the AC-3 frame size code or by a
Musicam padding bit.

Once two consecutive audio sync words have been
received with the carect number of bytes in between. as
specified by the sync frame size, subsystem 44 will store the
audio sample rate and audio bit rate implied by the audio
syntax for access by the decoda microp'ocessor 42. inta-
rupting the microprocessor to indicate that subsystem 44 is
waiting for the microprocessor to supply it with an audio
PI‘S correction factor. The correction factor is necessary in
order to know when to output audio data to the audio
decoder 54 drning initial acquisition and during tracking for
proper lip synchronization. The value is denoted as dP'I‘S.
The lip sync value used for tracldng is slightly less than that
used for initial acquisition to allow for time errors which will
exist between any two PTS values. namely that which is
used for acquisition and those which are used for tracking.

Decode microprocessor 42 sets the correction factors
such that audio and video-will exit the decoder with the

same time relationship as it entered the encoder. thus achiev—
lng lip synchronization. These correction factors are deter-
mined based on audio sample rate and video frame rate (e.g.,
60 Hz or 50 Hz). These dependencies exist because the audio
decompression processing time required by audio decoder
54 potentially depends on audio sample and bit rate while
the video decompression implemented by video decoder 52
potentially depends on video frame rate and delay mode. In
a preferred implementation. the 171‘s correction factors con-
sist of 11 bits, retires-ting the number of 90 kHz clock
periods by which audio data is to be delayed before output
to the audio decoder 54. With 11 bit values, the delay can be
as high as 22.7 milliseconds.

Once the demultiplcxing and data parsing subsystem 44
requests the decoder microprocesstr 42 to supply the cor-
rection factors. it will monitor reception of consecutive sync
words at the expected positions within the audio elementary
stream. If an error condition occurs drn-ing this time. sub-
system 44 will transition to searching for two consecutive
audio sync wads with the correct number of data bytes in
between. Otherwise, subsystem 44 remains in State dPI'S—
wait until the decoder microprocessor suvices the interrupt
from subsystem 44 by writing dPI‘qu to subsystem 44.

Once subsystem 44 is provided with the PTS correction
factors, it checks whether a transport packet has been
received on the audio PCR PID containing a PCR value.
carried in the adaptation field of the packet. Until this has
occurred, reception of conseartive sync words will continue
[State=PCR Acquire]. If an error condition occurs during
this time, subsystem 44 will transition to seardiing for two
consecutive audio sync words [State=Frame Sync].
Otherwise. it will remain in State=PCR Acquire until it
receives a PCR value on the audio PGZ PID.

NOAC EX. 1018 Page 150

NOAC Ex. 1018 Page 151

O 0

5,703,877
11

After a POI has been acquired. subsystem 44 will begin
searching for a PIS [State=P'l‘S Acquire], which is carried
in the PBS header of the audio transport packets. Until this
has occrn'red, subsystem 44 will monitor the recqrtion of
consecutive sync words. If an error condition occurs dining
this time, it will transition to an aror handling algorithm
[State=E:ror Handling]. Otherwise, it will remain in the PTS
acquire state until it receives a PI‘S value on the audio PID.

When subsystem 44 recrn‘ves an audio PTS value, it will
begin searching for reception of the next audio sync word.
This is important since the PTS defines the time at which to
output the data which begins with the next audio frame.
Since audio frames are not aligned with the audio PBS, the
numbq' of bytes whidr will be received between the ITS
and the next audio sync word varies with time. If an error
condition ocean-s before reception of the next audio sync
word, subsystem 44 returns to searching for audio frame
synchronization [State=Frame Sync]. It should be appeci-
ated that since audio sync frames and PBS headers are not
aligned, it is possible for a PBS heads, and the FPS which
it may contain, to be received between the 12 or 16 bits
which form an audio sync word. In this case. the sync wa'd
to which the PI'S refas is not the sync wcrd which is split
by the PBS header, but rather the following sync word.

When subsystem 44 receives the next sync word, it has
acquired PTS. At this point. it will store the received FPS
and the PBS data (starting with the sync word which first
followed the PTS) into an audio butter 50, together with the
butts address at which it writes the sync word. This stored
PIS/butter address pair will allow subsystem 44 to begin
outputting audio PPS data to the audio decoder 54 at the
correct time, starting with the audio sync word. In a pre-
ferred embodiment. the bufi'er 50 is implemented in a
portion of dynamic random access memory (DRAM)
already provided in the decoder.

Once subsystem 44 begins bufiering audio data, a numb:-
of parameters must be tracked which will allow it to handle
particular error conditions, such as loss of an audio transport
packet to transmission errors. These parameters can be
tracked using audio pointers including a PI‘S pointer. a
DRAM olfset address pointer. and a valid flag pointe‘
discussed in greater detail below.

After P'I‘S is acquired. subsystem 44 begins waiting to
synchronize to “‘8 [Stat¢=PI‘S Sync]. In this state, the
demultiplexer and data parsing subsystem 44 continues to
receive audio packets via terminal 40, writes their PBS data
into bufi'er 50. and maintains the error pointers. When this
state is entered, subsystem 44 compares its audio STC to the
correct output start time, which is the PI‘S value in the PTS

point: plus the acquisition PTS correction factor (dPTan).
If subsystem 44 discovers that the correct time has passed,
i.e.. PCR>PI‘S+dPI‘S,q, one or more of the three values is
incorrect and subsystem44 will flag decodermiu'oproccssor
42. At this point. the state will revert to Stathrame Sync.
and subsystem 44 will return to searching for two consecu-
tive audio sync words. Otherwise. until PCR=PTS+dPFSW
subsystem 44 will continue to receive audio packets, write
their PES data into the buffer 50, maintain the error pointus,
and monitor the reception of consecutive sync words.

When PCR=PTS+dPrSW subsystem 44 has synchro-
nized to FPS and will begin tracking the audio stream
[State=’l‘rack]. At this time. subsystem 44 will begin trans-
ferring the contents of the audio buffer to the audio decoder
54 upon the audio decoder requesting audio data, starting
with the sync word located at the buffer address pointed to
by the PPS pointer. In the tracking state. subsystem 44 will

10

15

35

45

55

65

12

continue to receive audio packets, write their PBS data into
the buff: 50. maintain the error pointers, and monitor
reception of consecutive sync words. If an error condition
occurs during this time, subsystem 44 will transition to error
processing. Otherwise. it will remain in State=1raclr until an
error occurs or microprocessor 42 commands it to retina to
the idle state.

As subsystem 44 outputs the sync word of each sync
frame to the audio decoder 54 as part of the “audio" referred
to in FIG. 2. it will signal the aror status of each audio sync
frame to the audio deooda using the sync word. The sync
word of audio sync frames in whidr subsystem 44 knows of
no arors will be output as specified by the Dolby AC~3 or
Musicam specification. as appropriate. The sync word of
audio sync frames in which subsystem 44 knows of errors
will be altered relative to the correct sync words. As an
example, and in the prefm'ed embodiment. every other bit of
the sync word of sync frames to which an urcr pointer
points will be inverted, starting with the most significant bit
of the sync word. Thus. the aha-ed AC-3 sync word will be
1010 0001 1101 1101 while the aimed Musicam sync word
will be 0101 01010101. Only the bits of the sync word will
be altered. The audio decoder 54 will conceal the audio
errors in the sync frame which it receives in which the sync
word has been altered in this manner. Howevu, the audio
decoder will continue to maintain synchronization with the
audio bitstream. Synchronization will be maintained assum-
ing the audio bit rate did not change. and knowing that two
sync frame sizes are possible when the audio sample rate is
44.1 lrsps.

In accordance with the preferred embodiment audio
decoder 54 will maintain synchronization through sample
and bit rate changes if this feature is enabled by the decoder
microta'ooessor 42. If the miu'oprooessor disables sample
rate changes. audio decoder 54 will conceal the audio errors
in each sync frame received with a sample rate that does not
match the sample rate of the sync frame on which the audio
decoder last acquired, and will assume that the sample rate
did not change in order to maintain synchronization The
audio decoder is required to process through bit rate
changes. If an error in the bit rate information is indicated.
e.g., through the use of a cyclic redundancy code (CRC) as
well known inthe art, audiodecoder54willassumethatthe
bit rate of the corresponding sync frame is the same bit rate
as the previous sync frame in order to maintain synchroni—
zation. If the decoder microprocesscr 42 has enabled rate
changes. the audio decoder 54 will assume that the rates
indicated in the sync frame are correct, will process the sync
frame, and use the appropriate sync frame size in maintain—
ing synchronization with the audio bitstrearn.

Demnltiplexer and data parsing subsystem44 will also aid
microprocessor 42 in checking that audio data continues to
be output at the correct time by resynchronizing widr the
PTS for some PTS values received. To accomplish this.
when a PTS value is received it will be stored in the P18
pointer, along with the audio ofi’set address at which the next
sync word is written in audio bufler 50. if the P'I‘S pointer
is not already occupied. In doing this, subsystem 44 will
ensure that the next sync word is received at the correct
location in the audio PBS bitstream. Otherwise. the PPS
value will not be stored and subsystem 44 will defer resyn-
chronization until the next successful PPS/DRAM ofl‘set
address pair is obtained. Subsystem 44 will store the PPS/
DRAM ofl’set address pair in the PPS pointer until it begins
to output the associated audio sync frame. Once it begins
outputting audio data to the audio decoder 54. subsystem44
will continue to service the audio decoder’s requests for

NOAC EX. 1018 Page 151

NOAC Ex. 1018 Page 152

0 0

5,703,877
13

audio data. outputting each audio sync frame in sequence.
This will continue until the sync frame pointed to by the PTS
pointu' is reached. When this occrus, subsystem44 will stop
outputting data to the audio decoder 54 until PCR=PTS+
dPI‘SM This will detect audio timing errors which may
have occurred since the last resynchronization by this
method.

If PCR>PTS+dPTSaq when subsystem 44 completes
output of the previous sync frame. the audio decoder 54 is
processing too slow or an undetected error has occurred in
a PCR or PTS value. After this error condition, subsystem 44
will flag microprocessa' 42, stop the output to the audio
decoder 54. clear audio bufiu' 50 and the pointers. and retin'n
to searching for two consecutive sync words separated by
the correct number of audio data bytes. Ifthe audio decoder-
54 is not requesting data when the buffer read pointer equals
the address pointed to by the PPS pointer, an audio process-
ing en'or has occuned and subsystem 44 will maintain
synchronization with the audio stream, clear its audio butter
and pointers, and return to searching for two consecutive
audio sync words [State=Frame Sync].

In order to handle errors. subsystem44 sets a unique aru-
flag for each error condition. which is reset when micropro-
cessor 42 reads the flag. Each error condition which inter-
rupts microprocessor 42 will be mashble under control of
the microprocessor. Table 1 lists the various error conditions
related to audio synchronization and the response by sub-
system 44. In this table, “Name" is a name assigned to each
error condition as referenced in the state diagram of FIG. 5.
“Definition" defines the conditions indicating that the cor-
responding error has occurred. “IN'I‘” is an interrupt desig-
nation which, if “yes", indicates that subsystem 44 will
interrupt miu’oprocessor 42 when this error occurs. “Check
State” and “Next State" designate the states in which the
error will be detected (checked) and the audio processorwill

10

15

14

enter, respectively, with the symbol “>" that the designated
error will be detected when the audio processing state of
subsystem 44 is higher than the designated state. The audio
processing state hierarchy. from lowest to highest. is:

l. Idle

2. Frame Sync

3. dPI‘Sw"

4. PCqu
5. PTSM
6. PTS Sync
7. Track

The symbol “E" preceding a state indicates that the error
will be detected when the audio processing state of sub—
system44 is equal to or higher than the designated state. The
designated state(s) indicate(s) that the error will be detected
in this state or that the audio processing of subsystem 44 will
proceed to this state after the associated actions are mm'ed
out. The designation "same" indicates that the audio pro-
cessing of subsystem44 will stay in the same state afier the
assodated actions are carried out.

The heading “Buifer Action” indicates whetht: the audio
bufier is to be flushed by setting its read and write pointers
to be equal to the base address of the audio bufia. The
designation “none" indicates no change from nu'mal audio
buffer management

The heading “Pointer Action” indicates by the term
“reset” that the FPS pointer, error pointers or both will be
returned to the state specified as if subsystem 44 had been
reset. The designation “none" indimtes no change from
normal pointer management. The designation “see otha'
actions” indicates that other actions under the “Other

Actions" heading may indicate a pointer to be set or reset.
The “Other Actions” heading states any additional actions
required of the subsystem 44 as a result of the error.

NOAC EX. 1018 Page 152

NOAC Ex. 1018 Page 153

... . ‘ ‘M . u . Manx-whoa: «3‘ “was... “at; an. ,. ma: a . aw WW? ' ~« » «2 v; New. WW «0’ ~ * "wins-a :vé

TABLE 1

SUMMARY OF ERRORS. EXQEHQES, AND AQLIOES.

Cluck Next Bufler Pointer
Name Definition Int Stne Sun: Action Action Other Aetiona

pte_err PCR > PI'S + dlv’I‘S“1 ya puJync frmaeJync flush met none
pLen PCR > PIS + dPI‘S“ yes trick hm:_cym flush tenet Stop otnput to Aufio Deoocbt (ADP).
sync..err Input pxoneuor bees lynt: with input nudio ye- >idle hme_.eyne flush reset Stop output b ADP.fumes
0V_cn' Amiio Buffer overflow yea ipu_sync frame_sync flush reset Input piece-cor nn‘muiu eynclronizntion with the India

him Stop output to ADP.
tmder_ert Audio Buffer mrlerflow- no tnck lune nme none Input promont- mnintainl synchronization with the India

him Stop output to ADP.
{Len Input prom: who! Audio PBS dun ya >hln:_sync sane none none Continue processing an if the India Imph nte hr] not chased.

whichiniimteaflnewdioumplemhe
changed lime the cut-tent P1!) was acquird

tb_cn- Input prom receive. Audio PBS dun yen >fnme_eync lame none not: It hit at: china“ ue ambled, input pm Wm contime
whichindhteuflnludiohitntehuchmpd MWMthebfinbhf-ctchngedufludngme
xelnivetodaelutnudiotynefnnmtncbd nppoprimeynefrmzedutumunninlymlnnniufion.flbil

- me chmeumnotcmblod. htpupveumwill continue
pminaulingthebitntehadieutedhythehetnmfloqm huereceived.

guise Syncwudnatfotmdthntolouot‘nfliodm no Zpu_nequixe tune none none Nonehnotheremroonfifionlmydwcpplyhmigcwme I PIS is received
pcr_disl Inpmpmoeuonenchenutnneponpacketon no my: pnlequire flush 1)th InpnptoculoutvpemingPTSuhtuhthel’rSpomunfil

theAudioPCRPIDwiththe mm nflernoepn‘onofthenenAudioPCRnlue.
dimfinnitym hit of it;
ndaptnfimLfield set

pc‘l'_d.i.'12 haw! pmeeamr meivel I unsport packet on no trick same none pmteaet Inpu place-nor nope liming PIS nine: in the PI'S pointer Imtil
meAudioPCRPIDwitt-tthe mum thermoeptionorthenextAudioPCRnlue.
dinoontimtitandicmt bit of its
adaptlmficld set

nud_en-l| Audio dam of one tampon picket of the See >idle "me or none ptsunne Mnintnin Aufio Bufer mum“ by advancing the FIFO write
ominptutyncfmneislonchetomon other m_eyn:, enumee pohmbylubytumymemmwpoinenomdthe

actions mount other cmenteynehmnu‘mmmdeonfinuepmoenhgwimn
lotions Ietionl gmnfingmintmthfitiepouible thatmethanonemdio

syncwoldwubetwifitdtemiuhuuudiuhnqoflpncket,mh-
whenupporfingMuiamhyernnthudmflkbpuu-AC-alt
leuthlnflkbpslemtothel’meSyneI-temdxenennem
inwlfdlemtuadioqncwudienatmeeivedwhen
mad.beginahyte-by~byteleachforthe|tdioeynewotd
dwhghmepfionofmbscqumudbdnhOmethe-ync
bmmhhmmmmmhmmebufierunfil
teammhfuMDOnotummefimbyteennfined
dtmhmhkmmfingmdiodntlwhenthelyncbym
infwmimrtingwiththelyncwordiuelfJfflaelymwordilnot
fotmddnrinsthefim t!4bytecaeucbd.nuuntofi1el’nme
Symmte‘mdgenentnlninlemt

13,)... 4» "Mm/~‘

SI

LLS‘EOL‘S

91

NOAC EX. 1018 Page 153

~ uh...

NOAC Ex. 1018 Page 154

TABLE 1-confinucd

SUMMARY OF ERRORS, EXCEPTIONS, AND ACTIONS.

Check Next Bum Pointer

NIme Definifim In! Sure Stats Action Action Other Actions

Iud_mlb Auiio dam of om transport pub! of the yes >idh fi-m_pync flush ptsnenl none
cminptnsyncfi-umilbnmemenm mane
memenllhuocctmaddmingmem
input sync fmm

Iud_en2 Aflodlhofmmuthlnonemspnpubt ye- >idle frln:_lyn: flush pm! mempohmrmmutthemmntlync hue-shaman
offlncminputvymhmeiloflduelo mun-cc
error: 0111:!

nations
panull Audio clan of one tampon packet is but ya ZpuJync hum flush react Input proceuat maintain- lyncbmnizltion with the audio

whilcEnurModc isUnpmtacted bilsueun. Stop output to ADP.

“IbimplementtheIbavampmushgfiwrmwbigiciphzrnhnpknzunmtheMWCmnninmhlmmdiobunbytzootnby:
settingIcounmr'svfluesometyncfiimesizeinbyusuuchqncwmdilmeiwd.
decmufingmemuechmivedmdiobymhmndhdnAMbBufiaWO),
WhmwlubymawhcnlmhmdioWmhthlmmmhhdmmofmmmmmby184,
WarmlyfinnmflnofdntwolymmmuinbymcomlpondingmflnummbitmeinheIboudecremcmmuhedhnmglfiwcummvdmfindksfimmemmmpmwm

paliblycunhmedlbnqtuflngncwmdurlmmmbrthepouibxhtyhibmdnlunphmeuulxsptnddnlymfimmhnchmpdfivmflnmmbdnnmlhtvdus),remingbmanmoSyncsme'the Ibuveinclemcmmuhedinleumtcrvllucwhichwmllnegfliveamlfvudufilbetmmmplckctpossiblyconumcdmdnnoneufliosyncwmd),url
beginningthcbyu-by—bylosyncwmdicnchwhenlheaomlnilum.

LI

LLS‘EOL‘S

SI

NOAC EX. 1018 Page 154

NOAC Ex. 1018 Page 155

0

5,703,877
19

As indicated above, the demultiplexing and data parsing
subsystem44 of FIG. Zmaintains sevaal pointas to support
audio processing. The PI‘S pointer is a set of parameters
related to a PI‘S value, specifically a PI‘S value. a DRAM
offset address, and a validity flag. In the illustrated embodi-
ment. the PPS value comprises the 17 least significant bits
of the FPS value received from the audio PBS header. This

value is associated with the audio sync frame pointed to by
the pointa’s DRAM offset address field. The use of 17 bits
allow this field to specify a 1.456 second time window
((2‘7—l)l90 kHz). which exceeds the maximum audio time
span which the audio bufl'er 50 is sized to store.

The DRAM olfset address maintained by the PPS point:-
ls a 13-bit offset address. relative to the audio buffer base
address. into the DRAM at which the first byte of the audio
sync frame associated with the pointer’s PI‘S value is stored.
The 13 bits allows the pointer to address an audio butter as
large as 8192 bytes.

The Pl‘S points validity flag is a one-bit flag indicating
whether or not this PTS point: contains a valid PI‘S value
and DRAM offset address. Since MPEG does not require
PI‘S values to be transported more often than every 700
milliseconds, subsystem 44 may find itself not having a valid
PI‘S value for some intervals of time.

After the decoder is reset. the valid flag of the PPS pointe-
is set to invalid. When a new PTS value is received, if the
valid flag is set, the newly received PTS value is ignored. If
the valid flag is not set, the newly received PTS value is
stued into the PPS pointer but its valid flag is not yet set to
valid. Aftm‘ a new FI‘S value is stored into the FPS pointu',
theprocessing of audio data is continued and each audio data
byteiseounted.lfthenextaudiosyncframeisreoeivedand
placed into the bufier correctly. the DRAM offset address
(which corresponds to the butter address into which the first
byte of the sync word of this sync frame is stued) is stored
into the pointer's DRAM ofl‘set address field. Then. the
pointu's valid flag is set to valid. The next audio sync frame
is received and placed into the buffer correctly when no data
is lost for any reason between reception of the FPS value and
reception of a subsequent sync word before too many audio
bytes (i.e.. the number of audio bytes pa- sync frame) are
butfcrcd. If the next audio, sync frame is not received or
placed into the bufier correctly. the valid flag is not set to
valid

After the PPS point: is used to detect any audio timing
errors which may have occurred since the last resynchroni-
ration. the valid flag is set to invalid to allow subsequent
PTS polata's to be captured and used. This occurs whetha:
the PPS pointer is in the PI‘S sync or tracking state.

The error pointers are parameters related to an audio sync
frame currently in the butter and known to contain errtn's.
The error pointers comprise a DRAM oflset address and a
validity flag. The DRAM offset address is a 13-bit offset
address. relative to the audio buffer base address. into the
DRAM at which the first byte of the audio sync frame
known to contain urors is stored Thirteen bits allows the

pointer to address an audio bufl‘er as large as 8192 bytes. The
validity flag is a one-bit flag indicating whether (I not this
error pointer contains a valid DRAM ofiset address. When
receiving data from a relatively mar free medium. sub-
system 44 will find itself not having any valid em: pointers
for some intervals of time.

Subsystem 44 is required to maintain a total of two error
pointers and one error mode flag. Afterreset. the validity flag
is set to invalid and the error mode is set to "protected."
When a sync word is placed into the audio bufler. if the valid

10

15

20

35

45

55

65

20

flag of one or use error pointcn’s is not set. the buffer
address of the sync word is recorded into the DRAM offset
address of one of the invalid uror pointers. At the same time.
the error mode is set to protected. If the validity flag of both
error pointers is set when a sync word is plamd into the
butter. the error mode is set to unprotected but the DRAM
ofiset address of the sync word is not recorded.

When audio data is placed into the buffer and any error is
discovered in the audio data. such as due to the loss of an

audio transport packet or the reception of audio data which
has not been properly decrypted, subsystem 44 will revert to
the PTS acquire state if the error mode is unprotected
Otherwise. the validity bit of the error pointer which con-
tains the DRAM olfset address ofthe sync word which starts
the sync frame currently being received is set. In the rare
event that an error is discovered in the datafor an audio sync
frame during the same clock cycle that the sync word for the
sync frame is removed from the bufl‘u'. the sync word will
be cmupted as indicated above to specify that the sync
frame is known to contain an audio arm: At the same time,
the validity bit is cleared such that it does not remain set after
the sync frame has been output. This avoids the need to reset
subsystem 44 in order to render the pointer useful again.

When audio data is being removed from the audio buffer.
the sync word is corrupted if the DRAM offset address of
any error pointer matches that of the data currently being
removed from the bufier. At the same time, the validity bit
is set to invalid

The decoder of FIG. 2 also illustrates a video bufiu‘ 58

and video decoder 52. These process the video data at the
same time the audio data is being processed as described
above. The ultimate goal is to have the video and audio data
output together at the proper time so that the television
signal can be reconstructed with proper lip synchronization.

FIG. 4 is a block diagram illustrating the demultiplexing
and data parsing subsystem 44 of FIG. 2 in greata' detail.
After the transport packds are input via terminal 40, the PD)
of each packet is detected by drcuit 70. The detection of the
PDS enables demultiplexer 72 to output audio packets.
video packets and any other types of packets carried in the
data stream, such as packets carrying control data. on
separate lines.

The audio packets output from demultiple'xer 72 are input
to the various circuits necessary to implement the audio
processing as described above. Circuit 74 modifies the sync
word of each audio frame known to contain mars. The

modified sync words are obtained using a sync word inverter
78. which inverts every other bit in the sync words output
from a sync word. PCR and PTS detection ciroait 80. in the
event that the audio frame to which the sync word corre-
sponds contains an mot. Eror detection is provided by error
detection circuit 76.

The sync word. PCR and HS detection circuit 80 also
outputs the sync word for each audio frame to an audio
sample and bit rate calculator 86. This circuit determines the
audio sample and bit rate of the audio data and passes this
information to decoder microprocessor 42 via data bus 88.

Ther and P'I‘S are output from drcuit 80 to a lip sync
and output timing compensator 82. Circuit 82 also receives
the dP'TS values from microprocessor 42. and adds the
appropriate values to the PTS in order to provide the
necessary delay for proper lip synchronization. Compensa-
tor 82 also determines if the delayed presentation time is
outside of the acceptable range with respect to the PCR. in
which case an error has occurred and resynchronization will
be required.

NOAC EX. 1018 Page 155

NOAC Ex. 1018 Page 156

0

5,703,877
21

Buifer control 84 provides the control and address infor-
mation to the audio output buffer 50. The bufier control 84
is signaled by error detection circuit 76 whenever an error
occurs that requires the temporary suspension of the writing
of data to the bulfer. The bulfer control 84 also receives the
delay values from lip sync and output timing compensattr
82 in order to control the proper timing of data output from
the buficr. ‘

FIG. 5 is a state diagram illustrah'ng the processing of
audio data and response to errors as set forth in Table 1. The
idle state is represented by box 100. Acquisition of the audio
data occurs during the frame sync state 102. The dPI‘S-wait
state is indicated by box 104. Boxes 106,. 108 and 110

represent the PCRw Pl‘Swg, and PI‘S sync states, respec-
tively. Once audio synchronrzau‘on has occurred. the signal
is tracked as indicated by the tracking state of box 112. The
outputs of each of boxes 104. 106, 108, 110 and 112 indicate
the error conditions that cause a return to the frame syn-
chronization state 102. The error PCR DIS] during the PPS
sync state 110 will cause a return to the PPS acquire state,
as indicated in the state diagram of FIG. 5.

It should now be appreciated that the present invention
provides methods and apparatus fa acquiring and process-
ing errors in audio data communicated via a transport packet
scheme. Transport packet errors are handled while main-
taining audio synchronization. During such error conditions,
the associated audio errors are concealed. Corrupted data in
an audio frame is signaled by altering the sync pattern
associated with the audio frame. Pl‘S's are used to check the

timing of processing and to correct audio timing errors.
Although the invention has been described in connection

with various specific embodiments. it should be appreciated
and undm'stood that numerous adaptations and modifications
may be made thereto, without departing from the spirit and
scope of the invention as set forth in the claims.

We claim:

1. A method for processing digital audio data from a
packetized data stream carrying digital television informa—
tion in a succession of fixed length transport packets, each
of said packets including a packet identifier (PID), some of
said packets containing a pogram clock reference (PCR)
value for synchronizing a decoder system time clock (SI‘C),
and some of said packets containing a presentation time
stamp (PPS) indicative of a time fa commencing the output
of associated data for use in reconsh'ucting a television
signal. said method commising the steps of:

monitoring the PID‘s for the packets carried in said data
stream to detect audio packets, some of said audio
packets carrying an audio PI‘S;

storing audio data from the detected audio packets in a
bufler for subsequent output;

monitoring the detected audio packets to locate audio
PI‘S's;

comparing a time derived from said STC with a time
derived from the located audio P'I‘S‘s to determine

whether said audio packets are too early to decode, too
late to decode, or ready to be decoded; and

adjusting the time atwhich said stored audio data is output
from said buffer on an ongoing basis in response to said
comparing step.

2. A method in accordance with claim 1 whaein a PI‘S

pointer is provided to maintain a current PI‘S value and an
address of said butter identifying where a portion of audio
data referred to by said current PI‘S is stored, said timing
adjustment being provided by the further steps of:

replacing said PI‘S value in said PI‘S pointer with a new
current PI‘S value after data stored at said address has

been output from said bulfer;

5

10

IS

35

45

55

65

22

replacing said address in said [’18 pointer with a new
address corruponding to a portion of audio data
referred to by said new current I’I‘S value;

suspending the output of data from said buifer when said
new address is reached; and

recommendng the output of data from said bufler when
said decoder system time clock reaches a presentation
time derived from said new urn-eat PI‘S value.

3. A method in accordance with claim 2 whu'ein said

presentation time is determined from the sum of said new
current PI‘S value and an offset value that provides proper
lip synchronization by accounting for a video signal pro-
cessing delay.

4. A method in accordance with claim 1 wherein the time

at which the audio data is output from said buffer is
dependent on an offset value added to said PI‘S for providing
proper lip synchronization by accounting for a video signal
processing delay.

5. A method in accordance with claim 1 comprising the
further steps of:

examining the detected audio packets to locate the occur—
rence of at least one audio synchronization word
therein for use in achieving a synchronization condition
prior to locating said audio PI‘S’s:

commencing at reacquisition of said syncln'onization con-
dition if said comparing step detu'mines that said audio
packets are too late to decode.

6. A method in accordance with claim 5 wherein two

consecutive audio synchronization words with a comect
numbu of audio data bytes in betWeen define an audio
frame. said audio frame including only one of said two
conseuitive audio synchronization words. said method com-
prising the further steps of:

detecting the occurrence of errors in said audio packets;
upon detecting a first audio packet of a current audio

frame containing an error, advancing a write points for
said butter by the maximum number of payload bytes
(N) contained in one of said fixed length transport
packets and designating said current audio frame as
being in error;

monitoring the detected audio packets of said current
audio flame for the next audio synchronization word
aha said error has been detected, and if said synchro-
nization word is not received where expected in the
audio stream, discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said bufier;

resuming the storage of audio data in said bufier upon
detection of said next audio synchronization word if
said next audio synchronization wad is located within
N bytes after the commencement of the search therefor;
and

if said next audio synchronization word is not located
within said N bytes after the commencement of the
search therefor, commencing a reacquisition of said
synchronization condition.

7. A method in accordance with claim 6 comprising the
further step of concealing television audio errors whenever
the audio data from which said television audio is being
reconstructed is in error.

8. A method in accordance with claim 7 wherein:

a current audio frame is designated as being in error by
altering the audio syncln'onizau'on word for that frame;
and

said concealing step is responsive to an altered synchro-
nization word for concealing audio associated with the
corresponding audio frame.

NOAC EX. 1018 Page 156

NOAC Ex. 1018 Page 157

‘3gfizfisi-Q
'.“‘33:":t
A;

are
x,.w

D

5,703,877
23

9. A method for processing digital audio data Erom a
packetized data stream carrying digital television informa-
tion in a succession of transptrt packets having a fixed
length of N bytes. each of said packets including a packet
identifiu' (PID). some of said packets containing a program
clock reference (PCR) value for synchronizing a decode
system time clock, and some of said packets containing a
presentation time stamp (PTS) indicative of a time for
commencing the output of associated data for use in recon-
structing a television signaL said method comprising the
steps of:

monitoring the PID's for the packets carried in said data
stream to detect audio packets;

examining the detected audio packets to locate the occur-
rence of audio synchronization words for use in achiev-
ing a synchronization condition. each two consecutive
audio synchronization words defining an audio frame
therebetween;

monitoring the detected audio packets after said synchro-
nization condition has been achieved to locate an audio
Pl‘S;

searching the detected audio packets aftu locating said
audio PTS to locate the next audio synchronization
word;

storing audio data following said next audio synchroni-
zation word in a buffer;

detecting the occurrence of errors in said audio packets:
upon detecting a first audio packet of a ctm'ent audio

frame containing an error. advancing a write pointu' for
said buffer by N bytes and designating said crn-rent
audio frame as being in error:

monitoring the detected audio packets of said crn-rent
audio frame for the next audio syndrronization word
after said error has been detected. and if said syndro-
nization word is not received whae expected in the
audio stream. discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said bufler'.

resuming the sttrage of audio data in said bufl’er upon
detection of said next audio synchronization word if
said next audio synchronization word is located within
N bytes after the commencement of the search therefor;
and

if said next audio synchronization ward is not located
within said N bytes after the commencement of the
search therefor, commencing a reacquisition of said
synchronization condition.

10. A method in accordance with claim 9 comprising the
further step of concealing television audio errors wheneve-
the audio data from which said television audio is being
reconstructed is in error.

11. A method in accordance with claim 10 whtrein:

a crnrent audio frame is designated as being in error by
aiming the audio synchronization word for that frame;
and

said concealing step is responsive to an altered synchro-
nization word for concealing audio associated with the
corresponding audio frame.

12. A method in acca’dance with claim 9 wherein said
audio data includes information indicative of an audio

sample rate and audio bit rate, at least one of said audio
sample rate and audio bit rate being variable, said method
comprising the flu‘ther step of attempting to maintain syn—
chronization of said audio packets dining a rate change
indicated by said audio data by:

5

10

15

30

35

45

55

65

24

ignoring a rate change indicated by said audio data on the
assumption that the rate has not actually changed;

concealing the audio frame containing the data indicative
of an audio sample rate change while attempting to
maintain said synchronization condition; and

commencing a reacquisition of said synchronization con-
dition if said condition cannot be maintained.

13. A method in amordance with claim 9 wherein said
audio data includes information indicative of an audio
sample rate and audio bit rate, at least one of said audio
sample rate and audio bit rate being variable. said method
comprising the further step of attempting to maintain syn-
chronization of said audio packets during a rate change
indicated by said audio data by:

processing said audio data in accordance with a new rate
indicated by said audio data in the absence of an error
indication pertaining to the audio frame containing the
new rate, while attempting to maintain said syndro-
nization condition;

processing said audio data without changing the rate if an
error indication pertains to the audio frame containing
the new rate, while concealing the audio frame to which
said error condition pertains and attempting to maintain
said synchronization condition; and

commencing a reacquisition of said synchronization con-
dition if said condition cannot be maintained.

14. Apparatus for acquiring audio information carried by
a packetized data steam and processing errors therein,
comprising:

means for detecting audio transport packets in said data
stream;

means for recovering audio data from said detected audio
transport packets for storage in a btrfier;

means for locating an audio presentation time stamp
(PPS) in said detected audio transport packets;

means responsive to said NS for commencing the output
of audio data from said butter at a specified time;

means for monitoring the detected audio transpat packets
attu- the output of audio data from said bufier has
commenced. to locate subsequent audio PTS's:

means for comparing a time derived from a decoder
system time clock (STC) to a time (1de from the
subsequent audio PTS's to detumine whether audio
data stored in said butter is too early to decode. too late
to decode, or ready to be decoded; and

means responsive to said comparing means for adjusting
the time at which said stored audio data is output from
said bufier.

15. Apparatus in accordance with claim 14 further com—
prising:

means for maintaining a PPS point: with a arrrent PPS
Value and an address of said butter identifying where a
portion of audio data refmed to by said urrrent PI‘S is
stored:

means for replacing said PI‘S value in said P‘I‘S pointer
with a new current PI‘S value afier data stored at said
address has been output from said bufier, and for
replacing said address in said PI‘S points with a new
address corresponding to a portion of audio data
refared to by said new current PIS value;

means responsive to said PI‘S pointer for suspending the
output of data from said bufiu' when said new address
is retained: and

means for recommencing the output of data from said
bufl‘er at a time derived from said new ctn-rent P'I'S
value.

NOAC EX. 1018 Page 157

NOAC Ex. 1018 Page 158

D

5,703,877
25

16. Apparatus in accordance with claim 15 further com-
prising:

means for concealing error in an audio signal reproduced
from data output from said buffer and reestablishing the
detection of said audio transport packets if the time
derived from said new current PI‘S value is outside a
predetermined range.

17. Apparatus in awordance with claim 14 which said
audio transport packets each contain a fixed number N of
payload bytes. said packets being amnged into successive
audio frames commencing with an audio syndrronization
word, said apparatus further compising:

means for detecting the occurrence of errors in said audio
packets;

means for advancing a write pointer for said butter by N
bytes and designating a current audio frame as being in
errorupon detectinganerrorinanaudiotransport
packet of said current audio frame;

means for monitaing the detected audio transport packets
of said current audio frame for the next audio synchro-
nization word after said error has been detected, and if
said synchronization word is not received where
expected in the audio stream, discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said buffer;

means for resuming the storage of audio data in said
butter upon detection of said next audio synchroniza-
tion word if said next audio synchronization word is
located within said fixed number N of bytes after the
commencement of the search therefor; and

means for reestablishing the detection of said audio
transport packets if said next audio synchronization
word is not located within said fixed number N of bytes
after the commencement of the search therefor.

18. Apparatus in acorn-dance with claim 17 further com-
prising:

means for concealing error in an audio signal reproduced
from data output from said buffer when the data output
from said butter is in dror.

19. Apparatus in accordance with claim 18 further com-
prising:

means for altering the audio synchronization wrrd asso-
ciated with a current audio frame to designate that
frame as being in error;

wherein said concealing means are responsive to altered
synchronization words it! concealing errors in audio
associated with the corresponding audio frame.

20. Apparams ft! acquiring audio infcmmion carried by
a packetized data stream and processing errors therein,
comprising:

means for detecting audio transport packets in said data
stream, said packets being arranged into successive
audio frames commencing with an audio synchroniza-
tion word;

means responsive to said synchronization words for
obtaining a synchronization condition enabling the
recovery of audio data from said detected audio trans-
port packets for storage in a butter;

means for detecting the presence of errors in said audio
data;

means responsive to said error detecting means fu- con-
trolling the flow of data through said buffer when an
error is present, to attempt to maintain said synchroni-
zation condition while masking said error; and

26

means for reestablishing the detection of said audio
transport packets if said controlling means cannot
maintain said synchronization condition.

21. Apparatus in accu'dance with claim 20 wherein said
5 audio transport packets each contain a fixed number N of

payload bytes. and said means responsive to said error
detecting means comprise:

means for advancing a write pointer for said bufferby said
fixed number N of bytes and designating a current
audio frame as being in error upon the detection of an
error in an audio transport packet thereof;

means for monitoring the deterred audio transport packets
of said current audio frame for the next audio synchro—
nization word aftu- said error has been detected. and if
said synchronization word is not received where
expected in the audio stream. discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said butter; and

2° means for resuming the storage of audio data in said
butfer upon detection of said next audio synchroniza-
tion word if said next audio synchronization word is
located within said fixed number N of bytes after the
commencement of the search thaefor.

’5 22.. Apparatus in accordance with claim 20 further com-
prising:

means for concealing error in an audio signal reproduced
from data output from said buffer when the data output
from said bufier is in error.

3° 23. Apparatus in accordance with claim 2 further com-
prising:

means for altering the audio synchronization word asso-
ciated with an audio frame containing a data error to
designate that frame as being in erra;

10

15

35 whu’ein said concealing means are responsive to altered
synchronization words for concealing ants in audio
associated with the corresponding audio frame.

24. A method for managing carts in data received in
‘0 bursts from a packetized data stream carrying digital infor-

mation in a succession of fixed length transport packets. at
least some of said packets containing a presentation time
stamp (PPS) indicative of a time for commencing the fixed
rate presentation of lxesentation units from a butter into
whidr they are temporarily strred upon receipt, said method
comprising the steps of:

monitoring received packets to locate associated P'I‘S's.
said received packets carrying mesentation units to be
presented;

50 synchronizing the presentation of said presentation units
from said butter to a system time clock (STC) associ-
ated with the packetized data stream using timing
information derived from the Pl‘S‘s located in said

monitoring step; and
identifying discontinuity errors resulting from a loss of

one or more transmitted packets betWeen successive
ones of the received packets and. if a discontinuity of
no more than one packetis identified, advancing a write
pointer of said bufier by a suitable number of bits to
compensate for the discontinuity, while maintaining the
synchronization of said presentation with respect to
said SI‘C.

25. A method in accordance with claim 24 whaeln said

transport packets each contain a fixed number N of payload
55 bytes. said method comprising the further steps of:

advancing said write pointer by said fixed number N of
bytes upon the detection of a discontinuity error;

45

$5

NOAC EX. 1018 Page 158

NOAC Ex. 1018 Page 159

0 D

5,703,877

27 28

continuing said monitoring step after said discontinuity resuming the storage of presentation units in said buifcr
error has been detected in order to search for a syn- upon the detection of said synchronization word if said
chronization wad. and if said synchronization word is synchronization wad is located within said fixed num-
not loated where expected. discarding subsequent ber N of bytes after the commencement of the search
presentation units while searching for said synchroni— s therefor.
zation word rather than stcring said subsequent pre-
sentation units in said bufier; and t i- t It ‘-

NOAC EX. 1018 Page 159

NOAC Ex. 1018 Page 160

 'A -, ' llllllllllllllIIIIlllllllllIllllllllllllllTillIllllllllllllllllllllllllll

U8005892754A

Unlth States Patent [19] [11] Patent Number: 5,892,754
Kompella et al. [45] Date of Patent: Apr. 6, 1999

[54] USER CONTROLLED ADAPTIVE FLOW 5,367,523 11/1994 Chang et a1. 370/253
CONTROL FOR PACKET NETWORKS 5,442,624 8/1995 Bonomi et al. 370/253

5,636,345 6/1997 Valdevit 370/253

[75] Inventors; Vachaspaflfi P. Kompeua, Cary; James 5,701,292 12/1997 Chiussi at al 370/253
P. Gray, Chapel Hill; Frank D. Smith,
Chapel Hill; Kevin Jefl‘ay, Chapel Hill, Primary Examiner—Mn Jung
all of NC. Attorney, Agent, or Firm—Gerald R Woods; The University

of North Carolina at Chapel Hill
[73] Assignee: International Business Machines

Corporation, Armonk, NY. [57] ABSTRACT

A flow control system for packet transmission networks is
[21] Appl. No: 660,317 centered in the user applications supplying data to the
[22] Filed: Jun. 7 1996 network. Changes in control are responsive to changes in the

’ transmission parameters of the network, measured in the
[51] Int. Cl.6 ... H04L 12/56 network and transmitted to the user application. The user
[52] us. Cl. 370/236; 370/252; 370/406; application Specifies desired ranges of Quality of Service

370/410 parameters and, when the measured network parameters fall
[58] Field of Search 370/231, 232, outside of the desired range, the user application modifies

370/235, 236, 252, 253, 400, 406, 410 the transmission strategy to match the available transmission
parameters. Measurements of network parameters are made

[56] References Cited over a pre-selected observation period to average the values
of the transmission parameters.U.S. PATENT DOCUMENTS

5,317,563 5/1994 Oouchi et al. 370/253 25 Claims, 5 Drawing Sheets

DETERMINE
OOS

PARAM ETERS

REQUEST
NETWORK

CONNECTION

REQUEST
00$

MONITORING

INITIALIZE
DATA

TRANSFER

K33

C‘iiiLriJeEE REQUEST
REOD ,, PARAMETERCHANGE

102

 COMPUTE figxmNEW 005

PARAMETERS PARAMETERS

100 101

NOAC EX. 1018 Page 160

NOAC Ex. 1018 Page 161

0 0

US. Patent Apr. 6, 1999 Sheet 1 of 5 5,892,754

COMMUMCAHONSNEDNORK

NEUNORK

NODE
1

C

NEUNORK NEHNORK NEHNORK
NODE NODE NODE

2 3 4

ENDNODE1

12

ENDNODE4

 NEDNORK NEUNORK
NODE NODE

6 7
 ENDNODE5

12

ENDNODE6

12

ENDNODE7

12

ENDNODE8

12

ENDNODE9

12

U11

11

1111
f"

FIG. 1

(PRIOR ART)

NOAC EX. 1018 Page 161

NOAC Ex. 1018 Page 162

O 0

US. Patent Apr. 6, 1999 Sheet 2 of 5 5,892,754

TYPICAL PACKE‘ NETWORK ENDNODE

USER

APPLICATION
1

USER

APPLICATION
2

USER

APPLICATION
N

USER USER USER

APPLICATION APPLICATION APPLICATION
ADAPTER 1 ADAPTER 2 ADAPTER N

32

PACKET SWITCHING FABRIC

XMISSION XMISSION XMISSION

 ADAPTER I ADAPTER 2 ADAPTER M

 XMISSION XMISSION XMISSION

LINK 1 LINK 2 LINK N

USER

REQUEST

PROCESSOR

NETWORK

PARAMETER
MONITOR

NETWORK
EVENT

REPORTER

 43

FIG. 2

NOAC EX. 1018 Page 162

NOAC Ex. 1018 Page 163

finz-mwm

2.3.1:?.522»,“six ‘3a

IK?'‘ ~
Luv.‘g."'5WWis-A;

“1v;

qi-xy-P‘xw<n,““'

O O

U.S. Patent Apr. 6, 1999 Sheet 3 of 5 5,892,754

START

“HUT

FOR

REQUEST

 REQUEST

RECHVED

SAVE

00$

PARAMETERS

OPEN

CONNECWON
?

IDENHFY

QOS

PARAMETERS

MONWOR

QOS

?

CHANGE CHANGE

QOS PARAMETER

PARAMETERS ?

 ERROR

NOWFBAHON

FIG. 3

NOAC EX. 1018 Page 163

NOAC Ex. 1018 Page 164

9 0

US. Patent Apr. 6, 1999 Sheet 4 of5 5,892,754

START

INTERVAL

RMER

INTERVAL

OVER?

DETERMWE

PARAMETER

VALUE

SEND

EVENT

QGNAL

AVERAGE

PARAMETER

VALUES

 74

FIG. 4

NOAC EX. 1018 Page 164

NOAC Ex. 1018 Page 165

a (a

US. Patent Apr. 6, 1999 Sheet 5 0f5 5,892,754

DETERMINE

QOS

PARAMETERS

 REQUEST

NETWORK

CONNECTION

REQUEST

QOS

MONITORING

INITIALIZE

DATA
TRANSFER

 ADAPT TO

NEW

PARAMETERS

103

VA UE

CHARGE REQUEST
REQDQ PARAMETER

' CHANGE

102

COMPUTE

NEW QOS
PARAMETERS

COMPUTE

NEW XMIT

PARAMETERS

100 101 Fug-5

NOAC EX. 1018 Page 165

NOAC Ex. 1018 Page 166
m

O 0

5,892,754
1

USER CONTROLLED ADAPTIVE FLOW
CONTROL FOR PACKET NETWORKS

TECHNICAL FIELD

This invention relates to packet communications systems
and, more particularly, to traffic flow control in such sys-tems.

BACKGROUND OF THE INVENTION

Numerous types of flow control have been devised for
packet transmission systems. Such control mechanisms
regulate a user application’s behavior with respect to the
transmission of data into the network and are typically
implemented in the operating system and in the network
protocol software. For example, if a user application
attempts to send a large quantity of data to the network, and
the network is overloaded, the network software buffers
store the data that cannot be transmitted and attempts to
deliver the data that can be transmitted. When there are no
more buffers available, or if the buffers allocated to this
application have been exhausted, the operating system typi-
cally suspends the user application, preventing the applica-
tion from transmitting any more data until buffer space
becomes available. The network protocol may also slow
down the transmission of data because the receiving appli-
cation cannot keep up with the data flow. These types of
control mechanisms are known as flow control mechanisms.

These network-based mechanisms are clearly not optimized
for any particular user application, but are simply imposed
on all user applications by the network.

Some flow control mechanisms in network protocols,
such as the Transmission Control Protocol (TCP), are win-
dow oriented. That is, the receiving application will permit
the transmitting user application to send only a certain
amount of data (a “window”) and, until the receiving appli-
cation opens up the window further, the sending application
is not allowed to transmit data. In TCP, the sending station
backs off from its transmitting rate exponentially if acknowl-
edgments from the receiving application do not arrive fast
enough (before a local timer expires). These types of flow
control mechanisms operate independently of the applica-
tions and often do not interact well with application require-ments.

Another type of flow control mechanism is the so-called
rate-based flow control, and includes High Performance
Routing (HPR) in the Advanced Peer-to-Peer Network
(APPN). These rate-based flow control mechanisms monitor
the round-trip time of data flow and adjust the rate at which
data is released from the transmitting application in response
to the flow rate. That is, the rate-based flow control mecha-
nism only allows data to enter into the network at a rate it
(the network) has deemed sustainable over the long term,
usually based on measurements of a test message sent to the
receiving application. The application is thus constrained to
transmit at this predetermined rate over the long term, even
though transient rates may be greater due to buffering.
Clearly, these constraints on the sending application are
never optimal for the particular data being transmitted.

Having the network software act as a moderator of data
flow into the network has significh advantages. The net-
work is able to monitor its own behavior and thus determine

overload situations. As taught in US. Pat. No. 5,326,523, the
adaptive rate-based (ARB) flow control mechanism in HPR
allows the data outflow to be controlled by the congestion
status of the network, in effect allowing the data to flow out
of a node at a rate commensurate with the actual congestion

10

15

20

30

35

4O

45

50

55

60

65

2

experienced in the network. For time-insensitive applica-
tions such as E—mail and file transfer, the rate—based adap-
tation of the network is excellent, relieving network over-
load without adding significant complexity to the user
applications.

Unfortunately, for time-sensitive applications such as
multimedia, audio and video conferencing and video—on—
demand, network-implemented flow control mechanisms
are totally inadequate. For example, if a video source,
transmitting at thirty flames per second, is network flow
controlled to deliver only tWenty frames per second, the
receiving application can either play the twenty frames that
it receives (with gaps), and discard the ten frames that arrive
late, or it may attempt to play all of the flames, but at the
price of introducing substantial latency into the system.
Neither of these results is particularly desirable since the
quality or real time delivery of the picture is significantly
degraded.

Many types of data applications are capable of performing
satisfactorily at a number of different operating points in the
multidimensional space defined by the network transmission
parameters such as throughput, latency, latency variations,
i.e., jitter, error rates, and so forth. For simplicity, the terms
“transmission parameters” and “Quality of Service param-
eters” are used interchangeably in this application. In the
above example, the video source could transmit fewer
flames per second, obviating the need for transmitting the
ten frames later, and providing a picture quality better than
transmitting twenty of thirty frames and discarding the other
ten flames. In general, user applications are capable of
adapting to changing network conditions such as congestion
in a variety of diflerent ways such as using diiferent coding,
using data compression, different image sizes, dilferent color
representation, different frame rates, forward error
correction, and so forth. None of these adaptations to
network conditions can be used when adaptation is con-
trolled solely by the network software. Similarly audio
signals can be sensibly adapted to different transmission
conditions by re-scaling the audio signals.

SUMMARY OF THE INVENTION

In accordance with the illustrative embodiment of the

present invention, the state of congestion in a packet com-
munications system is made available to the user applica-
tions utilizing that communications system. That is, the
network facilities monitor the network so as to obtain the

best possible information concerning the values of all of the
network transmission parameters, including throughput,
latency, jitter and so forth. However, since the network does
not have the best information concerning how best to adapt
to changes in these transmission parameters, these transmis-
sion parameter values are made available to each user
application. More particularly, a programming interface
with user applications is provided with extensions which
enable the network software to inform the user applications
of the values of these transmission parameters. The user
application can be provided with a system call to inquire
about the network transmission parameters, or the network
software can asynchronously supply the user application
with signals indicating the occurrence of events affecting
transmission parameters. These event signals can be handled
like other external event signals such as timer events,
semaphore events, user signals, and so forth, which are
already part of most operating systems. The latter technique,
advising user applications of transmission parameter affect-
ing events, is the preferred alternative since the user appli-
cation may not know the best times to query the network for
transmission parameters,

NOAC EX. 1018 Page 166

NOAC Ex. 1018 Page 167

an

'm":

x9—,—,E££\:ufih¢*‘r
4-57;

‘«3:97am.“.33?“M's":'
.‘3;~.
as».

at,“959‘.

."’Mfiakflu‘mM

.Lacewga:I‘C93“
tau...car.

asu

am,“has...

»uni)“

s3.

6 0

5,892,754
3

In accordance with one feature of the present invention, a
certain amount of hysteresis in introduced into the event
reporting process to prevent the application from responding
to transient changes which do not persist over the long term.
In particular, each application notifies the network of the
Quality of Service (QoS) specifications required for that
application. Such QoS specifications consist of a lower
bound, an upper bound and an operating level for that
parameter. The lower bound is the value of the parameter
below which the application would like an input signal, the
upper bound is the value of the parameter above which the
application would like an input signal, and the operating
level is the value at which the application would prefer to
operate over the long term. The operating level need not be
midway between the upper and lower bounds, but merely
between these maximum and minimum values. The user

application will then receive transmission parameter input
signals only when the value of the parameter falls outside of
the upper or lower bound. The provision of both upper and
lower bounds is necessary to insure that the application can
return to the preferred operating level after congestion has
abated.

In accordance with another feature of the present
invention, an observation period is specified for each trans-
mission parameter. That is, each transmission parameter is
monitored at the end of an observation period. If the
monitored value of the parameter lies outside of the speci-
fied bounds, its value can be sent to the user application. In
the alternative, if the instantaneous value of the parameter is
unstable, some computed function of the parameter value
may be used, such as an average or an exponential average,
both to ensure that the value is actually within or outside of
the bounds, and as the better value to be passed to the user
application. If the user application realizes that the operating
levels or bounds on any parameter are no longer suitable for
the current network status, new operating points and bound
values can be passed to the network, overriding the previous
values.

BRIEF DESCRIPTION OF THE DRAWINGS

Acomplete understanding of the present invention may be
gained by considering the following detailed description in
conjunction with the accompanying drawings, in which:

FIG. 1 shows a general block diagram of a packet
communications network in which a user-controlled flow

control mechanism in accordance with the present invention
might find use;

FIG. 2 shows a more detailed block diagram of typical
endnode in the network of FIG. 1 at which point packets may
enter the network to be forwarded along the route to a
destination for each packet, and in which transmission
parameter observation and user application notification of
parameter variations in accordance with the present inven-
tion might find use;

FIG. 3 shows a flow chart of the processing of user
requests for opening a connection, and monitoring and
controlling transmission parameters in processor 44 of FIG.
2, all in accordance with the present invention;

FIG. 4 shows a flow chart of the processing of transmis-
sion parameter violations in monitor 37 and reporter 43 of
FIG. 2 in accordance with the present invention; and

FIG. 5 shows a general flow chart of the process of
adapting transmission parameters to changes in the quality
of service provided by the network of FIG. 1, such process
taking place in a user application such as applications 40, 41
and 42 of FIG. 2 in accordance with the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

To facilitate reader understanding, identical reference
numerals are used to designate elements common to the
figures.

DETAILED DESCRIPTION

Referring more particularly to FIG. 1, there is shown a
general block diagram of a packet transmission system 10
comprising eight network nodes 11 numbered 1 through 8.
Each of network nodes 11 is linked to others of the network

nodes 11 by one or more communication links A through L.
Each such communication link may be either a permanent
connection or a selectively enabled (dial-up) connection.
Any or all of network nodes 11 may be attached to end
nodes, network node 2 being shown as attached to end nodes
1, 2 and 3, network node 7 being shown as attached to end
nodes 4, 5 and 6, and network node 8 being shown as
attached to end nodes 7, 8 and 9. Network nodes 11 each
comprise a data processing system which provides data
communications services to all connected nodes, network
nodes and end nodes, as well as providing decision points
within the node. The network nodes 11 each comprise one or
more decision points within the node, at which point incom-
ing data packets are selectively muted on one or more of the
outgoing communication links terminated within that node
or at another node. Such routing decisions are made in
response to information in the header of the data packet. The
network node also provides ancillary services such as the
calculation of new routes or paths between terminal nodes,
the provision of access control to packets entering the
network at that node, and the provision of directory services
and topology database maintenance at that node. In accor—
dance with the present invention, one or more of network
nodes 11 can also comprise a centralized route management
system.

Each of end nodes 12 comprises either a source of digital
data to be transmitted to another end node, a utilization
device for consuming digital data received from another end
node, or both. Users of the packet communications network
10 of FIG. 1 may utilize an end node device 12 connected
to the local network node 11 for access to the packet network
10. The local network node 11 translates the user’s data into

packets formatted appropriately for transmission on the
packet network of FIG. 1 and generates the header which is
used to route the packets through the network 10. In accor—
dance with the present invention, one or more of nodes 11
and 12 of FIG. 1 is equipped to provide user-controlled data
flow control for access to the network of FIG. 1.

In order to transmit packets on the network of FIG. 1, it
is necessary to calculate a feasible path or route through the
network from the source node to the destination node for the

transmission of such packets. To avoid overload on any of
the links on this route, the route is calculated in accordance

with an algorithm that insures that adequate bandwidth is
available on each leg of the new connection. One such
optimal route calculating systems is disclosed in US. Pat.
No. 5,233,604 granted Aug. 3, 1993. Once such a route is
calculated, a connection request message is launched on the
network, following the computed route and updating the
bandwidth occupancy of each link along the route to reflect
the new connection. Data packets may then be transmitted
along the calculated route from the originating node to the
destination node (and from the destination node to the
originating node) by placing this route in the header of the
data packet. In prior art systems, if the network of FIG. I
became congested, the network would detect this condition
and limit the access of traffic to the system. While this
procedure protected the system against overload, it was not

NOAC EX. 1018 Page 167

NOAC Ex. 1018 Page 168

O

5 ,892,754
5

always the best way to transmit the user’s data, particularly
multimedia video data requiring real time delivery.

In FIG. 2 there is shown a general block diagram of a
network endnode control circuit which might be found in the
nodes 12 of FIG. 1. The endnode control circuit of FIG. 2
comprises a high speed packet switching fabric 33 onto
which packets arriving at the node are entered. Such packets
arrive over transmission links from network nodes of the
network, such as links M-O of FIG. 1 via transmission
interfaces 34, 35 or 36, or are originated locally via local
user interfaces 30, 31 or 32. Switching fabric 33, under the
control of route controller 39, connects each of the incoming
data packets to the appropriate one of the outgoing trans-
mission link interfaces 34—36 or to the appropriate one of the
local user interfaces 30—32, all in accordance with well
known packet network operations. Indeed, network man-
agement control messages are also launched on, and
received from, the packet network in the same fashion as
data packets. That is, each network packet, data or control
message, transmitted on the network of FIG. 1 can be routed
by way of switching fabric 30, as shown in FIG. 2.

Routes or paths through the network of FIG. 1 are
calculated to satisfy the Quality of Service (QoS) parameters
determined to be necessary to adequately transmit a particu—
lar data stream as taught in the afore-mentioned US. Pat.
No. 5,233,604. These Quality of Service parameters include
such things as throughput (bandwidth), latency (path delay)
and jitter (latency variations). If, due to changes in traffic
loading or outages, the selected path is no longer capable of
providing the desired 005 parameters, it is customary to
restrict the access to the network in such a way as to reduce
the load on the system. Such restricted acces was imposed
on input data streams regardless of the degradation thereby
introduced into the transmitted signals.

In accordance with the present invention, some input
signals to a packet communications network can be better
accommodated in a network with reduced capability by the
user application source of those input signals than by the
network management facilities. Video and audio signals, for
example, depend on real time delivery of the successive
video frames for realistic reproduction of the moving pic-
ture. Delayed transmissions enforced by the network can
degrade the video signals in such a fashion as to render the
signal useless. The user application, on the other hand, can
choose to reduce the frame rate of a video signal and thereby
produce a useable, albeit degraded, video signal. The present
invention provides a mechanism which allows the user
application to control the flow control access to a network
such as that of FIG. 1 by passing information about the state
of the network to the user application, and allowing that user
application to use this information to control the rate of data
delivery to the network.

In accordance with the present invention, a user request
processor 44 is provided in FIG. 2 to receive and process
flow control requests from user applications 40—42. Such
requests can include requests to access the network, requests
to monitor certain Quality of Service parameters, and
requests to change a particular Quality of Service parameter
in response to changes in the network requiring flow control
intervention. In response to a request processed in processor
44, network parameter monitor 37 uses prior art methods to
monitor the desired parameter. As will be described
hereinafter, this monitoring is particularized for a given
network parameter and is averaged over a specified obser-
vation interval. Results of such monitoring are reported,
using prior art signaling methods, to the user applications
40—42 by network event reporter 43. In response to these

10

15

20

30

35

45

50

55

60

65

6

network events, user applications 40—42 control the flow of
data from their respective applications into the network. The
detailed processes which take place in blocks 44, 37, 43 and
40—42 are shown in the flow charts of FIGS. 3 through 5.

The processes of FIGS. 3 through 5 can, of course, be
implemented by designing appropriate special purpose cir-
cuits. In the preferred embodiment, however, the processes
of FIGS. 3—5 are implementing by programming a general
purpose computer of the type normally used to control user
stations in packet or cell transmission networks. Such pro—
gramming is obvious to persons skilled in me network node
control and operation arts and will not be further described
here.

Referring then to FIG. 3, there is shown a flow chart of the
processes taking place in the user request processor 44 of
FIG. 2. Starting in start box 50, box 51 is entered where the
processor waits for the next request from a user application.
In box 60, it is detected that a request is received and, in
decision box 52, it is determined whether or not the request
is to open a new connection. If 50, box 53 is entered where
the Quality of Service parameters asSOciated with the new
connection are saved. These parameters are used to select a
route for the new connection capable of satisfying these
parameters. Once such a route is determined, the user
requesting the new connection can begin transmitting data to
the network for transmission along that route. At this time,
the application has not specified which QoS parameter
violations of which it would like to be notified.

If the new request is not for an open connection, as
determined in decision box 52, then decision box 54 is
entered to determine Whether the request is to monitor a
certain QoS parameter. If the request is to monitor a QoS
parameter, box 55 is entered where the identification of the
QoS parameters are ascertained (from the request) and
passed on to network parameter monitor 37 of FIG. 2. At this
time, the network is informed which QoS parameter viola-
tions are of interest to the application. Box 51 is then
re-entered to await the next request from a user application.

If the new request is not to monitor a particular 008
parameter, as determined by decision box 54, decision box
56 is entered to determine if the new request is to change one
of the QoS parameters currently being used for a particular
connection from a particular user application. If 50, box 57
is entered where the new value of that 005 parameter is
substituted for the previously stored value from box 53 or
from a previous action in box 57. After the QoS parameter
is changed in box 57, box 51 is re-entered to await the next
request from a user application.

If the new request is not to change the value of a 008
parameter, as determined by decision box 56, box 58 is
entered where an error notification is sent to the user

application and to the network manager. That is, if the user
request is not for a new connection or to monitor a 008
parameter or to change a 008 parameter, then an error has
occurred and the user application is so notified. Box 51 is
then re-entered to await the next request from a user appli-cation.

In FIG. 4 there is shown a flow chart of the processing of
QoS parameter violations detected in network parameter
monitor 37 of FIG. 2. Before proceeding to a description of
FIG. 4, it is first necessary to describe the operation of the
flow control system of the present invention. Each user
application, at the time of establishing a new connection,
notifies the endnode 12 (FIG. 2) of the Quality of Service
parameters required to properly transmit the data stream to
be launched from that user application. Rather than simply

NOAC EX. 1018 Page 168

NOAC Ex. 1018 Page 169

O (I

5,892,754
7

sending the values of each parameter, the user application
supplies the network with a triplet of values for each 005
parameter consisting of (1) the preferred operating value of
that parameter, (2) a lower bound on the value of the
parameter below which the user application wants to be
notified so as to exercise a flow control option, and (3) an
upper bound on the value of the parameter above which the
user application wants to be notified so as to exercise a flow
control option. In addition, for each 005 parameter, the
application supplies an observation interval that determines,
for the respective parameter, the frequency of monitoring
that parameter. The user application is thus able to ignore
small transitory changes in a parameter value and react only
to larger, persistent changes. Thus, a certain amount of
“hysteresis” is built into the flow control process, smoothing
the application adaptation changes. With this in mind, FIG.
4 can now be described. As previously noted, Quality of
Service parameters can include such metrics as bandwidth,
latency and jitter. For the purposes of simplicity, FIG. 4
describes the monitoring of only a single 005 parameter.
Those skilled in the art can extend FIG. 4 to accommodate

the monitoring of any of the other possible parameters.
Furthermore, the method of measuring the 008 parameters
can be implemented in ways well known in the prior art and
will not be specifically disclosed herein. The implementa-
tion of these other measurements is well known to anyone of
ordinary skill in the art and can be implemented without any
undue experimentation.

In FIG. 4, starting in start box 70, box 71 is entered where
an observation interval timer is started. For simplicity, it is
assumed that a separate interval timer is provided for each
008 parameter that is to be monitored. For efliciency,
however, a plurality of diiferent 008 parameters could be
monitored simultaneously, using a common interval timer.
The interval timer is used to sample the QoS parameter
periodically, rather than continuously, in order to reduce the
measurement overhead. After starting the interval timer in
box 71, decision box 72 is entered to determine whether or
not the observation interval is over, i.e., the interval timer
has timed out. If not, decision box is re-entered to await the
termination of the interval. When the observation timer does

time out, the interval is recognized as being over and box 73
is entered to measure or determine the current value of the

QoS parameter in question. This particular QoS parameter
may be measured over the particular observation interval,
such as accumulating jitter on a per data packet basis, or a
measurement may be taken at the end of the observation
interval, such as measuring latency by computing the round
trip delay of a test message. The implementation of these
measurement techniques are well known to those of ordinary
slcill in the art and will not be further described here.

In box 74, the measured or computed value of the
parameter is smoothed by computing an average or expo-
nential average or by using some other user-specified
smoothing function. The resulting smoothed value is then
used to test against the user-specified lower bound in deci-
sion box 78. If the smoothed value from box 74 is less than

the lower bound set for that parameter, box 80 is entered to
send an event signal to the user application notifying the user
application of the violation of the lower bound and the actual
smoothed value of the parameter. The user application can
then use this value to determine the changes it will make in
its transmission strategy to accommodate the new value of
the 008 parameter. This process will be taken up in con-
nection with FIG. 5.

If the smoothed value of the parameter is not below the
minimum bound, as determined by decision box 78, decision

10

15

20

25

30

35

4O

45

50

55

60

65

8
box 79 is entered to determine if the smoothed value of the

parameter is greater than the upper bound set for that
parameter. If so, box 80 is entered to send an event signal to
the user application notifying the user application of the
violation of the upper bound and the actual measured value
of the parameter. The user application uses this value to
determine the changes it will make in the transmission
strategy to accommodate the new parameter value. Box 71
is then reentered to start a new observation interval. If the

measured value does not fall outside of the specified range,
as determined by decision boxes 78 and 79, box 71 is
re-entered to start the next measurement interval.

In FIG. 5 there is shown a flow chart of the processing of
Quality of Service parameters by a user application, such as
one of applications 40—42 of FIG. 2. Starting in start box 90,
box 91 is entered the determine the desired Quality of
Service parameters, and their respective allowable range of
values, for a data stream to be transmitted over a desired new
network connection. In box 92, a new network connection is
requested (see FIG. 3) and, in box 93, the desired Quality of
Service parameters are requested for the new connection.
The network of FIG. 1 utilizes the specified Quality of
Service parameters to select a route through the network of
FIG. 1 which satisfies all of the specified parameters, all as
taught in the above~mentioned US. Pat. No. 5,233,604.
Next, box 93 is entered where the user application notifies
the network which 005 parameters to monitor. Box 94 is
then entered to initialize the transfer of data, for example,
video or audio frames. Decision box 95 is then entered to

determine if there is any more data signals to be transmitted.
If not, the transmission is over and stop box 96 is entered to
terminate the transmission process and the connection.

If more data is available for transmission, as determined
by decision box 95, decision box 97 is entered to determine
whether or not a QoS parameter violation event signal,
transmitted in box 80 of FIG. 4, has been received. If not,
box 98 is entered to transmit one data frame through the
network of FIG. 1, along the selected route. Decision box 95
is then re-entered to determine if the transmission of any
more data frames is required. If a QoS parameter violation
event signal has been received, as determined decision box
97, then decision box 99 is entered to determine whether or
not the transmission parameters of the user application
should he changed in response to the parameter violation. If
a change is necessary, box 100 is entered where the user
application determines the best action to take in response to
the parameter violation, depending on the type of data signal
being transmitted, e.g. changing the coding method to
reduce bandwidth utilization orpacking more signal samples
into the same packet to reduce the eifects of jitter. The QoS
parameters required for change in transmission strategy are
computed in box 100 and the resulting new transmission
parameters are computed in box 101. Box 102 is then
entered to request the necessary changes in the QoS param-
eters as shown in FIG. 3. Box 103 is then entered to make

the actual changes in the transmission strategy which are
necessary to accommodate the violation of the previous
parameters. When the transmission adaptations have been
effected in box 103, box 98 is re<entered to transmit the next
data frame over the connection, using the new transmission
strategy. Decision box 95 is then re-entered to continue
transmitting data using the new strategy.

If no transmission parameter changes are necessary, as
determined by decision box 99, but a violation event signal
has been received, as determined by decision box 97, then
box 103 is entered to make the necessary adaptation to the
violation, but using all of the previously established QoS

NOAC EX. 1018 Page 169

NOAC Ex. 1018 Page 170

(V 0

5,892,754
9

parameters. Transmission then continues, using the new
adaptive strategy. It can be seen that the process of FIG. 5
permits the user application to adapt the flow of information
into the network to maximize the use of the available
network path parameters. Since the user application is in a
better position to optimize the transmission of the data
stream originating at that user application than is the net-
work manager, superior flow control results from giving the
user application control over the data flow into the network.
This is in distinct contrast to prior art, network—controlled
data flow mechanisms applied uniformly for all data streams
regardless of the special requirements of the particular datastream.

What is claimed is:

1. A packet transmission network comprising
a plurality of transmission nodes interconnected by trans-

mission links,
a plurality of user applications for transmitting data

streams on said network, said data streams having at
least two different modes of transmission requiring
different transmission parameters,

means for selecting a data path through said network
between two of said user applications to satisfy the
transmission parameters of one of said two ditferent
modes of transmission,

means for detecting changes in the transmission param-
eters available on said selected data path,

means for notifying said user applications of said changes
in the transmision parameters, and

means, responsive to said means for notifying, for chang-
ing to the other of said two diiferent modes of trans-
mission at said user application.

2. The packet transmission network according to claim 1
further comprising

means at each of said user applications for specifying a
range of values of said transmission parameters within
which said one mode of transmission remains
unchanged.

3. The packet transmission network according to claim 1
further comprising

means, in each said user application, for requesting
changes in said transmission parameters for a particularconnection.

4. The packet transmission network according to claim 1
further comprising

means for storing the quality of service transmission
parameters requested by each of said user applications
for each requested connection to said user application.

5. The packet transmission network according to claim 1
further comprising

means for computing a smoothing function of the trans—
mission parameter values on each connection through
said network for a predetermined observation interval.

6. The packet transmission network according to claim 1
further comprising

means for transmitting an event signal to said user appli-
cations when said transmission parameters fall outside
of said specified range of values.

7. A method for operating a packet transmission network
comprising the steps of

interconnecting a plurality of transmission nodes by trans-
mission links,

transmitting a plurality of data streams from user appli-
cations connected to said network, said data streams
having at least two different modes of transmission
requiring ditferent transmission parameters,

selecting a data path through said network between two of
said user applications to satisfy the transmission param-
eters of one of said two different modes of
transmission,

10

15

20

25

30

35

4O

45

50

55

60

65

10

detecting changes in the transmission parameters avail-
able on said selected data path,

notifying said user applications of said changes in the
transmission parameters, and

in response to said step of notifying, changing to the other
of said two different modes of transmission at said user
application.

8. The method according to claim 7 further comprising the
step of

at each of said user applications, specifying a range of
values of said transmission parameters within which
said one mode of transmission remains unchanged.

9. The method according to claim 7 further comprising the
step of

in each said user application, requesting changes in said
transmission parameters for a particular connection.

10. The method according to claim 7 further comprising
the step of

storing the quality of service transmission parameters
requested by each of said user applications for each
requested connection to said user application.

11. The method according to claim 7 further comprising
the step of

smoothing the values of transmission parameters for each
connection through said network.

12. The method according to claim 7 further comprising
the step of

transmitting an event signal to said user applications when
said transmission parameters fall outside of said speci—
fied range of values.

13. Adata flow control system for packet communications
systems connected to a plurality of user applications com—
prising

means in said packet communications system for mea-
suring the transmission parameters of at least one route
from one of said user applications to another of said
user applications,

means in each of said user applications, responsive to said
means for measuring, for changing the flow rate of data
transmitted over said at least one route,

means in said user applications for specifying a range of
permissible values for each of said transmission
parameters, and

means in each of said user applications for requesting
changes in the requested transmission parameters for
said at least one route.

14. The data flow control system according to claim 13
further comprising

means for storing the quality of service parameters for
said at least one route in said packet communications
system.

15. The data flow control system according to claim 13
further comprising

means in said packet communications system for smooth-
ing the values of said transmission parameters.

16. A method for controlling data flow into a packet
communication system connected to a plurality of user
applications comprising the steps of

in said packet communications system, measuring the
transmission parameters of at least one route from one
of said user applications to another of said user
applications,

in each of said user applications, in response to said
means for measuring, changing the flow rate of data
transmitted over said at least one route,

in each of‘ said user applications, specifying a range of
permissrble values for each of said transmission
parameters, and

NOAC EX. 1018 Page 170

NOAC Ex. 1018 Page 171

O 0

5,892,754
11

in each of said user applications, requesting changes in the
requested transmission parameters for said at least oneroute.

17. The method according to claim 16 further comprising
the step of

storing the quality of service parameters for said at least
one route in said packet communications system.

18. The method according to claim 16 further comprising
in said packet communications system, smoothing the

values of said transmission parameters over a prede-
termined measuring interval.

19. A packet transmission network comprising
a plurality of transmission nodes interconnected by trans-

mission links,

a plurality of user applications for transmitting data
streams on said network, said data streams having at
least two different modes of transmission requiring
diiferent transmission parameters,

means for selecting a data path through said network
between two of said user applications to satisfy the
transmission parameters of one of said two different
modes of transmission,

means for detecting changes in the transmission param-
eters available on said selected data path,

means for notifying said user applications of said changes
in the transmission parameters,

means, responsive to said means for notifying, for chang-
ing to the other of said two different modes of trans-
mission at said user application, means in each said
user application for requesting a new connection sat-
isfying a specified range of transmission parameters,

means in each said user application for requesting said
network to monitor specified network parameters for
each said connection, and

means in each said user application for requesting
changes in said specified transmission parameters.

20. A method for operating a packet transmission network
comprising the steps of

interconnecting a plurality of transmission nodes by trans-
mission links,

transmitting a plurality of data streams from user appli-
cations connected to said network, said data streams
having at least two ditferent modes of transmission
requiring different transmission parameters,

selecting a data path through said network between two of
said user applications to satisfy the transmission param-
eters of one of said two different modes of
transmission,

detecting changes in the transmission parameters avail-
able on said selected data path,

notifying said user applications of said changes in the
transmission parameters,

in response to said step of notifying, changing to the other
of said two difierent modes of transmision at said user

application,
in each said user application, requesting a new connection

satisfying a specified range of transmission parameters,
in each said user application, requesting said network to

monitor specified network parameters for each said
connection, and

in each said user application, requesting changes in said
specified transmission parameters.

21. Adata flow control system for packet communications
systems connected to a plurality of user applications com-
prising

10

15

20

25

30

35

45

SO

55

60

65

12

means in said packet communications system for mea-
suring the transmission parameters of at least one route
from one of said user applications to another of said
user applications, and

in each of said user applications,
means responsive to said means for measuring, for

changing the flow rate of data transmitted over said
at least one route,

means for requesting a new route through said packet
communications system satisfying specified ranges
of values of transmission parameters,

means for requesting the measurement of specific trans-
mission parameters over a specified route, and

means for requesting a change in a previously specified
transmission parameter.

22. A method for controlling data flow into a packet
communications system connected to a plurality of user
applications comprising the steps of

in said packet communications system, measuring the
transmission parameters of at least one route from one
of said user applications to another of said user
applications,

in each of said user applications, in response to said
means for measuring,
changing the flow rate of data transmitted over said at

least one route,
requesting a new route through said packet communi—

cations system satisfying specified ranges of values
of transmission parameters,

requesting the measurement of specific transmission
parameters over a specified route, and

requesting a change in a previously specified transmis—
sion parameter.

23. In a user application for use with a packet transmis-
sion network having a plurality of transmission nodes inter-
connected by transmission links, a network route selector for
selecting a data path through said network between said user
application and a second user application, said user appli-
cation transmitting a data stream on said network in one of
at least two different modes of transmission requiring dif»
ferent transmission parameters, a network parameter moni-
tor for detecting changes in transmission parameters avail-
able on a selected data path and a network event reporter for
providing notification of detected changes in transmission
parameters, a flow control system comprising:

means for receiving a notification of a change in trans-
mission parameters on the selected data path fiom the
network event reporter; and

means responsive to the receipt of said notification to
change a ditferent one of the different modes of trans-
mission.

24. A flow control system as defined in claim 23 further
including means for requesting changes in transmission
parameters for the selected data path.

25. A flow control system as defined in claim 23 further
including:

means for requesting a new connection to a second user
application satisfying a specified range of transmission
parameters,

means for specifying network parameters to be monitored
by the network parameter monitor, and

means for requesting changes in the network in transmis-
sion parameters established for a connection.

IIIIIIIt-krt

NOAC EX. 1018 Page 171

NOAC Ex. 1018 Page 172

o a
UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United St-tea Patent and Trademark Oflice
Addresl COMNHSSIONER FOR PATENTS

PO Box 1450
Alexandria, Vuguul 21311-1450
mmplo gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

09/608,126 06/30/2000 Russell 3. Dietz APPT-001-3 2145

7590 07/10/2003

D°VR°senf°1d
Suite 2 ‘

5507 College Avenue VU, THONG H
Oakland, CA 94618 ART UNIT PAPER NUMBER

2142

DATE MAILED: 07/10/2003 .5

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01)

NOAC EX. 1018 Page 172

NOAC Ex. 1018 Page 173

Application No. ; Applicant(s)
 09/608,126 DIETZ ET AL.

Office Action Summary Examiner Art Unit

--
-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however. may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
If the penod for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
If NO period for reply is specified above. the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133)
Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status ‘

HIE Responsive to communication(s) filed on 30 June 2000 .

2a)Ij This action is FINAL. 2b)IZI This action is non-final.

3)I:] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 CD. 11, 453 0.6. 213.

Disposition of Claims

4)IZ Claim(s) 1-2_1is/are pending in the application.

4a) Of the above claim(s) __ is/are withdrawn from consideration.

5)I:I Claim(s) __ is/are allowed.

6)IZI Claim(s) Lg is/are rejected.

7)I:] Claim(s) __ is/are objected to.

8)I:] Claim(s) are subject to restriction and/or election requirement.

Application Papers

9)I:] The specification is objected to by the Examiner.

10)]Z The drawing(s) filed on 30 June 2000 is/are: a)® accepted or b)|j objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)Ij The proposed drawing correction filed on_ is: a)l:] approved b)I:] disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)I:] The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)I:] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(e)-(d) or (f).

a)|:] All b)|j Some * c)I:] None of:

1.]: Certified copies of the priority documents have been received.

2E] Certified copies of the priority documents have been received in Application No.

3.I:] Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

14)|j Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) E] The translation of the foreign language provisional application has been received.

15)I:] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

1) E Notice of References Cited (PTO-892) 4) D Interview Summary (PTO-413) Paper No(s). .
2) I] Notice of Draflsperson's Patent Drawing Review (PTO-948) 5) D Notice of Informal Patent Application (PTO-152)
3) E Information Disclosure Statement(s) (PTO-1449) Paper No(s) g . 6) C] Other:

“5- Patent and Trademark Office

.: PTO-azs (Rev. 04-01) Office Adm" summary NOAéafigg Pi‘ifi'yfage 173

NOAC Ex. 1018 Page 174

a a

Application/Control Number: 09/608,126 Page 2

Art Unit: 2142

1. Claims 1-21 are pending .

2. The numbering of claims is not in accordance with 37 CFR 1.126 which requires

the original numbering of the claims to be preserved throughout the prosecution. When

claims are canceled, the remaining claims must not be renumbered. When new claims

are presented, they must be numbered consecutively beginning with the number next

following the highest numbered claims previously presented (whether entered or not).

Misnumbered of paragraphs in claims 1 and 10 have been renumbered (a), (b)

(c) (d) for claim 1 and (c), (d) for claim 10.

3. Claim 1 is objected to because of the following informalities: a flow—entry

database comprises none or more flow-entries. Examine consider as one or more flow

entries. Appropriate correction is required.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

4. Claims 1—21 are rejected under 35 U.S.C. § 102(e) as being anticipated by

Anderson et aI [Anderson 5,850,388]

NOAC EX. 1018 Page 174

NOAC Ex. 1018 Page 175

@ @

Application/Control Number: 09/608,126 Page 3

Art Unit: 2142

5. As per claim 1, Anderson discloses a method of analyzing a flow of packets (or

frames) passing through a connection point (protocol analyzer) on a computer network

[col 4 line 49-col 6 line 19], the method comprising:

(a) receiving a packet from a packet acquisition device [protocol analyzer, col 8

line 26-col 9 line 13];

(b) looking up a flow-entry database [database, col 5 lines 24-46, col 9 lines 30-

40, col 23 lines 35—45, col 24 lines 6—20,57—col 25 line 50; lookup table, col 18 lines 29-

37] comprising one or more flow-entries for previously encountered conversational

flows, the looking up to determine if the received packet is of an existing flow [previous

session, col 24 lines 6-13; prior entries, col 28 lines 26-43];

(c) if the packet is of an existing flow, updating the flow-entry of the existing

flow including storing one or more statistical measures kept in the flow-entry [col 17

lines 15-23, col 25 lines 22-47, col 27 lines 24-34, col 28 lines 49-67]; and

(d) if the packet is of a new flow, storing a new flow-entry for the new flow in

the flow-entry database [updat new information, col 27 lines 10-53], including storing

one or more statistical measures kept in the flow-entry [statistics, col 27 lines 10-34],

wherein every packet passing though the connection point is received by the packet

acquisition device [protocol analyzer col 8 line 26-col 9 line 13].

6. Claim 17 contains the similar limitations set forth of method claim 1. Therefore,

claim 17 is rejected forthe similar rationale set forth in claim 1

NOAC EX. 1018 Page 175

NOAC Ex. 1018 Page 176

a &

Application/Control Number: 09/608,126 Page 4

Art Unit: 2142

7. As per claim 2, Anderson discloses extracting identifying portions from the

packet, wherein the looking up uses a function of the identifying portions [information is

extracted from a frame, col 9 line 42-col 10 line 18].

8. As per claim 3, Anderson discloses the steps are carried out in real time on each

packet passing through the connection point [col 4 line 58-col 5 line 46].

9. As per claim 4, Anderson discloses the one or more statistical measure includes

selected from the set of consisting of the total packet count for the flow, the time and a

differential time from the last entered time to the present time [col 28 lines 58—67].

10. As per claim 5, Anderson discloses including one or more metrics (parameters)

related to the flow of a flow entry from one or more of the statistical measure in the flow

entry [col 10 lines 20-40, col 19 lines 30-45,col 22 lines 16-65].

11. As per claim 6, Anderson discloses the metrics include one or more quality of

service (008) metrics (id, tiem, length col 22 lines 16-23].

12. As per claim 7, Anderson discloses the reporting is carried out from time to time,

and wherein the one or more metrics are base metrics related to the time interval from

the last reporting time.

13. As per claim 8, Anderson discloses calculating one or more quality of service

(QOS) metrics from the base metrics [col 14 lines 39-60, co|15 lines 32-46,col 17 lines

45-57].

14. As per claim 9, Anderson discloses the one or more metrics are selected to be

scalable such that metrics from contiguous time intervals may be combined to

determine respective metrics for the combined interval [col 28 lines 58-67].

NOAC EX. 1018 Page 176

NOAC Ex. 1018 Page 177

e

Application/Control Number: 09/608,126 Page 5
Art Unit: 2142

15. As per claim 10, Anderson discloses

(0) includes if the packet is of an existing flow, identifying the last encountered

state of the flow and performing any state operations specified for the state of the flow

starting from the last encountered state of the flow [between the last update and the

present update, col 26 lines 6-40];

(d) includes if the packet is of a new flow, performing any state operations

required for the initial state of the new flow [new data and user initial slect how often

information on station statistics was to update, col 26 lines 6-15].

16. As per claim 11, Anderson discloses reporting one or more metrics related to the

flow of a flow—entry from one or more of the statistical measures in the flow-entry [col 30

line 58-col 31 line 10].

17. As per claim 12, Anderson discloses reporting is carried out from time to time,

and wherein the one or more metrics are base metrics related to the time interval from

the last reporting time [col 30 line 58-col 31 line 10].

18. As per claim 13, Anderson discloses reporting is part of the state operations for

the state of the flow [col 30 line 58-col 31 line 10].

19. As per claim 14, Anderson discloses updating the flow-entry, including storing

identifying information for future packets to be identified with the flow-entry [col 16 lines

47-54, col19 lines 17-24, col 22 line 66-col 23 line 6] .

20. As per claim 15, Anderson discloses receiving further packets, wherein the state

processing of each received packet of a flow furthers the identifying of the application

program of the flow as inherent of new data received [col 28 lines 58-67].

NOAC EX. 1018 Page 177

NOAC Ex. 1018 Page 178

e a

Application/Control Number: 09/608,126 Page 6
Art Unit: 2142

21. As per claim 16, Anderson discloses one or more metrics related to the state of

the flow are determined as part of the state operations specified for the state of the flow

as inherent feature of parameters [col 22 lines 16-65].

22. As per claim 20, Anderson discloses including a statistical processor configured

to determine one or more metrics related to a flow from one or more of the statistical

measures in the flow-entry of the flow [software performes statistical calculations ,col 7

lines 33-53].

23. As per claim 21, Anderson discloses the statistical processor determines and

reports the one or more metrics from time to time [col 30 line 58-00! 31 line 10].

24. Any inquiry concerning this communication or earlier communications from the

examiner should be directed to examiner Thong Vu, whose telephone number is (703)-
305-4643. '

The examiner can normally be reached on Monday-Thursday from 8:00AM- 4:30PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Mark Powell, can be reached at (703) 305-9703.

Any inquiry of a general nature or relating to the status of this application should

be directed to the Group receptionist whose telephone number is (703) 305-9700.
Any response to this action should be mailed to: Commissioner of Patent and

Trademarks, Washington, DC. 20231 or faxed to :

After Final (703) 746-7238

Official: (703) 746-7239

Non-Official (703) 746-7240

Hand-delivered responses should be brought to Crystal Park 11,2121 Crystal
Drive, Arlington. VA., Sixth Floor (Receptionist).

Thong Vu
Patent Examiner

Art Unit 2142

/%

NOAC EX. 1018 Page 178

NOAC Ex. 1018 Page 179

Application/Control No. .

09/608,126

Applicant(s)/Patent Under
Reexamination
DIETZ ET AL.

Examiner Art Unit

' U.S. PATENT DOCUMENTS \

l contagigmmgg
US-U8005850388A ANderson et al '

n

n

Notice of References Cited

Show of this reference is not being furnished with this Office action (See MPEP § 707 05(a).)
3‘95 in MM~YYYY format are publication dates. Classifications may be US or foreign

.8. Patent and Trademark Office

pT0-892 (Rev. 01—2001) Notice of References Cited Part of Paper No. 5

NOAC EX. 1018 Page 179

NOAC Ex. 1018 Page 180

llllllllllllllIlll
USOOS850388A

Unlted States Patent [191 [11] Patent Number: 5,850,388

Anderson et al. [45] Date of Patent: Dec. 15, 1998

[54] PROTOCOL ANALYZER FOR MONITORING 5,293,384 3/1994 Keeley et al. 371/163
DIGITAL TRANSIHISSION NETWORKS 5,303,344 4/1994 YokoYama 5‘ al 395/200

5,309,507 5/1994 Hosaka et al._ 379/96

[75] Inventors: Craig D. Anderson, Durham; Mark B. $317,715 5/1994 Smith cl 31- . 395/575

Anderson, Chapel Hill; Eugene N. 3:122:22; 2/1994 Ililapat .. 392/6723. /1994 em 39

gmmffl‘gpevxéhmygufimffie's’ 5,333,302 7/1994 Hensley et aL .. 395/575
”“0“, _ - a“ 7 r “1" 5,345,396 9/1994 Yamaguchi .. 395/500

ROSeI'A- ngle, [9161811, all Of N-C- 5,347,524 9/1994 I'Anson 371/291
5,373,346 12/1994 Hockel’ 364/550

[73] Assignee: Wandel & Goltermann Technologies, 5,375,126 12/1994 Wallace 371/201
Inc. 5,375,159 12/1994 Williams .. 379/25

5,377,196 12/1994 Godlewetal. .. 371/201

[21] Appl No.: 742,093 5,413,972 5/1995 Takeuchi Cl 1i. 395/800

[22] Filed: Oct. 31, 1996 \ (List continued on next page.)
OTHER PUBUCATIONS

Related US. Application Data
Uyless Black, “051: A Model for Computer Communica-

[60] Provisional application No. 60/023,459, Aug. L 1996. Lions Standards”, Prentice—Hall, Inc., pp. 8—11 and 54—56,1991
t. C .6 . '

[:1 ills Cl] 370/252- 371/20 122‘;ng Weaver, Alfred C. and McNabb, James F., “A Real—Tune
{58] Field of ISN“ "h ’ 3:70/241 5'2 Monitor for Token Ring Networks,” MILCOM ’89: Bridg-clue """"""""""""""""""""" r 1 ing the Gap, pp. 794—798, 1989.

370/253; 371/201; 395/183‘15’ 200-94 Brochure, Network General Corporation, Products and Ser-

[56] References Cited vices, dated May, 1995, face, back page, and pp. 1—10.
Primary Examiner—Melvin Marcelo

U'S' PATENT DOCUMENTS Attorney, Agall, or Finn—Moore & Van Allen, PLLC;
4,437,184 3/1984 Cork etaL 371/19 Wflliam G- D0556
4,550,407 10/1985 Couasnon et aL 371/29
4,672,611 6/1987 Fukuhara etal.. 371/59 [57] ABSTRACT

g’fi'gg lgggg mzfigctfi” £323 A new and improved protocol analyzer for monitoring
£795,753 12/1988 Iwai _ ' 324/73 digital transmision networks is disclosed. The protocol
41887260 12/1989 and” et al. 3’70/60 analyzer of the present invention is capable of displaying
4:916:694 4/1990 Roth .._______________ 370,94 station level statistics, network statistits, real-time event
5,040,111 8/1991 Alsdamethet al. .. 364/200 information, and protocol distribution. The protocol ana-
5,090,014 2/1992 Polich etal.e 371/151 lyzer of the present invention is additionally capable of
5,097,459 3/1992 Douglas. 371/201 creating baseline network performance information and dis—
5,187.708 2/1993 Nahum et I!- ~ ----- 370/35-1 playing the baseline information simultaneously with real-

2,123,9ng 1:23;: gmfil‘a‘l-‘t 31‘ "" ” 393572223 Lime performance information, pro-programming monitor-
{$76329 “1994 $1111ng “358/406 ing sessions, and generating presentation—quality reports in
£276,802 1,1994 Yamaguchi et aL .. 395/164 conjunction w1th analyzing digital transmission networks,
5,278,196 1/1994 Iimun et al. 370/112 '1“ “1 real “"16-
5,232,194 1/1994 Harley, Jr. et al. 370/17 '

5,287,506 2/1994 Whit-sidee 395/650 1 Claim, 18 Drawing Sheets ll , "(l.UL‘V

(e' r? k l ‘ .
_ in.) ‘3‘” \ ‘

301 , (Wu. 1
Network Frames f ‘1) 5'I""r [

3 31“ Protocol f 304 A .. _ .
5 Analyzer '_ 1:4 Y ' ‘ ‘ ‘
5 RISC Statistical Analysis Instrument 5

i ________________ Updaiefiegeeit? _______________i
g """""""""""""""8r”Use? Commands g

E i 305

E PC 2—f—

NOAC EX. 1018 Page 180

NOAC Ex. 1018 Page 181

5,850,388

5,434,845
5,440,719
5,442,737
5,442,741
5,444,706
5,446,874
5,457,729
5,469,463
5,473,551
5,475,732
5,477,531
5,481,548
5,490,199
5,504,736
5,701,400

Page 2

US. PATENT DOCUMENTS OTHER PUBLICATIONS

3/133: Mm" """""""""""""""""""""33,57%}; Distributed Snitfer System, “Seven—Layer Analysis on all
8/1995 395/135 Segments Quickly Pinpoints Problems And Recommends
8/1995 __ 395/142 Solutions", Network General Corporation, dated May, 1996,
8/1995 .. 370/941 6 Page-“>-

8/1995 waclaWSh ct 31' " 395/575 Snitfer Network Analyzer, “Seven—Layer Analysis on all
“3/1995 ““9““ a “1- ------ 379/2 Segments Quickly Pinpoints Problems And Recommends
11/1995 Pollch ct. al. . 395/182.18 S 1 ti ,, N k 66 a]. C Li d led Jul 1996
12/1995 Sato etal. 364/496 0“ 0‘15 ’ “w“ ‘1“ ”Po” °“~ a - ’
12/1995 Pester, 111 .. 379/34 6 Pages-
12/1995 MCKBC 9‘ 3L - 370/17 Product Brochure, DominoLANT“ Internetwork Analyzer,
“1996 walk“: -- 3713‘“ DA—320, Wandel & Goltermann, 6 pages.
2/1996 Fuller et al. 379/1 _ _ ‘
4/1996 Cubbison, Jr. User Gmde, Lmk View“ 1000 Network Analyzer, meald

12/1997 Networking Technologies Inc., dated Jan. 1, 1996.

NOAC EX. 1018 Page 181

NOAC Ex. 1018 Page 182

US. Patent Dec. 15, 1998 Sheet 1 of 18 5,850,388

FIG. 1

LAYER 7 - APPLICATION LAYER

LAYER 6 - PRESENTATION LAYER

LAYER 5 - SESSION LAYER

FIG. 2

203 209 210 211 212 213

PREAMBLE DESTINATION SOURCE-_§mch
Bytes: 8 6 6 2 46-1500 4

19—4——————64-1518 Bytes———————a{
“Frame Length“

NOAC EX. 1018 Page 182

NOAC Ex. 1018 Page 183

FIG. 3

O

301

Network Frames

Direct

access

storage User Interface

303

Protocol

Analyzer
Instrument

V

11mm'81]

8661‘91'390

811°Z”NS

ssg‘oss‘s

NOAC EX. 1018 Page 183

NOAC Ex. 1018 Page 184

US. Patent Dec. 15,1998 Sheet 3 of 18 5,850,388

FIG. 4

413

 Add the frame length

402

Receive

network frame Add 1 to the frames_

t t° "Te ”‘83— transmitted Field of
Get rahnsmitted field of the entry for the

Destination Get Source ‘ e entry for the Source Address in
Address Source Address In . ,

Address from - the Station List Array

 Update the Error_
Statistics Subarray

of the entry for the
Source Address in

the Station List Array

to reflect a jabber

an entry for the
Destination Address in

the Station List

Update the Error_

Statistics Subarray

Yes of the entry for the
Source Address in

the Station List Array
to reflect a runt

420

Is the

frame length

< 64 bytes

‘ . . an en or e

Destination Address to the

Station List An'a Update the Error_
- 41 9 Statistics Subarray

Received field of the entry for of the entry for the
the Destination Address in No Source Address in

the Station List Ana the Station List Array
to reflect an

Add the Frame Length to the alignment error
Bytes__Received field of the

entry for the Destination Address
in the Station List Arra

422

Update the Error_

Statistics Subarray

of the entry for the
N° Source Address in

the Station List Array
to reflect an FCS

error

410

of the frame

. n entry for the Sour-
-ddress in the Statio -

ist Anay?

Add an entry for the Source

Address to the Station List Array

NOAC EX. 1018 Page 184

NOAC Ex. 1018 Page 185

U.S. Patent Dec. 15, 1998 Sheet 4 0f 18 5,850,388

FIG. 5

505

statistics_ children__table

for__the_ position
protocol ' protocolg 3535’.

id position

FIG. 6

601—

' 602— PROTOCOL DISTRIBUTION

NOAC EX. 1018 Page 185

NOAC Ex. 1018 Page 186

US. Patent Dec. 15, 1998 Sheet 5 of 18 5,850,388

70 ' ecerve networ
frame

703 _ 704

identify first protocol

706

Store protocol
information to

Protocol

Distribution Array

 present in the

 protocol No
conversation-

 lse next ayer
identification field" &

No
protocol by

comparing bit lookup table to
sequences to identify next
possible next protocol present in

protocols frame

Has the

sampling period
expired?

Yes

. Reset sampling period
statistics_for_the_protoco|

710

 Ias networ _
monitoring session

ended?

711

Yes

712

NOAC EX. 1018 Page 186

NOAC Ex. 1018 Page 187

US. Patent Dec. 15,1998

FIG. 8

801

802 Detect network
frame

Hardware
counter

increments No

803

 804 Has the

sampling period
expired?

Yes

et count 0

network frames

from hardware

counter

 80

806

Sheet 6 of 18 5,850,388

FIG. 9

901

902 .
Analyzer receives

network frame

" ar- ware

counter

increments N0

903

 9" Has the

sampling period
expired?

Yes

 et count 0

analyzer frames
from hardware

counter

90

906

NOAC EX. 1018 Page 187

NOAC Ex. 1018 Page 188

US. Patent Dec. 15, 1998 Sheet 7 of 18 5,850,388

FIG. 10

I I | I
1101 1102 1103 1104

FIG. 11

1201 ——

PORTION OF EVENT

1202— LOG ARRAY
(NEW ENTRIES SINCE

LAST UPDATE)

NETWORK

1302— STATISTICS ARRAY

NOAC EX. 1018 Page 188

NOAC Ex. 1018 Page 189

US. Patent Dec. 15, 1998 Sheet 8 of 18 5,850,388

FIG. 13

Embedded Code

303 302 Network
Information

|_______h......................................Update...... ,
Network Requests

Information 8‘ User
Commands

Pointer to Updated 1401

1402 Network Info

1403 Pointer to Updated

Network Info for

Real Time Display

Baseline

Data View
_-----___-------__--___-——-_—_—--_-—__-

1404

Interface

I
l
I
l
I
I
I
I
I
I
l
I
l
I
I
I
I

User iI
I
I
I
I
I
I
I
I
I
I

I

NOAC EX. 1018 Page 189

NOAC Ex. 1018 Page 190

US. Patent Dec. 15, 1998 Sheet 9 of 18 5,850,388

FIG. 14

4. Decode Message
302

2. Receive

Update

Station—Level

Statistics

Target

6. Inform Document

3. Initialization ‘ °f Rew'pt °f Update
5. Store 1. Reqmest

Station—Level Update
Statistlcs

Station-Level

Statistics

Database

Class

1502

7. Inform View

of Receipt of Update

9. Verify New 10.
Data 8. lnfonn

View of Verify 12. Get

Receipt of New Data
Update Data

13. Present

Data
14. Present

Data

NOAC EX. 1018 Page 190

NOAC Ex. 1018 Page 191

US. Patent Dec. 15, 1998 Sheet 10 of 18 5,850,388

FIG. 15

4. Decode Message
302

2. Receive

Update

Network

Statistics

Target

1601 Embedded
Code

6. Inform Document

5. Store Network of Receipt of Update
Statistics

1402 1. Request
3. Initialization Update

Network

Statistics

Database

Class

1602

7A. lnfonn View

of Receipt of Update

 8A. Verify New
Data

73. BB.

Inform Verify 93-

View of New Get

Receipt Data Data
9A' Get of Update

Network

Statistics
Table

View
 Network

Statistics

Chart

1604 mew

10A. Present

Data

10B. Present

Data

NOAC EX. 1018 Page 191

NOAC Ex. 1018 Page 192

US. Patent Dec. 15,1998 Sheet 11 of 18 5,850,388

FIG. 16

4. Decode Message
302

2. Receive

Update

Protocol
Distribution

(Cumulative)

Target

1701 Embedded
Code

6. lnfonn Document

of Receipt of Update

. 5. Store Protocol
-- - 1402 1.Request3. lnrtralrzatro Distribution

Protocol

Distribution

Database

Class

1702

7. lnfonn View

of Receipt of Update
1 0. lnfonn

1704 Vlew

of Receipt

of Update

 Protocol Protocol

Distribution

Chart

View

Distribution

Tree

View

11. Get

Data

12. Present 13. Present

Data Data

NOAC EX. 1018 Page 192

NOAC Ex. 1018 Page 193

US. Patent Dec. 15, 1998 Sheet 12 of 18 5,850,388

FIG. 17

4. Decode Message
302

2. Receive

Update

6. Inform Document

of Receipt of Update

‘1" i

it‘va
‘3.

5. Store Event
1402 1. Request

information
Update

3. Initialization

Event Log 1802
Database

Class

7. lnfonn View of

Receipt of Update

10. Present

Data

NOAC EX. 1018 Page 193

NOAC Ex. 1018 Page 194

Station Explorer

Imam-n T T ,k
[In-mam.“ °'° a ”5
-——--a-a . -
fl-__-i-i . 69.45%
-———-a-a -
E—_--i-i
min-mum
I_——-a-a
fl__-IEI-fl-fl
Hum-am
mum-am
m-__-a-a
Ian-mm
I—mm-a-a-a
-———a-a-a
-—__a-a-a
-—--a-a-a

--—-a-a-a .. Dom... uoooo...
mum-am ., DOOM... D0060“,
mum-am .. c.0000... Mothers
Ell—DD mom...

FIG. 18

mama'S'fl

8661‘SI33C!

8110CI”WIS
sss‘oss‘s

NOAC EX. 1018 Page 194

NOAC Ex. 1018 Page 195

Utilization Chart

Network Utilization

1/26/96 1/26/96 1/26/96 1/26/96 1/26/96

12:53:57 12:54:04 12:54:10 12:54:16 12:54:22

‘ FIG. 19A

mamaST]
6

8

.5?

Domino1 : E'g‘
[:l Peak °°

Utilization

CD
5"

.3:
_ H

Domino1: :
Average 3
Utilization °°

Since Start

5"
co
m

p
o:
co
co

NOAC EX. 1018 Page 195

NOAC Ex. 1018 Page 196

.G

F Rt Ch t Snrame a e a
' re

a:

3

Network Frame Rate Domino1: 5’.

(frames per second) 1 Analyzer
Frame Rate

a

Domino1: E
2 Average .01

Analyzer g
Frame Rate °°

Eggfl15EE= 3 383%: :1
L‘MIgrle—Jii-‘ii- 4 3 Frame Rate §
uEm-—- Average 3.6

1/26/96 1/26/96 1/26/96 1/26/96 1/26/96 Domino1: :

12:53:52 12:53:59 12:54:05 12:54:11 12:54:17 4 Peak
Analyzer
Frame Rate

5"
co
0:

9

FIG. 19B 8.3
on

, NOAC EX. 1018 Page 196

NOAC Ex. 1018 Page 197

Frame Size Distribution

'—
_L O

9

8

7

6

5

4

3

2

1

0

A

1/26_/96

. .1 ‘Mzflm “-47- «MW—a... .g—qxgr.4gr.‘—rg_..t;£fi A

Frame Size Distribution

(frame size %)

' iii

1/26_/961/26/96 1/26/96 1/26/96

---““
“

12:53:57 12:54:04 12:54:10 12:54:16 12:54:22

‘ FIG. 19C

E:
S”

'1
a

8
:1(up.

u

8

.5?

G
a

Domino1:

512 - 1023

CD

:1 Domino1: E
1024 - 2047 3OK

8.

E1 Domino1: a;
2048 - 4095

Domino1:

5"
co
m

P
be
00
oo

NOAC EX. 1018 Page 197

NOAC Ex. 1018 Page 198

c:
U)

P ID' 'b t' E I -rotoco Istrl uuon xp orer , BE. '5
. A?

8

E::::E] ”FF

55.55%

Protocol Distribution:

Domino1 13130/ 5?
Ethernet DIX v2: 6.820000 ' ° 5

1: DEC LANB: 24.900000 \ g
- IP: 49.799999 °°

1: ARP: 24.900000 ‘
13—? IEEE 802.3: 93.139999 ga

: - IPX: 16.129999 3;
- =NetBIOS (Novell): 55.220001 ;'

- =SAP: 31.500000 3
. . 31.31%

- RIP (Novell): 13.090000

l LLC: 83.830002

L'J NetBIOS (Novell) D SAP Cl RIP (Novel!) 5n
3%

, .9

FIG. 20 33
00

NOAC Ex. 1018 Page 198

NOAC Ex. 1018 Page 199

 v H...» at : ~ ”H.101"; An’ M1105 » *s. vk’ur‘fi-y-N» ‘3 «whine >~ r‘ , 1~~":2v\i-maw» A ~

Event Explorer

-— Date / Time

. . , lP address 0.0.0.0 is being used by both MAC station 00fl- 04/ZZI96 132729 00 oo 00 and MAC station 00 oo 81 11 77.
‘ . ‘ _ _ An IP broadcast address of 0.0.0.0 is being used as aa-

 mated'S’fl

:1

. _ _ 126 multicast frames have been detected. This exceeds 3

0422/96 13'27'28 the configured threshold. :5:
. _ , 121 broadcast frames have been detected. This Gn-(34/22/96 13'27'29 exceeds the configured threshold. 3%

n— 04/22/96 13:27:27 Event Logging Started

Station 198.85.38.1 has sent one or more iCMP "port m
. _ , unreachable messages. The last notification of this was g

1° D°m”‘° 1 0402/95 07'21'52 sent to station 198.85.34.113 and indicated that port 138 :2
was unreachable. g

. . _ IP address 0.0.0.0 is being used by both MAC station 00 3
0402/96 07'21'36 oo oo 00 and MAC station 00 oo 81 11 77.

. , _ An IP broadcast address of 0.0.0.0 is being used as a I

III III g
in

9

FIG. 21 a
co

Ii . 3. ' . j - NOAC EX. 1018 Page 199

NOAC Ex. 1018 Page 200

E

5,850,388
1

PROTOCOL ANALYZER FOR MONITORING
DIGITAL TRANSMISSION NETWORKS

This application claims priority to provisional applica-
tion number 60/023,459, filed Aug. 2, 1996.

FIELD OF THE INVENTION

The present invention relates generally to the field of
computer and data communications networks and systems
and more particularly to protocol analyzers for monitoring
and analyzing digital transmission networks.

BACKGROUND OF THE INVENTION

Wide area computer networks (“WANs”) first emerged in
the 1970’s to enable computers to communicate across
broad geographic areas. Distributed computing resources,
such as personal computers, workstations, sewers and
printers, have proliferated in recent years due to the declin-
ing cost and increasing performance of computer hardware.
This has been a key factor in the growth of local area
network technology. Local area networks (“LANs”) allow
increased productivity and utilization of distributed comput-
ers or stations throng] the sharing of resources, the transfer
of information and the procesing of data at the most
eflicient locations. As organizations have recognized the
economic benefits of using LANs, network applications
such as electronic mail, file transfer, host access and shared
databases have been developed as means to increase user
productivity. This increased sophistication, together with the
growing number of distributed computing resources, has
resulted in a rapid expansion in the number of installed
LANs.

As the demand for LANs has grown, LAN technology has
expanded and now includes many ditIerent physical con-
nection configurations (“network topologies" or
“networks”), such as Ethernet, a LAN that employs a bus
topology where the computing resources are connected to a
single cable; Token Ring, a LAN that employs a ring
topology where the computing resources are connected to a
single closed loop cable; and Fiber Distributed Data Inter-
face (“FDDI”), a LAN that supports fiber optic cables where
the computing resources are connected in a series of dual
rings. These and the many other types of networks that have
appeared typically have several different cabling systems,
utilize dilferent bandwidths and transmit data at ditIerent

speeds. In addition, hardware and software systems for
LANs usually have different sets of rules and standards
(“protocols”) which define the method of accem to the
network and communication among the resources on the
network, such as Novell NetWare, [BM NetBIOS, DECNet,
AppleTalk and Banyan Vines. More recently, large users of
LANs have increasingly sought to integrate local area net-
works with WANs, and this trend is expected to intensify as
inter—network technology advances so as to permit more
rapid delivery of advanced multimedia communications
utilizing Asynchronous Transfer Mode (“ATM”), an
advanced high-speed switching protocol, and other broad-
band transmission technologies.

Digital data are usually transmined over a network in
, flames (also referred to as “data flames" or “packets") which

can be of fixed or variable length depending upon the
number of bits in the data portion of the flame. Frames
usually have headers (e.g., addresses) and footers on the two
ends of the flame, with the conveyed data bits being in the
middle. These headers and footers are also sometimes

referred to as “protocols.” The structure of a flame is

10

15

35

45

50

55

65

2
discussed in more detail below in the section entitled Frame
Analysis. The nature and content of the headers and footers
are usually dictated by the type of network.

Transmissions flom one network computer to another
must be passed througi a hierarchy of protocol layers. Each
layer in one network computer carries on a conversation
with the corresponding layer in another computer with
which communication is taking place, in accordance with a
protocol defining the rules of communication. In reality,
information is transferred down from layer to layer in one
computer, then through the communication channel medium
and back up the successive layers in the other computer. To
facilitate understanding, however, it is easier to consider
each of the layers as communicating With its counterpart at
the same level, in a horizontal direction.

The hierarchy of network layers is illustrated in FIG. 1.
The bignest network layer is the Application Layer 7. It is
the level through which user applications awess network
services. The Presentation Layer 6 translates data flom the
Application Layer 7 into an intermediate format and pro-
vides data encryption and compression services. The Ses-
sion Layer 5 allows two applications on difierent computers
to communicate by establishing a dialog control between the
two computers that regulates which side transmits, when
each side transmits, and for how long. The Transport Layer
4 is responsible for error recognition and recovery, repack-
aging of long messages into small packages of information,
and providing an acknowledgment of receipt The Network
Layer 3 addresses messages, determines the route along the
network from the source to the destination computer, and
manages traffic problems, such as switching, routing, and
controlling the congestion of data transmissions. The Data
Link Layer 2 packages raw bits into logical structured
packets or flames. It then sends the frame flom one com-
puter to another. If the destination computer does not send
an acknowledgment of receipt, the Data Link Layer 2 will
resend the flame. The Physical Layer 1 is responsible for
transmitting bits flom one computer to another by regulating
the transmission of a stream of hits over a physical medium.
This layer defines how the table is attached to the network
interface card within the station computer and what trans-
mission technique is used to send data over the cable. As a
message is passed down through the layers, each layer may
or may not add protocol information to the message.

As IANs and WANs have increased in number and

complexity, networks have become more likely to develop
problems which, in turn, have become more difficult to
diagnose and solve. Network performance can sutfer due to
a variety of causes, such as the transmision of unnecessarily
small flames of information, ineflicient or incorrect routing
of information, improper network configurations and super-
fluous network traflic. Specific network hardware and soft-
ware systems may also contain design flaws which afiect
network performance or limit access by users to certain of
the resources on the network. These problems are com-
pounded by the fact that most local and wide area networks
are continually changing and evolving due to growth, recon-
figuration and the introduction of new network topologies,
protocols, interconnection devices and software applica-
tions.

Increasing numbers of organizations use local and wide
area networks, and the accurate and timely transmission and
processing of information on LANs and WANs have become
vital to the performance of many businesses. Mission-
critical applications, such as telemarketing, order-entry, air-
line reservation systems and bank electronic funds transfer

systems, now reside on LANs and WANs. The financial

NOAC EX.~1018 Page 200

NOAC Ex. 1018 Page 201

5,850,388
3

consequences of network pmblems that adversely alIect
these applications can be enormous. “Without network analy-
sis products which identify how and where data are moving
on local and wide area networks, users of these networks
have no means to effectively analyze and monitor perfor-
mance or to isolate problems for prompt resolution.

Network analyzers monitor the digital traflic or bit stream
so as to identify and examine principally the headers and
footers of each frame in order to analyze the health of the
digital network. Hence, they are often called network pro-
tocol analyzers. The period of time during which a network
is being analyzed is referred to as a “network monitoring
session.” Typically, protocol analyzers are designed to
identify, analyze and resolve interoperability and perfor-
mance problems across the principal configurations of LAN
and WAN topologies and protocols.

The protocol analyzers enable computef network users to
perform a wide variety of network analysis tasks, such as
counting errors, filtering frames, generating traffic and trig-
gering alarms. There are many examples of digital network
transmission protocol analyzer instruments. One such
example is shown in US. PaL No. 4,792,753, granted to
lwai on Dec. 20, 1988. Another digital network transmission
protocol analyzer, directed particularly to Token Ring
networks, collects several types of information about a
network, including statistics, events, and network attributes
by analyzing sequences of control frame transmissions and
is shown in US. Pat. No. 5,097,469, granted to Douglas on
Mar. 17, 1992. Many of the protocol analyzer instruments
are combined with user interfaces having display and key-
board and/or other input capability. The generation and
display of certain message traffic characteristics are
addressed in US. Pat. No. 3,826,908, granted in July 1974
to Weathers et a]. U.S. Pat. No. 4,775,973, granted to
Toberlin, et aL, on Oct. 4, 1988, disclosm a method and
apparatus for monitoring protocol portions of digital net-
work transmissions and displaying a matrix of traffic from
transmitting stations and to destination stations. US. Pat.
No. 5,375,126 granted to Wallace on Dec. 20, 1994, dis-
closes a system for testing digital data telecommunication
networks, with display of fault analysis, comparative view-
ing of fault-free benchmark data and with provision to ofier
suggestions as to probable causes of faults. In the network
communications monitor of US. Pat. No. 5,442,639,
granted on Aug. 15, 1995, to Crowder et at, selected frames
may be captured in a capture bufler, stored electronically,
and/or displayed in real time. US. Pat. No. 5,487,073,
granted to Urien on Jan. 23, 1996, discloses commanding a
communications coupler to perform a set of network func-
tion tests. The network status results of the tests are sent to

a data-processing unit for display.
Protocol analyzers are produced in two general types. One

is larger, less portable and more comprehensive in the scope
of tests which it can perform. This type is used primarily by
developers and manufacturers of network systems. The
other type is smaller, more portable, and often easier to
operate and lower-priced, albeit often with some limitations
as to the scope of its testing capability. This latter type of
protocol analyzer is produced primarily for field service
technicians who maintain computer network systems.

Aprotocol analyzer’s monitoring, diagnostic and problem
resolution activities are usually under software control. Such
software control is exercised by a main central processing
unit (CPU), which is usually one or more microprocessors
contained within the protocol analyzer itself. The protocol
analyzer may also utilize a separate computer controller,
such as a “laptop,” to facilitate human interface.

10

15

35

45

50

55

65

4

To some degree, the software which protowl analyzers
use may be characterized as expert system software which
facilitates isolation of problems on a network being ana-
lyzed. This expert system software may be contained in the
protocol analyzer’s internal memory or in the separate
computer controller. The utility, efficiency,
comprehensiveness, and ease of use of a protocol analyzer,
particularly one designed for use by a field technician, is in
large part directly proportional to the corresponding capa-
bilities of the software in the protocol analyzer and even in
its computer controller.

Current protocol analyzers for use by field technicians
have numerous limitations. One such limitation is the inabil-

ity to analyze and display comprehensive network transmis-
sion information in real-time (as the transmissions occur).
When analysis of network transmissions must be done
olf-line, the likelihood that an important network occurrence
or “event” will be missed is significantly increased.

In addition, current protocol analyzers do not present
network transmission information in sufficiently meaningful
or detailed ways, nor do they allow for on-line comparison
of cturent network performance to prior network perfor—
mance. For example, it would be useful if more meaningful
displays of the numerous types of statistics related to the
network as a whole or just a given station on the network
were available to the user in juxtaposition with other infor-
mation. Also, many users would like to see complicated
information and detailed protocol distribution statistics dis-
played in a manner that is easier to use and easier visually
to understand. Display to the user of more detailed infor-
mation about anomalies or “events" that occur on the system
would be useful to a user, especially if displayed in a more
usable form and in “real time" and accumulated over a

network monitoring session. Certainly, conveniently—
displayed troubleshooting assistance would be helpful, as
would visual reporting in “real time” and accumulated over
an analysis session. Olf-line analysis of selected frames
captured during a network monitoring session could be more
conveniently displayed to the user.

Finally, while protocol analyzers of the prior art provide
reasonable diagnostic capability, they do not guide the field
technician through event analysis and the appropriate solu-
tions. In general, these limitations combine to prevent effec-
tive guidance to the field technician in actually analyzing
and solving the network problem.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a new
and improved protocol analyzer capable of displaying sta-
tion level statistics, displaying real time event detection,
creating baseline network performance information and
comparing said baseline information with real-time perfor-
mance information and displaying to a user the results of that
comparison, pre—programming monitoring sessions, gener-
ating reports in conjunction with analyzing digital transmis-
sion networks, all in real time.

In accordance with one embodiment of the present
invention, the operation of a protocol analyzer includes one
or more of the following: monitoring, in real time, the
transmission of data packets having protocol portions and
data portions; identifying the protocol portions of said
packets in real time; analyzing, in real time, the protocol
portions of said packets to ascertain relevant information;
storing said information to a database in real time; sorting
said information in real time, according to_station level
parameters; statistically analyzing said sorted information in

NOAC EX. 1018 Page 201

NOAC Ex. 1018 Page 202

t

5,850,388
5

real time to obtain statistical information; displaying said
statistical information in real-time reports, diqalaying said
statistical information in report formats selected by an
operator; displaying real time performance of the network
simultaneously with baseline network performance; simul—
taneously displaying statistical information gathered from a
plurality ofprotocol analyzer instruments; pre—programming
the monitoring of the transmission of data packets wherein
the operator may select the duration of the network moni-
toring semion; monitoring in real time one or more selected
and amorted network parameters and comparing the results
of said analysis with arbitrary threshold values for said
parameters to determine if the transmission on the network
is exceeding said threshold so as to constitute an event;
analyzing in real time said sorted information to calculate
the probabilities of the possible causes of said ascertained
events; and displaying in real time the one or more possible
causes of said event.

It is another object of the present invention to analyze and
meaningfully display the statistics of the owurrence and
distribution of protocols encapsulated within the several
levels of the several data frames analyzed by a protocol
analyzer instrument.

In accordance with another embodiment of the present
invention, the operation of a protocol analyzer includes one
or more of the following: monitoring, in real time, the
trarsmission of data packets having protocol portions and
data portions; identifying the protocol portions of said
packets in real time; analyzing, in real time, the protocol
portions of said packets to ascertain relevant information;
storing said information to a database in real time; sorting
said information awarding to protocol distribution criteria;
statistically analyzing said sorted information; and display-
ing said statistical information.

In accordance with yet another embodiment of the present
invention, the operation of a protocol analyzer includes one
or more of the following: monitoring, in real time, the
trammission of data packets having protocol portions and
data portions; identifying the protocol portions of said
packets in real time; analyzing, in real time, the protocol
portions of said packets to ascertain relevant information;
storing said information to a database in real time; sorting
said information according to ISO layer; sorting said infor-
mation according to protocol sub-famflies; statistically ana-
lyzing said sorted information; and displaying said statistical
information in a protocol-tree format.

It is yet another object of the present invention to analyze,
store the analysis results and display the analysis results, in
real time, of digital data transmission comprising data
frames having protocol portions and data portions, without
the need to wait for the later analysis of protocol portions of
frames, which protocol portions were stored in real time.
This and other objects of the present invention are achieved
by use of a RISC (Reduced Instruction Set Computer)
processor to analyze the protocol portion of each frame, in
real time, followed by contemporaneous statistical analysis
of the RISC (Reduced Instruction Set Computer) processor
analysis of the protocols of several successive frames,
followed by substantially simultaneous storage and display
of the statistical analysis results.

It is still another object of the present invention to store
i the results of the analysis of digital data transmission in a

database capable of storing and retrieving the analysis
results to permit display in real time. This and other objects
of the present invention are achieved by use of an object
oriented database and object oriented application pmgnm-
ming to access said object oriented database.

10

15

20

35

45

50

55

60

65

6

It is still yet another object of the present invention to log,
store, and display digital data transmission events in real
time. 'Ihis and other objects of the present invention are
achieved by recognizing, in a protocol analyzer instrument,
the occurrence of an event, periodically polling the protocol
analyzer instrument for, among other information, a record
of events that occurred since the last polling, transmitting, to
a user interface, a message containing information about the
events that occurred since the last polling, receiving the new
event information in an event target (“target" is a term used
to identify a software device to which data can be sent for
storage, forwarding, or processing), storing the new event
information in an event log object in an event log database
class, informing a document of receipt of new event
information, the document informing an event log view of
receipt of new information, obtaining confirmation of new
event log information and a pointer thereto in the database,
and incorporating the new event information into a display
of event log information.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be more frilly understood by
reference to the following detailed description when con-
sidered in conjunction with the following drawings wherein
like reference numbers denote the same or similar portions
or processes shown throughout the several Figures in which:

FIG. 1 is an illustration of the hierarchy of network
protocol layers;

FIG. 2 is a diagram describing the structure of an Ethernet
data frame;

FIG. 3 is a diagram which illustrates the flow of data,
analysis, and control in accordance with the present inven-
tion;

FIG. 4 is a flowchart illustrating the proeem by which
statistics for individual stations on a network (station-level
statistics) are calculated;

FIG. 5 is a diagram illustrating the structure of an entry in
the protocol distribution may within a digital memory;

FIG.6isadiagramillustratingthestmctureofthe
message for a protocol distribution update;

FIG. 7 is a flowchart illustrating the method by which
protocol distribution is calculated;

FIG. 8 is a flowchart illustrating the method by which the
Network Statistic “NetworkFrames Received” is calculated;

FIG. 9 is a flowchart illustrating the method by which
Network Statistic “Analyzer Frames Received" is calcu-
lated;

FIG. 10 illustrates the structure of an entry in the Event
Log Array;

FIG. 11 illustrates the structure of an Event Update
Message;

FIG. 12 illustrates the structure of a Network Statistics
Update Message;

FIG. 13 illustrates the structure of the user interface;
FIG. 14 is a scenario diagram for a station-level statistics

update;
FIG. 15 is a scenario diagram for a network statistics

update;
FIG. 16 is a scenario diagram for a protocol distribution

update;

FIG. 17 is a scenario diagram for an event update;
FIG. 18 illustrates the visual appearance of an example of

a split-screen display of station-level statistics;

NOAC EX. 1018 Page 202

NOAC Ex. 1018 Page 203

um

5,850,388
7

FIGS. 19A, 19B, and 19C illustrate three examples of the
appearance of chart display formats for network statistics;

FIG. 20 illustrates an example of the appearance of a
split-screen display of protocol distribution; and

FIG. 21 illustrates the appearance of a display screen
listing of events.

DETAILED DESCRIPTION OF THE
INVENTION

1. Introduction

The following detailed description is divided into sections
which have section titles to indicate the general nature of the
information that follows. The sections and their titles are

intended solely to assist in organization of the description
and to aid the reader. They are not intended to indicate that
information suggested by any one sectiori title is not con—
tained in any other section.

Where the description of the design and operation of the
present invention is illustrated by use of an example which
is ' c to a particular network topology, it may be
presumed unless stated otherwise that the network topology
is Ethernet. limiting examples to Ethernet networks is
intended only to provide comistency in order to facilitate
understanding and is not meant to indicate a limitation of the
suitability of the present invention for analyzing other
network topologies such as token ring, FDDI, frame relay,etc.

II. Overview of the Implementation of the Invention
The preferred embodiment of the present invention com-

prises a hardware implementation and a software implemen-
tation.

A. Software Implementation
The software implementation of the present invention

performs two functiom. The first is to perform meaningful
statistical calculations on the protocol information retrieved
fiom the network. The portion of the software implementa-
tion responsible for performing these calculations will be
referred to hereinafter as the “embedded code.”

The second function performed by the software imple-
mentation of the invention is to provide the software with
means for interaction between the protocol analyzer and the
operator. Such interaction includes the displaying of the data
calculated by the embedded code as well as responding to
operator commands. The portion of the software implemen-
tation which performs this function will hereinafter be
referred to as the “user interface” or “UT.” The user intefface

is preferably coded in the Microsoft Visual C++ program-
ming language produced by Microsoft Corporation at One
Microsofi Way, Redmond, Wash. 98052—9953, and operates
in the Microsoft Windows 3.1 and Microsoft Windows 95

operating systems, also produced by Microsoft Corporation.
B. Hardware Implementation
The hardware implementation of the present invention

likewise performs two functions. First, it provides a physical
platform for execution of the embedded code and for inter-
facing with the network being monitored. This portion of the
hardware implementation of the invention will hereinafter
be referred to as the “protocol analyzer instrument." The

present invention may comprise a plurality of protocol
analyzer instruments (see FIG. 3), each having at least one
RISC processor and each monitoring a ditferent network or
segment of a network or monitoring the same network or
segment but at a different port or station on the network.

The second ftmction performed by the hardware imple-
mentation is to provide the physical means for the operation

10

15

20

30

35

45

50

55

65

8

of the user interface. Such means include input devices (such
as a keyboard, a mouse, a trackball, etc.) and a display
device (such as a cathode ray tube monitor or a liquid crystal
display). In the preferred embodiment of the invention, this
second function is performed by a laptop personal computer
(PC) containing an Intel 80486 or Pentium processor oper-
ating at 25 MHz or faster, preferably eight megabytes or
more of random access memory, a hard disk drive with at
least about forty-five megabytes of free disk space, a 35
inch floppy disk drive, a bi-directional parallel communica-
tion port, a keyboard, and a pointing device such as a
trackball, joystick, or mouse. This second portion of the
hardware implementation of the invention will be referred to
hereinafter as the “PC.”

In the preferred embodiment, the PC is connected to one
or more protocol analyzer instruments through the PC’s
parallel communication port. The software implementation
(both the embedded code and the user interface) of the
invention is stored in a storage device (such as a hard disk
drive, a magnetic tape drive, or other similar medium) on the
PC. When the operator activates the protocol analyzer
instrument, an initialization procmsS takes place in which the
embedded code is downloaded from the PC’s storage device
through the parallel communication port to the protocol
analyzer instrument(s). .

C. Protocol Analyzer Instrument

Except for the features described herein, the protocol
analyzer imtrument can be similar to the hardware imple-
mentations ofconventional protocol analynrs. See US. Pat.
No. 4,792,753 (mentioned above). In the preferred embodi-
ment of the present invention, the protocol analyzer instru-
ment is a DominoLAN DA-320 Internetwork Analyzer
manufactured by Wandel & Goltermann Technologies, Inc.
at 1030 Swabia Court, Research Triangle Park, NC. 27709-
3585. (DominoLAN is a trademark of Wandel & Golter-
mann Technologies, Inc.) The Domino Getting Started
Guide, the Domino Operating Guide, the DominoLAN
ToolboxApplications, and the Release Notes for the relevant
release, all of which are included with the DA-320 analyzer,
are hereby incorporated by reference as if frilly set forth
herein.

The protocol analyzer instrument preferably comprises
two hardware modules, a network interface (NI) module and
a protocol analfiis 12A) module which preferably occupy
the same convenient p ysr cabinet. Each module is con-
trolled by its own INMOS T425 transputer processor oper-
ating at 25 MHz and using a 32-bit word RISC (Reduced
Instruction Set Computer) architecture (“RISC processor”),
manufactured by 868 Thompson Corporation, INMOS,
Ltd., IMO Aztec West, Alnondsbury, Bristol, B812 480,
UK.

These RISC processors are responsible for execution of
the embedded code when the protocol analyzer instrument is
in use. The use of a processor with a limited instruction set,
such as a RISC processor, results in increased processing
speed. This increased processing speed allows both-the NT
and PA modules of the '

WhileEpiefgrred emboament utilizes RISC processors to
achieve the desired pming speed, alternatives such as
the Intel 960 processor manufactured by Intel Corporation,
2200 Miss'on College Blvd, Santa Clara, Calif. 95052; and
the PowerPC processor manufactured by Motorola, Inc.,
PO. Box 20912, Phoenix Ml. 85036, will be readily
apparent to a person having ordinary skill in the art.
(PowerPC is a registered trademark of International‘Busi-

NOAC EX. 1018 Page 203

NOAC Ex. 1018 Page 204

5,850,388
9

ness Machines Corporation.) The scope of the invention,
therefore, should not be limited to the description of the
preferred hardware implementation contained herein.

The NI module is preferably equipped with 512 kilobytes
of static random access memory (SRAM), while the PA
module preferably has four megabytes of dynamic random
acces memory (DRAM) and is expandable to sixteen
megabytes. The preferred protocol analyzer instrument also
contains a LAN card printed circuit pack (art number
82C581), which comprises two LAN chips (part number
82(385), purchased flom 3Com Corp., and a plurality of
hardware counters used to count the number of flames and
bytes detected on the network.

D. Data Flow Overview

FIG. 3 illustrates an overview of the flow of information

about the operation of a network 301. Data-bearing flames
(see FIG. 2) are transmitted over the Network 301 and are
received and analyzed by Embedded Code 302 executed by
a Protocol Analyzer Instrument 304 using its one or more
RISC processors 314 and hard-wired analyzer circuits
within the Protocol Analyzer Instrument The results of that
protocol analysis are then available to be sent, as com-
manded by the user, to a software-based User Interface 303
nmning on the PC 305 for storage and presentation to the
user. The User Interface then presents the analys's results to
the user via the PC’s display device 318. The User Interface
303 also passes the user's commands (e.g., network param-
eters to be monitored, sampling rate, etc.) to the Embedded
Code 302.

FIG. 3 also illustrates that the PC 305 contains a mass
memory device 317, sometimes referred to as a direct access
storage device. This is the hard disc drive of the preferred
embodiment of the PC 305 that is used, inter alia, to
implement the preferred embodiment of the present inven-
tion. The User Interface 303 works with a POET object-
oriented database program 310 selectively to store, on the
mass memory or hard drive 317, the results of the analyses
that are performed by the Protocol Analyzer Instrument 304
and which are then periodically uploaded to the PC 305.

Ill. Frame Analysis
The format of a data frame varies slightly depending on

the network type (i.e. token ring network, ethemet, etc.) but
the analysis of the flame is basically the same. For example,
the format of an ethemet network data flame is illustrated in

FIG. 2. The flame begins with an eight-byte Preamble field
208 which is used for synchronization. This is followed by
the Destination addreS 209 (the addres of the station which
is to receive the data flame). Next is the Source address field
210 (the address of the station which sent the data flame).
The address fields contain the Medium Access Control
(“MAC") addresses of the source and destination stations.
The MAC address is a unique addres hard wired into the
station’s network interface card (NIC). Each address field is
six bytes in length. The Type field 211, which follows the
address information, is a two-byte field that specifies the
higher layer protocol used in the Data field. The Data field
212, which is the only variable-length field, is next and
ranges flom 46 to 1500 bytes. It contains the higher level
protocols currently in use as well as the data being trans-
mitted. Last is a four-byte Frame Check Sequence (“FCS”)

' field 213, which is used for error detection. The term “frame
length” refers to the total number of bytes contained in the
flame leg the number of bytes in the Preamble 208. The
contents of each field are identified by the embedded code
executed on the protocol analyzer instrument. The exact
method by which relevant information is extracted flour a

5

10

15

20

45

50

55

65

10

flame would be readily apparent to a person having ordinary
skill in the art of programming software for protocol ana—
lyzers.

In the present invention, flame analysis is performed by
the embedded code executed by the protocol analyzer instru-
ment. By performing flame analysis on the protocol ana-
lyzer instrument, which preferably contains two RISC
processors, the analysis of the flames can be accomplished
in real-time. The contents of each flame received during a
network monitoring session are temporarily stored in the
memory located on the protocol analyzer instrument. The
portion of this memory which stores the contents of received
flames will be referred to hereinafler as the “capture butfer."
The flames stored in the capture buffer will be referred to
hereinafter as “captured flames." The contents of the capture
buffer are continuously updated. When the bufi’er is filled,
the oldest captured flames are discarded and replaced with
newly captured flames.

IV. Filtering
Filtering is the process by which the user can select

certain types of flames to be analyzed. The user can specify
certain parameters that flames must meet before the flames
are sent to the NI module. Filtering is preferably awom-
plished using a hardware filter, contained within the NI
module, such as the filter disclosed in a copending US.
patent application Ser. No. 08/384,855, filed on Feb. 7, 1995,
in the name of Bradley Anderson, which is incorporated by
reference to the same extent as if frilly reproduced herein
now issued as US. Pat No. 5,590,159.

The hardware filter compares incoming bit sequences to
the bit sequence which corresponds to the user—defined
parameters and only flames containing bit sequences which
match the bit sequence corresponding to the user defined
parameters are sent to the NI module of the protocol
analyzer instrument. These flames are the only flames which
are analyzed. As an arbitrary example of the filtering
operation, only flames addreses to station A are to be
analyzed and/or only flames transmitted by station E are to
be analyzed.

V. Embedded Code
A. Station-Level Statistics
Statistics for each station on a network will be referred to

hereinafter as “station-level statistics." Station-level statis-

tics such as, but not limited to, number of bytes transmitted,
number of flames transmitted, number of bytes received,
number of flames received, and total number of errors
generated by that station are all calculated by the embedded
code running on the protocol analer instrument.

As station-level statistics for each station operating on the
network are calculated, they are storedin an array called the
“station list array” in the memory of the protocol analyzer
instrument An array is a data structure used to store data.
Many other data structures, which can also be used to store
data, are well known to persons having ordinary skill in the
art of programming. The use of the term “array" throughout
this specification is not meant to be limited strictly to arrays;
because, many of these other data structures would also
suffice.

The station list array contains: the station address, traffic
statistics (bytes received, bytes transmitted, flames received,
and flames transmitted, etc.), and error statistics for each
station which is or has been active on the network during the
network monitoring mion. The type of error statistics
calculated will vary depending on the type of network.

FIG. 4 illustrates the process by which station-level'
statistics are calculated for an ethemet network. Station-

NOAC EX. 1018 Page 204

NOAC Ex. 1018 Page 205

 5,850,388
11

level statistics which are unique to other network topologies,
such as FDDI, Token Ring, flame relay, etc., are calculated
in a manner which is analogous to the process described
below.

After the start 401 of the station-level statistics

calculation, receipt of a frame is recognized at programming
step 402 by the protocol analyzer instrument. Next, the
address information of each flame is used preferably to
identify the destination ‘address at programming step 403
and to identify the source address at programming step 404
for each data flame sent over the network. The destination

address portion 209 (see FIG. 2) of the flame is identified,
and the bytes contained in that portion of the flame are
examined in order to ascertain the destination station to
which the flame has been addressed. The source address

portion 210 of the flame is identified, and the bytes con-
tained in that portion of the flame are examined in order to
ascertain the source station flom which the flame was sent

Preferably, the next step in the calculation of station-level
statistics is programming step 405 in which the value of the
Frame Check Sequence (“F6") field 213 is identified in
programming step 405. In an ethemet flame, the F6 is
contained in the last four bytes of the flame. The FCS is a
four—byte cyclic redundancy check (“CRC”) or checksum
which is calculated by the source station. The source station
calculates the FCS by performing a well-known mathemati-
cal function on the bits in the Destination 209, Source 210,
Type 211, and Data 212 fields of the flame. The FCS is used
for purposes of error detection.

The length of the flame is preferably determined in
programming step 406 by summing the total number of
bytes in the Destination 209, Source 210, Type 211, Data
212 and F6 213 fields.

The next step 407 is to determine whether there is an entry
corresponding to the destination address of the flame in the
station list array in the memory of the protocol analyzer
instrument If that particular destination station has previ-
ously received or sent any frames during the network
monitoring session, there will be an entry corresponding to
that destination station’s address in the station list array. If
that destination station has not yet received or sent any
frames during the network monitoring session, there is no
entry for that destination address in the station list array. If
there is no entry corresponding to that particular destination
address in the station list array, an entry corresponding to
that destination address is created by programming step 408.

The frames_received array variable of the station list
array entry corresponding to the destination address is
incremented by one at the programming step 409.

Where used, an underscore within a term denotes a
variable name as opposed to a-value or definition. Also, an
array is a memory structure.

Similarly, the bytes__received array variable of the station
list array entry corresponding to the destination address is
incremented in step 410 by the flame length of the current
flame.

The step 411 determines whether there is an entry corre-
sponding to the source address of the frame in the station list‘
array. If the source station has previously received or sent
any flames during the network monitoring session, there

< will be an entry corresponding to the source station’s
address in the station list array. If the source station has not
yet received or sent any flames, there is no entry for the
source address in the station list array. If there is no entry
corresponding to the source address in the station list array,
an entry corresponding to the source address is created by
step 412.

10

15

30

35

4s

50

55

65

12

The flames_transmitted array variable of the statiori list
array entry corresponding to the source address is incre-
mented by one at programming step 413. Similarly, the
bytes__transmitted array variable of the station list array
entry corresponding to the source address is incremented by
the flame length of the current flame in step 414.

The next steps involve updating the error_statistics array
variable of the entry in the station list array corresponding to
the source address. The error_statistics array variable is
actually a subarray whose length depends upon the number
of types of errors detected for the particular network topol-
ogy. It contains the error_id and the number_of errors for
each type of error detected for the corresponding station.
The error_id is an arbitrary, predefined code which repre-
sents one ofseveral types of errors that the protocol analyzer
instrument is equipped to recognize. For an ethemet
network, these errors include but are not limited to
“jabbers,” “runts,” “alignment errors," and “F6 errors.”
Each of these errors is discussed in detail below. Numbera
of_errors represents the number of occurrences of the

particular error type attributable to the corresponding sta-hon.

The first step 415 in updating the error_statistics subarray
of the entry in the station list array corresponding to the
source address of the current flame is to determine whether

the length of the current flame is greater than the maximum
1518 bytes permitted in an Ethernet flame. Such overly—long
flames are commonly referred to as jabbers. Jabbers origi-
nate from a source station that will not stop transmitting. If
a flame’s length is greater than 1518 bytes, it is likely that
the source station is defective. If the current flame is a
jabber, the error_statistics subarray of the entry in the
station list array corresponding to the source address is
updated accordingly at programming step 416.

Step 417 determines whether the flame length of the
current flame is less than 64 bytes. Such flames are com-
monly referred to as runts. Runts are short flames which
may also indicate that the source station is defective. If the
current flame is a runt, the error_statistics subarray of the
entry in the station list array corresponding to the source
address is updated accordingly in step 418.

Programming step 419 determines whether the current
flame is byte-aligned. A flame is said to be byte aligned if
the flame size in bits is evenly divisible by eight. For this
purpose, the flame size is said to be equal to flame length
(expremed in bits) plus the length of the preamble (also
expressed in bits). That is, the existance of an arithmatic
remainder flom the division by eight of the number of bits
in the flame plus preamble indicates that the flame does not
contain a whole number of bytes.

The determination of whether a flame is byte-aligned is
done by the LAN chip on the protocol analyzgr insflment
(mentioned above under Protocol Analyzer Instrument). If
the current flame is not byte aligned, an alignment error has
occurred. The error_statistics subarray, of the entry in the
station list array corresponding to the source addres, is
updated accordingly by programming step 420.

As discussed above, the source station calculates the F6
by performing a mathematical function on the bits in the
Destination, Source, Type, and Data fields of the data flame.
The LAN chip, also discused above, performs the same
mathematical function and compares the results to the
contents of the F6. If the two do not match, an F6 error
has occurred, indicating that the flame is corrupt. Step 421
examines the results of that calculation and comparison by
the LAN chip in order to determine whether one or more bits
of the current flame may have been conirpted in transmis-
sion.

NOAC EX. 1018 Page 205

NOAC Ex. 1018 Page 206

ir
i
r
i

5,850,388

13
If the current flame contains an FCS error and is thus

corrupt, the error_statistirs subarray of the entry in the
station list may corresponding to the source address is
updated accordingly in step 422.

After all of the above station-level statistics and any other
desired station-level statistics have been calculated, the final
step involves transmitting the information stored in the
station list may to the PC for use by the user interface. This
transmission is facilitated through the use of a “message,"
which is the prefened method of communication among the
various hardware and software components of the preferred
embodiment of the present invention.

The message for station-level statistics consists of a
header and the contents of the station list array. The header
identifies the destination for the message and the type of
message, in much the same format as the messages illus-
trated in FIGS. 6, 11, and 12. In this case, the message would
be a station-level statistics update message. The contents of
the station list array are placed in the message in the order
in which they were initially placed in the station list array.

When the User Interface (UI) software in the PC requests
information on station-level statistics, the mesage is sent
flom the protocol analyzer instrument to the PC for use by
the user interface. A person having ordinary skill in the art
of digital transmission protocol analyzers will know that
station-level statistics peculiar to other network topologies
can be calculated in a similar manner.

B. Network Statistics

Statistics based upon network performance as a whole
will be referred to hereinafter as “network statistics.” Net-

work statistics are calculated by the embedded code running
on the protocol analyzer instrument. Network statistics may
be cumulative (calculated over the entire network monitor-
ing session, which might typically be a twenty-four—hour
period) or per sampling period (calculated over a sampling
period spedfied by the user, which might typically be a
one-second period).

Network statistics may also vary somewhat between the
various network topologies. For example, network statistics
calculated for an ethernet network include number of Net-

work Frames Received, Network Frame Rate, number of
Analyzer Frames Received, Analyzer Frame Rate, Peak
Analyzer Frame Rate, Peak Frame Rate Timestamp,Average
Frame Rate, Average 32-Second Frame Rate, Utilization,
Average Utilization, Peak Utilization, Peak Utilization
Timestamp, number of Broadcast Frames Received, number
of Multicast Frames Received, Frame Size Distribution-

Cumulative, Frame Size Distribution-Sample, number of
Network Collisions, number of Alignment Errors and the
numbers of Jabber, Rum, and FCS Errors. Each of these
statistics is discumed below. _

Referring now to FIG. 8, the number of Network Frames
Received is calculated by a hardware counter on the protocol
analyzer instrument From the Start step 80]., the protocol
analyzer instrument detects receipt of a network flame in
programming step 802. The hardware counter is connected

directly to the network line and is able to_ countfeyggggame
traveling over the network, i.e. Network FramesReceivIeE.
For each frame detected, the hardware counter is incre-
mented in step 803. This process is repeated until the
sampling period has expired, step 804. When the network
monitoring sesion has ended, it ends at some point alter or
to coincide with the expiration of a sampling period. The
number of Network Frames Received is then obtained flom
the hardware counter by the Embedded Code software in the
protocol analyzer instrument, step 805, for later uploading to
the PC.

10

15

35

45

50

55

60

65

14

Similarly, the Network Frame Rate is the number of
Network Frames Received, preferably over a one second
interval, as monitored by a hardware counter, and is calcu-
lated every second.

As the N1 module of the protocol analyzer instrument
receives flames, these frames are transmitted to the PA
module of the protocol analyzer instrument, where the
flames are processed. However, if the Network Frame Rate
is extremely high, some of the flames may not be sent to the
PA module for processing. In this situation, some of the
flames will still be counted as having been received by the
NI module but may never be processed or analyzed by the
PA module, see discussion above regarding Frame Analysis
for a discussion of some of the types of frame analyses that
may be performed by the PA module.

In addition, the user has the option ofchoosing to monitor
only certain types of flames, see discussion above under

Filtering. In this case, all of the flames that are received by
the N1 module will still be counted as having been received,
in order to anive at the number of Network Frames
Received. However, only frames which meet the user-
defined parameters are passed to the PA module. Therefore,
in these situations when only selected types of flames are
primed to the PA module for analEis, the number of flames
actually sent to the PA module is difierent flom the value of
Network Frames Received.

The number of flames actually sent to the PA module is
referred to as the Anal r Frames Received. The Analyzer
Frames Received are calculated by the program shown in
FIG. 9. From the Start step 901, the PA module of the
protocol analyzer instrument receives a flame flom the NI
module in step 902. Another hardware counter is incre—
mented accordingly in step 903. The process is repeated
until the sampling period has expired, step 904. The final
count is then obtained by the Embedded Code from the
counter in step 905 for later uploading by the PA module tothe PC.

Similarl Anal r Frame Rate is the number ofAnalyzer
Frames Received, preferably over a one second interval and
is calculated every second. The highest frame rate (in flames
per second) detected during the network monitoring session
by the analyzer for any single sampling period and the time
at which it occurred represents Peak Analyzer Frame Rate
and Peak Frame Rate Timestamp. For each sampling period,
the current Analer Frame Rate is compared to the Peak
Analer Frame Rate. If the current Analyzer Frame Rate is
greater than the Peak Analyzer Frame Rate, the Peak Ana-
lyzer Frame Rate is replaced with the current Analyzer
Frame Rate. The Peak Frame Rate Timest is then
replaced with the current time.

The Average Frame Rate is calculated in a manner similar
to the Analyzer Frame Rate except that the Average Frame
Rate is averaged over the time elapsed during the Netwodr
Monitoring Semion rather than over one second. Similarly,
the Average 32-Second Frame Rate represents the Average
Frame Rate over the past 32 seconds as opposed to the entire
Network Monitoring Session. Therefore, foi the first thirty-
one seconds of a monitoring session, there will be no value
for Average 32$econd Frame Rate. ‘

After the first thirty-two seconds, the Average 32-Second
Frame Rate is recalculated every second on a rolling basis
(the flame rate is averaged over the most recent thirty-two
second time span).

The embedded code on the protocol analyzer instrument
is responsible for calculating the Network Utilization sta-

tistic. Network Utilization represents the percentage of the

NOAC EX. 1018 Page 206

NOAC Ex. 1018 Page 207

’3

5,850,388
15

theoretical network bandwidth that is currently being used.
For an ethemet network, the theoretical network bandwidth

is ten million bits per second (ten megabaud). This is
equivalent to 1,250,000 bytes per second (one byte=eight
bits).

The embedded code calculates Network Utilization every
second in the following manner. First, the total number of
bytes represented by the Preamble 208, Destination 209,
Source 210, Type 211, Data 212 and FCS 213 fields of each
flame (see FIG. 2) received during the second are summed.
To this is added an additional twelve bytes for each flame
received during a sampling period to represent quiet time.
Quiet time is a 9.6 microsecond interval that follows each
frame, during which no data are sent over the line. At a ten
megabaud transmission rate, that 915 microseconds is
equivalent to ninety-six bits or twelve. eight-bit bytes.
Therefore, quiet time is the equivalent of twelve byte times.

The embedded code then divides this value by 12,5“)
(1,250,000 bytes/secxlm%). The resulting percentage sta-
tistic is referred to as Network Utilization. Average Utilin-
tion is an average of all Utilization values over the duration
of the network monitoring session.

Peak Utilization represents the highest percentage of
network capacity used during the current session and Peak
Utilization Timestamp represents the time at which the peak
utilization was detected. For each sampling period, the
current Utilization is compared to the Peak Utilization. If the
current Utilization is greater than the Peak Utilization, the
Peak Utilization is replaced with the current Utilization. The
Peak Utilization Timestamp is then replaced with the current
time.

Frame Size Distribution is the network statistic that

represents the number of flames, clasified by size range,
that were received by the protocol analyzer instrument since
the analyzer was started for the monitoring session (Frame
Size Distribution-Cumulative) or during a specified sam-
pling period (Frame Size Distribution-Sample). Frame Size
Distribution is calculated through the use of two memory
arrays which store information on frame size distribution.
One array stores flame size distribution on a cumulative
basis and the other array stores flame size distribution on a
sampling period basis. There are positions in both arrays
conesponding to arbitrary size ranges (e.g. the value for the
number of flames detected with lengths between 167 and
255 bytes is stored in position 2 of each array).

The above process is summarized as follows: The flame
length of each flame (see Frame Analysis above) is exam-
ined. Next, the appropriate memory-array position of the
cumulative array is incremented by one to reflect the occur-
rence of a flame in that particular size range. If the frame
was detected during the sampling period, the appropriate
array position of the sampling period array is also incre-
mented by one.

As discussed above, under Protocol Analyzer Instrument,
the protocol analyzer instrument includes a commercially-
obtained LAN chip. The LAN chip is responsible for cal-
culating Broadcast Frames Received, Multicast Frames
Received and Network Collisions.

A broadcast flame is a flame sent from one station to all
~ other stations on the network. A broadcast flame’s destina-

tion address contains an addres (refened to as a “broadcast
address’') that all other stations recognize as being addressed
to them. Similarly, a multicast flame is a flame sent to a
selected group of stations on a LAN. A multicast flame
contains an address (referred to as a “multicast address”)
that the selected group of stations recognize as being

10

15

35

4s

50

55

65

16

addressed to them. By examining the Destination address
field 209 (FIG. 2) of an incoming network flame, the LAN _
chip can recognize a broadcast addres or a multicast
address. If the Destination address field 209 contains an

address which represents a broadcast or multicast address,
the respective counter corresponding to either broadcast
flames or multicast flames on the NI module is incremented

by one. These counts represent the Broadcast Frames
Received and Multicast Frames Received statistics.

Collisions occur when two stations on an Ethernet net-

work stations attempt to transmit frames at the same time,
resulting in their transmissions “colliding." ACCCS to an
Ethernet network is regulated by a Carrier Sense Multiple
Access/Collision Detection (CSMA/CD) contention-based
algorithm which is well known to a person having ordinary
skill in the art. An Ethernet station listens to the network to

determine whether any trafiic is present. When the network
is clear, it transmits and then listens again to see if the data
collides with tralfic flom any other station. If all is clear, the
transmission is complete. If a collision occurs, the station
waits a short, random amount of time and retransmits. The
LAN chip detects collisiom by performing the standard
CSMA/CD algorithm when a flame is received. If a collision
is detected, a collision counter is incremented by one. This
counter is part of the LAN chip.

The present invention also calculates network-wide sta-
tistics for errors such as Alignment Errors, Jabbers, Runts,
and FCS Errors (see Station Level Statistics above for
detailed definitions of these errors). These errors are
detected by the LAN chip on the protocol analyzer instru-
ment in a manner similar to that described above.

The network statistics which are unique to other network
topologies, such as token ring, FDDI, flame relay, etc., are
calculated in a manner which is analogous to the above
process.

Information on all network statistics are stored into an

army (“network statistics may"). The information stored for
each statistic varies depending on the type of statistic, but
basically, the value of each statistic is stored into an array
along with a timestamp.

When the UI requests information on network statistics,
the information stored in the network statistics array is sent
to the PC for use by the user interface. This transmission is
facilitated through the use of a message. The structure of a
network statistics update message is shown in FIG. 12.

The message for network statistics consists of a header
1301 and the contents of the network statistics array 1302.
The header identifies the destination for the message and the
type of meSage (network statistics update message in this
case). The contents of the network statistics array are placed
in the message in the order in which they were initially
placed in the network statistics array.

It will be evident to a person having ordinary skill in the
art that network statistics for other network topologies can
readily be calculated in a similar manner.

C. Protocol Distribution

The distribution and percentage distribution of the various
protocols present in data flames are hereinafter referred to as
“protocol distribution". The calculation of protocol distri-
bution is performed by the embedded code executed by the
protocol analyzer instrument.

Referring now to FIG. 7, after the start step 701, the
protocol distribution calculation begins with programming
step 702 in which the network flame is received. Step 703
next determines the first protocol present in the flame

NOAC EX. 1018 Page 207

NOAC Ex. 1018 Page 208

5,850,388

17

received by the protocol analyzer instrument. For an ethemet
frame, this is done by looking at the Type field 211 (see FIG.
2) of the flame. The Type field 211 of an ethemet frame
designates the first protocol present in the Data field 212 of
the flame. If the Type field 211 contains a value greater than
hexadecimal 500, the first protocol present is the Ethernet
Version 2 (EthemctVZ) protocol, otherwise the first protocol
present is the IEEE 8023 protocol. This first protocol (either
the EthernetV2 protocol or IEEE 802.3 protocol) is found in
the data portion 212 of the flame.

Next, that protocol (and subsequently all other protocols
contained in the flame) is decoded in step 704. The protocol
being decoded at any particular time is refened to as the
current protocol.

The next step 705 involves storing information for the
cun-ent protocol. Information on the current protocol is
stored in a memory array. An why in this‘array is shown in
FIG. 5 (“protocol distribution array entry”) and contains: the
protocol_id 501, statistics_for_the_protocol 502, array_
position 503, number_of_children 504, and a children_
table 505. Each of these array variables is discussed below.
Array information for a protocol is updated whenever that
particular protocol is detected in a received frame.

If the current protocol has not previously been detected,
a new array entry is created for that protocol. Additionally,
if the current protocol is encapsulated within the flame
ditferently than prior occurrences of that protocol, a new
array entry is created. The protocol distribution array is
stored in the memory of the protocol analyzer instrument
and is maintained for the duration of the network monitoring
session.

The protocoLjd 501 array variable is a programmer
defined, arbitrary number used by the embedded code to
identify the current protocol. The protocoLid 501 is used to
help identify the protocol in the protocol distribution array
and has no relationship to the “next layer protocol identifi—
cation field” defined above. The “next layer protocol iden-
tification field” contains a value which is used to identify the
protocol directly encapsulated within the current protocol.
When this encapsulated protocol is placed into the array, it
will be assigned a protocoLid 501 distinct from the value
which was in the “next layer protocol identification field"
(the value used to initially identify the encapsulated
protocol).

The statistics__for_the_protoccl 502 includes four
entries: (1) the number of frames received (on a cumulative
basis for the network monitoring session) which contained
the current protocol; (2) the total number of bytes
(cumulative basis for the netwodr monitoring session)
within those frames (cumulative number of flames) contain-
ing the current protocol; (3) the number of flames received
(per sampling period, i.e. the sampling time period specified
by the user) which contained the current protocol; (4) the
total number of bytes (per sampling period) within those
flames (sampling period flames). Statistics which are cal-
culated per sampling period are reset at the expiration of the
sampling period.

The array__position 503 indicates the position, in the
protocol distribution array, where the information on the
current protocol is stored.

The number_of children 504 for a particular protocol (the
“parent”) represents the total number of unique children
detected for the parent protocol since the network monitor-
ing session began. A “child” of a parent protocol is any
protocol which is encapsulated directly (immediately
follows) within the parent

5

10

15

35

45

50

55

18

The children_table 505 is a subarray containing infor-
mation for all of the children of the parent. This information
includes the protocol_id 506 of the child and the array_
position 507 of the child.

The next step (step 706) in calculating protocol distribu-
ticn is to determine if there is another protocol (the “next
protocol”) encapsulated within the current protocol. If there
is a next protocol encapsulated within the data portion 212
of the current protocol or frame, there are two methods used
to identify it.

Most protocols contain a “next layer protocol identifica-
tion fiel ” which is much like the Type field 211 of the
Ethernet flame and contains a numerical identification code

corre ond_i_r_1gtgthe next protocolpresent in the frame (i.e.,
the protocol cncapsulatéddifie‘cmtly withrn'the-fiist pr'BIccol).
The exact location and contents of the “next layer protocol
identification field" within a protocol can vary depending on
the standards for that type of protocol. For example, the
IEEE 8023 protocol is defined by the Institute of Electronics
and Electrical Engineers' standard 8023.

Some protocols, however, either do not contain a “next
layer protocol identification field” or their “next layer pro-
tocol identification field” contains inSuflicient information

for any station other than the ones that are communicating
to identify the next protocol. These protocols, including
Transport Control Protocol (“TCP”) and User Datagram
Protocol (“UDP"), are referred to as “conversation-
dependent" protocols. Step 707 determines whether the
current protocol is conversation—dependent.

If the current protocol is not conversation dependent, it’s
“next layer protocol idenn'fication field” is preferably used in
conjunction with a lockup table in step 708A to identify the
next protocol present in the flame. This lockup table is
stored in the memory of the protocol analyzer instrument.
The lockup table maps the value found in the “next layer
protocol identification fiel " to the corresponding protocol
which now identifies the protocol encapsulated directly
within the data portion 212 of the current protocol.

If, however, it is determined in Step 707 that the current
protocol is a conversation-dependent protocol, the unknown
next protocol encapsulated within the current protocol is
detected in step 708B by comparing bit sequences of the
unknown next protocol to known bit patterns from the
protocols which can be encapsulated within the current
protocol. These known bit patterns can be obtained by
referencing the standard defining the protocol. For instance,
the UDP protocol is defined by Request for Comments
(RFC) number 768, promulgated by the Institute of Elec-
tronics and Electrical Engineers. Similarly, the TCP protocol
is defined by Request for Comments (RFC) number 793,
promulgated by the Institute of Electronics and Electrical
Engineers. The known patterns are preferably contained in a
lockup table which is used to map known bit patterns to
corresponding protocols.

As an example, if the current protocol is UDP, the bits in
the unknown next protocol would be compared to bit
patterns known to exist in the DHCP (Dynamic Host Con-
figuration Protocol), BootP (Bootstrap Protocol), NetBIOS
DGM (Datagram Protocol), RIP (Routing Information
Protocol), RWHO (Remote Unix WHO Protocol), TACACS
, SNMP (Simple Network Management Protocol) Version 2,
and N'I'P (Network Time Protocol) protocols, all of which
can be encapsulated within the UDP protocol.

If a bit sequence in the unknown next protocol sufficiently
resembles a bit pattern known to exist in any of these
protocols, the protocol corresponding to the known pattern
is deemed to be the unknown next protocol and is detected
as such.

NOAC EX. 1018 Page 208

NOAC Ex. 1018 Page 209

I
3
t

i

5,850,388
19

The above processes are performed iteratively (due to
Step 706) for each protocol present in the frame until all
protocols present in the frame have been decoded. The entire
process is repeated for all frames detected during the sam—
pling period (step 709) or detected during the network
monitoring session (step 711), as specified by the user. Upon
the expiration of a sampling period, the statistics__for__the_
protocol which are calculated per sampling period are reset
in step 710.

After the protocol distribution has been determined by the
protocol analyzer instrument and before the step 710 reset
operation, the information stored in the protocol distribution
array is transmitted to the PC for use by the user interface.
This transmission is facilitated flirough the use of a message.
The structure of a protocol distribution update message is
shown in FIG. 6. ‘

The message for protocol distribution consists of a header
601 and the contents of the protocol distribution array 602.
The header identifies the destination for the message and the
type of message (protocol distribution update message in
this case). The contents of the protocol distribution array are
placed in the message in the order in which they were
initially placed in the protocol distribution array.

When the UI requests information on protocol
distribution, the message is sent from the PA module of the
protocol analyzer instrument to the PC for use by the user
interface.

D. Event Information

'Ihe embedded code is also capable of detecting and
logging “events" in real-time during network monitoring
sessions. An “event" occurs when a parameter being moni-
tored on the network exceeds a predefined or user—defined
threshold That user—defined threshold can even be a number

of occurrences on the network of some specific
phenomenon, during a sampling period. The threshold speci-
fies a value (e.g. number of commences, in the also of
parameters such as nints, jabbers, etc, or percentage, in the
case of a parameter such as Network Utilization) per speci-
fied time period and the number of consecutive time periods
for which the value must be exceeded to constitute an event.

For example, a user can set a threshold, for the parameter
runts, of five runts per ten minute sampling period for two
consecutive sampling periods. If more than five runts are
detected in each of two consecutive sampling periods, the
occrurence would be logged as an event

Ethernet events detected include: High Utilization, High
Frame Rate, High Broadcast Rate, High Multicast Rate,
Network Collisions, Alignment Errors, KB Errors, Runts,
Jabbers, and illegal Source Addres. Events which are
unique to other network topologies, such as FDDI, Token
Ring, frame relay, etc” are detected in a manner which is
analogous to the process for detecting ethemet events
described below.

Utilization, Frame Rate, Broadcast Rate, Multicast Rate,
Network Collisions, Alignment Errors, RS Errors, Runts,
and Jabbers are all calculated by the LAN chip on the
protocol analyzer instrument. For a discussion of how these
rates and errors are calculated or detected, see Station-Level
Statistics and Network Statistics above. These rates and

.errors are flagged as events when they exceed defined
thresholds.

An Illegal Source Address error occurs when a frame
containing an illegal MAC source addres is received. An
illegal MAC source address field might contain all binary
ones. Such illegal MAC addreSes can be caused by a
malfunctioning network interface card (“NIC”) or NIC

5

10

15

35

45

50

55

20

driver, they can be artificially produced by some type of
traffic generator, or they might be the result of a collision. An
Illegal Source Address event occurs when any Illegal Source
Address error is detected by the protocol analyzer instru-
ment (i.e., the threshold for this event is usually zero).

Internet Protocol (“IP”) events include: Duplicate IP
Address, Illegal Source IP Address, and Zeros Broadcast
Address. The errors which are the bases of these events only
occur if the IP “protocol" is wrrently in use. The presence,
if any, of the IP “protocol" in a frame is detected during the
protocol decode process described in detail above in Proto-
col Distribution. The IP “protocol” contains a field identi-
fying the [P Source Address. This field will be referred to as
the “IP Source Address field." The IP “protocol" also con-
tains a field identifying the IP DestinationAddress. This field
will be referred to as the “IP Destination Adde field."

A Duplicate IPAddress error occurs when two stations try
to use the same network IP address. This error is detected by
analyzing the IP Source Address field of the IP “protocol.”
A memory array or other data structure (“1P station list") is
used to store information on all detected IP addresses. An

array or other data structure (“MAC station list") is used to
store information on MAC addresses. These two station lists

are cross referenced with each other through the use of
linkages and pointers to determine the relationship between
every MAC address and every IP address. In other words,
every IP address is associated with a MAC addm. One
MAC address can have several IP addresses but each IP

address can correspond to only one MAC addres. If two
MAC stations in the MAC station list are using the same IP
address, a Duplicate IP Address error has occurred. A
Duplicate IP Address event occurs when any Duplicate IP
Address error is detected by the protocol analyur instru-
ment (i.e., the threshold for this event is also usually zero).

An Illegal Source IP Address error occurs when the [P
Source Address field of the IP “protocol” contains invalid
data such as all zeros, a broadcast address, or a multicast
address. This error is detected by analyzing the 1P Source
Address field of the IP “protocol." An Illegal Source 11’
Address event occurs whenever an Illegal Source IPAddress
error has been detected by the protocol analyzer instrument
(i.e., the threshold for this event is also zero).

AZeros Broadcast Address error occurs when a sending
station has used all uroes to represent a broadcast address
in the portion (IP Destination Address) of the IP “protocol"

‘containing the IP destination addrem This error is detected
by analyzing IP Destination Address field of the IP “proto-
col." The IP Destination Address. should be all ones when

used to designate a broadcast address. A Zeros Broadcast
Address event occurs whenever the number of Zeros Broad—

cast Address errors detected by the protocol analyzer instru—
ment exceeds the defined threshold defined for this event.

ICMP (Internet Control Message Protocol) events
include: Host Unreachable, ICMP Redirect, ICMP Param-
eter Error, Network Unreachable, Port Unreachable, Source
Quench, and Time-to—Live Exceeded. 'Ihe messages which
are the bases of these events only occur if the ICMP
“protocol" is currently in use. The presence, if any, of the
ICMP “protocol" in a frame is detected during the protocol
decode process described in detail above in Protocol Dis-
tnbution.

A Host Unreachable message (a network me$age not
related to a “message" sent by the PA to the UI) is sent by
a router to notify the sender of a frame that the router cannot
forward that frame to the appropriate destination. A router is
a software or hardware connection between two or more

NOAC EX. 1018 Page 209

NOAC Ex. 1018 Page 210

up:

_W.NWWWW...

5,850,388
21

networks that enables trailic to be routed from one network
to another based upon the intended destinations of the traffic.
The appropriate field of the ICMP “protocol" is analyzed to
determine whether a Host Unreachable message has been
received. AHost Unreachable event occurs when the number

of Host Unreachable messages received by the protocol
analyzer instrument exceeds the defined threshold for this
event.

An ICMP Parameter Error is a message (mother network
message) indicating that a frame has been discarded due to
a problem in its header portion. The appropriate field of the
ICMP “protocol” is analyzed to determine whether an ICMP
Parameter Error message has been received. An ICMP
Parameter Error event occurs when the number of ICMP

Parameter Error messages received by the protocol analyzer
instrument exceeds the defined threshold for this event.

An ICMP Redirect message (also inother network
message) occurs when a sending station addresses a frame to
a default router because it does not know any other route for
that particular destination. If the default router sees that it
must transmit the frame out of the same port on which it was
received, the router sends the host an ICMP Redirect mes-
sage advising the sending station of a better router for that
destination. The appropriate field of the ICMP “protocol" is
analyzed to determine whether an ICMP Redirect message
has been received. An ICMP Redirect event occurs when the

number of ICMP Redirect messages received by the protocol
analyzer instrument exceeds the defined threshold for this
event.

A Network Unreachable message (another network
message) is sent from a router to the sender of a frame when
the router does not have a route or a default route to which

to forward the data frame. The appropriate field of the ICMP
“protocol" is analyzed to determine whether a Network
Unreachable message has been received. A Network
Unreachable event occurs when the number of Network
Umeachable messages received by the protocol analyzer
instrument exweds the defined threshold for this event.

APort Unreachable message (another network message)
is sent by a destination station to inform the source station
that the port indicated by the source station is not currently
in use by any process. The appropriate field of the ICMP
“protocol” is analyzed to determine whether a Port Unreach-
able mssage has been received. A Port Unreachable event
occurs when the number of Port Unreaehable messages
received by the protocol analyzer instrument exceeds the
defined threshold for this event.

A Source Quench message (another network message) is
sent, by a router or a host, stating that it is receiving so many
data frames that its buffers are overflowing. The mesage is
sent back to the source of the excess data frames inslructing
that source station to slow the flow of data. The appropriate
field of the ICMP :protocol” is analyzed to determine
whether a Source Quench message has been received. A
Source Quench event occurs when the number of Source
Quench messages received by the protocol analyzer instru-
ment exceeds the defined threshold for this event.

A Time-to-Iive Exceeded message is generated by a
router which has received and discarded a- transmiSion
which has exceeded its allowable lifetime. Sometimes rout-

' ing loops form between routers that cause a frame to be
forwarded endlessly through the same set of routers over and
over. In the IP “protocol,” there is a field, called the
time-to—live (TI'L) field, that limits the lifetime of a frame
containing the IP “protocol.” The TI'L field prevents such an
occurrence. When a host generates an IP message (another

10

15

35

45

50

55

65

22

network message), it gives the TTL field a number value
between one and 255. The value is basically equal to the
number of routers that can forward the IP message. Each
time a router forwards the IP message it reduces the 'I'I'L
number by one. If a router receich an IP message with a
TI‘Lvalue of one, it decrements the T11 number to zero and
discards the message.

The router transmits a Time-to-Live Expired message
back to the source to notify the source about the discard. The
appropriate field of the ICMP “protocol” is analyzed to
determine whether a Time-to-Live Expired message has
been received. A Trme-to-Live Expired event occurs when
the number of Time-to-Live Expired messages received by
the protocol analyzer instrument exceeds the defined thresh-
old for this event.

As events are detected, information on the events includ-
ing event__id, limestamp, byte_length, and parameters are
stored in a circular array (event log array). The use of two
pointers (one to denote the memory location of the recor-
dation of the last event detected and the other to denote the

memory location of the last event sent to the UI) and a
circular array allows event updates to be sent to the PC when
requested by the UI.

Thestructure ofanentIyin thiscirculararrayisshownin
FIG. 10. “Event_id” 1101 is the variable name used to refer

to the programmer-defined id code of the event. Tunestamp
1102 is the date and time at which the specific event
occurred. By1e_length 1103 is the total number of bytes in
the parameter 1.104 portion of the array entry. Parameter
1104 contains information on each event. This parameter
information is used by the UI portion to 009531999.taudgtailed
wtmgage for disubtler. repoflingéf 939 mm ‘0 the
user. For example, if the error was Duplicate WlPhAddress"
Detected, there would be three parameters, namely the MAC
addresses of the two stations using the same IP address as
well as the [P address itself.

After events have been detected, information about the
events is trammitted to the PC for use by the user interface ‘“
portion. This transmission is facilitated through the use of a
message. The structure of an event upgaugmessagejs shown
in FIG. 11. The event Whom:
1201 and a portion of the event log array 1202. The
information sent from the event log array is the event_id
1.101, timestamp 1.102, byte_length 1103 and parameters
1104 for the entries in the event log array 1202 since the last
update sent to the UI.

VI. User Interface
A. Overview

As discussed above, the user interface is the portion of the
software implementation of the present invention that is
executed by the PC. At the beginning of a network moni<
tor-ing session, the user selects which networkparameters are
to be monitored. Each of these parameters, including station-
level statistics, network statistics, event information and
protocol distribution is dismissed in detail above. The User
Interface (01) is capable of displaying any station-level
statistic, network statistic, event information, and protocol
distribution (discussed above) which the user requests to see
and which the protocol analyzer instrument can capture and
report to the UI.

FIG. 13 illustrates the general structure of the user inter-
face GJI). The UI sends request messages to the Embedded
Code 302 seeking update information about the various
network parameters (“network information").

A message is a preferred method of communication
among the, various hardware and software components of the

NOAC EX. 1018 Page 210

NOAC Ex. 1018 Page 211

5,850,388
23

present invention. The mesage contains a header portion
which identifies the destination for the message and the type
of message (e.g., Network Statistics Request Message, Net-
work Statistics Update Message, etc.). The message also
contains the data being transmitted (e.g., the updated net-
work statistics themselves).

The user can select how often network information is

updated, ie. how often the UI requests updates from the
embedded code on these parameters The operation of the U]
is largely software controlled using custom software (the
design of which is disclosed herein) and also uses off-the-
shelf software tools. The custom software is preferably
designed using a technique known as “object-oriented pro-
gramming” which is described in a text entitled Object
Oriented Design with Applications, by Grady Booch, copy-
right 1991, from Benjamin Cummings Publishing Co., Inc.,
Redwood City, Calif., which is incorporated by reference as
though fully reproduced herein. Many of the terms used
herein, e.g., object, class, scenario diagram, etc., are taken
from the Booch text and are well known to programmers
familiar with object oriented programming. Another text by
Grady Booch, entitled Object-OrientedAnalysis andDesign
with Applications, second edition, copyright 1994, is simi-
larly incorporated herein by reference.

The portion of the U] software that is responsible for
sending update request messages is referred to as the “Docu-
merit" 1402 (FIG. 13). The Document 1402 is the portion of
the sofiware that is responsible for managing the flow ofdata
for the U]. After a Request Message is sent to the Embedded
Code 302, the Embedded Code 302 sends the updated
network information to an appropriate software “Target"
1401 via an Update Message. The word “target" refers to a
software device that is used to accept data for storage,
forwarding, or procesing.

There is a software Target 1401 for every network param-
eter that is monitored. In other words, Network Statistics
Update Mesages are routed to the Network Statistim Target
and Station-level Statistics Update Messages are routed to
the Station-Level Statistics Target and so on. 'lhe Target
1401 is responsrble for receiving updated network
information, storing the information in a Database 1403
(discussed in detail below) located on the PC’s storage
device, and providing the Document 1402 with a pointer to
the memory location containing the updated network infor-
mation.

Views 1404 are the portions of the UI software that are
responsible for presenting network information, in the form
of charts, tables, tree formats, etc., to the user via the PC’s
display device, e.g., a color cathode ray tube. There is a
View 1404 for each network parameter (i.e. network
statistics, protocol distribution, etc.) and each type of pre-
sentation method (i.e., charts, tables, tree formats etc.). For
example, there is a view entitled Network Statistics Chart
View, which presents network statistics in a graphical or
chart format. A plurality of views can be used at the same
time to present network information to the user in several
formats simultaneously.

If the user is viewing network information in real-time
(i.e., as the information is being uploaded from the protocol
analyzer instrument), the Document 1402 informs the appro-
priate View 1404 of the receipt of some update from the

' embedded code 302. The View 1404 then gets from the
Document 1402 the pointer to the memory location (in the
PC’s RAM or random access memory) that contains the
updated network information. The View 1404 then presents
this information in the appropriate format to the user via the
PC's display device.

10

15

20

25

35

45

50

55

65

24
When the term “real-time” is used in relation to the

presentation of network information, the presentation of
such information is actually done as updates are received
from the embedded code rather than simultaneously with the
calculations.

If the user is not viewing “real time" network information
but is viewing network information from a database con-
taining network information gathered during a previous
network monitoring session (i.e., “baseline data"), the View
1404 gathers relevant information from the Database 1403
and presents the information in the appropriate format to the
user via the PC’s display device.

Simultaneous display of a plurality of network
parameters, either all real time, or all from the database, or
mixed is accomplished through the use of well-known
features and capability inherent in the Microsoft Windows
operating system. Therefore, information on a plurality of
network parameters can be displayed simultaneously. Also,
nothing has been incorporated into the present invention that
limits or disables these well known features and capabilities

The various Views are programmed to present the net-
work information to the user in the forms of charts, graphs,
tables and trees as mentioned above. Off-the-shetf products
are used to present the network information to the user.

The product ChartFx (Version 3.0), marketed by Software
FX, Inc. at 7100 West Camino Real, Boca Raton, Fla. 33060,
is used to display network information in the form of charts
and graphs. Network information on station-level statistics,
network statistics and protocol distribution in preferably
displayed in the form of charts and/or graphs The User's
Manual for ChartFx is hereby incorporated by reference as
if fully reproduced herein.

The product SpreadVBXH- (Ver. 2.0), marketed by Far-
Point Technologies, Inc. at 133 South Center Court, Suite
1000, Morrisville, NC. 27560, is used to display network
information in the form of tables and spreadsheets. Network
information relating to station-level statistics, network sta-
tistics and event information is preferably displayed in the
form of tables and/or spreadsheets. The User's Manual for
SpreadVBX-H- is hereby incorporated by reference as if
frilly reproduced herein.

The product TreeControl (Version 1), marketed by Premia
Creative Controls Corp. at 1075 NW. Murray Blvd., Suite
268, Portland, Oreg. 97229, is used to display protocol
distribution in a tree format. The User’s Manual for Tree-

Control is hereby incorporated by reference as if fully
reproduced herein.

In creating the User Interface of the present invention, use
was made of the Microsoft Foundation Class (MFC) Library,
made by Microsoft Corp, i.e., many terms, including “docu-
ment” and “View," were taken from the literature relating to
that library. The User's Manual for the MFC Library is
hereby incorporated by reference as if fully reproduced
herein.

B. Database V
Th'e preferred embodiment of the present invention uti-

lizes an object-oriented (00) database application. In the
preferred embodiment of the invention, the database appli-
cation used is the POET database product (Ver. 3.0), mar-
keted by Poet Software Corp. at 999 Baker Way, Suite 100,
San Mateo, Calif. 94404. The Reference Manual for POET

3.0 is hereby incorporated by reference as if fully repro-
duced herein.

POET 3.0 is an 00 database application which uses a
C++ programming language Application Program Interface

NOAC EX. 1018 Page 211

NOAC Ex. 1018 Page 212

é

if
i
a

2%,"

:....~..ea~.~...or.umaim»’

‘.‘_..a...£a........

5,850,388

25

(API). Other database applications which use a C++ API
would also be appropriate for use in the present invention.
The present invention could also utilize ODBC (Open
Database Connectivity) database applications if they are
used in conjunction with an SQL (Structured Query
Language) API.

The primary reason why an object-oriented database as
opposed to a standard relational database was selected to
implement the present invention is the increased access
speed attainable by using an object-oriented database. An
object-oriented database such as POET stores C-H- objects in
a database and allows the programmer to retrieve them using
the database operations. The objects read from the database
look and act just like the objects stored because an object-
oriented database lmows how to read C++ class declarations

and therefore, manage C++ objects. ‘
In the preferred embodiment of the invention, the data-

base may be saved to a storage device foruse as a “baseline"
against which future network monitoring sessions may be
compared.

C. Station-Level Statistics User Interface

FIG. 14 is a “scenario diagram" depicting the process by
which station-level statistics are displayed to the user in real
time. First, the Document 1402 requests an- updatewof
station—level statistics from the Embedded code 302.

Second, the Station-Level Statistis Target 1501 receives the
updated station—level statistics (i.e. the station-level statistics
update message discussed above under Station-Level
Statistics).

In step three, the Station-Level Statistics class 1502 is
initialized. By “initialized" is meant that a new instance is
created of that POET object of the station-level-statistic
type, for storing the new data. The Station-Level Statistics
class is a class in the POET database which contains
information on station~level statistics.

In step four, the Station-Level Statistis Target 1501
decodes the Station-Level Statistis Update Message. The
Station—Level Statistics Target 1501 begins this decoding
process by reading the message header and the station list
array from the update message. Next, it determines which
type of station-level statistis are contained in the update
message (i.e., ethernet statistics, token ring statistics, FDDI
statistics, frame relay statistics, etc.). Finally, the Station-
Level Statistics Target 1501 places each of the station-level
statistis obtained from the decoded update message in a
POET data object for storage and later access.

If the user has selected to storeinformati‘on on station-
level statisticsfltgwadatabas‘e 611356 PC’s storage device'for
later use as a baseline, this information is stored in the
appropriate location in the POET database in step five.

In step six, the Station-Level Statistics Target 1501
informs the Document 1402 that the Target 1501 has
received some kind of an update. Apointer to the POET data
objects containing the updated station-level statistics is sent
from the Target 1501 to the Document 1402. Apointer is an
addrcss which identifies or “points to" the memory location
in RAM that contains the data.

In steps seven and eight, the Document 1402 informs the
Station List View 1503 and the Station Details View 1504

. that the views may have to be updated That is, the Docu-
ment 1402 informs the Views 1503 and 1504 that some new

data has been received but not the exact type and content of
the new data. The Station List View 1503 controls the

display of a listing of MAC addrcsses and other information
about activity at those MAC address stations. The Station
Details View 1504 controls the display of sortings and other

10

15

30

35

4s

50

55

65

26

detailing of the stations to highlight such factors as which
stations are transmitting the most frames, which are receiv-
ing the most frames, which are involved with the most error
messages, etc. The scope and nature of the details displayed
is arbitrary to the user.

In steps nine and ten, the Station List View 1503 and the
Station Details View 1504 request verification from the
Document 1402 that there is new data which should, in fact,
be added to the Station List View 1503 and Details View
1504. Tins step is useful because the user has initially
selected how often information on station-level statistics

was to updated, and it is possrble that there was no new
station-level statistic information between the last update
and the present update. In this case, there are no new data to
be added to the views.

If the Document 1402 responds that there are indeed new
data, ie. there is new information in the station-level sta-
tistics array, then these new data are obtained by the views
in steps eleven and twelve. The Station List View 1503 and
the Station Details View 1504 receive a pointer or address to
the location in the random-accem memory (RAM) of the PC
that contains the new data from the Document 1402. The

views then obtain the object containing the new data or
information.

Steps thirteen and fourteen involve presenting all of the
updated station-level statistics to the user in the form of
tables and charts. At this point, the views use the pointers
passed to them to gather the new data from its memory
location for presentation in the appropriate format. The
Station List View 1503 is responsrble for displaying the data
in the form of a table. This is accomplished through the
olf-the—shelf product SpreadVBXH, discussed above tinder
User Interface—Overview. The Station List View 1503 is

capable of prcsenting station-level statistics to the user in a
sorted order based upon the value of any of the individual
statistics. The Station Details View 1504 is responsible for
displaying station-level statistics in the form of piecharts
indicating top transmitting, receiving, and error producing
stations. This is accomplished through use of the oE-the-
shelf product ChartFx, discussed above under User
Interface—Ovenriew.

FIG. 18 illustrates an example of a display screen arrange-
ment for displaying station statistics to the user. The list can
show “top talkers” and “top listeners” as well as a host of
other catagorics of information, the dcsirability and useful-
ness of which will be readily evident to a person having
ordinary skill in the art of digital network transmission
analyzers. A split-saeen display is also available with
Microsoft Windows to show that the desired statistics can be

shown in any number of formats, including the pie chart
illustrated in FIG. 18.

D. Network Statistics User Interface

FIG. 15 is a scenario diagram depicting the process by
which information on network statisties is displayed to the
user in real time. First the Document 1402 requests an
update of network statistics from the Embedded Code 302.
Second, the Network Statistics Target 1601 receives the
updated network statistics (i.e. the Network Statistics
Update Message discussed above under Network Statistics)..

In step three, the Network Statistics class 1602 is initial~
ized. The Network Statistics class is a class in the POET
database which contains information on network statistics.
One instance of the Network Statistics class is Ethernet
Network Statistis which contains network statistic infor-
mation particular to an Ethernet network.

In step four, the Network Statistics Target 1601 decodes
the Network Statistic Update Message. The Network Sta-

NOAC EX. 1018 Page 212

NOAC Ex. 1018 Page 213

,«afghan.,va-swmaif”t.,
...non—:31"in

w,mw.-g~z~..~..~wm,.

a...».Mwo-sw,x“-..,wgwmfu..-,,Jm«was...

5,850,388
27

tistics Target 1601 begins this decoding process by reading
the Header 1301 and the Network Statistim Array 1302 from
the update message. Next, the Network Statistics Target
1601 determines which type of network statistim are mn-
tained in the update message (i.e., ethemet statistics, token
ring statistics, FDDI statistics, frame relay statistics, etc.).
Finally, the Network Statistim Target 1601 places each of
the network statistics obtained from the dewded update
mesage in a POET data object for storage and later acmss.

If the user has selected to store information on network

statistics to a database on the PC’s storage device for later
use as a baseline, this information is stored in the appropriate
location in the POET database in step five. The appropriate
storage location in the POET database is based upon the
relevant class (i.e., Ethernet Network Statistics, Token Ring
Network Statistics, etc.).

In step six, the Network Statistics Target 1601 informs the
Document 1402 that the Target 1601 has reteived an update.
A pointer to the data objects containing the updated network
statistics is sent from the Target 1601 to the Document 1402.

In step seven, the Document 1402 informs the Network
Statistics Table View 1603 and/or the Network Statistics

Chart View 1604 (depending on which view(s) the user is
using) that the views may have to be updated.

In step eight, the Network Statistics Table View 1603
and/or Network Statistics Chart View 1604 request verifi-
cation from the Document 1402 that there is, in fact, new
data which should be added to the chart and/or table views.

This step is useful because the user has selected how often
information on network statistics was to be updated, and it
is possible that there was no new network statistic informa-
tion between the last update and the present update. In this
case, there are no new data to be added to the charts and/or
tables.

If the Document 1402 responds that there are indeed new
data, ie. there is new information in the network statistics
array, then these new data are obtained in step nine. The
Network Statistics Table View 1603 and/or the Network

Statistics Chart View 1604 receive a pointer to the new data
from the Document 1402.

Step ten involves presenting all of the updated network
statistics to the user in the form of tables and charts. At this
point, the views use the pointers passed to them to gather the
new data from their RAM memory location for presentation
in the appropriate format. The Network Statistics Table View
16% is responsible for displaying the data in the form of
tables, and this is accomplished through the otf-the-shelf
product SpreadVBX++, discussed above under User
Interface—Overview. The Network Statistics Chart View

1604 is responsible for displaying network statistics in the
form of charts and graphs, and this is accomplished through
use of the olf-the-shelf product ChartFx, discussed above
under User Interface—Overview.

FIGS. 19A, 19B and 19C illustrate three examples of
display screen display formats useful for showing network
statistics to the user. FIG. 19A illustrates how a network

utilization chart might look. FIG. 19B illustrates how a
network frame rate chart might look, and FIG. 19C illus-
trates how a frame size distribution chart might look. While
charts are shown, a person having ordinary skill in the
programming art, and a person having ordinary skill in the
digital network transmission art will be the aware that may
other other formats of display can readily be substituted for
charts.

F. Protocol Distribution User Interface

FIG. 16 is a scenario diagram depicting the process by
which cumulative protocol dismbution information is dis-

10

15

30

35

45

50

55

60

65

28

played to the user in real time. The process by which
protocol distribution that is calculated per sampling period is
displayed to the user is analogous to this promss.

First the Document 1402 requests an update of protocol
distribution from the Embedded Code 302. Semnd, the
Protocol Distribution (Cumulative) Target 1701 receives the
updated protocol distribution information (i.e. the Protocol
Distribution Update Message discussed above under Proto-
col Distribution).

In step three, the Protocol Distribution class is initialized.
The Protocol Distribution class 1702 is a class in the POET
database which contains information on protocol distribu-
tion. Instances of the Protocol Distribution class include

Protocol Distribution (Cumulative), which contains protocol
distribution information on a cumulative basis, i.e. since the
network monitoring mion began, and Protocol Distribu-
tion (Sample), which contains information on protocol dis-
tnbution for the user—defined sampling period.

In step four, the Pmtowl Distribution (Cumulative) Target
1701 decodes the Protocol Distribution Update Megage.
The Protocol Distribution (Cumulative) Target 1701 begins
this decoding process by reading the Header 601 (FIG, 6) of
the “message" and Protocol Wobution Array information
or data may or portion 602 of the message, that was taken
from the Protocol Distribution Array of the memory of the
protocol analyzer instrument.

As discussed above under Protocol Distribution, each
entry in the Protocol Distribution Array data 602 portion of
the meSage contains the protocol_id, statistics_for_the_
protocol, number_of_children, and a children_table. By
iteratively examining the contents of each entry in the
Protocol Distribution Array 602 portion of the message and
mos-referencing the entry with prior entries, the Protocol
Distribution (Cumulative) Target 1701 builds a hierarchical
protocol distribution structure (tree structure). If the user has
chosen to View protocol distribution in a percentage format,
the appropriate statistics_for_the_protoool are converted
to a percentage (i.e., the total number of bytes received for
the protocol is divided by the total number of bytes received
and then multiplied by one hundred). Finally, the Protocol
Distribution (Cumulative) Target 1701 places each element
of the newly created hierarchical protocol distribution struc—
ture in a POET data object for later storage and am.

If the user has selected to store protocol distribution
information in a database on the PC’s storage device for later
use as a baseline, this information is stored in the appropriate
location in the POET database (i.e., Protocol Distribution
(Cumulative)) in step live.

In step six, the Protocol Distribution (Cumulative) Target
1701 informs the Document 1402 that the Target 1701 has
received an update. A pointer to the location, in the PC’s
RAM memory, of the POET data objects that contain the
updated hierarchical protocol distribution structure is sent
from the Target 1701 to the Document 1402.

In step seven, the Document 1402 informs the Protocol
Distribution Tree View 1703 that the view should perhaps be
updated.

In step eight, the Protocol Distribution Tree View 1703
requests verification from the Document 1402 that there is
new data which should be added to the tree—type display of
protocol distribution. This step is used because the user
selected how often information on protocol distribution was
updated It is possrble that, while there were some new data
received, there may have been no new protocol distribution
information contained in the new data received from the
time of the last update and the present update. In this case,
there are no new data to be added to the tree.

NOAC EX. 1018 Page 213

NOAC Ex. 1018 Page 214

~r—v~,,..,...

run—wan«aaawwmumm«

l
l
g

5,850,388
29

If the Document 14m responds that there are indeed new
protocol distribution data, i.e. there is new information in the
protocol distribution array, then these new data are obtained
in step nine. The Protocol Distribution Tree View 1703
receives a pointer to the new data (in RAM) from the
Document 1402.

In step ten, the Document 1402 informs the Protocol
Distribution Chart View 1704 that the view should be

updated. In step eleven, the Protocol Distribution Chart
View 1704 receives a pointer: to..the.new_data from the
Protocol Distribution Tree View 1703. ‘

Steps twelve and thirteen involve presenting the data to
the user in a tree format and a chart format. At this point, the
views use the pointers pasted to them to gather the new data
from its memory location in the RAM of the PC for
presentation in the appropriate format. The Protocol Distri-
bution Tree View 1703 is responsrble for displaying the data
in a tree formaL It builds a tree structure based upon the
hierarchical protocol distribution structure. An olf-the-shelf
product entitled TreeControl (discused above under User
Interface—Overview) is used to display the tree structure.
The Protocol Distribution Chart View 1704 is responsible
for displaying protocol distribution in a pie-chart format.
This is accomplished through use of the olf-the—shelf prod-
uct ChartFx, discussed above under User Interface——
Overview.

FIG. 20 illustrates how a split-screen display can be used
to highlight one ISO protocol layer, instantly revealing
usage by the protocols detected on the network.

F. Event Information User Interface

FIG. 17 is a scenario diagram depicting the process by
which event information is displayed to the user in real time.
First the Document 1402 requests an update of event infor-
mation from the Embedded Code 302. Second, the Event

Target 1801 receives the updated event information (ie. the
event update message discussed above under Event
Information).

In step three, the Event Log database class 1802 is
initialized. The Event Log clas is a clas in the POET
database which contains event information.

In step four, the Event Target 1801 decodes the Event
Update Message. The Event Target 1801 begins this decod-
ing process by reading the mesage header and the portion
of the event log array. It then places information relating to
each event, as contained in the portion of the event log array
of the memory of the protocol analyzer instrument into a
POET data object in RAM storage of the PC for later storage
and access.

If the user has selected to store event information in a

database on the PC’s storage device for later use as a
baseline, the information is stored in the appropriate location
in the POET database in step five.

In step six, the Event Target 1801 informs the Document
1402 that the Target 1801 has received an update. Apointer
to the POET data objects containing the updated event
information is sent from the Target 1801 to the Document
14m.

In step seven, the Document 1402 informs the Event Log
View 1803 that the view should perhaps be updated. In step

‘ eight, the Event Log View 1803 requests verification from
the Document 1402 that there is, in fact, new data which
should be added to the Event Log View. This step is useful
because the user had selected how often event information

was updated, and it is possible that there was no new event
information from the time of the last update to the time of

10

15

35

45

50

55

65

30

the present update. In this case, there are no new data to be
added to the view.

If the Document 1402 responds that there is indeed new
data, is. there is new information in the event log array in
the memory of the PC, then these new data are obtained by
the Event Log View 1803 in step nine. The Event Log View
1803 receives from the Document 1402, a pointer to the new
data now stored in the PC's RAM.

Step ten involves presenting all of the updated event
information to the user in a table format. At this point, the
event log view uses the pointer passed to it to gather the new
event information from its memory location in the PC’s
RAM for presentation in the appropriate format. For each
event, the Event Log View 1803 presents the name of the
event (derived from the event_id), the time of the event, and
a brief description of the event (derived from the event
parameters) in the form of a table. Presentation of event
information in a table format is accomplished through the
otf-the-shelf product SpreadVBXH, discussed above under
User Interface—Overview.

FIG. 21 illustrates a preferred example of how detected
events can be sorted and displayed with timestamps, on the
PC’s display device so as to enhance the user’s ability to find
information quickly.

G. Hypertext Troubleshooting Information
The user interface is also capable of displaying detailed

information about a particular event and the posrble causes
of the event in a hypertext format. Hypertext in conjunction
with the present invention allows a user to access detailed
explanations through use of the PC’s pointing device. The
user can obtain detailed definitions ofstatistia and events as

well as posrble causes of each type of event by double-
clicking the PC’s pointing device on the event or statistic
displayed by the user interface. A “window” is opened on a'
display containing a detailed definition of the event or
statistic as well as a brief discussion of the posible causes
and ramifications of the event. This information is contained

in a standard Microsoft Windows context-sensitive help file
format.

In addition to specific information relating to events and
statistics, the user interface is also capable of displaying
step-by-step troubleshooting information in a hypertext for-
mat wbich assists the user in solving problems on a network
by posing increasingly specific queries until a solution is
reached. This information is likewise contained in a standard

Microsofi Windows help file format. The exact method by
which the above data are displayed would be readily appar-
ent to a person having ordinary skill in the art of software
programming and in the art of network analyn'ng. The text
of the troubleshooting information can be created and writ-
ten specifically for the UI by a person having ordinary skill
in the digital data transmimion art; or troubleshooting infor-
mation for Ethernet and Token Ring networks can be exam-
ined in a textbook entitled Ethernet and Token Ring
Optimization, by Daniel J. Nassar, Copyright 1996, Henry
Holt & Co., Inc., New York, N.Y., which is hereby incor-
porated by reference as though fully reproduced herein.

H. Reports

As discussed above, transmission information concerning
Protocol Distribution, Station-Level Statistia, Network Sta-
tisties and Events are displayed for the user in the form of
graphs and charts. The transmission information can also be
used to create customized presentation-quality reports.
These customized reports provide the transmission informa-
tion in a presentation quality format. The invention also
allows the user to specify the time span which the report will
cover.

NOAC EX. 1018 Page 214

NOAC Ex. 1018 Page 215

.

g
l
t

i
It
g

5,850,388

31

Reports may be printed on a standard printer connected to
the PC or displayed on the PC’s display device. Reports also
may be previewed and modified on-line prior to printing.
The reporting feature is implemented using an otf-the-shelf
reporting application entitled ReportFX (Ver. 1.0), marketed
by Software FX, Inc. at 7100 West Camino Real, Boca
Raton, Fla. 33060. The User's Manual for ReportFx is
hereby incorporated by reference as if fully reproduced
herein.

I. Analysis of Captured Frames

The present invention is also capable of saving the
contents of the capture butfer to a capture file on a storage
device (see Frame Analysis above for discussion of capture
buffer). The present invention can then display information
about specific flames stored in the capture file. The user
interface allows the user to examine a captured flame, search
the capture file for filter criteria, view the protocols present
in a frame, specific flames, view only those flames which
meet specific and print the contents of the flame on a printer
attached to the PC. Analysis of captured frames is accom-
plished by use of a software application entitled Examine
which is marketed by Wandel & Goltermann Technologies,
Inc. at 1030 Swabia Court, Research Triangle Park, N.C.
27709—3585.

J. Use of Analysis

If an event is noted, depending upon the nature of the
event noted, the data portion of the mesage conveying that
event information to the PC will include any MAC addresses
that were involved in that event. The user can request
reporting or displaying of any combination of further infor-
mation about that MAC addres that might be pertinent to
that event.

For example, if a high level of network utilization is
noted, the transmitting stations and receiving stations can be
displayed as sorted according to the number of mmages
transmitted or received. This will immediately disclose
which stations are transmitting the most (top talkers)and
which stations are receiving the most (top listeners).

The station statistics for the top talker or top listener can
then be queried by protocol used. If a large number of the
frames for a station carry the IP (internet protocol), it could
mean that the employee using that station is either gathering
a lot of needed project information flom the internet or that
the employee is “surfing" the internet on company time.
Therefore, some supervisory involvement may be in order to
ascertain if that employee should be switched to a more
lightly—loaded network or should be admonished about wast-
ing company time.

10

15

30

35

4s

50

32
VII. Conclusion

While the protocol analyzer herein described constitutes
the preferred embodiment of the present invention, it is to be
understood that the invention is not limited to this precise
form of apparatus and that changes may be made therein
without departing flom the scope of the invention which is
defined in the appended claims.

We claim:

1. A protocol analyzer for calculating and displaying
protocol distribution in real-time in connection with moni-
toring data flames carried on a digital transmi$ion network,
comprising:

means for monitoring the transmission, over the digital
transmission network, of flames containing data and
protocols;

means for identifying the protocols within the flames and
for identifying the encapsulation of the protocols within
the flames:

means for storing the identity and encapsulation of the
protocols within the flames:

means for calculating the protocol distribution of the
flames; and

means for displaying in real-time the protocol distribution
of the flames in a hierarchical tree format based upon
the encapsulation of the protocols within the flames,
said means comprising:
a firstprocessing instrumentality, comprising means for

periodically requesting a protocol distribution update
meSage containing encoded updated protocol di5<
tribution information flom said means for calculat-

ing the protocol distribution of the flames;
a second processing instrumentality, having:

a. means for receiving and decoding the protocol
distribution update meme to obtain the updated
protocol distribution information, and

b. means for providing said first processing instru-
mentality with a pointer to the updated protocol
distribution information;

a display device for displaying the updated protocol
distribution information; and

a third processing instrumentality, having:
a. means for obtaining a pointer to the updated

protocol distribution information flom said first
processing instrumentality, and

b. means for sending the updated protocol distribu-
tion information to said display device in a hier-
archical tree format based upon the encapsulation
of the protocols within the flames.

t It 1' 1'

NOAC EX. 1018 Page 215

NOAC Ex. 1018 Page 216

é?
. _ INVENTEK fluéfl1/03/2003 17:40 FAX 15102912985

Applicant(s): Dietz, et al.

Application No.: 09/608126

Group Art Unit: 2142

Examiner: Vu, Thong H.

' : 0
Filed June 30, 200 RECEWED
Title: RE—USING INFORMATION FROM GENTRAL FAX CENTER
DATA TRANSACTIONS FOR
MAINTAINING STATISTICS IN NETWORK NOV 0 3 2003
MONITORING

:* ' TRANSMITTAL: RESPONSE TO OFFICE ACTION QWUAL
g - ‘e
1 Commissioner for Patents

P.O. Box 1450

Alexandn'a, VA 22313-1450

Dear Commissiouer:

Transmitted herewith is a response to an office action for the above referenced application.

Included with the response are:

drawing(s);

This application has: -
a small entity status. If a claim for such status has not earlier been made. consider

this as a claim for small entity status.

No additional fee is required.

00“V

1 Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this correspondence is being facsimile transmitted to the US. Patent and Trademark
office at 703—g72-9306 addressed to Commissioner for PatenlS. P.0- BOX 1450. Alexandria. VA 22313-1450
01'].

Dale: W Signed:
Narne: DOV Rosenfeld. Reg. No. 38687

Received from < 15102912985 > at 11131113 7:37:57 PM [Eastern Standard Time}.s,

NOAC EX. 1018 Page 216

NOAC Ex. 1018 Page 217

11/03/2003 17:40 FAX 15102912905 INVENTEK I005.,_.——/

7

Application No.2 09/608126 Page 2

Applicant(s) beliezexs) that no Extension of Time is required. However, this
conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need for a petition for an extension of time.

X Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(3) of:

X one months ($110) two months ($410)

three months ($930) four months ($1450)

If an additional extension of time is required, please consider this as a petition therefor.

X A credit card payment form for the required fee(s) is attached.
____.

X The Commissioner is hereby authorized to charge payment of the following fees

associated with this communication or credit any overpayment to Deposit Account

No. 50-0292 (A DUPLICATE OF THIS TRANSMIITAL IS ATTACHED):

X Any missing filing fees required under 37 CFR 1.16 fer presentation of
additional claims. .

X Any missing extension or petition fees required under 37 CPR 1.17.

..(muvum*N-wgN“..
«a.«mum....

Respectfully Submitted,

5 449/ 0.5
Date Dov osenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2

Oakland, CA 94618

Tel. +1-510-547-3378; Fax: +1-510-291-2985

,Ammme—Ié'ww~4L¢MW.1
Aww

L Received from<15102912985>at11l3l03 7:37:57PM [Eastern Standard Time] NOAC E 1018 P 217a c; X. age

NOAC Ex. 1018 Page 218

6 e

11/03/2003 17:41 FAX 15102912985 _ INVENTEK .005

Our Rafi/Docket No: APPT—001-3 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Application No.: 09/608126

Filed: June 30, 2000

; Title: RE—USING WPORMATION FROM

DATA TRANSACTIONS FOR ‘

MAINTAINING STATISTICS IN NETWORK
MONITORING

Group Art Unit: 2142

Examiner: Vu, Thong H.

TFiANSMITTAL: RESPONSE TO OFFICE ACTION

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313—1450

Dear Commissioner:

Transmitted herewith is a reSponse to an office action for the above referenced application.
Included with the response are:

drawing(s);

This application has:
a small entity status. If a claim for Such status has not earlier been made, consider
this as a claim for small entity Status.

No additional fee is required.

'(lr<~‘(,.“.1—~,.

.-...m/,... Certificate of Facsimile Transmission under 37 OFF! 1.8

I hereby certify that this commondence is being facsimile transmitted to the Us. Patent and Trademark
Office at 703-872-930 addressed to Commissioner for PatcnlS. P.0- Box 1450.Alexandrio, VA 22313-1450
on.

Date:W signed:
Name: Dov Rosenfeld, Reg. No. 38687

Received from <15102912985>at1113103 7:37:57 PM [Easiem Standard Time] NOAC EX. 1018 Page 218

NOAC Ex. 1018 Page 219

11/03/2003 17:41 FAX 15102912985 INVENTEK .007

5 //_.___ ?"‘“"“— ——_‘ —'——_ _ ‘—

Application No.: 09/608126 Page 2

E Applieant(s) believe(s) that no Extension of Time is required. However, this
conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need for a petition for an extensicm of time.

X Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(2).) of:

X one months ($110) two months ($410)

three months ($930) four months ($1450)

If an additional extertsion of time is required, please consider this as a petition therefor.

X A credit card payment form for the required fce(s) is attached.

%
S
t

i . X The Commissioner is hereby authorized to charge payment of the following fees
1 associated with this communication or credit any overpayment to Deposit Account

i No. 392% (A DUPLICATE on THIS TRANSMlT'I‘AL rs ATTACHED):

} X Any missing filing fees required under 37 CFR 1.16 for'presentation of
iIt

1

5

additional claims.

X Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

E M
Date Do osenfeld, Reg. No. 38687

" Address for correspondence:
‘ Dov Rosenfeld

5507 College AvenueSuite 2

Oakland. CA 94618
TeL +1-5106476378; Fax: +1-510-291-2985

Received from 15112912985 >11 11131113 7:37:57 PM [Eastern Standard Time]
NOAC EX. 1018 Page 219

NOAC Ex. 1018 Page 220

E@\x ‘
O 95(p

=‘mvnamm sI:L:

S}
. 3’

or)”

F ”74 ”we”?

@ Q

11/03/2003 17:39 FAX 15102912985 INVENTEK I001

' , necaveo
CENTRAL FAX CENTER

NVENTEK Fax 0V 0 3 2003
vFIosenfeId N

5507 College Avenue,Suit62 , ‘ a .

Oakland, CA 94618, USA FFIQI , 2
Phone: (510)541-3373; Fax (510)653-7992 ~ 5
dovfiinventekcom

~..~.——,.1‘41“.»w-‘m“WM.wK
,

I
I
Is.

Received from

 Patent Application Ser. No.: 09/608125 Rafi/Docket No: APPT-001-3

Applicanfls): Dietz, et al. Examiner.z Vu, Thong H.

Filing Date: June 30, 2000 Art Unit: 2142

FAX COVER PAGE

TO: Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

United States Patent and Trademark Office,

(Examiner Vu, Thong H., Art Unit 2142)

Fax Na.: 703-872-9306

DATE: November 03, 2003

FROM: Dov Rosenfeld, chv No. 38687

RE: Response to Office Act-inn

Number afpages including cover: 20

OFFICIAL COMMUNICATION

PLEASE URGENTLY DELIVER A COPY OF

THIS RESPONSE TO

EXAMINER VU, THONG H., ART UNIT 2142

 Cerfifimte of Facsimile TransmiSSiOn under 37 CFR 1-8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark Office at
telephone number 703-372-9306 addressed the Commissioner for Patents. PO. Box 14-50, Alexandria, VA 22313—1450
On.

Dale:W Signed:
N ame: Dov R enfeld, Reg. No. 38687

<15102912985>at11I3I037:37:57PMIEasIemSIandardTime] NOAC E 10181) 220x. age

NOAC Ex. 1018 Page 221

<3
11/03/2003 17:39 FAX 15102912985

121002

/ .o

TRANSMITTAL

FORM
(to be used for all correspondence after initial filing)

—

 Assignment Papers

{for an Application)

Drawingts)

Afler Allowance Communication

to Group

Appeal Communication to Board
oi Appeals and Interferences

Appeal Communication to Group
(Appear! Notice, Brier; HepIan'ef)

Proprietary Information

E] Fee Transmittal Form

 Fee Attached (extension of time)

Amendment] Response

D D After Final

D D Afiidavits/declarationls)

 Licensing—related Papers

 Petition Routing Slip (PTO/83169)
and Accompanying Petition
To Convert a

Provisional Application
Power of Attorney, RevowfiOn
Change of Correspondence
Address

Terminal Disclaimer

 Status Letter

wma‘o—m»"WW0-...».c.»~ Il
r

Extension of Time Request

EIEIL'JEIEIEI
Additional Enclosure(s)

(please Identify below):

 Express Abandonment Request
III

 Intonation Disclosure Statement E Small Entity Statement

mmum~«mt,.

Certified Copy of Priority Document(s) D Request oi Reiund

Response to Missing Parts] Incomplete
Application

IIIEI

SIGNATURE OF APPLICANT, ATTORNEY. 0R AGENT/ CORRESPONDENCE ADDRESS

Film or Dov Rosenield, Re- No. 58687
Individual name

Signature

Date

ADDRESS FOR CORRESPONDENCE

Fin-n Dov Rosenfeid
or 5507 College Avenue. Suite 2
Individual name Oakland, CA 94618. Tel: +1-510-547—3378

EIEIEIIIIE

Response to Missing Parts under :37
CFR 1.52 or 1.53

t

i
it

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this correspondence is being facsimile transmitted with the United States Patent and Trademark Office at

Telephone number 703-746-7239 addressed to: CommissionEr for Patents. PO. Box 1450. Alexandria. VA November 3, 2003
22313-1450 on this date:

bummed_._
EMEIIIIIIIIIIIEZEIIIIIIIfifilhmmmww”—

Received from 15102912985 > at 11I3103 7:37:57 PM {Easiem Standard Time]

NOAC EX. 1018 Page 221

NOAC Ex. 1018 Page 222

‘ 4 . s n:
s . 11/03/2003 17:41 FAX 15102912985 INVENTEK 2%; 7’ /’—— ‘ — éI/fivc
‘ I

' OuchfJDockctNo:we ‘ Patent /#5 /£13 '
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, er al.

Application No.: 09/608126

Filed: June 30, 2000

£ "nae: RE~USING INFORMATION FROM DATA
: TRANSACTIONS FOR MAJNTAINING

f STATISTICS IN NETWORK MONITORING

Group Art Unit: 2142~“mum“...wiw.
Examiner: Vu, Thong H-

RESPONSE TO OFFICE ACTION UNDER 37 CFR 1.111

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

This is a response to the Office Action of July 10, 2003.

Any amendments to the Specification begin on a new page immediately after these
introductory remarks.

Any amendments to the claims begin on a new page immediately after such amendments
to the specification, if any.

Any amendments to the drawings begin on a new page immediately after such
amendments to the claims, if any.

The Remarks/arguments begin on a new page immediately after such amendments to the
drawings. if any.

lfthere are drawing amendments. anAppendr'x including amended drawings is attached
following the Remarks/arguments.

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this correspondence is being facsimile transmitted to the U.S. Patent and Trademark
Office at 3-872-930 addressed to Cormninsioner for Patents, PD. Box 1450, Alexandria. VA 22313—1450
on.

Dale: W Signedifi:
Name: Dov Rosenfeld, Reg. No. 38687

Receivedfrom<15102912985>a111l3l03 7:37:57 PM [Eastern Standard Time]

NOAC EX. 1018 Page 222

NOAC Ex. 1018 Page 223

m...

. 11/03/2003 17:41 FAX 15102912985 _ INVENTEK .009/' .

Application No.: 09/608126 Page 2

AMENDMENT(S) TO THE CLAIMS:

The following listing of claims will replace all prior versions, and listings, of claims on the

application. All claims are set forth below with one of the following annotations.

. (Original): Claim filed with the application.

- (Currently amended): Claim being amended in the current amendment paper.

- (Canceled): Claim cancelled or deleted from the application, No claim text is
shown.

- (Withdrawn): Claim still in the application, but in a non-elected status.

0 (New): Claim being added in the current amendment paper.

. (Previously presented): Claim added or amended in an earlier amendment paper.

0 (Not entered): Claim presented in a previous amendment, but not entered or whose

entry status unknown. No claim text is shown.

Q6 . connection point on a computer network, the method comprising:

(a) receiving a packet from a packet acquisition devi coupled to the

W:

(b) for each received packet, lookin:yflow-entry database eempfising none
that may contain one or more flow tries for previously encountered

conversational flows. the looki up to determine if the received packet is of/
./

an existing flow;

@903.) if the pac t is of an existing flow, identjfling the last encountered

state of e w erformin an state 0 erations s ecified for the state of the

flow, and upda/ting the flow-entry of the existing flow including storing one or
more sytistical measures kept in the flOW—BIIT-I'Yr; and

(3)311 / if the packet is of a new flow, performing any state operations

aired for the initial state of the new flow (1 storing a new flow-entry for

the new flow in the flow-entry database. including storing one or more

statistical measures kept in the flow-entry,
Receivedfrom<15102912985>al11l3fl]37:37:57PM[EastemStandardTime] NOAC E 1018 P 223

x. age

NOAC Ex. 1018 Page 224

m-
.«u. Hum“m“..V

t.Mt‘, .I~1«W,«W,&y,-,_g.w

ii
1
r

-.,...,.....,.<..,-

9 e
. 11/03/2003 17:42 FAX" 15102912935 INVENTEK I010/‘_—_——-

Application No.: 09/608126 ' page 3

wherein every packet passing though the connection point is received b be packet

acquisition device.

2. (Original) A method according to claim 1_ further ineluding:

extracting identifying portions from the packet.

wherein the looking up uses a function of the identifyin portions.

3. (Original) A method according to claim 1, whe ‘11 the steps are carried out in real

time on each packet passing through the connec ' 11 point.

4. (Original) A method according to claim 1 wherein the one or more statistical

measures include measures selected from 6 set consisting of the total packet count

for the flow, the time, and a differentia time from the last entered time to the present

5. (Original) A method accordin to claim 1, further including reporting one or more

metrics related to the flow of ow—entiy from one or more of the statistical measures

in the flow—entry.

6. (Original) A method a ording to claim 7, wherein the metrics include one or more

(1 according to claim 5, wherein the reporting is carried out from

erein the one or more metrics are base menics related to the time

Received from < 151112912935 >at 11131037137157 PM [Eastern Standard Time]

NOAC EX. 1018 Page 224

NOAC Ex. 1018 Page 225

3 e

: . 11/03/_2003 17.:43 FAX 15102912985 _ INVENTEK .011n, /" .

’i .

i Application No.: 09/608126 Page 4

10. (Currently amended) A method according to claim 1, wherein
a,

’ includes if the packet is of an existing flow, identifying the last enc tered state of

of the flow starting

steg (d) includes if the

‘ ed for the initial state of

the flow and performing any state operations specified for the st

i” from the last encountered state of the flow; and wherein

‘ packet is of a new flow, performing any state operations 1'

the new flow.

\ 11. (Original) A method according to claim 10, furth including reporting one or more
metrics related to the flow of a flow—entry from 0 or more of the statistical measures

in the flow-entry.

12. (Original) A method according to claim 1, wherein the reporting is carried out

from time to time, and wherein the one o more metrics are base metrics related to the

ttlat»l,,.awWwW:—uww,,
time interval from the last reporting ti e.

13. (Original) A method according claim 12, wherein the reporting is part of the state

operations for the state of the fin .

14. (Original) A method aceo g to claim 10, wherein the state operations include

updating the flow-entry, inc ding storing identifying infol'mation far future packets to

be identified with the flow enny.

qx~W.~’FWW‘Wsawans..4
«tanw’'‘ “Aan

15. (Original) A method cording to claim 14, further including receiving further

packets, wherein the s te processing of each received packet of a flow furthers the

identifying of the a lication program of the flow.

16. (Original) A m thod according to claim 15, wherein one or more metrics related to

the state of the w are determined as part of the state operations specified for the

17. (Currentl amended) A packet monitor for examining packets passing through a

protocol the monitor comprising:

8
d

*2
é

a packet acquisition device coupled to the connection point and configured

to receive packets passing through the connection point;

 ‘ ‘1‘}; Received from < 15102912985 ”11113103713757 PM [Eastern Standard Time]
NOAC EX. 1018 Page 225

NOAC Ex. 1018 Page 226

3 c
/11/os/2oos 17:43 FAX 15102912985 rmmx ‘012

~~VW/‘wmmvw—lvv,
Application No.: 09/608126 ' Pages

(b) a memory for storing a database eempr—ising—nene that ma co tain one or

t more flow—entries for previously encountered conversational ows to which a

received packet may belong; and

: (c) an analyzer subsystem coupled to the packet acquisi’tiOn device configured
to lookup for each packet for each received packeyfihether a received packet

i \ belongs to a flow-entry in the flow-entry databyé, to update the flow-entry of

the existing flow including storing one or trzr'e statistical measures kept in the
flow-entry in the case that the packet is?
flow-entry for the new flow in the flayentry database, including storing one or

existing flow, and to store a new

more statistical measures kept in th flow-entry if the packet is of a new flow.

18. (Original) A packet monitor accor ' g to claim 17, further comprising:

a parser subsysrem coup to the packet acquisition device and to the

analyzer subsystem confi ured to extract identifying information from a

received packet,

entry, and wherein the * che lookup uSes a function of the extracted identifying

information.

19. (Original) A pa ct monitOr according to claim 17, wherein the one or more

statistical me ures include measures Selected from the set consisting of the total

packet cou for the flow, the time, and a diflerential time from the last entered

time to th present time.

20. (Ori ') A packet monitor according to claim 17, finther including a statistical

process configured to determine one or more metrics related to a flow from one Or

more the statistical measures in the flow-entry of the flow.

21. (riginal) A packet monitor according to claim 20, wherein the statistical processCIr

de ermine and reports the one or more metrics from time to time.

Received from < 15102912985 > at 11131113 7:31:57 PM [Eastern Standard Time]

NOAC Ex. 1018 Page 226

NOAC Ex. 1018 Page 227

a a:
A 11/03/2003 17344 FAX 15102912935 INVENTEK .013/ p .

Application No.: 09/603126 Page 6

REMARKS

Status of the Application:

1 Claims 1—21 are the claims of record of the application. Claims 1—21 have been rejected.

Amendment to the Claims:

Applicants have amended the claims to overcome misnumbering and other informality
pointed out by the examiner, and to further bring out the inventive aspects over the cited

prior art.

Claim Objections

In pamggaph 2 of the office action, paragraphs in clams l and 10 were objected to as being
Min—WA

This amendment conects the misnumhering. Applicants thank the examiner for pointing

this typographical error out. Examiner was correct in the interpretation.

m...~—-,mm<mwvrplmw....,.
In paraggaph 3 of the office action, the Egression "none or more" was objected to.

This amendment changed "none or more" to "one or more" and added that the database

gm contain one or more entries. The use of "none or more" is common in the art, and
regularly appears in specifications, e.g., those put out by the IEEE and W3 consonium. In
this case, the use of "none or more" covers the case. fer example, that there are not yet any

entries in the database. However, because the examiner objected, alternate language was
found.

Claim Rejections -35 USC § 102

1

In paragraph 4 of the office 3911'on, claims 1—21 have been rejected under 35 USC 102(c) as
being anticipated by U.S. patent 5,850,388 to Anderson et aL, hereinafter "Anderson."

Why Anderson does not anticipate Applicant's invention

While aspects of the present invention, like Anderson, provides statistics, the preSent
invention differs from Anderson in several ways. Applicant will argue that Anderson does

not anticipate the present invention as follows:

1) The present invention analyzes and compiles statistics about conversational flows;
Anderson does not distinguish flows, but rather gathers station-level statistics, and

network protocol statistics.

2) The present invention includes looking up each and every packet to see if it beIOngs to
a previously encountered flow; Anderson only provides for looking up a database after
analysis as a separate process that looks at statistics gathered: the station-level
statistics, or the protocol statistics.

Received from < 15102912935 > at 11131037137i57P111 [Eastem Standard Time]
NOAC EX. 1018 Page 227

NOAC Ex. 1018 Page 228

Q s
_ 11/03/2003 17:44 FAX 15102912985 INVENTEK .014

Application No.: 09/608126 I Page 7

f 3) An aspect of the present invention includes, for any packet ascertained to belong to an

: existing flow by looking up the database, identifying the state of the flow, and carrying

E out any state operations defined that that state; Anderson has no concept of state of the
1

i

flow, or even of a conversational flow, so that no such state operations are therefore
carried out.

4) Anderson provides for filtering the packets prior to analysis; the present invention

analyzes each and every packet.

There are many other aspects of the present claims that are not anticipated by Anderson.

r

;
ra.
lt
5'

Description of Anderson

Anderson describes a protocol analyzer that is capable of displaying station level statistics,

network statistics, real-time event information, and protocol distribution.

The operation of Anderson is summarized By FIGS. 3, 4, and 7. FIG. 3 is a diagram

illustrating the flow of data, analysis, and control in Anderson. FIG. 4 is a flowchart

illustrating the process by which statistics for individual stations on a network (Station-

level statistics) are calculated, and FIG. 7 is a flowchart illustrating the method by which

protocol distribution is calculated.

FIG. 3 is a diagram illustrating the flow of data, analysis. and control. As shown in FIG. 3,

Anderson includes a protocol analyzer instrument 304 that carries out station level analysis

(see FIG. 4) and protocol analysis (See FIGS. 5, 6, and 7). FIG. 4 is a flowchart illusmtting

the process by which statistics for individual stations on a network (station-level statistics)
are calculated, while FIG. 7 is a flowchart illustrating the method by which protocol

distribution is calculated and stored in the data structure shown in FIG- 5 for each protocol

rec0gnized. The station level analysis of FIG. 4 is described starting col. 10, line 43, while

protOcol distribution analysis of FIG. 7 is described starting en]. 16, line 64.

The analysis is carried out for a sampling time, e.g., the network monitoring session.

The results of the statistical analysis are Sent to a user interface in a PC operated by the

user. FIG. 6 illustrates the data structure used to send the protocol distribution to the user
interface in the PC. -

The usar interface includes looking up a database 310. It is the results of the statistical
analysis that are looked up to produce various reperts for the user.

Description of the present invention

FIG. 3 shows the operation of the analyzer of the present invention. This is also described

in more detail in related and incorporated by reference U.S. Patent application 09/608237

for METHOD AND APPARATUS FOR MONITORING YRAFFIC INA NETWORK", to

inventors Dietz, et a1, Attemey/Agent Docket APPT-DOl-l. The present invention adds

statistical analysis to U-S. Patent application 09/608237.

Received from < 151112912985 > at 1113103 7:11:57 PM [Eastern Standard Time]

NOAC Ex. 1018 Page 228

NOAC Ex. 1018 Page 229

3 e
z . 11/03/2003 17:44 FAX 15102912985
. /_ . INVENTEK 21015

Application No.: 09/608126 ' Page 3

. FIG. 3 describes a network monitor that includes carrying out protocol specific operations

2 on every individual packet that passes through a connection point on a network. The

l operations include extracting information from header fields in the packet to use for
building a signature for identifying the conversationalflow of the packet and for

recognizing future packets as be10nging to apreviously encounteredflaw. A parser

subsystem includes a parser for recognizing different patterns in the packet that identify the
protocols used. For each protocol recognized, an extractor extracts important packet
elements from the packet. These form a signature (i.e., key) for the packet. The extractor

also preferably generates a bash for rapidly identifying a flow that may have this signature
from a database of known flows.

For each packet, the flow signature of each packet, the hash and at leasr some of the

payload are passed to an analyzer subsystem.

each packet, looks up a database of flow records for previously encountered conversational
flows to determine whether a signature is from an existing flow. The analyzer further

identifies the state of the existingflow, and performs any state processing operations
specified for the state. In the case of a newly encountered flow, the analyzer includes a flow
insertion and deletion engine for inserting new flows into the database of flows. Any state

operations that are specified for the new flow are also carried out.

it

g , The analyzer subsystem receives parts of each packet from the parser subsystem, and,for
i
ii

{ Statistics are maintained for each conversational flow.

The present invention analyzes and compiles statistics about conversational
flows; Anderson does not distinguish flows, but rather gathers station-level

statistics. and network protocol statistics.

l The present invention includes a process that recognizes a canvematianalflaw and then
E generates statistics for the conversational flow. Andersen does not recognize a

cenversational flow, but instead compiles statistics for particular stations, and/or for

particular network protocols used. A conversational flow is not identified simply by the
stations that are involved in a communication, but rather by the nature of the

communication, e.g., the application program being invoked. Thus, even fer the same two

stations, the present invention identifies different conversational flows between two

stations and compiles statistics on each conversational flow.

E

i

It is important to be able to distinguish between the term “connection flow" commonly
used to describe all the packets involved with a single connection, and a conersational

flow as used in the present invention. A conversational flow is the sequence of packets that

are exchanged in any direction as a result of an activity—for instance, the running of an

application on a server as requested by a client. Unlike Anderson, the present invention is
able to identify and classify conversationalflows rather than only connectionflows,
including gathering statistics on the flows- The reason for this is that some conversational
flows involve more than one connection, and some even involve more than one exchange

) of packets between a client and serverv Thus, there may be different states to a flow. This is
t particularly true when using client/server protocols such as RPC, DCOMP, and SAP,

which enable a service to be set up or defined prior to any use of that service.

 » Received ll0m<15102912985>al11l3l037137157PM [Eastem Standardlime] NOAC E 1018 9
* . p, X. Page 22

NOAC Ex. 1018 Page 230

sl
i

ii

{ Received from < 151112912985 > at 11131113 7:37:51 PM [Eastern Standard Time]9,!»

Q o
‘ 11/03/2003 17:45 FAX 15102912985 INVENTEK .016

Application No.: 09/608126 ' Page 9

An example of such a case is the SAP (Sewice Advertising Protocol), a NetWare (Novell
Systems, Provo, Utah) protocol used to identify the services and addresses of servers

attached to a network. In the initial exchange, a client might Send a SAP request to a server
for print service. The server would then send a SAP reply that identifies a particular

addressu—for example, SAP#5-—~as the print service On that server. Such responses might
be used to update a table in a router, for instance, known as a Server Information Table. A

client who has inadvertently seen this reply or who has access to the table (via the router

that has the Service Information Table) would know that SAP#5 for this particular Server is

a print service. Therefore, in order to print data on, the server, such a client would not need

to make a request for a print Service, but would simply send data to be printed specifying
SAP#5. Like the previous exchange, the transmission of data to be printed also involves an

exchange between a client and a server, but requires a second connection and is therefOre

independent of the initial exchange. In order to eliminate the possibility of disjointed
conversational exchanges, it is desirable for a network packet monitor to be able to

“virtually concatenate"—that is, to link—the first exchange with the second. If the clients

were the same, the two packer exchanges would then be correctly identified as being part of
the same conversational flow. ‘

Other protocols that may lead to disjointed flows, include RPC (Remote Procedure Call);
DCOM (Distributed Component Object Model), formerly called Network OLE (Morosofr

Corporation, Redmond, Washington); and CORBA (Common Object Request Broker

Architecture). RPC is a programing interface frdm Sun Microsystems (Palo Alto,

California) that allows one pregrarn to use the services of another program in a remote

machine. DCOM, Microsoft's counterpart to CORBA, defines the remote procedure all

that allows those objects—objects are self—contained software modules—to be run

remotely over the network. And CORBA, a stande from the Object Management Group
(OMG) for communicating between distributed objects, provides a way to execute

programs (objects) written in different programming languages running on different

platforms regardless of where they reside in a network.

The present invention includes looking up each and every packet to see if it
belongs to a previously encountered flow; Anderson only provides for
looking up a database after analysis as a separate process that looks at
statistics gathered: the station-level statistics, or the protocol statistics.

Each and every packet has its signature extracted“); database that includes any previously
encountered flow is looked up to asCenain if the present packet belongs to an existing flow.
Anderson does have a database, but it is a database in the PC (304) for use by the user

interface. The only informatiOn passed to the PC by Anderson‘s analysis program is station

level statistics or protocol distributions obtained during sampling periods. Individual

packets or parts thereof are not paSSed on to the user interface, so each and every packet is

not looked up.

An aspect of the present invention includes, for any packet ascertained to

belong to an existing flow by looking up the database, identifying the state
of the flow, and carrying out any state operations defined that that state;

NOAC EX. 1018 Page 230

NOAC Ex. 1018 Page 231

5 Q

‘ _ 11/03/2003 17:45 FAX 15102912935 INVENTEK I017

Application No.: 09/608126 . Page 10

Anderson has no concept of state of the flow, or even of a conversational

flow, so that no such state operations are therefore carried out.

As described above, each conversational flow may have several states befOre reaching a

"steady" state. At any state in the flow, according to an aspect of the invention there may

be some state-specific operations that need to be carried out to continue the identification

process- Anderson does not include carrying out state-specific processing, Or even the

concept of conversational flows.

There is no way the method described by Anderson can carry out the "virtually

concatenation" described above. Anderson does not include the concept of the state of a
flow.

Anderson provides for filtering the packets prior to analysis: the present

invention analyzes each and every packet.

Anderson includes a filter that provides for optionally selects only certain type of frames

for analysis. See the paragraph starting col. 10, line 20. Therefore, not only does Anderson

not look up its database (Anderson's 3 10) for each and every packet becauSe only statistics

rather than individual packets are passed on to the database, but also not even every packet

is subject to the analysis of analyzer 304.

Note that the analysis carried out by Applicant's analyzer (Applicant‘s FIG. 3) identifies

‘flows, and compiles statistics on the recognized flows. Therefore no would be required.
Filters have disadvantages as described in incorporated by reference US. Patent '

application 09/608237.

Examiner’s 102(9) rejection of claim 1 over Anderson.

The amendments

In order to further bring out the difference between Anderson and Johnson, the Applicants

have amended claim 1 to explicitly state that the packet acquisition device is coupled to the

connection point, and that the lockup is carried out for every packet reseived from the

packet acquisition dcvice.

Anderson's database 1408 vs. the flow entry database. Anderson does not

look up that database 1403 for each packet

In panth 5 of the office action, the Examiner asserts that, in respect to claim 1,
Applicant's flow entry database is Anderson's database 1403. This database is part of
Anderson‘s user interface described in Section IV of Anderson starting col- 22, line 48

through to the end of the description (col. 31). As stated in col. 9, lines 36-40, the database

is used selectively to stare the results of the analysis that are performed by the protocol

analyzer instrument.

Step (b) of claim 1, as amended, include for each received packet, looking up a flow—entry
database that may contain One or more flow-entries for previously encountered

conversational flows, the looking up to determine if the received packet is of an existing
flow. Ander50n does not do any looking up of databaSe 1403 for each received packet. In

if Receivedlrom<15102912985>at11l3l0’ll:37:5lPlll[Easlem SlandardTime]
é: NOAC EX. 1018 Page 231

NOAC Ex. 1018 Page 232

'~“yur(v(mee-Mwfi
Q a

‘ 11/03/2003 17:48 FAX 15102912985 INVENTEK .013

Application No.: 09/608126 ' Page 11whenmewflmfla”m
fact, as shown in FIG. 3, Anderson's database is part of the under interface 303 which is

quite removed from Anderson's protocol analyzer 304. Anderson'5 database received

statistical reports, either station level reports or protocol distribution reports, so cannot look

up information for each received packet.

Anderson's "previous session“ is not a previously encountered
conversational flow.

.(warn—wwmwws—b'w
Furthermore, Applicant's lockup is to determine if a packet is part of an existing
conversational flow. In paragraph 5, the examiner erroneously asserts that the

conversational flow is Anderson's "previous network monitming session" as in col. 24,

lines 6-13. This part of Anderson states:

Ifthe user is not viewing "real time " network information but is viewing network

informationfrom a database containing network informaH'On gathered during a
previous network monitoring Session (i.e., "baseline data"), the View 1404 gathers
relevant informationfrom the Database 1403 andpresents the information in the

appropriate formal to the user via the PC's display device.

Anderson's Session as used here is a network monitoring session during which data is

collected, and not a conversational flow. Anderson clearly defines the network monitoring
session as "the period of time during which a network is being analyzed."

Anderson's "prior entries" are not the. same as previously encountered
conversational flows.

The examiner also asserts that Ihe "prior entries" mentioned in Anderson col. 28, lines 26—

43 are the same as Applicants previously encountered conversational flows in the flow—

entry database.

;
l
l

It has already been stated that the flow enlIy databasa is not the same as Anderson's
database 1403.

The prior entries are in the protocol distribution array 602 part of the message shown in

FIG. 6 that is used to send the results of protocol analysis from Anderson's analyzer to the
PC by use by the user interface.

FIGS. 5, 6, and 7 described the protocol analysis part of Anderson's analyzer. See, for

example, Section C. starting col. 16, line 59 for a description of how the protocol analyzer
works. Anderson's protocol analysis method tries to recognize every protocol in a frame,

one frame at a time. A memory array is set of up for each protocol that is enc0untered

during a sampling period. e.g-, during the network monitoring Session. Such an array is

shown in FIG. 5. Array information is updated each time a protocol is encountered in a

received frame. The array keeps track of statistics for protocol during the session.

As states in col. 19, starting line 1, the steps of the analysis are performed iteratively for
each protocol present in a received frame until all protOcols in the frame have been

demded, The entire process is repeated for all frames detected during the network

monitoring session, after which the statistics are reset.

~ Receivedfrom<15102912985>at11l3l037:37:5lPM[EaslemSlandardTime] NOAC Ex 1018 Page 232

NOAC Ex. 1018 Page 233

e e
. 11/03/2003 17:48 FAX 15102912985 INVENTEK .019

m....m~,,~

Application No.: 09/608126 ’ Page 12

3 The results of the analysis of all protocols encountered is then sent to the PC for use by the
7 user interface using a protocol distribution update message, as shown in FIG. 6.

‘3 Thus, the "prior entries" mentioned in Anderson col. 23, lines 26—43 are priOr entries of
" previously previous distribution update messages that have been collected. Again, this is

very different from Applicant's looking up the flow databaSe for previously encountered

c0nversational flows-

There is infact no concept ofa conversationalflaw in Anderson.

The examiner further asserts that "every packet passing through the connection point is
received by the packet acquisition devico“ is described by Anderson in col. 8, line 26—col.

9, line 13. As already discussed, Anderson provides a filter, so teaches away from even

dealing with each packet.

In summary, the examiner has failed to shew that claim 1 (as amended) is anticipated by
Anderson. Claim 1, as amended, is allowable and action to that end is respectfufly

requested.

Rejection of dependent claims 2—16 over Anderson.

Claim 1 is now allowable. Therefore. while Applicants do not admit that any of Examiner's

arguments on the dependent claims are correct, such arguments are new moot. All

dependent claims, including claims 2—16, are allowable.

Rejection of independent claim 10 over Anderson.

In paragraph 15 of the offim action, the Examiner asserts that Anderson described

identifying the last encountered state of the flow and performing any state operations
specified fer the state of the flow starting from the last encountered state of the flow. For

this assertion, the examiner cites "between the last update and the present update“ in
col. 26, lines 6-40. Col. 26 describes actions that occur in the uSer interface, not in the

analyzer, and described how previous collected data is analyzed. This is not carried out for

each packet. There is new concept of conversation] flow or state of the flow in Anderson,

and Anderson cannot carry out state operations 0n the packet.

Thus, even if the examiner remains unconvinced by the arguments with resPect to the
independent claim 1, the examiner has failed to show that claim 10 is anticipated by
Anderson, and claim 10 would still be allowable.

Rejection of dependent claims 11—16 over Anderson.

These claims are all dependent on claim 10. Thus. even if the examiner remains

uncenvinced by the arguments with respect to the independent claim 1, becausa claim 10 is
allowable, the examiner‘s arguments with respect to claims 11—16 are moot, The

Applicants are not making any admission to such arguments being correct, only that they
are moot.

" Received from < 151112912985 > at 11131037315? P111 [Easlem Standard Time]
5;, NOAC EX. 1018 Page 233

NOAC Ex. 1018 Page 234

11/03/2003 17:47 FAX 15102912985 INVENTEK @1020

Application No.: 09/608126 Page 13

Rejection of independent claim 17 over Anderson:

a In paragraph 6 of the office aedgn, the Examiner asserts in that claim 17 contains the

similar limitations set fonh of method claim 1. and that therefore claim 17 is rejected for
the similar rationale set forth in claim 1. As argued above, the examiner has failed to shew that the features of claim 1 (as amended)
are anticipated by Anderson. '

Claim 17 has been amended to include that the looking up is for every received packet. As
argued abcwa, claim 17 would be allowable because Anderson dees not include several of
its features.

ewm‘x.”M4,.fi5,‘.u‘~.mpum...
Claim 17 is therefore allowable, and action to that end is respectfully requested.

Rejection of the dependent claims 18—21 over Anderson.

Claim 17 is now allowable. Therefore, while Applicants do not admit that any of
Examiner's arguments on the dependent claims are correct, such arguments are now moot.

All dependent claims, including claims 18—21, are allowable.

For these reasons, and in view of the above amendment, this application is now considered
to be in condition for allowanCe and such action is earnestly solicited.

Conclusion

The Applicants believe all of Examiner’s rejections have been overcome with respect to all
remaining claims (as amended), and that the remaining claims are allcwable. Action to that

end is respectfufly requested.

If the Examiner has any questions or comments that would advance the prosecution and

allowance of this application, an email message to the undersigned at dov@inventek.com,
or a telephone call to the undersigned at +1—510—547-3378 is requested.

Respectfully Submitted,

Mil-nee
Date Dov e (1, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618
Tel. +1—510-547-3378

Fax: +1—510~291-2985

Email: dov@inventck.com

Received from < 15102912985 > at 1113103 7:37:57 PM [Eastern Standard Time]

NOAC EX. 1018 Page 234

l

l
l

NOAC Ex. 1018 Page 235

Si‘GF/Brm

NOAC EX. 1018 Page 235

NOAC Ex. 1018 Page 236

9 e
UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United sum Plant Ind Tndemlrk Office
Address: COMMISSIONER FOR PATENTS

P O Box I450
Alex-mini, Virglnll 223134450www uspm gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO

09/608,126 06/30/2000 ‘ Russell S. Dietz APPT-OOl-3 2145

Dov Rosenfeld vu, THONG H
Suite 2

5507 College Avenue

Oakland, CA 94618 2142

DATE MAILED: 12/23/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

NOAC EX. 1018 Page 236

NOAC Ex. 1018 Page 237

Applicant(s) Application No.

09/608,126 DIETZ ET AL.

Examiner Art Unit

Thong H Vu 2142

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address -

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR 1. 136(a). In no event however, may a reply be timely filed
after SIX (6) MONTHS from the mailing date of this communication

- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months afterthe mailing date of this communication. even if timely filed. may reduce any

earned patent ten'n adjustment. See 37 CFR 1.704(b).

 Office Action Summary

Status

1). Responsive to communication(s) filed on 03 November 2003.

2a)IZ This action is FINAL. 2b)I:I This action is non-final.

3)I:I Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 CD. 11, 453 0.6. 213.

Disposition of Claims

MEI Claim(s) 1-_21_ is/are pending in the application.

4a) Of the above Claim(s)_ is/are withdrawn from consideration.

5)I:I Claim(s) __ is/are allowed.

6)IZ Claim(s) lfi is/are rejected.

7)I:I Claim(s) __ is/are objected to.

8)I:I Claim(s) __ are subject to restriction and/or election requirement.

Application Papers

9)l:] The specification is objected to by the Examiner.

10)l:] The drawing(s) filed on __ is/are: a)l:] accepted or b)I:] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121 (d).

11)I:I The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. §§ 119 and 120

12)|:] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)I:] All b)|:] Some * c)I:] None of:

11:] Certified copies of the priority documents have been received.

2.|:] Certified copies of the priority documents have been received in Application No. .

31:] Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

13)I:I Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application)
since a specific reference was included in the first sentence of the specification or in an Application Data Sheet.
37 CFR 1.78.

a) E] The translation of the foreign language provisional application has been received.

14)I:I Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121 since a specific
reference was included in the first sentence of the specification or in an Application Data Sheet. 37 CFR 1.78.

Attachment(s)

1) E Notice of References Cited (PTO-892) 4) E] Interview Summary (PTO-413) Paper No(s).__
2) E] Notice of Draftsperson's Patent Drawing Review (PTO-948) 5) I:I Notice of Informal PatentAppIication (PTO152)
3) CI Information Disclosure Statement(s) (PTO-1449) Paper No(s) . 6) E] Other:

US Patent and Trademark Office

PTOL-326 (Rev. 11-03) Office Action Summary Part of Paper No. 8

NOAC EX. 1018 Page 237

NOAC Ex. 1018 Page 238

I
ix
it

i

if

@ e

Application/Control Number: 09/608,126 Page 2

Art Unit: 2142

1. Claims 1-21 are pending.

2. Applicant is required to update the copending applications on pages 1-2.

3. Claims 1 and 17 are amended. Therefore, the Final rejection is appropriate.

Response to Arguments

4. in response to applicant's argument that the references fail to show certain

features of applicant’s invention, it is noted that the features upon which applicant relies

(i.e., re-use information from data transaction) are not recited in the rejected claim(s).

Although the claims are interpreted in light of the specification, limitations from the

specification are not read into the claims. See In re Van Geuns, 988 F.2d 1181, 26

USPQZd 1057 (Fed. Cir. 1993).

5. Applicant's arguments fail to comply with 37 CFR 1.1 1 1 (b) because they amount

to a general allegation that the claims define a patentable invention without specifically

pointing out how the language of the claims patentably distinguishes them from the

references.

6. Applicant's arguments do not comply with 37 CFR 1.111(c) because they do not

clearly point out the patentable novelty which he or she thinks the claims present in view

of the state of the art disclosed by the references cited or the objections made. Further,

they do not show how the amendments avoid such references or objections.

NOAC EX. 1018 Page 238

NOAC Ex. 1018 Page 239

o a

Application/Control Number: 09/608,126 Page 3
Art Unit: 2142

7. Applicant’s arguments, see pages 6-12, filed 11/03/03, with respect to the

rejection(s)of claim(s) 1 and 17 under Anderson reference have been fully considered

but they are not persuasive. Applicant argues the prior art does not teach:

1. analyzing a conversional flows;

2. looking up each and every packet to see if it belongs to a previously flow;

3. identifying the flow, carrying an operation which defines the state;

4. analyzing each and every packet.

Examiner notes the prior art taught :

(1) analyzing a conversional flows [Anderson, a protocol analyzer monitoring real

time event information over the Ethernet which was well-known in the art as full duplex

(i.e.: two way communication network), col 16 lines 10-25];

(2) looking up each and every packet [Anderson, each frame, col 11 lines 5—

17,col 13 lines 52-67] to see if it belongs to a previously flow [Anderson, determines

whether the entry corresponding to the source address of the frame in the station list

array, col 11 lines 57-67];

(3) identifying the flow (i.e.: event lD), carrying a operation which defines the

state [Anderson, construct a detailed event message for reporting of the event to the

user, col 22 lines 25-36];

(4) analyzing each and every packet [Anderson, determines whether the entry

corresponding to the source address of the frame in the station list array, col 11 lines

57-67].

Thus, the rejection is sustained.

NOAC EX. 1018 Page 239

NOAC Ex. 1018 Page 240

‘ a

Application/Control Number: 09/608,126 Page 4

Art Unit: 2142

Claim Rejections - 35 USC § 112

8. Claims 1 and 17 are rejected under 35 U.S.C. 112, second paragraph, as being

indefinite for failing to particularly point out and distinctly claim the subject matter which

applicant regards as the invention (Le: a flow entry database that may contain one or

more flow entries).

Double Parenting

9. The nonstatutory double patenting rejection is based on a judicially created

doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the

unjustified or improper timewise extension of the "right to exclude" granted by a patent

and to prevent possible harassment by multiple assignees. See In re Goodman, 11

F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); In re Longi, 759 F.2d 887, 225

USPQ 645 (Fed. Cir. 1985); In re Van Ornum, 686 F.2d 937, 214 USPQ 761 (CCPA

1982); In re Vogel, 422 F.2d 438, 164 USPQ 619 (CCPA 1970);and, In re Thon'ngton,

418 F.2d 528, 163 USPQ 644 (CCPA 1969).

A timely filed terminal disclaimer in compliance with 37 CFR 1.321(c) may be

used to overcome an actual or provisional rejection based on a nonstatutory double

patenting ground provided the conflicting application or patent is shown to be commonly
owned with this application. See 37 CFR 1.130(b).

Effective January 1, 1994, a registered attorney or agent of record may sign a

terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with

37 CFR 3.73(b).

Claims 1-21 are rejected under the judicially created doctrine of double patenting

over claims 1-10 of U. S. Patent No. 6,651,099 B1 since the claims, if allowed, would

improperly extend the "right to exclude" already granted in the patent.

The subject matter claimed in the instant application is fully disclosed in the

patent and is covered by the patent since the patent and the application are claiming

common subject matter, as follows:

(Application): A method of analyzing a flow of packets passing through a

connection point (protocol analyzer) on a computer network,

NOAC EX. 1018 Page 240

NOAC Ex. 1018 Page 241

Application/Control Number: 09/608,126 Page 5

Art Unit: 2142

(Patent ‘099):A packet monitor for examining packets passing through a

connection point on a computer network in real-time, the packets provided to the

packet monitor via a packet acquisition device connected to the connection point:

(a) receiving a packet from a packet acquisition device coupled to the connection

point;

(a) a packet-buffer memory configured to accept a packet from the packet

acquisition device;

(b) for each received packet, looking up a flow-entm database that may contain

one or more flow-entries for previously encountered conversational flows, the looking up

to determine if the received packet is of an existing flow;

(b) a parsing/extraction operations memory configured to store a database of

parsing/extraction operations that includes information describing how to determine at

least one of the protocols used in a packet from data in the packet; (c) a parser

subsystem coupled to the packet buffer and to the pattern/extraction operations

memoryz the parser subsystem configured to examine the packet accepted by the

buffer, extract selected portions of the accepted packetl and form a function of the

selected portions sufficient to identify that the accepted packet is part of a

conversational flow-sequence; (d) a memory storing a flow-entry database including a

plurality of flow-entries for conversational flows encountered by the monitor;

(e) a lookup engine connected to the parser subsystem and to the flow-entpy database,

and configured to determine using at least some of the selected portions of the

accepted packet if there is an entry in the flow-entry database for the conversational

flow sequence of the accepted packet;

(c) if the packet is of an existing flow, identifying the last encountered state of the

flow, performing any state operation specified for the state of the flow, and updating the

flow-entry of the existing flow including storing one or more statistical measures kept in

the flow-entry; and

NOAC EX. 1018 Page 241

NOAC Ex. 1018 Page 242

.1.5.3»M.
wakfi'x‘

"mm:..,'vv‘s‘

.:{$8..~..51:.

r,:.‘v ..‘,m“M":t‘u'

”an“1sv..W".a,.»...4...4»m~..

a p

Application/Control Number: 09/608,126 Page 6

Art Unit: 2142

(h) a state processor coupled to the flow-entry database, the protocol/state

identification engine, and to the state patterns/operations memory, the state processor,

configured to carry out any state operations specified in the state patterns/operations

memory for the protocol and state of the flow of the packet, the carrying out of the state

operations furthering the process of identifying which application program is associated

with the conversational flow-sequence of the packet, the state processor progressing

through a series of states and state operations until there are no more state operations

to perform for the accepted packet, in which case the state processor updates the flow-

entpy, or until a final state is reached that indicates that no more analysis of the flow is

required, in which case the result of the analysis is announce the protocol and state of

the conversational flow of the packet;

(d) if the packet is of a new flow, performing any state operations required for the

initial state of the new flow and storing a new flow-entry for the new flow in the flow-

entgr database, including storing one or more statistical measures kept in the flow-entry,

wherein evegr packet passing though the connection point is received by the packet

acquisition device.

(0 a state patterns/operations memory configured to store a set of predefined

state transition patterns and state operations such that traversing a particular transition

pattern as a result of a particular conversational flow-sequence of packets (i.e.: new

flow entry) indicates that the particular conversational flow-sequence is associated with

the operation of a particular application program, visiting each state in a traversal

including carrying out none or more predefined state operations;

(g) a protocol/state identification mechanism coupled to the state patterns/operations

memory and to the lookup engine, the protocol/state identification engine configured to

determine the protocol and state of the conversational flow of the packet;

Furthermore, there is no apparent reason why applicant was prevented from

presenting claims corresponding to those of the instant application during prosecution of

the application which matured into a patent. See In re Schneller, 397 F.2d 350, 158

USPQ 210 (CCPA 1968). See also MPEP § 804.

NOAC EX. 1018 Page 242

NOAC Ex. 1018 Page 243

,:w»~.vv.V-.'.fl-¢“I

.v’z».\mfiiumd.gmo‘i‘ui’2.88;».231‘5{Hung}‘
x2..;,

:1",_A

Application/Control Number: 09/608,126 Page 7

Art Unit: 2142

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent

granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

10. Claims 1-21 are rejected under 35 U.S.C. § 102(e) as being anticipated by

Anderson et al [Anderson 5,850,388].

11. As per claim 1, Anderson discloses a method of analyzing a flow of packets (or

frames) passing through a connection point (protocol analyzer) on a computer network

[col 4 line 49-col 6 line 19], the method comprising:

(a) receiving a packet from a packet acquisition device [protocol analyzer, col 8

line 26-col 9 line 13];

(b) looking up a flow-entry database [database, col 5 lines 24-46, col 9 lines 30-

40, col 23 lines 35-45, col 24 lines 6-20,57-col 25 line 50; lookup table, col 18 lines 29-

37] comprising one or more flow-entries for previously encountered conversational

flows, the looking up to determine if the received packet is of an existing flow [previous

session, col 24 lines 6-13; prior entries, col 28 lines 26-43];

(c) if the packet is of an existing flow, updating the flow-entry of the existing

flow including storing one or more statistical measures kept in the flow-entry [col 17

lines 15-23, col 25 lines 22-47, col 27 lines 24—34, col 28 lines 49-67]; and

NOAC EX. 1018 Page 243

NOAC Ex. 1018 Page 244

3 e

Application/Control Number: 09/608,126 Page 8

Art Unit: 2142

(d) if the packet is of a new flow, storing a new flow-entry for the new flow in

the flow-entry database [update new information, col 27 lines 10-53], including storing

one or more statistical measures kept in the flow-entry [statistics, col 27 lines 10-34],

wherein every packet passing though the connection point is received by the packet

acquisition device [protocol analyzer col 8 line 26-col 9 line 13].

12. Claim 17 contains the similar limitations set forth of method claim 1. Therefore,

claim 17 is rejected forthe similar rationale set forth in claim 1.

13. As per claim 2, Anderson discloses extracting identifying portions from the

packet, wherein the looking up uses a function of the identifying portions [information is

extracted from a frame, col 9 line 42-col 10 line 18].

14. As per claim 3, Anderson discloses the steps are carried out in real time on each

packet passing through the connection point [col 4 line 58-col 5 line 46].

15. As per claim 4, Anderson discloses the one or more statistical measure includes

selected from the set of consisting of the total packet count for the flow, the time and a

differential time from the last entered time to the present time [col 28 lines 58-67].

NOAC EX. 1018 Page 244

NOAC Ex. 1018 Page 245

mama.»«53.2.2.5.‘~13‘w"~$‘~
2’:641*

,‘Tumym‘’1‘.in”,,5'
5.5varm

J‘15,“.”-1,
”-1.5,

‘‘“influx”"f~

3 e

Application/Control Number: 09/608,126 Page 9

Art Unit: 2142

16. As per claim 5, Anderson discloses including one or more metrics (parameters)

related to the flow of a flow entry from one or more of the statistical measure in the flow

entry [col 10 lines 20-40, col 19 lines 30-45,co| 22 lines 16—65].

17. As per claim 6, Anderson discloses the metrics include one or more quality of

service (008) metrics (id, time, length, col 22 lines 16-23].

18. As per claim 7, Anderson discloses the reporting is carried out from time to time,

and wherein the one or more metrics are base metrics related to the time interval from

the last reporting time [Anderson, the last updated, col 29 lines 60-67].

19. As per claim 8, Anderson discloses calculating one or more quality of service

(008) metrics from the base metrics [col 14 lines 39-60, col15 lines 32-46,col 17 lines

45-57].

20. As per claim 9, Anderson discloses the one or more metrics are selected to be

scalable such that metrics from contiguous time intervals may be combined to

determine respective metrics for the combined interval [col 28 lines 58-67].

21. As per claim 10, Anderson discloses

(0) includes if the packet is of an existing flow, identifying the last encountered

state of the flow and performing any state operations specified for the state of the flow

NOAC EX. 1018 Page 245

NOAC Ex. 1018 Page 246

9 e

Application/Control Number: 09/608,126 Page 10

Art Unit: 2142

starting from the last encountered state of the flow [between the last update and the

present update, col 26 lines 6-40];

(d) includes if the packet is of a new flow, performing any state operations

required for the initial state of the new flow [new data and user initial select how often

information on station statistics was to update, col 26 lines 6-15].

22. As per claim 11, Anderson discloses reporting one or more metrics related to the

flow of a flow-entry from one or more of the statistical measures in the flow-entry [col 30

line 58—col 31 line 10].

23. As per claim 12, Anderson discloses reporting is carried out from time to time,

and wherein the one or more metrics are base metrics related to the time interval from

the last reporting time [col 30 line 58-col 31 line 10].

24. As per claim 13, Anderson discloses reporting is part of the state operations for

the state of the flow [col 30 line 58—col 31 line 10].

25. As per claim 14, Anderson discloses updating the flow-entry, including storing

identifying information for future packets to be identified with the flow—entry [col 16 lines

47-54, co|19 lines 17-24, col 22 line 66-col 23 line 6] .

NOAC EX. 1018 Page 246

NOAC Ex. 1018 Page 247

4yvz‘uggz.L

.J‘uman“,AMALI—f"AL«7%
(“IAIN

(“an"R,

1we...“
1"“en":“t'e4a
“KN‘,a?»”2‘

, f “I“? L

9 e

Application/Control Number: 09/608,126 Page 11

Art Unit: 2142

26. As per claim 15, Anderson discloses receiving further packets, wherein the state

processing of each received packet of a flow furthers the identifying of the application

program of the flow as inherent of new data received [col 28 lines 58-67].

27. As per claim 16, Anderson discloses one or more metrics related to the state of

the flow are determined as part of the state operations specified for the state of the flow

as inherent feature of parameters [col 22 lines 16-65].

28. As per claim 20, Anderson discloses including a statistical processor configured

to determine one or more metrics related to a flow from one or more of the statistical

measures in the flow-entry of the flow [software performs statistical calculations ,col 7

lines 33—53].

29. As per claim 21, Anderson discloses the statistical processor determines and

reports the one or more metrics from time to time [col 30 line 58-col 31 line 10].

NOAC EX. 1018 Page 247

NOAC Ex. 1018 Page 248

Jaw;Hymn

~A.—

“an“°1;,
(«4.NW}

Aa:r«:5».

F’; x

«gmwmumiarewe,
u,wuzfix,,r«‘Hx..V,,

3 p

Application/Control Number: 09/608,126 Page 12

Art Unit: 2142

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent

granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

30. Claims 1-21 are rejected under 35 U.S.C. § 102(e) as being anticipated by

Chapman et al [Chapman 6,330,226 B1].

40. As per claim 1, Chapman discloses a method of analyzing a flow of packets

passing through a connection point on a computer network [Chapman, a method of

monitoring traffic flows through a traffic admission control apparatus, see abstract, col 3

lines 5—27, Fig 1]

(a) receiving a packet from a packet acquisition device coupled to the connection

point [Chapman, the admission control detects the packets, col 3 lines 28-44];

(b) for each received packet, looking up a flow-entry database (i.e.: history table)

that may contain one or more flow-entries for previously encountered conversational

flows (i.e.: two-way traffic or interactive environment), the looking up to determine if the

received packet is of an existing flow [Chapman, matching to a predefined pattern, col 3

lines 28-44];

(c) if the packet is of an existing flow, identifying the last encountered state of the

flow (i.e.: most recent update flow), performing any state operation specified for the

NOAC EX. 1018 Page 248

NOAC Ex. 1018 Page 249

'3.w5r;444

an”.“—5,,1a

J#13.“"v

t;:».~u~'..‘3‘“
:;.\~’.

$34,...»Awaira‘‘“‘M
«an-

~t‘é‘vmfig.

s'3‘»x“?;._<

w“saga.
aa.“a.“M"."

Application/Control Number: 09/608,126 Page 13

Art Unit: 2142

state of the flow, and updating the flow-entry of the existing flow including storing one or

more statistical measures kept in the flow-entry [Chapman, flow ID is compared and

updated, col 3 lines 50-60, col 5 lines 1-7]; and

(d) if the packet is of a new flow, performing any state operations required for the

initial state of the new flow and storing a new flow-entry for the new flow in the flow-

entry database, including storing one or more statistical measures kept in the flow-entry,

wherein every packet passing though the connection point is received by the packet

acquisition device [Chapman, new entry is made or stored into database, col 3 lines 50-

60, col 4 lines 40-55].

41. Claim 17 contains the similar limitations set forth of method claim 1. Therefore,

claim 17 is rejected for the similar rationale set forth in claim 1.

42. As per claim 2, Chapman discloses extracting identifying portions from the

packet, wherein the looking up uses a function of the identifying portions [Chapman,

detecting the packets, col 3 lines 28-44].

43. As per claim 3, Chapman discloses the steps are carried out in real time on each

packet passing through the connection point [Chapman, interactive user, col col 5 lines

20-30].

NOAC EX. 1018 Page 249

NOAC Ex. 1018 Page 250

asq'o'.‘w.u...f,,.‘~.~«..~z.'.'...'.,wn.~H...’wa

:H“

E"

5"*gt”?833*:,.
,

, ,
(f

.
‘Kl

‘ k.

,.

« E.

,4~.,.m5,.,M"x-',.4,.,.~...V.;.A ,..,.a4...u- ..,."a-~4....u..~..-«.s.a'u.M.a ..t._.w.‘ .x_'
'Lm'1

”a."’’ .MZA.fw‘n‘
away,~,.

'1'$71.”...4.

.~>.:was»"
3713'Vi

A. '2gas»«

g o

Application/Control Number: 09/608,126 Page 14

Art Unit: 2142

44. As per claim 4, Chapman discloses the one or more statistical measure includes

selected from the set of consisting of the total packet count for the flow, the time and a

differential time from the last entered time to the present time as inherent feature of

history table record or database [Chapman, col 6 lines 35-45].

45. As per claim 5, Chapman discloses including one or more metrics related to the

flow of a flow entry from one or more of the statistical measure in the flow entry

[Chapman, flow characteristic, col 4 lines 40-55].

46. As per claim 6, Chapman discloses the metrics include one or more quality of

service (008) metrics [Chapman, flow characteristic, col 4 lines 40-55].

47. As per claim 7, Chapman discloses the reporting is carried out from time to time,

and wherein the one or more metrics are base metrics related to the time interval from

the last reporting time [Chapman, regular time intervals, col 4 lines 27-37].

48. As per claim 8, Chapman discloses calculating one or more quality of service

(008) metrics from the base metrics [Chapman, computing the packet loss

characteristic, col 5 lines 33-57].

49. As per claim 9, Chapman discloses the one or more metrics are selected to be

scalable such that metrics from contiguous time intervals may be combined to

NOAC EX. 1018 Page 250

NOAC Ex. 1018 Page 251

.«we-..4‘.

.{e‘mmfiae?a1.

~ ii

I?

0 e

Application/Control Number: 09/608,126 Page 15

Art Unit: 2142

determine respective metrics for the combined interval [Chapman, adjust its windows to

fit the bandwidth, col 4 lines 15—25].

50. As per claim 10, Chapman discloses (c) if the packet is of an existing flow,

identifying the last encountered state of the flow and performing any state operations

specified for the state of the flow starting from the last encountered state of the flow

[Chapman, detect problem condition, col 4 lines 25-37];

(d) if the packet is of a new flow, performing any state operations required for the

initial state of the new flow [Chapman, a new entry, col 3 lines 50-60].

51. As per claim 11, Chapman discloses reporting one or more metrics related to the

flow of a flow-entry from one or more of the statistical measures in the flow-entry

[Chapman, database, col 4 lines 40-55].

52. As per claim 12, Chapman discloses reporting is carried out from time to time,

and wherein the one or more metrics are base metrics related to the time interval from

the last reporting time [Chapman, the most recent update, col 5 lines 1-7].

53. As per claim 13, Chapman discloses reporting is part of the state operations for

the state of the flow [Chapman, a sample history, col 4 lines 25-30].

NOAC EX. 1018 Page 251

NOAC Ex. 1018 Page 252

u...

4'5‘4w;3:Law

2mm

“.me‘"x*W
....~;;;1.4:.

viz-i"£31.2.1“Ar."64:52:34?:1>1‘H
'‘.,.In«#3.,»

3),,

“3"

.::”v~‘t'M'.
*“i’fi’

t...

~.w."4.4.24.3:"7.42:.“

' o

Application/Control Number: 09/608,126 Page 16

Art Unit: 2142

54. As per claim 14, Chapman discloses updating the flow-entry, including storing

identifying information for future packets to be identified with the flow-entry [Chapman,

the history is updated, col 3 lines 50-60].

55. As per claim 15, Chapman discloses receiving further packets, wherein the state

processing of each received packet of a flow furthers the identifying of the application

program of the flow as inherent of new entry received.

56. As per claim 16, Chapman discloses one or more metrics related to the state of

the flow are determined as part of the state operations specified for the state of the flow

[Chapman, detect problem condition, col 4 lines 25-37].

57. As per claim 20, Chapman discloses including a statistical processor configured

to determine one or more metrics related to a flow from one or more of the statistical

measures in the flow-entry of the flow [Chapman, database, col 4 lines 40-55].

58. As per claim 21, Chapman discloses the statistical processor determines and

reports the one or more metrics from time to time [Chapman, database, col 4 lines 40-

55].

NOAC EX. 1018 Page 252

NOAC Ex. 1018 Page 253

9 e

Application/Control Number: 09/608,126 Page 17

Art Unit: 2142

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

59. Claims 1-21 are rejected under 35 U.S.C. § 102(e) as being anticipated by

Bullard [6,625,657 B1].

60. As per claim 1, Bullard discloses a method of analyzing a flow of packets passing

through a connection point on a computer network [Bullard, a method for tracking

network record, abstract]

(a) receiving a packet from a packet acquisition device coupled to the

connection point [Bullard, monitoring each packet of a network flow, col 28 line 45-col

29 line 5];

(b) for each received packet, looking up a flow-entry database [Bullard, database

col 10 lines 7-17; flow description, col 12 lines 52-62; flow descriptors, col 14 lines 17-

58] that may contain one or more flow-entries for previously encountered conversational

flows (i.e.: bi-directional flow) [col 7 lines 18-25] the looking up to determine if the

received packet is of an existing flow [Bullard, matching to older record, col 16 lines 16-

36];

NOAC EX. 1018 Page 253

NOAC Ex. 1018 Page 254

~—.....xvaw .

.5.-,«Masada-

.'~ .1,,‘C“?. «w..232“..-...~..~“mu.we...”(mi
'P‘,Z~y~u~vawa-- ‘“”2,.>quww ,""k"”~6”"“"§“l!§-7I2Ei"”7.:M"3,“x"gig."g."‘

an}..-

Application/Control Number: 09/608,126 Page 18

Art Unit: 2142

(c) if the packet is of an existing flow, identifying the last encountered state of the

flow, performing any state operation specified for the state of the flow [Bullard, flow

status descriptors, col 14 lines 17-58], and updating the flow-entry of the existing flow

[Bullard, updating the record, col 8 lines 20-67] including storing one or more statistical

measures kept in the flow-entry [Bullard, statistical phenomenon, col 31 lines 7-40]; and

(d) if the packet is of a new flow, performing any state operations required for the

initial state of the new flow and storing a new flow-entry for the new flow in the flow-

entry database, including storing one or more statistical measures kept in the flow-entry,

wherein every packet passing though the connection point is received by the packet

acquisition device [Bullard, new NAR, col 16 lines 16-36; new IP packet, col 26 lines

28-46].

61. Claim 17 contains the similar limitations set forth of method claim 1. Therefore,

claim 17 is rejected forthe similar rationale set forth in claim 1.

62. As per claim 2, Bullard discloses extracting identifying portions from the packet,

wherein the looking up uses a function of the identifying portions [Bullard, retrieving

identified data, col 34 lines 45-63].

63. As per claim 3, Bullard discloses the steps are carried out in real time on each

packet passing through the connection point as inherent feature of Internet provider.

NOAC EX. 1018 Page 254

NOAC Ex. 1018 Page 255

Application/Control Number: 09/608,126 Page 19

Art Unit: 2142

64. As per claim 4, Bullard discloses the one or more statistical measure includes

selected from the set of consisting of the total packet count for the flow, the time and a

differential time from the last entered time to the present time [Bullard, time periods

T1 ,T2, col 19 line 42-col 20 line 24].

65. As per claim 5, Bullard discloses including one or more metrics related to the flow

of a flow entry from one or more of the statistical measure in the flow entry [Bullard,

quality of service identifiers, col 14 lines 45-50].

66. As per claim 6, Bullard discloses the metrics include one or more quality of

service (003) metrics [Bullard, quality of service identifiers, col 14 lines 45-50].

67. As per claim 7, Bullard discloses the reporting is carried out from time to time,

and wherein the one or more metrics are base metrics related to the time interval from

the last reporting time [Bullard, accounting time interval, col 14 lines 45-50].

68. As per claim 8, Bullard discloses calculating one or more quality of service (QOS)

metrics from the base metrics [Bullard, audit the classes in quality of service, col 33

lines 17-27].

69. As per claim 9, Bullard discloses the one or more metrics are selected to be

scalable such that metrics from contiguous time intervals may be combined to

NOAC EX. 1018 Page 255

NOAC Ex. 1018 Page 256

Application/Control Number: 09/608,126 Page 20

Art Unit: 2142

determine respective metrics for the combined interval [Bullard, combined value over a

time period, col 11 lines 32-38].

70. As per claim 10, Bullard discloses (c) if the packet is of an existing flow,

identifying the last encountered state of the flow and performing any state operations

specified for the state of the flow starting from the last encountered state of the flow

[Bullard, col 16 lines 16-61];

(d) if the packet is of a new flow, performing any state operations required for the

initial state of the new flow [Bullard, col 16 lines 16-61].

71. As per claim 11, Bullard discloses reporting one or more metrics related to the

flow of a flow-entry from one or more of the statistical measures in the flow-entry

[Bullard, statistical probability, col 31 lines 740].

72. As per claim 12 Bullard discloses reporting is carried out from time to time, and

wherein the one or more metrics are base metrics related to the time interval from the

last reporting time [Bullard, report has been generated by a time condition, col 27 lines

55-67].

73. As per claim 13, Bullard discloses reporting is part of the state operations for the

state of the flow [Bullard event reporting, col 28 lines 12-25].

NOAC EX. 1018 Page 256

NOAC Ex. 1018 Page 257

Application/Control Number: 09/608,126 Page 21

Art Unit: 2142

74. As per claim 14, Bullard discloses updating the flow-entry, including storing

identifying information for future packets to be identified with the flow-entry [Bullard,

stored ID, col 23 lines 10-25].

75. As per claim 15, Bullard discloses receiving further packets, wherein the state

processing of each received packet of a flow furthers the identifying of the application

program of the flow as inherent of new data.

76. As per claim 16, Bullard discloses one or more metrics related to the state of the

flow are determined as part of the state operations specified for the state of the flow

[Bullard flow probe correlates the state information, col 24 lines 55-67].

77. As per claim 20, Bullard discloses including a statistical processor configured to

determine one or more metrics related to a flow from one or more of the statistical

measures in the flow-entry of the flow [Bullard, statistical probability, col 31 lines 7-40].

78. As per claim 21, Bullard discloses the statistical processor determines and

reports the one or more metrics from time to time [Bullard, statistical probability, col 31

lines 7-40].

NOAC EX. 1018 Page 257

NOAC Ex. 1018 Page 258

, 3 (g
, ~ Application/Control Number: 09/608,126 Page 22

Art Unit: 2142

A1«a.

.Wi’Z-n“
Applicant's amendment necessitated the new ground(s) of rejection presented in

if this Office action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP

§ 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37

CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE

MONTHS from the mailing date of this action. In the event a first reply is filed within

TWO MONTHS of the mailing date of this final action and the advisory action is not

mailed until after the end of the THREE-MONTH shortened statutory period, then the

shortened statutory period will expire on the date the advisory action is mailed, and any
extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of
the advisory action. In no event, however, will the statutory period for reply expire later
than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to examiner Thong Vu, whose telephone number is (703)-
305-4643.

The examiner can normally be reached on Monday—Thursday from 8:00AM- 4:30PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiners

supervisor, Jack Harvey, can be reached at {703) 305-9705.

Any inquiry of a general nature or relating to the status of this application should

be directed to the Group receptionist whose telephone number is (703) 305-9700.
Any response to this action should be mailed to: Commissioner of Patent and

Trademarks, Washington, DC. 20231 or faxed to :

., After Final (703) 746-7238

; ‘. .~ Official: (703) 746-7239
Non-Official (703) 746-7240

Hand-delivered responses should be brought to Crystal Park 11,2121 Crystal
Drive, Arlington. VA., Sixth Floor (Receptionist).

«it:1.x

., may“wavmz;*“w.;‘3“M.
”M .5,:n,u»

’7Jami
_I

Thong Vu
Patent Examiner

Art Unit 2142
JACK B. HARVEY

‘3: W s _ERVISORY PATENT EXAMINER

NOAC EX. 1018 Page 258

NOAC Ex. 1018 Page 259

j Application/Control No. Applicant(s)/Patent Under
, Reexamination
7‘ 09/608026 DlETZ ET AL.

é Notice of References Cited

Examiner Art Unit

Thong H Vu 2142 Page 1 0f 1
us. PATENT DOCUMENTS

Classification

 Document Number Date
Country Code-Number-Kind Code MM-YYYY Name

J US-5,802,054

US-5,720,032

09-1998

02-1998

Bellenger, Donald M. 370/401

Picazo, Jr et al 709/250 K

II— —
I_-—_

"7 In——__
lI—-——

, Ifl_-——
. lI—-—_
I_-——

; II—-—
~: I_———

:|_——~ -—-
——I—-

-c9”

FOREIGN PATENT DOCUMENTS

 Document Number Date

Country Code-Number-Kind Code MM-YYYY Country
 we,p.«m;Regan: Classification”I

u’.1'. s,

NON-PATENT DOCUMENTS

Include as applicable: Author, Title Date, Publisher, Edition or Volume. Pertinent Pages)

'fl-CI

NOV94: Packet Filtering in the SNMP Remote Monitor ; www.skrymir.com/dobbs/arlicles/1994/9411/9411h/9411h.htm

V GTrace -- A Graphical Traceroute Tool" authored by Ram Periakaruppan, Evi Nemeth ',
http://www.caida.org/outreach/papers/1999/GTrace/index.xml‘o

 r ‘ n .

1,? $1?” of this reference is not being furnished With this Office action (See MPEP § 707 05(3))
J. 3:). s In MM-YYYY format are publication dates. Classifications may be US or foreign

‘ ‘S: ll. ' v

'1, . tfi-‘galem and Trademark Office '
’ « ‘g ‘892 (Rev. 01—2001) — Notice of References Cited Part of Paper No. 8

’ NOAC EX. 1018 Page 259

NOAC Ex. 1018 Page 260

:45,we:

‘r‘é‘tjwé‘‘...
.33..

.. ,_ ' (12) United States Patent
: Bollard

(54) SYSTEM FOR REQUESTING MISSINGNETWORK ACCOUNTING RECORDS IF
THERE IS A BREAK IN SEQUENCE
NUMBERS WHILE THE RECORDS ARE
TRANSMITTING FROM A SOURCE DEVICE

(75) Inventor: William Carter Carroll Bollard, New
York, NY (US)

(73) Assignee: Nortel Networks Limited, St. Laurent
(CA)

 (*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/276,423

(22) Filed: Mar. 25,1999 /

f t (51) Int. Cl.7 .. G06F15/16

1' E (52) US. Cl. 709/237; 709/248; 709/224
', . . (58) Field of Search 709/216, 217,
1i. "3 709/218, 219, 237, 248, 224; 705/40, 35;

*~ ,3 3 707/201; 379/130
Ft ,

‘3 E ; (56) References Cited

{if US. PATENT DOCUMENTS
. . '4. 5,109,485 A 4/1992 Seymour 395,200

r“: g3. 5,230,048 A 7/1993 Moy 395/600
~ ‘ 5,465,206 A 11/1995 Hilt et a1. .. 364/406

5,557,746 A 9/1996 Chen et al. 395/200.06
5,668,955 A 9/1997 deCiutiis et . .. 379/130
5,757,798 A 5/1998 Hamaguchi 370/397
5,761,502 A 6/1998 Jacobs 395/614
5,778,350 A 7/1998 Adams et a1. 707/1
5,781,m A 7/1998 Baker et al. 395/2006
5,784,443 A 7/1998 Chapman et al. .. 379/119
5,793,853 A 8/1998 Sbisa 379/120
5,794,221 A 8/1998 Egendorf 705/40
5,799,321 A ‘ 8/1998 Benson 7071201
5302502 A 9/1998 Gell et a1. 705/37
5,815,556 A 9/1998 'I'hureson et aL 37933.25
5,852,812 A 12/1998 Reeder 70539

(List continued on next page.)
OTHER PUBLICATIONS

a; . XACCT Usage Overview, XACCI‘ Technologies, 1997.
, ’ HP and Circo Deliver Internet Usage Platform and Billing

USOO6625657B1

(10) Patent No.: US 6,625,657 B1
(45) Date of Patent: Sep. 23, 2003

and Analysis Solutions (http://www.hp.com/smartinten1et/
pre$lprapr28.html), Hewlett Packard Company, 1998.
Article, Quadri, et al., Internet Usage Platform White Paper
(http://www.hp.com.smartinternet/press/not.html), Hewlett
Packard Company.

Article, Strategies for Managing IP Data (http://www.hp.
com/srnartintemet/press/not.html), Hewlett Packard Com-
pany.

Article, Nattkemper, HP and Cisco Deliver Internet Usage
and Billing Solutions (http:www.interex.org/hpworldnews/
hpW806.html), Hewlett Packard Company, Jun. 1, 1999)(?).

IH’ Smart Internet Billing Solution (http:/l
hpcc925.exten1al.hp.com/smartintemet/solutions/usagebill-
ing.html), HEwlett Packard Company, 1998.

HP Smart Internet Usage Analysis Solution (http://wwwh-
p.com/smartinternet/solutions/usageanalysishtml), Hewlett
Packard Company, 1998.

Press Release, New Cisco IOS NetFlow Sofiware and Utili-
tia Boost Service Provider Revenues and Service Manage-
ment Capabilities (http://wwwciscocom/warp/public/OC/
dsco/mld/gen/pr.archive/cros prhtrn), Cisco Systems, Inc,
Jul. 1, 1997.

(List continued on next page.)

Primary Examiner—Le I-lien Luu
(74) Attorney, Agent, or Firm—Withrow & Terranova,
PLLC

(57) ABSTRACT

A system for collecting and aggregating data from network
entities for a data consuming application is described. The
system includes a data collector layer to receive network
flow information from the network entities and to produce
records based on the information. The system also includes
a flow aggregation layer fed from the data collection layer
and coupled to a storage device. The flow aggregation layer
receiving records produced by the data collector layer and
aggregates received records. The system can also include an
equipment interface layer coupled to the data collector layer
and a distribution layer to obtain selected information stored
in the storage device and to distribute the select information
to a requesting, data consuming application.

6 Claims, 36 Drawing Sheets

 NOAC EX. 1018 Page 260

NOAC Ex. 1018 Page 261

-n

“w

48:85~,.

Manx-greening”..
7AM17‘

I£3315n“v‘§-~ .1

2.3..«45“.,~;

US 6,625,657 B1
Page 2

U.S. PATENT DOCUMENTS

5,878,420 A 3/1999 de la Salle 707/10
5,920,847 A 7/1999 Kolling etal. 705/40
5,926,104 A 7/1999 Robinson . 340/8322
5,949,782 A 9/1999 Wells 370/395
5,956,391 A 9/1999 Melen etal. .. 379/114

5,956,690 A 9/1999 Haggerson et a]. 705/3
5,958,009 A 9/1999 Friedrich etal. .. 709/224
5,958,010 A 9/1999 Agarwal et al. 709/224
5,978,780 A 11/1999 Watson 705/40
5,991,746 A - 11/1999 Wang .. 705/40
5,999,604 A 12/1999 Walter 379/133
6,002,948 A 12/1999 Renko etal. 455/567
6,009,154 A 12/1999 Rieken et a1. .. 379/114
6,014,691 A 1/2000 Brewer et a]. .. 709/217
6,032,147 A 2/2000 Williams et aL .. 707/101
6,038,551 A 3/2000 Barlow eta]. 705/41
6,047,051 A ‘ 4/2000 Ginzboorg eta]. .. 379/130
6,047,268 A * 4/2000 Bartoli etal. 705/35
6,058,380 A 5/2000 Anderson et al. 705/40
6,069,941 A 5/2000 Byrd et a1. 379/121
6,078,907 A 6/2000 Lamm 705/40
6,088,706 A 7/2000 l-[ild .. 707/202
6,112,256 A 8/2000 Dollin et rl. 709/224
6,118,936 A 9/2000 laneretal. 395/20053
6,119,160 A 9/2000 Zhang etal. 709/224
6,151,601 A 11/2000 Papiernr'ak et al. .707/10
6,157,648 A 12/2000 Voitet a1. 370/401
6,175,867 B1 1/2001 Taghadoss 709/223
6,199,195 B1 3/2001 Goodwin eta]. 717/1
6,230,203 B1 5/2001 709/229
6,243,667 B1 6/2001 703/27
6,272,126 B1 8/2001 370/352
6,282,267 B1 8/2001 379134
6,308,148 B1 10/2001 703/27
6,327,049 B1 12/2001 358/1.18
6,359,976 B1 3/2002 .. 379/134
6,377,567 B1 4/2002 .. 379/352
6,381,306 B1 4/2002 .. 379/3201
6,385,301 B1 5/2002 379/32.o1
6,418,467 B1 7/2002 709/223

OTHER PUBLICATIONS

Documentation, NetFlow FlowCollector 2.0 (http://www—
.cisco.com/univerca/cc/td/doc/product/ltrmgrnt/nfc/nfc 2
0/index.htln), Cisco Systems, Inc. 1988.
Article, Mary Jander, Hot Products: NetworkManagement—
Usage MonitoringIntranet Inspector (http://wwwdatacom/
issue/99017/manage3.html), Tech Web, CMP Media Inc.,Jan. 1999.

Article, boring Wirbel, Tools coming from probing, billing
of IP packets (http://www.techweb.com/se/
directlink.cgi?EET19981214SOO33), EETIMES, Issue
1039, Section: Systems & Software, Dec. 14, 1998, CMP
Media Inc.

Article, [bring Wirbel, Tools arable usage—based billing on
the Net (httpzwwweetimescom/story/
OEGl9981208SOOO7), EETIMES, Dec. 8, 1998, CMP
Media Inc.

Article, Limor Schweizer, Meeting th 11’ Network Billing
Challenge (http://www.tmcnet.eom/Ll:ncnet/articles/
xacct1298.htm), 'I'MCnet, Dec. 1998(1).
Product Review, KACCTusage (http://WWWxacctcom/
news/xuoverviewhtm), internet.com, Internet Product
Watch ('1).
Article, boring Wirbel, In nan—generation networks, ISPS
are calling the shots (http://www.lechweb.com/Se/
directlink.cgi?EET19981019S0058), EETIMES, Issue
1031, Section: Communications, Oct. 19, 1998, CMP Media
Inc.

Article, Kate Gerwig, ISPs Take ‘Do—It—Yourself’ Tack With
Billing (http://www.intemetwk.com/new51098/
newsl01398—3htrn), CMP’s Tech Web, CMP Media Inc.,
Oct, 12, 1998.
Article, Kathleen Cholewka, Xacct Makes It Easier To Bill
For H’ Service (http://www.2dnet.com/intweek/daily/
981005d.htlnl), Inter@ctive Week, ZDNet, Oct. 5, 1998.
Article, Lucas et 711., Mediation in aMulti—ServiceH’Netwrk
(http://www.xacct.com/news/art092898.htrnl), XACCI'
Technologies, Inc. Oct. 1, 1998.
Article, Matt Hamblen,MiddIeware enables net usageplan-
ning (http:www.xacct.com/news/ar1092898.html), Comput-
erworld, vol. 32, No. 29, Sep. 28, 1998.
Article, Tim Greene, MACT pinpoints IP network usage
(http://www.xacct.com/news/art092198b.html), Network-
World, vol. 15, No. 38, Sep. 21, 1998.
Article, Margie Semilof, Charging for IP use gets easier
(http://www.xacct.com/news/a11092198b.html), Computer
Reseller News, Sep. 21, 1998.
Article, Kate Gerwig, Creating Meter Readers For The
Internet (http://wwwtechwebcom/se/
direcflinkcgi?INW19980921SOO42), Internetweek, Issue:
733, Section: Bandwidth, Sep. 21, 1998, CMP Media Inc.
Article, John Morency, XaCCT afers multivendor, multi—
technology billing model for ISP consumption (http://ww-
w.nwfusion.com/newsletterS/nsm/0914nm2.html), Network
World Fusion Focus on Netwrok/Systems Management,
Network World Inc., Sep. 16, 1998.
Article, Shira Levine, XACCT brings flexible billing to the
H’ world (http://www.americasnetwork.eon1/news/9809/
980915 xacct.html), Advanstar Communications, Sep. 15,
1998.

Telecom Product News, Accounting and Reporting Systan
for Corporate Network raource and IS Use (http://www.x-
acct.com/news/presreleases/paperslhtml), XACCI' Tech—
nologies, Inc., Apr. 1998.
Article, BYIE’s Best of Show Award at CeBit Goes To
StgoerNova;s Visual Concepts (http://www.byte.com/spe-
cialf3cebit98.hhn), Byte, Mar 23, 1998.
Press Release, XACCT Teams With Kenan to Provide
Advanced Solution For Usage—Based Billing oflPApplica—
tions (http://wwwxacctcom/news/pressreleases/
papersShtml), XACCI‘ Technologies, Inc. Oct. 26, 1998.
Press Release, Solect and XACCT Partner to Provide IP
Usage—based Billing Solution (http://www.xacct.com/news/
pressreleases/papers7.html), XACCI‘ Technologies Inc.,
Sep. 28, 1998.
Press Release, XACCT Supports Cisco’s New Web—Based
Enterprise Management Suite (http://www.xacct.com/news/
pressreleases/papersGhlml), XACCI' Technologies, Inc.,
Sep. 22, 1998.
Press Release, XACCT Technologies Enables Usage—Based
Billing for Internet)http2/lvvwwxaceLeom/news/pressre-
leases/papers4.html), XACCI' Technolog'es, Inc., Sep. 21,
1998.

News Release, XACCT Technologies Now shipping
Accounting and Reporting System for Corporate network
resource and ISP Use (http://www.xachcom/news/pressre-
leases/paperslhtml), XACCI‘ Technologies, Inc., Mar. 19,
1998.

News Release, XACCT Technologies Releases Accounting
and Reporting System for ISP and Corporate Network
Resource Use (http://www.xaccl.com/ncws/pressreleases/
papershtlnl), XACCI' Technology, Inc., Dec. 10, 1997.

‘ cited by examiner

NOAC EX. 1018 Page 261

NOAC Ex. 1018 Page 262

US 6,625,657 B1Sheet 1 of 36Sep. 23, 2003US. Patent..,V...my};..(..:a«18,:.

 o 8...sfiwé.a-.2H9...
0HNH5.2.x I8h>$th83.3...\as?$5_.Wmuse;.5EmEuScmHH-infill”?EE53:38 ”I’ll

5.2552mNH\\mass.

.34....“«NH.4“: 362.828363.838.3...361.8”mm
$060.60

Ema/352.823..58:838

3332;5:595?30: a,3..6;
5.59.3.0ucncornmemgtxS

3:53:22.2253.5::“.5222.2.23NuEst:.35":$3;«.233.Ea:

2...;3.3...

“3.89.63.3.35mumtBEv.22m1I-i8..8_.&<\2__..mEE$.23DDD8.3m

5.5.8\\3933553:885om\2...... 3“...3314.:31...:D.2x1A,.3.9:!,ve:3I,BMW}.4H3Xvi,33.»x,.$}rqwms¥fii?zm...AJH..«..!§....V.4.§..A”9.,,....u

NOAC EX. 1018 Page 262

NOAC Ex. 1018 Page 263

657 B17US 6,625Sheet2 0f36Sep.23,2003US. Patent

833::«SE55.9momtmE..QQ<.NN

...2:33£2552>553»

as

{In‘.,a!e4:6.5‘134313c3‘.1.t.a.I. ad.9,::344«main;..6:.z.»1&2”3??«.wwfinwmw.Rat/xum...

: 333

mmv
mun

mom. swam

 NOAC EX. 1018 Page 263

NOAC Ex. 1018 Page 264

q .,. ".‘ccm‘ ".~¢t.,v 1," . , ,(an tr < . ,. t“.
' ~ Maw ~ Cdflkkmiha'wwfim, Ly». " " 3“” «RN f2 “ 93W ‘3” ~r"x;e&>ul‘.xmm ‘Wfifim‘fimmw 'wra‘, ”9&9, 4"“ . M

’/ 110 a
. t . . .

Enterprlse A I SerVIce Prowder E?
Intranet ' I 8

' 102 5
Flow Oata - : RAC K102 RAC /
Collector l

l g3

' E.

: User \107 E:
I! Flow Data 8
I Collector

Enterprise B Z?)
Intranet {,2

Flow Data :% =3
Collector Moblle Internet

1 User K
CEhnterplglsek .) 106

arge ac 102 Provlder

14" . 13 Bllllng a
\Accountlng 14 ”Accountlng “g:

j K 100 '3')ex

120 FIG. 3 ‘3
USl—A

NOAC EX. 1018 Page 264

NOAC Ex. 1018 Page 265

NOAC EX. 1018 Page 265

1

B.7bNH
5

&95582_955826,Sim333u3.2333:8
S

a

Uthe?a333358.23_3:32am53:8Lofio=ouu<¢_65ua“?3_zugzmf.M.5:25“05:5tDEmIam3:835
S

833.82:582m88so:83.33.2qu
0

H,vu>2aEmxugusmgu7mumtfiuucw
D.eS

_535352.805..N2“22533so:
_$5.55.2:\328$83.5w<3:935

US. Patent

NOAC Ex. 1018 Page 266

US. Patent Sep. 23, 2003 Sheet 5 of 36 US 6,625,657 B1

DEVICE “B”, 144

\
DEVICE "A”, 142

52, DATA COLLECTOR

140 FIG. 5

‘ ,’~’“Km"., ..,A:nV...

NOAC EX. 1018 Page 266

NOAC Ex. 1018 Page 267

762e

g
a

1 P
00

emmmm,.1...-,--.....-.._.._.....~..._mm2.2.523mS.9355

/Ian:£42a:.:82.—.Mwfigggf«Km—..defiE._
.m6mmmmm.mm

m55:236
maPS”U

3.5.“.it?13....”A.2...........H.s..;AAA...AMA“. .w.

NOAC Ex. 1018 Page 268

;«Saw
:.»9‘

z’,
3

'3’-

is
,
5..

x’
35
a

‘42
i

ray‘5 6.W»,h

 .. ,,

N4‘3
(,«K’
‘96»

a x‘, ‘

5 Q?”ta i
:1:

t.W», nix»
ti

“#5:it...”

fir
3,“:

'vi

:<},'.§M‘Elj,x
.iw".‘'“-‘_r A.’i.n““.4:H.A.... v“Hammett.vacuumwmtwmcAM.i.a.~.wm. w,r:'i...ta

at

MW»

US. Patent Sep. 23, 2003

 Summary NAR

Summary NAR
 ‘ Summary NAR

 Activity NAR

Activity NAR

Activity NAR

Activity NAR

Activity NAR

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

FIG.

Activity NAR

NAR

NAR

NAR

NAR

NAR

NAR

NAR

NAR

NAR

NAR

7

Sheet 7 of 36

 Summary NAR

Summary NAR

Summary NAR

Activity NAR

Activity NAR

Activity NAR

Activity NAR

ACtivity NAR

US 6,625,657 B1

NOAC EX. 1018 Page 268

NOAC Ex. 1018 Page 269

US. Patent Sep. 23, 2003 Sheet 8 of 36 US 6,625,657 B1

NAR Identifier (NAILID), 202

NAR__AT1'RIBUTES, 204a

NAR_ATTRIBUTES, 20411
NAR Source Identifier (NAR_SRC_ID), 203a

2073 — 2°“ -
Source Time (NAR_SRC_HME), 203b

Sequence Number (NAR_SEQ_NUM), 203s

FIG. 8B

NOAC EX. 1018 Page 269

NOAC Ex. 1018 Page 270

N OA
N OOm mailed'S‘fl

 fllflfllflfllflflfllfllllflflflflflllflllflflflflfll

NAR__ATTR Type NAR_ATTR Code NAR_ATTR Qualifier NAR ATTR Length 9_ " 'U

"N
803

§

3

a.

a

dm

9‘ex

.51
3.\l

U!H

NOAC EX. 1018 Page 270

NOAC Ex. 1018 Page 271

US 6,625,657 B1Sheet 10 of 36Sep. 23, 2003US. Patent

011iv:\:1.1.11U1.1.,.431.;,11...e:(:1,a.(zi,,1.0r:,I.....1.,1&4,1..I.021a3..1.1.:..2.1.x3.......315...xUfux71 v1..1.5:1.”,1.. 1xr.“and:11u.1.1...!»Ia.a.h3?.$.34:a.a1Q1,i,11I;..a7firm.1».uan»..."w.a73mm“XWIwSHMJ”3K“«1.x,s2:;..3.m..
2.GE

 u2.65:15:255.535.:.95365.352IIEflfiflfiflflflflnl—mflflflnflflfln—EnflfiflnHEATS—E.

EN

NOAC EX. 1018 Page 271

NOAC Ex. 1018 Page 272

{“4a»

US 6,625,657 B1Sheet 11 0f 36Sep. 23, 2003US. Patent

,,1,5:, t.

m:.UE

"mm.25555.3...3.35

uuHH
IKE-I..-

-oo1E-l.acfisafi:5a3:5.52EBEEEmilia—EElflflnlfiflflfllflflflfllfl
NOAC EX. 1018 Page 272

NOAC Ex. 1018 Page 273

.W.t‘a ‘ ,(
,3.’ fig»: ~1d.: w m .m. ‘ .:,;\ ~.MHW, Hg . . 4
6?. 3,. . 133:, ,.g ,‘gflm W “x (Wm d , ¥ ‘.

>7 fang» ‘ w} ",.“"':,' « . x ‘«W~m...€,nmws:.wm W whamwgw 2*. » ., ‘11“5 ‘: ‘ysyq‘fi.., ,, 3;. ~ , .x. V. - 1.... W4“, m .H -. W... H ‘ '2‘. 5 3:3 \ .3“ “.33; w mu 4 ,3 ,’ \x 4m 11‘

240 C
\b . '02

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII .2:
==

NARgATTR Type NAR_ATTR Code NAR ATTR Length 8--mi-- 5.
““EfllI-_

:36
FIG. 11C “’

250

x m5"

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII g
- ml erNAR ATTR Type NAR ATTR Coda M NAR_ATTR Length 3,- --ml-l:;“E 3‘

C!m

i"a

FIG. 11D 3
H

NOAC EX. 1018 Page 273

NOAC Ex. 1018 Page 274

 is}, “1 1 a ;~" «’ 3 at 5» i.
“2%;..1. w a :3 ‘ I ‘ 1'} fiffi

S:
V3

w260\ a(up
(D
5(up

flllflllllllfllllflflfllllfllllflflflfllflllflflllflfll

w

““me "““mc°“° ---- swe :6

”“IIII-— 0)

IP Source Address, 262 ' g2

IP Destination Address, 263 E

,. .w-s..-WMm—wmm :

Transport Protocol, 1264 Type of Service, 265 a

Source Port, 266 ' Destination Port, 267 c:
3

FIG. 1 1E $1
E
cuH

NOAC EX. 1018 Page 274

NOAC Ex. 1018 Page 275

US. Patent Sep. 23, 2003 Sheet 14 of 36 Us 6,625,657 B1

FIG.12

ATTRQualifierfllflflflflflflfllfllflflfl
NAR

NAR_ATTRCode
3'!"

NARATTRT
270

NOAC EX. 1018 Page 275

NOAC Ex. 1018 Page 276NOAC EX. 1018 Page 276

1B7a,8.6.,6

mD
<2DE

w.mu

3.53.33E-Innaa
MM,53—:130KHz—.4NW2mIEEEEEEEEEIEEEIEEIEIIEEEEEHIINIE_4/03

US. Patent

NOAC Ex. 1018 Page 277

22x.kin-NE).4.,

US 6,625,657 B1Sheet 16 of 36Sep. 23, 2003US. Patent

mg.03

 NOAC EX. 1018 Page 277

NOAC Ex. 1018 Page 278

US. Patent Sep. 23, 2003 Sheet 17 of 36 US 6,625,657 B1

r“ 1 300

L_I_.; ,n/

m 31°
—'

NAR I 305
Constructor

Local Store

I

304

r---— -—--1

l E ~ Iqulpment I/F _I

L—-—-— ——-——"-\16

T?
from Network Device

or Technology

FIG.14

NOAC EX. 1018 Page 278

NOAC Ex. 1018 Page 279

US. Patent Sep. 23, 2003 Sheet 13 of 36 US 6,625,657 B1

Receive Data from

Equipment IIF

Fields of
to NAR

Convert
Interest

Enhancement

Apply Aggregation
Policy/Mefirod

FAP
Available?

Locally Store NAR
(Store & Forward)

Yes

Confirmation
of Load?

358

360

Done

NOAC EX. 1018 Page 279

NOAC Ex. 1018 Page 280

‘.“ifimi‘cIf’

5:: . US. Patent Sep. 23, 2003 Sheet 19 of 36 US 6,625,657 B1

13-3.),~56;mg:,,,~
1243‘)»;

My»
to/from FDD“w

2’ ‘
.

Database

Sewer
l— '1

Max} *FDC‘ 'FDc:
L..._.J L__J L__.J

(from FIG. 17) FIG. 16

NOAC Ex. 1018 Page 280

NOAC Ex. 1018 Page 281

US. Patent Sep. 23, 2003 Sheet 20 of 36 US 6,625,657 B1

Receive NAR 432 430

from FDC(s) [/1/
434 436

N0 Re-requst NAR
from FDC

 Load NAR
to Persistent

Store?

Yes

Acknowledge Receipt 438
of NAR to FDC

‘5. 440 -

. " M 442. :3 Correlate MARS

'3’ : Enhance? 'Acmss System' 446

; Oulside System
.1, NAR for “Enhancement"

.f Enhancement Information

_ 2 § 'Acmss System'. M

.4; ‘5’"
444

45

Aggregated
NAB

448 450

3 2'; Aggregate Yes
‘2‘ MAR?

, . NAR Uniqueness I

Load NARS to

Persistent Store 458

2 459

Apply Aggregation
Policy]Method

'Across Svstem'

FIG. 17

NOAC EX. 1018 Page 281

NOAC Ex. 1018 Page 282

. 5
fl43?:3K

‘2»
, ‘1":

US. Patent Sep. 23, 2003 Sheet 21 0f 36

Acct. Interval Tl-Tz

IP Address

532

526

527

524

530

FIG. 18

 442 (from FIG. 17)

US 6,625,657 B1

502

518

526

528

530

514

 444 (from FIG. 17)

NOAC EX. 1018 Page 282

NOAC Ex. 1018 Page 283

US. Patent Sep. 23, 2003 Sheet 22 0f 36 US 6,625,657 B1

532

Enhanced NAR 2

/ \
/ \

524

404 (FIG. 15)

524 Database Table 540.

WWW!)

Corr—lation

—--
4Twice Enhanced 5 2

NAR 2

/ \
/ \

524

540

408m- 16)

FIG. 19

NOAC EX. 1018 Page 283

NOAC Ex. 1018 Page 284

2'»4V!‘ .

US. Patent Sep. 23, 2003 Sheet 23 of 36 US 6,625,657 B1

550

NAR 3

/ \
/ \

Workgroup '

518

524

540

530

Aggregation

FIG. 20

 552

Twice Enhanced

I NAR 2

526—528

408

Aggregation Store

542

NOAC EX. 1018 Page 284

NOAC Ex. 1018 Page 285

US. Patent Sep. 23, 2003 Sheet 24 0f 36 US 6,625,657 B1

Root

566 568

Intermediate

Nodes

FIG. 21

NOAC EX. 1018 Page 285

NOAC Ex. 1018 Page 286

US 6,625,657 B1Sheet 25 of 36Sep. 23, 2003US. Patent

mm.QE

”mpm

mmhm

3.mecozeamccoumuseum; I

omen

muo:855cm3....«mum
305m:5:223:00"no:n4;

 Sana:5:953:00

mmnm

«Em

 682e
g

aP8101X.ECAON

NOAC Ex. 1018 Page 287

‘a3minim;vim:-‘.~MW‘gm‘#w‘men”:‘hqsuub-‘cfik-QJW”:x:H;'h'3.2.

US. Patent

592

594

S96

Sep. 23, 2003 Sheet 26 0f 36

DETERNUNE IF THERE

ARE LOST NARS

DETERMINE NUMBER OF

LOST NARS

DETERhflNE DATA

COLLECTOR BY

EXAMINING NAR_SRC.ID

REQUEST MISSING NARs
BY MISSING SEQUENCE

NUMBER(5) FROM DATA

COLLECTOR

FIG. 23

US 6,625,657 B1

590

NOAC EX. 1018 Page 287

NOAC Ex. 1018 Page 288

US. Patent Sep. 23, 2003 Sheet 27 of 36 US 6,625,657 B1

.

n...

604

600

IPTraffic 608

606 FIG.24

602
NOAC EX. 1018 Page 288

NOAC Ex. 1018 Page 289

624 626
622 mama'S'n

612 * + 610 $002‘SZms

981082”WIS
IHLS9‘sz9‘9sn

NOAC EX. 1018 Page 289(«W.m-~—m,m*w.wwmuww ”.0 . r «a. Mug

NOAC Ex. 1018 Page 290

S:
S”

r-o
hi(up
(D
5(up

w

Hergth Ser. Type Total Lgth E.b)

Freq. orfser

Protocol Header Checksum 8

§

640 g
—| a,
64-bits %

_l

638 642
C".U)

3‘ON

FIG. 26 s:
”a

3
EUH

NOAC EX. 1018 Page 290

NOAC Ex. 1018 Page 291

,: “ US. Patent Sep. 23, 2003 Sheet 30 of 36 US 6,625,657 B1

i, 652
:3 New IP Packet

650“J

, Test Good 654 ,/I/
656

658

659

 Resume

IP Packet

Processing

My5;;. a,“9:92.22.:
“0.3.9:.,xa,v”‘5’“.W“‘ (v.41"“

x

. 660
.; _ Determme

*2; Flow Key

Match Key 662
to Flow

54 666 678

No

6

Stored Construct/Store __ __ Generate
HOW Found? New Flow Start NAR

Yes

670 m 668

672 676

:a ;:j __ _ _ Generate
,2 2. Update Flow State Update NAR

m 67“

FIG. 27

NOAC EX. 1018 Page 291

NOAC Ex. 1018 Page 292

US. Patent Sep. 23, 2003 Sheet 31 of 36 US 6,625,657 B1

658

 Repeat Steps
thru (FIG. :29)

Stored

Flow Found?

672

Update __ _ __
Flow State

Go to 659

(FIG. 27)

FIG. 28

NOAC EX. 1018 Page 292

NOAC Ex. 1018 Page 293

US. Patent Sep. 23,2003 Sheet 32 of 36 US 6,625,657 B1

MONITOR. 702
NOAC EX. 1018 Page 293

NOAC Ex. 1018 Page 294

US 6,625,657 B1Sheet 33 of 36Sep. 23, 2003US. Patent1.u2%?9

team33%

SuaegtgoBEE33:52.mucgcmmmu:

m+“SEE

Exam;“3..33300

3

m:

2,5swaeoz

~32”.3:83953:.=393

won

$3:2.3bun»:8382553

Baum—o

525285:36u:528:263

2.5got5.32m
NOAC EX. 1018 Page 294

NOAC Ex. 1018 Page 295

US. Patent Sep. 23, 2003 Sheet 34 of 36 US 6,625,657 B1

732 CONFIGURE

NETWORK

 POLICY DEPLOle

ENFORCED

REASSESS, RED :1 I ‘-

 OBS ERVATION OF

DEPLOYMENT

ACCOUNTING

PROCESS, 14

 738

FIG. 30

NOAC EX. 1018 Page 295

NOAC Ex. 1018 Page 296

US. Patent Sep. 23, 2003 Sheet 35 of 36 US 6,625,657 B1

752, SERVICE
PROVISIONING

CHNG. NOTICE

156. ACCOUNTING

CONFIG- 752a

NOAC EX. 1018 Page 296

NOAC Ex. 1018 Page 297

657 B1

792e
g

aP8101X.ECAON

US 6,625,

a:

can.Em2m6<z<5Swim..-

Sheet 36 of 36

v2..hszmO<z<EZOFEDEEZOON2..mmosmmm02.20.2235

Sep. 23, 2003tnetaP3U

NOAC Ex. 1018 Page 298

2,4y.

,1!

'vas‘:.
.9.",n

3,»,..af:,r
“.ri,.

t
r\

.we.....,.. ".r<a.

:"L'
US 6,625,657 B1

1

SYSTEM FOR REQUESTING MISSING
NETWORK ACCOUNTING RECORDS IF

THERE IS A BREAK [N SEQUENCE
NUMBERS WHILE THE RECORDS ARE

TRANSMITTING FROM A SOURCE DEVICE

BACKGROUND

This invention relates to information management for
Internet protocol (IP) packet transmission.

Data collection systems are used to collect information
from network trafiic flow on a network. These data collec-

tion systems are designed to capture one type of network
traflic from one source type and deliver the data to one
application type such as a billing application.

SUMMARY

According to an aspect of the invention, a method for
tracking network accounting records in an accounting pro-
cess that collects and correlates information derived from

network data includes producing a network accounting
record that has an identifier that uniquely identifies the
rwordawithin the accounting process with the identifier
including a sequence number that specifies a sequence
number for network accounting records that originate from
the source device and determining when there is a break in
the sequence numbers of network accounting records pro-
duced from the device. The method also includes requesting
mi$ing network accounting records when there is a break in
the sequence.

One or more of the following advantage may be provided
by one or more aspects of the invention.

The records produced in the accounting system have a
sequence number that allows components that are in the next
level to detect if there are missing records in a collection of
records and can be used to give a sense of how often records
are produced in a given time period. “6th this information
being part of every record, an accounting process can
determine a sense of the functional capabilities of the
intermediate components and detect some aspects of the
communication channel between components.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a server running an account-
ing application monitoring a network.

FIG. 2 is an architectural block diagram of the accounting
application used in FIG. 1.

FIG. 3 is a block diagram of accounting support in an
access process used by an lntemet/Intranet service provider
or a large enterprise.

FIG. 4 is a block diagram of accounting support in an
access process used by an Internet/Intranet service provider
or a large enterprise using an Extranet switch.

FIG. 5 is graph depiction of a network including data
collectors disposed in the network.

FIG. 6 is a flow diagram showing a typical data flow
process using an accounting process.

FIG. 7 is a diagram show exemplary network accounting
records.

FIGS. 8A—SB, 9A—9B, 10, 11A—11E, 12 and 13A—ISB,
are schematic views of data structures used in network

accounting records.
FIG. 14 is a block diagram of a flow data collector system.
FIG. 15 is a flow diagram of the flow data collection

process of the flow data collector of FIG. 14.

10

15

30

35

45

50

55

60

65

2

FIG. 16 is a block diagram of the flow aggregation
processor (FAP).

FIG. 17 is a flow diagram of the flow aggregation process
performed by the PAP of FIG. 16.

FIGS. 18—20 are examples of the FAP enhancement and
aggregation portions of the flow aggregation process shown
in FIG. 17.

FIG. 21 is a hierarchical representation of an aggregation
adjustment scheme for adjusting the aggregation activity at
the levels of the flow aggregation processor and the data
collectors.

FIG. 22 is an example of a configuration file update for
aggregation (policy) adjustment.

FIG. 23 is a flow chart of an information management
process.

FIG. 24 is a representation of a network communications
path between two end stations in a network.

FIG. 25 is an illustration of an ICMP message encapsu-
lated in an Internet Protocol (1P) packet and the formats of
the ICMP message and the IP packet.

FIG. 26 is an illustration of the format of an ICMP error

reporting message header and datagram prefix.
FIG. 27 is a flow probe IP packet processing mechanism.
FIG. 28 is the payload procesing/protocol correlation of

the 1P packet procesing mechanism of FIG. 26.
FIGS. 29A—29B are diagrams depicting a protocol

independent, packet loss detection monitor.
FIG. 30 is a diagram depicting a process to capture quality

of service.

FIG. 31 is a diagram of a service management process.
FIG. 32 is a diagram showing an architecture of a service

provisioning application.

DETAILED DESCRIPTION
Architecture

Referring now to FIG. 1, an exemplary arrangement 10
for collecting information from a network is shown. The
network includes various network devices 12. The network

devices 12 can be disparate, i.e., different equipment types,
operating under different protocols and formats. The net-
work devices 12 are coupled to an accounting process 14 via
an equipment interface 16.

The accounting process 14 includes a flow data collection
layer 18 that runs as client processes with the equipment
interfaces on or close to the network devices 12. Individual

and multiple data collectors (not referenced) can be disposed
at points ofpresence (POP) in a network 11. The accounting
process 14 includes a flow aggregation and distribution
process 17 that runs as a server process on a sewer 15. The
accounting process 14 assembles the data into a format that
can be used by billing or other user defined data consuming
applications 20 that interface to the accounting process 14,
through a data consuming application interface 22. Thus, the
accounting process 14 collects via the data collector layer 18
multiple and diverse types of data from the network 11,
normalizes the data into a consistent accounting record, and
provides open interfaces to one or more applications, such as
billing via the application interface 22.

The network devices 12, e.g., SWitches, routers, remote
access concentrators, and so forth can produce data of
various types and formats which are all handled in the
accounting process 14. Examples of the network devices 12
include a router or switch 12a, cable or telephone modems
12b, a flow probe 12c, a remote access concentrator 12d an
Extranet switch 122, a directory naming service (DNS)

NOAC EX. 1018 Page 298

m

NOAC Ex. 1018 Page 299

“grave.(x

i:w
. .

r

3

US 6,625,657 B1
3

server 12f, a RADIUS sewer 12g and web server 12h. One
particular source of data, the flow probe 12c will be
described below in conjunction with FIGS. 24—28. The
network devices 12 can include a “Remote Authentication

Dial—In User Service” (RADIUS) server 12g that produces
RADIUS accounting records using an existing RADIUS
accounting process (not shown). The accounting process 14
can interface to the existing RADIUS accounting process
and can use existing RADIUS records Without modifying
the existing RADIUS accounting environment. RADIUS is
a well-accepted standard in the industry and is used across
a number of ditferent types of technologies (dial-in, cable,
DSL, VOIP, etc.), with the most prominent being dial-in
acces. So, by supporting RADIUS records the accounting
process 14 provides the ability to fit into an existing network
environment without modification.

The accounting proce$ l4 enables users such as an
Enterprise or an Internet Service Provider to maintain an
existing accounting configuration. Information sources can
include network traflic flow, RADIUS accounting data,
RMON/RMONZ data, SNMP-based data, and other sources
of network usage data. The accounting process 14 collects
data via the data collector layer 16 from multiple disparate
sources and produces new type of composite records. These
new composite records results is new information which
provides a source for network accounting, billing,
management, capacity planning, and so forth.

The accounting proce$ l4, aSWill be desmbed in FIG. 2,
has a core process that can handle data records from each of
the equipment types above, as well as other equipment
types, and can provide data to each of the plurality of
user—defined data consuming applications. This accounting
process 14 provides flexibility in choosing data consuming
applications that use accounting data. Such applications can
include billing, enterprise charge-back or cost allocations,
capacity planning, trending, application monitoring, user
profiling and so forth.
Accounting Architecture

Referring now to FIG. 2, the equipment interface layer 16
of the accounting process 14 includes various equipment
interfaces 42a—42i which are, respectively, an interface 42a
for the router/switch 1211, an interface 42b for the cable/
modem head end 12b, and an interface 42c for the flow
probe 12c. The equipment interface layer 16 also includes
additional interfaces such as an interface 12d for a remote
acces concentrator 12d, an interface 122 for an Extranet
switch 12e, an interface 42f for a DNS server 12f, and an
interface 42g for a RADIUS server 12g. The equipment
interface can have additional interfaces that can be specified,
as new equipment is added. The interfaces 420—42g can be
developed by an interface toolkit 44. The interface toolkit 44
permits a user to construct a new equipment interface type
to couple the accounting process 14 to a new equipment
source type.

The accounting process 14 also includes a data collector
layer 18. The data collector layer 18 is a distributed layer
comprised of individual data collectors, e.g., 520—52g. The
data collector layer 18 collects data in the form of raw
accounting information specific to the device type. The data
collector collects data via the aforementioned equipment
interfaces 42a—42g. The data collectors 520—52g collect the
data and convert data into normalized records herein

referred to as NetworkAccounting Records (NARs). Each of
the data collectors 520—52g, as appropriate, forwards net-
work accounting records (NARs) to a flow aggregation
process 60.

The data collectors 52a—52g support several different
collection models. For example, the data collectors 52a—52g

10

15

20

30

35

45

50

55

60

65

4

can support a so—called “push model” in which a connected
device initiates a transmission of data to the accounting
process 14. The data collectors 520—52g also can support a
“pull model” in which the accounting proce$ l4 initiates a
connection to an equipment interface for the purpose of
obtaining data. In addition, the data collectors 52a—52g can
support an “event driven model” in which an event that
occurs in either the equipment interface layer 16 or in the
accounting proces l4 initiates a transfer based on some
threshold or criteria being met by the equipment layer 16 or
accounting proces 14 within which the event occurred.

The data collectors 520—52g are distributed throughout
the network. The data collectors 520—52g are placed close to
or within the network device that the collector is assigned to.
That is, the data collector can be in-line or out-of—line
relative to the device monitored. The data collectors

52a—52g can be anywhere. The data collectors 520—52g can
be completely uncoupled from the devices except for com—
munication paths. As new network devices 12 are added to
the accounting support arrangement 10, new data collectors
are also deployed.

The accounting process 14 also includes a flow aggrega-
tion proce$ 60 that is part of the aggregation and distribu-
tion proce$ 17 (mentioned above). The flow aggregation
process 60 is a central collection point for all network
accounting records (NAR’s) produced from various data
collectors 520—52g in the data collection layer 18. The flow
aggregation proce$ 60 receives NAR’s from various data
collectors 520—52g and aggregates, i.e., summarizes related
information from the received NARs across the accounting
support arrangement 10. The aggregation layer 60 produces
Summary NAR’s i.e., enhanced and unique network
accounting records That is, the flow aggregation process
aggregates the records across the network devices; whereas,
individual data collectors 52a—52g can aggregate accounting
records from individual data sources. Aggregation will be
described below in FIGS. 14—23.

The accounting architecture also includes a data distribu-
tor layer 70 (part of the aggregation and distribution proces
17). The data distribution layer 70 provides a flexible data
distribution mediation between the flow aggregation process
60 and a user-defined application, via an application inter-
face layer 22. Data distributor layer 70 presents information
to the application interface layer 22, with a pre—defined
format, protocol and schedule that is determined by require-
ments of a user application. The data distributor layer 70 can
support push, pull and event driven data distribution models.
The application interface layer 22, is comprised of indi—
vidual application interfaces 820—82g that are provided by
the toolkit 44. The toolkit 44 as with the network device

interfaces 42a—42g can be used to produce additional appli-
cation interfaces 82.

Exemplary Configurations
Referring now to FIG. 3, the accounting prowss 14 can,

in general, support any configuration. Exemplary configu-
rations used by an Internet service provider 100, an Enter~
prise A that host its own remote acce$ 110, and an Enter-
prise B that uses the Internet service provider 120, areshown.

As shown in FIG. 3, for the Internet service provider, data
collectors 520—5211 are distributed at specific Points of
Presence (POP), such as remote access concentrators 102
managed by the Internet service provider. The remote access
concentrators allow, a mobile user 106 or an Internet user
107 with remote access to acces an enterprise over the
Internet, via the Internet service provider. In this example
the Internet service provider arrangement 100 and the large

NOAC EX. 1018 Page 299

NOAC Ex. 1018 Page 300

.1:

US 6,625,657 B1
5

Enterprise arrangements 110 and 120 include servers 13, 13',
and 13" that run accounting processes 14, 14' and 14". The
accounting processes 14, 14' and 14" each independently
manage and collect information regarding network trafiic
usage.

The Internet service provider arrangement 100 includes
the accounting server 13 that runs the accounting process 14.
The accounting process 14 includes a flow data collector
layer 18 that gathers data from the service provider network
100. 'Ihe flow data collector layer 18 includes distributed,
individual flow data collectors 52a—52d. The distributed,
flow data collectors 52a—52d collect transaction specific
details about a user’s connection type and actual network
usage. These data are converted into the NARs in the
distributed, flow data collectors 520—52d, as mentioned
above. The NARs are aggregated over the entire system by
the flow aggregation layer 60 (FIG. 2).

Data is made available to the Internet service provider via
the data distribution layer (FIG. 2) so that the Internet
service provider can analyze data in order to differentiate
service offerings to difierent users. The Internet service
provider can evaluate and use such detailed accounting data
collected from various sources to migrate from a single flat
rate fee business model to more flexible charging. For
example, analysis of the data can enable the Internet service
provider to develop new service options that can take into
consideration bandwidth usage, time of day, application
usage and so forth. In addition, Internet service providers
can ofler discounts for web hits that may exist in an Internet
service provider cache, thereby minimizing the need to look
up an address for a requested site on the Internet and can
provide free Email usage while charging for other types of
applications such as file transfer protocol and web traffic.

The data can also be used by other applications such as
network planning, security, auditing, simulation, flow pro-
filing capacity planning and network design and so forth.
Thus, the Internet service provider can independently moni—
tor and evaluate network traflic caused by remote employees
and mobile users, for example.

Similarly, other instances 14', 14" of the amounting
process can be used by enterprises, as also shown in FIG. 3.
For example, an enterprise may host its own remote access,
as shown for Enterprise A and would include a server 13'
running an accounting process 14'. An enterprise could use
the Internet service provider as shown for Enterprise B, and
still have a server 13" running an accounting proces 14".
The accounting process 14', 14" includes an a§ociated data
collector that is coupled to enterprise A and enterprise B
local area networks or other network arrangement. In this
model, the enterprises use data from the accounting process
14', 14" for enterprise charge-back functions such as billing
departments for Internet usage within the enterprise and so
forth.

Different instances of the accounting process are used by
both the Internet service provider and enterprise A and
Enterprise B sites. The instances 14, 14", 14" of the account-
ing process are independent they do not need to exchange
accounting data. Rather, they exist as separate, independent
accounting domains.

Referring now to FIG. 4, a similar access configuration
100', as the configuration 100 (FIG. 3) can be used with an
Extranet switch 122. Extranet access allows remote users to

dial into an Internet service provider (ISP) and reach a
corporate or branch oflice via an ISP. The Extranet switch
allows lntemet users access to corporate databases, mail
servers and file servers, for example. It is an extension of the
Internet in combination with a corporate Intranet. In this

10

15

20

30

35

45

50

55

60

65

6

configuration, the Extranet switch 122 can be owned and
operated by an Internet service provider as shown with
enterprise A, or it could, alternatively, be owned and oper-
ated by an enterprise, as shown with enterprise B. Users
would access the corporate network of either enterprise Aor
enterprise B, via the Internet service provider with various
types of tunneling protocols such as IlTP, L2F, PPTP or
IPSec, and so forth. The accounting server 13 located at the
service provider and also accounting servers 13', 13” within
enterprise A and enterprise B allow each the Internet service
provider and each of enterprises A and B to run accounting
process 14‘, 14" on the servers 13', 13" to monitor and collect
network data.
Transaction Flow Model

Referring now to FIG. 5, a graph 140 depiction of a very
large scale network includes a device “A” 142 communi-
cating with a device “B” 144. The graph 140 includes nodes
(not all numbered) that can represent routers, switches, flow
probes, etc. that have interfaces (not shown) which maintain
statistirs on information passed through the interfaces. For
example, a switch may have a number of Ethernet ports and
a host could be connected to one of the ports and in
communication with one of the interfaces to transfer infor-
mation over the network. The interface would have counters

that are used to track “packet’s in, “packet’s out”, “bytes in,
bytes out", and so forth.

In this case of the host connected to the port, or a router
or some other device being connected to the port, there is no
other connection that the host, router or other device is
aware of other than the entire network. This is an example
of a “connectless oriented" protocol. Adata collector 52 can
be disposed in the network in a path between the entities “A”
and “B", such that the data collector 52 monitors some of the
packets that comprise a flow between “A” and “B.” As a
single point monitor, the data collector has no concept that
there are two ends communicating. The data collector 52
identifies these entities “A” and “B” in various NARs

produced by the data collector 52. At later stage in the
processing, either in the data collector 52 or elsewhere in the
amounting process 14 the NARs are correlated so that the
NARs or some aggregated NAR produced by the data
collector 52 or the rest of the accounting process 14 can be
associated with the accountable entities “A” and “B” to thus

identify a connection between entities “A” and The data
collectors 52a—52g (FIG. 2) develop a description of the
connection. For a router, normally an address of the object
that is connected to that interface might serve as an address.
Aswitch has an IP address that can be used as the destina-
tion. The actual device that is connected to the switch or

router can be used as an accountable object. Although the
traflic is not destined for the router, the data collector can use
those identifiers as keys to the endpoints “A”, “B.”

In many cases, the protocol can explicitly determine
connections. For example, the TCP/IP protocol is explicitly
a “connection oriented” protocol used in the Internet. When
the data collector 52 needs to determine a connection, the
data collector 52 can exploit the “connection oriented"
nature of certain types of protocols such as the TCP/IP
protocol. When the data collector 52 tracks a TCP/IP
connection, the data collector 52 can determine exactly that
A and B are connected, when the connection starts, stops,
and updates. With other protocols such as a “connectionless”
protocol, and even in some complex environments such as
a virtual private network or a proxy server, the data collector
52 does not necessarily know the real endpoints. The data
collector 52 only knows that some entity is talking to some
other entity.

NOAC EX. 1018 Page 300

NOAC Ex. 1018 Page 301

W35“”21; >«-—."‘.
u

;er

:“‘5’“.”r‘.,‘.

US 6,625,657 B1
7

Thus, the data collector 52 is a single point monitor, that
monitors traffic at one point in the network and converts the
traffic into a “pipe oriented” or “flow oriented” accounting
information. The data collector 52 identifies a source and a

destination of the traflic. That is, the data collector develops
a “connection oriented tracking.” By distributing data col-
lectors 52a—52g (FIG. 2) through out the network the
network can be modeled as pipes having two endpoints. A
data collector can be disposed in a partial pipe. The data
collector 52 determines that one end of the pipe refers to “A”
and the end of the pipe refers to “B.” The data collector 52
can be disposed anywhere along the network.

The graph 140 represents the network as a directed graph,
including partial segments. The endpoints of those partial
segments can act as proxy entities to the actual accountable
objects. Once independent accounting records that relate to
these two entitiesA and B are aggregated in the accounting
process 14, the accounting process 14 can identify thatA and
B are connected and have particular metrics.

Some equipment have a half pipe model that generate
independent accounting records for each half pipe. The data
collectors can asemble full pipe information from half pipe
information. The accounting process could be coupled to
equipment that gives a half pipe model forAcommunicating
with B and a separate one for B communicating with A. The
data collectors 52a—52g combine information from these
two half pipes into a bidirectional flow.

Referring now to FIG. 6, an example of data flow 130
through the accounting process 14 is shown. In this example,
data flow is initiated by a user 131 maldng a call to a remote
access concentrator (RAC) 132. Upon receiving the call, the
RAC 132 authenticates the user against a secure access
controller 134. Afler verification, the RAC 132 connects the
user to the network 135 and sends a RADIUS Start record

(not shown) to the accounting process 14. The accounting
process 14 generates a RADIUS Start NAR 137a and stores
the RADIUS start NAR in a database 62. At that point, the
remote user may check e-mail, look at a web sewer and
transfer a file. For each transaction, the amounting process
14 captures the [P traflic, generating a e—mail, http, and ftp
network accounting records 137b—137d, respectively. These
are stored in the database 62. Upon completion of these
transactions the user would log out of the network, at which
time the RAC would send the accounting process 14 a
RADIUS Stop record. The accounting process 14 generates
a RADIUS Stop NAR 137e and stores the RADIUS stop
NAR in the database 62. All of these records reflecting the
user's transactions could be viewed and reported in flexible
ways dependent on the needs of an end-user application.
Network Accounting Records (NARs)

The data collector 52 translates collected information into

network accounting records (NARs). A NAR includes a
header, an accounting entity identifier and metrics. The
network accounting record (NAR) is a normalized data
record that contains information about a user’s network

usage activity.
Referring now to FIG. 7 a base level “activity” NAR that

includes source, destination, protocol, source port, destina-
tion port, byte and packet counts, etc. The base level activity
NAR can be combined and aggregated in many different and
flexible ways to support various accounting functions. The
NAR is an activity record corresponding to some level of
detail. Detail can vary based on the level of aggregation
being applied, in accordance with the needs of the end-user/
application.

FIG. 7 has at one level 152 a plurality of exclusively
“Activity NARs” which could correspond to a very low
level of detail, or could be the result of a prior aggregation
providing a higher level view of the information. Thus, FIG.
7 shows a collection 152 of exclusively activity NARs. From
base level data, additional “views" of the NAR could be

10

15

20

30

35

45

50

55

65

8

produced, such as a set of “Summary NARs" 154, or another
set ofActivity NARs 156 which could be a result of further
aggregation of the base level information, or lastly a com—
bination of a set of Summary NARs and Activity NARs 158.
The summary NAR is produced by the central aggregation
layer 60 and can include user identifying information, pro-
tocol information, connection time information, and data
information, and so forth.

The specifics of what can be combined and aggregated
will described below. Thus, the accounting process 14 use of
NARs provides the ability to combine and aggregate base
level activity information in a flexible way to meet the
specific needs of the end-user/application.

TABLE 1 below corresponds to the fields that can be
captured in a NAR. This is essentially the activity NAR. The
NAR contains these fields, which can then be combined and
used to form other activity NARs or summary NARs.

Column Name Description

05A_SOURGZ_'IYPE List all of the possible data sources
from which data can be collected.
Reference to
OSLSOURCE_'IYPE TABLE.

OSA_SOURCE_SERIAL_NUM Number which uniquely identifiesIn USA FDC.
[radiates the date and time at
which a record was recorded.
Microseconds component of
START_TIME_SEC.
Sequence number assigaed by the
source of the NAR to uniquely
identify the record and ensure
integrity.
The user associated with the record.
Event type of the record (i_e.
Start, Stop, Update).
Unique Accounting ID to make it
easy to match start and stop records.Duntion of the record in seconds.
Micmseconds component of the
SESSION_TIME.
Source address of the record
Destination address of the record
Protocol of the record. Reference to
OSAJROIOCOL_TYPE table.
Source port number.
Destination port number.
Number of bytes transmitted into
the network by the source. For
RADIUS is equivalent to
Acct-Inputocrets.
Number of bytes sent out of the
network, to the source. For
RADIUS is equivalent to
Acct—Output-Octets.
Number of packets transmitted into
the network by the source. For
RADIUS is equivalent to
Acct—Input-Packets.
Number of packets transmitted
out of the network, to the nonrce.
For RADIUS is equivalent to
Acct-Outputrl’ackets.
The Type of Service coding marked
by the source.
The Type of Service coding
marked by the destination
The Time To Live field set
by the source Ind modified by thenetwork until the Nortel flow
probe recorded it.
The Tune To Live field set by
the destination and modified by the
network until the Nonel flow proberecorded it.

STARI‘__T[ME_SEC

S TARI_I [ME USEC

SEQUENCE__NUMBER

USMAME
EVENT

SESSION—JD

SESSION,JME
SESSION._T[ME_USEC

SRC_ADDR
DST_ADDR
PROIO

SRC_POKF
DSTJOKI‘
SRC_OC1'EIS

DST__OC1'EIS

SRCJKI‘S

DSTJKIS

SRC_'IOS

DST_'IOS

SRC_TI‘L

DSTTI‘L

NOAC EX. 1018 Page 301

NOAC Ex. 1018 Page 302

“Vr4‘s.

a

US 6,625,657 B1

‘ * t? 9 10

“F ing Record Identifier 202, and optionally one or as shown a

' ‘ Q -continued plurality of Network Accounting Record Attributes
ii? _ _ 20411—20411, generally denoted as 204. The Network

{ . '5: 0’1““ Nu“ Dmnpmn Accounting Record Identifier 202 has a set of object iden~
“‘312‘3 ;; OSA_CAUSE A number um indium the reason 5 tifiers that uniquely identifies the network accounting record

a?" the accounting record was generated. within the accounting process 14.
"g , . {1 OSA—STA'WS Am“ “”1 _‘° “dim" the 5m“ The Network Accounting Record Identifier 202 acts as a
‘3 1% fi‘;'§:;“;§“3 "w” “1‘“ database key value that makes the NAR 200 unique within
1“} .3 Accr_Dmy_1mE Indium: how my Mona: the the entire accounting proce$ 14. The Network Accounting

« client has been trying to send 10 Record Identifier 202 allows the NARs to be handled and
CF C an; report;I m managed using database functions such as database integrity

AC *A Emilie": ”m was analysis and reliability analysis. The Network AccountingACCI‘_TERMINATE_CAUSE [radiates how the session
was terminated
Unique Accounting ID to make
it my to link[radiates the count of link: which
Ire known to have been in a
given multilink session at the time
the amounting record is generated.

ACCI‘_M'ULTI_SESS[0N_ID

ACCI‘JINILCOUNT

The summary NAR and activity NAR have a one—to-many
relationship. That is, while there can be a single summary
NAR for a particular user over a particular call that will
contain information about the sum of usage of network
resources over the duration of the call, there can be many
activity NARs. The activity NARs capture details about the
actual activity and applications being used during the call.
The summary NAR, therefore, depicts the total expense of
the transaction or a set of transactions on a network,
whereas, the activity NARs depict expenses of a transaction
at any point in time. The summary NAR is generated in the
flow aggregation process 60, as will be described below. In
essence, the summary NAR is generated from individual
activity NARs correlated in the data collectors 52a—52g, as
will be described below.

A NAR is a member of a generic data message set that is
used to transport data, such as network accounting data,
through the accounting process 14. These system data mes-
sages include “Status Event”, “Maintenance Event”, “Trace
Event”, “Network Accounting Record”. Accounting process
14 mesages share a common MSG_JiDR structure that is
used to discriminate between the four types of accounting
process 14 messages The Message Header (MSGJIDR)
includes Message Type, an Message Event and Cause, and
Message Length.
Network Accounting Record Data Structures

As will be described below, the NAR is unique within the
accounting process 14. The NAR has a NAR_ID that
specifies an accounting proces component ID. The compo-
nent ID specifies the data collector migned to a particular
network device that produced the NAR. The component ID
e.g., NAR_SRCJD 203a (FIG. 8B below) is allocated at
the time that the component is produced. The NAR_ID also
includes a time stamp at the second and microsecond level
so that the accounting process 14 can discriminate between
multiple NARs generated by a particular component. A
sequence number, e.g., 32 bits is also used to differentiate
NARs from the same accounting process component that
may have the same time stamp. The sequence number e.g.,
NAR_SEQ_NUM 203C (FIG. 8B) is preferably a mono-
tonically increasing number starting from, e.g., 1. As long as
the component is functioning, and producing NARs, the
component provides a new sequence number to a new NAR.

Referring now to FIGS. 8A—8C, a Network Accounting
Record (NAR) data structure 200 is shown.

As shown in FIG. 8A, the NAR data structure 200
includes two basic accounting objects, a Network Account-

Record Identifier 202 also gives the accounting process 14
the ability to track the source of NARs and to build mecha-
nisms such that the accounting process 14 can maintain
identity of the origination of NARs throughout the system
10.

The plurality of Network Accounting Record Attributes
20441-20411 provide metrics for the NAR 200. The Network
Accounting Record Attributes 204a—204n capture specific
information contained in data from network devices. Dif-

ferentiating between the entity identifier 202 and the metric
204 allows the accounting process 14 to perform logical and
arithmetical operations on metrics 204 while leaving the
accounting identifier intact 202. The accounting identifier
202 can be enhanced unlike the metrics.

The data collectors 52a—52g (FIG. 2) are oriented around
the process of filling in the NAR. The metrics are left
untouched by the data collector and are passed transparently
into the accounting prom flow aggregation proccs 60.
The data collectors 520—52g assign the accounting entity
identifiers 202 to the metrics e.g., a source and a destination
identifier to the metric. In the example of a router link, the
metrics that the router interface provides are in the form of
“information in” and “information out” e.g., octets in, octets
out, bytes in, bytes out datagrams in, datagrams out, faults
in, faults out, and so forth. The data collectors 52a—52g
determine what “in” and “out” means and assigns the unique
identifier that is unambiguous relative to the determined
meaning of “in” and “out.” Once a data collector 52 has
established this convention, the convention is used through-
out the system 10.

Thus, the NAR Identifier 202 provides database con-
structs to a NAR, whereas, the plurality of Network
Accounting RecordAttributes 204a—204n provide the actual
metrics used for network activity reporting and network
accounting.

As shown in FIG. 8B, the Network Accounting Record
Identifier 202 (NAR_ID) is a set of objects within the NAR
that uniquely identifies the NAR throughout the accounting
proces 14. The NAR_ID 202 is designed to support a
number of properties of a NAR including flexibility,
accountability, reliability and uniquenc$. In order to pro—
vide these properties, the NAR_ID 202 is divided into
objects designed to specifically provide these properties.
Flernbility is supported through a NAR_HDR 203 section
of the NAR_ID. Accountability is attained in the NAR
through explicit identification of the source of the NAR by
a component identification NAR_SRC_ID 203a. The
source time is maintained in a NAR_SRC_TIME 203b.

Reliability is supported, as described above, through the use
of a NAR sequence number (NAR_SEQ_NUM) 203e,
which is designed to enable traditional database integrity
mechanisms.

The NAR_ID 202 is used to provide uniqueness for each
NAR. The responsibility for guaranteeing the uniqueness of
each NAR is handled by every accounting process compo-

NOAC EX. 1018 Page 302

NOAC Ex. 1018 Page 303

a3a.'2fl
‘1;

‘V‘eia’'
*1!“m

”(in

.1.“7%?“1'Hm
9w:

US 6,625,657 B1
11

nent that has the ability to originate/source network account-
ing records. This responsflJility requires that each account-
ing process component have the ability to unambiguously
identify itself in each NAR that it produces. Thus, NAR type
identifier, NAR_TYPE, is comprised of the source compo-
nent identifier, NAR_SRC_ID, the NAR source time,
NAR_SRC_TIME, and the NAR sequence number,
NAR_SEQ_NUM. These three data objects act as a data-
base key for a particular network activity record, ensuring
the uniqueness of the NAR throughout the entire system.

The NAR_SEQ_NUM can have several purposes. One
way that the NAR_SEQ_NUM can be used is as a dis-
criminator when two NARs are produced at the same time.
A second way that the NAR_SEQ_NUM is used is as a
monotonically increasing index to ensure database integrity.
Because the NAR_ID is unique, it should be considered as
an allocated value. A NAR_ID is allocated at NAR origi-
nation.

If a component creates or modifies the contents of an
existing NAR, as for example when aggregating two NARs
together, the component originates the NAR_ID. This pro-
vides an opportunity for the accounting proces 14 to have
explicit internal integrity mechanisms that can account for
any network accounting record that is processed by the
accounting process 14.

The NAR Source Identifier NAR_SRCJD 203a
includes a source type 207a and a Source Serial Number
207b. The serial number 207b is an administratively allo-
cated value e.g., 24-bits that uniquely identifies the NAR
source type throughout the accounting proces 14. The
source serial number 20’7b should be unique within the
specific accounting domain.

The (NAR_SEQ_NUM) 203a is a monotonically
increasing, e.g., unsigned 32—bit integer that acts as a
sequence number for NARs that originate from a particular
NAR source. Because the value of the NAR_SEQ_NUM
can “wrap around”, the combined 64—bit value NAR_SRC_.
ID and NAR_SEQ_NUM are unique only over a specified
time period. ’

Referring now to FIGS. 9A—9B, exemplary formats for
Network Accounting Record Attributes 204 are shown.
There are two variations on a single NAR_AITRIBUI‘E
format that can be used. As shown in FIG. 9A, a standard
NAR_AI'I‘RIBUTE format 206a inclust header fields

NAR_A'ITR type, NAR_A'ITR Code, NAR_A'I'I'R
Qualifier, and NAR_ATI’R Length and a “value field.” In
order to conserve the size of accounting information, when
the size of the value of the NAR_A'ITRIBUTE is a byte i.e.,
8—bits, as indicated in the NAR-ATTR Qualifier field, the
format 206b of the NAR_A'I'I‘RIBUTE can be as shown in
FIG. 9B, including fields NAR_ATI'R type, NAR_ATI'R
Code and an 8-bit NAR_value field.

Each supported object is assigned an NAR_A'ITR Code.
Through the NAR_A'I'I'R Code, the accounting process 14
can distinguish the semantics of a particular NAR
ATI'RIBUTE. Although NAR_A'I'I'R Codes are specific to
the NAR_m Type, the NAR_A'ITR Code assignments
can be unique to aid in implementation. Values can be
assigned to provide some explicit hierarchical structure.
Each NAR_A'ITR has an 8-bit NAR_A’I'I'R Qualifier that

provides typing information for the NAR_A'ITR. The
NAR_AITR Qualifier is used because some supported
objects can be represented using several different types.
Counters, for instance can be 32-bit as well as 64—bit, in the
case of aggregated objects. Network identifiers may use
numeric indexes, or strings as labels. The NAR_A'ITR field
specifies the length of the NAR attribute including the
NAR_A'I'I'R header.

10

15

30

35

4s

50

55

60

65

12

There are five types of Network Accounting Record
Attributes that are supported in the NAR. The five attributes
are Accounting Time Interval (ACCI‘_TIME) (FIG. 10);
Accounting Entity Identifier (ACCT_ENTITY__ID),
(FIGS. flA—llE); Accountable Entity Descriptor (ACCI;
ENTITY_Desc); Network Activity Metrics (NET_
METRICS)(FIG. 12); and two Transparent Attributes
(TRANS__ATI'R)(FIGS. 13A—13B). As necessary, addi-
tional NAR_A'I'I'RIBUI'ES can be supported. For example,
a NAR_ATI‘RIBUTE type could also include Security
Attributes for accounting data to protect against unautho-
rized introduction or modification of accounting informa-
tion.

Referring now to FIG. 10, an Accounting Time Interval
record includes a value “seconds” and a value “micro
second”. The values of “seconds” and “micro seconds”

together represent a time stamp of network activity for the
NAR, as discussed above. When derived from an absolute
time value that represents the end of the accounting time
interval, the Accounting Time Interval is the duration, as
calculated using the Accounting Time Interval as the starting
time value. All Network Accounting Records can have an
Accounting Time Interval attribute.

Referring now to FIGS. 11A—11E, Awountable Entity
Identifier data structures are shown. The Accountable Entity
Identifiers are a collection of entity descri tion attributes
that together identify an accountable entity in the accoun ting
process 14. The accounting entity identification mechanism
facilitates flexible NAR aggregation properties of the
accounting process 14. The ACCI‘_ENTITY_ID is the
description of an accounting object within the accounting
process 14. There can be one or more ACCT_EN'I'ITY_
D5 in a given NAR, but there must be at least one ACCI‘_
ENTITY_ID in an Network Accounting Record. The actual
accountable object is defined by the entire collection of
ACCT_ENTITY_JDs that are included in the NAR.

In transaction based accounting, a network accounting
record will contain two ACCI'_ENTITY_IDS, representing
the source and the destination entities that are involved in the

network transaction. For traditional flow based accounting,
these would normally be the two network addresses that are
involved in the flow. Qualifiers are available in the ACCT_
ENTITYJD objects to indicate which ID is the source and
which is the destination of the network transaction.

In direct support of flow based accounting data sources,
the accounting process 14 supports a specific IP flow
descriptor. This is the traditional 1P S-tuple flow description.
The accounting process 14 could also support a 6-tuple flow
descriptor that includes a type of service (TOS) indicator in
the flow designator. This allows for Class of Service dis-
tinction in the accounting model.

For network activity data sources that do not have a
transaction accounting model, there may only be a single
ACCI‘__ENT1TY_ID present in the accounting record.
Qualifiers for the ACCI'_ENTITY_ID are available to
indicate if the single object is the source, destination, or
both, for the accounting metrit: that will be included. The
types of entities include User Identifiers and Network Entity
Identifiers. The network identifiers can include IP Address,
Flow Description, and Network Object 1D. Other types of
accounting entities can be provided.

The actual accountable entities for a specific network
accounting record are specified in the complete set of
ACCI'__ENTITY_ID(S) that are present in the NAR.
Operations that can be applied to NARs, specifically
aggregation, can influence how ACCI‘_ENTITY_IDS are
used in NARs. Each accountable entity identifier that is

NOAC EX. 1018 Page 303

NOAC Ex. 1018 Page 304

US 6,625,657 B1

13

present adds refinement to the definition of what accountable
entity the metrics actually apply to, whereas each ACCT__
ENTITY_DESC further refines the description of the
accountable entity.

Referring now to FIG. 11A, a NAR_USERNAME is a
specific type of NAR,_USERID data structure. A system
string type “Usemame” 222 can represents a real account-
able user within the accounting process 14. The NAR_
USERNAME data structure 220 is used to transmit the

string. The semantis can be applied when the string “User-
name” 222 is supplied by RADIUS or from DCI—[P man-
agement systems. The NAR_USERNAME data structure
220 includes a NAR_USERNAME NAR_A'I'I‘R Qualifier

that provides for Role designation, indicating whether the
object referenced is acting as a source, destination, both or
undeterminable within the system. The NARQATI'R Quali-
fier bits are set when the Role can be determined without

ambiguity.
Referring now to FIG. 11B, a NAR.USER_ID data

structure 230 is the general type for identifying an account—
able user. The accounting process 14 can use any available
object type to represent the NAR_USERJD value 232.
The NAR_USER_ID value 232 will be a system estab-
lished STRING type or a user index as generally supplied by
a database system. The semantics of the NAR_USERflID
value 232 are consistent within the accounting process 14,
and can be consistent outside of the accounting process 14.

Referring now to FIG. 1C, a NAR_IP_ADDRESS data
structure 240 is shown and which is the general network
component identifier for an IP enterprise network. NAR_
IP_ADDRESS data structure 240 includes a IPAddress 242
that is usually unique within the awountable domain, and
thus can be usable as an accounting process 14 identifier.
Within the accounting proces 14, the occurrence of this
record implies that the address is unique within the account—
ing realm. NAR_IP__ADDRESS type includes a NAR_
IP_ADDRESS NAR,ATI'R Qualifier. The NAR_IP__
ADDRESS NAR_A’I'I'R Qualifier provides for Role
designation, indicating whether the object referenced is
acting as a source, destination, both or undeterminable
within the system. These bits are set when the Role can be
determined without ambiguity.

Referring now to FIG. 11D, a NARJEWOM
type data structure 250 is shown. The NAR_NETWORL
ID data structure 250 includes a NETWORK_ID value 252

is a general type used for identifying a network component
when a network address is inappropriate. The accounting
process 14 can use any available object type to represent the
NAR_N'ETWORK_ID, but it is assumed that this value
will be an accounting process 14 established STRING type,
(e.g., a Media Access Control (MAC) addrm that is pre-
defined in Network interface cards), object type or a number
index that cannot be associated with a network address. The
semantics of the NAR_NETWORK__ID is consistent
within the accounting process 14, and can be consistent
outside the accounting process 14. ANAR_N'ETWORK_
ID NAR_ATI'R Qualifier provides for Role designation,
indicating whether the object referenced is acting as a
source, destination, both or undeterminable within the sys-
tem. These bits are set when the Role can be determined

without ambiguity.
Referring now to FIG. 1E, a NAR_FLOW_DESC data

structure 260 is the general type for reporting on flow based
network activity. The NAR_FLOWJESC is a composite
data structure 260 including a 1P Source Address 262, IP
Destination Address 263, Transport Protocol 264, Type of
Service 265, Source Port 266 and Destination Port 267 that

10

15

30

35

45

50

55

60

65

14

are populated from transport and network layer of IP packets
via flow probe. The NAR_FLOW_DESC NAR_A'ITR
Qualifier provides for Role designation, indicating whether
the object referenced is acting as a source, destination, both
or undeterminable within the system. These bits are Set when
the Role can be determined without ambiguity.

Therefore the Network Accounting Activity Records are
fitndamentally bindings betWeen an accountable entity and a
set of metrics that can be associated with that entity over a
specified period of time. The NARs provide flexibility in
defining, or specifying, the accountable entity. This level of
flexibility is required because in network accounting, an
awountable entity could potentially refer to objects that are
either physical or logical, singular or members of
collections, or geographically or topologically constrained,
such as network numbers or autonomous system numbers.

A set of accountable entities includes Usemame and

Network Object Identifiers. There can be additional descrip-
tive information available within netWork activity reports
and within networking components that could be used to
further describe accountable entities. These entity attribute
descriptors can be used in the accounting process 14 to
provide additional flexibility in how network activity infor-
mation is reported and tallied. Support for entity descrip-
tions can include object support for:

Flow Descriptors
Flow Protocol Descriptors
Flow Transport Port Descriptors

Authentication Descriptors
NAS Descriptors

Aggregate Descriptors
Clam Identifiers
Session Identifiers
Mum-Session Identifiers
VLAN Identifiers
ELAN Identifiers

Group Identifiers
Access Identifiers

Source and Destination Ethernet Addresses

lngress and Egress Tunnel Ids
lngress and Egress Port Numbers

ATM Virtual Circuit VPI/VCI
Calling and Called Station Ids

Flow Status Descriptors
Class of Service Identifiers

Quality of Service Identifiers
Traflic Path Identifiers

Accounting Time Interval
Accountable Netw0dc Activity Metrics

Source and Destination Datagrams
Source and Destination Octets

Extended Network Activity Attributes
Network Flow Control Indications
Host Flow Control Indications
Traffic Burst Descriptors

Referring now to FIG. 12, a NET_METRIC data struc-
ture 270 is shown. A NET,METRIC data structure 270 to

support a count is shown in FIG. 14. The N'ET_METRIC
data structure 270 is used to hold basic accounting values
that can be tallied Within the accounting process 14. The
NET___METRIC data structure 270 can support time, octets,
datagram, counts and cells, circuits, tunnels and so forth.

Referring now to FIGS. 13A and 133, two basic trans-
parent objects TRANS__ATI'R objects are shown; UNDE-
FINED 280 and RADIUS 290. New TRANS__A1'I‘R object

NOAC EX. 1018 Page 304

NOAC Ex. 1018 Page 305

US 6,625,657 B1

15

types can be defined as needed. These are objects that a user
may want to send through the accounting process 14, that are
customer specific, or proprietary in nature. The accounting
process 14 allows for object transparency, i.e., an object that
the system does not act on or modify. Thus, the contents of
transparent attributes are undefined with respect to the
accounting system. They are paged through, unmodified.
Flow Data Collector

Referring to FIG. 14, a flow data collector system 300 for
supporting the flow data collector (“FDC”) 52 (from FIG. 2)
is shown. The flow data collector system 300 includes a
processor 302 coupled to a memory 304. In this
embodiment, the FDC is a proce$ stored in the memory 304
and executed by the processor 302. The FDC 52 includes
several NAR processing components or processes. These
processes include a NAR constructor 306 for converting
data gathered by the equipment interface (EI) 16 (shown in
dashed lines) from a network device or technology
(“network entity”)into NAR format. Recall that each equip-
ment interface 42a—42g is associated with an flow data
collector. Thus, the combination of a equipment interface
and a flow data collector support a particular device or
technology and collects data from the particular device or
technology using a pre-defined format, schedule and proto-
col specific to that device/technology. The NAR processes
further include a correlator 308, an enhancement process
310 and an aggregator 312 for processing the constructed
NARs as appropriate. The details of these processes will be
discussed further with reference to FIG. 15 below.

Still referring to FIG. 14, the memory includes a local
store 314 and a flow data collector configuration (file) 318.
The local store 314 stores data received from the equipment
interface 16 and processed NARs. The configuration file 318
is provided at startup to configure the flow data collector 52.
The configuration file 318 specifies various configuration
parameters319, including a time parameter 320 and a policy
322. The NAR proce$es 304 populate and process NARs
for data received from network devices via the equipment
interface 16 in accordance with the policy 322 of the
configuration file. NARs being held in the local store 314 are
transferred to the flow aggregation process 60 (FIG. 2,
shown here in dashed lines) when the time specified by the
fime parameter 320 expires.

It can be appreciated from the above description that the
flow data collector 52 is a software component of the
accounting proces and runs on the flow data collector
system 300. The flow data collector system may be any
computer system, such as a workstation or host computer,
which can communicate with the equipment interface.
Alternatively, the FDC may reside in the network device
itself. Many known details of the flow data collector system
300 have been omitted from FIG. 17 for the sake of clarity,
as the figure is intended to highlight the processes of and
memory structures associated with the flow data collector.

Conceptually, as earlier described, each flow data collec-
tor of the accounting process architecture is capable of
supporting multiple equipment interfaces 16. At the imple-
mentation level, there is a one-to-one correspondence
between each flow data collector “process” and a given
equipment interface 16. For example, a single computer
system might provide both RADIUS and flow probe support
and thus rim separate flow data collector processes for the
RADIUS El and the flow probe equipment interface. In such
a configuration, where the flow data collector procemes are
operating independently and loading directly into the flow
aggregation processor 60 (FIG. 2), the computer system
itself may be viewed as an flow data collector supporting
multiple EIs.

10

15

20

30

35

45

50

55

60

65

16

Referring now to FIG. 15, a data collection process 330
performed by the flow data collector 52 of FIG. 17 is shown.
The flow data collector receives 332 data from the equip-
ment interface for an network device. The flow data collec—

tor performs an equipment interface specific translation to
convert 336 the received data into NAR format as well as

populates the NAR header. Once the NAR is populated with
the appropriate data, the flow data collector 52 attempts to
correlate 338 the newly populated NAR with other NARs.
That is, the flow data collector 52 compares the newly
populated NAR to NARs currently stored in the local store
314 (from FIG. 14) to determine if there are multiple
instances of the same object. Specifically, correlation is
performed by examining the ACCT_ENTITY_ID (from
FIGS. llA—llE).

The flow data collector uses one clock and one time

determinator, so all NARs that the flow data collector is
processing or holding are assumed to be in the same time
domain. Consequently, the flow data collector need not
consider time during correlation. If the flow data collector 52
determines that a NAR ACCI‘_ENTITY_ID (i.e., the col-
lection of descriptors or objects as described above) in the
NAR matches that of another NAR that it is currently
holding. the FDC52 can replace an older (stored) NAR with
the new (i.e., most recently populated) NAR and discard the
older NAR. For example, the existing or older NAR may be
a start record and the new NAR a stop record that includes
all the data included in the older NAR, thus superseding the
older NAR. Alternatively, if the new NAR is a replica of an
existing NAR, the FDC may decide to discard the new NAR.
Also, the data collector can determine that the two NARs
should be merged or aggregated. Thus, the correlation
process may discard the new NAR, replace an older NAR
with the new NAR or mark the two matched NARs as

candidates for aggregation, a process which is described in
detail below.

As part of the correlation process, the flow data collector
may enhance 340 the new NAR. That is, the FDC may
determine that the NAR cannot be correlated without some
amount of enhancement. The FDC 52 enhances the NAR by
supplementing the information provided by the original
source equipment with information that is not available from
that source equipment. The supplemental information is
added to the ACCI‘__ENTITY_ID. Recall that the account-

ing entity identifier ACCI‘_ENTITY_1D is a collection of
descriptors, so the enhancement process 310 adds to that
collection of descriptors. For example, the accounting entity
ID ACCI‘__ENTITY_ID in one NAR might include a
source address and a destination address, along with a value
indicating how long the flow (for the accounting entity) has
been in existence. A subsequently processed NAR record
having those same three objects can be correlated. However,
if a subsequently processed NAR only has two of the three
objects, the flow data collector can enhance the accounting
entity ID ACCI‘__ENTITY_ID for the third (miming)
object to permit correlation. Enhancement may involve
collecting information from a completely different network
device (via a NAR generated by another accounting process
component, such as another data collector), or it may be as
simple as adding a timestamp to a NAR’s accounting entity
ID.

As indicated above, the correlation process may deter-
mine 342 that two NARs should be “aggregated”. Aggre—
gation merges the accounting entity identifiers of the two
NARs together. It also merges metrics for NARs that contain
metrics, as later described. Aggregation of the accounting
entity identifiers is accomplished through an explicit and

NOAC EX. 1018 Page 305

NOAC Ex. 1018 Page 306

i

US 6,625,657 B1
17

implicit matching of those accounting entity identifiers.
Correlation relies on the explicitly matched fields, that is, the
fields or objects actually used to determine that two NARs
should be aggregated. The other descriptors or objects in the
accounting entity 1]) that were not used by the conelation
process to make a match may be equal or different. Aggre-
gation of the accountable entity 1]) portion of the NAR keeps
the explicitly matched objects, and determines which of the
implicitly matched objects (the matching objects that were
not a part of the explicit match) to save or discard. Of course,
the nonmatching objects are automatically discarded, as all
of the metrics that are the result of this aggregation have to
apply to the objects in the aggregated accountable entity ID
ACCT_ENTITY_ID. The removal of accounting entity ID
descriptors actually serves to lower the semantic complexity
of the NAR, whereas enhancement does just the opposite.

When the data collection process 330 involves a decision
concerning aggregation, the flow data collector 52 applies
344 the aggregation policy 322 (from FIG. 14) and uses a
method defined therein. The method outlines the decision-

making process to be followed by the FDC in the case of
implicitly matched objects. The aggregation policy will be
discussed in further detail with reference to FIG. 18. Once
the flow data collector aggregates the accounting entity ID
ACCT_EN'I'ITY_J]) portion of the NAR attributes, it can
aggregate the NAR metrics. To aggregate the metrics, the
flow data collector performs a summation process on
numerical metric values and/or a logical operation (e.g,
ANDing, ORing, or XORing) on logical metric values.
Agyegation of the metrics is specific to each metric field in
the NAR.

Once the NAR aggregation is complete 346, the FDC
changes the NAR header (i.e., the NAR_SRC_1D and
NAR_SRC_TIME in the NAR_ID) of the newly aggre-
gated NAR to identify the component (in this case, the FDC)
that performed the aggregation as the originator of this
particular NAR. The FDC stores aggregated NARs for a
period of time determined by the configuration profile’s
event—based counter or timer 320 (from FIG. 14). When the
timer expires 348, the FDC is ready to transfer NARs
processed by the correlator/(enhancement) and posibly the
aggregator as well to the FAP.

Prior to commencing transfer, the flow data collector 52
determines 350 if the flow aggregation processor 60 is
available to receive NARs. If the flow aggregation processor
60 is unavailable, the flow data collector stores 352 the
NARs to be transferred in its local store 314 (FIG. 16). The
flow data collector 52 continues to check354 the availability
of the flow aggregation processor at periodic intervals until
the connection between the flow aggregation processor 60
and the flow data collector is re-establislied. When the

periodic status check indicates 350 that the flow aggregation
processor is available, the flow data collector loads 356
NARs into the flow aggregation proce$or 60. The loading
function can be implemented according to one of many
strategies, e.g., a database, file, or data streaming strategy.
Other strategies could be used. When the flow data collector
receives 358 a confirmation or acknowledgment back from
the flow aggregation processor that, the NARs were loaded,
tbe transfer is deemed successful and the locally stored
copies of the transferred NARs are removed 360 from the
local store. Thus, the “store and forward" capabilities of the
flow data collector provide a measure of fault tolerance at
this accounting process level to ensure reliable data transfer.
The flow data collector only transfers NARs when it has
determined that the flow aggregation processor is available
and it considers the NAR transfer successful only upon
receipt of an acknowledgment from the flow aggregation
processor.

10

15

20

30

35

45

50

55

60

65

18

The flow aggregation processor (FAP) 60 (FIG. 2) aggre-
gates and/or enhances record data acrog the system 10. It
receives data from multiple flow data collectors (FDCs) that
may be aggregating and enhancing close to the source of the
information (as described above with reference to FIG. 17).
As NARs are received from multiple FDCs, the data can be
further enhanced and/or reduced (i.e. aggregated) to meet
the specific needs of an application or output interface based
on the aggregation policy of the flow data procesor 60
(FAP). The design and operation of the FAP will be
described in more detail below.

Flow Agyegation Processor
Referring now to FIG. 16, one implementation of the FAP

60 is as a database management system, or more specifically,
a Structured Query Language (SQL) database management
system, like those commercially available from Oracle or
Sybase. Although not shown, it will be appreciated that the
FAP is installed on a computer system, such as a host
computer. Implemented as a database management system,
the FAP includes a database server 400 coupled to a database
402. The FDCs 52 (from FIG. 14) can use the “push” model
to move NARs up to the FAP via SQL calls. The database
402 stores a plurality of tables 404, including a NAR table
406 (implemented as a persistent cache) and an aggregation
store 408. Also stored in the database are a plurality of SQL
commands and procedures (functions) 410 to be executed by
the server 400. The functions include a FAP correlator 412,
a FAP enhancer (enhancement process) 414 and a FAP
aggregator 416. The database also stores a configuration file
420 for storing configuration parameters such as time and
policy information. The operation of the FAP will be
described below with reference to FIG. 17.

Referring to FIG. 17, an overall flow aggregation process
430 performed by the FAP is shown. The FAP receives 432
a NAR from one or more FDCs and loads 434 the received

NAR into a persistent store or cache (of database 492 from
FIG. 16). If the FAP is unable to load the NAR, it requests
436 that the transferring FDC resend the NAR. If the load is
successful, the FAP sends 438 an aclmowledgment back to
the sending FDC. The FAP determines 440 if the NAR can
be correlated (with or without enhancement). If the FAP
determines that the NAR can be correlated, the FAP corre-
lates 442 the NAR with other NARs received from other
FDCs. Once the NAR is correlated, it may be enhanced 444
“across the system”, in a manner more fully described with
reference to FIG. 18. The NAR may be enhanced 446 to
include enhancement information obtained from an outside

source (i.e., collected by a data collector for a different
equipment interface). Once any potential conelation and
enhancement has been performed, the FAP determines 448
if the NAR is a candidate for aggregation. If so, the FAP
applies 450 the aggregation policy 420 (from FIG. 16) and
stores 452 the resulting aggregated NAR in the aggregation
store until a predetermined time expires or event occurs 454
(as set in the FAP configuration 420). The FAP ensures 456
the uniqueness and integrity of any NAR by examining
NAR header information prior to re—loading 458 such NAR
into the persistent store.

The accounting architecture may be implemented to
include a second “shadow” FAP process, also coupled to the
data collectors and operating in the manner described above
with respect to receiving and processing NARS. 1n the
dual/shadowing FAP implementation, the accounting archi-
tecture further includes an error detection module (not

shown) coupled to both of the first (primary) and second
(shadow) FAP processes. The error detection module oper-
ates to detect an error relating to the first flow aggregation

NOAC EX. 1018 Page 306

NOAC Ex. 1018 Page 307

US 6,625,657 BI

19

process and cause the aggregate reports from the second
flow aggregation process to be transferred to the accounting
module (i.e., flow data distributor 70) in place of the
aggregate reports from the first flow aggregation proces.
Enhancement

Now refen'ing to FIG. 18, an example of an application of
the FAP enhancement process 444 (from FIG. 20) is shown.
In the illustrated example, enhancement deterministically
identifies the source of a captured network accounting
record, flow or a transaction across a network. Enhancement
acceses other sources of information on the network in

order to enhance a record and make it chargeable to a
specific user.

In the example shown in the figure, two NARs of different
sources are inevitably going to be aggregated together to
produce a third unique NAR. A first source equipment (or
source) 500 is a DHCP (Dynamic Host Configuration
Protocol) server. Asecond source equipment (or source) 502
is a flow probe (discussed below). The sources 500, 502
have corresponding flow data collectors, a first FDC
(FDCl), 504 and a second FDC (FDC2) 506, respectively,
for converting their data into respective NARs NARI 508
and NAR2 510. As described earlier, each flow data collec-
tor assigus an accounting entity identifier 512, 514, and adds
time stamp information 516, 518 on the records of the
sources to which they correspond. The NARI 508 includes
in its assigned accounting entity identifier 512 an “IP
address-to—username” assignment, thus including an IP
address 522 and a usemame 524. The accounting entity
identifier 514 for the second source is an IP-to-[P flow and
therefore includes a first IP address 526 and a second IP

address 528. The NAR2 of the flow probe includes a metric
530 attribute as well.

These two records NARI, NAR2 are combined through
correlation 442 (from FIG. 17) and enhancement 444 (FIG.
17) to generate an enhanced NAR2 532. This enhanced
NAR has a modified accountable entity identifier 534 and a
metric. The modified accountable entity identifier is the
existing accounting entity ID 514, to which the FAP has
added the IP-to—user name assignment 512 from the account-
ing entity ID 512 of the NARl 508.

Still referring to FIG. 18, the NARI 508 has an IP-to-
usemame mapping 512 and an accounting interval 516
comprising a start time and a sesion time to indicate a time
interval bounded by start time “T1” and a start time +sassion
time (“T2”), that is, the accounting interval represents a start
time and a stop time. The usemame 524 in the IP address-
to-usemame mapping is supplied by the DHCP server 500.
In the FAP, this NARI information will either go directly to
a correlation function or to the local store (which could
either be a database, file or memory), where it can be directly
accessed by the correlator function. The NAR2 510 has an
accounting entity ID 514, a 'IB-to-T4 accounting time inter—
val 518 and a metric 530. The accounting entity identifier
514 has two IP addresses 526, 528, one corresponding to a
source IP address and the other corresponding to a destina-
tion IP address. The NAR2 502 is passed to the correlator
442, which determines that the T1—to-T2 time interval 516
from the IP»to-usemame address map in the NARl 508
overlaps or in some way relates to the T3-to-T4 time interval
518 of the NAR2 510. The correlator determines that T1, T2,
T3 and T4 are related, and that the IP address 522 in the
IP—to-username addres mapping 512 is associated with one
of the two IP addresses 526, 528 in the NAR2 510. Thus, the
FAP enhances the NAR2 510 by inserting information from
the accounting entity ID 512 (of NARl 508) into the
accounting entity ID portion of the NAR2 510. The

10

15

20

30

35

45

50

55

60

65

20

resulting, enhanced NAR2 532 has an enhanced accounting
entity ID 534 that includes the T3-to-T4 timestamp (not
shown), the IP~to-IP addresses 526—528 and the usemame
524. Thus, the enhanced NAR2 now has a mapping between
the usemame and the one of the IP addresses 526, 528 that
is related to the IP address 522. The metric 530 is

unchanged.
It should be noted that the correlator is able to determine

that the time intervals are related to each other because the

flow data collectors are time synchronized (or closely
synchronized, assuming some amount of drift). Thus, if the
correlator assumes no drift, then T3—to-T4 must be within
the time period of T1-to-'I2. The IP—to-username address
mapping is an event that has to encompass or cover all of the
accounting records that apply to that IP address. Any user
assigned to this IP address, started at T1 and ended at T2.
Only those records that reference that IP address between T1
and T2 will have this usemame applied to it. When the two
flow data collectors are not strictly synchronized, then the
amount by which 'IB-to-T4 overlaps Tl-to-TZ should cor—
respond to the amount of tolerance, i.e., drift, built into the
system. The accounting process assumes a drift amount of at
least one second for even a strict time synchronization, so T4
can be greater than T2 by one second.

Referring now to FIG. 19, an aggregation of the enhanced
NAR2 532 (from FIG. 18) is shown. In this example, the
aggregation involves combining NARs with IP—to-usemame
addres mappings to workgroups. To accomplish this
requires two enhancements, two correlations, and an aggre-
gation phase. As already described above, with reference to
FIG. 19, the IP address-to-usemame information is received
by the FAP and is either passed to the correlation or stored
in the local store but available to the correlator. When the

[P-to-IP address NAR with metrics is received, the correla-
tor and the enhancer work together to add the usemame
mappings to these IP~to-IP address NAR. The usemame
could be provided for one or both of the source and the
destination addresses. More than likely, the usemame is
amigned to the source IP address.

Referring again to FIG. 19, another correlation and
enhancement process 442, 444 maps the usemame 524 to a
Workgroup. The FAP builds up search keys using database
principles and relational algebra. Thus, for example, the IP
address has a one-to—one mapping with a usemame. (The
one—to-one mapping is assured because of the nature of IP
addressing and the way that the DHCP server assigns
usemames.) Therefore, there can be only one user for an IP
address in a given instance. These terms or values are
equivalent keys, so the usemame can easily be replaced with
the IP addres. The usemame 524 that was inserted into the

enhanced NAR2 532 can be used as a look-up into a
workgroup 540 in one of the database tables 404 (FIG. 16)
because the user is actually a member of a workgroup.
Therefore, the enhancement function can be used to insert
the workgroup label into the enhanced NAR2 (already
enhanced for usemame) to produce a twice-enhanced NAR2
542. If the now twice-enhanced record 542 is to be

aggregated, it is held in the aggregation store 408 (FIG. 16)
for some time period T until other NARs are received for
potential aggregation.

Suppose now that another NAR is loaded into the FAP.
This new NAR passes to correlation, which determines that
enhancement is need in order to correlate the new NAR with
the twice enhanced NAR2 542 of FIG. 19. As a result, the
FAP enhances the NAR to include the usemame 524 and the

workgroup 540 to produce a resultant NAR “NARS” 550, as
shown.

NOAC EX. 1018 Page 307

NOAC Ex. 1018 Page 308

US 6,625,657 B1

21

Referring to FIG. 20, in addition to the usemame and the
workgroup, the other NAR3 attributes include the T3-T4
accounting interval, the IP-IP address mapping and the
metrics. With the enhancement, the correlation process 444
determines that the resultant NAR3 now matches the twice

enhanced NAR2 542 held in the aggregation store 408.
Having explicitly matched the two NARs, aggregation 448
is performed. Aggregation preserves the explicitly matched
data objects that are in the accounting entity identifier,
discards any mismatches in the accounting entity identifier

To implement a given user/application requirement,
therefore, the data flow model 566 decomposes each

22

object’s accounting entity ID into policy information
572a—g, which includes a collection of data 574 that can be
supplied by the available flow data collectors and a set of
functions or methods 574 needed to correlate, aggregate or
enhance that data in order to construct the accounting entity
identifier.

Aggregation adjustment takes an accounting policy that is
a collection of accounting objects and decomposes those
accounting objects into their accounting entity identifiers

and makes a decision whether to keep the implicitly matched 10 with“: further decomposes the accounting entity Idem]?—
objects (i.e., those that seem to be equal but Were not used em m a rlee fashion to vame the collection 0f “.51"
to make the correlation match), It also then combines the {jam and functions needed to construct those accounting
relevant metric values together via summation or logical identrfiers. This 0011081)} builds on the 109ml directed graphs
operations (e.g., ORing,XORing, ANDing). Once the aggre- as seen in many compilers or data flow systems. Knowmg
gation is complete, the FAP holds the resulting aggregated 15 the order _of the functions, the data requirements and
NAR 552. As the FAP receives additional NARs, the aggre- dependencres, the data flow software can build the logical
gator continues to sum and perform these logical operations graph from the dWOIDPOSi‘iOH and that Spedfies data
on these metrics values for some aggregation period. The requirements and methods that can be distributed to con-
duration of that aggregation period may be in the order of 60 figuration files in the flow data collectors and FAPs to result
seconds to a week, or however long the FAP is configured 20 in adjusting the configuration of those accounting compo-
to aggregate these records. The termination of that period nents.
can be a time-based or event—based. Once an event that For example, suppose auser wants to receive accounting
terminates the time period occurs or an aggregation timer on an hourly basis from all of the potential sources of
expires, the aggregated NARs held in the aggregation store information. The flow data collectors 5620—5622 are the
are released for output by the FAP. 7.5 components that are available for collecting the raw infor-
Aggregation Adjustment mation to generate the accounting data in accordance with a

It can be understood from the foregoing description that user-specified accounting policy. The internal FAPprocesses
aggregation exists at different levels of the accounting 564a—564b further correlate, enhance and aggregate to
process. As shown and described above with reference to evolve the data towards the overall accounting data to meet
FIGS. 15 and 17, both the flow data collector and the FAP 30 the accounting policy 568 specified by a user. Thus, the
are aggregation-capable. Each aggregates in accordance user’s information requirements are translated into a policy
with an overall aggregation policy that defines how aggre- (i.e., collection of _objects), which is received by the
gation is used to provide the data to meet the needs of a accounting system and decomposed into the sets of data
specific application. The aggregation performed by the dif— requirements and methods for each of the available account-
ferent levels can also be remotely and independently 35 ing components 562a—562e, 564a—564b, that is, policy

finite; as will now be described. “WT—"MN information 572a—572g). Assuming that these components
Aggregation adjustment involves the ability to adjust the or processes are already configured, these sets represent

level of aggregation to meet specific application data needs. configuration updates that are distributed to and stored in the
There are two aspects of aggregation adjustment: remote configuration files (see FAP configuration file 420 from FIG.
control and variable degree. 40 16 and FDC configuration file 318 from FIG. 14) in their

Referring to FIG. 21, a graphical representation of aggre- respective processes.
gation control and adjustment via a data flow decomposition Referring now to FIG. 22, a depiction of the configuration
model is depicted. As shown, the accounting system is update is showu. The decomposition/configuration update
depicted as a tree 560. The flow data collectors are leaf process is implemented in software and is based on known
nodes 562a—562e and the two illustrated FAP processes are 45 data flow technology used in conjunction with an available
intermediate nodes 564a—564b. The root 566 is the collec- visualization tool to act as a front-end graphical interface.
tive view of all of the processed accounting information. Using such visualization tools, the updated configuration is
Given a common view of all the data and the particular simply mapped to the appropriate component.
accounting information requirements of a given application, It should be noted that not all accounting processes have
the root 566 thus embodies a single accounting/aggregation 50 a complete collection of data collectors. For instance, if the
policy 568. The accounting policy is defined such that an accounting process is to perform user-based accounting and
accounting schema is a direct derivative of the accounting the accounting process only has a flow probe, then it will be
policy 568. necessary to request that the user supply a static table of

The accounting policy 568 is viewed as a collection of IP-to-username mappings or a source of DHCP user IP
accounting objects 570, each defined as an accounting entity 55 address mappings. The source of that “outside” information
identifier 572 and aset of metrics (not shown). The account— becomes part of the decomposition strategy.
ing entity identifier is an abstract object resulting from Information Management
construction functions that use the flow data collector data as The NAR sequence number (NAR_SEQ__NUM FIG.
its original starting point. If an accounting entity ID is in the 8B) allows components that are in the next level to detect if
accounting policy as a part of a collection of accounting 60 there are missing NARs in a collection of NARs and can be
objects, it is there because it can be constructed from the used to give a sense of how often NARs are produced in a
FDC data and the collective set of operations that allow for given time period With the time stamps and the sequence
correlation, enhancement and aggregation. Therefore, if an numbers, a per second creation rate of NARs throughout the
accounting entity ID can be constructed, it can be decom- system can be determined. With this information being part
posed. 65 of every NAR, the accounting process 14 can determine a

sense of the functional capabilities of the intermediate
components and detect some aspects of the communication

NOAC EX. 1018 Page 308

NOAC Ex. 1018 Page 309

up.39“

turns“?

*4x
ifr\

.“ii~‘ifi‘z‘il‘t13’5't;‘~‘1‘:§"«2“‘r.42‘

«an.

US 6,625,657 B1
23

channel between components. Also included in a NAR
identifier is a component type identifier 207a which specifies
what kind of component produced the NAR and its serial
number 207b as described above in FIG. 8B. The component
type identifier allows the accounting process 14 to keep
component statistics and characteristics based on component
type. It also allows specific processing on the NARs. NAR
IDs are allocated in a very specific way through a manage—
ment system in order to insure that the IDs are actually
unique within the accounting process 14.

Referring now to FIG. 23, the sequence numbers (NAR_
SEQ_NUM) are a key reliability feature 590 of the account—
ing process 14. By having the sequence numbers as part of
the NARS and lcnowing that the numbers are monotonically
increasing enables the accounting process 14 to track and
identify 5% lost traflic or records. It also enables the
accounting process to determine 592 the amount of lost

10

15

traffic. By having the NARs withWfingprocessfl

component IDs (e.g. a data collector assigned to a particular
network device that is allocated at the time that the collector

is assigned) the information management process 590, can
identify 594 the data collector responsible for the flow. The
accounting process 14 can call back to the data collector that
produced the NARs of a particular flow and request 596 that
the missing NARs (i.e., those NARs for which there are
missing sequence numbers) be retransmitted.
Flow Probe

As discussed above in reference to FIG. 2, the amounting
process supports a flow probe e.g., 12c that captures a user’s
network activity for purposes of [P accounting. The flow
probe 12c monitors all tratfic over a given network link and
captures data associated with the diiferent flows in the tratfic
on that link. It is capable of monitoring IP data flows over
a number of technologies (e.g., Ethernet, A'IM, FDDI, etc.).

One important feature of the flow probe is its ability to
detect and report on successful and umuwessful connectiv-
ity. This capability is useful to billing and chargeback
applicatiors. For example, a user may try to connect to a
particular switch or reach a particular netw0rk, but is
rejected. The flow probe 12c can identify that transaction as
unsuwessful and provides the billing application with infor-
mation that the billing application can use in determining
whether or not the user should be charged for that transac-
tion. The flow-based connectivity model embodied in the
flow probe is described generally with reference to FIGS.
23—25, and specifically with reference to FIGS. 27—28.

Referring to FIG. 24, a representation of a network 600 in
which an end system “A" 602 is connected to another end
system “B" 604 is shown. The terminal systems A 602 and
B 604 communicate with one another over a communication

path 606. Along that path are multiple intermediate devices
608 (e.g., routers, switches) to support the communication
services required for communications between A and B.
Although the path from Ato B is depicted as a single straight
line, it may be appreciated that the actual physical topology
of this path most likely is ex1remely complex. For the
purpose of understanding the flow probe’s connectivity
model, however, it is not necessary to know how the actual
network would be configured.

The physical deployment of the flow probe in a network,
such as the network 600, is based on two criteria:
performance, e.g., a 100 Mb probe must be deployed within
a region of the network that operates at 100 Mb, and
granularity of the information to be generated. That is, if the
performance or the quality of service provide by A is of
particular interest, then the flow probe is located as close to
A as possrble so that the flow probe will see all of the traffic
that is seen by A.

20

30

35

45

50

55

60

65

24

The deployment of the flow probe may be in-line or
out-of-line of the stream of IP packets of interest. Thus, the
flow probe 12 may be deployed in-line, i.e., integrated into
either of the components that are actually party to a con-
versation (like end stationA602, as shown in the figure), one
of the devices 608 that are actually supporting the commu-
nication or out-of-line, i.e., packets are copied and delivered
to a remote position.

Generally, a flow is defined as any communication
between communicating entities identified by an IP address,
a protocol and a service port. All IP packets (or datagrams)
are categorized using the fields present in the packets
themselves: source/destination IP addresses, the protocol
indicated in the IP header PROTO field, and, in the case of
UDP or TCP, by the packet’s source and destination portnumbers.

In a given network segment monitored by the flow probe,
much of the typical 1P trafiic includes TCP protocol traffic.
Because the flow probe is a flow based monitor that is
actually tracking the TCP as a flow, it is completely aware
of the TCPprotocol and that protocol’s three~way handshake
algorithm (state machine). The TCP flow has indicators to
indicate that a connection is being established or a flow is
being disconnected. However, these messages are only rel-
evant to the two communicating parties (e.g., A and B in
FIG. 27). The end system A may request that it be able to
communicate with B and sends a “TCP SYN” indication.

Any of the networking devices 608 along the path 606 can
reject this SYN request, completely independent of the
intended destination (in this example, end system B) and
without the knowledge that the end system B is a party to
this communication request. There are a variety of problems
that can cause an internal network component to reject a
request. For example, a router between A and B may find
that there is no route available for forwarding a packet
towards B or that the routing path is inoperable (and no
alternate exits), or the router may find that it doesn’t have the
resources to handle the packet.

The Internet Control Message Protocol (ICMP) is
designed to convey this type of error event information back
to the originator of the request. For example, suppose device
608 is a router that is in a “failed” state and cannot process
the SYN request that it received from A. The support exists
in the Internet protocol, specifically, ICMP, to signal this
condition back to A. Originator A has the ability to correlate
the error event with the request and inform the requesting
application that its request is not going to be supported.
Because the network uses a completely independent
protecol, i.e. ICMP, to convey the information, it is neces—
sary to correlate these independent protocols (TCP and
ICMP) to provide the accounting process with the informa-
tion it needs to know about a given transaction. Specifically,
the accounting process needs to know if the transaction was
successful or unsuccessful and the cause of failure if unsuc-
cessful.

As an independent monitor operating outside of the
context of the WWT“A’CE this example), the
flow probe is able to produce a complete and accurate record
Macfion by mapping the network control informa-
tion to the user request information. To do so, flow probe
correlates WWIOWIS such as TCP
with error event or condition messages provided by other
protocols, such as ICMP. In this manner, it is possible to
determine if a particular request for a service has actually
been denied as a result of some network independent event.
The flow probe correlates the dissimilar protocols together
and finds a way of representing the network event in its
normal reporting of the TCP flow.

NOAC EX. 1018 Page 309

NOAC Ex. 1018 Page 310

‘z 1 US 6,625,657 BI
25

The flow probe has specific reporting mechanisms for the
specific protocols. The TCP protocol, for instance, has many
more metrirs associated with its protocol states than UDP
based flows. However, because ICMP relevant events or
network relevant events are not associated with or have any
impact on the state of TCP or UDP or any of the normal
protocols, the flow probe provides a mechanism for tagging
its state tracking with the error event. The NAR is repre-
sented as a start flow indication, a continuing or status record
and a stop record. All of the flow probe’s internal protocol
indications map to start, continuous or stop states. When a
network rejection event comes in (e.g., in the form of an
ICMP message, or other type of internet control
information), regardless of what state the probe is tracking
as the current state, it reverts to a stop state and has to expand
upon the normal time or transition based stop conditions to
include an specific ICMP event as the cause of the closed
state. The flow probe NAR includes bit indications for the
actual protocol states that it is tracking. For ICMP generated
events, the flow probe indicates whether the source or the
destination was affected by the events. In order to convey
this network rejection or network event back to the parent
flow, the NAR allows for specific network rejection logic to
be reported either by the source or the destination, and has
specific bit indicators in either the source or the destination
fields.

There are two key aspects to the connectivity scheme of
the flow probe as described thus far. First, the probe deter—
mines that an ICMP event has occurred. Second, the probe
correlates that event to the “parent” flow, i.e., the same flow
as that associated with the failed request, and stores the exact
ICMP event into some state associated with that flow so the

event can be reported to the accounting system in a NAR. At
this point it may be useful to examine the [P packet and
ICMP message formats in general, as well as examine
certain fields of interest.

Referring to FIG. 25, an exemplary [P packet format 610
is shown. The IP packet format 610 includesianWP packet
header 612 and an IP packet data field 614. The [P packet
header 612 includes a PROTOCOL field 616 for indicating
the protocol of the message encapsulated therein. The header
also includes a source IP address field 618, a destination IP
address field 620 and other known fields (not shown). In the
example of FIG. 25, the me$age contained in the IP packet
data field (or payload) is an ICMP me$age or packet 622.
The ICMP packet is formatted to include an ICMP header
624 and an ICMP data field 626. In the example, the protocol
field 616 would be set to indicate a protocol value corre-
sponding to ICMP.

Referring to FIG. 26, an exemplary ICMP message format
622 for reporting errors is shown. The format includes an
ICh/fl’ message header 624. The header 624 includes a type
field 630, which defines the meaning of the message as well
as its format, and a code field 632 that further defines the
message (error event). The error reporting message types
(type values) include: destination unreachable (3); source
quench (4); source route failed (5); network unreachable for
type of service (11); and parameters problem (12). Each of
the types has a number of code values. For a destination
unreachable message (TYPE field value is 3), the possible
codes (code values) include: network unreachable (0); host
unreachable (1); protocol unreachable (2); port unreachable
(3); fragmentation needed and DF set (4); source route failed
(5); destination network unknown (6); destination host
unknown (7); source host isolated (8); communication with
destination network administratively prohrbited (9); com-
munication with destination host administratively prohibited

10

15

20

30

35

4s

50

55

60

65

26

(10); network unreachable for type of service (11); and host
unreachable for type of service (12).

Also included in the ICMP message format is a datagram
prefix field 634, which contains a prefix—header and first 64
bits of data—of the IP datagram that was dropped, that is, the
datagram that triggered the error event message. The data-
gram prefix field 634 corresponds to the ICMP message
(packet) payload. The IP datagram or packet header 612,
partially illustrate in FIG. 24, is shown here in its entirety.
Assuming that the IP datagram carries a TCP message, the
protocol value would correspond to TCP and the portion of
the IP datagram’s data 636 (first 64—bits) would in fact
correspond to a TCP message header 636, which includes a
source port field 638, destination port field 640 and a
sequence number field 642. The source port is the port
number assigned to the process in originating (source)
system. The destination port is the port number migned to
the process in the destination system.

It will be understood that TCP is an example protocol. The
field 636 could correspond to a portion of packet header
from a packet of another protocol type. Also, the error
reporting protocol could be a protocol other than ICMP, and
the amount of header in field 636 could be more or less than

64 bits, that is, this amount may be adjusted so that the
appropriate flow information can be obtained from the
header of the message contained in the discarded 1P packet,
as described below.

Referring to FIG. 27, a packet processing method (“the
process”) 650 performed by the flow probe is shown. The

process captru'es 652Wdtests654 the received pa et to e rmrne it is good (i.e.,
well-formed). The process 650 examines 656 the protocol
field in the IP packet header to determine if the protocol is
the ICMP protocol. If the protocol is ICMP and the infor-
mation type field is set to one of the five error reporting
messages described above, the process bypasses the IP
packet and ICMP message headers and proce$es 658 the
ICMP message or packet payload (FIG. 26), which corre-
sponds to a portion of IP packet which that was discarded
and to which the event message relates. The payload process
will be described with reference to FIG. 28 below. Once the

payload processing is complete, the processing of the IP
packet resumes 659 the procesing that would be performed
if the IPpacket had not been detected as containing an ICMP
mmage of the error reporting variety as discussed above, as
will now be described.

Still referring to FIG. 27, if the protocol is not ICMP
and/or the information type is not an error report, the IP
packet is processed as follows. The probe scans 660 the
header to determine the values of the fields which corre-

spond to the “flow key”, the fields which define “the flow"
for the probe. Each flow probe can be configured for a
particular flow key definition. For example, the flow key
might be the source/destination IP addresses, the source/
destination ports and the protocol. The probe determines 662
if the flow key of the processed packet header matches a
flow already stored in the flow probe. A local store in the
flow probe is used to hold flow representations including
flow key parameters, metrim, state information. The state
information will include, in addition to the protocol control—
related states (i.e., TCP “F[N”), error event/state change
cause and source/destination to which the message is
addressed. These flow representations are converted into
NARs for accounting process reporting pin-poses.

Still referring to FIG. 27, if the flow probe cannot match
664 the flow key information to a stored flow, the probe
constructs (and stores) 666 a new flow and completes 668

NOAC EX. 1018 Page 310

NOAC Ex. 1018 Page 311

US 6,625,657 B1
27

the procem If the probe finds a match, it updates 670 metrics
for the matching stored flow (or “parent" flow). It also
updates 672 the flow state of the parent and then completes
674 the process. It should be noted that the constnrction of
a new flow triggers 676 the generation of a start NAR and 5
the update" of the flow‘state triggers 678 the generation of an
update NAR. The generation of NARs by the flow probe will
be discussed later.

Referring to FIG. 28, proce$ing of the ICMP message

payload, i.e., the embedded IP packet, 658 (from FIG. 27) is 10
shown. The procesing of the ICMP message payload pro-
cessing is recursive in nature. The essential method is the
same as used above for an IP packet (FIG. 27), with a few
dilferences. If the flow probe determines 664 that there is no
stored flow corresponding to the flow of the dropped IP
packet or datagram (indicated by the ICMP message in the 15
data prefix field or payload 634 of FIG. 26), the processing
is complete 680. If a stored flow matching the flow key of
the dropped datagram is found, the probe updates 672 the
flow state to indicate a “rejected” state for the stored flow. It
also updates the flow state information to indicate whether 20
it was the stored flow’s source or destination that was

associated with the ICMP message and the event cause. The
state change (to rejected state) triggers 682 the generation of
a stop NAR, as is later described. Once the probe has
completed the payload proce$ing 658, it resumes 659 the 25
processing of the original IPpacket (as indicated in FIG. 27').

Thus, the payload processing can be viewed as a packet
processing exception, an exception that is invoked when it
is determined that an ICMP error reporting message has
been received. The ICMP messsage reports a error event and
the IP packet associated with that error event. The exception
process serves to correlate the flow of the discarded IP
packet in the ICMP message with the parent (matching
stored) flow, thus mapping the ICMP error (state) informa-
tion to the parent IP flow.

The flow probe reports on network traific activity through 35
a flow probe NAR, which reports IP flow traffic activity. The
flow probe categorizes network trafiic into one of four
classes of traffic flow: I) connection oriented (e.g., TCP); ii)
new connectionless; iii) request/response connectionless
(e.g., UDP, DNS); and iii) connectionless persistent (e.g., 4o
NFS, Multicast BackBONE or “MBONE” multicast traffic).
To each of these class it applies connection oriented seman-
tics for a uniform approach to status reporting. That is, flow
probe treats these dissimilar transaction models as if they
were the same. There is one uniform structure for the status 45

reports generated for each of the 4 different transactions.
Each status report includes transaction start and stop
information, MAC and IP source and destination addresses,
the IP options that were seen, the upper layer protocol used,
the transaction source and destination byte and packet 50
counts and upper layer protocol specific information. The
protocol specific information and the criteria for when the
status reports are created, is different for each of the four
transaction types.

The connection oriented protocol understood by the flow 55
probe is TCP. Flow probe has complete knowledge of the
TCP state machine and thus can generate status reports with
each state transition seen within any individual TCP. There
is also a provision for generating time interval based status
reporting in the TCP connections that the flow probe is 60
tracking. The status report indicates which states were seen,
if any packets were retransmitted, if the source or destination
had closed, and if the report had been generated by a time
condition. In a default mode, the flow probe generates a

- mwestatus at the time a TCP closes, or times out. This 65
strategy offers the greatest amount of data reduction on
transactions.

28

Any non-TCP traflic is categorized as a connection-less
transaction. When configured to generate the most detailed
levelof onrting for connectionleg traflicft—he flow pro 7
can report the discovery Wit-ma-
lion; the existence of a request/response pair within the
transaction (as exists when the probe has seen a single
packet from both the source and the destination for the
transaction); the continuation or transaction persistence, and
so forth. The transaction persistence status is generated with
a timer function. If it has been seen within a configured timer
window, a report is generated.

The status report for non-TCP tramc indicates if the report
is an initial report, a request/status report or a continuation
(or a current transaction) report.

In the default mode, the flow probe generates a status
report when it has seen a request/response “volley” within a
transaction and every 15 minutes thereafter, if the transac-
tion persists. This offer immediate notification of request]
response traflic and a fair amount of data reduction on
connection-less transactions.

Thus, the flow probe state tracking includes protocol-
specific state information. It provides detailed information
on transport specific flow initiation, such as TCP connection
establishment, as well as flow continuation and termination
event reporting.
Protocol Independent Packet Monitor

Referring to FIG. 29A, a network 700 includes a monim
702 that runs a process for detecting packet loss. The
monitor 702 will be particularly described using IP SEC

0 authentication headers. The monitor 702 uses sequence
numbers that erdst in IP SEC authentication headers. The

monitor 702 can be used to detect lost padrets in any type
of protocol that uses sequence numbers in headers of the
packets, etc. The monitor 702 is an independent monitor that
can be disposed anywhere in the network 700. The monitor
702 is protocol independent.

The network 700 would include a plurality of such
independent monitors 702 each disposed at conesponding
single points in the network 70. Typically, the monitor 702
can be disposed in-line such as in a network device such as
a switch, router, access concentrator, and so forth.
Alternatively, the monitor can be disposed in an out of line
arrangement in which network packets are copied from the
device and coupled to the out-of line monitor.

The monitor 702 examines eaghpacket of a network flow
manmfim—mm
702. The monitor 702 receives serialized IP packets. The
packets can have the format specified by the Network
Working Group, by S. Kent, Request for Comments: 2402,
November 1998 “IP Authentication Header" as part of the
“Intemet Oflicial Protocol Standards”, The Internet Society
(1998). The IP Authentication header includes a Next
Header field that identifies the type of the next payload after
the Authentication Header, Payload Length an 8-bit field
specifies the length of AH, and a reserved 16-bit field. The
IPAuthentication header also includes a Security Parameters
Index an arbitrary 32-bit value that, in combination with a
destination IP address and security protocol, uniquely iden-
tifies the Security Association for a datagram and a
Sequence Number. The sequence number is an unsigned
32-bit field containing a monotonically increasing counter
value (sequence number). It is always present in such
datagrams and is provided form the purpose to enable an
anti-replay service for a specific security authentication.
According to the standard if anti-replay is enabled the
transmitted Sequence Number is not allowed to cycle. Thus,
the sender’s counter and the receiver’s counter are reset by

NOAC EX. 1018 Page 311

NOAC Ex. 1018 Page 312

,fussr

c:“:91{3

‘;

US 6,625,657 B1
29

establishing a new security authentication and thus a new
key prior to the transmission of the 232’” packet. The
datagram also includes Authentication Data, i.e., a variable-
Iength field that contains the Integrity Check Value (lCV) for
the datagram.

Referring now to FIG. 29B, a packet loss detector process
704 that runs in the monitor 702 is shown. The packet loss
detector process 704 examines 706 header information in the
packet, to determine if the packet includes an authentication

30

number, i.e., it did not turn over to all zeros, then there may
have been packet loss. If there may have been packet 10$,
the packet loss detector process 704 can determine how
many packets have been lost by determining how many

5 sequence numbers are missing.
When packets may traverse more than one packet monitor

10, the packet 10$ detector process 704 may produce a
packet 1055 detected indication that does not indicate that the
packets were actually dropped. Apacket loss drop indication

header. If the pac et oes not in ude an authentication in in a multi-monitor embodiment indicates that the lost pack—
Wthen the packet loss detector process 704 ignores 24

the packet and exits to wait for the next packet. If the packet
includes an authentication header, the packet loss detector
proce$ 20 tests 708 to determine if the packet loss detector

process 20MW}is represented bythe source an estination 1P addre$es and the SPID value

that is in the authentication header. The packet 10$ detector
will perform a cache look up to determine if the flow is
stored in a cache of currently tracked flows. The packet loss
detector process 20 tests 708 those values to see if the packet
loss detector process 704 is currently tracking that security
flow.

If the packet loss detector process 704 is not tracking that
security flow, the packet loss detector process 20 will
establish 710 a flow cache entry for that flow in a cache that
can be maintained in memory (not shown). The packet loss
detector process 704 will store the source and destination IP
address and the SPID value from of the authentication
header. The flow cache also includes all other authentication

headers from other security flows that have previously been
tracked. The flow cache enables the packet loss detector
process 20 to monitor and track many hundreds, thousands,
and so forth of different security flows. A cache entry is
established for every ditferent flow. Once the cache entry is
established, the packet loss detector process 704 updates 712
the sequence number entry in the cache for that security
flow. That is, the initial sequence number in the authentica-
tion header for the encountered flow is stored. The sequence
number can star1 at any arbitrary value.

If, however, the packet 10$ detector process 704 deter-
imined 708 that it is tracking the flow, then the packet loss
detector process 704 tests 714 if the sequence number in the
current packet is equal to the previous sequence number
noted for this flow plus 1. If the sequence number in the
current packet is equal to the previous sequence number plus
1, then the packet loss detector process 704 can stop the
current evaluation because the packet 10$ detector process
704 did not detect and the system did not experience any
packet loss on that particular association. The packet loss
detector process 704 will update 712 the stored sequence
number for that flow in the cache.

If the sequence number in the current packet does not
equal the previous sequence number noted for this flow plus
1, the packet 10$ detector process 704 for the 1P SEC
Authenication packets detected a potentially missed packet.

For some protocols that permit wrap around, the packet
10$ detector process 704 tests 718 if the sequence number
has wrapped around e.g., gone from 32 bits of all ones to 32
bits of all zeros. The IP SEC Authentication packets cur-
rently do not permit wrap around, so test 718 would not be
nece$ary for IP SEC Authentication Headers. If for other
protocols (or latter versions of the IP SEC Authenication
protocol), the packet loss detector proce$ 704 detects a
wrap around condition then there has not been any packet
loss and the packet is dropped. The packet 10$ detector
process 704 will update 712 the stored sequence number for
that flow in the cache. If the sequence number is any other

ets did not come through the particular packet 10$ detector
proce$ 704. However, the indicated lost packets could be on
other segments of the network. That is, it is possible that
other parts of the current flow are in other parts of the

15 network. Therefore, the packet loss detector process 704
notes how many packets Were actually successfully
transmitted, as well as lost, and optionally their sequence
numbers. These values can be compared to mm“
from other monitors 702 to establish whether or not there

mmfor the flow through the network.
This indication, could be converted into Network

Accounting Records thus would be coupled to a process e.g.
the amounting process 14 that reports statistics on that

particular flow to providEe—aggmagmfrhmmmam25 were lost relative to ow many packets were actually
succeW—the flow. Inwthe acc-Sunting

“pWEfEWthmofiaamd,
aggregated, enhanced and so forth to identify network flows.
This information can be used to determine the records that

30 correspond to a particular network flow and whether a
determined network flow lost any packets.
Captru-ing Quality of Service

Referring now to FIG. 30, a proce$ 730 for capturing
quality of service in a network system 11, (FIG. 1), is shown.

JSWMce process 730 allows an
administrator to configure 732 the network 11 with a policy
that corresponds to a first quality of service. The process 730
also includfi an optimization process that assigns or devel-
ops 734 the policy, defines the policy being used, and

40 enforces the policy by deploying a policy dictated configu-
ration into various policy enforcement devices in the net-
work 11. The capturing quality of service process 730 allows
the administrator to observe 736 the actual service delivered

by the netwodr 11 to a customer on the network 11 to
45 determine if the quality of service provided matches that

specified by the policy 740.
The capturing quality of service process 730 uses an

accounting process 738 to collect information from the
network. A preferred accounting process is accounting pro-

50 cess 14 described above. The accounting proce$ 14 collects
data from the network 11 as part of the observation process
736. The accounting proce$ collects difi'erent kinds of
metrics from the network, correlates these metrics to speci-
fied network flows, via the use of NARS, and maps

55 collected, correlated information i.e., NARs back to the
policy that was defined and actually deployed in the net-
work. Because the accounting process 14 performs this
observation function, the accounting proce$ can provide an
indication 738a whether or not the policy 740 is being

60 satisfied.

By deploying the accounting process 14 to observe ser-
vice quality, the capturing quality of service process 730 can
validate performance of service level agreements (not
shown). If the capturing quality of senrice process 730

65 detects that the policy level specified in a service level
agreement is not being enforced, then the policy can be
rea$essed, redefined, and redeployed 742. The capturing

NOAC EX. 1018 Page 312

NOAC Ex. 1018 Page 313

”as..:v;::.-341.‘.23_‘.‘..()U US 6,625,657 B1

31

quality of service proce$ 730 can again observe 737.
Through the observation 736, the capturing quality of ser-
vice process 730 can determine whether reassessment and
redefining of the deployed policy was successful. Several
cycles of this quality of service optimization process could
be required.

An important component of quality of service includes
determining whether there WES—sfm—packet
detector monitor described in conjunction with FIGS. 29A
and 29B can be used to access packet loss. The packet
detection monitor 702 can be deployed in the network and
generate NARs that can be used to determine packet loss as
discussed above. This information can be used in the cap-
turing quality of service process 730 to assess whether the
policy specified by the service level agreement was provided
to the customer. Additionally, so called Differentiated Ser-
vice “DivServe technology" that a lmown quality of service
solution that has been proposed for the Internet as well as
enterprise networks. In contrast to a per-flow orientation of
some types of quality of service solutions such as int-sew
and RSVP, DiBerv enabled networks classify packets into
one of a small number of aggregated flows or “classes”,
based on bits set in the type of service (TOS) field of each
packet’s IP header. This is a quality of service technology for
IP networking is designed to lower the statistical probability
of packet loss of specific flows The capturing quality of
service process 730 establishes DivServ policy, that is
decomposed into a collection of DivServ configurations.
The DivServ configurations are deployed to a collection of
routers or switches that the customer would have access to

in the network 11 as part of the enforcement/deployment
process 732. Because packet loss is a statistical
phenomenon, the capturing quality of service process 730
observes 736 a large number of network flows. The captur-
ing quality of service process 730 can observe network
traflic because of the use of the accounting process 14 and
the resulting NARs at the granularity in which the DivServe
policies are actually being deployed. The DivServe policies
are generally deployed at the source and destination IP
address, protocol and possrbly destination port level.

By observing 736 network flows at the same granularity
as a DivServe policy enforcement mechanism, if the cap-
turing quality of service proces 730 detects packet 105 at

that granularity, then there will be a direct feedback coupling
to determine whether the policy is actually being enforced or
not. If the policy is not being enforced, then an administrator

will can reassess the policy, redefine the policy, and redeploy
742 new enforcement strategies. The capturing quality of
service process 730 again will observe 736.

As mentioned, because IP network quality of service is a
statistical phenomenon, the capturing quality of service
process 730 obtains a large number of samples, over a long
period of time. Through this optimizing capturing quality of
service process 730 and DivServe deployment 734, the
customer will get beneficial policy deployment for this
service.

Service Management
Referring now to FIG. 31, a service management loop 750

includes a service provisioning application 752, a policy
enabled network server 754 and an accounting process 756.
In a typical example, an Internet Service Provider (ISP) and
a customer will enter into a service agreement or contract
751 that will specify a level of service for the network. The
contract 751 has requirements and conditions that are
enforced by the policy enabled network 754. The service
contract 751 is decomposed by the policy server to produce
a template that defines the service represented by the agree-

10

15

20

35

45

50

55

60

65

32

ment 751. The template is fed to the service provisioning
application 752 that actually produces a configuration file
752a that is sent out to the network 10 to configure network
for a level of service based upon that contract 751.

A service management feedback process 750 therefore
includes three components, service provisioning 752, policy
server 754 and service accounting 756. The role of service
provisioning 752 is to send requests 752b to the policy
server 754 to obtain an appropriate active policy, and
obtaining rules and domain information 7544 from the
policy server. The provisioning system can communicate
with appropriate network management systems and element
management systems (not shown) to configure the network
10 for an end-to—end service. When the configuration 7574
is deployed at the various network devices (not shown) at
that point, the service is produced. The level of service is
monitored or audited by the accounting system 756 which
can be the accounting process 14 described above. The
accounting process 14 monitors the level of service by
producing appropiate network accounting records. The net—
work accounting records NARs are used by a billing appli-
cation to adjust billing based on the level of service that was
provided as determined by the accounting system 14. The

accounting system 14 also cleicies pro-duced by the policy server I the actual levels of service
provided to the customer by examining NARs that are
produced by the customer’s usage of the network.

In addition, levels of service might change, and the
system takes changes into account so that the service man—
agement can modify the charge or account difierently for
those changes in levels of service. The service accounting
also uses the active policy information from the policy
server to deliver billing information to a billing system or to
a chargeback system that can may adjustments to billings for
the service.

A policy enable network 754 is build on the capabilities
of address management, domain name management and so
forth. Essentially in a policy enabled network, policy ser-
vices produce a set of rules and applys those rules to a
domain or problem set. The policy server communicates the
rules to the accounting process 14 so that the accounting
process 14 can determine what kind of records to generate.
All of the information is described using data flows.

As an example, a service contract may specify that a
company “X” will be given 100% availability of a particular
network device e.g., a router (not shown) and its correspond-
ing service. In order to assure that level of service, the policy

server 754 sends that requirement in a template to the
provisioning service 752 to produce a configuration file
752a to configure the router to give company “X” preferred
use for the router. Therefore, every time a packet from
company “X’s” network comes across the router, the packet
will always be transmitted unless there is something wrong
with the router. This may occur even if a packet of company
“Y” which has a lower service level than company “X” is
waiting in the router to be transmitted. The packet from
company “Y” will wait because company “Y” is not paying
for the quality of service that company X” is paying for.

In that case, the provisioning service configures 752 the
policy enforcement mechanism that was put into the router
in the network. How the policy was defined to the provi-
sioning equipment is that there is a one-to—one relationship
between the policy and what the accounting process 14 will
monitor in the network. The accounting process 14 will be
aware that company “X” contracted to have 100% avail-
ability from the router.

The accounting process 14 will then take every source of
information it has available and will construct an accounting

NOAC EX. 1018 Page 313

NOAC Ex. 1018 Page 314

t.)

.an._k.“

US 6,625,657 B1

33

record that reflects the level of service actually delivered to
company “X.” The accounting records produce are relative
to the two components, i.e., the router and the customer. The
accounting process 14 is flexible and can generate account-
ing records of any flow abstraction. In this process 750, the
policy server 754 sends a flow based policy to the provi-
sioning server 752. The provisioning server 752 uses a flow
based policy to configure the network. That same flowbased
policy is passed to the accounting process 14 which can
generate network accounting records NARs having metrics
that can be usedWelevel of those flows. The
output of the accounting process 14 will determine whether
the quality of service, availability, etc. that was contracted
for in the contract 751 was provided. Therefore the service
management proces 750 provides the level of service that
was delivered at the same semantic level as the actual
contract.

Capturing quality of service as audited by the accounting
process 14 includes detecting of packet loss, as mentioned
above. Each of the components managed by the service
management process 750 require information. Therefore, the
service provisioning has to provision these various quality
levels. The policy server 754 thus, keeps what is essentially
enforcement of the levels of quality that are offered by
ditferent service types, and the accounting process 756
detects, monitors and audits whether those classes in quality
of service are being delivered.

Referring to FIG. 32, an implementation of the service
management provisioning 752 is shown. The service man-
agement provisioning 752 extends concepts of device man-
agement and network management into a service manage-
ment layer of functionality. Service management
provisioning includes a provisioning core 782, provisioning
modules 784, and element managers 786. Service provision-
ing 752 is user focused rather that network focused as
conventional network management. Network management
involves communication with network systems and equip-
ment. Service provisioning 752 is orient more towards a user
and a user's concepts of services Service provisioning 752
provides an additional layer of abstraction that relates
description of services at a user level to a network’s ability
to provide those end—to-end services. The architecture 780 of
Service provisioning 752 is multi-device 788 at the bottom
of the architecture and multi-service 790 at the top of the
architecture. The service provis'oning 752 is deployed to
write commands to the network systems i.e., network ele-

ments 788 in order to change configurations of those sys-
terns.

Since many end customer services now require that a
network operate with multiple, diiferent kinds of network
elements in order to provide an end-to-end service, the
service provisioning 752 simplifies producing information
that is necessary for a service provider to translate a service
order from a customer to a network configuration, i.e., all
commands necessary for all the diiferent elements in the
network in order to create an end—to-eud service.

The service provisioning builds on existing systems. That
is, in the lower layers there are existing element managers
that have a configuration management system to configure at
the network layer. The service provisioning adds layering
over the conventional network management layer. Service
provisioning maps a customer specified end to end service to
the network elements that are required to produce that
end-to-end service. Mapping of a customer’s service orders

10

15

20

35

45

50

55

34
into the state of the network can have various pieces of
workflow necessary to create or completely activate this
service order.

OTHER EMBODIMENTS

It is to be understood that while the invention has been

described in conjunction with the detailed description
thereof, the foregoing description is intended to illustrate
and not limit the scope of the invention, which is defined by
the scope of the appended claims. Other aspects, advantages,
and modifications are within the scope of the following
claims.

What is claimed is:

1. A method for tracking network accounting records in a
accounting process that collects and correlates information
derived from network data comprises:

producing a network accounting record that has an iden-
tifier that uniquely identifies the record within the
accounting process with the identifier including a
sequence number that specifies a sequence number for
network accounting records that originate from the
source device;

determining when there is a break in the sequence num-
bers of network accounting records produced from the
source device; and

requesting missing network accounting records when
there is a break in the sequence.

2. The method of claim 1 wherein producing a network
accounting record further comprises:

producing a network source identifier that identifies a
source device that creates the network accounting
record.

3. The method of claim 2 further comprising determining
the data collector that produced the missing network
accounting records.

4. The method of claim 3 wherein determining the data
collector comprises:

examining the network source identifier in a data flow.
5. The method of claim 4 wherein the data flow is

identified by aggregating received network accounting
records and correlating the received records to identify a
flow.

6. Asystem comprising:
a data collector collecting data from a network device, and

producing network accounting records from the col-
lected data; and

a flow aggregation process, that receives network
accounting records, the network accounting records
including data identifying the data collector and a
sequence number, said flow aggregation process
detects missing network accounting records by detect-
ing at least one missing sequence number;

wherein upon detecting“a"mi$ing sequence number, the
flow aggregatlon pficeflfives data identifying the
data collector from received records that have been
correlated to identify a flow associated with the mising
records; and

sends a request to the identified data collector to retrans—
mit the missing record corresponding to the mising
sequence number.

It 8 t It It

NOAC EX. 1018 Page 314

NOAC Ex. 1018 Page 315

., n lllIlllllllllllllllll

, USOO6330226B1

~(1'2)Un1ted States Patent (10) Patent No.: US 6,330,226 B1
Chapman et al. (45) Date of Patent: Dec. 11, 2001

(54) TCPADMISSION CONTROL 5,444,706 * 8/1995 Osaki 370/20
5,553,057 * 9/1996 Nakayama .. .370/241

(75) Inventors: Alan Stanley John Chapman, Kanata 2.33:2? “ 39%;: IK‘awafihx etaL 373%. - _ ' , ‘ eras a
(CA), “Slang Bung Kung’ Rnngmn’ 6,041,038 * 3/21113 Aimoto 370/23MA (US)

(73) Asignee: Nortel Networks Limited, St. Laurent
(CA)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(1)) by 0 days.

(21) Appl. No.2 09/014,110

(22) Filect Jan. 27, 1998

(51) Int. c1.7 ... B65H 9/08
(52) US. Cl. 370/232; 370/233; 370254
(53) Field of Search 370/229, 241,

370/230, 231, 232, 233

(56) References Cited
U.S. PATENT DOCUMENTS

5,349,578 “ 9/1994 Tatsulri et al. 370B44
5,361,372 " 11/1994 Rege et a1. 395/300
5,410,536 “ 4/1995 Shah et a1. 370/216

Input

\ 16
Input /'

New Requests
Input

Admission

Control

FOREIGN PA'I'ENT DOCUMENTS

0473188 3/1992 (EP).
99/66676 12/1999 (W0).

" cited by examiner

Primary Examiner~—Hassan Kizou
Assistant Examiner—Thien Tran

(74) Attorney, Agent, or Finno-Allan P. Millard

(57) ABSTRACT

Congestion at a network node can be aggravated by having
too many TCP connections. Asimple method of avoiding the
bad efiects of too many TCP connections is to limit the
number of connections. limiting the number of connections
is achieved by an admission control which delays or even
discards the connection set-up packets. TCP traflic flows are
monitored to generate packet loss characteristics and when
a certain condition is met, a connection request queue isdisabled.

20 Claims, 6 Drawing Sheets

NOAC EX. 1018 Page 315

f5

NOAC Ex. 1018 Page 316

IL«4WW,

r, US. Patent

Fig 5

Dec. 11, 2001 Sheet 1 of 6

Aew Requests

Admission

Control

ll

f\
Gateway Admission Control

US 6,330,226 B1

Output

NOAC EX. 1018 Page 316

NOAC Ex. 1018 Page 317

" US. Patent Dec. 11,2001 Sheet 2 of 6 US 6,330,226 B1
t

4....~..,.
Check history table for aged entries

and delete any that are too old

Check connection request queue for aged

entries and delete any that are too old

Compute packet loss characteristic

based on current history table

Does loss chara-

teristic require limiting new
connections?

Disable the serving of the

connection request queue

Has a new

packet arrived?

Enable the serving
of the connection

request queue

{$3va3v.”

Back to start

Put it in the

connection

request queue

and back to start

Fig 2a

15 it

a connection setup

packet?

Continue to Fig. 2b

NOAC EX. 1018 Page 317

NOAC Ex. 1018 Page 318

'_ US. Patent Dec. 11,2001 Sheet 3 of 6 US 6,330,226 B1

Continued from Fig 2a

 Is the flow, that Mak
this packet belongs to, in the

history table already? No and go back to star:

Yes

Is the current

sequence number greater than the

previous one recorded?

Update the history table

with the new sequence
number and back to start

 Yes

No

Assume it is a resend and increment the

Total Packet Resent for this flow

Is the current

sequence number the same as the.

previous one recorded?

Back to start

No

“*5 Fig 2b
Increment the Same Packet Resent
for this flow and back to start

NOAC EX. 1018 Page 318

NOAC Ex. 1018 Page 319

" US. Patent Dec. 11, 2001 Sheet 4 of 6 Us 6,330,226 B1

Check history table for aged entries

and delete any that are too old

Check connection request queue for aged

entries and delete any that are too old

Compute packet loss characteristic

based on current history table

Does loss chara-

ten'stic require limiting new
connections?

Disable the serving of the

connection request queue

Has a new

packet arrived?

Enable the serving
of the connection

request queue

Is it a TCP

- acket?

Put it in the

connection

request queue

and back to start

Fig 4a

Is it

a connection setup

packet?

Continue to Fig. 4b

NOAC EX. 1018 Page 319

NOAC Ex. 1018 Page 320

'. US. Patent Dec. 11,2001 Sheet 5 of6 US 6,330,226 B1

Continued from Fig 4a

 Is this packet to
be discarded?

Back to start

Is the flow, that

this packet belongs to, in the

history table already?

Make a new entry

and go back to start

Update the history table

with the new sequence

number, increment the

Total Packet Discarded

counter and back to start

Is the current

sequence number same as the

previous one recorded?

Increment the Same Packet Discarded

and the Total Packet Discarded

counter for this flow, and back to start

Fig 4b

NOAC EX. 1018 Page 320

NOAC Ex. 1018 Page 321

_ US. Patent Dec. 11,2001 Sheet 6 of 6 Us 6,330,226 B1

NOAC EX. 1018 Page 321

NOAC Ex. 1018 Page 322

~rm".

US 6,330,226 B1
1

TCP ADMISSION CONTROL

FIELD OF THE INVENTION

The invention relates generally to n’aflic congestion man-
agement of a data network. In particular, it is directed to a
technique by which congestion in the data network is
controlled by limiting new TCP connection setups based on
packet loss characteristics of the data network.

BACKGROUND OF THE INVENTION

The current data networks are handling not only enor-
mous volume of traffic but more and more diversified multi

media traffic, causing the data network to become congested
more often. When congestion causes an excessive number of
packets to be dropped, it can easily impact many traflic
flows, and cause many timeouts. By guaranteeing a certain
number of traffic flows a minimum bandwidth and treating
the remainder as best etfort, it is possrble to avoid spreading
high packet loss over so many flows and to reduce the
number of aborted flows. Pending US. patent application
Ser. No. 08/772,756 filed on Dec. 23, 1996 and Ser. No.
08/818,612 filed on Mar. 14, 1997 by the present inventors
describe dynamic traffic conditioning techniques which
make use of this concept. The dynamic traflic conditioning
techniques described therein allow the network to discover
the nature of the service for each traflic flow, classify it
dynamically, and exercise traffic conditioning by means of
such techniques as admission control and scheduling when
delivering the ti'aflic downstream to support the service
appropriately.

Congestion at a network node can be aggravated by
having too many TCP connections. TCP will adjust to try to
share bandwidth among all connections but when the avail-
able buffer space is insufficient, time-outs will occur and as
the congestion increases there will be an exponentially
growing number of packets resent. The elfect of having too
many connections is that much of the bandwidth in the
upstream network is wasted carrying packets that will be
discarded at the congested node because there is not enough
bufl'er there.

A simple method of avoiding the bad etfects of too many
TCP connections is to limit the number of connections or to

discard one or more packets from one or more existing
connections Limiting the number of connections is
achieved by an admission control which delays or even
discards the connection set-up packets. In the case of dis-
carding packets, which packets and from which connection
to discard packets are decided by preset algorithms or
policies. By invoking this control to limit the number of
connections, each packet is inspected to see if it is a
connection set-up packet, e.g., TCP SYN packet. This con-
trol packet is used to initiate a TCP connection and no traffic
can flow until it is acknowledged by the other end of the
proposed connection.

In one example, a decision to invoke the admission
control, i.e. deciding when to limit the TCP traffic, can be
made as follows:

Keep track of all TCP connections and thus keep count of
the total number. Apply a calculation to see how many
connections the available bufl‘er can support and limit new
connections. This is not a good way for a general imple-
mentation because it requires keeping state information on
all TCP flows and being provided with information on the
configured butfer size.

A better solution is when bufl‘ers get full and packet loss
gets above some configured threshold, an admission control

10

15

20

30

35

4s

50

55

60

65

2

algorithm will apply some policy to reduce connections or
the amount of traffic to keep the loss below the threshold.
The reduction can be by discarding traffic from existing
connections or, preferably, by preventing new connections
from being set up.

The invention performs the admission control algorithm
to achieve this efiect.

OBJECTS OF INVENTION

It is therefore an object of the invention to provide a
method of managing a data network for congestion.

It is a further object of the invention to provide a method
of continuously monitoring the TCP traflic flows for con-
gestion in a data network.

It is another object of the invention to provide a method
of managing the data network by performing admission
control for TCP trafiic.

It is yet an object of the invention to provide a method of
managing the data network by exercising the connection
admission control for a new TCP connection request based
on the packet loss characteristic.

SUMMARY OF THE INVENTION

Briefly stated, the invention resides in a packet data
network for multimedia traffic having one or more nodes in
which network one or more packets are discarded to control
congestion. According to one aspect, a method of perform-
ing admission control to connection oriented traffic flows
comprises steps of monitoring packets of all the traffic flows,
deriving a packet loss characteristic of the traffic flows and
disabling the serving of a new connection request when the
packet loss characteristic matches a predefined pattern.

In another aspect, a method of performing admission
control to TCP trafiic flows comprises steps of storing all
TCP connection setup packets in a connection request
queue, monitoring packets of all active TCP trafiic flows
according to their port numbers and sequence numbers, and
recording the count of either resent or discarded packets for
any TCP traflic flows. The method further includes steps of
building a history table containing the history of the
sequence mimbers, port numbers, and the count of either

resent or discarded packets, computing a paglggt _lgaschar-
acteristic using the contents of the history table, and decid-
ing enabling or disabling the connection request queue based
on the packet loss characteristic with respect to a predefined
pattern.

In a further aspect, the invention is directed to a TCP
admission control apparatus for controlling congestion of a
data network. The apparatus comprises a TCP output bufl'er
for bulfering and inspecting all the TCP packets of an
incoming traffic flow, and a connection request queue for
storing new connection requests. The apparatus further
includes a history table for storing traffic information with
respect to the TCP packetsinspected above to derive a
packet loss characteristic, and a queue controller for
enabling or disabling the connection request queue upon
detecting the matching of the packet loss characteristic with
a predefined pattern.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic diagram of the admission control
according to an embodiment of the invention.

FIGS. 20 and 2b are a flow chart for the use where TCP
admimion control is applied in a traflic link.

FIG. 3 illustrates the relationship of admission control
with the traffic conditioner.

NOAC EX. 1018 Page 322

NOAC Ex. 1018 Page 323

US 6,330,226 B1

3
FIGS. 40 and 4b are a flow chart for the case where TCP

admi$ion control is applied in a router.
FIGS. 5 and 6 show possible locations of admission

control of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS OF THE

INVENTION

Referring to FIG. 1, the TCP admi$ion control apparatus
10, according to one embodiment of the invention, includes
a connection request queue 12. It is located at or near the
output buffer 14 of a node of a data network. It should be
noted that an admission control apparatus can be a separate
device or can be made integral with or to reside in any node
or link equipment. It should also be understood that TCP
traffic flows‘as a whole can be processed by an apparatus or
separate apparatus can be provided for each traflic flow or a
group of traflic flows in one class. Every packet of an input
stream is inspected and TCP packets are identified at the
output buffer 1 using, for example, source and destination IP
addresses, source and destination port numbers and protocol.
All new connection requests are read at a connection reader
16 and are stored at the connection request queue 12. The
connection request queue 12 is a FIFO. If admission control
is not invoked then the new connection requests will be
served immediately by enabling the connection request
queue. If admission control is switched on then they will be
delayed.

The admi$ion control detects the packets that are being
discarded and looks for multiple successive packets from the
same flow or multiple instances of the same packet, the latter
being the result of packet ream due to packet loss or
discard. The admission control derives some pattern of
packet discards by using a discard measure. For
convenience, this measure is called packet loss characteristic
in this specification. It is p0$ible that other parameters can
be used to indicate the state of congestion in a data netwodr.
If certain criteria are met or the packet loss characteristic
matches a predefined pattern, admission control is invoked
and any new connection requests (connection set—up
packets) will be delayed by disabling the connection request
queue or packets belonging to one or more existing connec-
tions will be discarded until the problem clears. If a con-
nection set—up packet is delayed too long (e.g., one second),
it will be discarded from the queue.

When the packet 10$ characteristic shows that new con-
nections can be accepted the servicing of the connection
request queue is enabled. Waiting connection requests can
be served immediawa or can be released at a controlled
pace according to a predefined algorithm.

The admission control apparatus therefore includes a
small history table 18 and information about discarded
packets is entered into it. When a packet is discarded, the
flow identity (source and destination IP plus TCP socket
number) is extracted and compared with current table
entries. If the flow already has an entry then the history is
updated. If the flow does not have an entry and there is room
for a new entry, the new entry is made. If there is no room
for a new entry the information is discarded.

The admission control can be performed on a trafiic link
or at a router.

In the case where the admission control is performed on
the traflic link, the history table contains, for each active
flow (or as many flows as can be handled), the following
entries:

The first entry is a count of resent packets for that flow
(Total Packet Resent).

10

15

20

30

35

45

50

55

60

65

4

The second entry is a count of how many times the
cufltly recorded acket (that is the currently stored
smuenmrfiapggeen/rment (Same Packet Resent).

The third entry is the time that the most recent update was
made for that flow. After some period of inactivity the flowis taken out of the table.

This information is used to look for patterns of discard
that indicate congestion problems. It is assumed that if the
sequence number on an arriving packet is lower than or
equal to the stored value, then it must be a resend. The total
number of resends as a fraction of the total number of

packets is a measure of downstream congestion. In this
embodiment, this measure is used as the packet 10$ char-acteristic.

Seeing the same packet resent multiple times will suggest
that the connection is experiencing time-out or at least a very
high loss rate. It is not usual for a packet to be discarded
multiple times. Normally the TCP protocol will adjust its
window to fit the available bandwidth and will only lose one
packet before reducing that window. Although TCP relies on
packet 10$ to constantly test for available bandwidth, a
packet that is discarded once will almost certainly be for-
warded when it is Legangn‘ittgd. Multiple instances of the
same packet will suggest that the TCP source is experiencingtime-out.

There will be many variations on what information is
stored and what algorithm is used to ae whether new
connections should be enabled.

It is not nece$ary to keep information on all flows since
a sampled history is suflicient to detect problem conditions.

Entries in the history table are removed after a period of
time. Also, whenever admission control is invoked, the
history table is cleaned out and starts fresh to get a good
picture of the new loss characteristic. The history table
would be purged, in any case, at regular intervals to keep the
history reflecting current 10$ characteristics. We interval
would be configurable depending on line rates and expected
number of flows, etc.

FIGS. 2a and 2b are a flow chart for the case where TCP
admission control is applied in a traffic link rather than in arouter.

As mentioned earlier, the applicant's pending applications
dmribe trailic conditioners and FIG. 3 shows one of such
conditioners. In the Figure, a traflic conditioner 40 includes
a plurality of queues 42, at least one for each cla$ of TCP

traflic. Every13$kaidentified at 44 using, or examp e, IP addresses, ports, etc.
A controller 46 characterises the flow (using rate, duration,
etc.) and assigns it a cla$. The controller refers to a database
48 and uses output scheduling to allocate bandwidth among
classes. It can implement an admission control policy of the
present invention for a class before delivering an output
stream toward downstream nodes or to peripherals. In this
case it is necessary to work out whether a packet has been
discarded, by looking for a second copy of it pa$ing throughthe link.

In another embodiment, the admi$ion control is per-
formed in the router where the discarded packets can be
inspected directly as the discard decision is made at the
buifer of the router.

In this case the history table contains, for each active flow
(or as many flows as can be handled), the following entries:

The first entry is a count of discarded packets for that flow
(Total Packet Discarded).

The second entry is a count of how many times the
currently recorded packet (that is the currently stored
sequence number) has been discarded (Same Packet
Discarded).

NOAC EX. 1018 Page 323

NOAC Ex. 1018 Page 324

US 6,330,226 B1

5

The third entry is the time that the most recent update was
made for that flow. After some period of inactivity the flow
is taken out of the table.

This information is used to look for patterns of discard
that indicate congestion problems. The total number of
discards as a fraction of the total number of packetsis a
measure of bufier congestion.

Seeing the same packet resent multiple times will suggest
that the connection is experiencing time—out or at least a very
high loss rate.

There will be many variations on what information is
stored and what algorithm is used to asses whether new
connections should be enabled.

In another embodiment, if the admision control is per-
formed at the router, packets from one or more existing
connections can be discarded to control congestion at its
buffer. The discarding action can be taken together with
action of limiting the set-up of new connections, latter
having been described above.

FIGS. 40 and 4b are a flow chart for the case where TCP

admission control is applied in a router rather than in a traflic
link.

Like the trafiic conditioning of the pending applications,
the admision control can take place at various places in the
data network and can be biased toward certain kinds of TCP

traffic. For example, as gateways are often a bottleneck and
bulk flows can decrease response times for interactive users,
an admission control can be located at a place shown in FIG.
5 which will alleviate this problem. In FIG. 6, trafiic
conditioners are located at a plurality of [P switches which
form a data network 60.

What is claimed is:

1. In a packet data network for multimedia traflic having
one or more nodes in which network one or more packets are
discarded to control congestion; a method of performing
admission control to TCP trafiic flows comprising steps of;

storing all TCP connection setup packets in a connection
request queue;

monitoring padrets of all active TCP traffic flows aword—
ing to their port numbers and sequence numbers;

recording the count of either resent or discarded packets
for any TCP trafiic flows;

building a history table containing the history of the
sequence numbers, port numbers, and the count of
either resent or discarded packets;

computing a padret loss characteristic using the contents
ma

deciding enabling or disabling the connection request
queue based on the packet 10$ characteristic with
respect to a predefined pattern.

2. The method of performing admission control to TCP
traflic flows according to claim 1 wherein the step of
computing aac'kithlosis’charactetjstflic‘comprises step of:

deriving the total number of either resends or discards as
a fraction of the total number of TCP packets of the
TCP traffic flow.

3. The method performing admission control to TCP
traffic flow according to claim 2, comprising the further step
of:

deciding to disable the connection request queue when the
fraction reaches a preset threshold.

4. The method of performing admission control to TCP
traffic flows according to claim 1, comprising a further step
of:

enabling the connection request queue at a controlled
pace.

10

15

30

35

45

50

55

60

65

6

5. A TCP admission control apparatus for controlling
congestion of a data network, comprising:

a TCP output buffer for inspecting all the TCP packets of
an incoming traflic stream according to their port
numbers and sequence numbers;

a connection request queue for storing new connection
requests;

a history table for recording the sequence numbers, port
numbers and a count of either recent or discarded

packets in order to compute a packet loss characteristic;
and

a queue controller for enabling or disabling the connec-
tion request upon detecting the matching of the packet
10$ characteristic with a predefined pattern.

6. The TCP admission control apparatus according to
claim 5 wherein the history table contains the total number
of packets of the TCP traflic flow.

7. The method of performing admission control to TCP
traffic flows according to claim 1 wherein the step of
recording further comprises recording the time that the most
recent update was made for a specified TCP trafiic flow.

8. The method of performing admission control to TCP
traflic flows according to claim 7 wherein the specified TCP
traffic flow is removed from the history table afier a pre-
defined period of inactivity.

9. The method of performing admision control to TCP
traffic flows according to claim 1 wherein the method is
performed in a router.

10. The method of performing admission control to TCP
traffic flows according to claim 1 wherein the method is
performed in a controller integral to a traflic conditioner.

11. The method of performing admission control to TCP
traffic flows according to claim 1 further comprising the step
of clearing all entries of the history table whenever the
connection request queue is re-enabled.

traffic flows according to claim 1 further comprising the step
of purging all entries in the history table periodically from
time to time or after a certain preset period.

13 The TCP admission control apparatus according to:
claim 5 wherein the history table records the time that the

most recentupdatWW
14TheTCP admission control apparatus according to

claim 13 wherein the specified TCP traffic flow15 removed
from the history table after a predefined period of inactivity.

15. The TCP admission control apparatus according to
claim 5 wherein the apparatus is a router.

16. The TCP admission control apparatus according to
claim 5 wherein the history table clears all entries whenever
the connection request queue is re-enabled.

17. The TCP admission control apparatus according to
claim 5 wherein the history table all entries periodically
from time to time or after a certain preset period.

18. The TCP admission control apparatus according to
claim 5 wherein the packet loss characteristic is computed
by deriving the total number of either mnds or discards as
a fraction of the total number of TCP packets of the TCP
traffic flow.

19. The TCP admision control apparatus according to
claim 18 wherein the queue controller disables the connec-
tion request queue when the fraction reaches a preset thresh-
old.

20. The TCP admission control apparatus according to
claim 5 wherein the connection request queue is enabled at
a controlled pace.

12. The method of performing admission control to TCP)

NOAC EX. 1018 Page 324

)
i11

J

NOAC Ex. 1018 Page 325

' t

v I

Win“ LILr‘L?‘ L F/n- ’

o USOO6651099Bl

r ' i

(12) United States Patent (10) Patent No.: US 6,651,099 B1 T l 3
' Dietz et al. (45) Date of Patent: Nov. 18, 2003 , ‘ 1

(54) METHOD AND APPARATUS FOR 5,375,070 A 12/1994 Hershey et al. 364/550 0‘17 R "
MONITORING TRAFFIC IN A NETWORK 5,394,394 A 7/1995 Crowther et al. 37W60 ' 3»

(75) Inventors: Russell S. Dietz, San Jose, CA (US); (I‘m continued on next page.)
Joseph R- Mnixner, Aptos, CA (US); OTHER PUBLICATIONS £
Andrew A. Koppenhaver, Littleton, , é
CO (us); William H. Bares, “Technical Note: the Narus System,” Downloaded Apr. 29, z
Germantown, TN (us); Haig A. 1999 from www.narus.com, Nams Corporation, Redwood E

Sarkisian, San Antonio, TX (US); City California. i
€331)” F' Torgerson, Andover, MN Primary Examiner—Moustafa M. Meky ‘

(74) Attorney, Agent, or Finn—Dov Roscnfeld; lnventek , ,i

(73) Assignee: Hi/tn, Inc, Los Gatos, CA (US) (57) ABSTRACT 1‘

(*) Notice: Subject to any disclaimer, the term of this A monitor for and a method of examining packets passing
patent is extended or adjusted under 35 through a connection point on a computer network. Each
U.S.C. 154(b) by 589 days. packets conforms to one or more protocols. The method

includes receiving a packet from a packet acquisition device 1
(21) Appl. No.: 09/503,237 and performing one or more parsinycxtraction operations 1.

on the packet to create a parser record comprising a function »

(22) Filed: Jun. 30’ 2000 of selected portions of the packet. The parsing/extraction :‘
. operations depend on one or more of the protocols to which

, Related U'_S‘ Application Data the packet conforms. The method further includes looking
(60) P‘°V'5i°“‘l apphmtlon N°' 60/141903, filed °n Jun‘ 30’ up a flow-entry database containing flow-entries for previ-

1999' ously encountered conversational flows. The lockup uses the
(51) Int. Cl.7 .. G06F 13/00 selected packet portions and determining if the packet is of
(52) US. Cl. 709/224; 370/389 an existing flow. If the packet is of an existing flow, the E
(58) Field at Search 709/200, 201, method classifies the packet as belonging to the found ?

709/220, 223, 22,4, 231’ 232’ 235, 238, existing flow, and if the packet is of a new flow, the method
239’ 240, 246; 370/389, 392, 395,32 stores a new flow-entry for the new flow in the flow-entry

database, including identifying information for future pack- ;
(56) References Cited ets to be identified with the new flow-entry. For the packet ;

of an existing flow, the method updates the flow-entry of the
U-S' PATENT DOCUMENTS existing flow. Such updating may include storing one or

4,736,320 A 4/1988 Bristol 364B00 more statistical measures Any stage of a flow, state is
4,891,639 A 1/1990 Nakamura .. 340/8fi5 maintained, and the method performs any state processing ;

5,101,402 A 3/1992 Chui et aL .. 370/17 for an identified state to further the process of identifying the x l5,247,517 A 9/1993 Ross ct al. .. 370/855 flow. The method thus examines each and every packet g
5,247,693 A 9/1993 Bristol 395/300 passing through the connection point in real time until the l
53494292 A 9/1993 Chap?“ ' 395/650 application program associated with the conversational flow ’
5,315,580 A 5/1994 Phaal- 370/13 is determined i
5,339,268 A 8/1994 Machlda 365/49 i5,351,243 A 9/1994 Kalkunte et al. 370/92

5,365,514 A 11/1994 Hershey et al. 370/17 10 Claims, 18 Drawing Sheets 3
i
i

I .r r.,\

“mu! ¥l/mcmt' xC

em. I _r um.
I

NOAC EX. 1018 Page 325

NOAC Ex. 1018 Page 326

US 6,651,099 B1

Page 2______________————————~—————-——-—————-——

U.S. PATENT DOCUMENTS 5,802,054 A 9/1998 Bellenger 370/351
5,805,808 A 9/1998 Hansani ct aL . 395/200.2

5,414,650 A 5/1995 Hekhuis ---------------- 364/715-02 5,812,529 A 9/1998 Czamikct al. 370/245
5,414,704 A 5/1995 ' . 370/60 5,319,023 A 10/1993 Manghixmalani
5,430,709 A 7/1995 . 370/13 :1 al. 395/185.1
5,432,776 A 7/1995 . 370/17 5,825,774 A 10/1998 Ready ct a1. 370/401
5,493,689 A 2/1996 Wadawsky 6‘ al- 395/821 5,835,726 A 11/1998 Shwcd el al. 395/20059
5,500,855 A 3/1996 Hershey et al- ----- 370/17 5,838,919 A 11/1998 Schwallcretal. 395/20054
5,511,213 A 4/1996 Carrca ---------- 395/800 5,841,895 A 11/1998 Hummn 382/155
5,511,215 A 4/1996 Tensaka et al. 395/800 5,850,386 A 12/1998 Anderson et al . 370/241
5,568,471 A 10/1996 Hershey ct al. 370/17 5,350,333 A 12/1998 Anderson ct I]. _ 3711/52
5,574,875 A 1111996 Stansfield et al. 395/403 5,862,335 A 1/1999 Welch, Jr. et al. 395/20054
5,586,266 A 12/1996 Hershey et al. 395/200.11 5,878,420 A 3/1999 de la Sallc 707/10
5,606,668 A 2/1997 Shwed 395/20011 57393,155 A 4/1999 Cheriton , 711/144
5,608,662 A 3/1997 Luge ct al. . 364/724-01 5,903,754 A 5/1999 Peaxson395/680
5,634,009 A 5/1997 Iddon et al. . 395/200.11 519177321 A 5/1999 Gobuyan ct . , 370/392
5,651,002 A 7/1997 Van Sclers et a1. 370/392 6,014,380 A 130(1) Handel cl a1. _ 370392
5,684,954 A 11/1997 Kaisexswenh at a]. 395/200.2 6,118,760 A it 9/20“) Zaumcn ct al. . 370/229
5,703,877 A 12/1997 Nuber et al. 370/395 5,243,557 B1 9 spam Ken- e; a]. , 703/27
5,732,213 A 3/1998 Gessel elal- -- 395/200-11 6,452,915 B1 9 9/2002 Jolgensen .. .370/338
5,740,355 A 4/1998 Watanabe et al . 395/183.21 6,453,360 Bl o 9/2002 Muller et a1. ’ 709/50
5,761,424 A 6/1998 Adams et aL - 395/200-47 6,466,985 B1 ' 10/2002 Goyal et aL . 709/238
5,764,638 A 6/1998 Ketchum 370/401 5,433,304 Bl . 113002 Muller a a1, . 3705230
5,781,735 A 7/1998 Southaxd 395/20054 6,570,875 B1 * 5/2003 Hegdc 370/389
5,784,298 A 7/1998 Hershey et al. 364/557
5,787,753 A 7/1998 McCreery et al. 395/200.61 ‘ cited by examiner

NOAC EX. 1018 Page 326

,x«m.

NOAC Ex. 1018 Page 327

)

US. Patent Nov. 18,2003 Sheet 1 of 18 US 6,651,099 B1

—

10° CLIENT4 108
”\107 ANALYZER

116
_

CLIENT 3 —\1 10
—\ 121106

DATA COMMUNICATIONS

NETWORK

\94 102

125

123
_ 113
SERVER 4 —- 105 —

“N CLIENT 2 CUENT 1

"2 104

FIG. 1

NOAC EX. 1018 Page 327

NOAC Ex. 1018 Page 328

mama'S'fl

 241 242 243 €00Z‘81Wm

8110Z”9'18CLIENTS 260 261 K252263 g264 APPLICATION :SERVERZ

IIIIIII

 Ifl660‘199‘9sn

NOAC EX. 1018 PagE’SZSE

NOAC Ex. 1018 Page 329

1B%

0.,_l|lllllllllIlllllllllllllll_fl_mg_6,_mmN>._<z<_M__mogozfi._0:50meU_
_

___oz_____mmNSEo8_oz<1_$55.8.m_3.20:8sz._$528E8308".6_05w_20.25.23".I_h_250E330_S.-.I.I__
_

_ _mm<m§<omomoommzo:<o_n_:zm_o__zor6<Exm2 _zkmfixHima_oz<8,_WEE}6005mm._1Jam_.1IIIIwrIII_
N

w>>O.Em0mw<m<k<o

>mv_LSD-E:O_._.<mmm>ZOO

ZOF<EmOu_Z_@Z_>u=._.zmn=

_mngz:95mmN_zooom_m__oz<m~>._<z<__.I an.6mEmmi.

US. Patent

NOAC EX. 1018 Page 329

NOAC Ex. 1018 Page 330

US. Patent Nov. 18, 2003 Sheet 4 0f 18 US 6,651,099 B1

. 401

v 402

HIGH LEVEL
PACKET

DECODING
I ESCRIPTION ‘

404 405

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

I ESCRIPTION ‘

403

./. 407

406 ATTEgmbPARS pROSge—EESOR
N INSTRUCTION

EXTHACTIO 408 409 DATABASE

DATABASE

LOAD STATE “
NSTRUCTIO I 3
DATABASE z
MEMORY ‘ ;

LOAD
PARSING

SUBSYSTEM
MEMORY

\400

FIG. 4

NOAC EX. 1018 Page 330 i!

NOAC Ex. 1018 Page 331

US. Patent

510

PATTERN

Nov. 18, 2003 Sheet 5 of 18 US 6,651,099 B1

502

LOAD PACKET
COMPONENT

ORE IN PACK I'-

503

PACKET

KEY
504

FEI'CH NODE AN I
PROCESS FROM

513

MORE NEXT
PATTERN PACKET
NODES? COMPONE 511

.n ' V.» “I

PROCESS TO
COMPONENT

V 5'

NODE

509

NOAC EX. 1018 Page 331

i

gs

v“2.1:, 0,-

NOAC Ex. 1018 Page 332

US. Patent Nov. 18, 2003 Sheet 6 0f 18 US 6,651,099 B1

0

PACKET 602
COMPONENT AND
PATTERN NODE

603

LOAD PACKET

COMPONENT 610

604

LOAD KEY
BUFFER

YES

FETCH EXTRACTION e‘ ND PROCESS FRO
PATTERNS 605

NO

606

ORE EXTRACTIO ‘
ELEMENTS?

YES

611

507 APPLY EXTRACTIO :

NEXT

N 0‘ PACKET 609
COMPONEN

PROCESS TO

COMPONENT \

MORE TO 508
EXTRACT?

YE

FIG. 6

600

NOAC EX. 1018 Page 332

NOAC Ex. 1018 Page 333

US. Patent Nov. 18, 2003 Sheet 7 of 18 US 6,651,099 B1

. 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN

703 NODE ELEMENT 708

704 MORE PATTER OUTPUT T

NODES? ANALYZER

YES @
HASH KEY BUFFER

ELEMENT FROM 705
PATTERN NODE

709

700

PACK KEY & HAS

706 \

NEXT PACKET
COMPONENT

707

FIG. 7

NOAC EX. 1018 Page 333

NOAC Ex. 1018 Page 334

US. Patent Nov. 18, 2003 Sheet 8 0f 18 US 6,651,099 B1

. 801

UFKB ENTRY FOR
PACKET 802

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/

BUCKET FROM CACHE 804 806

“0 SET UFKB FOR
PACKETAS 'NEW’

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET N @ 808
YES

ORE BUCKET

805 IN THE BIN?

YES

809 MARK RECORD BIN AND 310
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
5" AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813x. FIG. 8

NOAC EX. 1018 Page 334

NOAC Ex. 1018 Page 335

US. Patent Nov. 18,2003 Sheet 9 of 18 US 6,651,099 B1

902

 RPC
BIND LOOKU '

' ORTMAPP ' REQUEST' ORTMAPP '
909

EXTRACT PROGRAM

GEI' 'PROGRAM'.
'VERSION'. 'POFIT‘ AND
'PROTOCOL crop OR

UDP)

EXTRACT PORT

GET 'PFIOGFIAM',
'VEFISION' AND

'PROTOCOL (rcp OR
UDP)‘

903

CREATE SERVER STAT SAVE 'PROGRAM',

SAVE 'PROGRAM'. 'VERSION' AND
904 'VERSION', 'PORT' AND 'PROTOCOL (TCP OR

'PROTOCOL (rcp OR UDP)‘ WITH
UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY BOTH MAKE A KEY.

ON SERVER ADDRESS
AND TCP OR UDP PORT.

FIND 'PROGRAM'
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

GEr 'PORT AND
'PFIOTOCOL (TCP

OR UDP)‘.

900/

FIG. 9

NOAC EX. 1018 Page 335

NOAC Ex. 1018 Page 336

US. Patent Nov. 18,2003 Sheet 10 of 18 US 6,651,099 B1

 PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 100‘ MEMORY

100 1031

100 1004

INFO OUT

HOST INTERFACE MULTIPLEXR 81 CONTROL REGISTERS CONTRL

100' PéTrGERN 1007
RE 0 NITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

100-

* PARSER
" K PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAI

MEMORY

1012

1021

PQTQARETT INPUT BUFFER ANALYZER DATA REA'Y
INTERFACE INTERFACE
CONTROL CONTROL

. V A v

READY

‘ '

PACKET

102

1023 FIG. 10 1027

NOAC EX. 1018 Page 336

NOAC Ex. 1018 Page 337

US. Patent Nov. 18, 2003 Sheet 11 of 18 US 6,651,099 B1

1100 N

1101 1103 1115 1118 1122
1107

1,0011%
ANALYZE'

ENGINE HOST "339,3;
1 (PE) «- 'NTETE‘SAC’“ INTER-"" FACE

STATE (33%‘(80 (H'B)
PROCESS' ()

PARSER
INTER- 1":
FACE

PROCESSR
(SP) 1119 1123

UMFED MEMORY

MEMORY . INTER-
 .NSELF%N/

'- DELETION -
ENGINE

(FIDE)

1110

FIG. 11

NOAC EX. 1018 Page 337

NOAC Ex. 1018 Page 338

US. Patent Nov. 18, 2003 Sheet 12 of 18 US 6,651,099 B1

1201

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

1202

 ‘I 200

N ACCESS
CONVERSATION 1203

RECORD BIN

1204

REQUEST NEXT

BUCKET FROM 1205
1206 CACHE

1 207

INSERT KEY AND HASH

N BUCKET, MARK 'USED
WITH TIMESTAMP

. NO
1208 '

ES

1210 AND BUCKET RECORD
KEY TO PACKET SET UFKB FOR

PACKET AS
'DROP'

MARK RECORD BIN AND

BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

FIG. 12

1211

NOAC EX. 1018 Page 338

NOAC Ex. 1018 Page 339

US. Patent Nov. 18, 2003 Sheet 13 of 18 US 6,651,099 B1

$1301
1300 N UFKB ENTRY FOR

PACKET WITH STATUS
'NEW' 0R 1:. D' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

PROCESSOR

INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

1308 YES
1310

SAVE STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO

CURRENT FLOW
 RECORD

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

@1313
FIG. 13

 1311

NOAC EX. 1018 Page 339

NOAC Ex. 1018 Page 340

US 6,651,099 B1Sheet 14 of 18Nov. 18, 2003US. Patent

EMHw>mewmmN>4<z<

29.2me-m_m>._<z<

oZ

ZO_._.<N3<z_n_Zk<0_u=mw<u_o

mmvF

ECHOMAmwm2_I032m._.<._.w

2mm>wm3wEmmi/E

wZOF<mmmOZOFO<IPXmQZ<wmmDHODmkm

DEOOmIZ>>OZv___>>O._n___WERE:

w>>O.E“.0m._.<.rm\ZOE.<S=n_On_z_mw<m<k<o400mmwOuz.ZIP—ICE
02_>u__._.2mn=wN_Zwoomm

H0<mkxw

NOAC EX. 1018 Page 340

NOAC Ex. 1018 Page 341

lB990,

1Ig,m_.GE
70SU

mo

a920mxmamofimmhzm2
f

0\IIH\..m83
h

SII.
8mmotzos.

m#6sz.8308.2,FmOI
H

v.35%
M8232

me0<m
Nomp

ammmwm<a

mw<m<._.<o
«mm

US. Patent

 FNF

NOAC EX. 1018 Page 341

NOAC Ex. 1018 Page 342

US. Patent Nov. 18, 2003 Sheet 16 0f 18 US 6,651,099 B1

NOAC EX. 1018 Page 342

NOAC Ex. 1018 Page 343

US. Patent Nov. 18,2003 Sheet 17 of 18 US 6,651,099 Bl

1702

9511231ffset ‘ = x *
12°10 13 _Vllllllllllli CHAOSNET = 0x0804

ARP = 0x0806
VIP = OXOBAD"

T VLOOP = OXOBAE1706 VECHO = OXOBAF

NEI'BIOS-BCOM = 33883;;
11"”‘2’ 010511221133;a 1 — = x

-’ “170° LAM__ - = X

L3 Ofiet ’ 14 DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP = 0x8035
ATALK = OXBOQB*

VLOOP = 0x80C4

Fl 1 7A VECHO = OXBOCS. SNA—TH = 0x80D5”
ATALKARP = 0x80F3

1712 IPX = 0x8137*
SNMP = 0x814C#

IPv6 = OXBGDD“
LOOPBACK = 0x9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

1 752

71:11mwmmmfimmlm
mmr W

L3to . I!" :3 MM ICMP=1

113+ ’Ilu 2111'111111211111111 IGMP :2
"““4 9135—21
'" EGP=8

IGRP = 9
PUP =12

CHAOS =16

UIDP :17;DP = 22
K— 1750 lSO—TP4 = 29

DDP = 3711
ISO-IP = so

VIP = 83#
EIGRP = 88
OSPF = 89

VIIIIIW»fifflifiifi'fillllllllllll

Dst Address

Dst Hash (2)
Src Address

Src Hash (2)

-1 (1) FIG_1 7B yiélrjzicfgcgggding
L4 Offet = L3 + (IHU4)

NOAC EX. 1018 Page 343

NOAC Ex. 1018 Page 344

US 6,651,099 B1Sheet 18 of 18Nov. 18, 2003US. Patent

w“thin!Ar.‘hfififim8Sm:now.‘i.....\1$00mErm.E‘.oE‘‘nlu%

Frm‘mmEBmm.6005m
|||V(, 15239mm

NOAC EX. 1018 Page 344

FIG. 188

NOAC Ex. 1018 Page 345

US 6,651,099 B1
1

METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of US. Provisional
PatentApplication Ser. No.: 60/141,903 for METHOD AND
APPARATUS FOR MONITORING TRAFFIC IN A NET-

WORK to inventors Dietz, et al., filed Jun. 30, 1999, the
contents of which are incorporated herein by reference.

This application is related to the following US. patent
applications, each filed concurrently with the present
application, and each assigned to Apptitude, Inc., the
assignee of the present invention:

US. patent application Ser. No. 09/609,179 for PRO—
CESSING PROTOCOL SPECIFIC INFORMATION
IN PACKETS SPECIFIED BY A PROTOCOL
DESCRIPTION LANGUAGE, to inventors
Koppenhaver, et al., filed Jun. 30, 2000, still pending,
and incorporated herein by reference. US patent appli~
cation Ser. No. 09/608,126 for RE-USING INFORMA—
TION FROM DATA TRANSACTIONS FOR MAIN-
TAINING STATISTICS IN NETWORK
MONITORING, to inventors Dietz, et al., filed Jun. 30,
2000, still pending, and incorporated herein by refer-
ence. US. patent application Ser. No. 09/608,266 for
ASSOCIATIVE CACHE STRUCTURE FOR LOOK-
UPS AND UPDM‘ES OF FLOW RECORDS [N A
NETWORK MONITOR, to inventors Sarkissian, et al.,
filed Jun. 30, 2000, still penting, and incorporated
herein by reference. US. patent application Ser. No.
09/608,267 for STATE PROCESSOR FOR PATTERN
MATCHING IN A NETWORK MONITOR DEVICE,
to inventors Saddssian, et al., filed Jun. 30, 2000, still
pending, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, spe—
cifically to the real-time elucidation of packets communi—
cated within a data network, including classification accord-
ing to protocol and application program.

BACKGROUND TO THE PRESENT
INVENTION

There has long been a need for network activity monitors.
This need has become especially acute, however, given the
recent popularity of the Internet and other intemets—an
“internet” being any plurality of interconnected networks
which forms a larger, single network. With the growth of
networks used as a collection of clients obtaining services
from one or more servers on the network, it is increasingly
important to be able to monitor the use of those services and
to rate them accordingly. Such objective information, for
example, as which services (i.e., application programs) are
being used, who is using them, how often they have been
accessed, and for how long, is very useful in the mainte—
nance and continued Operation of these networks. It is
especially important that selected users be able to access a
network remotely in order to generate reports on network
use in real time. Similarly, a need exists for a real-time
network monitor that can provide alarms notifying selected
users of problems that may occur with the network or site.

One prior art monitoring method uses log files. In this
method, selected network activities may be analyzed retro-
spectively by reviewing log files, which are maintained by

10

15

30

35

45

50

55

65

2

network servers and gateways. Log file monitors must
access this data and analyze “mine”) its contents to deter—
mine statistics about the server or gateway. Several problems
exist with this method, however. First, log file information
does not provide a map of real-time usage; and secondly, log
file mining does not supply complete information. This
method relies on logs maintained by numerous network
devices and sewers, which requires that the information be
subjected to refining and correlation. Also, sometimes infor-
mation is simply not available to any gateway or server in
order to make a log file entry.

One such case, for example, would be information con—
cerning NetMeeting® (Microsoft Corporation, Redmond,
Washington) sessions in which two computers connect
directly on the network and the data is never seen by a server
or a gateway.

Another disadvantage of creating log files is that the
process requires data logging features of network elements
to be enabled, placing a substantial load on the device, which
results in a subsequent decline in network performance.
Additionally, log files can grow rapidly, there is no standard
means of storage for them, and they require a significant
amount of maintenance.

Though Netflow® (Cisco Systems, Inc., San Jose, Calif),
RMONZ, and other network monitors are available for the
real—time monitoring of networks, they lack visibility into
application content and are typically limited to providing
network layer level information.

Pattern-matching parser techniques wherein a packet is
parsed and pattern filters are applied are also known, but
these too are limited in how deep into the protocol stack they
can examine packets.

Some prior art packet monitors classify packets into
connection flows. The term “connection flow" is commonly
used to describe all the packets involved with a single
connection. Aconversational flow, on the other hand, is the
sequence of packets that are exchanged in any direction as
a result of an activity—for instance, the rrmning of an
application on a server as requested by a cheat. It is desirable
to be able to identify and classify conversational flows rather
than only connection flows. The reason for this is that some
conversational flows involve more than one connection, and
some even involve more than one exchange of packets
between a client and server. This is particularly true when
using client/server protocols such as RPC, DCOMP, and
SAP, which enable a service to be set up or defined prior to
any use of that service.

An example of such a case is the SAP (Service Adver-
tising Protocol), a NetWare (Novell Systems, Provo, Utah)
protocol used to identify the services and addresses of
servers attached to a network. In the initial exchange, a client
might send a SAP request to a server for print service. The
server would then send a SAP reply that identifies a par-
ticular address—for example, SAWS—as the print service
on that server. Such responses might be used to update a
table in a router, for instance, known as a Server Information
Table. A client who has inadvertently seen this reply or who
has mum to the table (via the router that has the Service
Information Table) would know that SAP#S for this particu-
lar server is a print service. Therefore, in order to print data
on the server, such a client would not need to make a request
for a print service, but would simply send data to be printed
specifying SAP#S. Like the previous exchange, the trans-
mission of data to be printed also involves an exchange
between a client and a server, but requires a second con-
nection and is therefore independent of the initial exchange.

NOAC EX. 1018 Page 345

NOAC Ex. 1018 Page 346

US 6,651,099 Bl
3

In order to eliminate the possibility of disjointed conversa—
tional exchanges, it is desirable for a network packet monitor
to be able to “virtually concatenate”—that is, to link—the
first exchange with the second. If the clients were the same,
the two packet exchanges would then be correctly identified
as being part of the same conversational flow.

Other protocols that may lead to disjointed flows, include
RPC (Remote Procedure Call); DCOM (Distributed Com-
ponent Object Model), formerly called Network OLE
(Microsoft Corporation, Redmond, Wash); and CORBA
(Common Object Request Broker Architecture). RPC is a
programming interface from Sun Microsystems (Palo Alto,
Calif.) that allows one program to use the services of another
program in a lo remote machine. DCOM, Microsoft’s coun-
terpart to CORBA, defines the remote procedure call that
allows those objects—objects are self~contained software
modules-—to be run remotely over the network. And
CORBA, a standard from the Object Management Group
(OMG) for communicating between distributed objects,
provides a way to execute programs (objects) written in
different programming languages running on different plat-
forms regardless of where they reside in a network.

What is needed, therefore, is a network monitor that
makes it possible to continuously analyze all user sessions
on a heavily traflicked network. Such a monitor should
enable non-intrusive, remote detection, characterization,
analysis, and capture of all information passing through any
point on the network (i.e., of all packets and packet streams
passing through any location in the network). Not only
should all the packets be detected and analyzed, but for each
of these packets the network monitor should determine the
protocol (e.g., http, ftp, H.323, VPN, etc.), the application/
use within the protocol (e.g., voice, video, data, real—time
data, etc.), and an end user’s pattern of use within each
application or the application context (e .g., options selected,
service delivered, duration, time of day, data requested, etc.).
Also, the network monitor should not be reliant upon server
resident information such as log files. Rather, it should allow
a user such as a network administrator or an Internet service

provider (lSP) the means to measure and analyze network
activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and
to receive timely notification of network problems.

Considering the previous SAP example again, because
one features of the invention is to correctly identify the
second exchange as being associated with a print service on
that server, such exchange would even be recognized if the
clients were not the same. What distinguishes this invention
from prior art network monitors is that it has the ability to
recognize disjointed flows as belonging to the same conver-
sational flow.

The data value in monitoring network communications
has been recognized by many inventors. Chin, et al.,
describe a method for collecting information at the session
level in a computer network in US. Pat. No. 5,101,402,
titled “APPARATUS AND METHOD FOR REAL-TIME
MONITORING OF NETWORK SESSIONS AND A

LOCAL AREA NETWORK" (the “402 patent"). The 402
patent specifies fixed locations for particular types of pack-
ets to extract information to identify session of a packet. For
example, if a DECnet packet appears, the 402 patent looks
at six specific fields (at 6 locations) in the packet in order to
identify the session of the .packet. If, on the other hand, an
IP packet appears, a difierent set of six diiferent locations is
specified for an 1? packet. With the proliferation of
protocols, clearly the spean of all the posible places to
look to determine the session becomes more and more

10

15

30

35

45

50

55

60

65

4

difficult. Likewise, adding a new protocol or application is
difficult. In the present invention, the locations examined
and the information extracted from any packet are adap-
tively determined from information in the packet for the
particular type ofpacket. There is no fixed definition ofwhat
to look for and where to look in order to form an identifying
signature. A monitor implementation of the present
invention, for example, adapts to handle differently IEEE
8023 packet from the older Ethernet Type 2 (or Version 2)
DIX (Digital-Intel-Xerox) packet.

The 402 patent system is able to recognize up to the
session layer. In the present invention, the number of levels
examined varies for any particular protocol. Furthermore,
the present invention is capable of examining up to whatever
level is sufficient to uniquely identify to a required level,
even all the way to the application level (in the 08] model).

Other prior art systems also are known. Phael describes a
network activity monitor that processes only randomly
selected packets in US. Pat. No. 5,315,580, titled “NET~
WORK MONITORING DEVICE AND SYSTEM.” Naka-
mura teadies a network monitoring system in US Pat. No.
4,891,639, titled “MONITORING SYSTEM OF NET-
WORK.” Ross, et al., teach a method and apparatus for
analyzing and monitoring network activity in US. Pat. No.
5,247,517, titled “METHOD AND APPARATUS FOR
ANALYSIS NETWORKS," McCreery, et al., describe an
Internet activity monitor that decodes packet data at the
Internet protocol level layer in US. Pat. No. 5,787,253,
titled “APPARATUS AND METHOD OF ANALYZING

INTERNET ACTIVITY." The McCreery method decodes
IP~packets. It goes through the decoding operations for each
packet, and therefore uses the processing overhead for both
recognized and unrecognized flows. In a monitor implemen-
tation of the present invention, a signature is built for every
flow such that future packets of the flow are easily recog-
nized. When a new packet in the flow arrives, the recogni-
tion process can commence from where it last left off, and
a new signature built to recognize new packets of the flow.

SUMMARY

In its various embodiments the present invention provides
a network monitor that can accomplish one or more of the
following objects and advantages:

Recognize and clasify all packets that are exchanges
between a client and server into respective client/server
applications.

Recognize and classify at all protocol layer levels con-
versational flows that pass in either direction at a point
in a network.

Determine the connection and flow progress between
clients and sewers according to the individual packets
exchanged over a network.

Be used to help tune the performance of a network
according to the current mix of client/server applica~
tions requiring network resources.

Maintain statistics relevant to the mix of clientherver

applications using network resources.
Report on the occurrences of specific sequences of pack—

ets used by particular applications for client/server
network conversational flows.

Other aspects of embodiments of the invention are:
Properly analyzing each of the packets exchanged

between a client and a server and maintaining infor-
mation relevant to the current state of each of these

conversational flows. p1 Providing a flexible process-

NOAC EX. 1018 Page 346

NOAC Ex. 1018 Page 347

US 6,651,099 B1

5

ing system that can be tailored or adapted as new
applications enter the client/server market.

Maintaining statistics relevant to the conversational flows
in a client/sever network as classified by an individual
application.

Reporting a specific identifier, which may be used by
other network-oriented devices to identify the series of
packets with a specific application for a specific client!
server network conversational flow.

In general, the embodiments of the present invention
overcome the problems and disadvantages of the art.

As described herein, one embodiment analyzes each of
the packets passing through any point in the network in
either direction, in order to derive the actual application used
to communicate between a client and a server. Note that
there could be several simultaneous and overlapping app1i~
cations executing over the network that are independent and
asynchronous.

A monitor embodiment of the invention successfully
clamifios each of the individual packets as they are seen on
the network. The contents of the packets are parsed and
selected parts are assembled into a signature (also called a
key) that may then be used identify further packets of the
same conversational flow, for example to further analyze the
flow and ultimately to recognize the application program.
Thus the key is a function of the selected parts, and in the
preferred embodiment, the function is a concatenation of the
selected parts. The preferred embodiment forms and remem-
bers the state of any conversational flow, which is deter-
mined by the relationship between individual packets and
the entire conversational flow over the network. By remem-
bering the state of a flow in this way, the embodiment
determines the context of the conversational flow, including
the application program it relates to and parameters such as
the time, length of the conversational flow, data rate, etc.

'lhe monitor is flexible to adapt to future applications
developed for client/server networks. New protocols and
protocol combinations may be incorporated by compiling
files written in a high-level protocol description language.

'lhe monitor embodiment of the present invention is

preferably implemented in application-specific integrated
circuits (ASIC) or field programmable gate arrays (FPGA).
In one embodiment, the monitor comprises a parser sub-
system that forms a signature from a packet. The monitor
further comprises an analyzer subsystem that receives the
signature from the parser subsystem.

A packet acquisition device such as a media access
controller (MAC) or a segmentation and reassemble module
is used to provide packets to the parser subsystem of the
monitor.

In a hardware implementation, the parsing subsystem
comprises two sub-parts, the pattern analysis and recogni—
tion engine (PRE), and an extraction engine (slicer). The
PRE interprets each packet, and in particular, interprets
individual fields in each packet according to a pattern
database.

The different protocols that can exist in dilIerent layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree. Each protocol is
either a parent node or a terminal node. Aparent node links
a protocol to other protocols (child protocols) that can be at
higher layer levels. For example, An Ethernet packet (the
root node) may be an Ethertype packet—also called an
Ethernet Type/Version 2 and a DIX (DIGITAL-Intel—Xerox
packet)—-or an IEEE 8023 packet. Continuing with the
IEEE 802.3-type packet, one of the children nodes may be
the IP protocol, and one of the children of the IP protocol
may be the TCP protocol.

10

15

35

45

50

55

60

65

6

The pattern database includes a description of the difier—
ent headers of packets and their contents, and how these
relate to the ditfercnt nodes in a tree. The PRE traverses the
tree as far as it can. If a node does not include a link to a

deeper level, pattern matching is declared complete. Note
that protocols can be the children of several parents. If a
unique node was generated for each of the possible parent]
child trees, the pattern database might become excessively
large. Instead, child nodes are shared among multiple
parents, thus compacting the pattern database.

Finally the PRE can be used on its own when only
protocol recognition is required.

For each protocol recognized, the slicer extracts important
packet elements from the packet. These form a signature
(i.e., key) for the packet. The slicer also preferably generates
a hash for rapidly identifying a flow that may have this
signature from a database of known flows.

The flow signature of the packet, the hash and at least
some of the payload are passed to an analyzer subsystem. In
a hardware embodiment, the analyzer subsystem includes a
unified flow key buifer (UFKB) for receiving parts of
packets fiom the parser subsystem and for storing signatures
in process, a lookup/update engine (LUE) to lookup a
database of flow records for previously encountered con»
versational flows to determine whether a signature is from
an existing flow, a state processor (SP) for performing state
processing, a flow insertion and deletion engine (FIDE) for
inserting new flows into the database of flows, a memory for
storing the database of flows, and a cache for speeding up
access to the memory containing the flow database. The
LUE, SP, and FIDE are all coupled to the UFICB, and to the
cache.

The unified flow key buffer thus contains the flow signa-
ture of the packet, the hash and at least some of the payload
for analysis in the analyzer subsystem. Many operations can
be performed to further elucidate the identity of the appli-
cation program content of the packet involved in the client]
server conversational flow while a packet signature exists in
the unified flow signature buffer. In the particular hardware
embodiment of the analyzer subsystem several flows may be
processed in parallel, and multiple flow signatures from all
the packets being analyzed in parallel may be held in the oneUFKB.

The first step in the packet analysis process of a packet
from the parser subsystem is to lookup the instance in the
current database ofknown packet flow signatures. Alookup/
update engine (LUE) accomplishes this task using first the
hash, and then the flow signature. The search is carried out
in the cache and if there is no fiowwith a matching signature
in the cache, the lookup engine attempts to retrieve the flow
from the flow database in the memory. The flow-entry for

previously encountered flows preferably includes state
information, Which is used in the state processor to execute
any operations defined for the state, and to determine the
next state. Atypical state Operation may be to search for one
or more known reference strings in the payload of the packet
stored in the UFKB.

Once the lookup processing by the LUE has been com-
pleted a flag stating whether it is found or is new is set within
the unified flow signature buffer structure for this packet
flow signature. For an existing flow, the flow—entry is
updated by a calculator component of the LUE that adds
values to counters in the flow-entry database used to store
one ormore statistical measures of the flow. The counters are
used for determining network usage metrics on the flow.

After the packet flow signature has been looked up and
contents of the current flow signature are in the database, a

NOAC EX. 1018 Page 347

NOAC Ex. 1018 Page 348

US 6,651,099 B1
7

state processor can begin analyzing the packet payload to
further elucidate the identity of the application program
comp0nent of this packet. The exact operation of the state
processor and functions performed by it will vary depending
on the current packet sequence in the stream of a conver-
sational flow. The state processor moves to the next logical
operation stored from the previous packet seen with this
same flow signature. If any processing is required on this
packet, the state processor will execute instructions from a
database of state instruction for this state until there are

either no more left or the instruction signifies processing.
In the preferred embodiment, the state processor functions

are programmable to provide for analyzing new application
programs, and new sequences of packets and states that can
arise from using such application.

Ifduring the loolmp process for this particular packet flow
signature, the flow is required to be inserted into the active
database, a flow insertion and deletion engine (FIDE) is
initiated. The state processor also may create new flow
signatures and thus may instruct the flow insertion and
deletion engine to add a new flow to the database as a new
item.

In the preferred hardware embodiment, each of the LUE,
state processor, and FIDE operate independently from the
other two engines.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by
referring to the detailed preferred embodiments, these
should not be taken to limit the present invention to any
specific embodiment because such embodiments are pro-
vided only for the purposes of explanation. The
embodiments, in turn, are explained with the aid of the
following figures

FIG. 1 is a fimctional block diagram of a network embodi-
ment of the present invention in which a monitor is con—
nected to analyze packets passing at a connection point.

FIG. 2 is a diagram representing an example of some of
the packets and their formats that might be exchanged in
starting, as an illustrative example, a conversational flow
between a client and server on a network being monitored
and analyzed. A pair of flow signatures particular to this
example and to embodiments of the present invention is also
illustrated. This represents some of the possible flow signa—
tures that can be generated and used in the process of
analyzing packets and of recognizing the particular server
applications that produce the discrete application packet
exchanges.

FIG. 3 is a functional block diagram of a procem embodi-
ment of the present invention that can operate as the packet
monitor shown in FIG. 1. This process may be implemented
in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language
compiling and optimization process, which in one embodi—
ment may be used to generate data for monitoring packets
according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as
part of the parser in an embodiment of the inventive packet
monitor.

FIG. 6 is a flowchart of a packet element extraction
proces that is used as part of the parser in an embodiment
of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process
that is used as part of the parser in the inventive packet
monitor.

FIG. 8 is a flowchart of a monitor lookup and update
process that is used as part of the analyzer in an embodiment
of the inventive packet monitor.

10

15

20

35

45

50

55

65

8

FIG. 9 is a flowchart of an exemplary Sun Microsystems
Remote Procedure Call application than may be recognized
by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser
subsystem including the pattern recognizer and extractor
that can form part of the parser module in an embodiment of
the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware
analyzer including a state processor that can form part of an
embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion
and deletion engine process that can form part of the
analyzer in an embodiment of the inventive packet monitor.

FIG. 13 is a flowchart of a state processing process that
can form part of the analyzer in an embodiment of the
inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process
embodiment of the present invention that can operate as the
packet monitor shown in FIG. 1. This process may be
implemented in software.

FIG. 15 is a functional block diagram of how the packet
monitor of FIG. 3 (and FIGS. 10 and 11) may operate on a
network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an
Ethernet packet and some of the elements that may be
extracted to form a signature according to one aspect of the
invention.

FIG. 17Ais an example of the header of an Ethertype type
of Ethernet packet of FIG. 16 and some of the elements that
may be extracted to form a signature according to one aspect
of the invention.

FIG. 17B is an example of an IP packet, for example, of
the Ethertype packet shown in FIGS. 16 and 17A, and some
of the elements that may be extracted to form a signature
according to one aspect of the invention.

FIG. 18Ais a three dimensional structure that can be used

to store elements of the pattern, parse and extraction data—
base used by the parser subsystem in accordance to one
embodiment of the invention.

FIG. 183 is an alternate form of storing elements of the
pattern, parse and extraction database used by the parser
subsystem in accordance to another embodiment of the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and
descriptions that may include signal names. In most cases,
the names are sufficiently descriptive, in other cases how-
ever the signal names are not needed to understand the
operation and practice of the invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present
invention that is referred to herein by the general reference
numeral 100. The system 100 has a computer network 102
that communicates packets (e.g., IP datagrams) between
various computers, for example between the clients 104—107
and servers 110 and 112. The network is shown schemati—

cally as a cloud with several network nodes and links shown
in the interior of the cloud. A monitor 108 examines the

packets passing in either direction past its connection point
121 and, according to one aspect of the invention, can
elucidate what application programs are associated with

NOAC EX. 1018 Page 348

NOAC Ex. 1018 Page 349

US 6,651,099 B1

9

each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the network interface 116 of the
server 110 and the network. The monitor can also be placed
at other points in the network, such as connection point 123
between the network 102 and the interface 118 of the client

104, or some other location, as indicated schematically by
connection point 125 somewhere in network 102. Not
shown is a network packet acquisition device at the location
123 on the network for converting the physical information
on the network into packets for input into monitor 108. Such
packet acquisition devices are common.

Various protocols may be employed by the network to
establish and maintain the required communication, e.g.,
TCP/IP, etc. Any network activity—for example an appli-
cation program run by the client 104 (CLIENT 1) commu-
nicating with another running on the server 110 (SERVER
2)—will produce an exchange of a sequence of packets over
network 102 that is characteristic of the respective programs
and of the network protocols. Such characteristics may not
be completely revealing at the individual packet level. It
may require the analyzing of many packets by the monitor
108 to have enough information needed to recognize par-
ticular application programs. The padrets may need to be
parsed then analyzed in the context of various protocols, for
example, the transport through the application session layer
protocols for packets of a type conforming to the ISO
layered network model.

Communication protocols are layered, which is also
referred to as a protocol stack. The ISO (International
Standardization Organization) has defined a general model
that provides a framework for design of communication
protocol layers. This model, shown in tables form below,
serves as a basic reference for understanding the flmction-
ality of existing communication protocols.

ISO MODEL

Layer Rmcdonality Example

7 Application Telnet, NFS, Novell NCP, HTTP,H.373
6 Presentation XDR
5 Session RFC, NEI'BIOS, SNMP, etc.
4 Transport 'I‘CP, Novel SPX, UDP, etc.
3 Network IP, Novel! ITX, VIP, Apple'Ihlk, etc.
2 Data Link Network Interface Oud (Hardware

Interface). MAC layer
1 Physical Ethernet, Token Ring, Frame Relay,

ATM, TI (Hardware Connection)

Different communication protocols employ ditferent lev-
els of the ISO model or may use a layered model that is
similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visible to
protocols employed at other layers. For example, an appli-
cation (Level 7) may not be able to identify the source
computer for a communication attempt (Levels 2—3).

In some communication arts, the term “frame” generally
refers to encapsulated data at OSI layer 2, including a
destination address, control bits for flow control, the data or
payload, and CRC (cyclic redundancy check) data for error
checking. The term “packet” generally refers to encapsu-
lated data at OSI layer 3. In the TCP/IP world, the term
“datagram” is also used. In this specification, the term
“packet” is intended to encompass packets, datagrarns,
frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields

10

15

20

30

35

4s

50

55

60

65

10

and headers for transmission acr0$ a network. For example,
a data packet typically includes an address destination field,
a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and
footers to identify the beginning and end of the packet. The
terms “packet format” and “frame format,” also referred to
as “cell format,”0 are generally synonymous.

Monitor 108 looks at every packet passing the connection
point 121 for analysis. However, not every packet carries the
same information useful for recognizing all levels of the
protocol. For example, in a conversational flow associated
with a particular application, the application will cause the
server to send a type-A packet, but so will another. If,
though, the particular application progam always follows a
type-A packet with the sending of a type-B packet, and the
other application program does not, then in order to recog-
nize packets of that application’s conversational flow, the
monitor can be available to recognize packets that match the
type-B packet to associate with the type-Apacket. If such is
recognized after a type-A packet, then the particular appli-
cation program’s conversational flow has started to reveal
itself to the monitor 108.

Further packets may need to be examined before the
conversational flow can be identified as being associated
with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying
other packet exchanges that are parts of conversational flows
associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of
a flow is an indication of all previous events in the flow that
lead to recognition of the content of all the protocol levels,
e.g., the ISO model protocol levels. Another aspect of the
invention is forming a signature of extracted characteristic
portions of the packet that can be used to rapidly identify
packets belonging to the same flow.

In real-world uses of the monitor 108, the number of

packets on the network 102 paming by the monitor 108’s
connection point can exceed a million per second.
Consequently, the monitor has very little time available to
analyze and type each packet and identify and maintain the
state of the flows passing through the connection point. The
monitor 108 therefore masks out all the unimportant parts of
each packet that will not contribute to its classification.
However, the parts to mask-out will change with each packet
depending on which flow it belongs to and depending on the
state of the flow.

The recognition of the packet type, and ultimately of the
associated application programs according to the packets
that their executions produce, is a multi—step process within
the monitor 108. At a first level, for example, several
application programs will all produce a first kind of packet.
A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efliciently any
packets that belong to the same flow. In some cases, that
packet type may be sufliciently unique to enable the monitor
to identify the application that generated such a packet in the
conversational flow. The signature can then be used to
etficiently identify all future packets generated in traflic
related to that application.

In other cases, that first packet only starts the process of
analyzing the conversational flow, and more packets are
necessary to identify the associated application program. In
such a case, a subsequent packet of a second type—but that
potentially belongs to the same conversational flow—is
recognized by using the signature. At such a second level,
then, only a few of those application programs will have

NOAC EX. 1018 Page 349

NOAC Ex. 1018 Page 350

US 6,651,099 B1
11

conversational flows that can produce such a second packet
type. At this level in the process of clamification, all appli-
cation programs that are not in the set of those that lead to
such a sequence of packet types may be excluded in the
process of classifying the conversational flow that includes
these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is
produced that allows recognition of any future packets that
may follow in the conversational flow.

It may be that the application is now recognized, or
recognition may need to proceed to a third level of analysis
using the second level signature. For each packet, therefore,
the monitor parses the packet and generates a signature to
determine if this signature identified a previously encoun-
tered flow, or shall be used to recognize future packets
belonging to the same conversational flow. In real time, the
packet is further analyzed in the context of the sequence of
previously encountered packets (the state), and of the pos-
sible future sequences such a past sequence may generate in
conversational flows associated with different applications.
A new signature for recognizing future packets may also be
generated. This process of analysis continues until the
applications are identified. The last generated signature may
then be used to efiiciently recognize future packets associ-
ated with the same conversational flow. Such an arrange-
ment makes it possible for the monitor 108 to cope with
millions of packets per second that must be inspected.

Another aspect of the invention is adding Eavesdropping.
In alternative embodiments of the present invention capable
of eavesdropping, once the monitor 108 has recognized the
executing application programs paging through some point
in the network 102 (for example, because of execution of the
applicatiom by the client 105 or server 110), the monitor
sends a memage to some general purpose procesor on the
network that can input the same packets from the same
location on the network, and the processor then loads its own
executable copy of the application program and uses it to
read the content being exchanged over the network. In other
words, once the monitor 108 has accomplished recognition
of the application progam, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an
embodiment of the present invention that can be imple-
mented with computer hardware and/or software. The sys-
tem 300 is similar to monitor 108 in FIG. 1. Apacket 302 is
examined, e.g., from a packet acquisition device at the
location 121 in network 102 (FIG. 1), and the packet
evaluated, for example in an attempt to determine its
characteristics, e.g., all the protocol information in a multi-
level model, including what server application produced the
packet.

The packet acquisition device is a common interface that
converts the physical signals and then decodes them into
bits, and into padcets, in accordance with the particular
network (Ethernet, frame relay, ATM, etc.). The acquisition
device indicates to the monitor 108 the type of network of
the acquired packet or packets.

Aspects shown here include: (1) the initialization of the
monitor to generate what operations need to occur on
packets of dilferent types—accomplished by compiler and
optimizer 310, (2) the processing—parsing and extraction of
selected portions—of packets to generate an identifying
signature—accomplished by parser subsystem 301, and (3)
the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide
protocol specific information to parser subsystem 301 and to

10

15

20

30

35

45

50

55

60

65

12

analyzer subsystem 303. The initialization occurs prior to
operation of the monitor, and only needs to re-occur when
new protocols are to be added.

A flow is a stream of packets being exchanged between
any two addresses in the network. For each protocol there
are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these
and other fields are used in monitor 300 to identify the flow.
There are other fields not important for identifying the flow,
such as checksums, and those parts are not used for identi-
fication.

Parser subsystem 301 examines the packets using pattern
recognition process 304 that parses the packet and deter-
mines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction
process 306 in parser subsystem 301 extracts characteristic
portions (signature information) from the packet 302. Both
the pattern information for parsing and the related extraction
operatiors, e.g., extraction masks, are supplied from a
parsing-pattern—structures and extraction-operations data-
base (parsing/extractions database) 308 filled by the com—
piler and optimizer 310.

The protocol description language (PDL) files 336
describes both patterns and states of all protocols that an
occur at any layer, including how to interpret header
information, how to determine from the packet header
information the protocols at the next layer, and what infor-
mation to extract for the purpose of identifying a flow, and
ultimately, applications and services. The layer selections
database 338 describes the particular layering handled by the
monitor. That is, what protocols run on top of what protocols
at any layer level. Thus 336 and 338 combined describe how
one would decode, analyze, and understand the information
in packets, and, furthermore, how the information is layered.
This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates
two sets of internal data structures. The first is the set of

parsing/extraclion operations 308. The pattern structures
include parsing information and describe what will be
recognized in the headers of packets; the extraction opera-
tions are what elements of a packet are to be extracted from
the packets based on the patterns that get matched. Thus,
database 308 of parsing/extraction operations includes infor—
mation describing how to determine a set of one or more
protocol dependent extraction operations from data in the
packet that indicate a protocol used in the packet.

The other internal data structure that is built by compiler
310 is the set of state patterns and processes 326. These are
the different states and state transitions that occur in different
conversational flows, and the state operations that need to be
performed (elg., patterns that need to be examined and new
signatures that need to be built) during any state of a
conversational flow to further the task of analyzing the
conversational flow.

Thus, compiling the PDL files and layer selections pro-
vides monitor 300 with the information it needs to begin
procesing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually
or otherwise generated. Note that in some embodiments the
layering selections information is inherent rather than
explicitly described. For example, since a PDL file for a
protocol includes the child protocols, the parent protocols
also may be determined.

In the preferred embodiment, the packet 302 from the
acquisition device is input into a packet bufler. The pattern
recognition process 304 is carried out by a pattern analysis

NOAC Ex. 1018 Page 350

NOAC Ex. 1018 Page 351

US 6,651,099 B1

13

and recognition (PAR) engine that analyzes and recognizes
patterns in the packets. In particular, the PAR locates the
next protocol field in the header and determines the length
of the header, and may perform certain other tasks for certain
types of protocol headers. An example of this is type and
length comparison to distinguish an IEEE 802.3 (Ethernet)
packet from the older type 2 (or Version 2) Ethernet packet,
also called a DIGITAL-Intel-Xerox (DIX) packet. The PAR
also uses the pattern structures and extraction operations
database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the
next protocol layer. Once a pattern or a set of patterns has
been identified, it/they will be maimed with a set of none
or more extraction operations. These extraction operations
(in the form of commands and associated parameters) are
passed to the extraction process 306 implemented by an
extracting and information identifying (EII) engine that
extracts selected parts of the packet, including identifying
information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in
sequence and then processed in block 312 to build a unique
flow signature (also called a “key") for this flow. A flow
signature depends on the protocols used in the packet. For
some protocols, the extracted components may include
source and destination addresses. For example, Ethernet
frames have end-point addreses that are useful in building
a better flowsignature. Thus, the signature typically includes
the client and server address pairs. The signature is used to
recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key
includes generating a hash of the signature using a hash
function. The purpose ifusing such a hash is conventional—
to spread flow-entries identified by the signature auoss a
database for efficient searching. The hash generated is
preferably based on a hashing algorithm and such hash
generation is known to those in the art.

In one embodiment, the parser passes data from the
packet—a parser record-that includes the signature (i.e.,
selected portions of the packet), the hash, and the packet
itself to allow for any state processing that requires further
data from the packet. An improved embodiment of the parser
subsystem might generate a parser record that has some
predefined sh'ucture and that includes the signature, the
hash, some flags related to some of the fields in the parser
record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further
processing, e.g., for state processing.

Note that alternate embodiments may use some function
other than concatenation of the selected portions of the
packet to make the identifying signature. For example, some
“digest function” of the concatenated selected portions may
be used.

The parser record is passed onto lookup process 314
which looks in an internal data store of records of known

flows that the system has already encountered, and decides
(in 316) whether or not this particular packet belongs to a
known flow as indicated by the presence of a flow-entry
matching this flow in a database of Imown flows 324. A
record in database 324 is associated with each encountered
flow.

The parser record enters a buffer called the unified flow
key buffer (UFKB). The UFKB stores the data on flows in
a data structure that is similar to the parser record, but that
includes a field that can be modified. In particular, one or the
UFKB record fields stores the packet sequence number, and
another is filled with state information in the form of a

10

15

35

4s

50

55

60

65

14

program counter for a state proce$or that implements state
processing 328.

The determination (316) of whether a record with the
same signature already eidsts is carried out by a lookup
engine (LUE) that obtains new UFIG3 records and uses the
hash in the UFKB record to lookup if there is a matching
known flow. In the particular embodiment, the database of
known flows 324 is in an external memory. A cache is
a$ociated with the database 324. A lookup by the LUE for
a known record is carried out by accesing the cache using
the hash, and if the entry is not already present in the cache,
the entry is looked up (again using the hash) in the external
memory.

The flow-entry database 324 stores flow-entries that
include the unique flow-signature, state information, and
extracted information from the packet for updating flows,
and one or more statistical about the flow. Each entry
completely describes a flow. Database 324 is organized into
bins that contain a number, denoted N, of flow-entries (also
called flow-entries, each a bucket), with N being 4 in the
preferred embodiment. Buckets (i.e., flow-entries) are
accessed via the hash of the packet from the parser sub-
system 301 (i.e., the hash in the UFKB record). The hash
spreads the flows across the database to allow for fast
lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory
attached to the monitor, and the number of bits of the hash
data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16
Mbytes are required. Using a is 16—bit hash gives two
flow-entries per bucket. Empirically, this has been shown to
be more than adequate for the vast majority of cases. Note
that another embodiment uses flow-entries that are 256 bytes
long.

Herein, whenever an access to database 324 is described,
it is to be understood that the acces is via the cache, unless
otherwise stated or clear from the context.

Ifthere is no flow-entry found matching the signature, i.e.,
the signature is for a new flow, then a protocol and state
identification process 318 further determines the state and
protocol. That is, process 318 determines the protocols and
where in the state sequence for a flow for this protocol’s this
packet belongs. Identification process 318 uses the extracted
information and makes reference to the database 326 of state

patterns and processes. Process 318 is then followed by any
state operations that need to be executed on this packet by
a state processor 328.

If the packet is found to have a matching flow-entry in the
database 324 (e.g., in the cache), then a process 320
determines, from the looked-up flow—entry, if more classi-
fication by state processing of the flow signature is neces-
sary. If not, a process 322 updates the flow-entry in the
flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more statistical measures stored in
the flow-entry. In our embodiment, the statistical measures
are stored in counters in the flow-entry.

If state processing is required, state process 328 is com-
menced. State processor 328 carries out any state operalions
specified for the state of the flow and updates the state to the
next state according to a set of state instructions obtained
form the state pattern and processes database 326.

The state processor 328 analyzes both new and existing
flows in order to analyze all levels of the protocol stack,
ultimately clasifying the flows by application (level 7 in the
ISO model). It does this by proceeding from state-to-state
based on predefined state transition rules and state opera-

NOAC EX. 1018 Page 351

NOAC Ex. 1018 Page 352

NOAC Ex. 1018 Page 353

NOAC Ex. 1018 Page 354

NOAC Ex. 1018 Page 355

NOAC Ex. 1018 Page 356

NOAC Ex. 1018 Page 357

NOAC Ex. 1018 Page 358

NOAC Ex. 1018 Page 359

NOAC Ex. 1018 Page 360

NOAC Ex. 1018 Page 361

NOAC Ex. 1018 Page 362

