
NOAC Ex. 1017 Page 1

IW 7696177

gummwuommrnsg 133135123119) @1490 (my
m—v _~— _

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

‘i'"3..(1‘}?!\C'
33?

October 16, 2018

v4r»— ,1\.

~‘n- «-
AM,~ni-‘

mn‘n'n‘fiaunwlnwfi‘l‘a2,‘33:
'3:

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:
w

anavrgfii ‘3?me.
\N—r«+3?

APPLICATION NUMBER: 09/608,266

FILING DATE: June 30, 2000

PATENT NUMBER: 6,771,646

ISSUE DATE: August 03, 2004

Iw!w!!‘flfl<‘e§.~m"wit-tam!!!mtwn‘VnAIx-‘h‘,
By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United Stat atent and Trademark Office

 P. SW N

Ccrt' ing Officer won-Imurmur-w-on!gm

mmunnnmnmmuummunmnl

NOAC EX. 1017 Pa e 1

NOAC Ex. 1017 Page 2

.S‘chlass

\k‘ “‘wvrfi; 9.»—

- us. UTILITY Patent AppIIcaIIon

"‘7‘ ‘ ‘quxrq :L- .,

{I W 0.l . . _ - PATENT DATEl 6 77 2'; o IIIIII‘ S ANNED [/1 O.A.v AUG 0 U
I T’ ' > ,. 7‘ U "thaw; ,_ W, V ,, ,vv W ,- . 7 .7

' APZILICfllgg N39 ART UNIT EXAMINER‘ — -1 I. ._ I—ILC‘H ' ‘ \— IL ’ x . 2534-. ,4 . ”A; r‘ , ‘ ‘
. ‘ ' ' p TE*#1?77&fl1r ¢v~ ~
I "’ I" , . I * - I , , I ’7 ' Y . ‘ I
2 "E “- 1 r. - ~ 4’ 5W 5'2 m I. /~I. IU / 5‘“ I

j .. I k I I:

E Certificate C I ‘< I I ,If ' PI If a :"“,.=IN0v;'1,62004« ,, m ~ “f .ICJe
E of CorrectIon SEP 21 2504 mm ‘ .12/99 ’ . ‘,

f ’ 1’: < ‘ M - w I: A '
, <5? I‘FIVCATI: GI LG? IeCIIGn

OCT zzg 12.0114
\ x‘ I"

ISSUING CLASSIFICATION

I cnoss REFERENCE(S) I fI
|

I} I
I II

I
I II
' :
I
I II

I I

L i Contxnued on Issue Slip Inside FIle Jacket
I » WW 1"
‘; TERMINAL CLAIMSAflBWED

(I DISCLAIMER Total 9m 5 Print Claim for O.G. '
AII /,«P’§:O 7 ‘1‘
J f I

J ’ , i
subsequent to (dale)' A [an V. A/guygh 7 [9 I1 I

J has been disclaImed‘ IAssIsIanI Examlner) I
I ‘I j The term of this patent shall i I.

'1 not extend beyond the expiration date I
I of US Patent. No. I

I I
I,II

1. —

D The terrnInal months of
this patent have been disclaimedl

WARNING:

The InIOImatIon disclosed heveIn may be reslncted Unauthonzed dIsCIosure may be prothIted bfihe United States Code Title 35. Secllons 122, 181 and 368
Possession oulsIde the U.S. Patent a. Trademark Office Is veslncted to aulhonzed employees and contmclors‘only‘

J

F°"" "WA FILED WITH: [:1 DISK (CRF) [:1 FICHE [:1 CD-ROM

‘I
I

(Remus?) (Aflahdl k thI Id II)
.. an ce npoceIonglnseap

ISSUE Fit-zit; IN FILE

I
I
II
I

. ”I " . (FACE)

NOAC EX. 1017 Page 2

NOAC Ex. 1017 Page 3

Page 1 ofl

COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON. D C. 2023|

www uspto gov
Bib Data Sheet

FILING DATE

SERIAL NUMBER 06/30/2000 CLASS GROUP ART UNIT
09/608266 37 7

RULE 0 2 31

ATTORNEY

DOCKET NO.

APPT-001—4
. PPLICANTS

Haig A. Sarkissian, San Antonio; TX :1'
RusseIl S. Dietz, San Joiser‘CA;,3/

@119: L w
* CONTINUING DATAnfiy *******u *t‘ktt‘kit‘ktt‘k

THIS APPLNJSUG’LIAIMS BENEFIT OF 60/141,903 06/30/1999
Vf" /* FOREIGN APPLICATIONS ""A*mg’"mJ

/
IF REQUIIRED, FOREIGN FILING LICENSE
GRANT/ED ** 09/01/2000 _7 -

I

ForeIgn Enorlty claImed [:1 yes E no if" 5

Iii/C] STATE OR SHEETS TOTAL INDEPENDENT
‘AIonva Ge "0 Me‘ 3‘19" COUNTRY DRAWING CLAIMS CLAIMS
,2 :7 .. , =~ TX 21 2O 3

- Em;sr-m __

DDRESS ’ /
Dov Rosenfel

5507 CoIIeg. Avenue
Suite 2

Oakland ,CA 94618

ITLE

ssociative cache structure for Iookups and updates of flow records In a network monitor

 [11.16 Fees (Filing)
 FILING FEE FEES: Authority has been given In Paper C] 1 17 Fees (Processing Ext. of

RECEIVED No. to charge/credit DEPOSIT ACCOUNT tlme)

for followmg: C] 118 Fees (Issue)

M
D Credit ______

filezl/C:\APPS\PrcExam\correspondence\1_A.xml 1 1/1

NOAC EX. 1017 Page 3

NOAC Ex. 1017 Page 4

5km,MH

PATENT APPLICATION SERIAL NO.

US. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET
y

PTO-1556

(5/87)

‘US. GPO: 1999-459-GBZI19144

NOAC EX. 1017 Page 4

NOAC Ex. 1017 Page 5

nin

mHm“11...
will11..
Iifill

L‘IIH11ml!

u...iiii...iiii...ii{i:.:..

09—03-100 j:

IN THE US. PATENT AND TRADEMARK OFFICE

Application Transmittal Sheet

Our Ref/Docket No.: APPT—001-4

‘3 E

Box Patent Application 2‘4: g
ASSISTANT COMMISSIONER FOR PATENTS .\o §

Washington, DC. 20231 0'32: E
3Q E

. . ‘0 El
Dear Assistant Commlssmner: 3R5

we. El
Transmitted herewith is the patent application of ,9, :

INVENTOR(s)/APPLICANT(S)

Last Name First Name, MI Residence (City and State or Country)

Sarkissian Haig A. San Antonio, Texas
Dietz Russell S. San Jose, CA

TITLE OF THE INVENTION

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A
NETWORK MONITOR

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387

5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS (check all that a l)

X 21
sheet(s) of specification, claims, and abstract

sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson
Information Disclosure Statement.

Form PTO-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a

copy of each references included in PTO-1449.
Declaration and Power of Attorney

An assignment of the invention to Apptitude, Inc.
A letter requesting recordation of the assignment.

An assignment Cover Sheet.

Additional inventors are being named on separately numbered sheets attached hereto.

X Return postcard.

This application has:

a small entity status. A verified statement:

is enclosed

was already filed.

The fee has been calculated as shown in the following page.

Applicatio -

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal

Service as Express Mail (Express Mail Label: EI417961895US in an envelope addressed to Box Patent
Assistant Commissioner for Patents, Washington, DC. 20231 on.

Signe .

Name: Dov Rosenfeld, Reg. No. 38687

NOAC EX. 1017 Page 5

NOAC Ex. 1017 Page 6

lilillH...“H...”
Ilii,“lI...ll

IillllIIIJI.

1:"”mil

11...“ll...“Fl...“I122...'22

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. APPT-001~4

NO. OF EXTRA RATE EXTRA CLAIM
TOTAL CLAIMS CLAIMS FEE

INDEP. 3 $78
CLAIMS

BASIC APPLICATION FEE: $ 690.00

r' TOTAL FEES PAYABLE: $ 690.00

METHOD OF PAYMENT

A check in the amount of is attached for application fee and presentation of claims.

A check in the amount of § 40.00 is attached for recordation of the Assignment.
The Commissioner is hereby authorized to charge payment of the any missing filing or other fees

required for this filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITI‘AL IS ATTACHED):

Respectfully Submitted,

Date Dov Rosenfeld , Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

NOAC EX. 1017 Page 6

NOAC Ex. 1017 Page 7

vi...”II..."....v‘'1...“fl...“
.‘IIIIIIIIII’III}...

FIJIiiiiin’fizz:“:31M

Our Ref/Docket No: APPT—001-4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian, et al. Group Art Unit: unassigned
Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONITOR

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON

SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find 2_1_ sheets of formal drawings to be made of record for the above

identified patent application submitted herewith.

Respectfully Submitted,

3 0 WC 3% X
Date ov Rosenfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):

Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2

Oakland, CA 94618 >

Telephone: (510) 547-3378; Fax: (510) 653-7992

 Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal

Service as Express Mail (Express Mail Label: EI417961895US in an envelope addressed to Box Patent
Applicati ,Assistant Commissioner for Patents, Washington, DC. 202

Date:A 3‘9: W Signed'
N : ov Rosenfeld, Reg. No. 38687

NOAC EX. 1017 Page 7

NOAC Ex. 1017 Page 8

“t

H..."Ii..."II..."II".......nnu.»

Our Ref./Docket No.2 APPT-OOl-4

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONITOR

Inventor(s):

SARKISSIAN, Haig A.

San Antonio, Texas

DIETZ, Russell S.

San Jose, CA

 Certificate of Mailing under 37 CFR 1.10

Ihereby certify that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(ExPreSS Mall Label: EI417961895US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,

Washington, .C. 20231 on. gg 2Date: E9 W Signed:

NOAC EX. 1017 Page 8

NOAC Ex. 1017 Page 9

II..."H..."II..."n..."u.-....
O

I

(3

\

O ' D

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS IN A NETWORK MONITOR

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of US. Provisional Patent Application Serial No.:

5 60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference. ‘VI ‘9. P‘ h“ +5 M (K
This application is related to the following/ILLS. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc., the

10 assignee of the present invention:

NO. (D,IP\5I(5?!

U.S. PatenkApphcatton-Sefla‘I—Nmmg for METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK, to inventors Dietz, et al., filed—.Iuneée;

QQQWemefiAgenLReferenee—Number-AFPT—GOI—L and incorporated herein by

reference.

”0' ("10707671.5
15 US. PateiigAppkeatron—Wm for PROCESSING PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE, to inventors Koppenhaver, et al., filed W99;

ArttemeyhArgent—ReferencablumberAPPiILOQI—Q, and incorporated herein by

reference.

cw/gcglié

20 US. Patent Application Serial Nok‘é: for RE—USING INFORMATION FROM

DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK

MONITORING, to inventors Dietz, et al., filedWWW

Reference—NamberAPpT—Qw—g, and incorporated herein by reference.

(37/6 06,1167
US. Patent Application Serial NoA‘gs—é/w for STATE PROCESSOR FOR

25 PA l'l ERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors

Sarkissian, et al., filed-InneSOTZQ

5, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

NOAC EX. 1017 Page 9

NOAC Ex. 1017 Page 10

i
36

it;

10

15

20

25

30

o 3

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real-time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non—intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i.e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e. g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e. g., voice, video, data, real—time data, etc.), and an end user’s pattern of use

within each application or the application context (e. g., options selected, service

delivered, duration, time of day, data requested, etc). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

No. (9,051, 0??

Related and incorporated by reference U.S. Patenmfor

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to

inventors Dietz, et al, AttemeyIAgent—Deeket—AEZI—QG-I—k describes a network monitor

that includes carrying out protocol specific operations on individual packets including

extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

form a signature (i. e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

NOAC EX. 1017 Page 10

NOAC Ex. 1017 Page 11

10

15

20

25

30

o 3

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real—time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non—intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i.e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e. g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e. g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context (e.g., options selected, service

delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

No. (9,051,099

Related and incorporated by reference U.S. Patenggm for

METHOD AND APPARATUS FOR MONITORING TRAFFIC INA NETWORK, to

inventors Dietz, et al,WWdescribes a network monitor

that includes carrying out protocol specific operations on individual packets including

extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

NOAC EX. 1017 Page 11

NOAC Ex. 1017 Page 12

10

15

20

25

30

o 3

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real-time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i. e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e. g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context (e. g., options selected, service

delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

No. 0,1951, 09?
Related and incorporated by reference U.S. Patenmfor

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to

inventors Dietz, et al, AttemeyIAgeat—DeeketAJEP—T-OGH describes a network monitor

that includes carrying out protocol Specific operations on individual packets including

extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

NOAC EX. 1017 Page 12

NOAC Ex. 1017 Page 13

2g
15;
ES

\

10

15

20

25

o 3

4

likely that a packet associated with the least recently used flow—entry will soon arrive.

A hash is often used to facilitate lookups. Such a hash may spread entries

randomly in a database. In such a case, a associative cache is desirable.

There thus is a need for a associative cache subsystem that also includes a LRU

replacement policy.

SUMMARY

Described herein is an associative cache system for looking up one or more

elements of an external memory. The cache system comprises a set of cache memory

elements coupled to the external memory, a set of content addressable memory cells

(CAMS) containing an address and a pointer to one of the cache memory elements, and

includinga matching circuit having an input such that the CAM asserts a match output

when the input is the same as the address in the CAM $113313; cache memory
elerxfignctfia particular CAM points to changes over time. In the preferred implementation,
the CAMS are connected in an order from top to bottom, and the bottom CAM points to

the least recently used cache memory element.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

specific embodiment because such embodiments are provided only for the puiposes of

explanation. The embodiments, in turn, are explained with the aid of the following

figures.

FIG.11 is a functional block diagram of a network embodiment of the present

invention’in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their

formats that might be exchanged in starting, as an illustrative example, a conversational

flow between a client and server on a network being monitored and analyzed. A pair of

flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be

NOAC EX. 1017 Page 13

NOAC Ex. 1017 Page 14

10

15

20

25

O 33

5

generated and used in the process of analyzing packets and of recognizing the particular

server applications that produce the discrete application packet exchanges.

FIG. 3'is a functional block diagram of a process embodiment of the present

invention that can operate as the packet monitor shown in FIG. 1. This process may be/

implemented in software or hardware.

FIG. 4 is a flowchart of a high—level protocol language compiling and

optimization process, which in one embodiment may be used to generate data for

monitoring packets according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment‘of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part

of the analyzer in an embodiment of the inventive packet monitor.

. I FIG. 9 isa’ flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including

the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

NOAC EX. 1017 Page 14

NOAC Ex. 1017 Page 15

.3!218
.52

J 3

6

FIG. 14 is a simple functional block diagram of a process embodiment of the

present invention that can operate as the packet monitor shown in FIG. 1. This process

maybe implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

5 FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of

the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of

10 FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet

shown in FIGs. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

15 FIG. 18A is a three dimensional structure that can be used to store elements of

the pattern, parse and extraction database used by the parser subsystem in accordance to

one embodiment of the invention.

FIG. 18B isra'n'altemate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment

20 of the invention.

FIG. 19 is a block diagram of the cache memory part of the cache subsystem /
1115 of the analyzer subsystem of FIG. 11. ’/WWW-«su.4, ____‘

/,-

FIG. 20 is a block diagram of the cache memory controller and the cache CAM

controller of the cache subsystem.

FIG. 21 is a block diagram of one implementation of the CAM array of the cache

subsystem 1 1 15.

NOAC EX. 1017 Page 15

NOAC Ex. 1017 Page 16

3 3

7

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may

include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

5 invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network

102 that communicates packets (e. g., IP datagrams) between various computers, for

10 example between the clients 104—107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shown in the interior of

the cloud. A monitor 108 examines the packets passing in either direction past its

connection point 121 and, according to one aspect of the invention, can elucidate what

application programs are associated with each packet. The monitor 108 is shown

15 examining packets (i. e., datagrams) between the network interface 116 of the server 110

and the network. The monitor can also be placed at other points in the network, such as

connection point 123 between the network 102 and the interface 118 of the client 104, or

some other location, as indicated schematically by connection point 125 somewhere in

network 102. Not shown is a network packet acquisition device at the location 123 on

20 the network for converting the physical information on the network into packets for input

into monitor 108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communication, e.g., TCP/IP, etc. Any network activity—for example an

application program run by the client 104 (CLIENT 1) communicating with another

running on the server 110 (SERVER 2)~—will produce an exchange of a sequence of

Packets over network 102 that is characteristic of the respective programs and of the

netWOrk protocols. Such characteristics may not be completely revealing at the

individual packet level. It may require the analyzing of many packets by the monitor 108

to have enough information needed to recognize particular application programs. The

Packets may need to be parsed then analyzed in the context of various protocols, for
NOAC EX. 1017 Page 16

NOAC Ex. 1017 Page 17

::> 3

8

example, the transport through the application session layer protocols for packets of a

type conforming to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol

stack. The ISO (International Standardization Organization) has defined a general model

5 that provides a framework for design of communication protocol layers. This model,W

shown in table form below, serves as a basic reference for understanding the

functionality of existing communication protocols.W

ISO MODEL

Application Telnet, NFS, Novell NCP, HTTP,

H.323

n-—
s

4

3 IP, Novell IPX, VIP, AppleTalk, etc.

2 Data Link Network Interface Card (Hardware

Interface). MAC layer

1 Physical

Different communication protocols employ different levels of the ISO model or

 Ethernet, Token Ring, Frame Relay,

ATM, Tl (Hardware Connection)

10 may use a layered model that is similar to but which does not exactly conform to the ISOswan...» _,_)_._»,_,..w. ..\-..-~._/d

model. A protocol in a certain layer may not be visible to protocols employed at other

layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2—3).

In some communication arts, the term “frame” generally refers to encapsulated

15 data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

NOAC EX. 1017 Page 17

NOAC Ex. 1017 Page 18

a”
3".A

limitu...:-Human...

10

15

20

25

30

o 3

9

“packet” generally refers to encapsulated data at 031 layer 3. In the TCP/IP world, the

term “datagram” is also used. In this specification, the term “packet” is intended to

encompass packets, datagrams, frames, and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for

transmission across a network. For example, a data packet typically includes an address

destination field, a length field, an error correcting code (ECC) field, or cyclic

redundancy check (CRC) field, as well as headers and footers to identify the beginning

and end of the packet. The terms “packet format” and “frame format,” also referred to as

“cell format,” are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packet carries the same information useful for recognizing all levels

of the protocol. For example, in a conversational flow associated with a particular

application, the application will cause the server to send a type-A packet, but so will

another. If, though, the particular application program always follows a type-A packet

with the sending of a type-B packet, and the other application program does not, then in

order to recognize packets of that application’s conversational flow, the monitor can be

available to recognize packets that match the type-B packet to associate with the type—A

packet. If such is recognized after a type—A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

simultaneously also in partial completion of identifying other packet exchanges that are

parts of conversational flows associated with other applications. One aspect of monitor

108 is its ability to maintain the state of a flow. The state of a flow is an indication of all

previous events in the flow that lead to recognition of the content of all the protocol

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a

Signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

In real—world uses of the monitor 108, the number of packets on the network 102

PaSSing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

NOAC EX. 1017 Page 18

NOAC Ex. 1017 Page 19

10

15

20

25

),

l : I D‘\

10

and identify and maintain the state of the flows passing through the connection point.

The monitor 108 therefore masks out all the unimportant parts of each packet that will

not contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application

programs according to the packets that their executions produce, is a multi-step process

within the monitor 108. At a first level, for example, several application programs will

all produce a first kind of packet. A first “signature” is produced from selected parts of a

packet that will allow monitor 108 to identify efficiently any packets that belong to the

same flow. In some cases, that packet type may be sufficiently unique to enable the

monitor to identify the application that generated such a packet in the conversational

flow. The signature can then be used to efficiently identify all future packets generated in

traffic related to that application.

In other cases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated

application program. In such a case, a subsequent packet of a second type—but that

potentially belongs to the same conversational flow—is recognized by using the

signature. At such a second level, then, only a few of those application programs will

have conversational flows that can produce such a second packet type. At this level in

the process of classification, all application programs that are not in the set of those that

lead to such a sequence of packet types may be excluded in the process of classifying the

conversational flow that includes these two packets. Based on the known patterns for the

protocol and for the possible applications, a signature is produced that allows recognition

of any future packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to

proceed to a third level of analysis using the second level signature. For each packet,

therefore, the monitor parses the packet and generates a signature to determine if this

Signature identified a previously encountered flow, or shall be used to recognize future

packets belonging to the same conversational flow. In real time, the packet is further

analyzed in the context of the sequence of previously encountered packets (the state), and

0f the possible future sequences such a past sequence may generate in conversational

NOAC EX. 1017 Page 19

NOAC Ex. 1017 Page 20

10

15

20

25

30

11

flows associated with different applications. A new signature for recognizing future

packets may also be generated. This process of analysis continues until the applications

are identified. The last generated signature may then be used to efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes

it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative

embodiments of the present invention capable of eavesdropping, once the monitor 108

has recognized the executing application programs passing through some point in the

network 102 (for example, because of execution of the applications by the client 105 or

server 110), the monitor sends a message to some general purpose processor on the

network that can input the same packets from the same location on the network, and the

processor then loads its own executable copy of the application program and uses it to

read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present

invention that can be implemented with computer hardware and/or software. The system

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e. g., from a packet

acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,

for example in an attempt to determine its characteristics, e. g., all the protocol

information in a multilevel model, including what server application produced the

packet.

The packet acquisition device is a common interface that converts the physical

signals and then decodes them into bits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM, etc). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what

operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing—parsing and extraction of selected portions—0f

packets to generate an identifying signature—accomplished by parser subsystem 301,

NOAC EX. 1017 Page 20

NOAC Ex. 1017 Page 21

10

15

20

25

30

:3 3

12

and (3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

information to parser subsystem 301 and to analyzer subsystem 303. The initialization

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the

network. For each protocol there are known to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and other fields are used in

monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304

that parses the packet and determines the protocol types and associated headers for each

protocol layer that exists in the packet 302. An extraction process 306 in parser

subsystem 301 extracts characteristic portions (signature information) from the packet

302. Both the pattern information for parsing and the related extraction operations, e.g.,

extraction masks, are supplied from a parsing~pattern—structures and extraction~

operations database (parsing/extractions database) 308 filled by the compiler and

optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and

states of all protocols that an occur at any layer, including how to interpret header

information, how to determine from the packet header information the protocols at the

next layer, and what information to extract for the purpose of identifying a flow, and

ultimately, applications and services. The layer selections database 338 describes the

particular layering handled by the monitor. That is, what protocols run on top of what

protocols at any layer level. Thus 336 and 338 combined describe how one would

decode, analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data

Structures. The first is the set of parsing/extraction operations 308. The pattern structures

include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elements of a packet are to be extracted from

NOAC Ex. 1017 Page 21

NOAC Ex. 1017 Page 22

10

15

20

25

30

Q 3

13

the packets based on the patterns that get matched. Thus, database 308 of

parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that

indicate a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state

patterns and processes 326. These are the different states and state transitions that occur

in different conversational flows, and the state operations that need to be performed (e. g.,

patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the

information it needs to begin processing packets. In an alternate embodiment, the

contents of one or more of databases 308 and 326 may be manually or otherwise

generated. Note that in some embodiments the layering selections information is inherent

rather than explicitly described. For example, since a PDL file for a protocol includes the

child protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input

into a packet buffer. The pattern recognition process 304 is carried out by a pattern

analysis and recognition (PAR) engine that analyzes and recognizes patterns in the

packets. In particular, the PAR locates the next protocol field in the header and

determines the length of the header, and may perform certain other tasks for certain types

of protocol headers. An example of this is type and length comparison to distinguish an

IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also

called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures

and extraction operations database 308 to identify the next protocol and parameters

associated with that protocol that enables analysis of the next protocol layer. Once a

pattern or a set of patterns has been identified, it/they will be associated with a set of

none or more extraction operations. These extraction operations (in the form of

commands and associated parameters) are passed to the extraction process 306

implemented by an extracting and information identifying (EII) engine that extracts

selected parts of the packet, including identifying information from the packet as

required for recognizing this packet as part of a flow. The extracted information is put in

NOAC Ex. 1017 Page 22

NOAC Ex. 1017 Page 23

10

15

20

25

30

o :3

14

sequence and then processed in block 312 to build a unique flow signature (also called a

“key”) for this flow. A flow signature depends on the protocols used in the packet. For

some protocols, the extracted components may include source and destination addresses.

For example, Ethernet frames have end—point addresses that are useful in building a

better flow signature. Thus, the signature typically includes the client and server address

pairs. The signature is used to recognize further packets that are or may be part of this

flow.

In the preferred embodiment, the building of the flow key includes generating a

hash of the signature using a hash function. The purpose if using such a hash is

conventional—to spread flow—entries identified by the signature across a database for

efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet—a parser record——

that includes the signature (i.e., selected portions of the packet), the hash, and the packet

itself to allow for any state processing that requires further data from the packet. An

improved embodiment of the parser subsystem might generate a parser record that has

some predefined structure and that includes the signature, the hash, some flags related to

some of the fields in the parser record, and parts of the packet’s payload that the parser

subsystem has determined might be required for further processing, e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation

of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal

data store of records of known flows that the system has already encountered, and

decides (in 316) whether or not this particular packet belongs to a known flow as

indicated by the presence of a flow—entry matching this flow in a database of known

flows 324. A record in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The

UFIG3 stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

NOAC EX. 1017 Page 23

NOAC Ex. 1017 Page 24

10

15

20

25

30

o 3

15

stores the packet sequence number, and another is filled with state information in the

form of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already

exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses

the bash in the UFKB record to lookup if there is a matching known flow. In the

particular embodiment, the database of known flows 324 is in an external memory. A

cache is associated with the database 324. A lookup by the LUE for a known record is

carried out by accessing the cache using the hash, and if the entry is not already present

in the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow—entries that include the unique flow—

signature, state information, and extracted information from the packet for updating

flows, and one or more statistical about the flow. Each entry completely describes a flow.

Database 324 is organized into bins that contain a number, denoted N, of flow—entries

(also called flow—entries, each a bucket), with N being 4 in the preferred embodiment.

Buckets (i.e., flow—entries) are accessed via the hash of the packet from the parser

subsystem 301 (i.e., the bash in the UFKB record). The hash spreads the flows across the

database to allow for fast lookups of entries, allowing shallower buckets. The designer

selects the bucket depth N based on the amount of memory attached to the monitor, and

the number of bits of the hash data value used. For example, in one embodiment, each

flow—entry is 128 bytes long, so for 128K flow—entries, 16 Mbytes are required. Using a

l6-bit hash gives two flow—entries per bucket. Empirically, this has been shown to be

more than adequate for the vast majority of cases. Note that another embodiment uses

flow—entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow—entry found matching the signature, i.e., the signature is for a

new flow, then a protocol and state identification process 318 further determines the

state and protocol. That is, process 318 determines the protocols and where in the state

sequence for a flow for this protocol’s this packet belongs. Identification process 318

uses the extracted information and makes reference to the database 326 of state patterns

and processes. Process 318 is then followed by any state operations that need to be

NOAC EX. 1017 Page 24

NOAC Ex. 1017 Page 25

10

15

20

25

30

O D

16

executed on this packet by a state processor 328.

If the packet is found to have a matching flow-entry in the database 324 (e.g., in

the cache), then a process 320 determines, from the looked—up flow—entry, if more

classification by state processing of the flow signature is necessary. If not, a process 322

updates the flow—entry in the flow-entry database 324 (e. g., via the cache). Updating

includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow—entry.

If state processing is required, state process 328 is commenced. State processor

328 carries out any state operations specified for the state of the flow and updates the

state to the next state according to a set of state instructions obtained form the state

pattern and processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze

all levels of the protocol stack, ultimately classifying the flows by application (level 7 in

the ISO model). It does this by proceeding from state—to—state based on predefined state

transition rules and state operations as specified in state processor instruction database

326. A state transition rule is a rule typically containing a test followed by the next-state

to proceed to if the test result is true. An operation is an operation to be performed while

the state processor is in a particular state~—for example, in order to evaluate a quantity

needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a

packet, and carrying out the operation or operations may leave one in a state that causes

exiting the system prior to completing the identification, but possibly knowing more

about what state and state processes are needed to execute next, i. 2., when a next packet

of this flow is encountered. As an example, a state process (set of state operations) at a

particular state may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up

using the information from previously encountered flows, the network traffic monitor

300 provides for (a) single-packet protocol recognition of flows, and (b) multiple—packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub—flows that occur in server announcement type flows.

NOAC EX. 1017 Page 25

NOAC Ex. 1017 Page 26

10

15

20

25

o 3

17

What may seem to prior art monitors to be some unassociated flow, may be recognized

by the inventive monitor using the flow signature to be a sub—flow associated with a

previously encountered sub—flow.

Thus, state processor 328 applies the first state operation to the packet for this

particular flow-entry. A process 330 decides if more operations need to be performed for

this state. If so, the analyzer continues looping between block 330 and 328 applying

additional state operations to this particular packet until all those operations are

completed—~that is, there are no more operations for this packet in this state. A process

332 decides if there are further states to be analyzed for this type of flow according to the

state of the flow and the protocol, in order to fully characterize the flow. If not, the

conversational flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing

by using the last protocol recognized by the parser as an offset into a jump table (jump

vector). The jump table finds the state processor instructions to use for that protocol in

the state patterns and processes database 326. Most instructions test something in the

unified flow key buffer, or the flow—entry in the database of known flows 324, if the

entry exists. The state processor may have to test bits, do comparisons, add, or subtract

to perform the test. For example, a common operation carried out by the state processor

is searching for one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an

end state. If not at an end state, the flow—entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow—entry is updated in process

322.

The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

NOAC EX. 1017 Page 26

NOAC Ex. 1017 Page 27

it
$6

10

15

20

25

O D

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically

maintains flow—entries, which in one aSpect includes storing states. The monitor of

FIG. 3 also generates characteristic parts of packets—the signatures—~that can be used to

recognize flows. The flow~entries may be identified and accessed by their signatures.

Once a packet is identified to be from a known flow, the state of the flow is known and

this knowledge enables state transition analysis to be performed in real time for each

different protocol and application. In a complex analysis, state transitions are traversed

as more and more packets are examined. Future packets that are part of the same

conversational flow have their state analysis continued from a previously achieved state.

When enough packets related to an application of interest have been processed, a final

recognition state is ultimately reached, i.e., a set of states has been traversed by state

analysis to completely characterize the conversational flow. The signature for that final

state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.

Once a particular set of state transitions has been traversed for the first time and ends in a

final state, a short—cut recognition pattern—a signature~can be generated that will key

on every new incoming packet that relates to the conversational flow. Checking a

signature involves a simple operation, allowing high packet rates to be successfully

monitored on the network.

In improved embodiments, several state analyzers are run in parallel so that a

large number of protocols and applications may be checked for. Every known protocol

and application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the conversational flow are

encountered, signatures are updated and the states of the set of state transitions for any

POtential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

NOAC EX. 1017 Page 27

NOAC Ex. 1017 Page 28

10

15

20

25

30

3 3

19

or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation

process. That is, part of the initialization generates the pattern structures and extraction

operations database 308 and the state instruction database 328. Such initialization can

occur off—line or from a central location.

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

level 0). Each protocol is either a parent node or a terminal node. A parent node links a

protocol to other protocols (child protocols) that can be at higher layer levels. Thus a

protocol may have zero or more children. Ethernet packets, for example, have several

variants, each having a basic format that remains substantially the same. An Ethernet

packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet

Type/Version 2 and a DIX (DIGITAL—Intel-Xerox packet)—or an IEEE 803.2 packet.

Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP

protocol, and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i. 6.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. l7A now shows the header information for the next level (level-2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

packet that indicates the next layer level is a two—byte type field 1702 containing the

child recognition pattern for the next level. The remaining information 1704 is shown

hatched because it not relevant for this level. The list 1712 shows the possible children

for an Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 17B shows the structure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shown in table 1752.

NOAC EX. 1017 Page 28

NOAC Ex. 1017 Page 29

10

15

2O

25

30

Q 3

20

The pattern, parse, and extraction database (pattern recognition database, or

PRD) 308 generated by compilation process 310, in one embodiment, is in the form of a

three dimensional structure that provides for rapidly searching packet headers for the

next protocol. FIG. 18A Shows such a 3—D representation 1800 (which may be

considered as an indexed set of 2—D representations). A compressed form of the 3-D

structure is preferred.

An alternate embodiment of the data structure used in database 308 is illustrated

in FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid

searches to be performed by the pattern recognition process 304 by indexing locations in

a memory rather than performing address link computations. In this alternate

embodiment, the PRD 308 includes two parts, a single protocol table 1850 (PT) which

has an entry for each protocol known for the monitor, and a series of Look Up Tables

1870 (LUT’S) that are used to identify known protocols and their children. The protocol

table includes the parameters needed by the pattern analysis and recognition process 304

(implemented by PRE 1006) to evaluate the header information in the packet that is

associated with that protocol, and parameters needed by extraction process 306

(implemented by slicer 1007) to process the packet header. When there are children, the

PT describes which bytes in the header to evaluate to determine the child protocol. In

particular, each PT entry contains the header length, an offset to the child, a slicer

command, and some flags.

The pattern matching is carried out by finding particular “child recognition

codes” in the header fields, and using these codes to index one or more of the LUT’s.

Each LUT entry has a node code that can have one of four values, indicating the protocol

that has been recognized, a code to indicate that the protocol has been partially

recognized (more LUT lookups are needed), a code to indicate that this is a terminal

node, and a null node to indicate a null entry. The next LUT to lookup is also returned

from a LUT lookup.

Compilation process is described in FIG. 4. The source—code information in the

form of protocol description files is shown as 402. In the particular embodiment, the

high level decoding descriptions includes a set of protocol description files 336, one for

each protocol, and a set of packet layer selections 338, which describes the particular

NOAC EX. 1017 Page 29

NOAC Ex. 1017 Page 30

WWWrsv’

10

15

20

25

30

Q 3

layering (sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse—and—extract

operations 406 is generated (404), and a set of packet state instructions and operations

407 is generated (405) in the form of instructions for the state processor that implements

state processing process 328. Data files for each type of application and protocol to be

recognized by the analyzer are downloaded from the pattern, parse, and extraction

database 406 into the memory systems of the parser and extraction engines. (See the

parsing process 500 description and FIG. 5; the extraction process 600 description and

FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each

type of application and protocol to be recognized by the analyzer are also downloaded

from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links

the three dimensional structure (one embodiment) or the or all the lookup tables for the

Because of the large number of possible protocol trees and subtrees, the compiler

process 400 includes optimization that compares the trees and subtrees to see which

children share common parents. When implemented in the form of the LUT’s, this

process can generate a single LUT from a plurality of LUT’s. The optimization process

further includes a compaction process that reduces the space needed to store the data of

the PRD.

As an example of compaction, consider the 3—D structure of FIG. 18A that can be

thought of as a set of 2~D structures each representing a protocol. To enable saving space

by using only one array per protocol which may have several parents, in one

embodiment, the pattern analysis subprocess keeps a “current header” pointer. Each

location (offset) index for each protocol 2-D array in the 3—D structure is a relative

location starting with the start of header for the particular protocol. Furthermore, each of

the two—dimensional arrays is sparse. The next step of the optimization, is checking all

the 2—D arrays against all the other 2-D arrays to find out which ones can share memory.

Many of these 2—D arrays are often sparsely populated in that they each have only a small

number of valid entries. So, a process of "folding" is next used to combine two or more

NOAC EX. 1017 Page 30

NOAC Ex. 1017 Page 31

E
i

%

10

15

20

25

30

O I)

22

2-D arrays together into one physical 2—D array without losing the identity of any of the

original 2-D arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur

between any 2—D arrays irrespective of their location in the tree as long as certain

conditions are met. Multiple arrays may be combined into a single array as long as the

individual entries do not conflict with each other. A fold number is then used to associate

each element with its original array. A similar folding process is used for the set of LUTs

1850 in the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting

at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next

(initially the first) packet component from the packet 302. The packet components are

extracted from each packet 302 one element at a time. A check is made (504) to

determine if the load—packet-component operation 503 succeeded, indicating that there

was more in the packet to process. If not, indicating all components have been loaded,

the parser subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to provide a set of patterns and

processes for that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determine if the fetch pattern node operation 505 completed

successfully, indicating there was a pattern node that loaded in 505. If not, step 511

moves to the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the component extracted in 503. A pattern match obtained in 507

(as indicated by test 508) means the parser subsystem 301 has found a node in the

parsing elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test

508), the parser subsystem 301 moves (510) to the next pattern node from the pattern

database 308 and to step 505 to fetch the next node and process. Thus, there is an

“applying patterns” loop between 508 and 505. Once the parser subsystem 301

completes all the patterns and has either matched or not, the parser subsystem 301 moves

to the next packet component (511).

Once all the packet components have been the loaded and processed from the

NOAC EX. 1017 Page 31

NOAC Ex. 1017 Page 32

10

15

20

25

30

Q 3

23

input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6,_..wx.~:(-

FIG. 6 is a flow chart for extracting the information from which to build the

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this

point parser subsystem 301 has a completed packet component and a pattern node

available in a buffer (602). Step 603 loads the packet component available from the

pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there

was indeed another packet component, the parser subsystem 301 fetches in 605 the

extraction and process elements received from the pattern node component in 602. If the

fetch was successful (test 606), indicating that there are extraction elements to apply, the

parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this

component, and if not, the parser subsystem 301 moves back to 603 to load the next

packet component at hand and repeats the process. If the answer is yes, then the parser

subsystem 301 moves to the next packet component ratchet. That new packet component

is then loaded in step 603. As the parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component

if there is more to extract, or to a different packet component if there is no more to

extract.

The extraction process thus builds the signature, extracting more and more

components according to the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet component operation 603 fails (test

604), all the components have been extracted. The built signature is loaded into the

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301 loads the next

pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

NOAC EX. 1017 Page 32

NOAC Ex. 1017 Page 33

10

15

20

25

30

o 3

hash elements that are found in the pattern node that is in the element database. In 706

the resulting signature and the hash are packed. In 707 the parser subsystem 301 moves

on to the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left

(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the

form of a UFKB record which is similar to a parser record, but with one or more

different fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine

(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with

the parser record that includes a signature, the hash and at least parts of the payload. In

802 those elements are shown in the form of a UFKB—entry in the buffer. The LUE, the

lookup engine 314 computes a “record bin number” from the hash for a flow—entry. A

bin herein may have one or more “buckets” each containing a flow-entry. The preferred

embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the

hash. If the cache successfully returns with a bucket from the bin number, indicating

there are more buckets in the bin, the lookup/update engine compares (807) the current

signature (the UFKB—entry’s signature) from that in the bucket (i.e., the flow-entry

signature). If the signatures match (test 808), that record (in the cache) is marked in step

810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the

UFKB-entry in 802 has a status of “found.” The “found” indication allows the state

processing 328 to begin processing this UFKB element. The preferred hardware

embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a

NOAC EX. 1017 Page 33

NOAC Ex. 1017 Page 34

wan—cm...—M..

10

15

20

25

3 3

25

calculator for every packet analyzed. The statistical operations may include one or more

of counting the packets associated with the flow; determining statistics related to the size

of packets of the flow; compiling statistics on differences between packets in each

direction, for example using timestamps; and determining statistical relationships of

timestamps of packets in the same direction. The statistical measures are kept in the

flow—entries. Other statistical measures also may be compiled. These statistics may be

used singly or in combination by a statistical processor component to analyze many

different aspects of the flow. This may include determining network usage metrics from

the statistical measures, for example to ascertain the network’s ability to transfer

information for this application. Such analysis provides for measuring the quality of

service of a conversation, measuring how well an application is performing in the

network, measuring network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more

counters that are part of the flow-entry (in the cache) in step 812. The process exits at

813. In our embodiment, the counters include the total packets of the flow, the time, and

a differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again

looks up the cache for another bucket from that bin. The lookup/update engine thus

continues lookup up buckets of the bin until there is either a match in 808 or operation

804 is not successful (test 805), indicating that there are no more buckets in the bin and

no match was found.

If no match was found, the packet belongs to a new (not previously encountered)

flow. In 806 the system indicates that the record in the unified flow key buffer for this

packet is new, and in 812, any statistical updating operations are performed for this

packet by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“HCW” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash may be used that corresponds to a single flow-entry. In such an

NOAC EX. 1017 Page 34

NOAC Ex. 1017 Page 35

10

15

20

D D

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the

system are now described with reference to FIGS. 10 and 11. Note that while we are

describing a particular hardware implementation of the invention embodiment of FIG. 3,

it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be

implemented in software running on one or more general—purpose processors, or only

partly implemented in hardware. An implementation of the invention that can Operate in

software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is

the extraction—operation database memory, in which the extraction instructions are

stored. Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3.

Typically, the system is initialized from a microprocessor (not shown) at which time

these memories are loaded through a host interface multiplexor and control register 1005

via the internal buses 1003 and 1004. Note that the contents of 1001 and 1002 are

preferably obtained by compiling process 310 of FIG. 3.

A packet enters the parsng system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface

controller 1022. The buffer 1008 and interface control 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packet start

signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packet starts loading into the buffer memory 1008, pattern recognition engine (PRE)

1006 carries out the operations on the input buffer memory described in block 304 of

FIG. 3. That is, protocol types and associated headers for each protocol layer that exist in

the packet are determined.

NOAC EX. 1017 Page 35

NOAC Ex. 1017 Page 36

law.a4:

Hr17Wx'Ft'ZHI]"“:7"TmIf:mm:M.::.1Itull...-
10

15

20

25

30

O D

27

The PRE searches database 1001 and the packet in buffer 1008 in order to

recognize the protocols the packet contains. In one implementation, the database 1001

includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.

The first lookup table is always at address zero. The Pattern Recognition Engine uses a

base packet offset from a control register to start the comparison. It loads this value into

a current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a

terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a

first stage that checks the protocol type field to determine if it is an 802.3 packet and the

field should be treated as a length. If it is not a length, the protocol is checked in a

second stage. The first stage is the only protocol level that is not programmable. The

second stage has two full sixteen bit content addressable memories (CAMS) defined for

future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for

the extraction engine (also called a “slicer”) 1007. The recognized patterns and the

commands are sent to the extraction engine 1007 that extracts information from the

packet to build the parser record. Thus, the operations of the extraction engine are those

carried out in blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to

slicer 1007 in the form of extraction instruction pointers which tell the extraction engine

1007 where to a find the instructions in the extraction operations database memory (i.e.,

slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol

identifier and a process code to the extractor. The protocol identifier is added to the flow

signature and the process code is used to fetch the first instruction from the instruction

database 1002. Instructions include an operation code and usually source and destination

offsets as well as a length. The offsets and length are in bytes. A typical operation is the

MOVE instruction. This instruction tells the slicer 1007 to copy 11 bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains

NOAC EX. 1017 Page 36

NOAC Ex. 1017 Page 37

Mm—mwr

I“!L!canIraa;n...-

10

15

20

25

30

:3 D

28

a byte—wise barrel shifter so that the bytes moved can be packed into the flow signature.

The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the

input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already

processed by PRE 1006 while more (i.e., later arriving) packet information is being

simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory 1010. Any additional payload from

the packet that is required for further analysis is also included. The parser output memory

1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once

all the information of a packet is in the parser output buffer memory 1010, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is

initialized prior to operation, and initialization includes loading the state processing

information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem l 100 includes a host bus interface 1122 using an

analyzer host interface controller 1118, which in turn has access to a cache system 1115.

The cache system has bi-directional access to and from the state processor of the system

1108. State processor 1108 is responsible for initializing the state processor instruction

database memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

NOAC EX. 1017 Page 37

NOAC Ex. 1017 Page 38

,Amw~

10

15

20

29

comprising packet signatures and payloads that come from the parser into the unified

flow key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB

records. A UFKB record is essentially a parser record; the UFKB holds records of

packets that are to be processed or that are in process. Furthermore, the UFKB provides

for one or more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:

the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more

finite state machines (FSM's). There is bi-directional access between each of the finite

state machines and the unified flow key buffer 1103. The UFKB record includes a field

that stores the packet sequence number, and another that is filled with state information

in the form of a program counter for the state processor 1108 that implements state

processing 328. The status flags of the UFKB for any entry includes that the LUE is done

and that the LUE is transferring processing of the entry to the state processor. The LUE

done indicator is also used to indicate what the next entry is for the LUE. There also is

provided a flag to indicate that the state processor is done with the current flow and to

indicate what the next entry is for the state processor. There also is provided a flag to

indicate the state processor is transferring processing of the UFKB—entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been

processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB

record data may be processed by the flow insertion/deletion engine 1110 after being

processed by the state processor 1 108 or only by the LUE. Whether or not a particular

engine has been applied to any unified flow key buffer entry is determined by status

fields set by the engines upon completion. In one embodiment, a status flag in the

UFKB~entry indicates whether an entry is new or found. In other embodiments, the LUE

issues a flag to pass the entry to the state processor for processing, and the required

Operations for a new record are included in the SP instructions.

Note that each UFKB—entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

NOAC EX. 1017 Page 38

NOAC Ex. 1017 Page 39

a..-.....i

Till:JIIL...n..."

WWW?I,11if”.it?!I--

10

15

2O

25

30

<3 3

particular engine.

Each of these three engines also has bi—directional access to a cache subsystem

l 115 that includes a caching engine. Cache 1 115 is designed to have information flowing

in and out of it from five different points within the system: the three engines, external

memory via a unified memory controller (UMC) 1 119 and a memory interface 1123, and

a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host

interface bus (HIB) 1 122. The analyzer microprocessor (or dedicated logic processor)

can thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content

addressable memory cells (CAMs) each including an address portion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow~entries.

The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The

bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom

CAM are replaced by the flow-entry from the flow—entry database 324. This now

becomes the most recently used entry, so the contents of the bottom CAM are moved to

the top CAM and all CAM contents are shifted down. Thus, the cache is an associative

cache with a true LRU replacement policy.

The LUE 1107 first processes a UFKB~entry, and basically performs the

operation of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate

that a “new” UFKB-entry is available. The LUE uses the hash in the UFKB~entry to read

a matching bin of up to four buckets from the cache. The cache system attempts to obtain

the matching bin. If a matching bin is not in the cache, the cache 1115 makes the request

to the UMC 1119 to bring in a matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket

and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from

the cache, a time stamp in set in the flow key of the UFKB record, a protocol

identification and state determination is made using a table that was loaded by

compilation process 310 during initialization, the status for the record is set to indicate

NOAC EX. 1017 Page 39

NOAC Ex. 1017 Page 40

um:-m...n...-m...Wa.

10

15

20

25

30

Q 3

31

the LUE has processed the record, and an indication is made that the UFKB-entry is

ready to start state processing. The identification and state determination generates a

protocol identifier which in the preferred embodiment is a “jump vector” for the state

processor which is kept by the UFKB for this UFKB—entry and used by the state

processor to start state processing for the particular protocol. For example, the jump

vector jumps to the subroutine for processing the state.

If there was a match, indicating that the packet of the UFKB~entry is for a

previously encountered flow, then a calculator component enters one or more statistical

measures stored in the flow-entry, including the timestamp. In addition, a time difference

from the last stored timestamp may be stored, and a packet count may be updated. The

state of the flow is obtained from the flow—entry is examined by looking at the protocol

identifier stored in the flow-entry of database 324. If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

vector for the state processor to a subroutine to state processing the protocol, and no

more classification is indicated in the preferred embodiment by the jump vector being

zero. If the protocol identifier indicates more processing, then an indication is made that

the UFKB-entry is ready to start state processing and the status for the record is set to

indicate the LUE has processed the record.

The state processor 1108 processes information in the cache system according to

a UFKB-entry after the LUE has completed. State processor 1108 includes a state

processor program counter SPPC that generates the address in the state processor

instruction database 1109 loaded by compiler process 310 during initialization. It

contains an Instruction Pointer (SPIP) which generates the SPID address. The instruction

pointer can be incremented or loaded from a Jump Vector Multiplexor which facilitates

conditional branching. The SPIP can be loaded from one of three sources: (1) A protocol

identifier from the UFKB, (2) an immediate jump vector form the currently decoded

instruction, or (3) a value provided by the arithmetic logic unit (SPALU) included in the

state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

NOAC EX. 1017 Page 40

NOAC Ex. 1017 Page 41

10

15

20

25

W,«3'».
30

o 3

32

Parser. This first instruction is ajump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and

String Compare functions necessary to implement the State Processor instructions. The

main blocks of the SPALU are: The A and B Registers, the Instruction Decode & State

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference

Search Register set, and 21 Compare block which compares two operands by exclusive—

or—ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state

operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is

new or corresponding to a found flow—entry. This UFKB—entry is retrieved from unified

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB—entry is used

to set the state processor’s instruction counter. The state processor 1108 starts the

process by using the last protocol recognized by the parser subsystem 301 as an offset

into ajump table. Thejump table takes us to the instructions to use for that protocol.

Most instructions test something in the unified flow key buffer or the flow—entry if it

exists. The state processor 1108 may have to test bits, do comparisons, add or subtract to

perform the test.

The first state processor instruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performs the one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, a compare, etc.), so that many such instructions need to be

performed on each unified flow key buffer entry. One aspect of the state processor is its

ability to search for one or more (up to four) reference strings in the payload part of the

UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

NOAC EX. 1017 Page 41

NOAC Ex. 1017 Page 42

"TN‘35?“IF?('3!Pl..."2:!IL."mun
n'n'na:Hinc

10

15

20

25

30

Q i)

In 1307, a check is made to determine if there are any more instructions to be

performed for the packet. If yes, then in 1308 the system sets the state processor

instruction pointer (SPIP) to obtain the next instruction. The SPlP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by

the SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet

has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is

fully determined. If indeed there are no more states to process for this flow, then in 1311

the processor finalizes the processing. Some final states may need to put a state in place

that tells the system to remove a flow—for example, if a connection disappears from a

lower level connection identifier. In that case, in 1311, a flow removal state is set and

saved in the flow-entry. The flow removal state may be a NOP (no—op) instruction which

means there are no removal instructions.

Once the apprOpriate flow removal instruction as specified for this flow (a NOP

or otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in

1310 the system saves the state processor instruction pointer in the current flow—entry in

the current flow-entry. That will be the next operation that will be performed the next

time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer

1103 and the flow-entry in the cache. Once the state processor is done, a flag is set in the

UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be

inserted or deleted from the database of flows, control is then passed on to the flow

insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB-entry indicating that

NOAC EX. 1017 Page 42

NOAC Ex. 1017 Page 43

Alll—..un....u.....
yZJ

Lll...’Ln4:.22:!I...”

10

15

20

25

30

'3 D

34

the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the

flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are

grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that

may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin

(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that

matches the hash of the UFKB, so this bin may already have been sought for the UFKB—

entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be

maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the

bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket

and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp

that is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and

bucket record flow signature to the packet to verify that all the elements are in place to

complete the record. In 1211 the system marks the record bin and bucket as “in process”

and as “new” in the cache system (and hence in the external memory). In 1212, the initial

statistical measures for the flow-record are set in the cache system. This in the preferred

embodiment clears the set of counters used to maintain statistics, and may perform other

procedures for statistical operations requires by the analyzer for the first packet Seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next

bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid

bucket, the unified flow key buffer entry for the packet is set as “drop,” indicating that

the system cannot process the particular packet because there are no buckets left in the

system. The process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow

insertion and deletion operations are completed for this UFKB—entry. This also lets the

UFKB provide the FIDE with the next UFKB record.

NOAC EX. 1017 Page 43

NOAC Ex. 1017 Page 44

urn-Vanna").r5.”My"

10

15

20

25

30

Q I)

35

Once a set of operations is performed on a unified flow key buffer entry by all of

the engines required to access and manage a particular packet and its flow signature, the

unified flow key buffer entry is marked as “completed.” That element will then be used

by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow—entries are maintained in the external memory and some are maintained

in the cache 1115. The cache system 1115 is intelligent enough to access the flow

database and to understand the data structures that exists on the other side of memory

interface 1123. The lockup/update engine 1107 is able to request that the cache system

pull a particular flow or “buckets” of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate on

information found in the cache system once it is looked up by means of the

lookup/update engine request, and the flow insertion/deletion engine 1110 can create

new entries in the cache system if required based on information in the unified flow key

buffer 1103. The cache retrieves information as required from the memory through the

memory interface 1123 and the unified memory controller 1119, and updates information

as required in the memory through the memory controller 1119.

There are several interfaces to components of the system external to the module

of FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

processing system such as a microprocessor or a multiplexor (MUX) system.

Consequently, one can connect the overall traffic classification system of FIGS. 11 and

12 into some other processing system to manage the classification system and to extract

data gathered by the system.

The memory interface 1123 is designed to interface to any of a variety of memory

systems that one may want to use to store the flow-entries. One can use different types of

memory systems like regular dynamic random access memory (DRAM), synchronous

DRAM, synchronous graphic memory (SGRAM), static random access memory

(SRAM), and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012—a general interface that works in tandem with the signals of the input buffer

NOAC EX. 1017 Page 44

NOAC Ex. 1017 Page 45

l
l
I

10

15

20

25

Q 3'

36

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host

interface multiplexor and control registers 1005. This enables the parsing system to be

managed by an external system, for example a microprocessor or another kind of

external logic, and enables the external system to program and otherwise control the

parser.

The preferred embodiment of this aspect of the invention is described in a

hardware description language (HDL) such as VHDL or Verilog. It is designed and

created in an HDL so that it may be used as a single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposes

related to creating and analyzing traffic within a network. Verilog or other HDL

implementation is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in

FIGS. 10 and 11 are implemented in a set of six field prograrrunable logic arrays

(FPGA’s). The boundaries of these FPGA’s are as follows. The parsing subsystem of

FIG. 10 is implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and

1012, parts of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013,

1011 parts of 1005. Referring to FIG. 11, the unified look—up buffer 1103 is implemented

as a single FPGA. State processor 1108 and part of state processor instruction database

memory 1109 is another FPGA. Portions of the state processor instruction database

memory 1109 are maintained in external SRAM’s. The lookup/update engine 1107 and

the flow insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes

the cache system 1115, the unified memory control 1119, and the analyzer host interface

and control 1118.

Note that one can implement the system as one or more VSLI devices, rather than

as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is

anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub—unit (a “core”) of a larger single chip unit.

NOAC EX. 1017 Page 45

NOAC Ex. 1017 Page 46

grim-(72m.-.m-

WT‘TF‘T‘F"HIT!*

Wtfif‘fimwmm-lu1.,.

U\

10

15

20

25

30

O D

37

Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets

from a connection point 121 on network 102 so that all packets passing point 121 in

either direction are supplied to monitor 300. Monitor 300 comprises the parser sub-

system 301, which determines flow signatures, and analyzer sub-system 303 that

analyzes the flow signature of each packet. A memory 324 is used to store the database

of flows that are determined and updated by monitor 300. A host computer 1504, which

might be any processor, for example, a general-purpose computer, is used to analyze the

flows in memory 324. As is conventional, host computer 1504 includes a memory, say

RAM, shown as host memory 1506. In addition, the host might contain a disk. In one

application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one

would, for example, implement an RMON probe, where a network interface card is used

to send RMON information to the network. Commercial SNMP implementations also

are available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state

analysis for packet exchanges that are commonly referred to as “server announcement”

type exchanges. Server announcement is a process used to ease communications between

a server with multiple applications that can all be simultaneously accessed from multiple

clients. Many applications use a server announcement process as a means of

multiplexing a single port or socket into many applications and services. With this type

of exchange, messages are sent on the network, in either a broadcast or multicast

approach, to announce a server and application, and all stations in the network may

receive and decode these messages. The messages enable the stations to derive the

NOAC EX. 1017 Page 46

NOAC Ex. 1017 Page 47

mm.H,

“WWW.....\r,wmm,Wn.
l
t

I,

10

15

20

25

30

O D

38

appropriate connection point for communicating that particular application with the

particular server. Using the server announcement method, a particular application

communicates using a service channel, in the form of a TCP or UDP socket or port as in

the IP protocol suite, or using a SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out “in—stream analysis” of packet

exchanges. The “in—stream analysis” method is used either as a primary or secondary

recognition process. As a primary process, in—stream analysis assists in extracting

detailed information which will be used to further recognize both the specific application

and application component. A good example of in—stream analysis is any Web-based

application. For example, the commonly used PointCast Web information application

can be recognized using this process; during the initial connection between a PointCast

server and client, specific key tokens exist in the data exchange that will result in a

signature being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server

announcement process. In many cases in-stream analysis will augment other recognition

processes. An example of combining in—stream analysis with server announcement can

be found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires

an initial connection to a predefined socket or port number. This method of

communication is used in a variety of transport layer protocols. It is most commonly

seen in the TCP and UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

port to exchange the remainder of the data between the client and the server. The server

then replies to the request of the client using this newly created port. The original port

used by the client to connect to the server will never be used again during this data

exchange.

One example of session tracking is TFTP (Trivial File Transfer Protocol), a

version of the TCP/[P FTP protocol that has no directory or password capability. During

the client/server exchange process of TFTP, a Specific port (port number 69) is always

NOAC EX. 1017 Page 47

NOAC Ex. 1017 Page 48

a...

«w.,__up-..nN..-am»
m..-

I...u”<15.mu...-

perv-

10

15

20

25

30

O 3

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDP port 69. Once the server receives this request,

a new port number is created on the server. The server then replies to the client using the

new port. In this example, it is clear that in order to recognize TFTP; network monitor

300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for

monitoring the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular

connections in the network. Connection-oriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCP transport

protocol that provides a reliable means of sending information between a client and a

server. When a data exchange is initiated, a TCP request for synchronization message is

sent. This message contains a specific sequence number that is used to track an

acknowledgement from the server. Once the server has acknowledged the

synchronization request, data may be exchanged between the client and the server. When

communication is no longer required, the client sends a finish or complete message to

the server, and the server acknowledges this finish request with a reply containing the

sequence numbers from the request. The states of such a connection~oriented exchange

relate to the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the

basic underlying process remains similar. A typical server announcement message is sent

to one or more clients in a network. This type of announcement message has specific

content, which, in another aspect of the invention, is salvaged and maintained in the

database of flow-entries in the system. Because the announcement is sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun—RPC is the implementation by Sun Microsystems, Inc. (Palo Alto,

California) of the Remote Procedure Call (RPC), a programming interface that allows

NOAC EX. 1017 Page 48

NOAC Ex. 1017 Page 49

o 3

40

one program to use the services of another on a remote machine. A Sun-RPC example is

now used to explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must

establish a connection, for which the RFC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database

called the port Mapper. The port Mapper creates a direct association between a Sun—RFC

program or application and a TCP or UDP socket or port (for TCP or UDP

implementations). An application or program number is a 32—bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a Sun-RPC server can present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e. g., CLIENT 3 shown as 106 in FIG. 1)

making a specific request to the server (e. g., SERVER 2 of FIG. 1, shown as 110) on a

predefined UDP or TCP socket. Once the port Mapper process on the sun RPC server

receives the request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified,

and thus will use the TCP protocol for its reply.

NOAC EX. 1017 Page 49

NOAC Ex. 1017 Page 50

W»W.—m”—
l
l

10

15

20

25

O D

41

3. The server 110 sends a TCP packet to port number 111, with an RPC

Bind Lookup Reply. The reply contains the specific port number (e. g., port

number ‘port’) on which future transactions will be accepted for the specific

RPC program identifier (e. g., Program ‘program’) and the protocol (UDP or

TCP) for use.

It is desired that from now on every time that port number ‘port’ is used, the

packet is associated with the application program ‘program’ until the number ‘port’ no

longer is to be associated with the program ‘program’. Network monitor 300 by creating

a flow-entry and a signature includes a mechanism for remembering the exchange so that

future packets that use the port number ‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways

that a particular program—say ‘program’—~might be associated with a particular port

number, for example number ‘port’. One is by a broadcast announcement of a particular

association between an application service and a port number, called a Sun RPC

portMapper Announcement. Another, is when some server—say the same SERVER 2—

replies to some client—say CLIENT 1——requesting some portMapper assignment with a

RPC portMapper Reply. Some other client—say CLIENT 2—rnight inadvertently see

this request, and thus know that for this particular server, SERVER 2, port number ‘port’

is associated with the application service ‘program’. It is desirable for the network

monitor 300 to be able to associate any packets to SERVER 2 using port number ‘port’

with the application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e. g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

FIG. 1) via the server’s interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow

900 starts with a step 910 that a Remote Procedure Call bind lookup request is issued by

client 106 and ends with the server state creation step 904. Such RPC bind lookup

request includes values for the ‘program,’ ‘version,’ and ‘protocol’ to use, e.g., TCP or

NOAC EX. 1017 Page 50

NOAC Ex. 1017 Page 51

~——~—'“ta—n.-

3

10

15

20

25

30

O D

42

UDP. The process for Sun RPC analysis in the network monitor 300 includes the

following aspects. :

0 Process 909: Extract the ‘program,’ ‘version,’ and ‘protocol’ (UDP or TCP). Extract

the TCP or UDP port (process 909) which is l l 1 indicating Sun RPC.

0 Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If value is

portMapper, save paired socket (i.e., dest for destination address, src for source

address). Decode ports and mapping, save ports with socket/addr key. There may be

more than one pairing per mapper packet. Form a signature (e.g., a key). A flow-

entry is created in database 324. The saving of the request is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lookup

the request (905). A new signature (i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow—

entry database. That signature now may be used to identify packets associated with the

server.

The server state creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol

can announce that it is able to provide a particular application service. Embodiments of

the present invention preferably can analyze when an exchange occurs between a client

and a server, and also can track those stations that have received the announcement of a

service in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such

causes various clients to execute a similar set of operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapper step 901

could be in reply to a portMapper request, and is also broadcast. It includes all the

service parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

NOAC EX. 1017 Page 51

NOAC Ex. 1017 Page 52

{it"T-flFJ’fi-Wlflfilfvnfifi
rem“

..."LWI.Annununa;

10

15

20

25

30

U J

43

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206—209 are exchanged, e.g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodiment of the present

invention might generate a pair of flow signatures, “signature-1” 210 and “signature—2"

212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206

corresponds to such a request sent from CLIENT 3 to SERVER 2. This packet contains

important information that is used in building a signature according to an aspect of the

invention. A source and destination network address occupy the first two fields of each

packet, and according to the patterns in pattern database 308, the flow signature (shown

as KEYI 230 in FIG. 2) will also contain these two fields, so the parser subsystem 301

will include these two fields in signature KEY l (230). Note that in FIG. 2, if an address

identifies the client 106 (shown also as 202), the label used in the drawing is “C1”. If

such address identifies the server 1 10 (shown also as server 204), the label used in the

drawing is “Sl”- The first two fields 214 and 215 in packet 206 are “81” and C1” because

packet 206 is provided from the server 110 and is destined for the client 106. Suppose

for this example, “SI” is an address numerically less than address “C1”. A third field

“pl” 216 identifies the particular protocol being used, e. g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate

port numbers that are used. The conversation direction determines where the port

number field is. The diagonal pattern in field 217 is used to identify a source-port

pattern, and the hash pattern in field 218 is used to identify the destination—port pattern.

The order indicates the client-server message direction. A sixth field denoted “i1” 2 liis,"M'

an element that is being requested by the client from the server. A seventh field denoted

“sla” 220 is the service requested by the client from server 110. The following eighth

field “QA” 221 (for question mark) indicates that the client 106 wants to know what to

use to access application “sla”. A tenth field “QP” 223 is used to indicate that the client

wants the server to indicate what protocol to use for the particular application.

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well—defined format, as do all the

NOAC EX. 1017 Page 52

NOAC Ex. 1017 Page 53

mrwvw'w

'2!””111:51:11:
ip

10

15

20

25

30

D D

44

packets, and is transmitted to the server 110 on a well-known service connection

identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the

RFC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224—233. The destination and source addresses are

carried in fields 224 and 225, e.g., indicated “Cl” and “S 1”, respectively. Notice the

order is now reversed, since the client—server message direction is from the server 110 to

the client 106. The protocol “pl” is used as indicated in field 226. The request “i1” is in

field 229. Values have been filled in for the application port number, e.g., in field 233

and protocol ““p2”” in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a

source address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the particular embodiment, the numerically

lower address is always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume “Sl”<“C1”, the order is address “81”

followed by client address “C1”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p1”. The next

field used for the signature is field 243, which contains the destination source port

number shown as a crosshatched pattern from the field 218 of the packet 206. This

pattern will be recognized in the payload of packets to derive how this packet or

sequence of packets exists as a flow. In practice, these may be TCP port numbers, or a

combination of TCP port numbers. In the case of the Sun RPC example, the crosshatch

represents a set of port numbers of UDS for p1 that will be used to recognize this flow

(e. g., port 111). Port 111 indicates this is Sun RPC. Some applications, such as the Sun

RPC Bind Lookups, are directly determinable (“known”) at the parser level. So in this

case, the signature KEY—1 points to a known application denoted “a1” (Sun RPC Bind

NOAC EX. 1017 Page 53

NOAC Ex. 1017 Page 54

"'5?"“'1‘?"7F:«‘1:‘41"Inft
m.m.Y's-‘erw-w.4 ’lvl.‘ll'1I‘
hnnn

WW,”4»."a

10

15

20

25

(j N

45

Lookup), and a next-state that the state processor should proceed to for more complex

recognition jobs, denoted as state “stD” is placed in the field 245 of the flow—entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY—1. Hence, when the signature

enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow—

entry is obtained, and in this flow—entry indicates state “stD”. The operations for state

“stD” in the state processor instruction database 326 instructs the state processor to build

and store a new flow signature, shown as KEY—2 (212) in FIG. 2. This flow signature

built by the state processor also includes the destination and a source addresses 250 and

251, respectively, for server “S 1” followed by (the numerically higher address) client

“C1”. A protocol field 252 defines the protocol to be used, e. g., “p2” which is obtained

from the reply packet. A field 253 contains a recognition pattern also obtained from the

reply packet. In this case, the application is Sun RFC, and field 254 indicates this

application “a2”. A next—state field 255 defines the next state that the state processor

should proceed to for more complex recognition jobs, e.g., a state “stl”. In this particular

example, this is a final state. Thus, KEY-2 may now be used to recognize packets that

are in any way associated with the application “a2”. Two such packets 208 and 209 are

shown, one in each direction. They use the particular application service requested in the

original Bind Lookup Request, and each will be recognized because the signature KEY-2

will be built in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “SI” followed by client “C1”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,

large collections of flow signatures are kept in a lookup table in a least—to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e. g., represented

by request packet 208 and response packet 209. The Client 106 sends packets 208 that

have a destination and source address SI and C1, in a pair of fields 260 and 261. A field ’/WW

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

NOAC EX. 1017 Page 54

NOAC Ex. 1017 Page 55

lO

"H.n*“tin.r:

‘j 15

nununn.t

20

25

30

:3 D

46

Some network-server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the

packet. Others require a sequence of state transitions to occur in order to match a known

and predefined climb from state—to—state.

Thus the flow signature for the recognition of application “a2” is automatically

set up by predefining what packet—exchange sequences occur for this example when a

relatively simple Sun Microsystems Remote Procedure Call bind lookup request

instruction executes. More complicated exchanges than this may generate more than two

flow signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a “final” resting state such as

“stl” in field 255 is reached. All these are used to build the final set of flow signatures

for recognizing a particular application in the future.

The Cache Subsystem

Referring again to FIG. 11, the cache subsystem 1115 is connected to the lookup

update engine (LUE) 1107, the state processor the state processor (SP) 1108 and the flow

insertion/deletion engine (FIDE) 1110. The cache 1115 keeps a set of flow-entries of the

flow—entry database stored in memory 1123, so is coupled to memory 1123 via the

unified memory controller 1119. According to one aspect of the invention, these entries

in the cache are those likely-to-be—accessed next.

It is desirable to maximize the hit rate in a cache system. Typical prior-art cache

systems are used to expedite memory accesses to and from microprocessor systems.

Various mechanisms are available in such prior art systems to predict the lookup such

that the hit rate can be maximized. Prior art caches, for example, can use a lookahead

mechanism to predict both instruction cache lookups and data cache lookups. Such

lookahead mechanisms are not available for the packet monitoring application of cache

subsystem 1115. When a new packet enters the monitor 300, the next cache access, for

example from the LUE 1107, may be for a totally different flow than the last cache

lookup, and there is no way ahead of time of knowing what flow the next packet will

belong to.

One aspect of the present invention is a cache system that replaces a least recently

NOAC EX. 1017 Page 55

NOAC Ex. 1017 Page 56

'T’E

l:

i;

F
E

1':

it
if
I?
a

u.m-.«ww»a...»V...,fl.......~

NAWUWVNNIP‘Am....

10

15

20

25

30

O D

47

used (LRU) flow—entry when a cache replacement is needed. Replacing least recently

used flow~entries is preferred because it is likely that a packet following a recent packet

will belong to the same flow. Thus, the signature of a new packet will likely match a

recently used flow record. Conversely, it is not highly likely that a packet associated with

the least recently used flow—entry will soon arrive.

Furthermore, after one of the engines that operate on flow-entries, for example

the LUE 1107, completes an operation on a flow-entry, it is likely that the same or

another engine will soon use the same flow-entry. Thus it is desirable to make sure that

recently used entries remain in the cache.

A feature of the cache system of the present invention is that most recently used

(MRU) flow-entries are kept in cache whenever possible. Since typically packets of the

same flow arrive in bursts, and since MRU flow—entries are likely to be required by

another engine in the analysis subsystem, maximizing likelihood of MRU flow-entries

remaining in cache increases the likelihood of finding flow records in the cache, thus

increasing the cache hit rate.

Yet another aspect of the present cache invention is that it includes an associative

memory using a set of content addressable memory cells (CAMS). The CAM contains an

address that in our implementation is the hash value associated with the corresponding

flow~entry in a cache memory (e.g., a data RAM) comprising memory cells. In one

embodiment, each memory cell is a page. Each CAM also includes a pointer to a cache

memory page, Thus, the CAM contents include the address and the pointer to cache

memory. As is conventional, each CAM cell includes a matching circuit having an input.

The hash is presented to the CAM’s matching circuit input, and if the hash matches the

hash in the CAM, the a match output is asserted indicating there is a hit. The CAM

pointer points to the page number (i.e., the address) in the cache memory of the flow—

entry.

Each CAM also includes a cache address input, a cache pointer input, and a cache

contents output for inputting and outputting the address part and pointer part of the

CAM.

The particular embodiment cache memory stores flow-entries in pages of one

bucket, i.e., that can store a single flow—entry. Thus, the pointer is the page number in the

NOAC EX. 1017 Page 56

NOAC Ex. 1017 Page 57

10

15

20

25

30

o 3

48

cache memory. In one version, each hash value corresponds to a bin of N flow-entries

(e.g., 4 buckets in the preferred embodiment of this version). In another implementation,

each hash value points to a single flow record, i.e., the bin and bucket sizes correspond.

For simplicity, this second implementation is assumed when describing the cache 1115.

Furthermore, as is conventional, the match output signal is provided to a

corresponding location in the cache memory so that a read or write operation may take

place with the location in the cache memory pointed to be the CAM.

One aspect of the present invention achieves a combination of associatively and

true LRU replacement policy. For this, the CAMS of cache system 1115 are organized in

what we call a CAM stack (also CAM array) in an ordering, with a top CAM and a

bottom CAM. The address and pointer output of each CAM starting from the top CAM

is connected to the address and pointer input of the next cache up to the bottom.

In our implementation, a hash is used to address the cache. The hash is input to

the CAM array, and any CAM that has an address that matches the input hash asserts its

match output indicating a hit. When there is a cache hit, the contents of the CAM that

produced the hit (including the address and pointer to cache memory) are put in the top

CAM of the Stack. The CAM contents (cache address, and cache memory pointer) of the

CAMS above the CAM that produced are shifted down to fill the gap.

If there is a miss, any new flow record is put in the cache memory element

pointed to by the bottom CAM. All CAM contents above the bottom are shifted down

one, and then the new hash value and the pointer to cache memory of the new flow—entry

are put in the top—most CAM of the CAM stack.

In this manner, the CAMS are ordered according to recentness of use, with the

least recently used cache contents pointed to by the bottom CAM and the most recently

used cache contents pointed to by the top CAM.

Furthermore, unlike a conventional CAM~based cache, there is no fixed

relationship between the address in the CAM and what element of cache memory it

points to. CAM’S relationship to a page of cache memory changes over time. For

example, at one instant, the fifth CAM in the stack can include a pointer to one particular

page of cache memory, and some time later, that same fifth CAM can point to a different

NOAC EX. 1017 Page 57

NOAC Ex. 1017 Page 58

10

15

49

cache memory page.

In one embodiment, the CAM array includes 32 CAMs and the cache memory

includes 32 memory cells (e.g., memory pages), one page pointed to by each CAM

contents. Suppose the CAMS are numbered CAMO, CAM 1, ..., CAM31, respectively,

with CAMO the top CAM in the array and CAM31 the bottom CAM.

The CAM array is controlled by a CAM controller implemented as a state

machine, and the cache memory is controlled by a cache memory controller which also is

implemented as a state machine. The need for such controllers and how to implement

them as state machines or otherwise would be clear to one skilled in the art from this

description of operation. In order not to confuse these controllers with other controllers,

for example, with the unified memory controller, the two controllers will be called the

CAM state machine and the memory state machine, respectively.

Consider as an example, that the state of the cache is that it is full. Suppose

furthermore that the contents of the CAM stack (the address and the pointer to the cache

memory) and of the cache memory at each page number address of cache memory are as

shown in the following table.

m-399er ,
—

This says that CAM4 contains and will match with the hash value hash4, and a lookup

With hash4 will produce a match and the address page4 in cache memory. Furthermore,

NOAC EX. 1017 Page 58

NOAC Ex. 1017 Page 59

”‘ 72 :J M

50

page4 in cache memory contains the flow—entry, entry4, that in this notation is the flow—

entry matching hash value hash4. This table also indicates that hasho was more recently

used than hashl, hash5 more recently than hashz, and so forth, with hash31 the least

recently used hash value. Suppose further that the LUE 1107 obtains an entry from

5 unified flow key buffer 1103 with a hash value hash31. The LUE looks up the cache

subsystem via the CAM array. CAM31 gets a hit and returns the page number of the hit,

i.e., page31. The cache subsystem now indicates to the LUE 1007 that the supplied hash

value produced a hit and provides a pointer to page“ of the cache memory which

contains the flow—entry corresponding to hash31, i.e., flow31. The LUE now retrieve the

10 flow-entry flow31 from the cache memory at address page31. In the preferred

embodiment, the lookup of the cache takes only one clock cycle.

The value hash31 is the most recently used hash value. Therefore, in accordance

with an aspect of the inventive cache system, the most recently used entry is put on top

of the CAM stack. Thus hash31 is put into CAMO (pointing to page“). Furthermore,

15 hash30 is now the LRU hash value, so is moved to CAM31. The next least recently used

hash value, haShzg is now moved to CAM30, and so forth. Thus, all CAM contents are

shifted one down after the MSU entry is put in the top CAM. In the preferred

embodiment the shifting dOWn on CAM entries takes one clock cycle. Thus, the lookup

and the rearranging of the CAM array to maintain the ordering according to usage

20 recentness. The following table shows the new contents of the CAM array and the

(unchanged) contents of the cache memory.
NOAC EX. 1017 Page 59

NOAC Ex. 1017 Page 60

i

'uliit

u’lvlflh‘i‘d.

To continue with the example, suppose that some time later, the LUE 1007 looks

up hash value hash5. This produces a hit in CAM6 pointing to page5 of the cache

memory. Thus, in one clock cycle, the cache subsystem ll 15 provides LUE 1007 with an

indication of a hit and the pointer to the flow—entry in the cache memory. The most

recent entry is hash5, so hash5 and cache memory address page6 are entered into CAMO.

The contents of the remaining CAMs are all shifted down one up to and including the

entry that contained hash5. That is, CAM7, CAMg, CAM31 remain unchanged. The

CAM array contents and unchanged cache memory contents are now as shown in the

following table.

NOAC EX. 1017 Page 60

NOAC Ex. 1017 Page 61

.17.:iwyvm‘ 1

f

g
E:

 10

15

Thus in the case of cache hits, the CAM array always keeps used hash values in

the order of recentness of use, with the most recently used hash value in the top CAM.

The operation of the cache subsystem when there is a cache hit will be described

by continuing the example. Suppose there is a lookup (e.g., from LUE 1107) for hash

value hash43. The CAM array produces a miss that causes in a lookup using the hash in

the external memory. The specific operation of our specific implementation is that the

CAM state machine sends a GET message to the memory state machine that results in a

memory lookup using the hash via the unified memory controller (UMC) 1119.

However, other means of achieving a memory lookup when there is a miss in the CAM

array would be clear to those in the art.

The lookup in the flow-entry database 324 (i.e., external memory) results in a hit

or a miss. Suppose that the database 324 of flow-entries does not have an entry matching

hash value hash43. The memory state machine indicates the miss to the CAM state

machine which then indicates the miss to the LUE 1007. Suppose, on the other hand that

there is a flow~entry——entry43—~ in database 324 matching hash value hash43. In this

case, the flow-entry is brought in to be loaded into the cache.

In accordance with another aspect of the invention, the bottom CAM entry

CAM31 always points to the LRU address in the cache memory. Thus, implementing a

true LRU replacement policy includes flushing out the LRU cache memory entry and

NOAC EX. 1017 Page 61

NOAC Ex. 1017 Page 62

3 3

53

inserting a new entry into that LRU cache memory location pointed to by the bottom

CAM. The CAM entry also is modified to reflect the new hash value of the entry in the

pointed to cache memory element. Thus, hash value hash43 is put in CAM31 and flow—

entry entry43 is placed in the cache page pointed to by CAM 31. The CAM anay and

5 now changed cache memory contents are now

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAM31 are now moved to CAMO and the entries previously in the top 30 CAMs moved

down so that once again, the bottom CAM points to the LRU cache memory page.
NOAC EX. 1017 Page 62

NOAC Ex. 1017 Page 63

.:.w~x«-.mu-"‘me

nn-1|>I.1~ununI-uu

uuI;

10

15

j j

CAMI

Note that the inserted entry is now the MRU flow—entry. So, the contents of

CAM31 are now moved to CAMO and the entries previously in the top 30 CAMS moved

In addition to looking up entries of database 324 via the cache subsystem 1 115

for retrieval of an existing flow~entry, the LUE, SP, or FIDE engines also may update the

flow—entries via the cache. As such, there may be entries in the cache that are updated

flow-entries. Until such updated entries have been written into the flow-entry database

324 in external memory, the flow-entries are called “dirty.” As is common in cache

systems, a mechanism is provided to indicate dirty entries in the cache. A dirty entry

cannot, for example, be flushed out until the corresponding entry in the database 324 has

been updated.

Suppose in the last example, that the entry in the cache was modified by the

operation. That is, hash43 is in MRU CAMO, CAMO correctly points to page30, but the

information in page30 of the cache, entry43, does not correspond to entry43 in database

324. That is, the contents of cache page page30 is dirty. There is now a need to update the

database 324. This is called backing up or cleaning the dirty entry.

As is common in cache systems, there is an indication provided that a cache

memory entry is dirty using a dirty flag. In the preferred embodiment, there is a dirty flag

for each word in cache memory.

NOAC EX. 1017 Page 63

NOAC Ex. 1017 Page 64

a 3

55

i
l

i

E Another aspect of the inventive cache system is cleaning cache memory contents
according to the entry most likely to be first flushed out of the cache memory. In our

LRU cache embodiment, the cleaning of the cache memory entries proceeds in the

inverse order of recentness of use. Thus, LRU pages are cleaned first consistent with the

5 least likelihood that these are the entries likely to be flushed first.

i In our embodiment, the memory state machine, whenever it is idle, is
’ programmed to scan the CAM array in reverse order of recentness, i.e., starting from the

1 bottom of the CAM array, and look for dirty flags. Whenever a dirty flag is found, the

cache memory contents are backed up to the database 324 in external memory.

10 Note that once a page of cache memory is cleaned, it is kept in the cache in case

: it is still needed. The page is only flushed when more cache memory pages are needed.

The corresponding CAM also is not changed until a new cache memory page is needed.

In this way, efficient lookups of all cache memory contents, including clean entries are

still possible. Furthermore, whenever a cache memory entry is flushed, a check is first

15 made to ensure the entry is clean. If the entry is dirty, it is backed up prior to flushing the

entry.

The cache subsystem 1115 can service two read transfers at one time. If there are

more than two read requests active at one time the Cache services them in a particular

order as follows:

20 (1) LRU dirty write back. The cache writes back the least recently used cache

memory entry if it is dirty so that there will always be a space for the fetching

of cache misses.

(2) Lookup and update engine 1107.

(3) State processor 1108.

25 (4) Flow insertion and deletion engine 1110.

(5) Analyzer host interface and control 1118.

(6) Dirty write back from LRU ~1 to MRU; when there is nothing else pending,

the cache engine writes dirty entries back to external memory.

~1v‘ FIG. 19 shows the cache memory component 1900 of the cache subsystem 1115.. 53:22;

NOAC EX. 1017 Page 64

NOAC Ex. 1017 Page 65

2:7 J

56

Cache memory subsystem 1900 includes a bank 1903 of dual ported memories for the

pages of cache memory. In our preferred embodiment there are 32 pages. Each page of

memory is dual ported. That is, it includes two sets of input ports each having address

and data inputs, and two sets of output ports, one set of input and output ports are

coupled to the unified memory controller (UMC) 1119 for writing to and reading from

the cache memory from and into the external memory used for the flow-entry database

324. Which of the output lines 1909 is coupled to UMC 1119 is selected by a

multiplexor 191 1 using a cache page select signal 1913 from CAM memory subsystem

part of cache system1115. Updating cache memory from the database 324 uses a cache

data signal 1917 from the UMC and a cache address signal 1915.

Looking up and updating data from and to the cache memory from the

lookup/update engine (LUE) l 107, state processor (SP) 1108 or flow insertion/deletion

engine (FIDE) 1110 uses the other input and output ports of the cache memory pages

1903. A bank of input selection multiplexors 1905 and a set of output selector

multiplexors 1907 respectively select the input and output engine using a set of selection

signals 1919.

FIG. 20 shows the cache CAM state machine 2001 coupled to the CAM array

2005 and to the memory state machine 2003, together with some of the signals that pass

between these elements. The signal names are self-explanatory, and how to implement

these controllers as state machines or otherwise would be clear from the description

herein above.

While the above description of operation of the CAM array is sufficient for one

skilled in the art to design such a CAM array, and many such designs are possible, FIG.

21 shows one such design. Referring to that figure, the CAM array 2005 comprises one

CAM, e.g., CAM[7] (2107), per page of CAM memory. The lookup port or update port

depend which of the LUE, SP or FIDE are accessing the cache subsystem. The input data

for a lookup is typically the hash, and shown as REF—DATA 2103. Loading, updating or

evicting the cache is achieved using the signal 2105 that both selects the CAM input data

using a select multiplexor 2109, such data being the hit page or the LRU page (the

bottom CAM in according to an aspect of the invention). Any loading is done via a 5 to

32 decoder 2111. The results of the CAM lookup for all the CAMs in the array is

NOAC EX. 1017 Page 65

NOAC Ex. 1017 Page 66

E

LnlvIl..l|‘

rLJI(LNL“H.”

10

O D

57

provided to a 32—5 low to high 32 to 5 encoder 2113 that outputs the hit 2115, and which

CAM number 2117 produced the hit. The CAM hit page 2119 is an output of a MUX

2121 that has the CAM data of each CAM as input and an output selected by the signal

2117 of the CAM that produced the hit. Maintenance of dirty entries is carried out

similarly from the update port that coupled to the CAM state machine 2001. A MUX

2123 has all CAMs’ data input and a scan input 2127. The MUX 2123 produces the dirty

data 2125.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted

as limiting. Various alterations and modifications will no doubt become apparent to

those of ordinary skill in the art after having read the above disclosure. Accordingly, it is

intended that the claims be interpreted as covering all alterations and modifications as

fall within the true spirit and scope of the present invention.

NOAC EX. 1017 Page 66

NOAC Ex. 1017 Page 67

 58

CLAIMS

What is claimed is:

computer network, each packets conforming to one or mdre protocols, the monitor
Ay%fl /> 1. A packet monitor for examining packets passing through a connection point on aI,

l

/

5 comprising: /
1'

(a) a packet acquisition device coupled to the c nection point and

configured to receive packets passing through he connection point;

(b) a memory for storing a database comprisi g none or more flow-entries for

previously encountered conversational flow to which a received packet may

10 belong;

(c) a cache subsystem coupled to the flow entry database memory providing

for fast access of flow-entries from the ow-entry database; and

(d) a lookup engine coupled to the pac et acquisition device and to the cache

subsystem and configured to lookup hether a received packet belongs to a

13 flow—entry in the flow-entry databa , the looking up being in the cache

subsystem.

2. A packet monitor according to claim , further comprising:

a parser subsystem coupled 0 the packet acquisition device and to the

lookup engine such that the a quisition device is coupled to the lookup

20 engine via the parser subsys em, the parser subsystem configured to extract

identifying information fr a received packet,

wherein each flow~entry is iden fied by identifying information stored in the flow—

entry, and wherein the cache 1 okup uses a function of the extracted identifying

information.

25 3. A packet monitor accor rig to claim 2, wherein the cache subsystem is an

associative cache subsyste

cells (CAMS).

including one or more content addressable memory

4. A packet monitor acdprding to claim 2, wherein the cache subsystem includes:

NOAC EX. 1017 Page 67

NOAC Ex. 1017 Page 68

3 DJ

59

(i) a set of cache memory elements coupled/to the flow-entry database
memory, each cache memory element including an input port to input an

flow—entry and configured to store a flow/~entry of the flow-entry database;
/l

(ii) a set of content addressable memopryg/c‘ells (CAMs) connected according to
5 an order of connections from a top C to a bottom CAM, each CAM

containing an address and a pointer t one of the cache memory elements,

l
l

i
and including:

a matching circuit havin an input such that the CAM asserts a

match output when the in t is the same as the address in the CAM

10 cell, an asserted match 0 tput indicating a hit,

‘IIKuun
a CAM input config red to accept an address and a pointer, and

(iii) a CAM controller couple to the CAM set; and

‘..ilun (iv) a memory controller co led to the CAM controller, to the cache memory

15 set, and to the flow-entry

u,u:l3'iii:ll“.
wherein the matching circuit inp ts of the CAM cells are coupled to the lookup

engine such that that an input t the matching circuit inputs produces a match output

in any CAM cell that contains 11 address equal to the input, and

wherein the CAM controller ' configured such that which cache memory element a

20 particular CAM points to c nges over time.

5. A packet monitor accor ing to claim 4, wherein the CAM controller is

configured such that the ottom CAM points to the least recently used cache

a CAM address out ut and a CAM pointer output;

memory element.

NOAC EX. 1017 Page 68

NOAC Ex. 1017 Page 69

10

15

20

25

6.

a '3

60

I

A packet monitor according to claim 5, wherein e address and pointer output of

each CAM starting from the top CAM is coup to the address and pointer input of
the next CAM, the final next CAM being e bottom CAM, and wherein the CAM

controller is configured such than wh d there is a cache hit, the address and pointer

contents of the CAM that produc the hit are put in the top CAM of the stack, the

address and pointer contents f the CAMs above the CAM that produced the

 asserted match output shifted down, such that the CAMs are ordered according

to recentness of use/with the least recently used cache memory element pointed to

by the bottom 94M and the most recently used cache memory element pointed to
by the top CAM.

A cache system for looking up one or more elements of 11 external memory,

comprising:

(a) a set of cache memory elements coupled to t e external memory, each

cache memory element including an input po to input an element of the

external memory and configured to store th input external memory element;

(b) a set of content addressable memory c ls (CAMS) connected according to

an order of connections from a top C to a bottom CAM, each CAM

containing an address and a pointer one of the cache memory elements,

and including

a . 1//
(i) a matching circuit havmg ut/such that the CAM asserts a match

output when the input is th same as the address in the CAM cell, an

asserted match output ind' ating a hit,

(ii) a CAM input confgured to accept an address and a pointer, and

(iii) a CAM address utput and a CAM pointer output, and

(c) a CAM controller co led to the CAM set;

(d) a memory controll coupled to the CAM controller, to the cache memory

set, and to the extem memory,

NOAC EX. 1017 Page 69

NOAC Ex. 1017 Page 70

10

15

20

25

10.

ll.

12.

C)- "D

61

wherein the matching circuit inputs of the CAM cells are coupled such that that an

input to the matching circuit inputs produces a matc, output in any CAM cell that

contains an address equal to the input, and

wherein the CAM controller is configured such th t which cache memory element a

particular CAM points to changes over time.

A cache system according to claim 7, wherei the CAM controller is configured

such that the bottom CAM points to the least re ently used cache memory element,

and wherein the CAM controller is configured o implement a least recently used

replacement policy such that least recently use cache memory element is the first

memory element flushed.

A cache system according to claim 8, wh ein the address and pointer output of

each CAM starting from the top CAM is co pled to the address and pointer input of

the next CAM, the final next CAM being t 6 bottom CAM, and wherein the CAM

controller is configured such than when t re is a cache hit, the address and pointer

contents of the CAM that produced the are pu in the top CAM of the stack, the

address and pointer contents of the C 5 b0 e the CAM that produced the

asserted match output are shifted down such that the CAMs are ordered according

to recentness of use, with the least rec ntly used cache memory element pointed to

by the bottom CAM and the most rec ntly used cache memory element pointed to

by the top CAM.

A cache system according to cl m 9, wherein the CAM controller is configured

such that replacing any cache me ory elements occurs according to the inverse

order of recentness of use, with t e least recently used entry being the first flushed

cache memory entry.

A cache system according claim 7, wherein each memory element is a page of

memory.

A cache system accordi to claim 7, wherein each cache memory element is

provided with an indicatio of whether or not it is dirty, and wherein the CAM

controller is configured t clean any dirty cache memory elements by backing up the

dirty contents into the e ternal memory.

NOAC EX. 1017 Page 70

NOAC Ex. 1017 Page 71

U

62

13. A cache system according to claim 12, wherein t e contents of any cache

memory element are maintained after cleaning unti such cache contents need to be

replaced according to the LRU replacement polic .

14. A cache system according to claim 8, wherei each cache memory element is

5 provided with an indication of whether or not it is dirty, and wherein the CAM

controller is configured to clean any dirty cach- memory elements by backing up the

dirty contents into the external memory.

15. A cache system according to claim 14, wh rein the CAM controller is further

~ configured to clean any dirty cache memory lements prior to replacing the cache

10 memory element contents.

3 . 16. A cache system according to claim 15, . herein the CAM controller is further

a : configured to clean any dirty cache memo elements prior to replacing the cache

memory element contents.

: 17. A cache system according to claim ’ wherein each cache memory element is

15 provided with an indication of whet not/it/is dirty, and wherein the CAM

controller is configured to clean dirty c ache memory elements by backing up the

dirty contents into the external memo in reverse order of recentness of use.nnnVI!['4
18. A cache system according to clai . 17, wherein said cleaning in reverse order of

eds whenever the cache controller is idle.

20 19. A cache system for looking up one or more elements of an external memory,

comprising:

(a) a set of cache memory elements coupled to the external memory, each

cache memory element i cluding an input port to input an element of the

external memory and cmfigured to store the input external memory element;

t
E

i recentness of use automatically pro

i 25 and
(b) a set of content ad ressable memory cells (CAMs) containing an address

and a pointer to one f the cache memory elements, and including a

matching circuit h. ing an input such that the CAM asserts a match output

when the input is r e same as the address in the CAM cell,

NOAC EX. 1017 Page 71

NOAC Ex. 1017 Page 72

63

wherein which cache memory element a articular CAM points to changes over

time.

 20. A cache system accordin t cla‘ 19, wherein the CAMS are connected in an

order from top to bottom, and wherein the bottom CAM points to the least recently

5 used cache memory elenrent.

WW
/

/‘

uI\1'‘\u

1'l.un

"Si‘J-..

:3"u’.-"
n,.J
.1.w
:

NOAC EX. 1017 Page 72

NOAC Ex. 1017 Page 73

‘“tili:IL.".I.“I\.,llH.II
1‘.le"I“II.

'32:"IL."

“milil..l-‘u...ii3i.:...

10

64

ABSTRACT

malaria;
A cache system for looking up one or more elements of an external memoryweomppisin-g

a set of cache memory elements coupled to the external memory, a set of content

addressable memory cells (CAMs) containing an address and a pointer to one of the

cache memory elements, and‘irte—ludi-ng a matching circuit having an input such that the

CAM asserts a match output ngen the input is the same as the address in the CAM cell.
thiiAcache memory elemenxtia Fahticular CAM points to changes over time. In the
preferred implementation, the CAMs are connected in an order from top to bottom, and

the bottom CAM points to the least recently used cache memory element.

h * NOAC EX. 1017 Page 73

NOAC Ex. 1017 Page 74

7 "J”.— . PRLVTOF muwmcsI A5.O_El_GU‘__M-LY m
' / Q

3110\329
\U};

kc 1/21
, \

100
CLIENT 4 108

W ANALYZER
107

116

—CUENT3 SERVER 4
- N10

T
106 121

9:1

31

 DATA COMMUNICATIONS

NETWORK

 ‘1|[HH

 .IiII1‘IErIIII'II
-: 102

{I :=: 125

123
— 118

SERVER 2 _ 105 —J

W CLIENT 2 CLIENT 1 N
”2 104

FIG. 1

NOAC EX. 1017 Page 74

NOAC Ex. 1017 Page 75

mzoummmmi<z<

 .ZOF/EmmoozmwwOOmn.

wO<DOZ<J.
mm><n_O_._.n:0wwo

SEEO<H<DJOOOHOEQ

mm_N=>:.EOOZ<EMJEEOO

mw<m<k<oZO_._,ODE._.wZ_mmeMOOEQ

57e
g

aP7101X.ECAON

 owm

Nmm

ZOP<N3<ZEZ._.<O_n:wm<40

_

_mw<mE<o
accumm_zo:o<Exmzaozx_oz<

=39“...

__

wk<on5

ZO_._.<OE_._erD_mbfirwwJOOOHOEQ

O_._.<0E_ww<..0mmOE

m_.5T
C

m955<_wYEmme_E<Vwomoomm_amm‘wwmmmkmmEmoomm2265.Ex._>>0.E__zOEwaOuz20.2582mc_.26::>5220m“.o:<wmm>zoo02$:ngzmeETm.E209_magz:95m5<Exmmuzooomm_w0,3m_oz<m~5<z<_«8muEm_lllllllllllll.vow

._=L:._1.21.mi:1.::,_._:,7,.m,:____:,:

4?x..y‘‘‘v,lr\§%§xi.\fij:1If.

NOAC Ex. 1017 Page 76

mwmw~h<z<

 .ZO_.r<mmEOozwmmoOmm

mm?)0:.nzommoSEE0<H<DJOOOHOIQ

IwszPmoDZ<mafia—200

mm<m<k<oZO_FODIFm2_IOmmmOOIn.mbuFm

vm

owm

ZO_.r<N:<Z_u_ZED—“.5930

3/21

wm<m<H<D

DmOOmIZO_.r<O_n:.erO_ZOFO<mFXmZ>>OZ¥O_.r<0_m_mm<n_ombubw_.>>O.E_.mIOEJOOOFOmn.

_DZ<

mh<on5_
_

{.n

vmmmovmomoommzibzx20mmanxoOJ

Am<mvEmVzo:<2m0mz
ZOF<SEOmZ_OZ§mFZmQFO<IFXw

m>>04mm0

wm<m<h<o>mx._>>O.E._
OF<mmm>zOO_9.1223042.5

zmwt/EwN_ZOOOmmDZ<wN>4<Z<

‘~-‘-~- ‘ :‘w
5G

my.m
D

mmwmm”

H,::::____:i_,_:m,.vf;T_1:__::_

NOAC EX. 1017 Page 76

NOAC Ex. 1017 Page 77

PRL‘IT or DRAWU‘IGS

AS ORIGINALLY anv'—-m _

fI

E
3iI

HIGH LEVEL

PACKET
DECODING

DESCRIPTION ‘

GENERATE

PACKET NH””7
 3 P/figgih COMPILE STATE

I : ‘ I. ESCRIPTION ~ INSTRUCTION
: EXTRACT AND
: OPERATIONS OPERAHONS

I'' IIII

406 2"A'ITERN, PARS STATEAND PROCESSOR

: EXTRACTION INSTRUCTION
' DATABASE DATABASE

LOAD
PARSING

SUBSYSTEM
MEMORY

LOAD STATE
NSTRUCTION
DATABASE
MEMORY

400

NOAC EX. 1017 Page 77

,,—___———__

NOAC Ex. 1017 Page 78

Rarkiu '
PRINT 0F DRAWLNGS

AS oruclNLu-L.Y ED

503 LOAD PACKET
COMPONENT

ORE lN PACKE 9’

u.lvun

504

nl.H\l
FETCH NODE AN I
PROCESS FROM

PATTERNS

uv:
H

513

(1H

II|.|111

.n. v ‘0. t‘l‘

PROCESS TO
COMPONENT

510 500

NOAC EX. 1017 Page 78

NOAC Ex. 1017 Page 79

a . PRLVTOF muwmcs

ASQEGELALEY. in

6/21

0

PACKET 602
COMPONENT AND
PATTERN NODE

3

LOAD PACKET

COMPONENT m0
604

3 MORE PACKE
COMPONENT

60

g
hl‘
uI,‘

 inNM
YES

FETCH EXTRACTION 6ND PROCESS FROM
PATTERNS 605

NO 611

606 NEXT
NO PACKET 609

COMPONEN

\

hAh

.1l‘M1:“H

ELEMENTS?

YES

607 APPLY EXTRACTION
PROCESS TO
COMPONENT

600

 MORE TO
EXTRACT?

608

YE

FIG. 6

NOAC EX. 1017 Page 79

NOAC Ex. 1017 Page 80

0-4.;

PRLVT 0F DRAWU‘GS
@31qu an

7/21

. 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN

703 NODE ELEMENT 708

704 MORE PATTERN. OUTPUT To

‘f!HMn

“UI)'1‘(Iu('

NODES? ANALYZER

= YES

HASH KEY BUFFER w
: ELEMENT FROM 705

PATTERN NODE

PACK KEY & HAS

706 \
NEXT PACKET
COMPONENT

707

FIG. 7

709
H:1PI:l,

700

NOAC EX. 1017 Page 80

NOAC Ex. 1017 Page 81

Gaul/iv

PRLVT OF DRAWUNGS

A5 ORIGIN—ALLY V,»

8/21

0

UFKB ENTRY FOR 802
PACKET

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/

BUCKET FROM CACHE 804 806

NO SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET No® 808
YES

IIIIII

4000‘»

ORE BUCKET
IN THE BIN?

HI ‘

II

YESII

IIn

RI

0III‘‘I

809

MARK RECORD BIN AND 810BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
8“ AS ‘FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

mm. FIG. 8

NOAC EX. 1017 Page 81

N

NOAC Ex. 1017 Page 82

Qark

PRLVT OF DRAWL

AS ORIOUiLLY F'J_1D
_..-—...

9/21
901

RPC
ENDLOOKU'

REQUEST 'ORTMAPP - ‘ NNOUNCME

909

 EXTRACTPROGRAM EXTRACTPORT

GET ‘PROGRAM', GET 'PROGRAM',
'VERSION', 'PORT' AND ’VERSION' AND
'PROTOCOL (TCP OR ‘PROTOCOL (TCP OR

UDP) UDP)‘

IIIIIII.IIII,“IIII

SAVE 'PROGRAM',
'VERSION' AND

I‘M

SAVE 'PROGRAM‘,

904 'VERSION', 'PORT' AND 'PROTOCOL (TCP OR
: 'PROTOCOL (TCP OR UDP)‘ WITH

-:— UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

BOTH MAKE A KEY.IIIIIIII.I

III.

EXTRACT
PROGRAM

FIND 'PROGRAM‘
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

GET 'PORT‘ AND

'PROTOCOL (TCP
OR UDP)‘.

900/2‘

FIG. 9

NOAC EX. 1017 Page 82

NOAC Ex. 1017 Page 83

Carl/inn“

PRLVT OF DRAWINGS

ASEGBLAAEY. 1m

1000 N 10/21

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE
MEMORY 1001 MEMORY

100 1031
100 1004

 HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS

CONTRL N

x 1031

2: 100 PATTERN 1007
: RECOGNITN EXTRACTION ENGINE
‘ ENGINE (SLICER)
: (PRE)

_= 100.

, \ PARSER
PACKET PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAD

MEMORY

INPUT BUFFER ANALYZER DATA REA I)
INTERFACE INTERFACE
CONTROL CONTROL ANALYZER

READY
102

1023 FIG. 10 1027

NOAC EX. 1017 Page 83

NOAC Ex. 1017 Page 84

Carl/:6;

PRINT OF DRAWUVGS
AS ORIGINALLY ' ‘D

11/21

1100“

1101 1103 1115 1118112
n07

HOST
BUS

INTER-
FACE

(Hm)

INSTRUCN
; DAIABASE

: RARSER
1 INTER-.‘S

FACE

‘1‘1[1

PROCESSR

(SP)

 1119112

‘lH11',‘i‘1I!1!

UNIFIED MEMORY

MEMORY h INTER-FACE

 CONTROL

(UMC)

FLOW
INSERTION/

NOAC EX. 1017 Page 84

NOAC Ex. 1017 Page 85

Curl/inn

mm 1 OF DRAWmcs

AS ORIGINALLY TD
"‘*—- “ ‘__'.~5.~

12/21
1201

UFKB ENTRY FOR

PACKET WITH
STATUS 'NEW'

1202

1200

N ACCESS
CONVERSATION 1203

RECORD BIN

2 REQUEST RECORD BIN/ 1204
: BUCKET FROM CACHE

REQUEST NEXT

: BUCKET FROM 1205
 1206 CACHE

1207
 INSERT KEY AND HASH

N BUCKET, MARK 'USED
WITH TIMESTAMF’

: YES OMPARE CURRENT BI , 1209
1210 AND BUCKET RECORD

SET UFKB FOR
PACKET As KEY TO PACKET

'DROR

 MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND ‘NEW‘ IN CACHE

1211

SET INITIAL STATISTICS
FOR RECORD IN CACHE

FIG. 12

NOAC Ex. 1017 Page 86

III‘

‘‘II“III!“IIIIIIII'II[I
IIII

IIII
{III

IIIIII

Qnylr:

PRINT or DRAWUVG)‘

ASPEEQULLLLYCP

SET STATE
PROCESSOR

 POINTER TO

SAVE STATE
PROCESSOR

 POINTER IN

 RECORD

INSTRUCTION

VALUE FOUND IN
CURRENT STATE

INSTRUCTION

CURRENT FLOW

13/21

$19301
UFKB ENTRY FOR

PACKET WITH STATUS
'NEW‘ OR 'FOUND' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304STATE PROCESSOR
INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

NO DONE PROCESSING 1307
STATES FOR THIS

PACKET?

1308 YES
1310

NO DONE PROCESSING 1309

 TATES FOR THIS FLOW?

YES

SET AND SAVE FLOW REMOVA

STATE PROCESSOR 1311
INSTRUCTION IN CURRENT

FLOW RECORD

@1313
FIG. 13

NOAC EX. 1017 Page 86

NOAC Ex. 1017 Page 87

140

RECOGNIZE
PATTERN

INFORMATION

PARSER
SUBSYSEM

I; I1 I II II I: In ‘ n It I ini I I II' I I II I: ' II I n u .

LOOKUP
KNOWN

RECORDS

(DB1424)

EXTRACT
IDENTIFYING

INFO & PROCL
/STATE

NEW “FLOW“
RECORD?

DATABASE
OF FLOWS

PATTERN UPDATE

STRUCTURES "FLOMP
AND CLASQFmAflON KNOWN

EXTRACRON RECORD
OPERAHONS

STATE

MACHINE

SELECTOR

1426

CLASSIFICATN
FINALIZATION

STATE

ANALYSIS

ANALYZER
SUBSYSTEM

|

I

|

I

|

|

I

|

I

I

|

|

I

I

I

I

|

|

|

I

|

|

|

|

I

I

|

I

|

|

NOAC EX. 1017 Page 87

\Jwiwaafibiv
'0

E.4
O51
U

E
S
9
OU.

(IT;

LZ/VL

NOAC Ex. 1017 Page 88

.,‘*_;fi&LyffliD
AS()RJGIN

, mun 0F memcs

15/21

>EO§w§HmOI
oomw

vomw
m0

wQE<OxmfiamO<meHZ_XIOEFMZ

)).
wm<m<k<o

:fl.;

\:
:27.,

gumIOEZOS.:7:.

T:A,:_
:2 wO>wDZOEQDOO.HmXO/E

NOAC EX. 1017 Page 88

NOAC Ex. 1017 Page 89

wHAI::1
HH‘

”IiHu

,n'd

PRLVT OF puma

AS omcyituy {.11 w

‘et=12

FIG. 16

NOAC Ex. 1017 Page 90

HHHp

l'H‘5‘,
‘11

PRLNTOF memcs

AS ORIGINALLY/“in "\
“wax u

1 7/21
1702

E ‘95*8‘8388‘offset = X *
Type 1 CHAOSNET = 0x080412 to 131 _ n ARP = 0x0806

VIP = OXOBAD*

f-/ VLOOP = OxOBAE
1706 VECHO = OXOBAF

NETBIOS-3COM = gxggggéX

H W) DE%3”85=8X888éash 1 - = x
1710) K— 1700 DEC-DRP = 0x6003*

_ DEC—LAT = 0x6004
L3 Off-et — 14 DEC-DIAG = 0x6005

DEC—LAVC = 0x600?
RARP = 0x8035

ATALK = 0x809B*
VLOOP = 0x8OC4

FIG 1 7A VECHO = 0x8005
_ / SNA—TH = 0x80D5*ATALKARP = 0x80F3

1712 IPX = 0x8137*
SNMP = 0x814C#

IPv6 = 0x86DD”
LOOPBACK = OXQOOO

Apple = 0x080007

* L3 Decoding
L5 Decoding

wmw-mmmmm'lllln \52
L3tO WW, :3” :50!” ICMP=1

[5:34 rIIm—rymmmm gMg :g
'” E33 :3

VIII/Iizli‘fi'iifiliiiififillllllllllll “35‘; :12
CHAOS = 16

UDP =17*
i lDP = 22#

K“ 1750 lSO-TP4 = 29

tAdd DDP = 37 #
.30-”: = 80

Dst Hash (2) VIP = 83#

S dd EIGRP = 88
W =89

Src Hash (2)

-ol (1) FIG _ 1 7B ;¢LL43 gifgcgcrz‘gding
-et = L3 + (IHL/4)

NOAC EX. 1017 Page 90

NOAC Ex. 1017 Page 91

PRLVTOF muwu‘c;
AS ORIGINALLY vV .2“

PROTOCOL

r1800

..~\\Etna}:

IhwszDJmE

FIG. 18A

1870

/LUT NUM
_}

fig
DJEEm0wDOOmtm

r1850

JOOOFOMQ

FIG. 188

NOAC EX. 1017 Page 91

NOAC Ex. 1017 Page 92

‘ZD
PRLVT 0F DRAWU‘GS

2.0E

22/I._m_waElgmwamlgwwmfi:

wMXDEFOmfiMwFDnFDO

meme

EatW:

memw<m<o

A.

1E<o-oza-<omo?
Q91

50$-me50omug“.mmmoEmHE;$65$9wme2EE8.28275-35z_-o-mw<a
32no?UIwwmmooig

[\l53-5-9023moo<dta?SEmoo<E<olmIdwmommoo/T[imammmxazSwimSn_z_55%

NVll._m_ww3|_002\pare.

momr

:11:.:‘17:::,."3:???“

NOAC EX. 1017 Page 92

NOAC Ex. 1017 Page 93

mun or memcs
AS ORIGINALLY mm—--‘... <

20/21a.~_~_~,_umw“~..{
2001

CACHE_CAM«SM

GET BACKUP GOT

i ,,

i : /2003
iY
b

2005

LUEMEMREQ

SETLUEREADY

SETLUESEL

SEL_LUE_FIDE—>

CAM_HITLUEPORTI
CAMVHlTPAGE

M LR PA E
FIDEMEMREQ CA - U G

SETFIDEREADY

SETFIDESEL
\

CAMARRAY

LOAD_CAM

REFRESHWCAM
|'‘ >‘IH FIDEPORT

SEL_CACHE—-—>

CACHE ME

SIGNALS ‘

_ CACHE_MEM*SM

CA-MEM-RE

CA~MEM~WR|T

O
2

U MC-O-CA-NEXTA DCACHEPORT
UMC-O—CA-REA

FIG. 20

NOAC EX. 1017 Page 93

NOAC Ex. 1017 Page 94

i
i
1
1I

Hr!h‘1H
1'‘11‘H

PRLVTOF DRAW!

AS ORIGINALLY 1 :1)m

‘ CAM_HITPAGE, REF-DATALOAD, REFRESH, EVICT l

CAM_INPUTDATA

LOAD4

LOADSUPDATEPORT LOAD6

LOAD7

LOAD30

LOAD31

CAM_NUMBER

V

DIRTY ENTRY

DIRTY_PAGE, DIRTY_HASH, D1RTY_BUCKET

21/21

CAM_LRUPAGE, REF-DATA F
REF-DATA

2103
2113

MATCHOCAM[O]

DATA JV] MATCH1

MATCH2

MATCHS

MATCH4
2115

MATCHS

HIGH CAM
MATCH6 HIT LOOKUPPORT
MATCH7

MATCHSO

MATCH31

CAM NUMBER

| |
DATAO ' ° ' DATA31

CURRENT ENTRY

CAM_HITPAGE

'\
FIG. 21

2117

NOAC EX. 1017 Page 94

NOAC Ex. 1017 Page 95

PRINT OF DRAWLNQS
/" .2 -

ASQiQLAL‘EXUfi ' 3

1/21

' 108
CLIENT 4———I—\ ANALYZER

107 1 16

100

—CUENT3 SERVER .1
x 121 N1 10

106

DATA COMMUNICATIONS

NETWORK
l,‘h11

 102

3 125

123
_ 118
SERVER A —— 105 ——/

—\ CLIENT 2 J CLIENT 1

112 104

FIG.1

NOAC EX. 1017 Page 95

NOAC Ex. 1017 Page 96

5 CLIENT 3

n 1le M 1»; n u 1» I1 |v,v:1ii‘1:}:‘

214 215 (216 217(218 219 220 221 222K223

H H 1‘ H !‘

K260 K261§262

[32863 i264 Q265t

270 271
K K 272 273 (274K K

 LZ/Z

FIG. 2

WNOALEX. 1017 Page 96

XTIVTHDMO5v wmmaJO1mm
F‘ w/II

(T.

NOAC Ex. 1017 Page 97

“dommN>4<z<

.ZO_.r<mmn_O

_

_____ozmmmooE_.zo_5mdm__$530:16meW__3555400055e__0‘;m__P__mmmmmmU__55250M_mm<m<k<o_oz<X.x)J_20.5352._mm..i200EK_memmmoomaC2m_zofi<N_._<zEm8l_A0“_220E830_NaII

1_

2_w>_Wu__mm<m<p<oomoommzQEomfizmQ_zOfio<Exm_2302!ZO_F<O_n:mm<40wbpmM._QZ<_=>>OJI¢=MEOS—AOOOFOEQ_ESE:__r1111|__
_

m.

.J.1lllllllL._kamzo<o<__N5_wv.‘ vmmme__AV_momoomm_2%IE_Wm_wwmmumkflmmDIOOmm22,02!_>wv_1504“...ZOF<SEOmZ_ZO_.r<S_mOn_Z_Fm“26::2E2205_ofi<wmm>zoowzcfiEzmo.zECEmm.maxog_magz:35mB<Exmmuzooomm_mon__mom oz<mN5<z<_momum.vmm_lllllllllllllL._IIvom95mEmmi_F\Y_llllllllllllllllll1
8m

NOAC Ex. 1017 Page 98

0.44.”;

1HIIT:|\H(IHI‘
II

PRINT OF DRAWINGS

A5935.1.121%}:

GENERATE
PACKET

PARSE AND
EXTRACT

406 2- AND

DATABASE

OPERATIONS

'ATTERN, PARS

EXTRACTION

LOAD LOAD STATE
PARSING NSTRUCTION

SUBSYSTEM DATABASE

DESCRIPTION‘

MEMORY

HIGH LEVEL
PACKET

DECODING

PACKET
STATE

INSTRUCTION
AND

OPERATIONS

 COMPILE

 STATE
PROCESSOR
INSTRUCTION

DATABASE

 MEMORY

400

NOAC EX. 1017 Page 98

NOAC Ex. 1017 Page 99

II

!
i1
I
T

E
E
§

T

504

92rkic '"mfi ‘ ‘ ' ‘

PRLVTOF DRAWLNQS,

4-5.0.BLGEHALJJCD ‘ "h ' ” k)

= I I
PACKET

KEY

ORE IN PACKE V’

I‘MM

FETCH NODE ANI
PROCESS FROM

PATTERN
HMH

\‘hi 513

NEXT
PACKET

COMPONE

MORE
PATTERN

NODES? 511

. -- ' Vu :u‘

PROCESS TO
COMPONENT

510 500
v

V

PATTERN
NODE

 509

NOAC EX. 1017 Page 99

NOAC Ex. 1017 Page 100

.
I
l
i

21‘v'y“A;uy:

PRLVT OF DRAwf ,
ASOMGm '3. j

Aug—Emu 1’ \ *

/-\

6/21

0

PACKET 602COMPONENT AND
PATTERN NODE

603

LOAD PACKET

COMPONENT 610

604 3
MORE PACKE LOAD KEY

BUFFER

COMPONENT

YES

FETCH EXTRACTION
‘ ND PROCESS FROM

PATTERNS 605

NO 611

606

NEXT
NO PACKET 609

COMPONEN
ORE EXTRACTIO ‘

ELEMENTS?
YES

607 APPLY EXTRACTION
PROCESS TO

COMPONENT \
600

 MORE TO
EXTRACT?

608

YEC

FIG. 6

NOAC EX. 1017 Page 100

NOAC Ex. 1017 Page 101

DA-I'I;A

mmros meuggs -\
Linogquuuy’ ‘v I,

fif-‘D K}

702

LOAD PATTERN
NODE ELEMENT

MORE PATTERN
NODES?

703

1‘llHhH
‘M‘
*1h

OUTPUT TO704
ANALYZER

HASH KEY BUFFER
ELEMENT FROM
PATTERN NODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

FIG. 7

1

 C 709

706

700

707

NOAC EX. 1017 Page 101

NOAC Ex. 1017 Page 102

Cavll;t A

PRLVTOFDRAMI') K /
ASQRJQULLLLNWQD ’

8/21

801

UFKB ENTRY FOR 802PACKET

\' COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/

BUCKET FROM CACHE 804
806

NO SET UFKB FOR
PACKET AS 'NEW'

; YES

; COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET No@ 808
YES

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

I
I
I

800

IIIIIII‘I“

 ORE BUCKET
IN THE BIN?

805

III‘;

I‘I;I.I'

809

810

SET UFKB FOR PACKET
81 1 AS ‘FOUND‘

812 UPDATE STATISTICS FOR
RECORD IN CACHE

“SE. FIG. 8
NOAC EX. 1017 Page 102

NOAC Ex. 1017 Page 103

”WAW.

III]II

IIIHI‘

"II‘54

IIIII

I,HIII-IIII}

Q}: rl(

PRLVTOF memgs

\w/

ENDLOOKU'

REQUEST
REPLY

'ORTMAPP

 ‘NNOUNCME

909

EXTRACTPROGRAM EXTRACTPORT

903 GET ‘PROGRAM‘, GET 'PROGRAM',
'VERSION‘, ‘PORT' AND 'VERSION‘ AND
'PROTOCOL (TCP OR 'PROTOCOL (TCP OR

 UDP) UDP)‘

SAVEREQUEST

SAVE 'PROGRAM',

CREATESERVERSTKH

SAVE 'PROGRAM‘, 'VERSION' AND

904 ‘VERSION'. ‘PORT' AND ‘PROTOCOL (TCP OR
'PROTOCOL (TCP on UDP)‘ WITH

UDP)‘ WITH NETWORK DESTINATION

ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

NETWORK ADDRESS.
BOTH MAKE A KEY.

RPC
END

LOOKUP
REHX

EXTRACT
PROGRAM

FIND 'PROGRAM‘
AND 'VERSION‘

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

GET 'PORT' AND

“PROTOCOL (TCP
OR UDP)‘.

900

FIG. 9

NOAC EX. 1017 Page 103

NOAC Ex. 1017 Page 104

Carl/incl.

PRINT OF DRAW

1 0/21

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 100‘ MEMORY

100 1031
100

1 004

INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL N

:‘IIIIIII'II1

1031

: 100' PATTERN 1007
; RECOGN'TN EXTRACTION ENGINE

ENGINE (SLICER)
: (PRE)

i 100.

PARSER

PACKET PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAD

MEMORY

1012

1021

PS‘TQAKIEI INPUT BUFFER ANALYZER DATA REA -»
INTERFACE INTERFACE
CONTROL CONTROL

ANALYZER
READY

‘ .

PACKET

102

1023 FIG. 10 1027
NOAC EX. 1017 Page 104

NOAC Ex. 1017 Page 105

amid...

PRLVT or nmwmcs ‘

15ng u

1 1/21

1100 \A

1101 1103 1115 1118112
1107

LOOKUP/
UPDATE
ENGINE

(LUE)

PROCESS‘
1NSTRUCN

f DATABASE
(SPID)

UNIFIED

; FLOW
PARSER KEY

_ INTER- H UFFER
‘ FACE (UFKB)

1'H{I

PROCESSR

(SP) 1119 112

III-I‘IIIIIIII

#2113513 MEMEORYI T R-
“ CONTROL.1 FACE

(UMC)
 INSEnglylVON/

DELETION H
ENGINE

(FIDE)

1110

FIG. 11
NOAC EX. 1017 Page 105

NOAC Ex. 1017 Page 106

Carl/inn

M,

II“1'I!IIIIIIII

'IIII,||II“II
IIIIIII)“
IIII[I

1206

1208

1210

mmr or muwu‘cs

AS__O~RI_QI_1LALLY Flu-1n

12/21

1201

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

1202

ACCESS

CONVERSATION
RECORD BIN

1203

REQUEST RECORD BIN/
BUCKET FROM CACHE 1204

REQUEST NEXT
BUCKET FROM

CACHE
4'lN/BUCKET EMPTY 1205

INSERT KEY AND HASH 1207
N0 N BUCKET, MARK 'USED

WITH TIMESTAMP

UCKET VALID.

OMPARE CURRENT BI 1209
AND BUCKET RECORD

KEY TO PACKET

SET UFKB FOR
PACKET AS

'DROP‘

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

1211

SET INITIAL STATISTICS
FOR RECORD IN CACHE

FIG. 12

NOAC EX. 1017 Page 106

NOAC Ex. 1017 Page 107

Mfi-MWH._____..

1II11'HzII'IIIIII"IIII,“IIII
“II”II

IIIIIIiIIIIIIII

Carl!

PRINT 0!" DRAWUV/Qs
AS ORIGINALLY ‘I

SET STATE
PROCESSOR
INSTRUCTION
POINTER TO

VALUE FOUND IN
CURRENT STATE

SAVE STATE
PROCESSOR
INSTRUCTION
POINTER IN

CURRENT FLOW
RECORD

13/21

UFKB ENTRY FOR
PACKET WITH STATUS

'NEW‘ OR 'FOUND' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

NO DONE PROCESSING 1307
STATES FOR THIS

PACKET?

1308

1310
YES

 DONE PROCESSING 1309

TATES FOR THIS FLOW”

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR 13“

INSTRUCTION IN CURRENT
FLOW RECORD

@1313
FIG. 13

NOAC EX. 1017 Page 107

NOAC Ex. 1017 Page 108

I i3 {III III II if“ ‘,II' II II ” if :Iz'II II I" II"‘II II II I II iI II II I:

EXTRACT LOOKUP

RECOGNIZE IDENTIFYING ,. ., KNOWN NEW "FLOW"
PATTERN INFO & PROCL FLOW KEY RECORDS RECORD? DATABASE

INFORMATION /STATE (DB 1424) OF FLOWS
I

I

I

I

I

I

: PATTERN UPDATE
I STRUCTURES CLASSIFICATION
I

I

I

I

I

"FLOW"

AND KNOWN
EXTRACTION RECORD
OPERATIONS

PARSER
SUBSYSEM

STATE

MACHINE

SELECTOR

1426

CLASSIFICATN

FI G . 1 4 I FINALIZATION

STATE
ANALYSIS

I PERATION '
ANALYZER

SUBSYSTEM

I

|

I

|

|

l

|

I

I

I

I

|

I

I

I

|

I

I

I

I

I

|

I

I

I

I

l

I

|

_ ——————————————NOAG Exrlfil'7 Page—108'

LZ/VL

‘1

S'JNI‘IMVHOJO1K7!”

NOAC Ex. 1017 Page 109

l
--_..41J~¥

Plum OF DRAWINGS
ASOMGW

a:5 5

15/21

mo

w.DE<Oxmaw0<mmwkz_.)vEO>>._.mz
8wmotzoz

>m02w2meI

w0_>mo20752300..rmxo/E

mm

ww<m<._.<omwmI/E

a~.____.:.m__:f;::”1.7.....132..“____~:__.,.~.:a
wNF

NOAC EX. 1017 Page 109

NOAC Ex. 1017 Page 110

fl
PRLVT 0F mum

A5 ORIGIN YIX-_~,...__‘M_;p Q

16/21

5

IFl1‘HH _x O) O 0')

Hirm«3.1”,i},nw
:1u

[|1-1|1)",1.1|

NOAC EX. 1017 Page 110

NOAC Ex. 1017 Page 111

unufin

Purfluflfiriu1‘-
'.Il|l111,11

11.1111111111I"

Carl/Er

Pamroronawmr

A5()RJCLVALLY
‘_.—_. .

17/21
1702

1704
offset

12 to 13 11‘

1708 Type (2)
H h

1710 as 1) K 1700

\-et =14

FIG. 17A /
1712

 1W1!"’IMMIWVIIWWWIWIIIII
WWW

L3 to

[5ng 4 VIiIT'IVyWWfiImiIm
-1]

Dst Address
—
VIII/[£1151WiflifWWWIIIIIIIIIIIA

Dst Address

Dst Hash (2)
Src Address

Src Hash (2

<1 U)

-et = L3 + (lHL/4)

 I

FIG. 17B

0

[DP = 0x0600“
[P = 0x0800‘

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OXOBAD‘

VLOOP = OXOBAE
VECHO = OXOBAF

NETBIOS-3COM = 0X3C00 —
0X3COD#

DEC-MOP = 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003‘
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x600?

RARP = 0x8035
ATALK = 0x8098‘

VLOOP = 0x80C4
VECHO = 0x80C5
SNA—TH = 0x8005‘

ATALKARP = 0x80F3
IPX = 0x8137‘

SNMP = 0x814C#
IPv6 = 0X8SDD*

LOOPBACK = 0x9000

Apple = 0x080007

‘ L3 Decoding
L5 Decoding

1752

ICMP = 1
IGMP = 2
GGP = 3
TOP = 6'
EGP =8

IGRP = 9
PUP = 12

CHAOS = 16
UDP = 17‘
IDP = 22#

lSO—TP4 = 29
DDP = 37#

ISO-1P = 80
VIP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

NOAC EX. 1017 Page 111

NOAC Ex. 1017 Page 112

[1%A§_ORICINALLY

PRLVT 0F

18/21

PROTOCOL

IHOZm:GAME

1DJMEnowDOOmtm
r1850

ESQJOOOHOEQ

FIG. 188

211e
g

aP7101X.ECAON

NOAC Ex. 1017 Page 113

u I: :1 11 1‘: $1 1: 2.1111 11 ‘ ”"ii ‘31”51 11:1" IL}. [1,11 ““:i. 11 11 i1 II

1905

1919

K 1900
LUESEL—

SF’SEL—

FIDESEL—
 INPUT SELECT MUXES

1917

ADDR DATA /UMC-O-CA-DATA —

CA-ADDRESS—C1903 1915

CACHE WRITE STROBES4—.—__

 PAGE—O-IN PAGE-31-IN

DUAL PORT RAM PAGES (32)

 PAGE-O-OUT PAGE-31-OUT

1909

CAPAGESELLu

3 *DATA LUESEL—

m OUTPUT SELECT MUXES SPSEL—DATA& FIDESEL—
”d <—DATA
r:

1919

NOAC EX. 1017 Page 113FIG. 19

LZ/GL

e-s.,9,.‘

A'nv—E’I'Dmosv JvmvuaJO1mm
x.

aft

Q

NOAC Ex. 1017 Page 114

" PRINT OF DRAWU‘CS

AS ORIGINALLY! D*-~—- - L‘h

20/21

2001 2005

’—

g LUEMEMREQ SEL_LUE_FIDE—>
t1 SETLUEREADY
Lu CAM_HiT

3 SETLUESEL E

CAM_HITPAGE g
CACHE_CAM_SM <1

g FIDEMEMREQ CAM—LRUPAGE 3
(1 SETFIDEREADY LOAD_CAM O: LU

: SETFID

_; E ESEL REFRESH_CAM\

HIM:

GET BACKUP GOT/20031}!uu‘

'111|0
SEL_CACHE—$

CA-MEM-RE

CA-MEM-WRIT

CACHE ME

SIGNALS .

_ CACHE_MEM_SM
HI!HJ'n

MC
UMC—O—CA-NEXTA DCACHEPORT

UMC-O-CA—REA

FIG. 20

NOAC EX. 1017 Page 114

NOAC Ex. 1017 Page 115

H PRINT 0F DRAWUNCS

21/21

 CAM_H|TPAGE, REF—DATA

CAM_LRUPAGE, REF-DATA

2109

LOAD, REFRESH. EVICT REFDATA
2103

CAM_INPUTDATA 2113

LOADO CAM[0] MATCHO

DAT JV
LOAD1 CAM[1] MATCH1

DATA;
LOADZ CAM[2] MATCH2

LOADS CAM[3] MATCH3

E CAM4] MATCH4
: E I 2115 E
: Lu CAM[5] MATCH5 E

i E “ CAM %

» Jr 0
i AM[7] MATCH7 _:

i

‘ CAM NUMBER

1 I
DATAO - - - DATA31

2123 m

1 JV 2121 ‘7 &
DIRTY ENTRY CURRENT ENTRY 2117

DIRTY_PAG E, DIRTY_HASH, DIRTY_BUCKET CAM_HITPAGE

v 1\
FIG. 21 2‘19

NOAC EX. 1017 Page 115

NOAC Ex. 1017 Page 116

 simssian et al. APPT—001-4
<1 11

6771646

1/21

100 108
CUENT4-\ ANALYZER

107
116

CLIENT 3 SERVER
\ \110

106 121

 DATA COMMUNICATIONS

NETWORK 102

125

123

— 118

SERVER A — 105 _—/

N CLIENT2 J CLIENT1 x
112 104

FIG. 1

NOAC EX. 1017 Page 116

NOAC Ex. 1017 Page 117

202(106 M\

m—J-

: 3 i /:CL'ENT 260 261 262 263 264 265 APPL‘CAT'ON $ERVER2
3 K K K K / K K ; ,

m IIIII-
_________ K270 K271 K272 K273 K274 K275

datum reply

NOAC EX. 1017 Page 117

NOAC Ex. 1017 Page 118

310

ANALYZE AND

AND
EXTRACTION

DATABASE

COMPILER
AND

OPTIMIZER

336

PROTOCOL

DESCIPTIO
LANGUAGE

DATAG RAM

LAYER

EXTRACT

RECOGNIZE IDENTIFY‘NG BUILD UNIQUE ‘ I LOOKUP “
PATTERN INFORMATION CONVERSATIO FROM NEW FLOW

INFORMATION (EH) "FLOW" KEY I KNOWN RECORD?
(PAR) I I RECORDS

I (DB 324

I: II II II II H II I‘ II

PROTOCOL

& STATE

IDENTIFICATION

MORE

CLASSIFICATIO

YE

332

STATE
PROCESSOR

INSTRUCTION
DATABASE

 PROCESSNc

OPERATION '

(D

g
25.U)
E.

. Q)

'I 324 . 3(P.
B

DATABASE >
OF FLOWS TJU

TI0
O

/T -.*

UR

UPDATE
“FLOW"

KNOWN
RECORD

LZ/S
CLASSIFICATN
FINALIZATION

ANALYZER

@922

—N9A€ Ex.—1017—P'age 118

AL

NOAC Ex. 1017 Page 119

Tr

sarkissian et al. APPT_001_4
1 .rI
Q

C

402

HIGH LEVEL

PACKET

DECODING

II ESCRIPTION ~

404 405

: GENERATE
:_ PACKET

: PAPIQSCEELD COMPILE STATE
; IIESCRIPTION ~ INSTRUCTION
=_ EXTRACT AND

403

406 7/ATTERN’ PARS PRgg/ETSESOR
: AND

3 EXTRACTION INSTRUCTION
' DATABASE 408 409 DATABASE

LOAD

PARSING
LOAD STATE
NSTRUCTION

SUBSYSTEM
MEMORY

DATABASE

MEMORY
400

NOAC EX. 1017 Page 119

NOAC Ex. 1017 Page 120

AP PT—001 -4

5/21

0

503 LOAD PACKET
COMPONENT

512

504 ORE IN PACKE I»

Z FETCHNODEANI
: PROCESSFROM

WUTERNS

i 513

3 5H

.-- V‘ol A‘i

PROCESSTO
COMPONENT

510 kk\‘ 500
HUTERN

NODE

509 ELEMENTS

FIG. 5

_____—_____‘

NOAC EX; 1017 Page 120

NOAC Ex. 1017 Page 121

6/21

0

PACKET 602
COMPONENT AND

PATTERN NODE

603

LOAD PACKET

V; COMPONENT 610

604

MORE PACKE LOAD KEY
BUFFER

 nun.' -|TI»un
YES

FETCH EXTRACTION 6
‘ ND PROCESS FROM|lu

PATTERNS 605

NO 611
606

IIHIIIIn,I!II'

NEXT

N. PACKET 609
COMPONEN

ORE EXTRACTIO ‘
ELEMENTS?

YES

607 APPLY EXTRACTION

PROCEDSS TO
COMP NEN \

600

MORE TO 608
EXTRACT?

YE

FIG. 6

NOAC EX. 1017 Page 121

NOAC Ex. 1017 Page 122

Sarkissian et al.

”Tun‘dhnu

IIII11II1|

APPT—OO1-4

703

704

706

707

7/21

0

EY BUFFER AND 70
PATTERN NODE

LOAD PATTERN

NODE ELEMENT 708

MORE PATTERN OUTPUT T0
NODES?

YES

HASH KEY BUFFER

2

ANALYZER

ELEMENT FROM 705
PATTERN NODE

PACK KEY & HAS

NEXT PACKET

COMPONENT

FIG. 7

709

700

NOAC EX. 1017 Page 122

NOAC Ex. 1017 Page 123

HII11‘~Ihnnuuuun
'III

HIIM,"II,IIII.

sarkissian et al. APPT—001-4

O 0

8/21

a

UFKB ENTRY FOR
PACKET 802

800\
COMPUTE CONVERSATION 803
RECORD BIN‘ FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE 804 806

NO SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET N® 808
YES

ORE BUCKET0

8 5 IN THE BIN?

YES

8
09 MARK RECORD BIN AND 810

BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
8“ AS 'FOUND‘

812 UPDATE STATISTICS FOR
RECORD IN CACHE

8131/. FIG. 8

NOAC EX. 1017 Page 123

NOAC Ex. 1017 Page 124

Tr

I||.IIIIIIHIIIII:
‘1,,‘I

Ill

III1|,le

IIIIII.,.IIIIIIII

Sarkissian et aI. APPT—001-4

O O

9/21

901 902 910

RPC

BIND LOOKU '
REQUEST 'ORTMAPP " ‘ NNOUNCME

909

EXTRACT PROGRAM

GET 'PROGRAM‘,
'VERSION', 'PORT‘ AND

'PROTOCOL (TOP OR
UDP)

EXTRACT PORT

GET 'PROGRAM'.
'VERSION' AND

'PROTOCOL (TOP OR
UDP)’

908

SAVE REQUEST

SAVE ‘PROGRAM',
'VERSION‘ AND

CREATE SERVER STAT'

SAVE 'PROGRAM',

904 ’VERSION', ‘PORT' AND 'PROTOCOL (TOP OR
“PROTOCOL (TOP OR UDP)‘ WITH

UDP)‘ WITH NETWORK DESTINATION

ADDRESS IN SERVER NETWORK ADDRESS.
STATE DATABASE. KEY

ON SERVER ADDRESS
AND TCP OR UDP PORT.

BOTH MAKE A KEY.

RPC
BIND

LOOKUP
REPLY

 EXTRACT

PROG RAM
 LOOKUP REQUE ‘

FIND ‘PROGRAM'
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

900/ GET 'PORT' AND

‘PROTOCOL (TOP
OR UDP)‘.

FIG. 9

NOAC EX. 1017 Page 124

NOAC Ex. 1017 Page 125

f

53005513" et al. APPT—OO1-4
O O

1 0/21

PATTERN 100 EXTRACTION

RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 1001 MEMORY

100 1031
100

1 004

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL N

1031

100 PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

100:

PARSER

PACKET PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOA!

MEMORY

1012

1021

INTERFACE INTERFACE

CONTROL CONTROL
ANALYZER

READY

‘ V

PACKET

102

1023 FIG-1O 1027

NOAC EX. 1017 Page 125

NOAC Ex. 1017 Page 126

Y

sarkiSSian et al. APPT—001-4
{“1
1V]

1100 N

1101 1103

11/21

1115 1118112
1107

ENGmE QEEJ
(LUE) hfl' “QINTER-

FACE

ans)

INSTRUCN
DAIABASE

PROCESSR
1119112

(SP)

flgfiggfi MEMORY
.. INTER-CONTROL.‘ FACE

FlOW (UMC)
lNSERTION/

NOAC Ex. 1017 Page 127

‘r

garkissia” et al. APPT-001-4

3

1206

REQUEST NEXT

BUCKET FROM
CACHE

<®

12/21

@1201
UFKB ENTRY FOR

PACKET WITH

STATUS 'NEW‘

1202

ACCESS

CONVERSATION
RECORD BIN

REQUEST RECORD BIN/
BUCKET FROM CACHE

IN/BUCKET EMPTY

1203

1204

NO

 ‘5 1205

INSERT KEY AND HASH 1207
NO N BUCKET, MARK 'USED

1208 WITH TIMESTAMP

E
Y S OMPARE CURRENT BIN 1209

1210 AND BUCKET RECORD
SET UFKB FOR KEY TO PACKET

PACKET AS
'DRCR

MARK RECORD BIN AND

BUCKET 'IN PROCESS'

AND 'NEW' IN CACHE

1211

SET INITIAL STATISTICS
FOR RECORD IN CACHE

FIG. 12

NOAC EX. 1017 Page 127

NOAC Ex. 1017 Page 128

Y

sarkissian et al. APPT—001-4

Q 3

13/21

1300 N UFKB ENTRY FOR
PACKET WITH STATUS

'NEW' OR 'FOUND' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

1305PERFORM OPERATION BASED

ON THE STATE INSTRUCTION

SET STATE

PROCESSOR

INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

SAVE STATE

PROCESSOR

INSTRUCTION DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLOW?

CURRENT FLOW
RECORD

SET AND SAVE FLOW REMOVA

STATE PROCESSOR J13“
INSTRUCTION IN CURRENT

FLOW RECORD

1313

FIG. 13

NOAC EX. 1017 Page 128

NOAC Ex. 1017 Page 129

I ___________________I I___________________ I

LOOKUP
KNOWN

ANALYZE AND
RECOGNIZE

EXTRACT

IDENTIFYING

NEW “FLOW"

12TeueISSPIJ‘gs
WUTERN wux>&PROCL 'TLOWPKEY RECORDS RECORD?

INEORMARON /SWWE (03143“ gégfigfig

"I,/

WUTERN %§%flfi
u E

STRXSE R S CLASSIFICATION KNOWN
EXTRACRON RECORD
ORERAHONS _4

42:.\

no

RARSER ‘*

_§Q§Y§NL _______ I STATE
MACHWE

SELECTOR 1.2

1426

CLASSIFICATN
FINALIZATION

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

STATE '
ANNXSB I

IPERAHON‘ I

ANNXZER I

SUBSYSTEM I

NOAC EX. 1017 Page 129

17‘LOO-iddV

NOAC Ex. 1017 Page 130

Y

APPT—OO1-4
sarkissia“ et al.

15/21

wom<ozmamoEmEZmm<m<H<D

NOAC EX: 1017 Page 130—

NOAC Ex. 1017 Page 131

saIKiSSian et al.
APPT—OO1-4

3

16/21

 1614

XTJ
m
Dst Hash (2

Src Hash (2

met=12

FIG. 16

NOAC Ex. 1017 Page 132

?

sarkiSSian et al.
APPT—001-4

:3V.

17/21

1702
1704

ff t
12°52

’ 1706

H h11710 as) Y~17oo
\-;et =14

FIG. 17A
1712

[L3 * Vllfiilli-lv'
(mu 4 Src Address
- 1] Dst Address

'lllllllWiiifliiifiilllllllllllll

IDP = 0X0600*

iP = OXO800*

CHAOSNET = 0X0804
ARP = 0X0806
VIP = OXOBAD*

VLOOP = OXOBAE
VECHO = OXOBAF

NETBIOS—BCOM = 0X3C00 -
OX3COD#

DEC—MOP = 0X6001
DEC—RC = 0X6002

DEC-DRP = 0X6003*
DEC-LAT = 0X6004

DEC-DIAG = 0X6005
DEC-LAVC = 0X6007

RARP = 0X8035
ATALK = 0X8OQB*

VLOOP = OX8OC4
VECHO = 0X8OCS
SNA-TH = 0X80D5*

ATALKARP = OX8OF3
IPX = 0X8137*

SNMP = 0X814C#
va6 = OX86DD*

LOOPBACK = OXQOOO

Apple = 0x080007

* L3 Decoding

L5 Decoding

1752

lCMP = 1
IGMP = 2
GGP = 3

TOP = 6 *
EGP = 8

lGRP = 9
PUP = 12

CHAOS = 16
UDP = 17*
DP = 22#

lSO-TP4 = 29
DDP = 37#

lSO-iP = 80
VIP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

_-______'__F_———’J

NOAC Ex. 1017 Page 133

r

Sarkissian et al. APPT—OO1-4

PROTOCOL

15259mm

FIG. 18A

1370

/
LUT NUM
—}

0%mooom._.>m
05m

l'lvJOOOHOWE

FIG. 188

NOAC EX. 1017 Page 133

NOAC Ex. 1017 Page 134

LUESEL—

SPSEL—

FIDESEL—

INPUT SELECT MUXES

UMC-O-CA-DATA L

 PAGE-O-IN PAGE-31-IN

DUAL PORT RAM PAGES (32)

PAGE-O-OUT PAGE-31-OUT

1909

CAPAGESEL

LUESEL—

SPSEL—

FIDESEL—

E 4-DATA
E

1919

FIG. 19

 OUTPUT SELECT MUXES

1905

/ K1919
LLl ——-DATA J

1900

1917

CA-ADDRESS—C
03 1915

LZ/GL

'191euégsslxms

C,

NOAC EX. 1017 Page 134

17'L00‘_deV

NOAC Ex. 1017 Page 135

Y

sarkissian et al. APPT-oo1;4

J 3

20/21

2001 2005

F—

g LUEMEMREQ SEL_LUE_FIDE—>
I1 SETLUEREADY
LU CAM_HIT

3 SETLUESEL 3:

CAM_H|TPAGE g
CACHE_CAM_SM <

CAM LRUPAGE

'55 FIDEMEMREQ ‘ <2:
:1 SETFIDEREADY LOAD_CAM 0
Lu

ETFIDESEL
E S REFRESH_CAM

GET BACKUP GOT/ 2003

SEL_CACHE—->

CACHE ME

SIGNALS

_ CACHE_MEM_SM

CA-MEM-RE

CA-MEM-WRIT

UMC-O-CA—NEXTACACHEPORT

UMC—O-CA-REA

FIG. 20

NOAC EX. 1017 Page 135

UMC

NOAC Ex. 1017 Page 136

Sarkissian et a1. AP PT—OO 1,41

.4)

21/21

CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA

2109

LOAD, REFRESH, EVICT ' REF-DATA
2105 2111 2103

CAM_INPUTDATA 2113

LOADO CAM[[O] MATCHO

DATAJ“Low mom

LOAD2 MATCH2

LOAD3 MATCH3

I- LOAD4 MATCH4

g 21150.

Lu 5 TO 32 LOADS MATCH5

’2:
D

3 HIT

LOAD7 MATCH?

LOADBO MATCH3O

LOAD31 MATCH31

CAM_NIUMBER CAM NUMBER
l l

2127 DATAO DATAO ' ' ' DATA31

2123 ‘mm'

V; R
DIRTY ENTRY CURRENT ENTRY 2117

DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET CAM_HITPAGE
V

FIG. 21 v\2119

NOAC EX. 1017 Page 136

LOOKUPPORT

NOAC Ex. 1017 Page 137

\ Pagelofl
'\/

UNITED STATES PATENT AND TRADEMARK OFFICE
COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFlCE
WASHINGTON, D C 20231

www usptogov
APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/608,266 06/30/2000 Haig A. Sarkisstan APPT-001-4

FORMALITIES LETTER

IllllllllIlllllIlllllIlllIlllllllllllllllllllIlllIllllllllllllllllllllllllIlllllllllllllllll
’OC000000005373402'

Dov Rosenfeld

5507 College Avenue
Suite 2

Oakland, CA 94618

Date Mailed‘ 09/05/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all
required items and pay any fees required below to avoid abandonment Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provtsions of 37 CFR 1.136(a).

o The statutory basic filing fee is missing.

Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1 27).

o The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is reqUIred.

c To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)

of $130 for a non—small entity, must be submitted With the missing items identified in this letter

0 The balance due by applicant is $ 820.

A copy of this notice MUST be returned with the reply.

"x/L',

X/ i/ 5 4
I ,

Customer Service Center

Initial Patent Examination Division (703) 308-1202
PART 3 - OFFICE COPY

file://C:\APPS\PreExam\correspondence\2_C.xml 9/1/00

NOAC EX. 1017 Page 137

NOAC Ex. 1017 Page 138

flies *3 a itIo , Qi/QRef..,/Docker No: APPT—Igm—Al J Patent
ms 5“" ‘ " l l

1 SI '1» ' 53 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE “
l 8

« xx

fligfifiplicanms): Sarkissian, er al.
Application N0.: 09/608266

Group Art Unit: 2731

Examiner: (Unassigned)

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONITOR

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).

Enclosed is a copy of said Notice and the following documents and fees to complete the filing

requirements of the above-identified application:

same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet.

X Executed Declaration and Power of Attorney. The above—identified application is the

X A credit card payment form in the amount of $ 860.00 is attached, being for:

X Statutory basic filing fee: $ 690

X Additional claim fee of E

X Assignment recordation fee of $ 40

X Missing Parts Surcharge $130

X Applicant(s) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(3) of:

one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commissioner for Patents, Washington, D 31 on

Date: figfi 2’0/ 2:966" Sign‘ «71/
Name. Dov Rosenfeld, Reg. No 38687

NOAC EX. 1017 Page 138

NOAC Ex. 1017 Page 139

o “w‘c/

Application 09/608266, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50—0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

I/(1" AC9 J’Pd‘fi/"
Date

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547—3378; Fax: (510) 653—7992

NOAC EX. 1017 Page 139

NOAC Ex. 1017 Page 140

PATENT APPLICATION

ATTORNEY DOCKET NO. APPT-001—4

As a below named inventor, I hereby declare that

My reSidence/post office address and citizenship are as stated below next to my name;

I believe Iam the origuial, first and sole inventor (if only one name is listed below) or an original, first andjomt uiventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent IS sought on the invention entitled:

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A NETWORK MONITOR

the spec1fication of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No 09/608266 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reViewed and understood the contents of the above—identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all mformation which is material to patentability as defined in 37 CFR 1 56,

Foreign Applicatiou(s) and/or Claim of Foreign Priority

Ihereby claim foreign priority benefits under Title 35, United States Code Section 1 19 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate havmg a filing date before that of
the application on which priority is claimed:

COUNTRY I APPLICATION NUMBER 1 DATE FILED
Provisional Application

I hcreby claim the benefit under Title 35, United States Code Section 1 19(e) ofany Umted States provxsional application(s) listed bclow:

 PRIORITY CLAIMED UNDER 35

APPLICATION SERIAL NUMBER FILING DATE

U.S. Priority Claim

Ihereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner prowded by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1 56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atented/ Hendin abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appouit the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all busmess
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg No 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No, 38,687
5507 College Avenue, Suite 2 Tel: (510) 547—3378
 Oakland, CA 94618

Ihereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willfiil false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such vvillful false statements may Jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain To San Antonio Texas 78255

Post Office Address: Same

the Jilin s, t u, glooo
First Inve or’s Signature Date

NOAC EX. 1017 Page 140

NOAC Ex. 1017 Page 141

1 ‘ h P }/ ~/

Declarétion and Power of Attomey (Centinued)
Case No; «Case CaseNumber»

Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenbcrg Drive1 San Jose, CA 95120—2736

/:9 7&6
Date

NOAC EX. 1017 Page 141

NOAC Ex. 1017 Page 142

N "’\\

\ ,P E >\ _ l W
o 036 (BEL/Docket N0: APP'PJél-4 w“ Patent

1 1m 0,.

i , 18‘ ’L“ g IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
s

8r skfigifl‘j‘pklicanms): Sarkissian, er al. Group Art Unit: 2731
Application N0.: 09/608266 Examiner: (Unassigned)

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONITOR

REQUEST FOR RECORDATION OF ASSIGNMENT

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Assignment

Dear Assistant Commissioner:

Enclosed herewith for recordation in the records of the US. Patent and Trademark Office is an

original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the

Assignment.

Respectfully Submitted,

 17d— 2!; Lee: K _
Date Dov Rosenfeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653—7992

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

envelope addressed to the Assistant Commissioner for Patents, Washingto ? . 0231 on.

2% s, ,2,
Name: Dov Rosenfeld, Reg. No. 38687

/

NOAC EX. 1017 Page 142

NOAC Ex. 1017 Page 143

/

, , Q I P \
\l / S \; page i m
J not 2 A. 2000 (33 iv“

a e .l —
‘3’?“ l‘ y

:5 1 TRAMieK OFFICE3 , COMMISSIONER FOR FATENTs
~ UNITED STATES PATENT AND TRADEMARK OFFICE

WASHINGTON. D C 2023i
www usplo gov

09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4

FORMALITIES LETTER

Dov Rosenfeld

35%, $0,898 Avenue lllUl e

Oakland. CA 94618

Date Mailed: 09/05/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHS from the date of this Notice Within which to file all
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1 136(a).

o The statutory basic filing fee is missing.

Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1.27).

o The oath or declaration is missmg

A properly signed oath or declaration in compliance With 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

0 To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)
of $130 for a non—small entity, must be submitted With the missmg items identified in this letter.

0 The balance due by applicant is $ 820.

A copy of this notice MUS! be returned wit]: the reply.
,2 r

.‘j ’ ,/ //, /
ifiK ,1 JIX/

Customer Service Center

Initial Patent Examination Division (703) 308-1202
PART 2 — COPY TO BE RETURNED WITH RESPONSE

\,~'.1,
_- . —. - ; WM «...» :1 :r.‘ 01;:»»- . i .ii .4...—“V , -iiim; ..--—- —

i
-i.T1

file://C:\APPS\PreExam\correspondence\2‘B.xml ‘ 3 79/1/00,

NOAC EX. 1017 Page 143

I

NOAC Ex. 1017 Page 144

Saar/4;
Patent

 \P, 50 effDocket‘ No: APPT—4
O ‘, ’» .‘
, Ma“) 1.;- IN THE UNITED STATES PATENT AND TRADEMARK OFFICE ,
6 . , fl 6

a? . .

affmmfiggfificmfls): Sark1ss1an, et al. Group Art Unit: 2731
' Application No.1 09/608266

Filed: June 30, 2000

WWW~

Examiner: (Unassigned)

Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONITOR

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(t).

Enclosed is a copy of said Notice and the following documents and fees to complete the filing

requirements of the above—identified application:

X Executed Declaration and Power of Attorney. The above-identified application is the

same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet.

X A credit card payment form in the amount of $ 860.00 is attached, being for:

X Statutory basic filing fee: $ 690

X Additional claim fee of $_Q

X Assignment recordation fee of E

X Missing Parts Surcharge $130

X Applicant(s) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United States Postal Service as first/class mail in an
envelope addressed to the Assistant Commissioner for Patents, Washington, DC on.

Date: 0L 1:" 20 W Signed .
Name: Dov Rosenfeld, Reg. No. 38687

NOAC EX. 1017 Page 144

NOAC Ex. 1017 Page 145

‘ - Application 09/608266, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50—0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

(26 A0 LEAQQ‘ M
Date osenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653—7992

mm‘aa‘u.wawww~

NOAC EX. 1017 Page 145

NOAC Ex. 1017 Page 146

“ifv‘

gauges:A~'—:

‘W«*’~
"ea:~.

't.¢~.0

..~:.L.'.‘..u.“1.2‘

Hatmadam-v4
IA»

Our Docket/Ref. N0.: APPT-0Q4

«“gn'z’ffivfilfi‘my“5:33(.3....'

,mpg;.w.;"~"W-"V‘«

fl Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al.
Serial No.: 09/608266

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS IN

A NETWORK MONITOR

Commissioner for Patents

Washington, DC. 20231

Group Art Unit: 2731

Examiner:

ODE—livid009831
TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

X Return postcard.

L

with this communication or credit any overpayment to Deposit Account 50—0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Date: :QPC q 2&6]

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1—510—547—3378

Respectfully submitted,

50v Rosenfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail In an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date ol Deposit

Signature.
/ld, Reg. No. 38,687

i 3‘

”102Z!‘cldV

The commissioner is hereby authorized to charge payment of any missing fee associated

GENEUHH

NOAC EX. 1017 Page 146

NOAC Ex. 1017 Page 147

0
Our Docket/Ref. No.: APPT-001;4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al.

Serial No.: 09/608266

Group Art Unit: 2731

Filed: June 30, 2000 Examiner:

Title: ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS IN

A NETWORK MONITOR

Hooaiiw000231 I30221lid? UEAIEOEH

Commissioner for Patents

Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

under 37 CFR 1.97(c) together with either a:

Certification under 37 CFR 1.97(e), or

: a $180.00 fee under 37 CFR l.17(p)
(After the CFR 1.97(b) time period, but before final action or notice of

allowance, whichever occurs first)

under 37 CFR 1.97(d) together with a:

_ Certification under 37 CFR 1.97(e), and

__ a petition under 37 CFR 1.97(d)(2)(ii), and

__ a $130.00 petition fee set forth in 37 CFR l.17(i)(l).

(Filed after final action or notice of allowance, whichever occurs first, but before

payment of the issue fee)

X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposn:w1
Signature. 1,,

I

Do)m’id, Reg. No. 38,687

NOAC EX. 1017 Page 147

NOAC Ex. 1017 Page 148

C“ D

S/N: 09/608266 Page 2 IDS

X Some of the 1efe1ences we1e cited1n a search report from a foreign patent office1n a

counterpart foreign application In particular, 1eferences AD, AF, AH, CI, BA, BB, EC, and ED

were cited1n a search report f101n a fo1eign patent office1n a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR 1,97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

Date: El!“ ‘1 2-901

‘Bov Rosenfeld

Attomey/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No: +1-510-547-3378

NOAC EX. 1017 Page 148

NOAC Ex. 1017 Page 149

(x. (‘3 SHEET 1 OF 5.1 Al?

NHY.DOCKETNO. H. SERMLN01
APPT-OOl—4 09/608266

APPUCANT

Sarkissian et a1.

v . FILINGDATE

,2 6/30/2000

. _ Ii‘

3 . m 0.8. PATENT DOCUMENTS
«A (’7 FILING DATE

:3 DOCUMENT DATE NAME CLASS SUB-CLASS IF APPROPRIATE
3 NUMBER

f: AA A736320 Apr. 5, Bristol ‘ 364 300 Oct. 8,
i ' 1988 1985

§ AB ‘891639 an. 2, I akamura 340 825.500 lJun. 23,
_ A“ 1990 1988

i AC 101402 Iar. 31, Chui et a1. 90- lay 24,
I ’3'“ 1992 1988
i AD 247517 Sep. 21, 'oss et al. 370 85.5 Sep. 2,

z k~ 1993 1992
3 A AE 247693 Sep. 21, Bristol 395 800 i ov. l7,
3 " 1993 1992

315580 ay 24, Phaal 9—16- Aug. 26,

339268 Aug. 16, achida 365 ov. 24,g - u-
1 5351243 Sep 27, Kalkunte et. a1. 9 " Dec. 27,

I N 5365514 ov. 15, Hershey et a1. 99-0— 1-7~ Iar. 1,
g 2"" 1994 1993I,

: 375070 Dec. 20, ershey at al. 364 550 | ar. 1,

394394 Feb. 28, Crowther et a1. ; :9 un. 24,

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY
NUMBER

TRANS-
CLASS SUB-CLASS LATION YES I NO.“wadwmuqmw#5....2M...y.

2!:-

1:.2

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
H53,099m“.u..

"Technical Note: the Narus Syetem," Downloaded April 29, 1999 erQ
.narus.com, Narus Corporatlon, Redwood Clty Callfornla. c3

.x-y b_

b(I)

EXAMINER DATE CONSIDERED

/'- ‘i/L/As

and M considered Include a copy of [his term with next communlcatlon to Applicant,

NOAC EX. 1017 Page 149

NOAC Ex. 1017 Page 150

I

EIaLPORM-1449 (3 < 3 SHEET 2 OF 5.
ATTY. DOCKET NO. SERIAL NO

APPT—001—4 09/608266

APPLICANT

Sarkissian et a1.

HUNGDATE

6/30/2000

US.PATENTDOCUMENTS

FILING DATE
SUB-CLASS IFAPPROPFIIATE

15.02 Iar.
1993

1992

NAME

,_

CLASS

A: I 5 u- L

Ar 414650
430709

H- mm\OK' U‘I
Lo LT:(I)§C I—‘ (/1 w 0" p

’_| \Dc.‘ koI-J U1I
to . 4 Galloway .

aclawsky et al.

432776 Jul. 1III
I [.4 LO to UT

U) (D'U
1993

24,

um. 17,

-9 _ 0’

821 Iar. 1,
1993

-_ Jan. 26,
1994

Sep. 6,
1995

. 12,

. 15,

. 15,

. 12,

493689 . 2

I—IWJ \orD kOO" ax
to \o U‘I

Iar. l

1

0

500855 9
1996

Oct. 22

2

7

5

568471 ,

m
I'll

:1: I'D H m :3” (D L< (D n m H

5

av

i

A1CE (D H U) D” ID L< ID (1’ $1) ,_I

574875 I 0v. 1
1996

. l
1996 1993

1997 1993

1997 1995

634009 , Iddon et a1. 00.11 oct. 27,
1995

1993

586266 0 D ('1’

w to U1 ,5 o w m H

u:
l

U) 13"S(D D.- w to U":

U(D 0 CE (D H U] D” IDL< ID (1' SD ,_.

LII 606668

E
L“ 9) H (O (D (D (.1, 5]) H

mL< m q
1997

-A""

III
l

to U!

I
FOHBGNPATENTDOCUMENTS

PUBLl-CATION

DOCUMENT DATE COUNTRY CLASS
NUMBER

TRANS—
SUB-CLASS LATION

U:U:a!

EXAMINER DATE CONSIDERED

7/5/03
I . - .

‘EXAMINER‘ Inmal if citation considered, whether or not Citatlon IS In conformance wnh MPEP 609. Draw line through citation if not in conformance
and [111 considered. Include a copy of this form with next communication to Applicant

NOAC EX. 1017 Page 150

NOAC Ex. 1017 Page 151

'Y Era/.FORM-1449 V ‘ ‘, SHEET 3 OF 5.

ATTY. DOCKET NO,

APPT— 0 0 1 — 4
SERIALNO.

09/608266

'1 APPLICANT

”T Wu"? Sarkissian et al.

(Use several sheets if necessary) FILING DATE
6 / 3 0 / 2 O 0 0

U.S. PATENT DOCUMENTSl‘

FILINGDATE

INITIAL NUMBER

1997 ‘ 1995

1997 ‘ 1993

W 1998 1996

A” 1998 1996

1998 1995

5764638 un. 9, Ketchum 370 401 Sep. 14,

781735 ul. 14, Sonthard 395 200.54 Sep. 4,

784298 Jul. 21, ershey et al. 364 557 1 ul. 11,

787253 ul. 28, IcCreery et al. 395 200.61 I ay 28,

‘5805808 Sep. 8, ansani et al. 395 200.2 pr. 9,

1998 1996

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY
NUMBER

TRANS-

SUB-CLASS LATION
YES | NO

CLASS

I-i

.9093” ‘13:“? '35

I
Z

OTHER DISCLOSURES (Including Author, Title, Date. Pertinent Pages, Place of Publication, Etc.)

0_

I

EXAMINER DATE CONSIDERED

7/2/03
‘EXAMINER InIlIal If cnatlon conSIdered, whether or not CItatIon IS in conformance wnh MPEP 609 Draw Me through CItaIion If not in confoIEnce

and Lot congldefed. Include a copy of INS form with next communIcatIon Io ApplIcant. .2

NOAC EX. 1017 Page 151

H'IIV IUIIZ 3
I I]

NOAC Ex. 1017 Page 152

' Eta/.FORM-1449 a O_ SHEET 4 OF 5.

ATI'Y. DOCKET NO.

APPT— O O l — 4

SERIAL NO

09/608266

 INFORMATION DISCLOSURE STATEMENT APPLICANT
Sarkissian et a1.

ecessary) FILING DATE

6/30/2000

GROUP

\ I1’«a
U.S. PATENT DOCUMENTS

I!» ‘p

FILING DATE

IF BPPHOPR/BTE

'EXAMINER
INITIAL

DOCUMENT DATE NAME CLASS SUB-CLASS

395 . 6
1997

01 u 2
1995

00.59 u 7
1996

e 0

5

o

9

 NUMBER

5819028 Oct. ,

825774

835726 I 0

838919 I 7

841895 4, uffman
1998 ~

15

5

'U H

HHoH mm0m mmnm (I)(I)00
M o I

l

1

0V

0V . b.) L0 L11
mmm0:3‘(D9! .:3“2S»:32m9ID I»Q:I<1D‘ HP- HmmH (0rrrr3Hw W9)I-‘ mHHm r-r--:5

H

m
Hm -n

m H

w 4 c

EEEHIfllfllm I_I LO KO co

0 6

.1

1

o -2 1pE>

0< w 00 N

A . 1 ,

l. 1 ,

C n. 1 ,

00 54 S p. 1 ,
1996

oct. 2 ,E
1996

DF 5850386 Dec. , Inderson et al. I V. 1,
1998 1996

5850388 - l . . 31,
1998

862335 an. 19 . 1,
1999

878420 . 2, t. 2 ,
1999

893155 ‘pr. 6, . 3,
1999

4!903754 ,
1999

PUBLI-CATION

DOCUMENT DATE COUNTRY
NUMBER

wL») 4m om
mwpH

03 w H

‘nderson et al. 70 25

elch, Jr. et al. 95D

D U(D 0 I LA)

0Q II3“m,
'm, HH H-m n omam

H H m
llil

200.54 ‘pr

1997
Dec

1996

Iov. 1
1997

55

241

2 Oct
1996

0\I O \1 l

i
Adv

H

DI

a!

DK Pearson

\] I-‘ I“

O'\H 0001> O01>
2>

C
J‘<

l
I-‘

I
KO U'I

FOREIGN PATENT DOCUMENTS

CLASS SUB-CLASS

DDa:

|

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages. Place of Publication, Etc.)

27 {-3
' 2? F71

.I 3} N E05 -* N
I" Q m

53 -
—- :

EXAMINER DATE CONSIDERED
HII

§
‘EXAMINER- Initial if CitatIon considered. whether or not citatIon is in conformance with MPEP 609. Draw line through citation It not in conformance

and n_ot considered. Include a copy of this form WIth next communication to Applicant.

NOAC EX. 1017 Page 152

NOAC Ex. 1017 Page 153

’ Era/.FORM-1449 fl QM SHEET 5 OF 5.
A'I‘I'Y. DOCKET NO. SERIAL NO.

APPT—001-4 09/608266

INFORMATION DISCLOSURE STATEMENT APPLICANT
Sarkissian et al.

Q\PE
(Use several'ép- -ts if necessary) FILING DATE

5 6/30/2000
. .

- 2r

‘ U.S. PATENT DOCUMENTS
Q§!,‘:‘EXAMINER

INITIAL

FILING DATE
DOCUMENT

NUMBER
DATE NAME CLASS SUB-CLASS

Jun. 29, obuyan et al. 370 392 ug.
1999 1996

16,

Spinney .: pr. 5,
1994

EC 6014380 an 11, 30,

61

un.

1997

5511215 pr. 23, Oct. 2
III-M EII

IF BPPROPHIBTE

I—‘_ K091 k0‘< U'I
LO

:1: (D :3(1.(D H (D FT {1) H
fl

E

E

b) \1 0 OJ k0 [\J

erasaka et al.n10 LA) LC U1 (1) O O

"‘I

L"I
E

IIIIIIEEHHIII-Iflflllll
9

rm0

m o o o

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY
NUMBER

CLASS SUB—CLASS

D2

0

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

II—
_-

DATE CONSIDERED
 EXAMINER

 ti I ?//L/o}
'EXAMINER: Initial it citation consndered. whether 0r “0‘ Ci‘at'on ‘5 "‘ c°“'°”“a”°e With MPEP 509~ Draw “”5 IhFOUgh citation if not in conformance

and not considered. Include a copy of this form WIth next communication to Applicant.

NOAC EX. 1017 Page 153

NOAC Ex. 1017 Page 154

H y
1

A t t ,l I t ./6 '-

t USOOS917821A

. g Unlted States Patent [19] [11] Patent Number: 5,917,821

Gobuyan et al. [45] Date of Patent: Jun. 29, 1999

[54] LOOK-UP ENGINE FOR PACKET-BASED [56] References Cited
NETWORK

[75] Inventors: Jerome Gobuylm, Kanata; Wayne U’S' PATENT DOC NTS
Burwell, Ottawa; Numn Behki. 5,095,480 3/1992 Fenncr 370/238
Nepcan, all of Canada 5,463,777 10/1995 Bialkowski et al. 370m

[73] Asignce: Newbridge Networks Corporation,
Kanata, Canada Primary Examiner—Chan Nguyen

[21] Appl- No.: 08/663,263 Attorney, Agent, or Finn—Marks & Clerk

[22] PCT Filed: Dec.21, 1994 [57] ABSTRACT

[86] PCT No.: PCT/CA94/00695 An arrangement is disclosed for parsing packets in a packet-
. based data transmission network. The packets include

§ 371 Date. Aug. 16’ 1996 packet headers divided into fields having values representing
§ 102(6) Date: Aug. 16: 1996 information pertaining to the packet. The arrangement

[87] PCT Pub. No.: W095/18497 includes an input receiving fields from the packet headers of
incoming packets, amemory for storing information related

E PCT Pub. Date: Jul. 6’ 1995 to possible values of said fields, and a device for retrieving
the stored information appropriate to a received field value.

t [30] Foreign Application Priority Data _ ' . . _
'Ihe retnevmg devrce oomprlscs a look—up engine'includlng

DOC. 24, 1993 [GB] United Kingdom 9326476 at least one ‘ memory organized in a hierarchical tree

3 [51] Int. Cl.“11. H04L 12/46 stmctum, and a connollcr for controlling the operation of the
’ [52] us. c1.1 W, 370/392; 370/401 mcmorY- The arrangement is capable of Performing fast
' [58] Field of Search MM-- 370/392, 395, 1°°k'“P 013mmns 3‘ a 10W 005‘ 0f imPlcmenmiont

370/400, 401—405, 465, 466, 351, 389,
396, 397, 474; 395/200.68 29 Claims, 11 Drawing Sheets

DESTINATION ADDRESS LOOKUP ENGINE _

DESTINAngJlIllynglilLEEsRs [ii/iii)6
l 1 LOOKUP R I512m6I

1 1
AXE

In tpu LOOKUPE
CONTROLLER

CODE

if "RAM 4

NGINE

Reassembler d

D TROLLERLOOKUPC N _ 512KX16

FIFONX18

Output t0 AXE

Output t0
Reassembler

DALE

RAM

128K X 16

SOURCE ADDRESS LOOKUP ENGINE = it ~

\

t

I NOAC EX. 1017 Page 154

NOAC Ex. 1017 Page 155

US. Patent Jun. 29, 1999 Sheet 1 of 11 5,917,821

103

ML Dest

Address

100 101 102 104

Best Source NL SourceNet Layer Protocol Type
Tree Tree Microcode Tree Tree

Search Search Comparisons Search Search

FIG. 1

To ATM

From ATM

DALE
RAM

512K X 16

 DESTINATION ADDRESS

LOOKUP CONTROLLER

11

r FIFO N 1LOOKUP ENGINE Output t0 AXE

CODCEONTROLLER FIFO N x18 Reutput a
11RAM 4 DALE eassem er

RAM

Reassembler 128
|nput 3 K X 16 1 0

7

2 SOURCE ADDRESS SALE 8
LOOKUP CONTROLLER RAM

512KX16

FIG. 3
SOURCE ADDRESS LOOKUP ENGINE

NOAC EX. 1017 Page 155

NOAC Ex. 1017 Page 156

US. Patent Jun. 29, 1999 Sheet 2 of 11 5,917,821

20

SIB RAM

SIB DATA BUS OUT SIB DATA BUS IN SIB ADDRESS BUS

21

INTERFACE RAM

INTERFACE DATA BUS IN INTERFACE ADDRESS BUS

NIBBLE INDEX

_26

CANADIAN CODE

25

TDIFROM ‘
SALE. DALE UCODE ADDRESS BUS uCODE DATA BUS IN uCDDE DATA BUS OUT

MICRDCODE RAM

FIG. 4

<
I2III

NOAC EX. 1017 Page 156

NOAC Ex. 1017 Page 157

U.S. Patent Jun. 29, 1999 Sheet 3 of 11 5,917,821

AXE 1

Input 44 DESTINATION ADDRESS LOOKUP ENGINE
. DESTINATION ADDRESS DALE 6

LOOKUP CONTROLLER RAM

I 512K x 16
42

FIFO N x 18 HF RAM 11
FIFONx18 64"”

LOOKUP ENGINE Hm N "1 OUIPUIIO AXE
4 43 CONTROLLER

I _F0N x 18 ROutput E?

32 BIT LATCH NCODE RAM 4 DALE eassem er8K x 32 RAM 12.28Kx 16
Reassembler 10

Input

2 SOURCE ADDRESS - SALE I 8
RAML KUP CONTR LLER00 0 512K x16

IL:
SOURCE ADDRESS LOOKUP ENGINE

FIG. 5

NOAC EX. 1017 Page 157

5

I
I
1

NOAC Ex. 1017 Page 158

U.S. Patent Jun. 29, 1999 Sheet 4 of 11 5,917,821

20 8 6 42, 43
SIB RAM SALE RAM DALERAM

ANDRESULTF'FOS SALE SALE DALE DALE SNOUPHFOS
SIB 0(1520) SIBA(3:0) SIBA(19:4) AD(19:4) A(3:0) AD(194) A(3:0) MFD(16:0)

p llxz
DALE INTERFACE RAMNIBBLE RAM m

HAMD(15:0) RAM A(4:0)

1 INDEX PoerR ”if
LOOKUPPOINERS ”

50
ALE RESULT BUS

INSTRUCRUN
REGISTER

=_ STATUS
__- Brrs LLCODEA(11:0) LLCODED(31:0)

Elm} MICRDCODE RAM ‘
FIG. 6

NOAC EX. 1017 Page 158

i

E

i

NOAC Ex. 1017 Page 159

E

1

1
1
1

US. Patent

Jun. 29, 1999 Sheet 5 of 11

3019-4 BlT3-0

POINTER NIBBLE INDEX (n)

 DALE RAM

512K X 16 DALE RAM

512K x 16

 8000 n-FFFFn 8000 n--FFFFn

FIG. 7

SIB RAM128KX16

0000 n--01FF n

PO'NTERARRAY1M33=0 NEXT POINTERARRAY POINTER (190)

1) SIB(MSB=0)

/ FIG. 8

16x16 16X16

5,917,821

SALE/DALE

ADDRESS

NOAC EX. 1017 Page 159

NOAC Ex. 1017 Page 160

US. Patent Jun. 29, 1999 Sheet 6 of 11 5,917,821

MAC ADDRESS TREE - EXAMPLE $ODBF02865739

ROOT POINTER ______._.._>

NIBBLE1=$0 III/I/4II.II\}\III

NiBBLE 2 = $0 1%: . I IE"JAE-11.54.1114».
NIBBLE3=$8 _ __///-__ “4____ :49. 111.1}. "_211:". ,2").

NIBBLE4 = 5E . .“I {4"- I I .fi‘:l‘ //1' (fil‘ml‘h
NIBBLE5=$C .4}. .4“. .45.. (KIWI: """"
NIBBLEB = $2 .4}. .4‘}. {fl/E‘K. I I I "\k. I

”BBL” ‘58 . .//.. ; .4\.>\.\|.. '45; '42"
N'BBLEB:$6 113.4%;4. \4“ "J13 2231.
NIBBLE 9 = $5 / \\
NIBBLE10=$7 I‘I\llll/(IIIIIIIII/ \\;:~.’%; .41.IIIIfi/{IIIIfiI‘
NIBBLE11=$3 111% ‘\\\.4‘.\. FIG.9
NIBBLE12:$9/'. .'{\.\IIIIIII

SIB

ROOT POINTER
NOAC EX. 1017 Page 160

NOAC Ex. 1017 Page 161

US. Patent Jun. 29, 1999 Sheet 7 of 11 5,917,821

SOURCE ADDRESS LOOKUP ENGINE

Address Match SIB Pointer

Address Match Fail . Null Pointer

FIG. 11

?

i
J?

DESTINATION ADDRESS LOOKUP ENGINE

Address Match SIB Pointer

I AddI’ESS MHICII FEII
Null Pomter

NOAC EX. 1017 Page 161

NOAC Ex. 1017 Page 162

US. Patent Jun. 29, 1999 Sheet 8 of 11 5,917,821

 BIT 3 -O OCODE WORD

I LP
SIBADDRESS

FIG. 13

Status Flags Status ”393 ETIIEIIAIIII

—P°ee
NIN N33: RP-ROUTEDPDU

Prot01 Area

Flags Proto 2Area Encap H393“I“
[ma Proto3Area FU-FUTUREUSE

2 I153 Fromm EN-MAC ENCAP FORMAT
IKE Proto 5 Area

Other Area Pointer PINTO Flags “INIINI
Proto 1 [Jest Area PA-PROTOCOL ACTIVE

Prot02 Dest Area NINTJNITTNIENTNN
Prot03 Dest Area MH-MULTl-HDMED

Proto 4 Best Area

-Enc Proto 5 Dest Area
Other Dest Area Pointer FIG ' 1 4

STATION INFORMATION BLOCK

NOAC EX. 1017 Page 162

NOAC Ex. 1017 Page 163

U.S. Patent Jun. 29, 1999 Sheet 9 of 11 5,917,821

Photo Flags““-
POIISBI PA-PROTOCOL ACTIVE

PV-PROTOCOL VALID

IPX 802.2 Area

IPX SNAP Area

IPX Raw Area

Flags IPX Ether Area

IPX 802.2 Dest Area

lPX SNAP Dest Area

lPX Raw Dest Area

IPX Ether Desi Area

PORT INFORMATION BLOCK

Dest Area nibble 1 FIG - 15
Best Area nibble 2

Best Area nibble 3

E 3 nibble destination area

 Sourge Area
Pornter

i

Filtering Rule
ARx-ALLOW ROUTING PROTOCOL x

FIG. 16

3......“.e.. NOAC EX. 1017 Page 163

NOAC Ex. 1017 Page 164

US. Patent Jun. 29,1999 Sheet 10 of 11 5,917,821

OReset

osnoop done

oFIFO not empty ostop AND snoop
not done

oFIFO not empty F0 empty
AND (Group<4)

 -FIFO not empty

AND (Group=7)
OR (Group=6)

~FIFO not empty

AND (Group=5)

-SIB_TA true

FIG. 17

S NOAC EX. 1017 Page 164

NOAC Ex. 1017 Page 165

U.S. Patent Jun. 29, 1999 Sheet 11 of 11 5,917,821

Increment Branch Instructions (Group 2, no wait states)

PCLK “LL-.14.;
I/F Addr I-___I-

I/F Data 10101010191619}{01031016103101{Wit}.

Inst Addt

Inst Re

Condition

State

EXEC_CYCLE

PC_ADD

FIG. 18

Increment/Branch instruction

(Condition=FALSE)

Increment/Branch instruction

(Condition=TRUE)

SIB RAM Access Instructions (Group 5)

PCLK F - - ‘ ISIB_RQ

SIB_GRS'B‘CS Eli:
SIB_TA

SIB_Addr -I—

SIB_WEbIWrite -
SIB_Data(Write 1016;016:010210191010103331); Vaiid I Data 1911191019)

SIB_OEb(Read)

SIB_Data(Read) 19319101011} ‘33Kilt{9333103)1019161010101 Valid SIB Data IOIIIIIIIIIIII

Inst Addr I-—I-*

State :mzlzzzxzm

SIB RAM Access

(No wait states)

I FIG. 19

I NOAC EX. 1017 Page 165

NOAC Ex. 1017 Page 166

5,917,821

1
LOOK-UP ENGINE FOR PACKET-BASED

NETWORK

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

This invention relates to the field of data communications,

and more particularly to packet-based digital communica-
tions networks.

There are two broad classes of network: circuit-based and

packet-based. Conventional telephone networks are circuit
based. When a call is established in a circuit-based network,
a hard-wired connection is set up between the calling parties
and remains in place for the duration of the call. Circuit-
based networks are wasteful of available bandwidth and lack
flexibility.

Packet-based networks overcome many of the disadvan~
tages of circuit-based networks. In a packet-based network,
the data are assembled into packets containing one or more
addres fields which define the context of a packet, such as
protocol type and relative positions ofother fields embedded
in the packet. IAN bridges and routers use the information
in the packet to forward it to the destination.

In a packet-based network, a packet must be parsed as it
flows through the network. Parsing is the process of extract-
ing and analyzing the information, such as source and
destination address and net layer protocol, contained in the
packets.

In known networks, packet parsing is generally performed
with a microprocesor, which provides flexibility in han-
dling different packet types and can be upgraded to handle
new packet types as they are defined Content Addressable
Memory (CAM) is commonly used for hardware assistance
to speed up searches through a list ofknown addresses. This
is a tedious task. CAMs are also relatively expensive and
limited in size and availability.

General purpose procemor architectrrres are not specifi-
cally directed toward the types of operations required in
packet parsing and so they tend to be inefiicient. To meet
performance requirements, a fast but expensive processor
based solution can be implemented. In the highest perfor-
mance systems, hardware solutions are implemented to
increase speed, but at the cost of flexibility.

SUMMARY OF THE INVENTION

An object of the invention is to provide a fast1 but
inexpensive solution to the problem of packet-parsing in
packet—based networks.

According to the present invention there is provided an
arrangement for parsing packets in a packet-based digital
communications network, said packets including packet
headers divided into fields having values representing infor—
mation pertaining to the packet1 said arrangement compris-
ing an input memory for receiving fields from said packet
headers of incoming packets; and a look-up engine for
retrieving stored information appropriate to a received field
value. The look—up engine includes at least one memory
storing information related to possible values of said fields
in a hierarchical tree structure and associated with a respec-
tive field of packet headers; a memory controller assoeiated
with each said memory storing information related to pos—
sible values of said fields for controlling the operation
thereof to retrieve said stored information therefrom; and a
microcode controller for parsing a remaining portion of the
packet header while said stored information is retrieved and
controlling the overall operation of said look-up engine.

The memory and retrieving means constitute a lock-up
engine, which is the central resource contamrng all infor-

10

15

35

4s

50

55

60

65

2

mation necesary for forwarding decisions. In a preferred
embodiment the look-up engine includes a source address
look—up eny'ne and a destination address look-up engine.

In a packetized data transmission conforming to IEEE802
standards, the packets have a MAC (medium access control)
header containing information about the destination and
source addre$es and the net layer protocol. The invention
permits packet switching to be achieved in a bridge-router,
for example an Ethernet to AIM bridge—router, at a rate of
about 178,000 packets per second using 64 byte minimum
Ethernet packets. This means that the MAC headers are
interpreted once every 5.6 micro seconds.

The look—up engine preferably employs table look-ups
using nibble indexing on variable portions of the packet,
such as MAC and network layer addresses, and bit pattern
recognition on fixed portions for network layer protocol
determination.

Each look-up table is organized into a hexadecimal search
tree. Each search tree begins with a 16 word root table. The
search key (e.g. MAC address) is divided into nibbles which
are used as indices to subsequent tables. The 16 bit entry in
the table is concatenated with the next 4 bit m'bble to form
the 20 bit address of the next 16 word table. The final leaf

entries point to the desired information.
Bit pattern recognition is achieved by a microcode

instruction set. The microcode engine has the ability to
compare fields in a packet to preprogrammed constants and
perform branches and index increments in a single instruc-
tion cycle typically. The microcode engine has complete
control over the search procedure, so it can be tailored to
specific look-up functions. New microcode is downloaded
as new functions are required.

The look-up engine can perform up to two tree searches
in parallel with microcode execution. Look-up time is quick
because the microcode determines the packet’s network
layer format while the source and destination addresses are
being searched in parallel. The results of the source and
destinan'on look-ups and the protocol determination arrive at
roughly the same time, at which point the next level ofdecisions is made.

The look-up engine also performs protocol filtering
between areas. The system allows devices to be grouped
arbitrarily into areas on a per protocol basis and defines
filtering rules among these areas. The look-up engine keeps
track of each station’s area for each of its protocols. The
source and destination areas are cross-indexed in a search
tree, which is used to find the filtering rule between the two
areas. Separate filtering rules are defined for bridy‘ng and
network layer forwarding; bridging is normally allowed
Within an area while network layer forwarding is selectively
allowed between areas.

The parsing controller typically has a pointer to the
current field in the packet being examined. The controller
moves this pointer to the next field in the packet after all
decisions based on the current field are made.

At each decision point on a tree, the current field is
compared to a known value or range. If the comparison
yields a true condition, the controller moves to the next
decision point by moving the current field pointer. Other-
wise the field pointer is left alone and controller branches to
new code to compare the current field to a different value or
range. This process is repeated until a final decision is made.

Moving to the next decision point requires several dis-
crete steps in a general purpose processor. Unlike a general
purpose processor, which has the disadvantage that it only
has a single memory bus for both instruction and data
fetches, the Look-up engine controller has separate buses for
instruction and data and typically performs one decision per
step. Fast decisions are made pogible by a special“ set of

NOAC EX. 1017 Page 166

NOAC Ex. 1017 Page 167

1.

5
3
l.a5
.3‘

w».a.Ada”

5,917,821
3

instructions which both conditionally move the pointer and
conditionally branch to new code in a single step. The
comparisons and pointer movements can be byte or word
wide, according to the current field’s size.

The look-up engine implements other optimized instruc-
tions which perform bit level logical comparisons and
conditional branches within the same cycle as well as other
instructions tailored to retrieving data from nibble—indexed
data structures.

The look-up engine is preferably divided into the follow-
ing sections:
a) one or more nibble tree address look-up engines (ALE)
b) one microcode engine

Each ALE is used to search for addresses in a tree

structure in its own large bank of memory. The result of a
search is a pointer to pertinent information about the
addres. An ALE is assigned to destination addresses
(DALE) and source addresses (SALE). The ALEs operate
independently of each other.

The microcode engine is used to coordinate the search. It
invokes the SALE and DALE to search for the source and

destination addresses respectively and continues on to parse
the remainder of the packet using an application—specific
instruction set to determine the protocol.

The SALE, DALE and microcode engine can execute in
parallel and arrive at their corresponding results at roughly
the same time. The microcode engine then uses the SALE
and DALE results along with its own to arrive at the
forwarding decision.

e advantage of using RAM over a CAM is expand-
ability and cost. Increasing RAM is a trivial and inexpensive
task compared to increasing CAM size.

e advantage of the microcode engine over a general
purpose processor is that an ASIC implementation of the
fimction is much less expensive and less complex than a
processor-based design with all the overhead (RAM, ROM)
asociated with it.

The invention also related to a method of parsing packets
in a packet-based data transmission network, said packets
including packet headers divided into fields having values
representing information pertaining to the packet, compris-
ing storing information related to posible values of said
fields, receiving fields fiom said packet headers of incoming
packets, and retrieving said stored information appropriate
to a received field value, characterized in that said informa-
tion is stored in a memory organized in a hierarchical treestructure.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in more detail, by
way of example only, with reference to the accompanying
drawings, in which:

FIG. 1 is an example of a MAC layer header of a typical
packet;

FIG. 2 shows the data paths in a typical bridge-router
between Ethernet LAN and ATM networks;

FIG. 3 is a block diagram of a first embodiment of a
look-up engine in accordance with the invention;

FIG. 4 is a block diagram of a lock—up engine controller
for the look-up engine shown in FIG. 3;

FIG. 5 is a block diagram of a second embodiment of a
look-up engine in accordance with the invention;

FIG. 6 is a block diagram of a look-up engine controller
for the look—up engine shown in FIG. 5;

FIG. 7 is a map of look-up engine Address Look-up
engine (ALE) memories;

FIG. 8 is a diagram illustrating search tree operation in an
ALE;

10

15

35

45

50

55

60

65

4

FIG. 9 shows one example of a MAC search tree;

FIG. 10 shows the effect of the organizationally unique
identifier of the MAC addresses on the size of the search
[1’66'

FIG. 11 shows the source address look-up engine table;
FIG. 12 shows the destination address look-up table;
FIG. 13 illustrates the look—up engine addressing modes;
FIG. 14 shows a station information block;

FIG. 15 shows a port information block;
FIG. 16 shows an example of protocol filtering;
FIG. 17 shows a lock-up engine controller Instruction

State Machine;

FIG. 18 shows a typical fast timing diagram; and
FIG. 19 shows a typical SIB RAM access instruction

timing diagram.

DESCRIPTION OF THE PREFERRED
EMLBODINIEN'IS

A typical look-up engine (LUE) in accordance with the
invention is designed to be used in a twelve-port wire speed
Ethernet to ATM bridge-router capable of switching about
178,000 packets per second using 64 byte minimum Ether-
net packcts. This packet rate corresponds to a look-up
request occurring every 5.6 psecs. 'Ihe LUE is used each
time a packet is received ofi the Ethernet or the ATM
network. The type of information that the engine provides
depends on the direction of packet flow and the type of
packet.

The look-up engine provides all the information needed to
find the path to each known destination, as well as default
information in the case of unknown destinations.

FIG. 1 shows a typical MAC layer header format for a
packet that can be parsed with the aid of the look-up engine
in accordance with the invention. The header comprises
destination and source address fields 100, 101, a network
layer protocol type field 102, and network layer destination
and source address fields 103, 104. FIG. 1 also illustrates
how the header is parsed in accordance with the invention.
All fields except 102 are parsed using a tree search. The Net
Layer Protocol Type field 102 is parsed by using microcode
comparisons in the microcode engine to be described.

On a bridge-router, each port is represented by a corre-
sponding bit in a PortSet (Ports 0—11), which is a 16 bit value
that has local significance only. The Control Processor and
ATM are each assigned a port.

The following definitions are special cases of a PortSet:

SingIePortSet
I Port—Set with I single hit let.HostPortSet
a SinglePortSet mmponding to the Control Pmor
MyPortSet
a SinglePortSet mrreapouding to the source port of this packet.NullPottSet
I PortSet of no parts.

AConnection Identifier (CI), which is a 16 bit value with
local significance only, is used to map connections into
VPI/VCI values.

The following definitions are special cases of CI:

MELCI
a CI corresponding to a path towards the destination endstalinn'l
Bridge-router. ”

NOAC EX. 1017 Page 167

NOAC Ex. 1017 Page 168

Arm-airway.
mu

H“w~Warm—MT

WuH

l

5,917,821
5

-continued

Null_Cl
a Cl connected to nothing. It is returned when the destination is
attached to the load Bridge-router or if the mnnection is not
allowed.
RS_C[
I CI eorrmponding to a path to the Route Server.ABS_G
a Cl corrmponding to I path to the Addms/Broadnst Server.

MAC layer addresses are globally unique 48 bit values,
except in some protocols such as DECNet1 where they may
not be globally unique.

Uninst_DA
I MAC layer destination address of an end—stItion.
RouteLDA
a MAC layer destination address of the Route Server. An end-
station sends packets to the Route Server when it cannot send to
the destination directly at the MAC layer.
BroadmsLDA
the broadust MAC layer address (all ones) which is received byIll end-stations. lt unnot he a source address.
Mulfimst—DA
a multicut MAC layer Iddro- (your: bit set) which is received by
end-Imtions tlmt recognize that mnltimt address.

Network layer (NL) addresses are network protocol
dependent. They are generally divided into Network,
Subnet1 and Node portions, although not all protocols have
all three present The Network LayerAddress Field Sizes (in
bits) are summarized in the table below.

 Protocol '1me Size Network Suhnet Node

IP 32 8/16f24 variable variable
[PX K) Illa 32 48

(MAC address)
Apple'I’Ilk 24 Illa 16 8
DEGNTet 64 16 38 10

(reserved) (32 -
'HIORD')
(6 - Inbnet)

The look-up engine handles unicast network layer
addresses.

When the look-up engine is used in a bridge-router
providing an interface between an Ethernet and ATM
network, packets coming fi'om the Ethernet side are fed into
the Look-up Engine. The result of the look-up has the form:

Input
-> Command, 0, PortSet

where Input is derived from the first few bytes of the packet
and Command is an opcode to the AXE (Transfer engine).

The Quad MAC status word distinguishes between router
MAC, broadcast and multicast MACS.

Bridging occurs when the destination addm is a unicast
address other than the Route Server address. Bridging is
allowed between two endstations in the same area for a
given protocol.

Both source and destination MAC addresses must be

known before automatic bridging/filtering is performed;
otherwise, the packet is sent to the Route Server for.

SA (Source Addres) validation if the SA has never been
seen speaking a given protocol

DA (Destination Addre$) resolution if the DA was not
found in the local MAC cache.

10

15

20

35

45

50

55

60

65

6

The Bridge command instructs the AXE (Transfer
Engine) to use RFC-1483 bridge encapsulation. BridgeProp
command instructs the AXE to use bridge-router encapsu-
lation (include source PortSet in encapsulation)

Unknown_SA —> BridgeProp, Null_Cl, HostPortSet, MyPortSet
' Unknown SA - send to H? for Spanning Tree processing
' HP will decide whether to forward it to ABS for learning,
depending on Spanning 'lhee ItIte
Unit:It_DA -> Bridge, MesLG, NullPortSet
' DA in the lame am on a difierent Bridge-router
UnimLDA —> Bridge, NulLCl, NullPortSet
' DA not in the same area (reject)
' Protocol not allowed to bridge-router
‘ DA on the lame port
UniasLDA —> Bridge, anLCl, SinglePortSet
‘ DA in the same area on the same Bridge-router but on a different
port
Unknown_DA —> Bridgel’rop, ABS_C[, Nulll’ortSet, MyPortSet
' DA not found in the table - lend to ABS for flood processing
Broadrzst_DA —> Bridgerp, ABS_CI, NullPorSet, MyPortSet
' Broadcast DA - Send to Control humor for broadmst
proming
MultimLDA —> BridgeProp, ABS_C[, NullPortSet, MyPortSet
' Mnltiast DA — Send to ABS for mulfirast processing
MultitasLDA —> Bridgeprop, NulLCl, HostPortSet, MyPortSet
' Mnltimt DA is of interest to HP (eg Spanning 'Ihee)' HP will decide whether to forward it to ABS for multimst
War—“ins

Routing occurs when the destination adde is the unicast
Route Server address. Filtering rules between areas are
explicitly defined per protocol The per protocol source area
is an attribute of the source MAC address and the per
protocol destination area is an attribute of the destination NL
addres.

Both source MAC and destination NL addresses must be

known before network layer forwarding can occur.
The packet will be bridged to the Route Server if any of

the following are true:
IP options are present
Protocol is unknown

The packet will be dropped if any of the following aretrue:

Source area is not allowed to send to Destination area for

this protocol

Source NL address is invalid (e.g. any [P broadcast
address)

Checksurn is invalid

Time-To-Live field expires

UniusLNLDA —> Route, MeaLCI, NullPortSet
' N'L node on a different bridge-router
UnicasLNLDA -—> Route, NulLCI, Singlel’ortSet
’ N1, node on the same bridge-router (could be same port)
UnknowLNLDA —> Bridge, RS_C[, NullPortSet
' unknown N1. node - send to Route Server
UnknowUrotoool —> Bridge, RS_C[, NullPortSet
' protocol unknown, or packet with options

FIG. 2 shows the data paths in a typical bridge-router.
Control processor 16 has control over the formatting of
packets it sends and receives. 1f the control processor 16
wants look-up engine 17 to perform a look-up, it formats the
packet in the same way as Quad Mac 15; otherwise it sends
it as a raw packet1 which does not require a lengthy look-up.
The control processor predetermines the destination by
providing a CI (Connection Identifier) and an output Portset
as part of the data stream. A bit in the Quad MAC Status
word indicates a raw packet and the look-up engine simply
retrieves the CI and Portset as part of the data stream. A bit

NOAC EX. 1017 Page 168

NOAC Ex. 1017 Page 169

5,917,821

7

in the Quad MAC status word indicates a raw packet and the
look-up engine simply retrieves the CI and Portset from the
data stream and feeds it to the AXE (Transfer Engine)
throu h the result FIFO. The Control processor is respon-
sible or correctly formatting the required encapsulation.

As shown in FIG. 2, packets coming from the MM side
are fed into the look-up engine. The look-up engine accepts
an RFC~1483 encapsulated packet and determines whether
to look at a MAC or NL address. The result of the look-up
will have the form:

Input -> PortSet

Filtering is not performed in this direction. It is assumed
that the all filtering is done at the ingress side. It is also
assumed that the destination endstation is known to be

attached to the receiving Bridge—router, so unicast packets
with unknown destination addreses are dropped.

Flood and broadcast packets are encapsulated in a special
format which includes an explicit output PortSet.

UninaLDA —> SinglePortSet
‘ DA on this Bridge-router
Unknown_DA —> NullPortSet
' DA not in the table (drop) — this situation should not occur.
UnimLNI-DA —> SinglePortSet
‘ NLDA on this Bridge-router
UnknoerNLDA —> NullPortSet
' NLDA until: the table (drop) - this situation should not occur.
BroadnsLDAJ’ortSet —> PortSet
‘ Proprietary Bruedalt request received from RS
MulfiasLDAJ’crtSet —> PcrtSet
' Proprietary Multimst requut received from RS
Unknown_DA,PortSet —> PortSet
' Proprietary Flood request received from RS

”firming now to FIG. 3, the look-up engine consists of
three functional blocks, namely a destination address look-
up engine (DALE) 1, a source address look—up engine
(SALE) 2, and a look-up engine controller (LEC) 3, which
includes a microcode ram 4. DALE 1 includes a destination

address look-up controller 5 and DALE RAM 6. SALE 2
includes a source address look-up controller 7 and SALE
RAM 8. The input to the look-up engine is through a fast
16-bit wide I/F RAM 9 receiving input from the AXE
(Transfer Engine) and reassembler. The output from the
look-up engine is through word-wide FIFOs 1.1, 12.

One embodiment of look-up engine controller (LEC) 3 is
shown in more detail in FIG. 4. This comprises (Station
Information Block) SIB ram 20, interface ram 21, and
microcode ram 22. The SIB ram 20 is connected to look-up
pointers 23. Interface ram 21 is connected to data register 25
and index pointers 26 connected to ALU (Arithmetic Logic
Unit) 27. Microcode ram 22 is connected to instruction
register 28.

The look-up Engine controller 3 is a microcoded engine
tailored for efficient bit pattern comparisons through a
packet. It communicates with the Source Address Look-up
Engine 2 and the Destination Addres Look-up Engine 1,
which both act as co—processors to the LEC 3.

The look-up engine snoops on the receive and transmit
data buses and deposits the header portion of the packet into
the HF RAM 9. The look-up response is sent to the appro-
priate FIFO 11, 12.

FIGS. 5 show an alternative embodiment of the loop-up
engine and controller. In FIG. 5, the LEC 3 includes a 64x16
I/F (Interface) ram 41 connected to FIFO’s 42, 43 (First-m,
First-out memories) resPectively connected to latches 44, 45
receiving AXE (Transfer Engine) and reassembler input.

Referring now to FIG. 6, the LEC 3 also contains several
registers, which will now be described. Register select
instructions are provided for the register banks (XP0-7.
LPO—7).

10

15

35

45

50

8

Index Pointer register (IP) 50 is a byte index into the UP
RAM 21. Under normal operation, the index pointer register
50 points to the current packet field being examined in the
UP RAM 21 but it can be used whenever random aoces to
the HF RAM 21 is required,
The IP 50 can be modified in one of the following ways:
1) loaded by the LOADIP instruction (e.g. to point to the

beginning of the packet)
2) incremented by 1 (byte compare) or 2 (word compare) if

a branch condition is not met.

3) incremented by 2 by a MOVE (IP)+ type instruction.
Data Register 51 contains the 16 bit value read from I/F

RAM 21 using the current 1?. The DR 51 acts like a one
word cache; the LEC keeps its contents valid at all times.

Program Counter 52 points to the current microcode
instruction. It is incremented by one if a branch condition is
true, otherwise the displacement field is added to it.

The Inokup Pointers (LPO—7) 23 are 16 bit registers
which contain pointers to the SIB RAM 20. The LPs are
used to store pointers whenever milestones are reached in a
search. One LP will typically point to a source SIB and
another will point to a destination SIB. The 11’ provides the
upper 16 bits of the pointer; the lower 4 bits are provided by
the microcode word for indexing into a given SIB.

TheLPsarealsousedto prime theSALE andDALEwith
their respective root pointers.

X,Y Registers 53, 54 are general purpose registers where
logic manipulations can be made (AND, OR, XOR). They
are used for setting and clearing bits in certain words in the
SIB RAM (e.g. Age bit) and to test for certain bits (e.g. status
bits). The X Register 53 can be selected as Operand A to the
Logic Unit while the Y Register can be selected as Operand
B.

The BYZ and BYNZ instructions conditionally branch on
Y-O and Y00 respectively.

The Y Register 54 is the only register source for moves to
the result FIFOs.

The X Register 53 can be saved to or restored from X'
Registers (X‘0—X'7) 55. The mnemonic symbol for the
currently selected X' register is XP.

The S Register 56 is a pipelining stage between SIB RAM
20 and the Logic Unit. It simplifies read access from SIB
RAM 20 by relaxing propagation delay requirements from
SIB RAM 20 valid to register setup. It provides the added
advantage of essentially caching the most recent SIB RAM
access for repeated use. It is loaded by the GET Index(LP)
instruction.

As in FIG. 3, the LEC 3 controls the operation of the
look-up engine. All look—up requests pass through the LEC
3, which in turn activates the SALE 2 and the DALE 5 as
required. The LEC 3 is microcode based1 nmning from a
32-bit wide microcode RAM. The instruction set consists
mainly of compare-and-branch instructions, which can be
used to find specific bit patterns or to check for valid ranges
in packet fields. Special I/O instructions give the LEC
random read access to the interface RAM.

The LEC has access to 3 memory systems: the interface
lRAM9,theSIBRAM20andtheMicrocodeRAM22.

55

65

1%me9Eu‘s’e‘r’i‘tb‘seawater ‘davt‘ai‘iiit‘o‘ the
LEC 3. The look-up engine hosts dump packet headers into
this RAM through snoop FIFOs 42, 43. This RAM is only
accessible through the snooped buses.

The SIB RAM 20 is used to hold information for each

known end-station. The LEC 3 can arbitrarily retrieve data
from this RAM and transfer it to one of the response FIFOs
11, 12 or to internal registers for manipulation and checking.
High speed RAM is also used to minimize the data retrieval
time. The size of the SIB RAM 20 is dependent on the
maximum number of reachable end-stations. For a limit of

8,000 end-stations, the SIB RAM size is 256K bytes. 'Ihis
RAM is accessible directly to the Control Processor for
updates. .

/ mt

NOAC EX. 1017 Page 169

NOAC Ex. 1017 Page 170

5,917,821

9
The Microcode RAM 22 is dedicated to the LEC 3. It

contains the 32 bit microcode instructions. The LEC 3 has
read-only access to this high speed RAM normally, but it is
mapped directly to the Control Processor’s memory space at
startup for microcode downloading.

Variable fields of a packet, such as addreses, are searched
in one of many search trees in the ALEs 1, 2, (FIG. 5), which
are nibble index machines. EachALE 1, 2 has its own search
tree RAM 6, 8 (FIG. 7), which is typically high density but
low speed. This RAM is divided into 32 byte blocks which
can either be Index Arrays or Information Blocks.

The searches in the ALEs 1, 2 are based strictly on the root
pointer, the search key and search key length it is given. A
look at the look-up engine memory map (FIG. 7) as viewed
from the ALEs shows how the mechanism works.

All search trees in a given ALE 6, 8 reside in the upper
half of its memory. The 16—bit root pointer given to the ALE
will have the most significant bit set. The search key (e.g.
MAC address) is divided into nibbles. The first nibble is
concatenated with the root pointer to get an index into the
root pointer array. The word at this location is retrieved. If
the MSB (Most Significant Bit) (P Bit) isset, the next nibble
is concatenated with the retrieved word to form the next

pointer. If the P Bit is clear, the search is finished. The final
result is given to the LEC, which uses it either as a pointer
into the SIB RAM, or as data, depending on the context of
the search. A zero value is reserved as a null pointer value.
FIG. 8 illustrates search tree operation.

The search key length limits the number of iterations to a
known maximum. The control pmcessor manipulating the
search tree structure may choose to shorten the search by
putting data with a zero P bit at any point in the tree.

“Don’t Care" fields are also achievable by duplicating
appropriate pointers within the same pointer array. Search
trees are maintained by the Control Processor, which has
direct access to the SALE and DALE RAMs 6, 8.

FIG. 9 is a diagram illustrating a MAC search tree
example. The main purpose of theALE RAMs 6, 8 is to hold
MAC layer addreses. The size of the RAM required for a
MAC address tree depends on the statistical distribution of
the addresses. The absolute worst case is given by the
following formula:L

N: Emmi-l, K5:1

where
X is the number of addresses
L is the number of nibbles in the address

N is the number of pointer arrays
The amount of memory required, given 32—byte pointer

arrays, is 32N. The number obtained from this formula can
be quite huge, especially for MAC addreges, but some
rationalizations can be made.

In the case of MAC addresses, the first 6 nibbles of the
address is the Organizationally Unique Identifier (OU'I),
which is common to Ethernet cards from the same manu-

facturer. It can be assumed that a particular system will only
have a small number of different OU'IS.

The formula for MACS then becomes:
6 M 12

N = 2mm“, M) +2 Zmre"7,x,~r=l Fl l=7

where
M is the number of difierent OUIs

X, is the number of stations in OUIi
Assuming that the addresses are distributed evenly over

all OUIs,

10

15

30

35

4s

50

55

60

65

10
6 12. X

N = Z mi1(16"‘, M) + ME min(16"7, fii=1 i=7

The efiect of OUI on Search Tree Size is shown in FIG.
10.

Similar rationalizations can be made with IP and other

network layer protocol addreses. An IP network will not
have very many subnets and even fewer network numbers.

Although the SALE 2 typically holds locally attached
source MAC addreSes and the DALE I typically holds
destination MAC addresses, either ALE 1, 2 is capable of
holding any arbitrary search tree. Network layer addresses,
intra-area filters, and user-defined MAC protocol types can
all be stored in search trees The decision to put a search tree
in either SALE or DALE is implementation dependent; it

15:12:! on what searches can be done in parallel for maximum
The principal function of the SAIJE. 2 is to keep track of

the MAC addresses of all stations that are locally attached to
the bridge-router. Typically one station will be attached to a
bridge-muter port, but connections to traditional hubs,
repeaters and bridge-routers are allowed, so more source
addresses will be encountered.

Using the formula for RAM size above, typical RAM
calculations for the source address trees are as follows:

Number of

Number of 0015 Station: Total Bytes

20 400 65,440
2 500 65,184

20 500 77,984
20 800 116,234

5 1,000 131,552

The number of source stations is limited to some fraction
of the total allowable stations. The limit is imposed here
because the SALE will most likely hold many of the other
search trees (e.g. per protocol NL address search trees,
intre-area filters).

Whenever a new source address is encountered, the SALE
1 will not find it in the MAC source address search tree. The
LEC 3 realizes the fact and sends it to the Control Processor.
The new source address is inserted into the search tree once
validation is received from the Route Server.

Whenever a previously learned address is re-encountered,
the Age entry in the SIB 20 is refreshed by the LEC 3. The
control processor clears the Age entry of all source addresses
every aging period. The entry is removed when the age limit
is exceeded.

The source address look-up engine table is shown in FIG.
11.

The DALE 1 keeps track of all stations that are directly
reachable from the bridge-router, including those that are
locally attached. The DALE seardi trees are considerably
larger because they contain MAC addresses of up to 8,000
stations.

Typical memory sizes for MAC destination address
search trees would be:

Number of Number of

OUII Stations Tbtal Bytes

10 8,000 856,992
20 8,000 945,824
30 8,000 1,034,464

A station’s MAC address will appear in the MAC search
tree if the station is reachable through MAC bridging. A

NOAC EX. 1017 Page 170

NOAC Ex. 1017 Page 171

....erm.imiw.mweta;ma.. 5,917,821

11

station’s network layer address will appear in the cone-
sponding network layer search tree if it is reachable through
routing.

The destination address look-up engine MAC table is
shown in FIG. 12.

IP masking may be required if a particular port is known
to have a router attached to it. Masking is achier by
configuring the IP network layer search tree in such a way
that the node portion of the addre$ is treated as Don’t Care
bits and the corresponding pointers point to the same Next
Index Array.

'Ihe SALE and DALE RAMs 8, 6 are divided up into 16
word blocks. 'Ihese RAMs are accesrble only to the cone-
sponding ALE and the Control Procesor. These RAMs
contain mostly pointer arrays organized in several searchtrees.

The SIB RAM 20 is divided into 16 word blocks which

can be treated as records with 16 fields. Each block typically
contains information about an endstation. This RAM is

accessrble only to the LEC and the CP.
The LEC 3 uses the lookup pointer (LP) as a base pointer

into a SIB 20. The contents of the LP is obtained either from
the restrltofaSALEZorDALElsearchtoaccess

end-station information, or from a constant loaded in by the
microcode to access miscellaneous information (e.g. port
information). The LP provides the upper sixteen bits and the
microcode word provides the lowest four bits of the SIB
RAM address.

The lookup Engine addreming scheme is shown in FIG.
13.

The SIB RAM 20 (FIG. 14) generally contains informa-
tion about the location of an endstation and how to reach it.

For example, the PortSet field may keep track of the port that
the endstation is attached to (if it is locally attached) and the
connection index refers to a VPI/VCI pipe to the endstation
(if it is remotely attached). Other fields are freely definable
for other things such as protocol filters, source and destina~
tion encapsulation types and quality-of-service parameters,
as the need arises.

A variant of the SIB is the Port Information Block (PEB)
(FIG. 15). PIBs contain information about a particular port.
Certain protocols have attributes anached to the port itself,
rather than the endstations. An endstation inherits the char-

acteristits migned to the port to which it is attached.
The definition of the SIB is flexible; the only requirement

is that the data be easily digestible by the LUE instruction
set. The field type can be a single bit, a nibble, a byte, or a
whole word.

In FIG. 14, the Cl (Connection Identifier) field is a
reference to an ATM connection to the endstation if it is

remotely attached. This field is zero for a locally attached
endstation.

'Ihe PortSet field is used both for determining the desti~
nation port of a locally attached endstation, and for deter-
mining whether a source endstation has moved. In one
Newbridge-router Networks system, a moved endstation
must go through a readmission procedure to preserve the
integrity of the network. This field is zero for a remotely
attached endstation.

The MAC Index is a reference to the 6-byte MAC layer
addre$ of the endstation. This field is used for network layer
forwarded packets, which have the MAC layer encapsula-
tion removed. The MAC layer addm is re—attached when
a packet is re-encapsulated before retransmission out an
Ethernet port. The encapsulation flags determine the MAC
re—encapsulation format.

The Proto Area and Proto Dest Area fields are used for

filtering operations. Because the Newbridge—router system
e$entially removes the traditional physical constraints on a
network topology, the area concept logically re-rmposes the
constraints to allow existing protocols to function properly.

10

15

30

35

45

50

55

60

65

12

Filtering rules defined between areas determine whether two
endstations are logically allowed to communicate with each
other using a specific protocol.

The Proto Area field is a pointer to a filtering rule tree,
which is similar in structure to the addrC$ trees. The Dest

Area field is a search key into the tree. The result of the
search is a bitfield in which each protocol is assigned one bit.
Communications is allowed if the corresponding bit is set.

FIG. 16 shows a filtering nrle tree.
The microcode for the LEC 3 will now be described. The

LEC microcode is divided into four main fields as shown in

the table below. The usage of each field is dependent on the
instruction group.

31—3 28—24 73—16 15—0

Inst Instruction Displacement Parameter
Group

The instruction group field consists of instructions
grouped according to similarity of function. A maximum of
eight instruction groups can be defined.

The Instruction field definition is dependent on Instruc-
tion Group.

In branch instructions, the Displacement field is added to
the PC if the branch condition is true. This field is used by
non-branch instructions for other purposes.

The Parameter field is a 16 bit value used for comparison,
as an operand, or as an index, dependent on the instruction.-

The functions of the groups are set out in the following
table.

Index Pointer/Bank Seled.
Instructions
Thu: instructions manipulate the
IP and the register bank aelect
register.
Fast Move Instructions
The-e instructions move data
between I/F RAM and interrnl
registers.
Conditional Bunch Instructions
Thu: instructions branch when a
given audition is met. They an
optionally inaement the 11’.
X Register Branch Instrudinns
These instructions brand: on an X
Register logic comparison.
Not Used
Slow Move Instructions
These instructions generally
involve the SB RAM bus. The
access timetothe SIBRAMis
longer bemuse of address setup
time considerations and because
the C? may be accessing it at the
same time. Access to the Result
FIFO: are included here.
Not Used
Misc Instructions

Thue instructions invoke special
functions.

Group 4
Group 5

Group 6
Group 7

The following table describes the use of each of the fields.

NOAC EX. 1017 Page 171

NOAC Ex. 1017 Page 172

A 5,917,821

13 14

,.;_MWC‘fl‘JL'5‘;

17—16

6-11) 31—29 28-26 25—24 73-21 20—18 18-16' 15—0.Tea-m

0 000 000 Oper.111 110 BSel ImmediateVIIueOS—O)01'

Regirter Select (15—4)
1 0 0 1 Desi. Size ISel ASel BSel Immediate Value (15—0)

Register Select (15—4)
or Index (3—0)

2 0 1 0 Cond. Size Disp. (8) Compmnd
3 0 1 1 Cond. o 0 15:1 Disp. (5) Compaflnd4 1 0 D
5 1 0 1 Desi. Size 15:] ASel BSel Immediate Value (15—0)

Regine! Select (15—4)
or Index (3—0)6 1 1 D

7 111 000 size 000 000 00 code:

'when ISel -= 110

20 continued

Condmou Co 1' . n
000 - (I17) - Comparand
001 - (I17) < Comparand 010 - DALE lmkup Rank

311) - (IF) > Command 75 110 - SALE 11:01an Result
100 - Extended Condition - True mm” “1‘“
101 _ waded Condition a FIISC Wold values fill the whole field

~ 110-Y-0 Bytevnluesmustbcrepellcdlwimmfilllhcfield:~ 111 - Y o o . .
B l = 11 Specml I-hncuo :

2‘ Dell - Declination When SC (. m) .
‘1 000 — am'ently native FIFO 30 “I“: mm“ Mnemanu:5 001 - X Regine: 50000 X rotate 1:3 4 L4(X),R12(X)
1 01° ‘ 10°“? Eng“ :‘dd‘m W 31000 x rotate a (byte mp) swuognogmag
g 011 - G-mup 5: S Reguter 00 X , hr 4 R4}: otherwile: None 320 mm‘ 11g (KN—1200
{ 100 - Y Regilter $3000 portsetOK) PSEI‘(X)

1(1); - 2:10!) (SIB RAM) 35 54000 x rotate left 1 1.10:)- guru .
N 111 - lockup Poinler 500° x mm” 11311.1 R199
* Openfiou - [P/Regiuer Select operation 56000 hp X FLIP(X)

: 00 - Register Select $7000 we Version number VER
r 19 ‘ ”"1. . When Vhlue - $3000 (Pomet Function);xx Size - IP increment nu 40r 00 - no inuemen: X(11:8) fl1520)

V 01 - byte (+1) 0 0000000000000001
3 1° ' ““1 (*2) 000000000000001
, Displacement (8 bits) 1 0I 00000001 - next inlh'uclion 2 0000000000000100

1 00000000 - same instruction 3 0000000000001000

lg Displlnemcnt (5 1:11;) 45 4 0000000000010000‘ 00001 - next instruction
00000 _ mm mum} 5 0000000000100000
15e1 - logic Unit Select 6 0000000001000000

33(1) ‘ 2311:2313 7 0000000010000000
010 _ A AND NOT B 50 8 0000000100000000
011 - A OR NOT B 9 0000001000000000
100 - A XOR B 10 0000010000000000

(1)23: gum“ 11 0000100000000000
111 _ A 12 0001000000000000
ASel - Opennd A Select 55 13 0010000000000000

330 - (f). (IP)+ 211:6? ”F DNA 14 01000000000000001 - egistcr
010 _ S S Resin" 15 1000000000000000
011 - X? X' Register
100 - X? X' Register '
101 - 60 FIFO Write Instructions
110 -
111 -

BSel - Opennd B Select 31—29 28—26 75—24 23—21 20—15 17—16 15—0
00 - Y Y Register
01-Wn1ue mediatewue 101 000 00 110 Extra BSel Immediate

11 - Special Function 65 \hlue (15—0)When 159.1 -= 110:

t
ES

I

NOAC EX. 1017 Page 172
«a

NOAC Ex. 1017 Page 173

I
l

 5,917,821

15 16

Geo 01 MOVEF #Valuefxtn
MoveIrnmediateValnetoI-‘IFOwithEmbits

Dee 00 MOVEF Yfixtn
Move Y Register to FIFO with Ema bi]:

lee 00 MOVEF Index(LP),Extra
Move Indexed Innkup Data to FIFO with Extra bits

The FIFO write instructions are used to write data into the 10 continued

The third instruction in the List is a direct memory access
from SIB RAM to the active FIFO. SIB RAM is enabled

while the active FIFO is sent a write pulse. Doing so avoids
having SIB data propagate through the LUE. Bit 20 ditfer-
entiates between a DMA and a non-DMA instruction.

The X register cannot be used as a MOVEF source
because what would normally be the ASel field conflicts
with the Extra field.

#IPSnapp ; Packet is [P over SNAP
Interface RAM Data Reed Instructions

31—29 18-26 25—24 3—21 m—18 17—16 15—0

0 0 1 Best Size 1 1 1 0 0 0 0 0 Unused

DestlSize

001 00 MOVE ([P),X
Move [P indirect to X Reg’ster

001 10 MOVE (n’)+,x
Move 1p indirect autoinc to X Register

100 00 MOVE (IP),Y
Move [P indirect to Y Register

100 10 MOVE ([P)+,Y
Move [P indirect autoinc to Y Register

111 00 MOVE (IP),LP
Move [P indired to LP Register

111 10 MOVE (n’)+,LP
Move [P indirect nutainc to LP Register

Interface RAM Data Read instructions are used to read

data from the Interface RAM 41 into the X, Y or LP Register.
The LP used is preselected using the RSEL instruction.
Lookup Pointer Instructions

31—29 28—26 25—24 3—21 m—lB 17~16 15—0

Group Deal 0 0 ISel ASel BSel Immediate
or Value (15—0)
Em Reg Sel

(154)or Index
(3-0)

H
Group/Dut/LSeI/ASeI/BSel - Instruction Type1

101 101 111 001 00 MOVE XJndexa‘P)
Move X Register to Indexed lockup Data

15

35

45

50

55

60

65

Grunp/DeatllSel/ASel/BSel - Instruction rypc

101 101 110 000 00 MOVE Y,Index(LP)
Move X Register to Indexed Lookup Data

101 011 000 000 00 GET Indexfll’)
Insd S Register with Indexed Lookup Data

001 111 110 (DO 00 MOVE Y,LP
Move X Register to lockup Pointer

001 111 110 000 01 MOVE #Value,LP
Move Immediate Value to 1410th Pointer

001 111 111 001 00 MOVE X,LP
Move X Register to hookup Pointer

Lookup Pointer instructions are used to load the Lookup
Pointers or to store and retrieve values in Lookup RAM.

Usage:

MOVE Age(LP),X ; Get Age field
. . . ; check age
. . . ; reset age
MOVE X,Age(LP) ; put it back in

Logic Instructions

31—29 28—26 25—24 3—21 20—18 17—16 15-0
0 0 1 Best 0 0 ISeI ASel BSel Immediate

Value (15—0)or Index
(3-0)

Logic instructions are used to perform logic manipula-
lions on the X and Y Registers. Combinations of the
selections above yield the following (useful) instructions:

 DesUISeI/ASel/BSel

001 110 000 00 MOVE Y,X
Y —> X

100 111 001 00 MOVE X,Y
X —> Y

001 111 010 00 MOVE S,X
S —> X

100 111 010 00 MOVE S,Y
S -—> Y

001 110 000 01 MOVE #Value,X
Immediate Value —> X

100 110 000 01 MOVE #anue,Y
Immediate Value —> Y

001 000 001 00 AND X,Y,X
X AND Y —> X

001 000 010 00 AND S,Y,X
S AND Y —> X

001 000 001 01 AND X,#Value,X
XAND Value ~> X
AND S,#Value,X
S AND Vilue —> X
AND X,Y,Y
X AND Y —> Y

001 (X10 010 01

100 (DO 001 00

NOAC EX. 1017 Page 173

NOAC Ex. 1017 Page 174

q . . 5,917,821
17 18

* -conl:inued -continued1

Dar/LSeI/ASel/BSel Cond/LSel_____.___.__._____.____.—

1,5. 10° 00° 01° 00 ‘sumlm’irfl: Y 5 111 100 BXNE #Valuelabel
"' 100 000 001 01 AND X,#Value,Y 3m“ if x ‘5 ‘1‘“ “1““ t“ “1“”
g; x AND Wm, _> Y 110 000 ANDBZ #Valuelabel
‘f 100 000 010 01 AND S,#anue,Y Brunch ifoND VIlue is equal to zeroI S AND value —> Y 111 000 ANDBNZ avalueiabel

it, 0R,ANDN,0RNandXORareaimilartoAND: BmchifXANDVIlueisnotequnltDzero
if d“ 001 “I bb 0“ “ebb,“ 10 110 010 ANDNBZ #Valuehbel{'5 an: OR bb —> an . .
5‘. v BranchifXANDNOI‘Valueuequaltonero
F d“ 01° m bb AND" “1,110,115: 111 010 ANDNBNZMue,1abel‘ , an OR bb —> dst . .
‘ dst 011 m bb ORN aaa,bb,dst Branch ifX AND NOI‘ Vhlne is not equal to zeroan OR bb —> an

,2 dlt 100 la: bb XOR aaa,bb,dst 15
E“ an OR bb—> dst X Register Branch instructions are derived from the X
x? Register Logic instructions with OperandAalways set to the

Conditional Branch Instnictjons X Register and Operand B always set to the Immediate
value. The X Register is not affected by any of these

——-——-——-————'—' 20 instructions. The displacement field is reduced to 5 bits
. 31—29 28—26 25—24 23—16 15-0 (+/_32 instructions)

.JSTWA.
l

O 1 0 Cond. Size Displacement Compmnd Usage;1

D’. See Destination lockup Instruction example
SIGPNV ; ignore the next word field

} Cond/Size
z ———-——-——————i—_
t 000 01 ESCNEb «Compam bel ,

EDP: if By,e Not wd’h Other Branch Instructions
(DO 10 ESCNEw iCampmlezbel 30

Escape if Word Not Eqinl
001 01 E90631! tICmuinmaruabcl 31—3 28—26 25—24 23—16 15-4 3—0

1 Escape if Byte Greater or Equal

~¥ 001 10 ESCGEw #Campmlnbel o 1 0 Coud Size Disp EnCond FxtDisp, Elenpe if Word Grater or Equal1: 010 01 ESCLE.b #0311le

,1 Escape if Byte lens or Equal 35
g 010 10 I'SCLE.‘ «Compmndpbei
z, ElapeifWordleasor Equal - VD'IplExthnd'EnD'Ip

110 00 BYZ label and/s '
'; BnnnhifYRegieterilzero 100 OOSOOSOIDODWAIT111 00 BYNZ hbel “hit for DALE

§ BmhifYchimilmlum 40 1oooosoossoooswm. Wait for SALE
. . _ 101 00 $00 scan 0 FWAl'I‘

:- Increment Branch instructions are used to compare the Wait for Snoop FIFO done
fl current packet field with an immediate value. If the condi- 101 00 dd“ 540° 0 BCSERR add. Branch on checksum error

3 tion is met, the branch is taken; otherwrse [P is incremented 45 011 01 301 5000 0 SKIRb
,1 by the Increment Size. Skip Byte (same is mam: +1)
g Usage' 011 10 $01 $000 0 sxmw” ' Skip Word (name as IBRAw +1)
fi 011 01 ddd $000 0 Bub hbei

3 . Increment Byte and Branch Always
»_ Lube“: : check if SNAP find” 50 011 10 ddd 5000 d IBRAw label
I ESCNE- w “W517- ; comp.“ to SNAP V11“: Increment Word and Branch Always
1 ESCNEw #sooospuierubci 011 00 000 $800 0 SWITCH

Switdionx(addXtDPC)

.3 1:11:12: 011 00 ddd 3000 d BRA_u label_' —_——‘——’——_——"— Brunch Alwnys
' 55

X Register Branch Instructions
These instructions are derived from the conditional

branch instructions. Wait instructions loop until the extended
condition is false. Skip instructions move to the next instruc—

0 1 1 Cond o 0 15:1 Dup V31“ 60 tion and increment the IP appropriately._—_________________

More branch instructions can be defined easily by using
Cond=100 or 101 and picking an unused ExtCond pattern.___________________

Con _ 1 When Cond-Oll (Tmc), the displacement field is
__.__———-———————-‘— 65 extended to 12 bits.110 100 BXEQ #Vll l . .

Bunch if x is mama The SWITCH instruction adds the least significant nibble
of X to the PC. If X(3:0)=0, 16 is added to the PC. —

1

31—29 28—26 25—24 23—21 20—16 15-01

NOAC EX. 1017 Page 174

(mu

NOAC Ex. 1017 Page 175

19

Usage:

SKIRW ; ignore the next word field
Index PointerlRegister Select Instructions

Index Pointer/Register Select Instructions

31-29 28—26 25—24 7.3—2] 17—16 15—0

20—13

Group Dest Oper ISeI ASel BSel Immediate
Value (15—0)or

Register Select
(15-4)

Group/DesL/Oper/lSel/ASel/BSel

001 110 00 111 000 00 sr Wu]
X—>XP,optionsllyswinchtoXPn,LPn

001 001 00 111 100 00 ID XLXPnJPn]
XP—>X,aptionallyswitchtoXPn,LPn

001 011 00 111 000 00 RSEL XPnJJ’n
switch to XPn.LPn

000 011 10 111 000 01 IDADIP # Value
load I? immediate

0(1) 011 10 111 001 00 IDADD X
load I? with X

Index Pointer instructions are used to perform manipula-
tions on the index pointer.

Transfers from the X registers are not normally used in a

The Register Select instruction selects a register from
each of the register banks. The format of the Bank Select
Bits field is:

15—12 1.1 10—8 7 6—4 3—0
XXXX XEn XSel LPEn LPSeJ XXXX

The En bits determine whether the corresponding select
bits are valid. If En is zero, the corresponding register
selection remains unchanged. IfEn is one, the corresponding
select bits are used. This mechanism allows register selec-
tions to be made independent of each other.

Destination hookup Instructions

31—29 28—26 25—24 23—21 m—lB 17—16 15-0

001 010 Size 111 A5el 00 Command!
Address

Size/ASGI

00 001 DIDAD X,Address [,Commnnd]
loud X into DALE

00 000 DlDAD (IPMddrus [,Comnnnd]
load [P indirect into DALE / load Command Reg

10 000 DlDAD (IP)+,Address [,Comnumd]
load IP indirect autoinc into DALE / load Command Reg1

10

15

20

35

45

50

55

60

65

5,917,821

31—29 28—26 25—24 73—21 20—18 17—16 15—0

00] Des! 00 110 000 10 notused

Best

111 DMOVE LP
Move DALE result pointer into Lookup Pointer001 DMOVE X
Move DALE result pointer into X Register100 DMOVE Y
Move DALE result pointer into Y Register

The destination lockup instructions set up the DALE and
read results from it. The currently selected lookup pointer is
used as the root pointer.

The DLOAD instruction loads words into the 16 by 16 bit
DALE Nibble RAM and loads the Command Register. The
DMOVE instruction returns the DALE result.

Command Register

 15 14 13—12 11—4 3—0

Sun 0 Nibble 00000000 Address
Offset

The Start bit signals the DALE to start the lookup.
The Nibble Offset field points to the first valid mbble in

the first word loaded into the Address RAM.

the result may be invalid.

Usage:

IDADIP «sumac: ; point to start of packet
DIDAD (IP)+, Word] ; load DA word 1
DlDAD (11’)+,Word2 ', load DA word 2
DIDAD (IP)+,Word3,Stsrt ; loud DA word 3 and start lockup
. . . : do other stuff
DMOVE X ; get result
EXNE WHILDAFound ; address found in table

Source lockup Instructions

31—29 28—26 25—24 23—21 20—18 17—16 15—0

001 010 Size 111 AScl 01 Command]
Address

Size/AScl

(I) 001 SIDAD)LAddress [,Command]load X into SALE

00 000 SIDAD (1P),Addms [,Cornmand]
land 11’ indirect into SALE / load Command Word10 000
SIDAD (IP)+,Address [,Commnnd]
load IP indirect. autoinc into SALE / load Command Word

NOAC EX. 1017 Page 175

NOAC Ex. 1017 Page 176

1my;

‘ME‘W‘KMD‘E‘9‘1'33"'
“,1

‘“via;’39%;:‘2”the
ux;u:

u\L—t‘w4N.’flf‘ih543:
”pajama:‘ta‘qthraw

5,917,821
21

31—29 28—26 25—24 23—21 20—18 17—16 15—0

001 Dest 00 110 001 10 Immediate
Value (IS—O)

Best

111 SMOVE LP
Move SALE result pointer into Loohrp Pointer001 SMOVE X
Move SALE result pointer into X Rey'ster100 SMOVE Y
Move SALE result pointer into Y Register

The destination lockup instructions set up the SALE and
read results from it. The currently selected lookup pointer is
used as the root pointer.

'Ihe SLOAD instruction loads words into the 16 by 16 bit
SALE Nibble RAM and loads the Command Word. The
SMOVE instruction returns the SALE result.
Command Word

 15 14 13—12 11—4 3-0

Start 0 Nibble 00000000 Addrus
Offset

The Start bit signals the SALE to start the lockup.
The Nibble Ofl‘set field points to the first valid nibble in

The SMOVE instruction gets the 16 bit SALE result
pointer. 'Ihe SMOVE instruction should be preceded by
SWAIT, otherwise the result may be invalid.

Usage:

swan (IP)+,Wcrd1 ; load DA word 1
SLOAD ([P)+,Word.2 ; load DA word 2
SLOAD ([P)+,Wcrd3,Slart

', loud DA word 3 and start lockup
. . . ; do other unfl‘
SWAl'I‘ ; wait for SALE to finish
SMOVE X ; get result
Em #NullfiAFound ; addren found in table

Checksum Engine Instructions

31—29 23—26 25-24 23—21 20-18 17-16 15—0

0 0 1 0 1 0 Size 1 1 1 ASel 1 0 $8003

Size/ASel

00 001 CLOAD X
Imd X into Chedwum Engine and start

00 000 CLOAD (1?)
Load [P indired. into Checksum Engine and start

10 000 CIDAD (IP)+
Load [P indired. autoinc into Checksum Engine and start

checksum engine, clears the checksum and starts the engine.
The word currently indexed by IP is subsequently added to

10

15

45

50

55

60

65

22

the checksum each time the IP crosses a word boundary until
the count is exhausted.

Miscellaneous Instructions

31—29 28—16 15—0
111 00000000 Code(Z—O)

These instructions invoke special flmctions

Code
001 SIOP

Stop execution until next loolnrp requut

The lockup engine operation will now be described in more
detail. The instruction State Machine (ISM) is shown in FIG.
17.

Alcckup engine microcode will typically take four clock
cycles. At 50 MHz, the instruction cycle takes 80 us to
execute. Instructions that require access to SIB RAM, which
require arbitration with the Control Processor, and any
fuhne extensions that require more time to execute will
require one or more additional cycles to complete.

After reset, the 3 LEC is in the idle state. As soon as one
of the snoop F'IFOs 42, 43 is non-empty, the ISM enters the
main instruction cycle loop.

A microcode instruction cycle is typically divided into
four main states. State 3 and State 0 allow the microcode

contents to propagate through the LEC. 'Ihe instruction
group is determined in State 1. If a fast instruction is being
executed (Groups 0—3), State 2 is entered immediately.
Otherwise the appropriate next state is entered according to
the Group field.

FIG. 18 shows a typical fast instruction.
By the time State 2 is reached, all sigialswill have settled.

New values for the PC and if necessary, the IP and/or the
selected destination, are loaded at the end of this state.

State 42 is a dummy state for currently undefined groups.
State 52 is a wait state for external ames to SIB RAM.

The ISM exits this state when the SIB RAM has been

granted to the LEC long enough for an access to complete.
FIG. 19 shows a typical SIB RAM access instruction.
States 72 and 73 are executed during the STOP instruc-

tion. State 73 flushes the snoop FIFOs in case.
The LEC cycles through States 0 to 3 indefinitely until a

STOP instruction is encountered, which brings the LEC
back to the idle state.

The lockup request mechanism for a MAC layer lockupis as follows:

The requester (e.g. the AXE) places information, gener-
ally a packet header, into the snoop FIFO.

The empty flag of the FIFO kickstarts the LEC.

The IEC instructs the DAIE to look up the destinationaddrem.

The IEC instructs the SALE to look up the sourceaddress.

The LEC looks into the packet to determine the network
layer protocol in case it needs to be forwarded.

The LEC waits for the SALE and reads the Source
Address SIB pointer.

The source port is compared against the previously stored
pcrtset to see if the source endstation has moved.

The LEC waits for the DALE and reads the Destination
Address SIB pointer. ,

VWUSS

NOAC EX. 1017 Page 176

NOAC Ex. 1017 Page 177

42:7frr. ~-Mu ,um

23

if the endstafions are in the same area.

to see if the endstations are on the same port.
*€

3:

“gramme
\

:fn'v

Alfim;'‘
“9;.

....Jwa‘agtnv..

.zwa.«an;1“

The destination area is compared to the source area to see

The source port is compared against the destination port

5,917,821

24

Packets are discarded if they serve no other useful pur-
pose (e.g. SA and DA on the same port or in different areas,

Sample Program

errored packets). Otherwise they are sent to the Control
Processor for further processing.

; File: BDG.a
; Unimat Bridging (‘zse
; Release 1.1 Phnctionaiity,
BDG_Suut:
',XO a Packet Stain: Word
;[P = Point: to 2nd byte of PSW
;DR - Contains Packet Slams Word
;xo, LPO are default x1), LP

MOVE $80003 ;Look up Deslinltion MAC
DIDAD (IP)+,0 and DatAddr hi1: 0—15
DIDAD (IP)+,1 ;Load DatAddr bit- 15—31

;I.Dad Dst Add: bile 32—47
DIDAD (IP)+,2,38000 ;and aim lockup
MOVE 58000,].1’ look up Source MAC
swAD (IP)+,0 131d Src Add: him 0—15
swAD (IP)+,1 101d Sl’cAddr bin 15.31

;IDad Src Add: hill 32—47
SIOAD (IP)+,2,58000 and start lockup

; determine protocol here
ESCGEW 1500, ;check if 8023 format

CheckEnefI‘ype
ESCNEW SMAA, ;check DSAP/SSAP

Unknown’Iype
ESCNEW $0300, ;clleck CI'L field

SNAPUnknown—
G

55me :8800,SNAPUnknown—
6

[£8me 23500, ;check protocol type fieldSNAPUnknown—
Protoml

; It's [P over SNAP
BngNAPIP:

CLOAD 5 name 11’
header length is5

ESCNEw $4500, ;chet:k 1P header
BngNAPIP-
withOpl:

SKIBW :Ihip length
SKIRw akip idenfifim-lion
smw :IHp ofiset
ESCLEb $01, ;check 'ITL

BngNAPIP_
TflFxpired

SKIP.b :Ih'r: protocol
Smw ;akip chechum
MOVE (IP)+,X mead NISA
MOVE R12(X),X whift first nibbleto bottom
SWITCH ;check 11’ C135
BMu BngNAPl'P— ;0m - Clns: A IddrelsClassA
BRA.u BngNAI’IP—ClassA
BRA.u BngNAI’IP-

ClassA
BRA.u BngNAPIP-

ClassA
BRA_u BngNAPIP—

ClusA
BRA.u BngNAPIP—

ClassA
BRA.u BngNAPEP—Clam
BRA.u BngNAPl'P— ;10xx - Clan B IddrmClassB
BRA.u BngNAPEP—

ClassB
BRA.u BngNAPIP-

ClassB
BRAu BngNAPIP—

ClmB

NOAC EX. 1017 Page 177

NOAC Ex. 1017 Page 178

 (“1%?“A",. (

‘4...).

:L;

~.“it“.‘

———————_
BRAu

BRAu

BRAu

BRA.u

BRA.u

BngNAPIPCluIA:0R
BXNE

MOVE
BXEQ

BRA.u

BngNAPIP_

510?. g ‘BRAu

BngNAPIPCluaB:
MOVE
BXNE

BRAU

BngNAPIPClusc:MOVE
OR
BXEQ

BRAu

BngNAPIPCIusD:SKIEW
BRA.u

BngNAPIP_NLSAlnvnlid
SWAl'I‘

DWAIT
OR

MOVEF
MOVEF
MOVEF
MOVEF

SI‘OP
BngNAPIP_
NLSAVIlid:

SlClP.w
SlClPJv
BSERR BDG_

SNAPIP_CSEn-or
RSEL
SWAIT
SMOVE
MOVE

BYNZ
BDG_SrcMias:

OR

MOVEF

5,917,821
25

continued

BngNAPIP— ;110x - Class C addressClusC
BngNAPIP-
Clast
BngNAPlP— ;1110 - Class D Iddma:ClauD
BngNAPIP— ;1111 = Chas E lddrus (future)ClamE
BngNAPlP— ;0xxx = Ch” AAddress
Clam

XSFFUOX whack if broadmst
SFFFF,
BngNAPIP__
NLSARalign
(IP)+,X whack lower address word
SPFFF, all once; host :ddress
BngNAPIP_
NISAInvalid
BngNAPIP_ ;bmadast SA is not allowcd
NLSAanid

BngNAPlP_
NISAVflid

(H')+,X whack lower nddreu word
SFFFF,
BngNAPIP.
NISAanid
BngNAPl'P_
NISAVhlid

([F)+,X whack lower Iddmu byte
XfiF'FDOX ;chu:k if broadnst
SFFFF,
BngNAPlP__
NLSAImlid
BngNAPIP__NISAValid

BngNAPIP.NISAVhlid

;clun up thatSALE Ind
DALE

mm_ ',I.oad command Word
DISCARD |CMD.
UNICASLY
Y, FIRST ;Send Gum-ml Word
NULL__CI ;Send CI Index
POKI‘_CP ;Dest Pam in CF
RSN_FRC_ ;Send Rclson
MAC_SRC_
INVALID

;skip NLDA

LPl ;Store Ioume SEB pointer in LPl

Y ;Y contains SALE result
Y,LP,LP2 ;LF1 points to Source Add: 5123

Store dcst SB pointer in LPZ
BDGJmHit
;u ct Sm“.cc
Cache Miss "'
XP,CMD__ ;I.oad command Word
FWDCP I
CMD._
UNICASI‘,Y

;Defau.lt MAC Ethernet Type
;Dctnult low priority

‘1', FIRST ;Send Cammnd Word

26

NOAC EX. 1017 Page 178

NOAC Ex. 1017 Page 179

um...

~”maul.“$ma.

“—

MOVEF
MOVEF
MOVEF

SIOP
BDG_SNAPIP__
CSError:

OR

MOVEF
MOVEF
MOVEF
MOVEF

SI‘OP
BDG__SIcHiI:

DWAIT
DMOVE
MOVE
BYNZ

BDG_D¢stMis:

OR

MOVEF
MOVEF
MOVEF
MOVEF

SIOP
BDG_Ch:ckSrcPofl.:

6151‘

AND
BYNZ

BDGJmMove:

0R

MOVEF
MOVEF
MOVEF
MOVEF

SI‘OP
BDG_ChcckDealeea:

RSEL
6151‘

AND

BYNZ

BDG_DulAmInvalid:

OR

;Defnult MAC Ethernet
Type
Default low priority
;Deflull Multimt

MOVEF
MOVEF
MOVEF

5,917,821
27

—conlinued

NULL_CI ;Send G Index
PORT_CP ;Dcst Port is CP
RSN~FRC_ ;Scnd Rmson
MAC__SRC_
MISS
;Donc!l!

)CP,CMD_ ;Imd command Word
DISCARD |CMD_
UNICASLY
Y, FIRSI‘ ;Send Command Word
NULL_CI ;Send CI Index
POKl'_CP ;Dest Port is CP
RSN,FRC_ ;Scnd Reason
MAC_CSERR

Y ;Get DALE result
Y,LP,LPI ;poinl to source SIB
BDG_ and chuck source portCheckSICPon
;"‘ Dutination
Qchc Miss "'
XP,CMD_ ;Laad oomnnnd Word
FWDCP I
CMD_
UNICASI‘,Y

;Defzult MAC Ethernet Iype
;Def|ult Low priodty

Y, FIRST ;Send Command Word
NULL_CI ;Send CI Index
POKI'_CP “,Dest Port in CF
RSN_J7RC__ ;Send Rnlon
MAC__DSI‘_
MISS
;DonelH

S[B_MAC_ ;Compare pond: in L? => Src SIB
PORI'SEI‘GJ’)
S,PSET(X),Y :Y - arc add: bizAND m: port bi!
BDG, neuron moved if bit: don’t match
CheckDestAm
;"' Sourcc
Moved "'
XP,C.MD_ ;Load command Ward
FWDCP [CMD_
UNICASBY

;Deflult MAC Ethemt Type
Default Low priority

Y, FIRST ;Scnd Command Word
NULL_CI ;Scnd (I Indnx
PORT__CP Du: Port in CF
RSN_,FRC_ ;Send Hanson
SRC_MOVED
;Doncll!

LPZ ;point to desk SIB
SIBJRUI’O_ ;gct [P Desi; Area
Am_1(1.r)
SMASL
ARFA,Y;Mask
of top 4 bits
BDG_
CheckSmAn-a
;"‘ Destination
Area InVllid "‘
X
X,CMD_ ;Load command Word
DISQRD |CMD.
UNICASEY

Y, FIRST ;Scnd Command Word
NULL_CI ;Scnd CI Index
PORT__CP ;Dcsl Port is CP

28

NOAC EX. 1017 Page 179

NOAC Ex. 1017 Page 180

5,917,821

29 30
-continucd

MOVEF RSN_DRC_ ;Send Reason
DSTJREL
INV

STOP ;Don:!!l
BDG_CheckSrche-:

~ RSEL LPl ;gr.t ready for Source Add: check
‘1 GET SEBJROIO_

.3 may) ' .f OR S,SIB_AREA_ ;Iet PAbiI 1n SIB_IPAREA
g! PROIO_t ACTIVE}
; MOVE X,SIB_ modify
7, PROIO_

‘ AREA_J(LP) _
f. AND XMASK_ ;Mlak OK top 4 hi]:
,4; AREA, X
a XOR X,Y,Y,I..PZ ;check against Dest Area
3 awitch to LP2 (Dent
’1‘ sna)
'F BYZ BDG_
,{ ‘ CheckDestI’ortlg; BDG_Sn:AreaInvalid: ;‘” Source
i; Area Invalid "'
’w‘ OR XP,Chfl)_ ;Lmd command Word

DISCARD I
CMD_
UNIQASILY

;Deqult MAC Ethernete

zgepfault Law priorityDefault Multiast
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_CI ;Send CI Index
MOVEF POKT__CP ;Dut Port is C?
MOVEF RSN__DRC_ ;Send Reason

SRCM
INV

STOP ;DonelI!
BDG_CheckDestI’on:

;X0, LP). are
default XP, LP

LD X mime PSW
GET SIB_MAC_ ;S - dut address pomet

AND S, PS , wompue against noun: port pomet
BYZ BDG__OK

BDG_SImePort: ;" "“ Sn: Port a
Dent Port "‘

OR XEChfl)_ :Imd uomnund Word
DISCARD
CMD_
UN'ICASI‘,Y

;Defanlt MAC Ethernet

malt Low priorityMOVEF ‘1, FIRST ;Send Command Word
MOVEF NULL_CI ;Send CI Index
MOVEF POKT_NU'LL :Dut Port is NULL
MOVEF RSN_J)RC___ ;Send Reason

DST_.SAME
STOP ;Don: II!

BDG__OK: ;--- Bridge-muter "“
OR XP,CMD_ ',Load uonumnd Word

BRIDGE
ROUTER |
CMD_
UNIQASILY

;Default MAC Ethernet5

335m: Low priorityMOVEF Y, FIRST ;Send Command Word
MOVEF SIB_MAC_CI ;Send CI Index from dst SIB

MOVEF gIIRLMAC_ ‘,Dcst Port is determined from dst SIB
Pomsrm)

MOVEF SEB_MAC__ ;Gcl MAC Index Eton: dst SIB
MAGNDEI

STOP gin!!!

NOAC EX. 1017 Page 180

NOAC Ex. 1017 Page 181

31

The described look-up engine is capable of performing
bridge-router and most network layer look-ups in less than
5.6 #5 (1/178,000) with to minimum RAM requirements and
cost and maximizes flexibility for future additions/
corrections without hardware changes.

The intended application of the look-up engine is high
performance LAN systems and other packet-based devices.

GLOSSARY

BRIDGE-ROUTER A LAN bridging-routing device, with 12 ethernet
ports and 1 ATM port.
Asynchronous Transfer Mode. A cell relaystandard.
Address/Brmdast. Server A component of a RouteServer that handles address resolution and
bmadmst trafic.
A Transfer Engine
Destination Address. The MAC address of the
intended destination of a MAC frame.
Destination Address Look—up Engine. The LUE
component that generally searches through a table
of MAC layer destination sddremes.
Connection Identifies A number intemally used
to indimte a particular connection.
Internet Protocol A popular network layer
protocol used by the Internet community.
Internet Packet Exchange A Novell developed
network layer protocoL
Look-up Engine Controller. The LUE compon-t
that. executes microcode.
Look-up Engine.
Medium Access ControL A term commonly
encountered in EEEE 802 standard: generally
referring to how a particular medium (is.
Ethernet) is used. I‘MAC address” is commonly
usedtorefertotheglolnllyuniquewhitsddreu
giventosllinterfaoecardssdheringsomewhatto
the LEEE 802 standards.
Route Server.
Source Addrcss. The MAC address ofthe originatorof a MAC frame.
Source Address look-up Engine. The LU'E
component that generally searches through a table of
MAC layer source addresses.
Station Information Block. The data structure in
the LUE that holds relevant infirrmstion about an
endstation.
Content Addressable Memory.
Virtual Path Identifier
Virtual Channel Identifier
The processor in the Bridge-router that handles
management functions

”1|:

We claim:

1. An arrangement for parsing packets in a packet-based
digital communications network, said packets including
packet headers divided into fields having values representing
information pertaining to the packet, said arrangement com-
prising:

a) an input memory for receiving fields from said packet
headers of incoming packets; and

(b) a lock—up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including

(i) at least one memory storing information related to
possible values of said fields in a hierarchical tree
structure and associated with a respective field of
packet headers;

(ii) a memory controller associated with each said
memory storing information related to possible values
of said fields for controlling the operation thereof to
retrieve said stored information therefrom; and

(iii) a microcode controller for parsing a remaining por-
tion of the packet header while said stored information

'II

10

15

20

35

45

50

55

60

65

5,917,821

32

is retrieved and controlling the overall operation ofsaid
look-up engine.

2. An arrangement as claimed in claim 1, wherein said
memory controller associated with each said memory
compares, at each decision point on the tree structure, the
current field with a stored value or range, and moves to the
next decision point by moving a pointer for the current field
and branching to new code if said comparison results in a
first logical condition, and if said comparison results in a
second logical condition the current field is compared to a
different value or range, and so on until said comparison
results in said first logical condition.

3. An arrangement as claimed in claim 1, wherein said
controller associated with each said memory compares val-
ues based on successive mbbles of a field value in said

memory with stored values to locate the related information.
4. An arrangement as claimed in claim 3, wherein said

memory controller associated with each said memory con—
catenates a first nibble of an incoming field value with a root
pointer to obtain an index to a root pointer array, retrieves a
word at a location idenfified by said index, concatenates the
next nibble with the retrieved word to form the next pointer
and so on until said related information is retrieved.

5. Arr arrangement as claimed in claim 1, wherein said at
least one memory is a random accem memory (RAM).

6. Arr arrangement as claimed in claim 1, wherein one of
said fields comprises a destination address and said related
information comprises the path data associated with said
respective destination addresses.

7. An arrangement as claimed in claim 1, wherein a
plurality of said memories storing information related to
possible values of said fields in a hierarchical tree structure
operate in parallel and are associated with respective fields
of said packet headers.

8. Arr arrangement as claimed in claim 7, wherein each
said memory is a random access memory (RAM).

9. Arr arrangement as claimed in claim 7, wherein one of
said fields comprises a destination address and said related
information comprises the path data associated with said
destination address, and another of said fields comprises a
source address, and said look-up engine also locates path
data associated with the source in parallel with the location
of the path data associated with the destination address.

10. Arr arrangement for parsing packets in a packet-based
digital communicatiom network, said packets including
packet headers divided into fields having values representing
information pertaining to the packet, said arrangement com—
prising:

(a) an input memory for receiving fields from said packet
headers of incoming packets; and

(b) a lock-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including:

(i) a plurality of memories storing information related to
possible values of said fields in a hierarchical tree
structure and operating in parallel, said memories being
asceiated with respective fields ofsaid packet headers;

(ii) a main controller controlling overall operation of the
look-up enp‘ne; and

(iii) a memory controller associated with each said respec-
tive memory for controlling the operation thereof to
retrieve said stored information therefrom.

11. An arrangement as claimed in claim 10, wherein said
main controller is a microcode.

12. An arrangement as claimed in claim 11, wherein said
microcode controller comprises an interface memory for

NOAC EX. 1017 Page 181

NOAC Ex. 1017 Page 182

33

receiving headers of incoming packets, a station information
block memory for storing information pertaining to
endstations, a microcode memory storing microcode
instructions, and logic circuitry for implementing said
microcode instructions.

13. An arrangement as claimed in claim 11, wherein said
microcode controller parses the remainder of the packet
header using a specific instruction set while said information
is retrieved from said plurality of memories.

14. An arrangement as claimed in claim 13, wherein said
microcode controller comprises separate buses for instruc—
tions and data.

15. An arrangement as claimed in claim 14, wherein said
microcode controller is arranged to implement optimized
instructions that perform bit level logical comparisons and
conditional branches within the same cycle and other
instructions tailored to retrieving date fi‘om mbble-indexed
data structures.

16. An arrangement as claimed in claim 15, wherein said
microcode controller is implemented as an ASIC procesor.

17. An arrangement for parsing packets in a packet-based
digital communications network, said packets including
packet headers including destination and source address
fields, said arrangement comprising:

(a) an input memory for receiving fields from said packet
headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including.

(i) a source address look-up engine including a memory
storing information related to possible values of said
source address field in a hierarchical tree structure;

(ii) a memory controller associated with said source
look-up engine for controlling the operation thereof to
retrieve stored infonnation therefrom;

(iii) a destination addrem look-up engine including a
memory storing information related to possrble values
of said destination addm field in a hierarchical tree
structure;

(iv) a memory controller associated with said destination
look~up engine for controlling the operation thereof to
retrieve stored information therefrom;

(v) a processor controlling overall operation of said
source and destination address look-up engines, said
source and destination address look-up engines and
said processor operating in parallel.

18. An arrangement as claimed in claim 17, wherein said
processor is a microcode controller.

19. An arrangement as claimed in claim 18, wherein said
memory controllers compare, at each decision point on the
tree structure, the current field with a stored value or range,
and move to the next decision point by moving a pointer for
the current field and branching to new code if said compari-
son results in a first logical condition, and ifsaid comparison
results in a second logical condition, the current field is
compared to a difierent value or range, and so on until said
comparison results in said first logical condition.

20. An arrangement for parsing packets in a packet-based
digital communications network, said packets including
packet headers including destination and source address
fields, said arrangement comprising:

(a) an input memory for receiving fields from said packet
headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including:

10

15

20

35

50

55

65

5,917,821

34

(i) a source address look—up engine including a memory
storing information related to possible values of said
source field in a hierarchical tree structure;

(ii) a memory controller associated with said source
look-up engine for controlling the operation thereof to
retrieve stored information therefrom;

(iii) a destination address look-up engine including a
memory storing information related to possible values
of said destination field in a hierarchical tree structure
and an associated memory controller;

(iv) a memory controller associated with said destination
look-up engine for controlling the operation thereof to
retrieve stored information therefrom; and

iii) a microcode processor controlling overall operation of
said source and destination address look-up engine,
said source and destination address look-up engines
and said processor operating in parallel, and said
microcode processor being arranged to parse additional
fields in said packet header while said source and
destination address look-up engines retrieve said
related information.

21. An arrangement as claimed in claim 20 wherein said
microcode procesor comprises an interface memory for
receiving said incoming packets, a station information block
memory for storing information pertaining to endstations, a
microcode memory storing microcode instructions, and
logic circuitry for implementing said instruction.

2. A method ofparsing packets in a packet-based digital
communications network, said packets including packet
headers divided into fields having values representing infor-
mation pertaining to the packet, comprising the steps of:

(a) receiving fields of packet headers from incoming
packets in an input memory;

(b) retrieving stored information appropriate to a received
field value by performing a tree search in a look-up
engine having at least one memory storing information
related to posible values of said fields in a hierarchical
tree structure and associated with a respective field of
packet headers, said at least one memory being con-
trolled by a memory controller associated therewith to
retrieve said stored information therefrom; and

(c) parsing a remaining portion of the packet header while
said stored information is being retrieved from said at
least one memory with a main controller, which main
controller also controls the overall operation of said
look-up engine.

23. A method as claimed in claim 22, wherein at each
decision point in the tree search, in retrieving said informa-
tion the current field is compared with a stored value or
range, a pointer for the current field is moved and branched
to new code if said comparison results in a first logical
condition, and if said comparison results in a second logical
condition, the current field is compared to a different value
or range, and so on until said comparison results in said first
logical condition.

24. A method as claimed in claim 22, wherein values
based on succe$ive nibbles of a field value are compared
with stored values to locate the related information.

25. A method as claimed in claim 24, wherein a first
nibble of an incoming field value is concatenated with a root
pointer to obtain an index to a root pointer array, a word at
a location identified by said index is retrieved, the next
nibble is concatenated with the retrieved word to form the
next pointer and so on until said related information is
retrieved.

26.Amethod as claimed in claim 22, wherein information
related to a plurality of fields is retrieved in parallel.

NOAC EX. 1017 Page 182

NOAC Ex. 1017 Page 183

35

27. Amethod as claimed in claim 26, wherein one of said
fields comprises a destination address and said related
information comprises the path data associated with said
respective destination address, and another of said fields
comprises a source address and said related information
comprises the path data associated with said source address.

28. A method of parsing packets in a packet-based digital
communications network, said packets including packet
headers divided into fields having values representing infor-
mation pertaining to a packet, comprising the steps of:

(a) storing in memory information related to possible
values of said fields in a hierarchical tree structure;

(b) receiving a plurality fields from said packet headers of
incoming packets, one of said fields being a destination
address and said related information therefor compris-
ing path data associated with said respective destination
address, and another of said fields being a source

10

15

5,917,821

36

address and said related information therefor compris-
ing path data associated with said source address;

(c) retrieving in parallel said stored information appro-
priate to received field values by performing a tree
search under the control of a microcode controller; and

(d) parsing a remaining portion of the packet header using
a specific instruction set while said related information
is retrieved.

29. An arrangement as claimed in claim 1, wherein said at
least one memory provides table look-ups using nibble
indexing for variable portions of the packet header and said
microcode controller employs bit pattern recognition on
fixed portions of the packet header for network layer pro-
tocol determination.

NOAC EX. 1017 Page 183

NOAC Ex. 1017 Page 184

 Our Docket/Ref. No.2 APPT—f_{>_4 {7 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 Applicant(s): Sarkissian et al.

Serial No.: 09/608266

Group Art Unit: 2731

Filed: June 30, 2000 Examlner: QHJE
V

R APR 1 1 2001
Title: ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS IN

A NETWORK MONITOR
03103038

,3). 2:

‘1”, t mass“
00871‘9’1‘1009231

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

X Return postcard.

X The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50—0292.

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

DZ Rosenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: r 61 ml

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1—510—547—3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal SerVice as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231,

Date of Deposit:

Signature:
NOAC EX. 1017 Page 184

NOAC Ex. 1017 Page 185

O‘ (”‘1O

, .Our Docket/Ref. No.: APP’1‘3001-4 k Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE #15

 Applicant(s): Sarkissian et al.
. ' 0/ /

Serial No.: 09/608266 Group Art Unit.

Filed: June 30, 2000

Title: AS SOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS IN

A NETWORK MONITOR

Commissioner for Patents

Washington, DC. 20231

INFORMATION DISCLOSURE STATENIENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever
occurs last)

X Applicant(s) submit herewith Form PTO 1449—Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

X (Certification) Each item of information contained in this information disclosure

statement was first cited in a formal communication from a foreign patent office in a counterpart
foreign application not more than three months prior to the filing of this information disclosure
statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR 1.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is
Certificate of Mailing under 37 CFR 1.18

 I hereby certify that this correspondence is being deposited with the United States Postal Service as first

class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit:W2 Sign%
osenfeld, Reg. No. 38,687

NOAC EX. 1017 Page 185

NOAC Ex. 1017 Page 186

c C7 O
” , :S/N: 09/608266 “ Page2 IDS

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,
Date: 3E M74; 2902'

1% fiosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone N0.: +1-510—547-3378

NOAC EX. 1017 Page 186

NOAC Ex. 1017 Page 187

EtaI.FOFlM-1449 <) () SHEET 1 OF 1.

SEWALNO.

09/608266

 mi?\EWm OE\u>fi O O O
m‘

CD03':1OT .
W - —:- - '60(us. PATENT DOCUMENTS

I FILING DATE'EXAMIN ER DOCUMENT DATE NAME CLASS SUB-C LASS IF APPROPRIATEINITIAL NUMBER

5,703,877 Dec. 30, i uber et al. 370 95 . 22,
1997 19 9 5

5,835,963 l CV. 10 , oshipka et al . ll . 7,
199 8 199 5

5'860’1” ' 1'1999 199 7

DJ 04

\1 N O \1 m (D'0HE
\J H 1.4 [.4 Lb CW 0 O (-r

IIH
L

a!

.-

.—
N

PUBLi-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION

NUMBER YES I NO

OTHER DISCLOSURES (Including Author. Title, Date, Pertinent Pages, Place of Publication, Etc.)

7/1/ a s1 l

'EXAMINER: initial if citation is sidered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance
and 1191 considered. Include a copy of this form with next communication to Applicant.

A

A

DATE CONSIDERED

NOAC EX. 1017 Page 187

NOAC Ex. 1017 Page 188

O‘fir Docket/Ref. No.1 M£00l—4 Patent Xé é 4/

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE i '

 Applicant(s): Sarkissian et al.

Serial No.: 09/608266

Group ArtUnit: *7 '7) [

Filed: June 30, 2000 RECEIVED

Title: ASSOCIATIVE CACHE APR 1 7 2002
STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS 1N Tec'lno‘Ogy Center 2600
A NETWORK MONITOR

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMIITAL IS ATTACHED

Respectfully submitted,

4%, Rosenfeld
Attorney/Agent for Applicant(s)

Reg. No. 38687

Date&9 H M 2062

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1—510—547—3378

Certificate of Mailing under 37 CFR 1.18

 I hereby certify that this correspondence is being deposited with the United States Postal Service as first

class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

DateofDeposiu it MN 29:91 Signa@
ov osenfeld, Reg. No. 38,687

NOAC Ex. 1017 Page 189

Our Docket/Ref. No.: APPS))01-4 0 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al.

Serial No.: 09/608266

Group Art Unit: 27 3 \

Filed: June 30, 2000 Examiner: RECEI VED

Title: ASSOCIATIVE CACHE APR 1 7 2002
STRUCTURE FOR LOOKUPS AND Tech
UPDATES OF FLOW RECORDS IN "Ology Center 2600
A NETWORK MONITOR

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

X Return postcard.

X The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMIITAL IS ATTACHED

Respectfully submitted,

Dov gsenfcld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Date: EQ [MM ZBQL

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547—3378

Certificate of Mailing under 37 CFR 1.18

 I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date ofDeposit: MM2 L Siwafiv Rosenfeld, Reg. No. 38,687

NOAC EX. 1017 Page 189

NOAC Ex. 1017 Page 190

(3 (1WI

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United St-te: Pnant and Trademark Ofice
Addreu COMMISSIONER FC'R PATENTSI10 Bax H50

Alanna-n, Vuguul 221114450mmzpm gov

APPLICATION NO. FILING DATE FIRST NAMED I'NVENTOR ATTORNEY DOCKET NO CONFIRMATION NO.

09/608,266 06/30/2000 Haig A. Sarkjssian APPT-001-4 9867

7590 09/10/2003 »

Mosenrew

5507 College Avenue
Suite 2 NGUYEN, ALAN V
Oakland, CA 94618 ART UNIT PAPER NUMBER

2662

DATE MAILED: 09/10/2003 Q

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01)

NOAC EX. 1017 Page 190

NOAC Ex. 1017 Page 191

Application No. pplicant(s)

09/608,266 SARKISSIAN ET AL.

Office Action Summary Examiner Art Unit

Alan Nguyen 2662

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed

alter SIX (6) MONTHS from the mailing date of this communication.
If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)[j Responsive to communication(s) filed on

2a)[:I This action is FINAL. 2b)IZ This action is non—final.

3)I:I Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 CD. 11, 453 O.G. 213.

Disposition of Claims

ME Claim(s) 1-20is/are pending inthe application.

4a) Of the above Claim(s)_ is/are withdrawn from consideration.

5)[:| Claim(s) __ is/are allowed.

60% Claim(s) fl is/are rejected.

7)[:I Claim(s) __ is/are objected to.

8)I:| Claim(s) are subject to restriction and/or election requirement.

Application Papers

9)[:I The specification is objected to by the Examiner.

10)[:I The drawing(s) filed on 06/30/2000 is/are: a)I:l accepted or b)|:I objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 185(3).

11)[] The proposed drawing correction filed on __ is: a)I:I approved b)I:I disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)[] The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)I:I Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)—(d) or (f).

a)[:l All b)[:I Some * c)|:l None of:

11:] Certified copies of the priority documents have been received.

2.I:I Certified copies of the priority documents have been received in Application No.

31:] Copies of the certified copies of the priority documents have been received in this National Stage
application from the international Bureau (PCT Rule 172(8)).

* See the attached detailed Office action for a list of the certified copies not received.

14)[] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) 1:] The translation of the foreign language provisional application has been received.

15)[] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

1) E Notice of References Cited (PTO-892) 4) E] Interview Summary (PTO-413) Paper No(s). .
2) E Notice of Draftsperson's Patent Drawing Review (PTO-948) 5) E] Notice of Informal Patent Application (PTO-152)
3) [Z Information Disclosure Statement(s) (PTO-1449) Paper No(s) M- 6) I:I Other:

U S Patent and Trademark omce

PTOL-sze (Rev. 04-01) 0m“ A°“°" Summary NOAC Ex. 1017 PagePlgelNo. 6

NOAC Ex. 1017 Page 192

o O

. Application/Control Number: 09/608,266 Page 2
Art Unit: 2662

DETAILED ACTION

Specification

1. The disclosure is objected to because of the following informalities: The serial

numbers of related applications are missing on pages 1 and 2 of the specifications.

Appropriate correction is required.

Claim Rejections - 35 USC § 102

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(b) the invention was patented or described in a printed publication in this or a foreign country or in public
use or on sale in this country, more than one year prior to the date of application for patent in the United
States.

(e) the invention was described in a patent granted on an application for patent by another filed in the United
States before the invention thereof by the applicant for patent, or on an international application by another
who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371(c) of this title before the
invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act of

1999 (AIPA) and the Intellectual Property and High Technology Technical Amendments

Act of 2002 do not apply when the reference is a US. patent resulting directly or

indirectly from an international application filed before November 29, 2000. Therefore,

the prior art date of the reference is determined under 35 U.S.C. 102(e) prior to the

amendment by the AIPA (pre-AIPA 35 U.S.C. 102(e)).

3. Claims 7-11, 19, and 20 rejected under 35 U.S.C. 102(b) as being anticipated by

Chang (US 4,458,310).

NOAC EX. 1017 Page 192

NOAC Ex. 1017 Page 193

O <7
Application/Control Number: 09/608,266 Page 3

Art Unit: 2662

Regarding claims 7 and 19, Chang clearly describes a cache memory system

shown in figure 1 element 100 that utilizes a number of content addressable memory

(CAMs). The cache system is coupled to a processor and main memory as, clearly

shown in Figure 1 elements 101 and 102 of Chang. Figure 1 further shows the use of

LRU (least recently used) circuits (elements 104-106), each coupled to cache data

memory (elements 107-109). Figure 2 shows the use ofa CAM in each LRU circuit (a

CAM controller coupled to the CAM set). Reverting to figure 1, elements 104-106 clearly

show a top LRU circuit connected to a middle LRU circuit, which is connected to a

bottom LRU circuit. Chang shows in figure 1 a control and sequencer device (element

103) that is coupled to the LRU circuit controlling the CAM, main memory, and the

cache data memory. Chang further explains the function of the LRU circuit/CAM and its

corresponding cache data memory in column 4 lines 13-20 and column 5 lines 26-33.

The CAM responds to the input of the address being received and compares that

address to the contents stored in the CAM. If there is a match, indicating a hit, the LRU

circuit uses that address to point to the cache data memory for accessing. In addition to

checking if the associated cache data has the desired word, the LRU circuit maintains

the priority of each word in the associated cache data memory, this priority information

is automatically updated by the LRU circuit for each access to the associated cache

data memory and defines which word in the cache memory is the least recently used

word. Chang also discloses repeatedly how the address of each new, least recently

used word is written into the CAM. Since each CAM will contain addresses that are

NOAC EX. 1017 Page 193

NOAC Ex. 1017 Page 194

o 0

Application/Control Number: 09/608,266 Page 4
Art Unit: 2662

constantly changing being written into it, the CAM will therefore point to a different

address in the cache memory element.

In regards to claim 8, with the features in parent claim 7 addressed above,

Chang further discloses a deletion of the least recently used word in column 4 lines 48-

51 . It is stated that the least recently used word of cache data memory 109 no longer

exists in cache memory 100 at the completion of the previous operation after the values

have been shifted down from data memory 107.

In regards to claim 9, with the features in parent claim 7 addressed above,

Chang further discloses an example of a hit, shown in column 9 lines 50-62 and figure

1. LRU circuit 104 and data memory 107 are the priority CAM and cache memory,

respectively. LRU circuit 105 and memory 108 are the next highest priority. The

contents of the match/hit are transmitted and stored within LRU circuit 104 and data

memory 107. The least recently used words from LRU circuit 104 and memory 107 are

transmitted to LRU circuit 105 and data memory 108. The steps above explain the

shifting-down process of the least recently used value. The bottom CAM (LRU circuit

106) will always point to the least recently used value in the device.

In regards to claim 10, with the features in parent claim 7 addressed above,

Chang discloses a deletion of the least recently used word in column 4 lines 48-51. It is

stated that the least recently used word of cache data memory 109 no longer exists in

cache memory 100 at the completion of the previous operation after the values have

been shifted down from data memory 107. As the replacement process keeps going,

NOAC EX. 1017 Page 194

NOAC Ex. 1017 Page 195

O O

Application/Control Number: 09/608,266 Page 5
Art Unit: 2662

shifting of values also continues. This deducts to the replacing of values at the bottom of

the list, which is according to an inverse order of recentness of use.

In regards to claim 11, with the features in parent claim 7 addressed above, it is

understood that cache data memory (figure 1 elements 107—109) contains cells of words

and can be a page of memory.

in regards to claim 20, with the features in parent claim 19 addressed above,

Chang further discloses the use of least recently used (LRU) cache memory element.

Chang discloses in column 4 lines 42-48 an example of a new word placed in cache

data memory (element 107). The LRU word of memory 107 is then shifted down to

cache memory (element 108) and the LRU word of memory 108 is written to cache

memory 109. The address of that LRU word is then written to the CAM (element 106)

associated with memory 109, as described in column 5 lines 49-51, and shown in

Figure 1. Therefore LRU circuit 106 is understood to be the bottom CAM of figure 1 and

points to the least recently used value stored in cache memory 109.

4. Claims 1 and 2 rejected under 35 U.S.C. 102(e) as being anticipated by Gobuyan

et al (US 5,917,821), herein Gobuyan.

Regarding claim 1, Gobuyan discloses an apparatus that examines packets

through a connection point on a network. This indicates that the apparatus has a device

for acquiring packets. Gobuyan shows in figure 3 a device with a lookup engine

(element 3), memory for storage of the entries (elements 6, 8), and a subsystem

accessing the memory (elements 5 and 7). In column 7 lines 41-43 and 56-59, Gobuyan

NOAC EX. 1017 Page 195

NOAC Ex. 1017 Page 196

Application/Control Number: 09/608,266

(3 O

Page 6
Art Unit: 2662

discloses that the lookup engine receives portions of packets containing identifying

information through a 16-bit l/F RAM (element 9). Regarding claim 2, the apparatus of

Gobuyan inherently includes a parser that extracts packets identifying information

because this operation is necessary for the lookup engine to operate.

3.

Claim Rejections - 35 USC § 103

"The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

4.

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in

section 102 of this title, if the differences between the subject matter sought to be patented and the prior art
are such that the subject matter as a whole would have been obvious at the time the invention was made to

a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be
negatived by the manner in which the invention was made.

Claim 3-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Gobuyan in view of Chang (US 4,458,310).

(a) Regarding claims 3 and 4, Gobuyan discloses the use of a subsystem that

accesses the database memory to search for the stored information. The

lookup engine invokes the address lookup engines (ALE) to search for the

specified address in its bank of memory.

(b) Gobuyan fails to teach the use and function of content addressable memory

(CAM) as a method to search for specified data fields.

(c) Chang teaches the use of a cache memory system that utilizes a set of

CAMs. The cache system is coupled to a processor and main memory as,

clearly shown in Figure 1 of Chang. Figure 1 further shows the use of LRU

(least recently used) circuits (elements 104-106), each coupled to cache data

NOAC EX. 1017 Page 196

NOAC Ex. 1017 Page 197

(3 O

Application/Control Number: 09/608,266 Page 7

Art Unit: 2662

memory (elements 107-109). Figure 1 further shows a control and sequencer

device (element 103) that is coupled to the LRU circuits. Figure 2 shows the

use of a CAM in each LRU circuit (a CAM controller coupled to the CAM set).

Claim 3 is therefore rejected since Chang indicates the use of CAMs for the

cache subsystem. Reverting to figure 1, elements 104-106 clearly show a top

LRU circuit connected toa middle LRU circuit, which is connected to a bottom

LRU circuit. Chang shows in figure 1 a control and sequencer device

(element 103) that is coupled to the LRU circuit controlling the CAM, main

memory, and the cache data memory. Chang further explains the function of

the LRU circuit/CAM and its corresponding cache data memory in column 4

lines 13-20 and column 5 lines 26-33. The CAM responds to the input of the

address being received and compares that address to the contents stored in

the CAM. If there is a match, indicating a hit, the LRU circuit uses that

address to point to the cache data memory for accessing. In addition to

checking if the associated cache data has the desired word, the LRU circuit

maintains the priority of each word in the associated cache data memory, this

priority information is automatically updated by the LRU circuit for each

access to the associated cache data memory and defines which word in the

cache memory is the least recently used word. Chang also discloses

repeatedly how the address of each new, least recently used word is written

into the CAM. Since each CAM will contain addresses that are constantly

NOAC EX. 1017 Page 197

NOAC Ex. 1017 Page 198

O 0

Application/Control Number: 09/608,266 Page 8

Art Unit: 2662

changing being written into it, the CAM will therefore point to a different

address in the cache memory element.

(d) It would have been obvious to one having ordinary skill in the art at the time

the invention was made for Gobuyan’s arrangement to have a cache memory

subsystem utilizing a stack of CAMs for looking up address fields, the

motivation being improved performance through quicker execution and

accessing, as taught by Chang.

In regards to claim 5, with the features in parent claim 4 addressed above,

Gobuyan fails to disclose the use of CAMs utilizing a least recently used scheme.

Chang teaches the use of least recently used (LRU) cache memory element. Chang

discloses in column 4 lines 42-48 an example of a new word placed in cache data

memory (element 107). The LRU word of memory 107 is then shifted down to cache

memory (element 108) and the LRU word of memory 108 is written to cache memory

109. The address of that LRU word is then written to the CAM (element 106) associated

with memory 109, as described in column 5 lines 49-51, and shown in Figure 1.

Therefore LRU circuit 106 is understood to be the bottom CAM of figure 1 and points to

the least recently used value stored in cache memory 109. It would have been obvious

to one having ordinary skill in the art at the time the invention was made for Gobuyan to

use a cache subsystem having CAMs to utilize 8 lowest priority word scheme, the

motivation being a much faster lookup time of data fields, as taught by Chang.

In regards to claims 6, with the features in parent claim 4 addressed above,

Gobuyan fails to disclose a CAM scheme that shifts down content due to a more

NOAC EX. 1017 Page 198

NOAC Ex. 1017 Page 199

o C

Application/Control Number: 09/608,266 Page 9

Art Unit: 2662

recently used value. Chang teaches an example of a cache hit, shown in column 9 lines

50-62 and figure 1. LRU circuit 104 and data memory 107 are the priority CAM and

cache memory, respectively. LRU circuit 105 and memory 108 are the next highest

priority. The contents of the match/hit are transmitted and stored within LRU circuit 104

and data memory 107. The least recently used words from LRU circuit 104 and memory

107 are transmitted to LRU circuit 105 and data memory 108. The steps above explain

the shifting-down process of the least recently used value. The bottom CAM (LRU

circuit 106) will always point to the least recently used value in the device.

It would have been obvious to one having ordinary skill in the art at the time the

invention was made for Gobuyan to use a cache subsystem having CAMs utilizing a

LRU element pointed to by the bottom CAM for faster accessing of data fields, as taught

by Chang

5. Claims 12-18 rejected under 35 U.S.C. 103(a) as being unpatentable over Chang

in view of Carter et al (US 6,003,123), herein Carter.

(a) Regarding claims 12, 13, 14, 15, 16, and 17, Chang discloses the use of a

cache system having content addressable memory as a way of looking up

specified addresses quickly.

(b) Chang fails to disclose a method to indicate dirty entries in the cache. A dirty

entry is one that has not been updated by an external memory.

(c) Carter teaches the use of labeling elements as being dirty or not dirty. Carter

discloses in column 15 lines 12-17 the use setting bits as “dirty” to allow

NOAC EX. 1017 Page 199

NOAC Ex. 1017 Page 200

Application/Control Number: 09/608,266 Page 10

Art Unit: 2662

hardware to determine if the block has been modified. Carterfurther explains

that the dirty bit of a block status in the cache is always set to zero when the

block is brought into the cache to reflect the fact that the block has not been

modified since it was brought into the cache. Carter also discloses that if the

block is cleaned, the status remains at zero. When a block is evicted from the

cache, its dirty bit is examined, and the status of the block changed to dirty if

the cache dirty bit is set to one. When an entry is evicted, its block status bits

are copied to the local page table. This is analogous to the address being

written to the main memory in Chang’s apparatus.

(d) It would have been obvious to one having ordinary skill in the art at the time

the invention was made for Chang to modify the arrangement such that the

use of setting dirty flags to determine if the cache has been modified or not,

the motivation being the prevention of contamination of data. Each cache

memory element would have an indication of whether or not it is dirty. If the

cache element is cleaned the status remains at zero.

In regards to claims 18, with the features in parent claim 17 addressed above,

For Chang’s apparatus, it inherently cleans the least recently used cache data first

because the apparatus does use the LRU scheme. The concept of lowest word priority

is to flush out the least used word.

Conclusion

NOAC EX. 1017 Page 200

NOAC Ex. 1017 Page 201

O O

Application/Control Number: 09/608,266 Page 11
Art Unit: 2662

6. The prior art made of record and not relied upon is considered pertinent to

applicant's disclosure.

The following patents are cited to further show the state of the art with respect to

associative cache memory and content addressable memory:

Colloff et al (US 5,530,834)

Hoover et al (US 5,749,087)

Churchill (US 3,949,369)

Houseman et al (US 4,559,618)

Okamoto et al (US 4,910,668)

Agarwal et al (US 5,530,958)

Inoshita et al (JP 2003044510A)

7. Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Alan Nguyen whose telephone number is 703-305-0369.

The examiner can normally be reached on 8am-5pm ET.

lf attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Hassan Kizou can be reached on 703-305-4744. The fax phone numbers

for the organization where this application or proceeding is assigned are 703-872-9314

for regular communications and 703-872-9314 for After Final communications.

Any inquiry of a general nature or relating to the status of this application or

proceeding should be directed to the receptionist whose telephone number is 703-305-

4700.

NOAC EX. 1017 Page 201

NOAC Ex. 1017 Page 202

(x O
I . V Page 12' Application/Control Number: 09/608,266

Art Unit: 2662

an

September 3, 2003

771/
HASSAN Klflj

SUPERVISORY FATE EXAMINER
TECHNOLOGY CENTER 2600

NOAC EX. 1017 Page 202

NOAC Ex. 1017 Page 203

Applicant(s)/Patent Under
Reexamination
SARKISSIAN ET AL.

Art Unit

2662 Page 1 of 1

_MM'EW

e

Application/Control No.

09/608,266

Examiner

Alan Nguyen

U.S. PATENT DOCUMENTS

Notice of References Cited

CEEEEEEH
IIEHIIHI

c‘P

/

 r

.DA Copy of this reference is not being furnished with this Offiee action. (See MPEP § 707.05(a).)
atI55. in MM-YYYY format are publication dates. Classifications may be US or foreign.

US Patent and Trademark Office
PT0892 (Rev. 01-2001) _ Notice of References Cited Part of Paper No. 6

NOAC EX. 1017 Page 203

NOAC Ex. 1017 Page 204

United States Patent [19]

Agarwal et al.

||lll|llllllllIllIll|||||l|||
U5005530958A

[11] Patent Number:

[45] Date of Patent:

5,530,958

Jun. 25, 1996

[54] CACHE MEMORY SYSTEM AND METHOD
WITH MULTIPLE HASHING FUNCTIONS
AND HASH CONTROL STORAGE

[75] Inventors: Anant Agarwal, Framingham, Mass;
Steven D. Pudar. Rancho Cordova,
Calif.

[73] Assignee: Massachusetts Institute of
Technology, Cambridge, Mass.

[2]] App]. No.: 363,542

[22] Filed: Dec. 23, 1994

Related US. Application Data

[63] Continuation of Ser. No. 926,613, Aug. 7, 1992, abandoned.

[51] Int. Cl.6 G06F 12/10; GOGF 12108
[52] US. C].a 395/403; 395/421.06; 395/435;

395/460; 364/DIG. 1; 364/243.41; 364/244.7;
364/2558; 364/2593

[58] Field of Search 395/421.06. 403.
395/435, 460

[56] References Cited

U.S. PATENT DOCUMENTS

5,235,697 8/1993 Steely, Jr. et a]. 395/425

FOREIGN PATENT DOCUMENTS

2154106 5/1972 Germany .

OTHER PUBLICATIONS

Agarwal, “Analysis of Cache Performance for Operating
Systems and Multiprogramming," Technical Report No.
CSL—TR—87—332, Computer Systems Laboratory, Stanford
University (May 1987).
Jouppi, “Improving Direct—Mapped Cache Performance by
the Addition of a Small Fully—Associative Cache and
Prefetch Bufiers," Proc. of the IEEE (1990).
Agarwal, Anant, “Analysis of Cache Performance for Oper-
ating Systems and Multiprogramming, " Kluwer Academic
Publishers, Boston, MA, Title page, Contents pp. vi—ix, pp.
120—124, see p. 122, line l4—p. 124, line 2.

{I7

IS 21

09/01/2003, EAST Version:

Kessler, et a1., “Inexpensive Implementations of Set—Asso-
ciativity," Computer Architecture News 17(3): 131—139
(Jun. 1989).

da Silva, et al., “Pseudo—associative Store with Hardware
Hashing," IEE Proceedings E. Computers & Digital Tech—
niques 130(1): 19—24 (Jan. 1983).

Anant Agarwal and Steven D. Pudar, “Column—Associative
Caches: A Technique for Reducing the Miss Rate of Direct-
—Mapped Caches." In Proceeding ISCA 1993 (Abstract).

Anant Agarwal et 131., “Cache Performance of Operating
System and Multiprogramming Workloads," ACM Transac-
tions on Computer Systems, 6(4): 393—431, Nov., 1988.

Anant Agarwal Cl al., “An Analytical Cache Model,” ACM
Transactions on Computer Systems. 7(2): 184—215, May,
1989.

Kimming So and Rudolph N. Rechtschafien, “Cache Opera-
tions by MRU Change,” (Research Report #RC11613
(#51667) Computer Science, pp. l—l9, (Nov. 13, 1985).
Yorktown Heights, NY: IBM T. J. Watson Research Center.

"A High Performance Memory Management Scheme";
Thaldtar, Shreekant S. and Knowles. Alan 5.; Computer;
May 1986; IEEE Computer Society; pp. 8-20.

Primary Examiner—Eddie P. Chan
Assistant Examiner—Reginald G. Bragdon
Attorney; Agent, or Finn—Hamilton, Brook, Smith & Rey—
molds

[57] ABSTRACT

A column-associative cache that reduces conflict misses,
increases the hit rate and maintains a minimum hit access
time. The column-associative cache indexes data from a

main memory into a plurality of cache lines according to a
tag and index field through hash and rehash functions. The
cache lines represent a column of sets. Each cache line
contains a rehash block indicating whether the set is a rehash
location. To increase the performance of the column-asso-
ciative cache, a content addressable memory (CAM) is used
to predict future conflict misses.

25 Claims, 7 Drawing Sheets

TAG DATA FLAG '8

16

1341969436 EX. 1017 Page 204

NOAC Ex. 1017 Page 205

US. Patent Jun. 25, 1996 Sheet 1 of 7 5,530,958

 address

A.
\
z
‘o.,

.

K

2‘3;' e

P I_- M”rocessor data Memory '4

I

fl Cache

f Controller

343'

[l7
Addressai 2'

TAG DATA FLAG '8

l9

INDEX

ll

Address 0]

19 2|

09/01/2003, EAST Version: 1'04NQ98%EX. 1017Pag6205

NOAC Ex. 1017 Page 206

WWW”..

nwm, US. Patent Jun. 25, 1996 Sheet 2 of 7 5,530,958

Column-Associative Two-Way Set-Associative

¥________V_________/

31313.28

hH hl[°] nfiss
/ \

done RbH=1?

1 yes \\\\\::
clobber1 he [a]

| :E/// \\\::Bs
done swap dobberZ

M+1] idone

3 swap

I
done

%. 3 M+3 ‘

09/01/2003, EAST Version: 1.0%89A06EX 1017Page 206

NOAC Ex. 1017 Page 207

US. Patent Jun. 25, 1996 Sheet 3 of 7 5,530,958

09/01/2003, EAST Version:

1'04-1919980 EX. 1017 Page 207

NOAC Ex. 1017 Page 208

US. Patent Jun. 25, 1996 Sheet 4 of 7 5,530,958

inCAM?
no yes

. m to]/ \hzm .
hlt \Tllss hlt/ \Tlss

done Rbit= 1? done clobber2

1 yes \TIO‘ 1 ‘
. ha [a] . _ ha [a] , done

hlt W335 lln/ \niss MH
putinCAM clobberl putinCAM* clobber2

[I swap Jdone done ‘

3 M+2 done swlap
3 done

M+3

lNDEX

Controller

- . .0000
09/01/2003, EAST Vers1on. 1'04NOACEX-1017Pagezos

NOAC Ex. 1017 Page 209

US. Patent Jun. 25, 1996 Sheet 5 of 7 5,530,958

- h [a] -hit 1 muss
/ \

done inCAM?

1 ng/ N135

clobberl h‘ h2[a]\'putinCAM y miss
I swap cIobberZ

done l ¢M+1 done

3 swap
I

done

313‘ 8 M+3

address

bus

22 25

‘ RAM Array +
rehash bit

[2

HIT

RD/ WT

LD Data Buffer I
 Control Logic

OP, MACK

STALL, ME M

 l4

data bus

LS Swap Buffer
32

393.9

09 01 2003, EAST Version: 1.04.0000/ / NOAC Ex. 1017 Page 209

NOAC Ex. 1017 Page 210

2m:7125ON106.2do0336:30 .

5,530,958

$2

a?

Nm

..11
:5533mEExam20004on

2.5Eon

V.

Sheet 6 of 7

Jun. 25, 1996

09/01/2003! EAST VerSion‘ 1' Oivflffl? EX 1017 Page 210

:35050..+>ot<Edi

MNmmeUUU
US. Patent

NOAC Ex. 1017 Page 211

112e

8m550Out.onP99mmaU05.3m.95m30gi52.2;59wasSun.Ex032momwmE030:.6:504mm
0

-Exam2aon.02.0.71rm.-7n&llllll|._mmmonllv

6:hm

mE.5,m.Omm
1

N.m>2324m0was3928

tnmaPQMU

NOAC Ex. 1017 Page 212

5,530,958

1

CACHE MEMORY SYSTEM AND METHOD
WITH MULTIPLE HASHING FUNCTIONS

AND HASH CONTROL STORAGE

This application is acontinuation of No. 07/926,613 filed
Aug. 7, 1992. now abandoned.

BACKGROUND OF THE INVENTION

This invention relates generally to the field of high
performance processors that require a large bandwidth to
communicate with a main memory system. To effectively
increase the memory bandwidth, a cache memory system is
typically placed between the processor and the main
memory. The cache memory system stores frequently used
instructions and data in order to provide fast access from the
main memory.

In order for a processor to access memory, it checks the
cache first. If the desired data is in the cache, a cache hit
occurs, and the processor receives the data without further
delay. If the data is not in the cache, a cache miss occurs, and
the data must be retrieved from the main memory to be
stored in the cache for future use. Main memory accesses
take longer than cache accesses, so the processor is stalled
in a cache miss, wasting a number of cycles. Thus, the goal
for nearly all modern computer systems is to service all
memory references from the cache and to minimize refer—
ences which require accesses from the main memory.

In a typical cache system, a portion of a main memory
address is used to index a location or a set of locations in

cache memory. In addition to storing a block (or line) of data
at that indexed location, cache memory stores one or more
tags, taken from another portion of the main memory
address, which identify the location in main memory from
which the block of data held in cache was taken.

Caches are typically characterized by their size (i.e.,
amount of memory available for storage), their replacement
algorithm (i.e.. method of inserting and discarding blocks of
data into a set), their degree of associativity or set size (i.e.,
number of tags associated with an index and thus the number
of cache locations where data may be located), and their
block or line size (i.e., number ofdata words associated with
a tag). These characteristics influence many performance
parameters such as the amount of silicon required to imple-
ment the cache, the cache access time, and the cache miss
rate.

One type of a cache that is frequently used with modern
processors is a direct—mapped cache. In a direct-mapped
cache, each set contains only one data block and tag. Thus,
only one address comparison is needed to determine whether
the requested data is in the cache. The direct-mapped cache
is simple, easy to design, and requires less chip area.
However, the direct-mapped cache is not without draw—
backs. Because the direct-mapped cache allows only one
data block to reside in the cache set, its miss rate tends to be
very high. However, the higher miss rate of the direct-
mapped cache is mitigated by a small hit access time.

Another type of a cache that is frequently used is a d-way,
set associative cache. A d-way, set associative cache con-
tains S sets of d distinct blocks of data that are accessed by
addresses with common index fields that have different tag
fields. For each cache index, there are several block loca-
tions allowed, one in each set. Thus, a block of data arriving
from the main memory can go into a particular block
location of any set. The d-way set associative cache has a
higher hit rate than the direct—mapped cache. However, its

09/01/2003, EAST Version: 1.04N063% EX 1017 Page 212

5

IO

15

30

35

45

50

55

65

2

hit access time is also higher because an associative search
is required during each reference, followed by a multiplex—
ing of the data block to the processor.

Currently, the trend among computer designers is to use
direct-mapped caches rather than d—way set associative
caches. However, as mentioned previously, a major problem
associated with direct-mapped caches is the large number of
misses that occur. One particular type of miss that occurs is
a conflict miss. A conflict miss occurs when two addresses

map into the same cache set. This situation occurs when the
addresses have identical index fields but difierent tags.
Therefore, the addresses reference the same seL A d-way set
associative cache typically does not suffer from conflict
misses because the data can co-reside in a set. Although
other types of misses, such as compulsory (misses that occur
when loading a working set into a cache) and capacity
(misses that occur when the cache is full and when the
working set is larger than the cache size) do occur, they tend
to be minimal as compared to conflict misses.

The problem of conflict misses has caused designers to
reconsider using a direct-mapped cache and to begin design-
ing cache memory systems that can incorporate the advan-
tages of both the direct-mapped cache and the d-way asso-
ciative cache. One approach has been to use a victim cache.
A victim cache is a small, fully associative cache that
provides some extra cacbe lines for data removed from the
direct-mapped cache due to misses. Thus, for a reference
stream of conflicting addresses a,“ a,, a,, a}, . . . , the second
reference 21} misses and forces the data i indexed by aI out of
the set. The data i that is forced out is placed in the victim
cache. Thus, the third reference address, a.., does not require
accessing main memory because the data is in the victim
cache and can be accessed therefrom.

However, there are several drawbacks to the victim cache.
For example, the victim cache must be very large to attain
adequate performance because it must store all conflicting
data blocks. Another problem with the victim cache is that
it requires at least two access times to fetch a conflicting
datum (i.e., one to check the primary cache, the second to
check the victim cache, and maybe a possible third to store
the datum in the primary cache). Still another drawback to
the victim cache is that performance is degraded as the size
of the cache memory is increased because the victim cache
becomes smaller relative to the cache memory. thereby
reducing the probability of resolving conflicts.

Consequently, there is a need for an improved cache
memory system that incorporates the low conflict miss rate
of the d-way set-associative cache, maintains the critical
access path of the direct-mapped cache, and has better
performance than the victim cache.

SUMMARY OF THE INVENTION

To provide a cache memory system with a high hit rate
and a low hit access time, the present invention has set forth
a column associative cache that uses an area-efficient cache

control algorithm. A column associative cache removes
substantially more conflict misses introduced by a direct-
mapped access for small caches and virtually all of those
misses for large aches. Also, there is a substantial improve-
ment in the hit access time.

In accordance with the present invention, there is a cache
memory having a plurality of cache sets representing a
column of sets for storing data. Each cache set is indexed by
memory addresses having a tag field and an index field. A
controller indexes memory addresses to the cache data

NOAC Ex. 1017 Page 213

5,530,958

3

memory by applying at least one hashing function. A hash-
ing function is an operation that maps the addresses of the
data from a main memory to the cache sets of the cache data
memory. A rehashed location stores data that is referenced
by an alternate hashing function. The use of alternative hash
functions (i.e., hash and rehash) allows cache sets associated
with a common index to be stored within the single cache
column rather than in separate columns, each of which
requires its own memory space. For example, in a direct~
mapped cache. the two hash functions allow two blocks with
the same index to reside in difi’erent cache locations. In
accordance with the present invention, hash control data is
stored in the cache memory to direct the cache system to a
hashed location or a rehashed location based on past cache
operations. The hash control data may be a hash/rehash
block associated with each cache location which indicates
whether the hash or rehash function was used to store the

data in that location. Alternatively, or in combination with
the hash/rehash block. a memory may identify recent cache
indexes or groups of indexes which have required rehash.

The cache memory system of the present invention
resolves conflict misses that arise in direct-mapped cache
access by allowing conflicting addresses to dynamically
choose alternate hashing functions, so that most conflicting
data can reside in the cache. In the cache memory system of
the present invention, data is accessed from the cache by
applying a first hashing function to the indexed memory
address. If the data is valid, it is a hit and is subsequently
retrieved. For a miss at a rehashed location, as indicated by
a rehash block, the controller removes that data and replaces
it with new data from the main memory. Ifthe cacbe location
is not a rehashed lowtion, then a second hashing function is
applied in order to place or locate the data in a different
location. With a second miss, valid data is accessed and the
controller swaps the data in the cache locations indexed by
the first and second hashing functions.

The preferred first type of hashing fimction used by the
present invention is a bit selection operation. The bit selec-
tion operation indexes the data in the cache lines according
to the index field If there is a conflict miss, then the second
hashing function is applied. The preferred second hashing
function of the present invention is a hit flipping operation.
The hit flipping operation inverts the highest order bit of the
index field of the address and accesses the data in that

particular location. The present invention is not limited to
two hashing functions and may use more.

In another preferred embodiment of the present invention,
there is provided a content addressable memory (CAM)
coupled to the cache memory system for storing portions of
addresses that are expected to indicate future conflict misses
in the cache. The CAM, preferably a tag memory, improves
the efficiency of the cache by increasing the first time hit
rate. The CAM stores the indexes of cache blocks that are
present in rehashed locations. If the index of an address
matches an index stored in the CAM, then the cache
controller uses the rehash function (instead of the hash
ftmction) for the first time access. Thus, second time
accesses are reduced.

While the present invention will hereinafter be described
in connection with a preferred embodiment and method of
use, it will be understood that it is not intended to limit the
invention to this embodiment. Instead. it is intended to cover
all alternatives, modifications, and equivalents as may be
included in the spirit and scope of the present invention as
defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of a cache memory system
of the present invention.

09/01/2003. EAST Versiom 1-04NQ9892 EX.1017Page213

IO

15

25

30

35

40

4s

50

55

60

65

4
FIG. 2A illustrates a column associative cache with

rehash blocks.

FIG. 2B illustrates a comparison of a column associated
cache and two-way set associative cache.

FIG. 3 shows a decision tree for the column associative
cache with rehash blocks.

FIG. 4 shows a comparison between a single column
associative ache and the column associative cache with
rehash blocks.

FIG. 5 shows a column associative cache with a content

addressable memory (CAM) and rehash blocks.
FIG. 6 shows a decision tree for a column associative

cache with rehash blocks and a CAM.
FIG. 7 shows a column associative cache with a CAM.

FIG. 8 shows a decision tree for a column associative
cache with a CAM.

FIG. 9 shows the circuitry for a column associative cache
with rehash blocks.

FIG. 10 shows the circuitry for a column associative
cache with rehash blocks and a CAM.

FIG. 11 shows the circuitry for a column associative cache
with a CAM.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1 of the present invention, there is
shown a cache memory system 10 placed between a pro-
cessor 12 and a main memory 14. The speed of the niche is
compatible with the processor, whereas the main memory is
lower in speed. The cache anticipates the processor's likely
use of data in the main memory based on previously used
instructions and data in the cache. Based on an assumption
that a program will sequence through successive instructions
or data addresses, a block or line of several words from the
main memory is transferred to the cache even though only
one word is needed. When the processor needs to read from
main memory the cache is checked first. If the data is in the
cache, there is a hit and retrieval from cache. If the data is
not in the cache, there is a miss and retrieval is from main
memory.

To provide a cache memory system with a high hit rate
and a low access time, the present invention has set forth a
cache that incorporates the characteristics of a direct-
mappcd cache and a d—way set associative cache. The cache
of the present invention is a column associative cache 16 and
is shown in FIG. 2A. The column associative cache contains

a plurality of cache lines that represent a column of sets each
of one line. In FIG. 2A, eight sets. 50-37 of the cache are
shown. It is noted that the column associative cache would
likely have hundreds or thousands of sets.

Tb access the cache 16, a memory address 17 is divided
into at least two fields, a tag field 19 (typically the high-order
bits) and an index field 21. As in a conventional direct
mapped cache, the index field is used through a hash
function hl to reference one of the cache sets S0—S7 and the
tag field is compared to the tag of the data within that set. A
tag memory is coupled to the plurality of cache sets for
storing the tags of the data blocks. If the tag field of the
address matches the tag field of the referenced set, then there
is a hit and the data can be obtained from the block that

exhibited the hit. If the tag field of the address does not
match the tag field of the referenced set. there is a miss.

Data addresses are indexed from the main memory 14 to
the column associau've cache 16 according” to two hashing

NOAC Ex. 1017 Page 214

5,530,958

5

functions, h1 and hz, which are applied by controller 15. The
hashing functions are operations that map the data addresses
from the main memory to the cache sets based on spatial and
temporal locality. Spatial locality suggests that future
addresses are likely to be near the locations of current
addresses. Temporal locality indicates that future addresses
are more likely to reference the most recently accessed
locations again.

The first hashing function, h,, is preferably a bit selection
operation. In a bit selection operation, data is indexed to the
sets of the column associative cache according to its index
field. Since some data may contain the same index field,
there is high probability that there will be conflict miss
between the data. The column associative cache of the

present invention resolves the conflict by then applying a
second hashing function, hz. The second hashing function
dynamically chooses a difl’erent location in which the con-
flicting data can reside. The second hashing function, hz, is
preferably a bit flipping operation that flips the highest
ordered bit of the referenced by the index address and
accesses the conflicting data at the set indexed by the
inverted address. As shown in FIG. 2A, the first hashing
function, h, indexes address a, 17 to set 81. Address 11 then
attempts to access 81 but there is a miss because address 17
is already there. To resolve the conflict, the second hashing,
hz, function is applied to address 11. This hashing function
flips the highest ordered hit of the index field so that address
11 can be indexed to SS. Thus, 81 and SS share locations
through b1 and h,_ so that conflicts are resolved not within a
set but within the column of sets of the entire cache.

A comparison of a column associative cache with a
conventional two way set associative cache is illustrated in
FIG. 2B. In the conventional cache, a set, such as set 2,
stores two lines of data. Thus, if the requested data is stored
in either line of a set, there is a hit. Drawbacks of such a
cache are the high hit access time and hardware complexity.
The column associate cache performs as a direct mapped
cache unless there is a miss. With a miss it accesses another

location within the same memory column. Thus, two sets
share two locations.

Also, shown in FIG. 2A is a rehash block 18 coupled to
each cache set for indicating whether the set has been
rehashed. A rehashed location is a set that has already been
indexed through the second hashing function to store data.
The purpose of the rehash block is to indicate whether a
location stores data through a rehashed index so the data
should be replaced in preference for a non-rehashed index.
Temporal locality suggests that rehashed locations should be
preferentially replaced.

FIG. 3 discloses acorttroller decision tree for indexing the
cache. Table 1 provides the decision tree mnemonics and
cycle times for each cycle. First, the first hashing function,
h,. is applied to the memory address a. If the first-time
access is a hit, then the data is accessed to the processor.
However, if the first-time access is a miss, then the rehashed
location block of that set is checked (Rbit=1?). If the rehash
block has been set to one, then the data is removed from that
cache set indexed by h,[a] and data from the main memory
is retrieved and substituted therefor (Clobber 1). Next, the
rehash block is reset to zero to indicate that the data in this

set is to be indexed by the first hashing function hl for future
indexes.

On the other hand, if the rehash block is set to zero, then
upon a first-time miss, the second hashing function h2 access
is attempted. If the second hashing function indexes to valid
data, then there is a second time hit For a second time hit,

09/01/2003, EAST Version:

10

15

25

3O

35

45

50

55

60

65

6
the data is retrieved from that cache set and the data in the

cache sets indexed by the first and second hashing functions,
hl [a] and h2[a], are swapped (SWAP) so that the next access
will likely result in a first time hit (temporal locality).
However, if the second hashing function provides a second
time miss, then the data in that set is replaced (Clobber2).
Data from the main memory is retrieved and placed in the
cache set indexed by the second hashing function, hz[a].
Then the data in the cache sets indexed by the first and
second hashing function, h1 and h2 are swapped with each
other (SWAP).

TABLE 1

Mnunonic Action Cycles

h,[a] bit-selection access 1
h,[a] hit-flipping access 1
swap swap data in sets accessed by h,[a] 2

and hz[a]
elobbcrl get data from memory. place in set M

accessed by h,[a]
clobberZ get data from memory. place in set M

accessed by h,_[al
Rhit=l? check if set accessed by hllal is a 0rehashed location
inCAM'I check if a (or its index) malt-hes 0

a CAM entry
putinCAM place a (or its index) in the CAM l

putinCAM‘ place the index of a Ind the tag 1
present in the cache location

accessed with his] into the CAM

At startup, all of the empty cache sets have their rehash
blocks set to one so that compulsory misses are handled
immediately.

The rehash block 18 increases the hit rate and decreases
the access time for the column associative cache. The

increase in performance is due to the fact that the data in the
non-rehashed location are the most recent accessed data and,
according to temporal locality, this data is more likely to be
needed again. The removal of older data which will probably
not be referenced again whenever a conflict miss occurs
reduces the amount of clobbering. In addition, the ability to
immediately replace a rehashed location on the first access
reduces the number of cycles consumed by rehash accesses.

In addition to limiting rehash accesses and clobbering, the
column-associative cache with rehash block corrects a prob-
lem associated with indexing a reference pattern a, a] ax a, a3r
a, a,(. . . where the addresses a, and a} map into the same
cache location with hit selection, hl, and a, is an address
which maps into the same location with bit flipping, hz. FIG.
4 shows how a single colurrm associative cache and a
column associative cache with a rehash block will index the

above reference pattern. The figure shows at each location,
the data stored in that location after the data request indi-
cated by the input sequence. In the column associative
cache, address a, is shown indexed into set 81 by the first
hashing function, h,. Address ag- attempts to index Sl by the
first hashing function, but there is a miss because address i
is there. Then using the second hashing function, h, address
al- is indexed to SS and with a miss that data is retrieved and
stored in SS. The data in SI and SS is then swapped. Thus,
j is now in $1 and i is now in SS. The next address, ax,
attempts to access SS but will miss because i is there. Then

the second hashing function is applied to a: and it attempts
to access SI, but there is a miss because j is there. Since this
is a second time miss, the address aj is removed from 81 and
replaced by a, Then a, and ail are swapped so thati is in S1
and x is in SS. This pattern continues as long as a} and a:
alternate. Thus, the data referenced by one of a,- and a: is

1-04N€£§83 EX. 1017 Page 214

NOAC Ex. 1017 Page 215

5,530,958

7

clobbered as the data i is swapped back and forth but never
replaced

This detrimental effect is known as thrashing, but as
shown in FIG. 4, it does not occur in a column-associative
cache with a rehash block. In the column associative cache

with a rehash block, a, is indexed to 81 by the first hashing
firnction h]. Address a1 attempts to index 81 but misses
because i is there. Since there is a miss, the rehash block for
S1 is checked to see if that set has been already indexed by
the second hashing function hz. Since 81 has not been
indexed by h], its rehash block is 0. Then, the second
hashing function indexes a}. to SS and the rehash block is set
to 1. Then the data in S1 and SS are swapped so that j is now
in S1 and i is now in SS. Address a, attempts to access SS
but ruisses because i is there. However, because the rehash
block of SS is set to l, j is removed and replaced by x. Thus
S1 contains j and SS contains x, eliminating the thrashing of
j. Of course, this colunm-associative cache suffers thrashing
if three or more conflicting addresses alternate, as in a, a, a,
a, a, a, a, . . . , but this case is much less probable than in the
case of two alternating addresses. Thus, the rehash block
alleviates thrashing, reduces the number of rehash accesses
and nearly eliminates clobbering.

To further reduce the access time of the column associa-

tive cache, a content addressable memory (CAM) 20 is
added thereto. The purpose of the CAM is to reduce the
number of unnecessary rehash accesses and swaps in the
column associative cache. FIG. 5 shows the CAM 20

coupled to the column associative cache 16. The CAM
stores addresses that potentially cause conflict misses, such
as addresses that have been swapped with the rehashed
location in a second-time hit. If the address in the CAM

matches requested data address, then the controller attempts
to index the referenced data using another hashing fimction,
such as hz, as the first hash.

HG. 6 shows a decision tree for indexing an address a to
the column associative cache with the CAM. Table 1 pro-
vides the decision tree mnemonics and cycle times for each
cycle. First, the CAM is checked to determine whether the
index of a matches the address entry within the CAM
(inCAM‘?). If there is a match. then h, is used to index a. If
h2[a] indexes valid data, then there is a hit and the data is
retrieved However, if there is a miss, then the data is
clobbered and data from the main memory is retrieved and
placed in the cache set accessed by h2 (Clobber2).

On the other hand, if there is no match in the CAM. then

hl is applied to a for indexing. If h,[al indexes valid data,
then there is a hit. However. if there is a miss. the rehash
block is checked to determine whether the cache set

accessed by h1[a] is a rehashed location (Rbit=l?). If the
cache set is a rehashed location (=1), then h2 is applied to a.
A hit results in a or its index being retrieved and placed in
the CAM (putinCAM) as a potential conflict. A miss causes
the data in the set indexed by h1[a] to be clobbered and
replaced with data retrieved from the main memory (Clob-
ber 1). If the rehash block is not set to 1, then h2 is applied
to a for indexing. A hit results in an address from the index
of h2[a} being placed into the CAM (putinCAM*). The
address is reconstructed from the index of a and the tag at

h, [a]. Then data in cache sets accessed by hl [a] and hz[a] are
swapped with each other. A miss causes the data to be
clobbered and replaced with data retrieved from the main
memory and placed in the set indexed by h2[a] (Clobber2)
Then data in cache sets accessed by mm and hg[a] are
swapped with each other (SWAP).

An example of how the CAM provides better perfor—
mance to the column associative cache is evident for the

09/01/2003, EAST Version: 1.0431(9ng Ex.1017Page215

10

15

20

30

35

40

45

55

60

65

8

following reference pattern: a,, a1, a,, a, To access the
above reference pattern, the column associative cache 18
wastes many cycles swapping a, and 211, repeatedly whereas
the CAM 20 stores the address that referenced the data into
the rehashed location on a second-time hit. For instance, the
third reference, i, results in a second—time hit because the
data j is indexed into the rehashed location as expected, but
its address (i.e., tag and index) is stored in the CAM. The
CAM is then checked in parallel with every first-time access,
and if a match is found, the control logic will find the data
directly by rehashing instead The benefit of adding a CAM
to the column-associative cache is that a swap is no longer
necessary between the conflicting data because the CAM
quickly points out those addresses which provide second-
tirne hits. Thus, in the above example. a,- remains in the
non-rehashed location and is accessed in one cycle by h,[a,.].

The conflicting data a, remains in the rehashed location and
is accessed by h2[a]] after a} is matched with its entry in theCAM.

An important feature of this design is that the search of the
CAM does not impose a one cycle penalty. This feature is
accomplished by optimizing the CAM so that a search is
completed quickly enough to precede the first-time access in
the cycle. This feature can also be implemented by perform-
ing the CAM access in a previous pipeline stage. However
accomplished, eliminating the penalty of searching the
CAM is crucial because a significant reduction in execution
time is possible only ifmost of the data in rehashed locations
can be retrieved as quicldy as those in non-rehashed loca-
tion.

Another benefit in using a CAM is evident in a first-time
rehash h,[a] (due to a being in the CAM) that misses. The
decision tree shows that in this case, no swap is needed
because data is retrieved from the main memory and left in
the set indexed by h2[a]. This is done because that address
is in the CAM due to a first-time rehash. Therefore, leaving
the data in the rehashed location leads to future first-time
rehash hits in only one cycle.

One of the drawbacks of using a CAM with a column
associative cache is evident in situations when a set accessed

by h,[a] is found to be a rehashed location. Instead of
immediately replacing this data, a rehash access must be
performed to ensure that the desired data is not located in the
rehashed location. This is impossible for the single column-
associative cache with rehash block, however, it is feasible
when a CAM is included. For example, suppose an address
exists in the CAM which causes a first-time rehash hit at

h2[a]. The CAM is a finite resource, so this address may be
removed from the CAM after it becomes full. Now, if this

address appears again in the reference stream, there is no
CAM match, so a normal access is attempted when the data
is in the set indexed by hIIa]. Thus, replacing the non-
rchashed location immediately would result in data being
stored in two separate locations. The extra attempted rehash
guards against this wasteful situation, but it adds a one cycle
penalty.

Another embodiment of the present invention is to have
the CAM coupled to the colunm associative cache without
having a rehash block (see FIG. 7). As in the above embodi-
ment, the CAM 20 improves the efficiency of the column
associative cache by storing portions of addresses that are
expected to indicate future conflict misses. This reduces the
number of unnecessary rehash accesses and swaps in the
column associative cache. For example, after first time
misses, a rehash access is only attempted when the control
logic identifies this miss as a conflict. Aconflict is identified
by finding a match in the CAM. This conflict may be

NOAC Ex. 1017 Page 216

5,530,958

9

resolved by rehashing. Thus, fewer rehashes are attempted
which improves the second time hit rate and decreases the
extent of data being clobbered.

FIG. 8 discloses a controller decision tree for indexing an
address to the column associative cache with CAM. Table 1

provides the decision tree mnemonics and cycle times for
each cycle. First, the first hashing function, h,, is applied to
a memory address a. If the first time access is a bit, then the
data is accessed. However, if the first time access is a miss,
the CAM is checked to see if address a matches a CAM entry
(inCAM?).

If address a does not match a CAM entry, the data in
address a is removed (clobberl) and data is retrieved from
the main memory and placed in the cache set accessed by the
first hashing function h1 [a]. Then the data from address a is
placed in the CAM (putinCAM).

However, if there is a match in the CAM, then the second
hashing function h2[a] is applied. A hit causes the data to be
accessed and then the data in the cache sets accessed by
hl [a] and h2[a] are swapped (SWAP). A miss causes that the
data to be removed from the cache set and replaced by data
from main memory (clobber2). Then the data in the cache
sets accessed by h,[a] and h2[a] are swapped (SWAP).

For a general understanding of how to implement the
column associative cache with rehash block, the column
associative cache with the rehash block and CAM, and the
single column associative cache with CAM, reference is
made to FIGS. 9—11 and Tables 2—4. The cache implemen-
tation for both FIGS. 9-11 are discussed at the register
transfer level without the disclosure of the detailed gate and
transistor designs since the actual control logic can be easily
synthesized from the state flow tables set forth in Tables 2—4.

Furthermore, in order to provide brief yet descriptive
details about the various embodiments, several simplifica—
tions and assumptions have been made. For example, a
discussion regarding the clocking and timing issues is left
out. Instead, it is assumed that the controller 15 receives
input signals at the start of a cycle and issues output signals
at the end of the cycle. Also, for simplicity, the bus interface
and driver circuits have been left out.

FIG. 9 shows a hardware implementation of the column
associative cache with rehash block for the present inven-
tion. The primary element of the column associative cache
memory system is aRAM array 23 having a rehash block 25.
The RAM, preferably a tag memory, has a plurality of cache
sets to store memory addresses. The processor sends a data
address via an n-bit multiplexer 22 to a memory address
register (MAR) 24. Connected in between the output of the
MAR and one of the inputs of the multiplexer 22 is an
inverter 26. The multiplexer 22, the MAR 24, and the
inverter 26 interact to index the data address from the

processor to the RAM. More specifically, the multiplexer
and the inverter apply the first hashing function h1 and the
second hashing function h2 to the data address.

The RAM 23 communicates with the data bus via a data
buffer 28. In between the data buffer and the RAM is a

second n-bit multiplexer 30. A swap bufier 32 communicates
with both the multiplexer 30 and the data buffer 28 so that
current data can be placed in the cache set most likely to be
accessed.

The controller 15 provides the necessary control logic to
each of the above components so that the algorithm of the
decision tree in FIG. 3 is followed. The control signals for
FIG. 9 are summarized in Table 2 as well as the actions taken

for a given state, input, output, and next state. A discussion
of the components and Table 2 is set forth below and can be
followed in FIG. 3.

09/01/2003 , EAST Version: 1 . O‘Naagé EX. 1017 Page 216

10

TABLE 2

State Input Output Next state

5 IDLE OP LM,RD hm
hm HIT IDLE

.IHITJHB STAILMSEL,LM,RD,LS ma]
IHI'I‘J-IB MEM,STA.LL XWAI'I‘

{1 la] HIT MSEI.,LM,WT fl[a)
tHIT MEM WAIT)

10 file] DSELLD ma]
131a] MSE,LM,WT IDLE

WAl'I‘l MACK MSEL,LM,WT WAIT2
WAIT2 DSELLD WAI’I‘3
WAIT3 MSELLM.W'I‘ IDLE
XWAIT MACK LD,WT IDLE

15

Upon receiving an opcede signal (OP), the controller
loads (LM) the MAR with an memory address a from the
address bus. Then the controller issues a read or write signal
(RD/WT) to the RAM so that the first hashing function h1 is

20 be applied to address a. If the RAM returns a hit signal
(HIT), then the data is automatically loaded (LD) into the
data buffer 32 to be retrieved and the controller goes to an
IDLE state. ’

If the h,[a] access misses (! 1-HT) and the rehash block has
25 not been rehashed (lI-IB), then the controller stalls the

processor (STALL), copies (LS) the data from the h1[a]
access into the swap buffer, leads the MAR with the second
hashing function 112 (MSEL and LM), issues a read (RD)
signal to the RAM and moves to the fl[a] state. If the access

so misses (II-IIT) and the rehash block is set to one (HB), then
the data is removed and the controller makes a request to the
main memory (MEM), stalls the processor (STALL), and
moves to the XWAIT state.

In the fIEa] state. a bit causes the controller to load the
35 MAR with that index (MSEL, LM), issue a write signal

(WT) to the RAM and move to the f2[a]‘state. For a miss
(lHIT), the controller makes a request to the main memory
(MEM) to retrieve data and moves to the WAITI state.

In the ma] state, the controller swaps the data in the data
40 bufi'er and the swap buffer (DSEL, LD) and moves to the

f3[a] state. ,
In the B[a] state. the controller leads the MAR (MSEL,

LM), issues a write (WT) signal to the RAM, and moves to
the IDLE state.

45 In the WAIT] state, the memory acknowledges comple-
tion (MACK), the data is taken from the data bus and loaded
in the MAR (MSEL, LM), a write signal is issued to the
RAM (WT), and the controller moves to the WAIT2 state.

In the WAIT2 state, the controller swaps the data in the
50 data buffer (DSEL, LD) and moves to the WAlT3 state.

In the WAI'I‘3 state, the controller loads (MSEL, LM) the
MAR, issues a write signal (WT) to the RAM and moves to
the IDLE state.

In the XWAI'I‘ state, the controller receives a signal that
55 the access is complete (MACK), loads the data into the data

bufi'er (LD), issues a write command (WT), and moves to the
IDLE state.

The circuitry of the column associative cache with CAM
and rehash block is more complex than the cache by itself

60 (see FIG. 10). For example, there is a CAM 2.0, a first in first
out (FIFO) counter 36, a CAM buffer 38, and another n—bit
multiplexer 40. The FIFO counter points to the next location
in the CAM that is to be replaced and the CAM bufier holds
indexes while they are being compared or before they are

65 written into the CAM. Even though this hardware consumes
a great deal of area, the critical access path,of the column
associative cache is not afiected. Besides the above addi-

NOAC Ex. 1017 Page 217

5,530,958

11

tions, the MAR 24 and the swap buifer 32 are shown to have
capability for storing partial addresses such as the index and
tag fields, respectively.

The state flow table in Table 3 reveals that the control
logic for the column associate cache with the CAM and
rehash block is more complex. For example, the variables
for each state have changed and are referenced difierently
than the column associative cache. Furthermore. upon
receiving an opcode (0P), the controller searches the CAM
to determine if there is a match for the address a. If there is
no initial match (! MATCH) in the CAM, the controller
loads the MAR (LM), issues a read signal (RD) to the RAM,
and moves to the b[a] state. A match (MATCH) in the CAM
enables the controller to load the MAR (MSEL. LM), issues
a read signal (RD) to the RAM;_and moves to the file] state.

A hit (HIT) in the fin] state enables the controller to place
the index field of the data within the MAR into the CAM
bufi‘er (LDCAM) and then move to the IDLE state. On the
other hand, a miss (! HIT) enables the controller to stall the
processor (STALL), make a request to the main memory
(MEM), and then move to the WAIT state.

A bit (1-HT) in state b[a] causes the controller to place the
index field of the data within the MAR into the CAM bufier

38 (LDCAM) and moves to the IDLE state. A miss (lI-II'I')
with a zero rehash block (! H8) or a one rehash block (I-IB)
causes the controller to stall the processor (STALL), load the
MAR (MSEL, LM), issue a read signal (RD) to the RAM,
load the swap bulfer (LS) with the data from b[a] and move
to the flla] and fc[a] state, respectively.

TABLE 3

Next
Sure Input Output State

IDLE OPJMATCH LM,RD b[a]
OPMATCI-I MSEL,IM,RD ma]

ma) HIT LDCAM IDLE
II‘IIT STALLMEM WAIT

b[a] HIT LDCAM IDLE
EI-II'IZIHB STAILMSELJMRDIS f1[a]
lHI'l‘J-IB STAILMSE..I.M,RD,IS fc[a]

flta] HIT MSEL.I.M.WI‘.CSE.L. Ma]
LDCAM,WTCAM

lHIT MEM WAI'I'I
Illa] DSELIDJNC Bla]
Bla] MSELLMJVTJDCAM IDLE
fell] HIT _ LDCAM,WTCAM erla]

[HIT MEM WAIT
fc21a] INQIDCAM IDLE
WAIT MACK LD.WT,LDC.AM IDLE
WAI'I‘I MACK MSELJM.W'I‘ WAITZ
WAITZ DSELJD WAlTS
WAIT?) MSEDLM,W'I‘,LDCAM IDLE

A hit in the f1[a] causes the controller to load the MAR
(MSEL, LM), issue a write signal (WT) to the RAM, place
the address from the MAR in the CAM (CSEL, LDCAM,
WTCAM), and move to the f2[a] state. A miss (!HIT) causes
the controller to make a request to the memory (MEM) and
go to the WAITl state.

In the f2[a] state, the controller points to the next location
in the CAM (INC), swaps the data in the data buffer with the
data in the swap bufier (DSEL, LD), and moves to the f3[a]
state.

In the f3[a] state, the controller places an index within the
MAR and the CAM buffer (MSEL, LM, WT, LDCAM) and
moves to the IDLE state.

In the fc[a] state, the data is indexed. A bit (HIT) causes
the controller to place the index within the MAR into the
CAM buffer (LDCAM), place the current index into the
CAM (WTCAM), and move to the fc2[a] state. A miss

10

IS

20

25

30

35

40

45

50

55

60

65

12

(lHIT) causes the controller to make a request to the memory
to retrieve data (MEM), and move to the WAIT state.

In the fc2[a] state, the controller issues an INC command
to the FIFO counter in order to point to the next location in
the CAM, places an index within the MAR into the CAM
bufier (LDCAM), and moves to the IDLE state.

In the WAIT state, the controller receives a signal indi-
cating that the access is complete (MACK), loads the MAR
with the next access (LD), issues a write signal to the RAM
(WT), places an index within the MAR into the CAM buffer
(LDCAM) and then moves to the IDLE state.

In the WAIT1 state, the controller receives a signal
indicating that the access is complete (MACK), loads the
MAR (MSEL, LM), issues a write signal (WT), and moves
to the WAITZ state.

In the WAITZ state, the controller swaps data between the
data buffer 28 and the swap bufier 32, loads the data bufier
with the data (DSEL,LD), and moves to the WAIT3 state.

In the WAI'I‘3 state, the controller loads the MAR (MSEL,
LM), issues a write signal to the RAM (WT), places the
index within the MAR into the CAM bufi‘er (LDCAM), and
moves to the IDLE state.

Note that all states whose next state is IDLE assert the
LDCAM line. This serves as a reminder that in order for the

CAM search and the setting of MATCH to precede the
first—time cache access. the search must be either extremely
fast or part of a previous pipeline stage. LDCAM is listed as
an output of the stages executed before the IDLE state as a
reminder of these potential solutions. In these cases, actu-
ally, the CAM bulfer would need to find the next address on
the address bus, because the MAR has not yet latched the
next reference. Also, note that the state flow Table 3 pro-
ceeds similarly to the state flow Table 2 for first-time hits and
first-time misses when the rehash block is zero. The only
exception is for a second-time hit, when the original nou-
rehashed address must be placed in the CAM in addition to
the swap. This is accomplished by asserting CSEL, LDCAM
and WTCAM during state t‘1[a]. Also, INC is asserted during
f2[a] to increment the FIFO counter, which points to the
location of the next write to the CAM but does not afi'ect the
next CAM search. ,

The new entries in the state table involve the paths if an
initial CAM match occurs or if a first-time miss reveals a

rehashed location If the MATCH line is asserted initially,
then the controller moves to set ff[a] and attempts a standard
rehash access. If successful, nothing remains to be done. If
it misses, then this rehashed location is simply replaced by
data from the memory during the WAIT state. Note that
MSEL and LM are not to be used to change the MAR
contents. Since the address that accesses this location is still
in the CAM, a future reference will be successful in one
cycle. In the case that a first-time miss reveals a rehashed
location, state fcl[a] is entered and, unlike the column-
associative cache with rehash block, a rehash is performed
to assure that the data does not exist in the rehashed location.

If this access does indeed hit. the address is simply placed
in the CAM. Thus, a feature reference immediame finds a
match in the CAM and completes a rehash access in one
cycle. If there is a miss, then the algorithm proceeds as in the
columnoassociative cache with rehash block and replaces the
non-rehashed location.

The circuitry of the column associative cache with a CAM
is shown in FIG. 11. The control signals for FIG. 11 are
summarized in state flow Table 4. A discussion of the

components and Table 4 are set forth below and correspond
to the decision tree of FIG. 8. .

09/01/2003, EAST Version: 1.04Nefige EX 1017Page 217

NOAC Ex. 1017 Page 218

5,530,958

13

TABLE 4——————.—h___

state input output next state

IDLE OP LM,RD.LDCAM bin]
hla] HIT IDLE

!HTI'.MATCH STALLMSELLMRD, flIa]LS
!HIT!M.ATCH MSELSTALI..WTCAM XWAIT

f1[al HIT MS'El...LM.WT,DSEL.LD Illa]
!I-Il'l‘ MEM WAITI

12M MSELLMMT IDLE
WAITl MACK MSEL,IM,WT,DSEL,LD WAI'I'I
WAl'I‘Z MSEL,LM,WT IDLE
XWAIT MACK INC,I.D,WT IDLE

Upon receiving an opcode (OP), the controller loads the
MAR (LM), issues a read signal (RD) to the RAM, placu
the index within the MAR into the CAM buffer (LDCAM)
and moves to the b[a] state.

A hit in the b[a] state (HIT) causes the data to be accessed
and then the controller moves to the IDLE state. A miss

(ll-HT) with a match (MATCH) in the CAM causes the
controller to stall the processor (STALL), load the MAR
(MSEL,LM), issue a read signal (RD) to the RAM, load the
swap buffer (LS) with the data from h,[a] and move to the
fl[a] state. A miss (!HIT) without a match (! MATCH) in the
CAM causes the controller to make a request to memory
(MEM), stall the processor (STALL), write into the CAM
(WTCAM) and move to the XWAIT state.

A hit (HIT) in the t1[a] state causes the controller to load
the MAR (MSELJ..M), write the RAM (WT), load the data
buffer with the data (DSELLD) and move to the f2[a] state.
A miss (ll-HT) causes the controller to make a request to
memory (MEM) and move to the WAI'I‘l state.

In the i2[a] state, the controller loads the MAR (MSEL,
LM) and issues a write signal (WT), and moves to the IDLE
state.

In the WAITl state, the controller receives an input signal
indicating that the access is complete (MACK), then loads
the MAR (MSEL, LM), issues a write signal (WT), swaps
data between the data bufier and the swap bufi'er, loads the
data buffer with the data (DSEL, LD), and moves to the
WAI'I‘Z state.

In the WAIT2 state, the controller loads the MAR (MSEL,
LM), issues a write signal to the RAM (WT). and moves to
the IDLE state.

In the XWAIT state the controller receives an input signal
indicating that the access is complete (MACK), then the
controller issues an INC command to the FIFO counter in

order to point to the next location the CAM, places an index
into the MAR (LD), writes the RAM (WT), and moves to the
IDLE state.

An important parameter for the CAM disclosed in FIGS.
10 and 11 is its size parameter. Like the victim cache, the
percentage of conflicts removed increases as its size
increases. because there are more locations to store conflict-
ing data removed from the cache. However, this improve-
ment eventually saturates to a constant level, because there
exists only so many conflicting data bits which need to
reside therein at one time. However, the CAM can perform
without saturation for up to 128 entries, whereas the victim
cache can perform only up to 16 entries before saturation
occurs.

The column associative cache with a CAM can use the
full index field or omit some of the low order bits from the
index fields that are to be placed in the CAM. For example,
if two bits are trapped from the index, then four different
addresses could cause a CAM match with the same entry.

09/01/2003, EAST Version: 1.0N0gtOEX. 1017 Page 218

5

IO

15

20

25

30

35

45

50

55

60

65

14

These addresses may be consecutive numbers, since the low
order bits have been dropped. The use of partial index fields
increase the number of rehashes attempted, because a ref—
erence is predicted to be a conflict if it indexes one of four
consecutive locations. As seen previously, an increase in the
number of rehashes attempted often decreases the second
time hit rate and likely degrades performance. However, this
modification may prove useful in applications where data or
instructions are often known to be stored sequentially or in
consecutive bits.

Also, note that the present invention is not limited to the
two hashing functions, h1 and h. bit selection operation and
bit flipping operation. Other hashing functions may be used
in addition to hit flipping in order to improve the randomness
of accesses and to decrease the amount of clobbering.

While the invention has been particularly described in
conjunction with a preferred embodiment thereof, it will be
understood that many altemafiVes, modifications and varia-
tions will be apparent to those skilled in the art without
departing from the spirit and scope of the invention as
defined by the appended claims.

We claim:

1. A cache memory system comprising:

a cache memory having a plurality of cache locations,
each for storing a cache line of data, separately
accessed from a main memory, and having a first tag
memory, each cache location being indexed by indexes,
taken from memory addresses, through first and second
hashing functions such that plural memory addresses
having a common index access plural memory loca-
tions through the first and second hashing fimctions and
different indexes access common memory locations
through the first and second hashing functions;

hash control storage storing control data comprising hash
data associated with each cache location which indi-

cates the hashing function used to store data in the
cache location; and

a controller coupled to the cache memory responsive to
memory addresses in accesses to the main memory for
accessing data in the cache memory through the first
and second hashing functions and for replacing data in
the cache memory from the main memory responsive to
the control data and to comparisons between tags of the
memory addresses and tags stored in the first tag
memory.

2. A cache memory system as claimed in claim 1 wherein
the controller checks the hash data of the cache location

indexed by the first hashing function when there is a miss at
that cache location and applies the second hashing function
only when said hash data indicates data stored in the cache
location was not stored using the second hashing function.

3. A cache memory system as claimed in claim 1 wherein
the controller responds to the hash data to determine whether
to replace data stored in a first location indexed through the
first cache hashing function or a second cache location
indexed through the second hashing function.

4. A cache memory system as claimed in claim 3 wherein
the controller swaps data replaced in a cache location with
data in another cache location indexed by a common index.

5. A cache memory system as claimed in claim 1 further
comprising a second tag memory coupled to the controller
for storing as control data at least portions of memory
addresses that indicate that data stored in a cache location is

likely indexed through one of the hashing functions.
6. A cache memory system as claimed in claim 5 wherein

the controller accesses cache memory locations through the
first hashing function or the second hashing function depen-

NOAC Ex. 1017 Page 219

5,530,958
15

dent on whether at least a portion of a memory address is
stored in the second tag memory and, where a miss results
at a cache memory location with access through the first
hashing function and the second hashing function, the con-
troller replaces the data stored through the first hashing
function if said hash data indicates the data accessed through
the first hashing function had been stored using the second
hashing function, or through the second hashing function if
said hash data indicates the data accessed through the first
hashing function had been stored using the first hashing
function.

'7. A cache memory system as claimed in claim 1 wherein
the hash control storage comprises a second tag memory
coupled to the controller for storing as control data at least
portions of memory addresses that indicate a likely hashing
function through which data stored in cache is indexed.

8. A cache memory system as claimed in claim 7 wherein
the second tag memory is a content addressable memory.

9. A cache memory system comprising:
a cache memory having a plurality of cache locations,

each for storing a cache line of data, separawa
accessed from a main memory, and having a first tag
memory, each cache location being indexed by indexes,
taken from memory addresses, through first and second
hashing functions such that plural memory addresses
having a common index access plural memory loca-
tions through the first and second hashing ftmctions and
such that difierent indexes access common memory
locations through the first and second hashing func-
tions:

hash data associated with each of the plurality of cache
locations for indicating the hashing function used to
store data therein; and

a controller coupled to the cache memory for accessing
data in the cache locations through the first and second
hashing functions and for replacing data in the cache
locations from main memory, the controller being
responsive to the hash data and a comparison of tags of
the memory address and stored tags in cache memory
in determining whether to replace data in a first location
accessed through the first hashing function or in a
second location accessed through the second hashing
function.

10. A cache memory system according to claim 9, wherein
the first hashing function is a bit selection operation.

11. A cache memory system according to claim 9. wherein
the controller checks the hash data of a cache location

indexed by the first hashing function when there is a miss to
determine whether to apply the second hashing function.

12. A cache memory system according to claim 9, wherein
the second hashing function is a bit selection and flipping
operation.

13. A cache memory system according to claim 9, wherein
the controller removes the data from the cache location
indexed by the second hashing function after a miss and
retrieves new data from the main memory in place therefor.

14. A cache memory system according to claim 13,
wherein the controller swaps the new data in the cache
location indexed by the second hashing function with the
data in the cache location indexed by the first hashing
function.

15. A cache memory system according to claim 9, wherein
the controller responds to a miss at a cache location through
the first hashing function, and to hash data indicating data is
stored at that cache location through the second hashing
ftmction, to remove data from that cache location and
retrieve data from main memory in place therefor.

09/01/2003, EAST Version: 1.01N0MEX. 1017Page219

10

15

20

30

35

45

50

55

60

16

16. A cache memory system as claimed in claim 15
wherein the controller swaps data replaced in a cache
location with data in another cache location indexed by a
common index. ' ‘

17. A cache memory system accordtng to claim 9. further
comprising a second tag memory coupled to the controller
for storing at least portions of addresses that indicate that
data stored in a cache location is likely to be indexed through
the second hashing function, the controller using the second
hashing function in the initial cache indexing where an
address is found in the second tag memory.

18. A cache memory system comprising:
a cache data memory having a plurality of cache locations

for storing plural cache lines of data, each cache
location being referenced by a memory address having
an index field and a tag field. and each cache location
being indexed by indexes, taken from memory
addresses, through first and second hashing functions
such that plural memory addresses having a common
index access plural memory locations through the first
and second hashing functions and such that difierent
indexes access common memory locations through the

first and second hashing functions;
a first tag memory coupled to the cache data memory for

storing the tag fields of the data stored in the plurality
of cache locations;

hash data coupled to the cache data memory for indicating
hashing functions used to index data in the cache
locations;

3 second tag memory coupled to the cache data memory
for storing at least portions of memory addresses that
indicate that data stored in a cache location is likely
indexed through one of the hashing functions; and

a controller responsive to the hash data, the first tag
memory and the second tag memory for indexing
memory addresses according to at least one of the
plural hashing functions.

19. A cache memory system according to claim 18.
wherein the controller applies first and second hashing
functions to a memory address, the second hashing function
being a bit selection and bit flipping operation.

20. A method for accessing data from a cache data
memory, having a plurality of cache locations and a first tag
memory. comprising the steps of:

indexing a memory address having an index field and a
tag field into an indexed cache location according to a
hashing function;

comparing a tag field of the memory address to a tag field
in the first tag memory for the indexed cache location;
and

generating a hit when the tag field of the memory address
matches the tag field of the indexed cache location, and
generating a miss when the tag field of the memory
address does not match the tag field of the indexed
cache location, and in generating a miss, choosing
between the step of indexing another cache location
through another hashing function and the step of
replacing data, the step of replacing data in the cache
location being chosen if hash data indicates data
located in the cache location was indexed through
another hashing function.

21. A method according to claim 20, further comprising
the steps of connecting a content addressable memory to the

65 cache data memory for storing portions of memory
addresses, each portion indicating that data stored in a cache
location is likely indexed through one of plural hashing

NOAC Ex. 1017 Page 220

5,530,958

17

functions. and checking the content addressable memory for
a match with a portion of the memory address.

22. A method as claimed in claim 20 further comprising
swapping the replaced data in a cache location with data in
another cache location indexed by a common index.

23. A method of accessing data from a cache data memory
having a plurality of cache locations and first tag memory
comprising the steps of:

indexing a memory address having an index field and a
tag field into an indexed cache location according to a
hashing function applied to the index field; and

comparing a tag field of the memory address to a tag field
in the first tag memory for the indexed cache location;
and

storing control data which identifies the hashing function
used to store data in each cache location;

09/01/2003, EAST Version: 1.059%{9 EX. 1017 Page 220

10

15

18

wherein data is accessed in the cache locations through
first and second hashing functions and data is replaced
in the cache locations from main memory responsive to
the control data which is stored according to past cache
operations and comparisons between tags of memory
addresses and tags stored in the first tag memory.

24. A method as claimed in claim 23 further comprising
determining from a second tag memory a hashing function
through which data stored in a cache location is likely
indexed and selects that hashing function for indexing the
cache location.

25. A method as claimed in claim 23 further comprising
swapping data in the cache location indexed by the second
hashing function with the data in the cache location indexed
by the first hashing function when replacing data.

* t * t *

NOAC Ex. 1017 Page 221

WMww.........,....,_....“...,.,”A.M.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. ; 5,530, 958

DATED 3 June 25, 1996

iNVENTONS): Anant Agarwal and Steven D. Pudar

It is certified that error appears in the above—indentified patent and that said Letters Patem is hereby
corrected as shown below:

At column 1, line 4, insert the following paragraph:

---GOVERNMENT SUPPORT

This invention was made with government support under
Grant Number 9012773-MIP awarded by the National Science
Foundation. The government has certain rights in the
invention . ---

Suguuiandfixfledtius

Eighth Day of October, 1996

m. 6% W
BRUCE LIIIMAN

Arresting Oflicer Commissioner of Pam-1r: and Tradzma rk:

09/01/2003 , EAST Version: 1 . 04N9£8% EX. 1017 Page 221

NOAC Ex. 1017 Page 222

United States Patent [191

01!?!

4,458,310

Jul. 3, 1984

[11] Patent Number:

[45] Date of Patent:

[54] CACHE MEMORY USING A DOWN
PRIORITY REPLACEMENT CIRCUIT

[75] Inventor: Shlis-Jeh Giana, Neperville. Ill.

[73] Assignee: ’ “at Bell Lahoratnriu, Murray
Hill. NJ.

[211 App]. No.: 307.051

[22] Filed: ca. 2. 1901

[51] 1.1. cu ... con? 13/00
[52] us. a. .. 364/200
[511] M or Search_ 364/200 MS FILE, 900 MS
FILE

[56] 1amcm
us. PATENT DOCUMENTS

3.503.329 6/1971 BolandelaL
3.840.862 10/1914 Ready
3.949.353 4/1976 West m.
4.004.230 4/1911 Matick.
4.121.012 12/1970 Dennis.
4,322,795 3/1902 Langeetal

Primary Examiner—Eddie P. Chan
Ashram Examiner—O. Schatoff
Attorney, Agent. or Finn—P. Visserman

[57] mm

A data processing system having a processor, main
memory, and a cache memory system which imple-
ments the least recently used replacement ulgorithm in
replacing cache memory words with main memory
words. The cache memory system is comprised of a
cache control circuit and a plurality of cache memories.
Each cache memory stores cache memory words hav-
ing a similar time usage history. The first cache mem-
mory stores cache memory words which are more re-
cently used than the cache memory words in the second
cache memory, and the mud cache memory stores
cache “my words which are more recently used
thanthecechememorywordsinthethirdcachemem—
cry. Whenamainmemorywordmustbetransfen'edtc
thecachememory.themainmemorywordisstoredin
the first memory; and the first cache memory's least
rwentlyusedcachememorywordisstoredinthesec-
cud cache memory. The least recently uaed cache mem-
ory word from the second cache memory is stored in
the third cache memory. These operations maintain the
proper time usage history ofthe cache memories.

l1CIai-a,5DrawinaFignrea

. ,3 IIIIIEIOI'IIEID

CICME MIA

“TING
CIRCUIT

NOAC EX. 1017 Page 222

NOAC Ex. 1017 Page 223

A“...‘....._,«...._.....W...~...

A._~,.__‘_...WWMWM.

US. Patent Jul. 3, 1984 Sheet 1 of5 4,458,310

FI6‘. I

101 10!

MAIN

MEMORY

PROCESSOR

CONTROL BUS 113
ADDRESS BUS 1!?

DATA BUS 111

100

MAIN MEMORY READ

MAIN MEMORYREADY

I CACHE SYSTEM
T

a
E

-

I-
"' SEQU NCERm .fil

./ L__==.

CACHE DATA

SELECT

CACHE DATA
CATING
CIRCUIT

NOAC EX. 1017 Page 223

NOAC Ex. 1017 Page 224

4,458,310

3

 "JIEnfiwI~

=91:3=3

§MN

Sheet 2 of 5

us

fi a

""

"a"fig:23were“

 2.;-
..aIII.Mmmum-5.“,

Jz

o.—NNNmInfillom.Illlll'gmmE._S33.;§NatT3---.II|-||,_3..<*
SU

NOAC EX. 1017 Page 224

NOAC Ex. 1017 Page 225

13.1111

‘.

4,458,310Jul. 3, 1984 Sheet 3 of 5U.S. Patent

mm

a.a.a.»QDmaD._m3D—5.Dlip-[WWII

a,a.1

tIall?:0I"5:o:uDH...a.»
_.

D

AIn.IImIII-
a.

NSQ

NOAC EX. 1017 Page 225

NOAC Ex. 1017 Page 226

US. Patent Jul. 3, 1984 Sheet4 of5 4,458,310

=m.-
T

NOAC EX. 1017 Page 226

NOAC Ex. 1017 Page 227

4,458,310Sheet 5 of 5

QB;3m::53:.55..

h.GNK

Jul. 3, 1984U.S. Patent

NOAC EX. 1017 Page 227

NOAC Ex. 1017 Page 228

l

CACHE MEMORY USING A LOWBI‘ PRIORITY
REPIACEMENT CIRCUIT

TBCHNICALFIELD

My invention relates to computer systems, and, par-
ticularly,toasystemnsingsachememoryinwhich
the ache storage [cation for storing new information
istheloationofthelowestprioritywordintheache
memory.

BACKGROUND OF THE INVENTION

Modern computer systems employ processors which
arecapable cl'operatingstmuchhigherratesol’eaecu-
tion than large capacity main memories an support.
andalowapacity.hi8h"l’°°dcachcmemoryiscom-
monlyusedinadditiontoalargeapacitymainmemory
toimproveprogrameaecntionspeed.'l‘heachemem-
orystoraalimitednumberot'instructionordata

4,458,310

IO

15

words;andforeachmemoryreadoperation.theache 1°
memoryischeckedtodetermineil'theinformationis
availableintheachememory.lftheinformationis
thereitwillbereadfi'omtheachememorywtherwise,
itwillhereadfmmthemainmemory.fltheiniormation
musthereadfromthemainmemory,thenewinforma-
tion must replace existing information in the ache
mernoryatsomcacheatorageloation.Asatisfactory
achestorageloationforstoringnewinformationis
identifiedhyoneol'thesevaalcommonlynsedreplace—
ment algorithms. eg.. random replacement. least re-
centlynsed,etc.lngeneral.theleadrecentlynsedre—
placementalgorithmisconsideredmhethemostefli-
cient algorithm; however. implementation of this algo-
rithminacost-efi'ectivemannerwithontincurringlarge
timedelaysinnnintainingapriorityol'achememory
loadomwithrespecttowhichistheleastrecmtly
used memory location. has proven difficult to achieve
lnparticnlar.ithasprovendifficulttodaignaache
mernorywhichwuapahleol'expamioninthefield.

SUMMARYOFTHEINVENTION

Advantageously. in a computer system in aceorrhnce
with the present invention, the ache memory system is
divided intosectionswithachsectirmcontainiagache
datawordswhichhavessimilarpriority. Bachsection
hssaprioritycircnitassociatedwithitwhichmaintains
the relative priority of the cache data words. Further-
more, the time required to update the ache memory
nponreceiptofamainmemorywordwhichmusthe
imertedintotheachememoryisreduced.sincethe
mainmemorydatawordiswrittenintoonesection
simultaneous with the tramfer of lowest priority ache
data words from sections having higher priority ache
data words to sections having lower priority ache data
words. .

lnoneembodirnentoi'the invenfimthedataprocess-
ing system consistsofaproeessor. which requeatsdata
words by generating main memory address signals, a
mainmemory and aachememory system.Theache
memory system is comprised of a ache control circuit
and a first and a second ache memory. The advantage
ofconfiguring the ache memory system into more than
oneeache memory'cthat thesystemismodularsndcan
be expanded in the field. Also, each ache memory can
be implanented as one large scale integrated circuit.
Each cache memory stores ache data words which are
duplicates of words stored in the main memory. Each
cache memory also stores the main memory addresses

35

45

65

2

where the associated cache data words are duplicated in
mainmemory.Whentheprocessorrequestsadata
word by transmitting main memory address signals, the
first and second ache memory compare the stored
memory addremes with these memory signals to deter-
mine if the requested memory word is stored within
either the first or second ache memory. If a ache
memory finds a match. it transmits to the cache control
circuit n match signal; otherwise, the ache memory
transmits a mismatch. If the ache control circuit re-
ceivesmismatchsignslsfromhothcachememories, it
generatesandtrsnsmitsthenecessarysignalstoausc
two operations to take place. During the first operation,
themainmemoryrespondstothemainmemoryaddress
signalstoaccessandn‘ansrnitthedeaired mainmemory
wordtotheprocessorsndtothefirstachememory.
Also. during this first operation. the first cache memory
accessesitalowestpriority achedatawordwith the
associated stored main memory address and transmits
thesetothesecondachemernory. Duringthesecond
operafimthefirstcschememoryatorestheaccessed
mainmemorywordandmainmemoryaddressaignalsin
the previously accessed first ache memory locations
and the second ache memory stores the lowest priority
achedatawordandstoredmainmemoryaddressfrom
thefirstachememoryinsecondachememory loa-
lions.

Further, the cachecontrol mansisresponsivetoa
mismatchsignalfi'omthefirstachememoryanda
matchsignalfromthesecondcachememorytoausc
two operations to be performed within the ache mem-
ofiaDnrhgthefintopendoathefirstachememory
accesesandtransmitsthelowestprioritycachedata
word and the associamd main memory address to the
second cache memory and the second cache memory
transmitstheachedatawordassociatedwiththe

matched stored memory address to the first ache mem-
oryandtothe processor. During thesecondoperation,
thefirstachememorystorestheachedataword and
addressfromthcsecondachememoryin thememory
loationt'ormerlynsedhythelowestpriorityachedata
word and memory address. Also. during the mend
operation. the second ache memory will store the
transmitted ache data word and associated address
from the first ache memory.

Additionally. each cache memory will be comprised
ofamatchandadatamemory.Thematchmemorywill
beusedtostorethestoredmainmemoryaddreasesand
thedatamemorywillheusedtostoretheachedata
words. The match memory will perform a comparison
for each set of main memory address signals which the
processor sends out and this memory will indicate a
match or a mismatch. When a match is found. the match
mesnorytransmitsanaddresstothedatamemoryso
that it can access and transmit the designated ache data
word. A content addremable memory can be used to
implement the match memory.

Further, each ache memory has a priority circuit
which maintains the priority of each cache data word
with respect to when it was accessed within the first
ache memory. The priority maintained by the priority
circuit is the time usage history of the cache data words.
The lowest priority ache data word is the least re-
cently used ache data word.

In a data processing system comprising a processor,
main memory and cache memory system having two
sections. one illustrative method accesses and updates1

NOAC EX. 1017 Page 228

NOAC Ex. 1017 Page 229

- ’e- r'“

4,458,310
3

the cache memory system by storing the cache data
words into the cache memory system with the first
mtion containing words which have a higher priority
than the words stored in the second section. When the

processor accesses a data word, each section is checked
to detect whether or not the desired word is contained
in that section. If the desired word is not contained in
any section, then the main memory will be accessed and
the desired word transmitted to the processor and the
first section. The accessed main memory word will be
used to replace the lowest priority cache data word of
the first section and this word will be daignated as the
highest priority cache data word and the word which
had the second lowest priority will be designated as the
lowat priority cache data word. The former lowest
priority cache data word will be transmitted to the
second section where it will replace the lowest priority
word of the second section and will become the highest
priority word of that section. The word which had the
second lowest priority in the mud section will then be
designated as the lowest priority word.

If the requested word is detected as being in the sec-
ond section, then the word from the second section will
betransmitted to theproceasorandwillbestoredinthe
first section as the highest priority word of the first
section. The lowest priority word of the first section
will be transferred to the second section where it will
become the highest priority word of the second section.
The lowest priority word can be the least recently used
word. and the highest priority word can be the most
recently used word.

BRIFJ'“ DESCRIPTION OF THE DRAWING

The invention may be better understood from the
following detailed description when read with refer-
ence to the drawing in which:

FIG. 1 is a block diagram representation of a data
processing system embodying the present invention;

FIGS. 2 and 3 show in greater detail LRU circuit 105
of FIG. 1;

FIG. 4 shows in greater detail the content address-
able memory of LRU circuit 104 of FIG. 1; and

FIG. 5 shows a table giving an example ol'the opera-
tion of the priority circuit of FIG. 3.

DETAILED DESCRIPTION

In a data processing system as illustrated in FIG. 1.
data and instruction words are stored in memory loca-
tions of main memory 102 and cache system 100. Pro-
cessor 101 reads these memorylocations by transmrt—

. ting an address via address bus 112 and control'signals
via control bus 113. The cache system 100 is comprised
of control sequencer 103, LRU circuits 104, 105 and
106. cache data memories 107, IN and 109, and cache
data gating circuit 110. The LRU circuits and cache
data memories are grouped into pairs, and each parr
represents a cache memory unit. For example. LRU
circuit 104 and cache data memory 107 comprise one
cache memory unit.

The cache data words stored in the cache data memo-
ries are organized into groups with each group contam-
ing cache data words which were last read by processor
101 at a similar point in time. Each group is stored in
one of the cache data memories. For example. the BIOS!
recently«used ‘groupv ofwordsis storcd'rn cache dill
memory 107, and the least recently used 31’0“? ofword:
is stored in cache data memory 109. As processor 10
performs read operations. cache data words may have

l0

IS

25

35

45

55

65

4
to be transferred between cache data memories to main-

tain the time usage history of the memories. For exam-
ple, if it is necessary to read a word from main memory
102, this main memory word will replace the least re-
cently used cache data word ofcache data memory 104;
and the replaced cache data word will be transferred to
cache data memory 108.

During a read operation, the address transmitted by
processor 101 is checked by LRU circuits 104, 105, and
106 to determine if the addressed word is contained

within cache data memories 107, 100, or 109. mpec-
tively.

For example if LRU circit 104 determines that the
addressed word is contained withinscache data memory
107, it transmits the address of this word to cache data

-memory 10'] via cable 131. Cache data memory 107
responds to this address by accessing and transmitting
the desired word to cache data gating circuit 110. From
cache data gating circuit 110, the desired data word is
transmitted to processor 101 via data bus 111. If LRU
circuit 104 does not match the address being transmitted
by processor 101 via address bus 112, it transmits to
control sequencer 103 a “I" signal via conductor 114
which indicates a mismatch. The other LRU circuits
function in a similar manner.

In addition to checking if the asociated cache data
memory has the desired memory word, the LRU cir-
cuits maintain the priority of each word in the associ-
ated cache data memory."l'his priority information
automatically updated by the LRU circuit for each
access to the emaciated cache data memory and defines
which word in the cache memory is the least recently
med word.

The system's operation is further illustrated by the
three following examples. In the first example. it is
assumed that the desired word is not present in the
cache system 100 and must be read from main memory
102. If the desired word is not in the cache system 100.
then all the LRU circuits will be transmitting “1" sig-
nals via the match lines 114, 115 and 116. In response to
these signals, control sequencer 103 will access main
.memoryl02toobtainthedesiredword.sincetheword
read from main memory 102 is the most recently used
word, it must be placed in cache data memory 107. the
least recently used word from cache data memory 107
must be written into cache data memory 108. and the
least recently used word of cache data memory we
must be written into cache data memory 109. The least
recently used word of cache data memory 109 no
longer exists in cache memory 100 at the completion of
the previous operations.

In the second example of the operation of cache sys-
tem 100,itisasaumed thatthedesired wordisincache
data memory 107. Since the desired word is in cache

dammemoryIMJtisnotnecemrytoaccessaword in
mam memory 102 or to transfer a memory word from
cache data memory 107 to cache data memory 100.
Rather. LRU circuit 104 will simply update the priority
information stored internally to circuit 104 to properly
reflect the usage order of memory words in data mem-
ory 107.

In the third example. the desired memory word is
assumed to be in data memory 108. In this case. LRU
circuit 105 would match the address being transmitted
by processor 101 via address bus 112 and cause data
memory-108 {0 access and transmit the desired word to
data gating crrcuit 110. Control sequencer 103 would
then cause this desired data word to be transmitted by

6/” 7/5“

NOAC EX. 1017 Page 229

\i

NOAC Ex. 1017 Page 230

....nuww‘d

 Ii

4‘\

4,458,310
5

data gating circuit 110 via data bus 111 to processor 101.
Since this desired word is the most recently used word.
it must be written into data memory 107. The least
recently used word ofdata memory 101 must be written
into the memory location which had previously held 5
the desired memory word in data memory 108.

LRU circuit 105 is illustrated in FIGS. 2 and 3, and
LRU circuit 106 is similar in design. LRU circuit 104 is
illustrated in FIG. 4. FIG. 2 shows the circuit which is

used to check the addras transmitted by processor 101 10
via address bus 112 to determine whether the desired

wordisincachedatamemory Imam FlG.3givesthe
detailsot'the priority circuit which'uusedtokeeptrack
of the least recently used word in cache data memory
1“. When processor 101 reads a word, it first transmits 15
the CAGO signal and the clock signal via control bus
113 to the control sequencer 103 and 'processor 101
transmits the address via address bus 112 Control se-

quencer103reapondstothesesignalsandgeneratesthe
Cs'tgnaiandSsignalwhicharetranamittedviaoonduc— 20
tors 122and 12310the LRUcireuitr.Dstaselecioi-m

respondstotheCsignalonconductor 122byselecting
theaddressbitsbeingtnnsmittedviaaddressbusln
and transmits these address bits via conductors 216

through 223 to the data—in inputs ot'conteiit addressable 25
memory(CAM)N1.TheCAMcontainsfourwol'ds
eachword havingeight bits. 'I‘heCAMreapondsto the
Sinputtransmittedviaconductorm,andtheaddress
bits being received on the data-in inputs to compare
theseaddresshitswiththecontentsot‘eachofthefour 30
wordsstoredintcrnally.lfoncofthefourwords
matchestheaddrenbits.thena“l'willbetransmitted
via the associated coductor 212, 213, 214M213. lino
match '3 found. then a "l” is transmitted via conductor
236andstoredinflip—tlop206atT1timeIt’smstchia 35
found.thestateoftheconductors212through215will
bestoredinlatches204bythefallingedgeofthes
signal which ‘3 transmitted via conductor 123. Data
selector7205 will select the contents of latches 204
whichsrebeingtransmittedviaconductorsmmrough 40
22'1tobetranamittedviacondudors223through231
overcahle132tocachedatamemory1lI.Cadicdata
memoryltl will respond to the addressbeing transmit-

.tedvia.cable132l7yacccssingthedesiredwordand
transmittiugflriswordtodatsgatingcirciiitlluasss
previously described. Assuming that the desired word
wasstoredindata memory methiswordnownthe
mostrecaitly uedwordandmunbetrairsferredtodata
memory 101 and the lent recently used word ol'data
memory 107-must—be-tramferred4mdsta memory 1“ 50
and theaiLdress of this word written into CAM’201.

FIG. 4 shows the circuit which is used~tocheck the
address transmitted by processor 10 via address hill 111
to determine whether the desired word is in cache data
manory 1M,mdFIG.3givesthedetailsot'thePfl°nty 55
circuit whichisused wheeptrackofthcleastfeeenfly
used word in cache data may 10¢ “6.0mm 0‘
FIG. 4 is identical in operation to FIG. 2 with the es-
ception that FIG. 4 does not have a data selector similar
to an. selector 202 of FIG. 2. and mu?“ PPOW 6°
circuit 444. Priority circuit 444i: identical In design 1;
the priority circuit described With Flaw“ 3° FIGgh '
The reason why no data selector is needefl IS 11'" _e
circuit of FIG. 4 always uses the address being transmrt- 6
ted via address bus 111 The circuit of FIG. 4 does not 5. ted
need a data selector because this circuit is associa
with the most recently used words in cachet infinity:
100. hence. does not have to decrdc whether 0 use

6
address from address bus 112 or from an LRU circuit
having higher priority, .as class the circuit; shown in
FIG. 2. This distinction will be illustrated more clearly
in the following example.

To illustrate the operations of the circuits shown in
FIG. 2 and FIG. 4. the previously described example 3
is used. Example 3 described the operations which must
take place when the desired word is in data memory

1035:%?§mm"m,¢'didfif'ipfiell °I""5“”?ch Mnovi‘ giWTi‘il‘fi‘éi’éir ’ " "' t’frb‘r'ii the with: "'
view of LRU circuit 105, and then describing the corre-

sponding actions in LRU circuit 104. It is presumed that
thewordlindatamemory 108amiword3indata
memory 101 are the least rwently used words. To per-
form these difl'erent operations the controller se-
quencer 103 generates a variety of timing signals. the
most important of which are T0 through T4. During
T0, the address bits on addrus bus 112 are selected
through data selector202andruaedtosearch CAM 201
for a‘match. Assuming that these addm bits match the
contents of word 2 in CAM 201, a "1" will be transmit-
ted on conductor 213; conductors 212, 214, and 215 will
be conducting “m”. This operation is done under con-
trol of the S signal transmitted via conductor 123 and
the C signal transmitted via conductor 12 to data selec-
tor 202. The information on conductors 212 through
215isstoredinlatcheszo4attheendol’the8signal. In

. addition, the S signal also clocks the match output ter-
minal of CAM N1 into flip-flop 206. The output of
flip-flop206iatheM2sigualwhichistransmitted to
control sequencer 103 via conductor 115.

DnringTLdataselectormrupondstotheMZ
signal by selecting the output of latches 204 as an ad-
dresswhichistransmittedtoCAMlOlV/iaconducton

203 through 211, and data selector 205 raponds to the
M2 signal by selecting the output of latches 204 as an
address which is transmitted to data memory 1m via
cable 132. Inrespounsetotheaddress onconductorsm
through 211, CAM N1 reads the contents ofthe second
wordandtransmitstheseeontentstolatcheszo'lin
whichthuecontentsarestoredattheendof’l‘l. Data
memorylmreadsthecontentsot‘itsswondwordin
response to the address transmitted via cable 132. These
contents are stored internal to data memory 108 and
transmittedtodatagatingcircuit 110. Durinng. LRU
circuit 104 accesses the address of the least recently
used word and transmits this via cible'117 to LRU
circuit 105, and data mesnory 1M accesses the last
recentlyusedwordandtransrnitsthisviacable 140to
data memory 108. as will be described later. The ad-
dress from LRU circuit 104 must be written into CAM
201 and the corresponding data word written into data
memory 108. During T2, data selector 203 will again
select the output of latches 204 which contain the ad-
drees for word 2 to be used as an address for CAM 201.
The lent recently used address word from LRU circuit
104 will be stored in word 2. During T2, control SC-
quencer 103 Will transmit the W signal via conductor
12' and the RPLZ signal via conductor 120 which
causes CAM 201 to write the information present at the

:2: Input mats into word 2. At the same time, the. 'm Y word of data memo m is written
into word 2 of data memory I“ with thy: address being
supplied by the output of latches 204 via data selector
F35 and cable 132.. As will be described later, the prior-
"! Circuit shown in FIG. 3 must be updated during T3to reflect the f '

act that word 2 is now the most recently2

NOAC EX. 1017 Page 230

NOAC Ex. 1017 Page 231

7 4,458,310

:sigszord in LRU circuit 105. During T4, flip-flop 20‘
Example 3 is now described with rupee

circuit 104 with reference to FIG. 4. During3 11:01“;r
search is performed of CAM 401; however, since ho
match is found, the match output terminal is a «0..
which _is stored in flip-flop 406. and no M1 signal is
transmitted to control sequencer 103.

During T1, since there is no M1 signal, CAM 401 is
addressed by the address from the priority circuit 4“
with an address which is transmitted to the ADDRESS
1N terminals of CAM 401 via conductors 432 through
435, data selector 403 and conductors 408 through 411,
Thisaddress bit is theaddrescofth‘rleast recentlyused
word of CAM 401 and data memory‘107. Also, during
T1, data memory 107 addressed by the outputs of the
priority circuit 444 via data selector‘405 and cable 131.
At the Id of T1, the output data of CAM 401 is
clocked into latches 407. The contents oflatches 407 are
transmitted via cable 117 to LRU circuit 105.

During T2 control sequencer 103 transmits the PRLI
and W signals to LRU circuit 104nm data memory 107
via conductors 119 and 1.24, rapecn'vely. In response to
these signals. the contents ofaddress bus 112 are written
into the location of the least recently used word as
determined by the bits on conductors 432 through 435
in CAM 401. At the same time, the word present on
data bus 111 is written into data memory 107 at the
address transmitted via cable 131. ‘

During T3. the priority circuit 444 must be updated.
Note, that during this example, it was not necessary to
change any information connected with LRU circuit
106 or data memory 109.

Another previous example to be considered is exam-
ple l where the desired word is not contained within
data memories 107 through 109 and must be read from
main memory 102. For this example, none of the LRU
circuits will find a match during time To, and at the end
of time '10, control sequencer 103 will access main
memory 102 to obtain the duired word. Control se-
quencer 103 accesses main memory 102 by transmitting
the nnin manory read signal v‘u conductor 125. When
mainmernory 102hnawessedthedesiredword, it
responds by transmitting the main memory ready signal
v'u conductor 126 and placing the desired memory
word on data bus 111. Control sequencer 103 is respon-
sive to the main memory ready signal to generate the
cache data ready signal which informs processor 101
that the data is available on data bus 111 and to eaecute

the following steps to update the LRU circuits and the
data memories.

After receipt of the main memory ready signal, the
control sequencer 103 transmits the T1 signal. The re-
sults of the transmission ofthe Tl signal are first de-
scribed with reference to FIG. 2, since no match was

found, the M2 signal is not being transmitted via con-
ductor 115, data selector 203 selects the addressof the
least recently used word which is transmitted vra con-
ductors 232 through 235 from the priority circuit of
FIG. 3 to perform a read on CAM m1.fiewmm
out of CAM 2011's ’the address of the least recently used
data word which is stored in data memory 108. At the

same time, a read is performed on data memory 108
based on the address being transmitted vra cable 132,
which. again, is the address of the least recently used
word. At the end of T1, the address of the least recently
used word is clocked into latches 207 and the data bems
accessed from data memory 108 is similarly clocked

8

into a similar set of latches in data memory 108. The
same type of operation is being performed In LRU
circuits 104 and 106 and data memory 107 and data
memory 109. . .

During T2, the addresses being transmitted vra cable
117 from LRU circuit 104 is written into CAM 201 at

= "the addressof the least recently used word as defined by

[0

15

25

35

45

55

~60

65

the addras transmitted via conductoi'i murmur. 235

from the priority circuit of FIG. 3. Similar”. the dill
which had been accessed from data memory 107 is
written into data memory 108.

With respect to LRU circuit 104, the address on ad-
dress bus 112 is written into the location in CAM 401
which is addressed by information transmitted via con-
ductors 432 through 435 from priority circuit 444 which
designates the least recently uwd word address. The
data which is present on data bus 111 is written into the
least recently used word of data memory 107 at the
address of the least recently used word. Similar opera-
tions take place in LRU circuit 106 and data memory
109. During T3, the priority circuits of LRU circuits
104, 105, and 106 must be updated to reflect the fact that
the previously least rwently used words are now the
most rwently used words.

To illustrate the operation of the priority circuit
shown in FIG. 3. reference is made to example 3 which
ducribed the operations when the desired word is con-
tained in data memory 108. The operation of the prior-
ity circuit of FIG. 3 is similar in operation to priority
circuit 444 of FIG. 4 and the priority circuit of LRU
circuit 106. in the previous example, the least recently
usedwordwasword 1indatamemory10_8andthe
corresponding address in CAM location 1 of LRU cir-

cuit 105. During the match operation‘which took place
during time T0, word 2 of CAM 201 was found to con-

tain the address which processor 101 was attempting to
read. During time T3, the priority circuit shown in
FIG. 5 must be updated to reflect the fact that word 2
is now the most recently used word. However. word 1
still remains the least recently used word. Flip-flops 322
through 327 are used to maintain the priority of the
wordacontainedinCAM201anddatamemory108
with respect to the usage order. NOR gates 328 through
331 decode the information contained in flip-flops 322
through 327 so as to indicate which word is the least
recently used word. For example, if NOR gate 328 is
transmitting a “l" via conductor 232. this indicates that
word0istheleastrecentlyusedword.ORgates309
through 315 and AND gates 316 through 321 are used
to determine which flip-flops 322 through 327 should be
modified during an update operation on the priority
circuit. Table 1 defines the significance of one of these
flip—flaps being set. For example. if flip-flop 322 is set.
then flip-flop 32 will transmit the M01 signal as a “l"
to NOR gate 320 via conductor 301. The significance of
the flip-flop 322 being set is that word 0 has been used
more recently than word 1.

TABLE I“M

Defines
Siren-l Word

Flip-flop Tmsmilted w mom
Set by Flip-flop Mendy than WardM
322 Mm o l
323 m2 0 2
324 M03 0 3
325 M12 . z
326 M13 1 3

NOAC EX. 1017 Page 231

a.....-

NOAC Ex. 1017 Page 232

4,458,310
9

TABLE l-continued
Defines

Signal Word
Flip-firm Tran-aired Ind In

Set by Plipflcp neatly thn Ward
327 M23 2 3

The functions performed by NOR gates 32. through
331 are defined by Table 2.

TABLE 2

9-Hm-LIB-HE
Sl-Mol-le-flfl
m-m-mz-mz
sr-ms-mJ-sm

Byconvenfiomifa“l"ntransmittedviaconductor
mmhhdefinedtomeanthattheSOIignalisheing
transmitted.lfflip-flop322isaet,thenthevaluein
Table2foerllisa“l".andthevaluefoerllisa“0"; 20
andifflip-flop322isresetthenthevaluel‘orfl01isa
“0”andthevalueforM01isa“l".Foreaample.if
flip-flops322.323and324arereaet.thmthe80signalis
nammittedviaconductornz.

TheoperationsofORgateswthr-oughwand
ANDgatu316thmugh321atupdatetimeisdefmedby
Table 3.

TABLE!
.1. . | Fl’ ll mt ll
vicom‘hrctor \vlbh which
atapdatedrae leaet mere-m

223 321323.324
129' 325,326 322
230 121 313.323
23) 314.326.321

Updatetimeoccursattirneflwhenthelu’ungnal
iabeingtranamittedviaconductorlzofmmcontrol
sequencerlm.T3andR.PL2andANDedtogetherby
ANDgatethichenahleatheORgawthhrough
315mdANDgates316through32LPoreaampleifa
“l"isbeingtranamittedviaconductorfilduringthe
npdatefimethalflip-flopammandmfillhe
reaetA“l"beingtranamittcdviacondnctor231indi—
cateathatword3isnowthemoatreceutlyuedword.
hence.hyTahlel,flip-tlops324.326and327carmotbe
sethecauetheyhrdicatethatwordtwordlandword
Lrespectively,haveheenmorerwentlywesacdthan
word3.

Tomoreclearly illustratetheoperationsofthecircuit
shownonFlG.3,thepreviouseaampleofword2being
matcheddnringtheoperation attirne'l‘llwillnowbe
describedwithrespecttoFlG.5.Line501showsthe
initial state of the flip-flops 322 through 327. When
word2isdeter1ninedtocontainthedeairedword,the

data memory I“ and transmitted and stored within
LRUcircuit lManddatamernorle‘l.Theleastre-
cently used words from LRU circuit 104 and data mem-
orylMaretransmittedtomUcircnit lOSanddata
memorylmandarestoredinwordzofcachofthese
memories. After this information has been stored in
word2.thenword2isthemostrecentlyusedwordand
flip-flops 322 through 327 must be updated accordingly.
Since word 2 was the selected word. data selector 205
of FIG. 2 is transmitting a “1” via conductor 230. OR
gates 309 through 315 and AND_ gala-316 through 321
respond to the “I" being transmitted vra conductor 230

10

to set flip-flops 321 and reset flip-flops 323 and 325. This
is shown on line 502 of FIG. 5. Note, that the least

recentlyuscdwordisstillword linline502.lf,inthe
nextsearchoperatiornthedesiredword iswmd 3.the

5 flip-flops322through327wiflbenpdatedduringtime
T3tor'eflecttllestatesshowninline503. lfionthenext

searchoperation,wordlisfoundtocontainthedeaired
information, then the flip-flops 322 through 327 will be
updated to reflect thestate shownin line 506. Note, that

'0 theleastrecentlyusedwmd isnowwordOwhichhas
notheenaccenedinthelastthreeoperstionsduring
which words 2. 3 and 1 were both accessed.

It is to be understood that the above-described em-

bodiment is merely illustrative of the principles of the
'5 invention and that other arrangements may be devised

by thou: skilled in the art without departing from the
spirit and scope of the invention.

What is claimed is:

1. A data processing system comprising:
aproceasormeansforgeneratingmainmemoryad-

die- flan-II;
a main memory having a plurality of memory loca-

tions for storing main memory words;
a cache control means;
firstandsecondcachememorieseachhavingaplu-

rality of memory locations for storing main mem-
ory addresses and corresponding cache data words
inapriofityorder,andeachresponsivetomain

30 memoryaddremsignalswhichmisaratchallofthe
main memory addrenes stored therein to generate
andtmnsmitamismatchsignaltosaidcachecon-
trol meam;

said cache control means responsive to concurrent
3, generationofsaidmisrnatchsignalabysaidfirstand

second cache memoria to generate and transmit a
firstcontrol-gnaltoaaidmainmemoryandsaid
first and second cache memories;

saidmainmemoryreaponsivetosaidfirstcontrol
‘0 signalandsaidmimatchedmainmemoryaddreas

signalatoaccessandtransmitamainmemory word
to said first cache memory;

aaidfirstcachememoryreaponsivetosaidfirstcon—
trol signal to transmit the lowest priority cache

45 \ data wordanditscorreaponding storedmain mem-
ory addre- to said second cache memory, and to
store said transmitted main memory word and said
main memory address signals; and

saidwondcachememoryresponsivetoraidfirst
50 control signal to store the transmitted lowest prior-

ity cache data word and its corresponding main

2. A data processing system in accordance with claim
1 wherein said second cache memory is further respon-

55 sivetouninmemoryaddresssignalswhichmatcha
main memory address stored therein to generate and
transmit a match signal to said cache control means;

saidcachecontrolmeansisfurtherresponsiveton
mismatch signal from said first cache memory and

so said match signal from said second cache memory
to generate and transmit a second control signal to
said first and second cache memories;

said first cache memory responsive to said second
control signal to transmit the lowst priority cache

65 data word and its OOITBpOndiflg stored main mem-
ory address to said second cache memory; and

said second cache memory responsive to said second
control signal to store said lowest priority cache

25

1

NOAC EX. 1017 Page 232

.34

NOAC Ex. 1017 Page 233

4,458,310
11

data word and said conesponding stored main
memory addrem transmitted in response to said
second control signal from said first cache memory
in the cache memory locations associated with the

‘ stored main memory address which matched said 5
main memory address signals.

3. A data processing system in accordance with claim
2 wherein said second cache memory is further respon-
sive to said second control signal to transmit said
matched main memory address and its corresponding '0
cache data word to said first cache memory; and

said first cache memory further comprises means
responsive to said second control signal to store
said matched stored main memory address and said
corresponding cache data word in the cache mem- '5
ory locations of said transmitted corresponding
main memory address and said transmitted lowest
priority cache data word of said first cache mem-
ory, respectively.

4. A data processing system in accordance with claim
1 wherein said first cache memory is further responsive
to said first control usual to store said main memory
word and said m'nmatched main memory address sig-
nals in the cache memory locations of said transmitted
IOwest priority cache data word and said transmitted
corresponding stored main memory address in said first
cache memory.

5. A data processing system in accordance with claim
lwhereinsaidswond cachememoryiafirrtherrespon—
sive to said first control signal to store said transmitted
lowest priority cache data word and said transmitted
corresponding stored main memory address from said
first cache memory in the cache memory locations of
the lowest priority cache data word and corresponding 35
stored main memory address of said second cache mem-
ory. respectively.

6. A data processing system in accordance with claim
2 wherein said swond cache memory further comprises
amatchmemoryhavingapluraiityofmemoryloca—w
tions for storing said stored main addresses and a data
memory having a plurality of memory locations for
storing said cache data words;

saidmatchmemoryisresponsivetosaidmatched
mainmemoryaddresssignalatotransmitaaid”
matchsignalandtogenerateandtranamitacache
memory address of the memory location whose
contents matched said matched main memory ad-
dress signals to said data memory, and responsive
tosaid mismatched mainmemoryaddresssignalsto 50
generate and transmit said mismatch signal; and

said data memory is responsive to said cache memory
address to access and transmit said corresponding
cache data word.

7. A data processing system in accordance with claim 55
6 wherein said match memory is comprised ofa content
addressable memory.

I. A data processing system in accordance with claim
6 wherein each of said first and swond cache memories

further comprism a priority means for determining the 60
least recently used cache data word which is the lowest
priority cache data word.

9. A data processing system in accordance with claim
8 wherein each of said priority means is further adapted
for generating the address of the least recently used data 65word.

10. A data processing system in accordance with
claim 9 wherein said priority means of said first cache

25

12

memory further comprises a storage means and a logic
means; and

said logic means responsive to contents of said stor-
age means and said cache memory addren to gen-
erate and store information defining the accessed
order of said cache data words of said first cache

memory in said storage means.
11. In a data processing system having a processor for

generating main memory address signals, a main mem-
ory for storing main memory words, first and second
cache memories for storing main memory addresses and
corresponding cache data words and for matching a
stored main memory address word with the main mem-
ory addrem signals, and a cache control for controlling
said first and second cache memories, a method of ac-
cming said cache memories and said main memory;

comprising the steps of: -
storing a set of said cache data words and corre-

sponding main memory addrem words having a
higher priority than another set of said cache data
words and corresponding main memory address
words in said first cache memory; t

storing said other set ofsaid cache data words and
corresponding main memory address words in said
awond cache memory;

detecting main memory address signals which mis-
matchallofmainmemoryaddreaswordsstoredin
said first and second cache memories;

reading from said main memory. the main memory
word addressed by the mismatched main memory
addm signals; .

transferringsaidmainmemorywordtosaidprocea—
sor and said first cache memory;

storingsaidmsinmemorywordandsaidmismatched
mainmemoryaddreassignalsinsaidfirstcache
memory;

transmitt'mg the lowest priority cache data word of
saidfirstcachememorytosaidsecondcachemem-
01?;

replacing said lowest priority cache data word ofsaid
first cache memory with said main memory data
word;

memorydatawor-duthehighestpriorirycache
datawordandanothercachedatawordasthe

lowest priority cache data word; and
storingsaidtransmittedcachedataword fromsaid

firstcechemernory insaidaecondcache memory.
12. The invention of claim 11 wherein said transmit-

ting step comprises the steps of:
replacing the lowest priority cache data word of said

second cache memory with said transmitted cache
data word; and

identifying within said swond cache memory said
transmitted cache data word as the highest priority
and another cache data word as the lowest priority
cache data word.

13. In a data processing system having a processor for
generating main memory address signals. a main mem-
ory for storing main memory words, first and second
cache memories for storing main memory addresses and
corresponding cache data words and for matching the
stored main memory addresses with the main memory
address signals, and a cache control for controlling said
first and second cache memories. a method of accessing
said cache memories and said main memory;

comprising the steps of:

NOAC EX. 1017 Page 233

NOAC Ex. 1017 Page 234

4,458,310
13

storingasetot'ssidcachedatawordsand corre-
spondingmainmemorysddresseshavingahigher
priority than anothersetof said cache data words
andcorrespondingmainmemoryaddreasesinsaid
firstcachememory;

storingsaidothersetofsaidcachedatawordsand
correspondingmainmemory wordsinsaid second
cachememory;

detecting main memory addrass signals which match
oneofthestoredmainmemorysddreasesinsaid
secondcachememory;

transferring the cache data word corresponding to
thematchedoneofsaidstorcdmainmemorysd-
dresses from said second cache memory to said
processcrandsaidfiratcachememory;and

storhrgsaidh'ansfm'redcachedarawordfrcmssid
secondcachememoryinsaidfiratcachememory.

14.1‘beinventionofclaim 13 whereinsaidstoring of
said transferred cache data word step comprises the
stepsof:

transmittingtheloweatprioritycachedatawordof
Iaidfiratcachememorytosaidaecondcachemem-
cry:

replacingsaidlowestprioritycachedatawordofsaid
firstcachernernorywithssidtransferredcache
datawordfmmsaidsecondcachemernorynnd

identifyingwithinsaidfirstcachememorysaidtrans—
fer-red cache data word from said second cache

memoryasthehighestpaioritycachedataword

I0

l5

20

25

30

35

45

55

65

14
and mother cache data word as the lowest priority
cache data word.

15. The invention of claim 14 wherein said transmit-

ting step comprises the steps of:
replacing the lowest priority cache data word of said

second cache memory with said transmitted cache
data word from said first cache mamory; and

identifying within said second cache memory said
transmitted cache data word from said first cache

memory as the highest priority cache data word
and another cache data word as the lowest priority
cache data word.

16. The invention of claims 11 or 14 wherein said

lowest priority cache data word of said first cache
memory comprises a least recently used cache data
word of said first cache memory and said transmitting
step comprises the step of transmitting said least re-
cently used cache data word ofsaid first cache memory;
and

said replacing step comprises the step of replacing
said least recently used cache data word of said
first cache memory.

17. The invention of claim 14 wherein said highest
priority cache data word from said cache memory com-
prisesamostrecentlyusedcachedataword andsaid
step of transferring comprises the step of transferring
said mom recently used cache data word; and

said step ofreplacing comprises the step of replacing
with said most recently used cache data word.

NOAC EX. 1017 Page 234

NOAC Ex. 1017 Page 235

Am1.23};m41}Mailings

UNITED STATES DEPARTMENT OF COMMERCE

.0119)me

IN 7696177

United States Patent and Trademark Office

 .95155535339§53$23:£51552,5363:3385:5.2.2.35;.srscnzmspnrritmsiamay.

g?a!!!»

emH0

SkETWmHNemTmm;MNmm00.mTRCUd\IFmm“m8WAmmaRm0RmmmA22fAmaEOS06UP.16g1tI(rRMamA.F.mTw«8WW0Amd.SfidSEmm.30InonPCmFCU.,mKmm.meMME,fHNT000NFwWmmA00/,64.nuwTE0WM0oewAC:0LM.mSkHHR2,..H3,uflDTFE010AddB36!ynnnoMM;BUaISUuRgTmJuRTNEA0ITUEOSTANTTADTASWCGDIINSOLNEE1C:PITUHMFPmA$

.5M1.‘Ax.3iii;..nv2.unnv:n.371:t.svaiw'tnt:15.23utptpircicltltfltci!vvohll

NOAC Ex. 1017 Page 236

.United States Patent [19]

Carter et al.

USOO6003123A

[11] Patent Number: 6,003,123

[45] Date of Patent: Dec. 14, 1999

[54] MEMORY SYSTEM WITH GLOBAL
ADDRESS TRANSLATION

[75] Inventors: Nicholas P. Carter, Somerville;
Stephen W. Kecklcr, Cambridge;
William J. Dally, Framingham, all of
Mass.

[73] Assignee: Massachusetts Institute of
Technology, Cambridge, Mass.

[21] Appl. No; 09/021,658

[22] Filed: Feb. 10, 1998

Related US. Application Data

[62] Division of application No. 08/314,013, Sep. 28, 1994, Pat.

No.5,845,331.

[51] Int.Cl.5 G06F12/10
[52] use]. 711/207;711r207
[58] Field of Search 711/147, 202,

[203, 206, 207, 209

[56] References Cited
U.S. PATENT DOCUMENTS

4,241,396 12/1980 Mitchell et al.
4,408,274 10/1983
5,075,842 12/1991
5,751.308 10/1993
5,404,478 4/1995 . .
5,465,337 11/1995 Kong ._.......

OTHER PUBLICATIONS

Carter, Nicholas P., et al., “Hardware Support For Fast
Capability—based Addresing,” Proceedings of the 6th Inter-
national Conferenee on Architectural Support for Program-
ming Languages and Operating Systems (ASPIDS VI) ,
Oct. 5—7, 1994. PP- 1—9.

.....‘. 395/417

Tyner, Paul, “APX 432 General Data ProcessorArchitecture
Reference Manual, Chapter 3, Objects for Program Envi-
ronments,” Intel Corporation, Jan. 1981, pp. 3—1 to 3—37.
Fabry, R.S., “Capability—Based Addressing,” Fourth ACM
Symposium on Operating Systems Principles, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, October
15—17, 1973, pp. 413—412.
Dally, William J. et al., “An Object Oriented Architecture,
"IEEE, 0149—7111/85/0000/0154, 1985, pp. 154—161.
Goodman, James R. et al., “The Wisconsin Multicube: A
New Large Scale Cache—Coherent Multiprocessor," IEEE,
CHZS45—2/88/0000/0422, 1988, pp. 422—431.
Dally, William J, et al., “M—Machine Architecture v1.0 MIT
Concurrent VLSI Architecture Memo 58,” Massachusetts
Institute of Technology, Artificial Intelligence Laboratory,
Aug. 24, 1994, pp. 1—50.

Primary Examiner—Eddie P. Chan
Assistant Examiner—Kevin Verbrugge
Anomey, Agent, or Firm—Hamilton, Brook, Smith &
Reynolds, RC.

[57] ABSTRACI‘

A multiprocessor system having shared memory uses
guarded pointers to identify protected segments of memory
and permitted acceS to a location specified by the guarded
pointer. Modification of pointers is restricted by the hard—
ware system to limit aeees to memory segments and to limit
operations which can be performed within the memory
segments. Global address translation is based on grouping of
pages which may be stored across multiple nodes. The page
groups are identified in the global translation of each node
and, with the virtual admires, identify a node in which data
is stored. Pages are subdivided into blocks and block status
flags are stored for each page. The block status flags indicate
whether a memory location may be read or written into at a
particular node and indicate to a home node whether a
remote node has written new data into a location.

12 Claims, 17 Drawing Sheets

Volid

Bit Virtual Page

“'5; I-—-
Wor Unused Starting Node

Pages
Per

8 C d Unused Node
' hm”Word was --III

Page Extent
Length (3 bits/

Dimension)

NOAC EX. 1017 Page 236

1.am”immune..15...“........-ae.--._“we“.

NOAC Ex. 1017 Page 237

US. Patent Dec. 14,1999

Pointer , Segment _
Tag Length (L)

0000
OOOI
OOlO
OOH
OIOO
OIOI
OllO
Olll

IOOO
100!
[CID
IOII
”00
HO!
lllO
llll

LO

 Permission

Bits

Sheet 1 of 17

Segment Offset

FIG. IA

 13000

lion

L=3

6,003,123

 smme' me

E0000

hon

L=4

NOAC EX. 1017 Page 237

NOAC Ex. 1017 Page 238

.U.S. Patent
Dec. 14, 1999 Sheet 2 of 17 6,003,123

 _ 20
Begin Memory

Reference

24

Pointer Bit Raise i. i

Snags"? exeeeeee P
Yes

Compare Opcode 26

.on.d .
Permussnon Bits

30

Raise

Exception

Operation
Allowed .7

Yes

,1.“'~WWW.glanw-
Perform Address

Computation if
Needed

32

 Check for

Segmentation
Violation

34

 38

Raise

Exception

Segmentation

Violation ?

NO

Submit Reference

to Memory

FIG. 2A

40

NOAC EX. 1017 Page 238

NOAC Ex. 1017 Page 239

.U.S. Patent Dec. 14,1999 Sheet 3 of 17 6,003,123

Permission Segment 48

Bits Lengih Address Offset

Pointer 54 4

NOAC EX. 1017 Page 239
A _____2

NOAC Ex. 1017 Page 240

US. Patent

Guarded

Pointer

Dec. 14, 1999

Lengf

56

FIG. 3

Masked Comparator
Bit Cells (54)

Sheet 4 of 17

Mask

h Field Generator

6,003,123

Violation ?

Result Address

Violation Z"

NOAC EX. 1017 Page 240

:WWWMWW-“wm...
“hm-..--.~x..\+2....M.-

.,Hmm...“WWW-Awmv

NOAC Ex. 1017 Page 241

US. Patent Dec. 14,1999 Sheet 5 0f 17 6,003,123

62

B” MCISk /

Adder % Illegally Changed Bi’r ?
Original Address 66

64

Fl G. 5 i

i
A

-ENTERZ

DATA 1

DATA 2

Protected

Subsystem

”MMH-WW.W

NOAC EX. 1017 Page 241

NOAC Ex. 1017 Page 242

US. Patent Dec. 14,1999 Sheet 6 of 17 6,003,123

 Program

Protected

Subsystem

NOAC EX. 1017 Page 242

NOAC Ex. 1017 Page 243

.U.S. Patent

Cache

Bank 0

Dec.14,1999

Memory
Interface

Sheet 7 of 17 6,003,123

 IIIIIIIIIIIIJ‘II
Input

__“_"EF’_°£“E.

8|

Network

FIG. 8

NOAC EX. 1017 Page 243

€

§

1
1

i

i

1

i
{

__<___ai

NOAC Ex. 1017 Page 244

US. Patent Dec. 14,1999 Sheet 8 of 17 6,003,123

Valid

. Bit Virtual Page

may I-— 20 bus
Lock Physical Page

39”“

Word 64 bl 5
Status Bits

(Bit/block)

133:3
Status Bits

(Bit/ block)

.1,AAAUIWmW»..Wu‘umww

NOAC EX. 1017 Page 244 l
, , ___l

NOAC Ex. 1017 Page 245

%2e
WeP

37ummo.o;m6,9.582289.9930¢,m.365.8531621.30
N

7258:289...n:3013,65n.365622569:3%mcflomwsmBoomo...m32m
,%

co:o_>m3:6mi...
%:0858vw25366

M,mom.9.68225no0K.0x85:2;
86,5,38

92Emuchow
t co838m25365

t

on”_m232.mooa684
s.U

::ff§..§.;V ,{Viiv»?«Saints?1:.x“CAN“flat,,.,1:#Wufinzfia.F:,”influx:sirwuétrnn..5»fi»f;fifl:§xi»fi§g.w..1,.z,L

NOAC Ex. 1017 Page 246

US. Patent Dec. 14,1999 Sheet 10 of 17 6,003,123

LTLB

Physical Block Statu Block Status ‘
Translation bit Word 0 64 64 bit Word I

[a 75

i

i
Tl ~

li

l

Virtual Address

Block Status Bits

F'G I I for Translated Address

NOAC EX. 1017 Page 2461 7 ,_—_—_4

NOAC Ex. 1017 Page 247

.U.S. Patent Dec. 14,1999 Sheet 12 of 17 6,003,123

Valid

Bit Virtual Page

$53; I-—— }
Unused Stdr’ring Node

Pages %
Per

Unused Node I
E

E
53%;?

g Page Extent
Length (3 bits /

Dunenflon)

FIG. 13

NOAC EX. 1017 Page 247 irm”.1.

NOAC Ex. 1017 Page 248

.U.S. Patent

HM?“FKM‘LF““.~-
‘rM'W.’3‘an

nmeu112*»

i’1:mwammzmmwmme‘.

Dec. 14, 1999

l02

Start

Translation

Mask off

Pages/ Node in
Virtual Address

Extract H0

x-Offset from

Virtual Address

“2

Extract

Y-Otfset from

Virtual Address

H4

Extract

Z-Offset from

Virtual Address

Add Offsets to

Start Node to get
Node Containing
Virtual Address

“6

FIG. |4A

Sheet 13 of 17 6,003,123

NOAC EX. 1017 Page 248

NOAC Ex. 1017 Page 249

2mm‘

US. Patent Dec. 14,1999 Sheet 14 of 17 6,003,123

Bit Mask Generator Masked Comparator

FIG. |4B

NOAC EX. 1017 Page 249

NOAC Ex. 1017 Page 250

.gwngux.mimw,uzxmwkv‘
’9‘:M,«atram"
r3.32%“n

«,mzw'wzrmmm.;i
»kumflfil25;,~:

«A:sin-Mu.raw"««Kirk

x~xl"":»+fl~15:5}5V

US. Patent Dec. 14,1999 Sheet 15 of 17

log log sub-cube
pages dimensions

base node per node Z Y X

6,003,123

DESTINATION NODE

FIG. |5A

ADDRESS

(54 bits)

2
NOAC EX. 1017 Page 250

NOAC Ex. 1017 Page 251

1-99<MWWW
U.S. Patent Dec. 14,1999 Sheet 16 of 17 6,003,123

Input Address Fully — Associative

SRAM Array

 Bit-Field

Extractor:1WWWfi””1W1?EM‘MfiflfiaW oo.
aImyI», X-Dest Y—Dest Z—Dest

Z—Offse1‘

Ar.”fr-'1'
FIG. I6

NOAC EX. 1017 Page 251

NOAC Ex. 1017 Page 252

arm:31f:wfiwsegmwwmmw(

£21.

g;
F.

“.‘lD‘LXAAué4”5‘3.“'5‘

‘‘«SP-‘5‘

‘uf

US. Patent

I50

it in

Local Page
Table ?

No '5Yes

Update
LTLB

I54

“‘IEEEEI”yeS
l56

{SiamGo a Page
Table?

Raise
Exception

Dec. 14, 1999 Sheet 17 of 17

28I

Start
Reference

I30

 I32

Pass
Pomter
Checks ?

Yes '34

Yes POSS
Block Statu

Check 1"

No '42 . No
Raise

Block Status
Exce-tlon

2 Yes I44

Pas No Ralse
Block Statu Block Status

Check ’5’ Exception

Yes

Complete '45
Reference

Complete l58
Reference

Remotely

l60

FIG. I?

6,003,123

I40
I36

Yes Complete
Reference

I38

I48

NOAC EX. 1017 Page 252

..“momxmm

NOAC Ex. 1017 Page 253

.~,amp/s,

"istree-+1?.az‘t~

L.

:l

3

'"Ef‘a‘v
".4

m713:}.it

6,003,123
1

MEMORY SYSTEM WITH GIDBAL
ADDRESS TRANSIATION

RELATED APPIJCAI'ION

This application is a divisional of Ser. No. 08/314,013,
filed Sep. 28, 1994, now US. Pat. No. 5,845,331, Dec. 1,
1998 the entire teachings of which are incorporated herein
by reference.

GOVERNMENT SUPPORT

The invention was supported, in whole or in part, by a
grant Contract No. F19628-92-C-0045 from the Air Force
Electronic Systems Division. The Government has certain
rights in the invention.

BACKGROUND OF THE INVENTION

In most computer systems, individual programs access
code and data by addressing memory through a virtual
address space. That virtual address space for each program
must then be translated into the physical addres space in
which the code and data is actually stored in memory. Thus,
distinct programs may use identical virtual addresses which
translate to diflerent locations in physical memory. The
physical address space utilized by several programs may be
completely distinct or they may overlap. Some level of
security must be provided in order to permit common access
to certain memory locations while protecting against unau-
thorized access to other locations.

Memory system designers must provide security without
sacrificing efficiency and flexibility. One process’ objects
must be protected from modification by other, unauthorized
processes, and user programs must not be allowed to affect
the execution of trusted system programs. It must be pos-
sible to share data between proceses in a manner that
restricts data access to authorized processes; merely provid-
ing the ability to have data be private to a process or
acce$ible to all processes is insutficient. An efficient mecha-
nism must also be provided to change protedion domains
(the set of objects that can be referenced) when entering a
subsystem.

The current trend towards the use of multithreading as a
method of increasing the utilization of execution units make
traditional security schemes undesirable. particularly if con-
text switches may occur on a cycle-by-cycle basis. Tradi-
tional security systems have a non-zero context switch time
as loading the protection domain for the new context may
require installing new address translations or protection
table entries.

A number of multithreaded systems such as Alewife
(Agarwal, A, et al., “The MIT Alewife machine: A large-
scale distributed-memory mutiprocessor,” Scalable Shared
Memory Multiprocessars, Kluwer Academic Publishers,
1991.), and Tera (Alverson, R., et al., “The tera computer
system,” Proceedings of the 1990 International Conference
on Supercomputing, September, 1990, ACM SIGPLAN
Computer Architecture News, pp 1—6) have avoided this
problem by requiring that all threads which are simulta-
neously loaded share the same address space and protection
domain. This may be sufficient for execution of threads from
a single user program, but disallows interleaving threads
from different protection domains, which may restrict the
performance of the machine.

SUMMARY OF THE INVENTION

The present invention relates to several aspects of a
memory system which may be used independently or

10

15

35

4s

55

65

2

together. The invention is particularly applicable in a virtual
addressing, multiprocessor environment which requires
sharing of data among multiple tasks across multiple nodes.

In accordance with one aspect of the invention, a data
processing system comprises shared memory for storing
instructions and data for plural programs, the shared
memory being accessed in resporse to pointers. Guarded
pointers addreg memory locations to which mum is
restricted. Each guarded pointer is a proce$or word which
fully identifies a protected segment in memory and an
addres within the protected segment. Processor hardware
distinguishes guarded pointers from other words and is
operable under program control to modify guarded pointers.
Modification of guarded pointers is restricted so that only
addresses within the identified segment can be created.
Thus, access outside of a protected segment is prevented. A
permission field in the guarded pointer indicates permissible
am to the identified memory segment such as read only
or read/write. By providing the full virtual address, segment
information, and a permimion field, segment checks and
permission checks can be performed during a memory
am without requiring additional machine cycles.

Preferably, each guarded pointer comprises a length field
and an address field. The value in the length field indicates
a division of the address field into a segment subfield which
identifies a segment location and an offset subfield which
identifies an ofiset within an identified segment. The value
in the length field is preferably logarithmically encoded
using a base 2 logarithm. A tag field may be provided to
identify the word as a guarded pointer, and the pointer must
be so identified if it is to be used to access a memory
location. By limiting the ability to set the flag bit and to
freely modify addresses in pointers to the operating system,
the creation of forged pointers by application programs to
gain am to protected segments is avoided.

The procesor hardware may be operable to generate a
second guarded pointer from a first guarded pointer, the
second guarded pointer identifying a suhsegment within the
segment identified by the first guarded pointer. To that end,
the processor changes a value in the length field to decrease
the number of bits in the ofl’set subfield and to increase the

number of bits in the segment subfield. The result is
decreased ofl‘set range and finer segment location resolution
within the original segment. However, the segment can not
be enlarged by an application program.

The processor hardware may also be operable to generate
a second guarded pointer from a first guarded pointer by
performing an arithmetic operation on the ofl‘set. The pro-
cesor hardware checks the second guarded pointer for over
or underflow by detecting a change in value in the segment
suhfield. The hardware may also modify the permision field
of a guarded pointer to generate a pointer having only more
restricted wees to the indicated segment. For example, a
program having permission to read/write may create a
pointer to the same memory segment with permission only
to read.

ENTER guarded pointers may be restricted for processing
by the processor hardware to only jump to the identified
address within the protected segment and to execute. Such
pointers allow access to code beginning at the pointer
address but prevent bypass of portions of the code and
prevent changing or copying of the code. Other preferred
pointer types are read-only pointers, read/write pointers,
execute pointers and key pointers. Key pointers may not be
modified or used for data access,

In accordance with another aspect of the invention, a
method is provided for global addressing across plural

NOAC EX. 1017 Page 253

NOAC Ex. 1017 Page 254

.viii".

errWemmmmwiwmmmwmn*
“Ev“«.

raw.,9‘mWhmnuzm1Ww;,,
6,003,123

3

pmcmor nodes. A virtual address is applied to a global
translation butfer to identify a mapping of a page group to
a set of nodes in a system. From the virtual address and the
identified mapping, the system determines a destination
node at which a page containing the virtual address resides.
Amessage including the address, which may be in a guarded
pointer, may be forwarded to the destination node, and
translation of the virtual address to a physical address may
be performed at that node. By translating to groups of nodes,
rather than an individual node for each virtual address, the
size of the global translation buffer can be substantially
reduced.

Preferably, the global translation buffer identifies each
page group by a group size which is logarithmically
encoded. It also specifies, in each group entry, a start node
and the physical range of nodes within the group. Preferably,
the range is specified in plural dimensions, specifically in the
X, Y and Z dimensions of an array. That range is preferably
also logarithmically encoded. Finally, the translation buffer
may specify the number ofpages of the page group per node.

In accordance with another aspect of the invention, virtual
page addresses are translated to physical page addresses at
each processor node and each virtual page is subdivided into
blocks. At each processor node on which data from a virtual
page is stored, a block status flag is provided for each block
of the virtual page. Blocks of data may be copied between
nodes and, based on the block status flag, access to indi—
vidual blocks on a node is restricted The use of the blocks

allows for finer granularity in data transfers. The status flags
are preferably stored in a virtual to physical translation
buffer. Block status flags may also be stored with the data in
cache memory, and the block status flags in the translation
bufler may be updated from cache memory.

The preferred states of the status flags include invalid,
read only, read/write and read/write but dirty. The dirty
designation is provided in order to indicate to the home node
that the data has been changed since being loaded from the
home node.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular description of preferred embodiments of the
invention, as illustrated in the awompanying drawings in
which like reference characters refer to the same parts
throughout the difierent views. The drawings are not nee-
esarily to scale, emphasis instead being place upon illus-
trating the principles of the invention.

FIG. 1A illustrates the format of a guarded pointer
embodying the present invention.

FIG. 1B illustrates a simple application of a guarded
pointer having only a four bit addres field.

FIG. 2A is a flow chart of a memory request in a system
that includes guarded pointers

FIG. 2B illustrates the hardware utilind in an LEA

operation in which an otfset is added to an existing pointer.
FIG. 3 illustrates the adder and segment chedr of FIG. 2B.
FIG. 4 illustrates the masked comparator of FIG. 3.
FIG. 5 illustrates a masked comparator bit cell in FIG. 4.
FIG. 6 illustrates register states when a program enters a

protected subsystem by jumping to an enter pointer.
FIG. 7 illustrates mgister states when two way protection

is provided by creating a return segment.
FIG. 8 is a block diagram of a processor chip used in an

M-Maehine embodying the present invention.

10

15

30

35

45

50

55

65

4

FIG. 9 illustrates an LTLB entry having block status bits
in accordance with the present invention.

FIG. 10 illustrates status bit caching in a system using
block status bits.

FIG. 11 is a block diagram of hardware utilized in
determining status bits for a block in the LTLB.

FIG. 12 is a flow chart of a memory request in a system
that includes block status bits.

FIG. 13 is an illustration of a GTLB entry in a system
using global translation in awordance with the present
invention.

FIG. 14A is a flow chart of a GTLB translation process.
FIG. 14B illustrates a masked comparator used in the

GTLB.

FIG. 15A illustrates an example GTLB translation of an
address, and FIG. 15B illustrates the node within a group
identified by the translation of FIG. 15A.

FIG. 16 is a block diagram of a GTLB.
FIG. 17 is a flow chart of a memory request in a system

that includes guarded pointers, block status bits, and a
GTLB.

DETAILED DESCRIPTION OF THE
INVENTION

Guarded Pointers

Guarded pointers are provided as a solution to the prob-
lem of providing eflicient protection and sharing of data.
Guarded pointers encode permission and segmentation
information within tagged pointer objects to implement
capability requirements of the type presented in Fabry, R.,
“Capability-based addressing,” Communications of the
ACM 17,7 (July 1974), 403—412. A guarded pointer may be
stored in a general purpose register or in memory, eliminat-
ing the need for special storage. Because memory may be
accessed directly using guarded pointers, higher perfor-
mance may be achieved than with traditional implementa-
tions ofcapabilities, as table lookups to translate capabilities
to virtual addreses are not required.

FIG. 1Ashows the format of a guarded pointer. A single
pointer bit is added to each 64—bit memory word. Fifty-four
bits contain an address, while the remaining ten bits specify
the set ofoperations that may be performed using the pointer
(4 bits) and the length of the segment containing the pointer
(6 bits). Segments are required to be a power of two words
long, and to be aligned on their length. Thus, a guarded
pointer specifies an addres, the operations that can be
performed using that address, and the segment containing
the address. No segment or capability tables are required.
Since protection information is encoded in pointers, it is
possible for all processes to share the same virtual address
space safely, eliminating the need to change the translation
scheme on context switches and facilitating the use of
virtually-addressed caches.

All memory operations in a system that use guarded
pointers require that one of their operands be a guarded
pointer and that the permission field of the pointer allow the
operation being attempted. Users are not allowed to set the
pointer bit of a word, although they may manipulate pointers
with instructions that maintain the protection scheme. This
prevents users from creating arbitrary pointers, while allow-
ing address arithmetic within the segments that have been
allocated to a user program. Privileged programs are allowed
to set the pointer bit of a word and thus can create arbitrary
pointers.

Memory systems that use guarded pointers provide a
single virtual address space shared by all processes. Each

NOAC EX. 1017 Page 254

ma..m..

NOAC Ex. 1017 Page 255

”gig-am;

’“ifit‘ki'wevéw-{é“5!"'nmvow—ufcfimite¥>wwmu:’,‘
wrist/.1
”a

in“?'

~"finny.‘mm‘inw?!
”Hire.“

6,003,123
5

guarded pointer identifies a segment of this address space
that may be any power of two bytes in length, and must be
aligned on its size. These restrictions allow six bits of
segment length information and 54 bits of virtual address to
completely specify a segment. The length field of a guarded
pointer encodes the base-two logarithm of the segment

length. This allows segments ranging in length from a single
byte up to the entire 2 “ byte address space in power of two
increments. As shown in FIG. 1 the length field also divides
the address into segment identifier and offset fields. A
four-bit permission field completes the capability by iden-
tifying the set of operations permitted on the segment.

FIG. 1B presents a simple illustration of the segment
length and address fields of the guarded pointer assuming an
address field of only 4 bits and a length field of 3 bits. With
the length L equal to zero, each segment is of length 2°-=1
word in length. As illustrated by the vertical broken line, the
segment length L positions the division between offset and
segment to the far right of the address, so there would be no
oflset. Each segment base address would also be the address
of the addressed word. With Lequal one, each segment is of
21:2 words long. The broken line indicates a one bit offset.
Where the full address is 1011, the base addres 1010 of the
segment is defined by setting the offset to zero.

Similarly, with increasing values of L the number of
words in the segment defined by the guarded pointer
increases exponentially, and the base address for the seg-
ment is defined by setting all ofi'set bits to zero.

It can be seen from FIG. 113 that two pointers having a
common address 1011 may indiate that the address is
within a segment ranging in length from one byte to 16
bytes. Since the base addres is determined by setting the
offset to zero, segments must be a power of two words long
and must be aligned on their length.As discussed below, the
segment definition is important to define the segment of
addresses within which a particular program may operate by
modifying a given pointer. Generally, perms-ion is granted
to modify addresses only within a segment.

The permission field of a pointer indicates how a process
may access the data within the segment. Pointer permisions
may specify data access, code access, protected entry points,
and protected identifiers (keys). The permissiors granted are
with respect to use of the pointers. All pointers may them-
selves be stored in memory and loaded from memory. It is
use of the pointers to access data at the indicated addresses
which is restricted; The following is a representative set of
permissions:

A Read Only pointer may be used to load data and the
pointer may be altered within segment bounds. Store
and jump operations using the pointer are not permit-
ted.

A Read/Write pointer may be used by load and store
operations, but not jump operations. It may be altered
within its segment bounds.

Execute pointers may be used by jump and load opera-
tions and may be modified within segment bounds.
Thus, holding an execute pointer to a code segment
enables a program to jump to any location within the
segment and to read the segment. Execute pointers may
be either execute-user or execute-privileged, which
encodes the supervisor mode bit explicitly within the
instruction pointer. Privileged instructions, such as
SETPTR, may only be executed with an execute-
privileged instruction pointer.

Enter pointers may be used only by jump operations. They
cannot be used for loads and cannot be modified in any
way. Thus, holding an enter pointer enables a program

10

15

25

35

45

50

55

65

6

to enter a code segment at a single location. Jumping to
an enter pointer converts it to an execute pointer which
is then loaded into the instruction pointer. There are two
types of enter pointers: enter-user and enter-privileged,
which are converted to the corresponding type of
execute pointer by a jump.

A Key pointer may not be modified or referenced in any
way. It may be used as an unforgeable, unalterable
identifier.

Physical: The pointer references data in physical memory
on the local node. This bypasses the virtual memory
system ignoring the LTLB on cache misses. If the
addrem exceeds the size of local physical memory, the
top bits are ignored.

Since the set of pointer states does not require all of the
possible four bit values, architects may implement pointer
types to support particular features of their architecture, such
as the following pointer types, which are implemented on
the M—Machine.

Execute Physical: Data may be read or executed as code,
but not written. On cache misses, the TLB is not
accessed. The thread is in privileged mode.

Enter Message: Code at this address may be executed in
a mesage handler. A send operation faults if the
designated IP is not in this state.

Configuration Space: Indicates that the address refers to
an internal register in the processor.

Errval: The pointer has been generated by a deferred
exception. Any attempt to use an Errval pointer as an
operand will cause an exception.

As noted, each pointer contains a six bit segment length
field that holds the log base 2 of the size of the segment in
which the address resides. Thus, segments may be of any
power of 2 size between 1 and 254 bytes. This encoding
allows the base address and the extent of a pointer’s segment
to be determined without accessing any additional informa-
tion. User-level instructions that manipulate pointers (LEA,
LOAD, STORE) have the lower and upper bounds of their
segment checked automatically to ensure that the operation
does not access memory outside of the allowed segment.

This segmentation and access control system provides
flexibility to the user, while still permitting strictly enforced
security. Segments can be overlapped and shared as long as
each segment is aligned to an address that is a multiple of its
size. Since all of the necesary segmentation information is
contained within each pointer, a separate table of segment
descriptors is unnecessary. More importantly, instructions
need not access such a table to check segmentation restric-
tions on memory accesses. Also, access to system functions
and other routines can be given to non-trusted programs, as
the enter-privileged and enter-user permission states ensure
that a user may only execute code starting at the specified
entry point. A MEMBAR (memory barrier) instruction is
used to block further instructions from executing until all
outstanding memory references have completed.
Pointer Operations

Guarded pointers may be implemented by adding a few
pointer manipulation instructions to the architecture of a
conventional machine and adding checking hardware to
verify that each instruction operates only on legal pointer
types and that address calculations remain within pointerbounds.

FIG. 2A shows a flow chart of the steps involved in
performing a memory reference beginning at 20 in a system
that incorporates Guarded Pointers First, the pointer bit of
the operand containing the address being referenced is

NOAC EX. 1017 Page 255

..‘MMWMm."

NOAC Ex. 1017 Page 256

I‘9»

‘3‘

rscages:.

6,003,123

7

checked at 22 to determine if the address operand is a

guarded pointer. If the pointer bit is not set, an exception
occurs at 24. Second, the permission field of the pointer is
checked at 26 and 28 to verify that it allows the operation
being attempted, and an exception raised at 30 if it does not.
If the operation involves addrem computation, an integer
offiset is then added to the address field of the pointer at 32.
Segmentation violation is checked at 34 and 36. An excep-
tion 38 is raised if the result of this add overflows or
underflows into the fixed segment portion of the address,
which would create a pointer outside the original segment.
If all of these checks pass, the operation is submitted to the
memory system at 40 to be resolved.

Load/Store: Every load or store operation requires a
guarded pointer of an appropriate type as its address argu-
ment. Protection violations are detected by checking the
permission field of the pointer. If the address is modified by
an indexed or displacement addressing mode, bounds vio-
lations are checked by examining the length field as
described below. The protection provided by guarded point-
ers does not slow load or store operations All checks are
made before the operation is issued without reference to any
permission tables. Once these initial checks are performed,
the access is guaranteed not to cause a protection violation,
although events in the memory system, such as TLB misses,
may still occur.

Pointer Arithmetic: An LEA (load efiective address)
instruction may be used to calculate new pointers from
existing pointers. This instruction adds an integer offset to a
data (read or read/write) or execute pointer to produce a new
pointer. An exception is raised if the new pointer would lie
outside the segment defined by the original pointer. For
efiiciency, a LEAB operation, which adds an ofl'set to the
base of the segment contained in a pointer may be
implemented, as well. If a guarded pointer is used as an input
to a non-pointer operation, the pointer bit of the guarded
pointer is cleared, which converts the pointer into an integer
with the same bit fields as the original pointer.

FIG. 2B details the protection check hardware med on a
pointer calcrdation. The permision field of the pointer 42 is
checked at 44 against the opcode 46 to verify that the
requested operation using the pointer is permissible. In that
respect, the permission check hardware need only decode
the opcode to identify permission bits which are appropriate
for that opcode and compare those bits to the permission bits
of the pointer 42 in combinational logic. An integer offset 48
may be added to the address field of the pointer at 50 to
generate the new pointer 54. An exception is raised if the
result of this add over or underflows into the fixed segment
portion of the address, which would create a pointer outside
the original segment. This may be detected in the segment
check 52 by comparing the fixed portion of the address
before the add to the same field of the resulting pointer.

FIGS. 3, 4 and 5 show in greater detail the hardware of
FIG. 2B used in performing an address calculation on a
guarded pointer. The 54-bit address field of the pointer is
added in adder 56 to a 54-bit offset to get the result mm.
The 6-bit length field of the pointer is fed to a mask
generator 58, which generates a 54-bit output applied as a
mask to masked comparator 60. Each bit in this output is set
to one if the corresponding bit in the address represents a bit
in the segnent identifier and to zero if the bit represents a bit
in the offset portion of the address. Bits in the offset portion
of the address are allowed to change during address
calculation, while bits in the segment identifier are not.

FIG. 4 illustrates the masked comparator 60. Each bit of
the original address, the corresponding bit of the result

10

15

35

45

50

55

60

65

8

address, and the corresponding bit of the mask are fed into
a comparator cell 62, as shown in FIG. 5. The output of XOR
gate 64 is one if the bit from the original address and the bit
from the result address differ. This output is then ANDed at
66 with the bit from the bit mask, which is one if the bit
being examined is part of the segment portion of the address,
and therefore not allowed to change. The outputs of all the
comparator cells are ORed together at 68 to determine if any
of the segment bits changed during the addition of the oifset,
which indicates that a segmentation violation has occurred.

Guarded pointers expose to the compiler address calcu-
lations that are performed implicitly by hardware in con-
ventional implementations of segmentation or capabilities.
With the conventional approach, the segmentation hardware
performs many redundant adds to relocate a series of related
addreses. Consider, for example, the following loop:

fa'(l-0;i<N;ir+) remit]:

In a conventional system, each reference to array a would
require the segmentation hardware to automatically add the
segment otfset for each a[i] to the segment base. With
guarded pointers, the add can be performed once in
software, and then the resulting pointer can be incrementally
stepped through the array, avoiding the additional level of
indirection.

Languages that permit arbitrary pointer arithmetic or type
casts between pointers and integers, such as C, are handled
by defining code sequences to convert between pointer and
integer types. The pointer-to-integer cast operation takes a
guarded pointer as its input and returns an integer containing
the offset field of the guarded pointer. This can be performed
by subtracting the segment base, determined using the
LEAB instruction, from the pointer.

LEAB Ptr, 0, Base SUB Ptr, Base, Int
The integer-to-pointer case operation uses the LEAB

instruction to take an integer and create a pointer into the
data segment of the process with the integer as its offset, as
long as the integer fits into the offset field of the data
segment. Note that neither of these case operations requires
any privileged operations, which allows them to be inlined
into user code and exposed to the compiler for optimization.

Pointer Creation: Aprocess executing in privileged mode,
with an execute-privileged IP, has the ability to create
arbitrary pointers and hence am the entire address space.
Privileged mode is entered by jumping to an enter-privileged
pointer. It is exited by jumping to a user pointer (enter or
execute). While in privilege mode, a process may execute a
SE'I'P’I'R instruction to convert an integer into a pointer by
setting the guarded pointer bit. Thus, a privileged process
may amplify pointer permissions and increase segment
lengths while a user process can only restrict access. No
other operations need be privileged, as guarded pointers can
be used to control access to protected objects such as system
tables and I/O devices.

Restricting Access: A process may create pointers with
restricted permissions from those pointers that it holds. This
allows a process to share part of its address space with
another process or to giant another process read-only access
to a segnent to which it holds read/Write permission.

ARESTRICF instruction takes a pointer, P, and an integer
permission type, T, and creates a new pointer by substituting
T for the protection field of P. The substitution is performed
only if T represents a strict subset of the permisions of P so
that the new pointer has only a more restricted access. For
example, a read pointer may be created from a read/write
pointer, but not vice versa. Otherwise, an exception is raised.

Similarly the SUBSEG instruction takes an integer length,
L, and a pointer, P, and substitutes L into P if L is 1:3 than

NOAC EX. 1017 Page 256

”M...”N...s4...4"“

#__‘

NOAC Ex. 1017 Page 257

9

an: original length field of P, so that the aeated segment is
a subset of the original. Changing to a lesser length
decreases the length of the offset subfield for decreased
otfset range and increases the length of the segment field for
finer segment location resolution.

The RESTRICI‘ and SUBSEG instructions allow a user

process to control amass to its memory space efficiently,
without system software interaction. The RESTRICI' and
SUBSEG instructions are not completely necessary, as they
can be emulated by providing user processes with enter-
privileged pointers to routines that use the SETPTR instruc-
tion to create new pointers that have restricted access rights
or segment boundaries. The M-Machine, which will be
described in the next section, takes this approach.

Pointer Identification: The lSPOlNTER instruction is

provided to determine whether a given word is a guarded
pointer. This instruction checks the pointer bit and returns its
state as an integer. Quick pointer determination is useful for
programming systems that provide automatic storage
reclamation, such as LISP, which need to find pointers in
order to garbage collect physical space (Moon, D. A. Sym-
bolics Architecture, IEEE Computer (1987) , 43-52).
Protected Subsystems

ENTER pointers facilitate the implementation of pro-
tected subsystems without kernel intervention. A protected
subsystem can be entered only at specific places and may
execute in a different protection domain than its caller. Entry
into a protected subsystem, such as a file system manager, is
illustrated in FIG. 6. Aprograrn enters a protected subsystem
by jumping to an enter pointer. After entry the subsystem
code loads pointers to its data structures from the code
segment. A represents the register state of the machine
before the protected subsystem call, B the register state just
after the calL C the register state during the execution of the
protected subsystem, and D the register state immediately
after the return to the‘ caller.

Before the call, the calling program (segment 1) holds an
enter pointer to the subsystem’s code segment (segment 2)
which contains the subsystem code as well aspointers to the
subsystem's data segments, such as the file system tabla. To
enter the subsystem, the caller jumps to ENTERZ, causing
the hardware to transfer control to the entry point and
convert the enter pointer to the execute pointer IP2 in
register state B. The return instruction pointer (RETIP) is
passed as an argument to the subsystem. The subsystem then
uses the execute pointer to load GP1 and 6P2, the pointers
to its data structures (state C). The subsystem returns to the
calling program by overwriting any registers containing
private pointers and jumping to RE'IIP (state D).

The sequence described above provides one-way
protection, protecting the subsystem’s data structures from
the caller. To provide two-way protection, the caller
(segment 1) encapsulates its protection domain in a return
segment (segment 3) as shown in FIG. 7. Before the call
(state A), the caller holds both enter and read/write pointers
to a return segmenL The caller writes all the live pointers in
its registers into the return segment to protect them from the
subsystem (segment 2). It then overwrites all of the pointers
in its register file except the enter pointer to the return
segment (ENTER3), the subsystem enter pointer
(ENTERZ), and any arguments for the call (state B). The
subsystem call then proceeds as described above. After
entry, the subsystem holds only an enter pointer to the return
segment and thus cannot directly access any of the data
segments in the caller’s protection domain (state C). The
subsystem returns by jumping to the return segment (state
D), which reloads the caller’s saved pointers and returns to
the calling program.

10

15

35

45

6,003,123

10

ENTER pointers allow eflicient realization of protected
system services and modular user programs that enforce
access methods to data structures. Modules of an operating
system, e.g., the file-system, can be implemented as unprivi-
leged protected subsystems that contain pointers to appro-
priate data structures. Since these data structures cannot be
accessed from outside the protected subsystem, the file-
system’s data structures are protected from unauthorized
use. Even an U0 driver can be implemented as an unprivi-
leged protected subsystem by protecting access to the read/
write pointer of a memory-mapped 1/0 device. With pro-
tected entry to user-level subsystems, very few services
actually need to be privileged.
Implementation Costs

Hardware: Guarded pointers have two hardware costs: an
increase in the amount of memory required by a system and
the hardware required to perform permission checking. To
prevent unauthorized creation or alteration of a guarded
pointer, a single tag bit is required on all memory words,
which results in a 1.5% increase in the amount of memory
required by the system.

The hardware required to perform permission checking on
memory access, and segment bounds checking on pointer
manipulation, is minimal. One decoder for the permision
field of the pointer, one decoder for the opcode of the
instruction being executed, and a mall amount of random
logic are required to determine if the operation is allowed.
The pointer bit of an operand can be checked at the same
time, to determine if it is a legal pointer. To check for
segment bounds violations when altering apointer, a masked
comparator is needed. It compares the address before and
after alteration and signals a fault if any of the segment bits
of the address field change.

Memory systems based on guarded pointers do not
require any segmentation tables or protection lookaside
buffers in hardware, nor is it nemary to annotate cached
virtual-physical translations with a process or address space
identifier. As with other single address grace systems, the
cache may be virtually addressed, requiring translation only
on cache mises.

Addres Space: Since 6 to 10 bits are required to encode
the permission and segment length field ofa guarded pointer,
the virtual address space is reduced. On a 64—bit machine, a
guarded pointer virtual address is 54 bits, which provides 16
petabytes of virtual address space, enough for the immediate
future. Several current processors support 64-bit addresses,
but only translate some of the bits in each address. For
example, the DEC Alpha 21064 only translates 43 bits of
each 64-bit address (Digital Equipment Corporation,Alpha

50 Architecture Handbook Maynard, Mass, 1992).

55

65

There is an opportunity cost associated with reducing the
virtual address space, however. Some system designers take
advantage of large virtual address spaces to provide a level
of security through sparse placement of objects. For
example, the Amoeba distributed operating system
(Mullender, S. 1., Van Rossum, G., Tanenbanm, A. S., Van
Renesse, R. and Van Staveren, H., “Amoeba: A distributed
operating system for the 19905" IEEE Computer 23 (May
1990), 44—53) protects objects using a software capability
scheme. These capabilities are kept secret by embedding
them in a huge virtual address space. This becomes less
attractive if the virtual addres space is 1000 times smaller.
Of course, this particular use of a sparse virtual address
space can be replaced by the capability mechanism provided
by guarded pointers.

Virtual address space fragmentation is another potential
problem with guarded pointers, as segments must be powers

NOAC EX. 1017 Page 257

.at...“.4......-—n..

H.....,.....MW3-

.r...t

NOAC Ex. 1017 Page 258

'r‘y‘r*.Z-‘3~’,-m’mkfimwhmflr15?‘MWWfk'WUI:t‘.‘
Ck‘x‘..

 6,003,123
11

of two words in length and aligned Internal fragmentation
may result when the space needed by an object must be
rounded up to the next power of two words. However, this
docs not result in much wasted physical memory, since
physical space is allocate on a page-by-page basis, indepen-
dent of segmentation. External fragmentation of the virtual
address space may occur when recycled segments cannot be
coalesced into contiguous sections of usable sizes. A buddy
memory allocation scheme, which combines adjacent free
segments into larger segments, can be used to reduce this
fragmentation problem.
Software Implementations

While guarded pointers enable efficient implementation
of many desirable operating system features, some short-
comings inherent in single-address-space and capabflity-
based architectures can be addressed by the software system
designer using guarded pointers.

'Ihe efliciency of guarded pointers is largely due to
eliminating indirection through protected segment tables.
With guarded pointers there is no need to store these tables
or to access them on each memory reference. Without
protected indirection, modifying a capability requires scan-
ning the entire virtual address space to update all copies of
the capability. This is needed, for example, when relocating
a segment or revoking access rights to a segment. In some
cases this expensive operation can be avoided by exploiting
the paging translation, user-level indirection or protected
subsystems.

All guarded pointers to a segment can be simultaneously
invalidated by unmapping the segment’s address space in
the page table. All subsequent accesses using pointers to this
segment will raise exceptions. This directly revokes all
capabilities to a segment. Segments can be relocated by
updating the pointer causing the exception on each reference
to the relocated segment. One limitation of this approach is
that it operates on a page granularity while segments may be
any size, down to a single byte in length. Thus relocating or
revoking acccss to a segment may alfect the performance of
referencs to several unrelated bystander segments.

Indirection can be performed explicitly in software where
it is required. If a segment’s location is unknown or is
expected to move frequently, a program can make all
scgment references to ofi‘sets from a single segment base
pointer. Only this single pointer needs to be updated when
the segment is moved. With explicit indirection, overhead is
incurred only when indirection is needed, and then it is
exposed to the compiler for optimization. Since no hardware
prevents user code from copying the segment base pointer,
relocation or revocation through explicit indirection requires
adherence to software conventions.

It is impossible in any capability-based system to directly
revoke a single process’ rights to access a segment without
potentially alfecting other processes. Since possesion of a
Capability confers access rights, the only way to remove
access rights from a single process is to remove all capa-
bilities containing those amess rights from the memory
addressable by the process. This can be accomplished by
sweeping the memory that the process can address, and
overwriting the correct capabilities, so long as none of the
memory containing those capabilities is shared. 1f the point-
ers that need to be overwritten are contained within a shared

Segment, all proceses which rely on the pointer will lose
acces privileges This is due to the lack of a protected table
that stores permission information on a per-process basis.

Protected indirection can be implemented by requiring
that all accesses to an object be made through a protected
subsystem. In addition to restricting the access methods for

L

10

15

35

45

50

55

65

12

the object, the subsystem can relocate the object at will and
can implement arbitrary protection mechanisms. For
example, the subsystem could implement a per-process
access control list. Revoking a single process’ access rights
can be performed by updating the awess control list. Access-
ing an object through a protected subsystem is advisable if
the object must be relocated or have its access rights
changed frequently and if the object is referenced infre-
quently or only via the subsystem access methods.

Without indirection, address space is allocated “for all
time," requiring the system software to periodically garbage
collect the virtual address space, so that addresses no longer
in service can be reused. This is simplified with guarded
pointers, as pointers are self identifying via the tag bit. Thus,
the live segments can be found by recursively scanning the
reachable segments from all live processes and persistent
objects.
The M-Machine

The M-Machine memory system provides an example of
how guarded pointers may be used. The M—Machine is a
multicomputer with a 3-dimensional mesh interconnect and
multithreaded processing nodes (Dally, W. J., Keckler, S. W.,
Carter, N., Chang,A., Fillo, M., and Lee, W. S. “M-Machine
architecture v1.0," Concurrent VISI Architecture Memo 58,
Massachusetts Institute of Technology, Artificial Intelli-
gence laboratory, January 1994 and Keckler, S. W., and
Dally, W. 1., “Processor coupling: Integrating compile time
and rtmtime scheduling for parallelism”, Proceedings ofthe
19th International Symposium on Computer Archireaune
(Queensland, Australia, May 1992), ACM, pp 202—213, and
US. application Ser. No. 08/062,388). One of the major
research goals of the M-Machine is to explore the best use
of the increasing number of transistors that can be placed on
a single chip.

The processing nodes of the M-Machine (known as
multi-alu processors, or MAPS) operate on 64—bit integer
and floating-point data types and use 64—bit guarded pointers
(plus a tag bit) to acceS a 54-bit, byte-addressable, global
address space, which is shared by all processes and nodes of
the machine. FIG. 8 shows a block diagram of a MAP chip.
Each MAPchip contains twelve execution units: four integer
units, four floating-point, and four memory units. These
execution units are grouped into four clusters 69, each
containing one execution unit of each type.

To increase the utilization of these hardware resources

when executing programs that have insufiicient instruction-
level parallelism, the M-Machine implements multithread—
ing. Four user threads share the processing resources ofeach
cluster, for a total of sixteen user threads in execution at any
time. Each cycle, the hardware on each cluster examines the
threads in execution on it and selects one thread to execute
on the hardware resources. The three execution units in a

cluster are allocated and statically scheduled as a long
instruction word processor.

Each M-Machine node contains an on—chip 4-bank cache
70 and IMWord (8MBytes) of off-chip memory 71. The
cache is virtually addressed, and addresses are interleaved
across the banks. This allows the memory system to accept
up to four memory requests during each cycle, matching the
peak rate at which the processor clusters can generate
requests. Requests that miss in the cache arbitrate for the
external memory interface 72, which can only handle one
request at a time. The interface 72 also holds the LTLB.
Request to memory are made by cluster 69 through an
M-switch ‘73, and mponscs are passed back through a
C-switch 75. Transfers between clusters are also made
through the C-switch. ‘

NOAC EX. 1017 Page 258

..m“.mwmcs.-wmuce;~..4...m..........

NOAC Ex. 1017 Page 259

“any

W*e-W‘vnwu1~

i,

‘rhfiz‘ruwn.

,...,...,”1.5..
,....,..,,.,m.
a"w."a

May.

(1"

r

6,003,123
13

Messages are routed through the network by an output
interface 77 using the GTLB 79. Incoming messages are
queued in an input interface 81.

The M-Machine presents two challenges to a protection
system. The first is cycle-by-cycle interleaving of instruc-
tions and memory references from different protection
domains, while still allowing etfieient sharing among them.
Because guarded pointers provide memory protection with-
out requiring each thread to have its own virtual to physical
translations, memory references from different threads may
be in flight simultaneously without comprising security. This
enables zero cost context switching as no work must be
performed to switch between protection domains.

The other challenge forboth the protection and translation
systems is the interleaved cache of the M-Machine, which
may service up to four references simultaneously. The single
address space implemented with guarded pointers allows the
cache to be virtually addressed and tagged so that transla—
tions need only to be performed on cache misses. In
addition, encoding all protection information in a guarded
pointer eliminates any need for table lookup prior or during
cache acce$. These two features eliminate the need to

replicate or quad-port the TLB or other protection tables.
Guarded Pointer Conclusions

We have introduced guarded pointers as a hardware
mechanism to implement capability-based protection and
allow fast multithreading among threads from ditIerent
protection domains, including concurrent execution of user
programs and the operating system, We have descn‘bed the
M-Machine as an example of an architecture which imple-
ments guarded pointers.

A guarded pointer is an unforgeable handle to a segment
of memory. Each pointer is comprised of segment
permission, length, base, and ofiset fields. The advent of
64-bit machines allows this information to be encoded

directly in a single word, without unduly limiting the
memory address space. An additional tag bit is provided to
prevent a user from illicitly creating a guarded pointer.
Guarded pointers are an eflicient implementation of capa-
bilities without capability tables and mandatory indirection
on memory accem.

Guarded pointers can be used to implement a variety of
software systems. Threacb in diflerent protection domains
can share data merely by owning copies of a pointer into that
segment. A thread can grant another thread access to private
data by passing a guarded pointer to it. Protected entry
points and cross-domain calls can be efliciently imple—
mented using an entry type guarded pointer.

The costs of implementing guarded pointers are minimal.
An additional tag bit is required to identify pointers, and the
virtual addreg space is reduced by the number of bits
required to encode segment permissions and lengths. In a 64
bit machine, 54 virtual addres bits are left, which is ample
space for the foreseeable future. Asmall amount of hardware
is also required to perform permission checking on memory
operations.

Like all single global virtual addrem space systems,
guarded pointers permit proceses from different protection
domains to share the cache and paging systems without
comprising security. Also like these systems, guarded point—
ers eliminate multiple translations and permit processes to
acce$ an interleaved virtual cache without requiring mul—
tiple TLBs. Guarded pointers do share some of the deficien-
cies of single address space memory systems (garbage
collecting virtual addrem space), and capability systems
(relocating and revoking access to segments).

By encoding a segment descriptor in the pointer itself and
checking access permissions in the execution unit, guarded

10

15

35

45

50

55

65

14

pointers obviate the need to check protection data in the
cache bank. This permits in-cache sharing, which is not
possible with methods that append the PID to the cache tag,
without the expense of providing protection tables in hard-ware.

Consequently, guarded pointers concentrate proces state
in general purpose registers instead of auxiliary or special
memory. Threads become more agile a less processor
resident state is needed. This will enable better resource

utilization in parallel systems as threads may begin
execution, migrate and communicate with other threads with
lower latency.
Block Status Bits

The addition of block status bits to a memory system
allows relocation of data objects that are smaller than
individual pages, without requiring a lockup table entry for
each object. Each page of memory (4 KB) is divided into
64—byte (8 word) blocks. Two block status bits are amigned
to each of the 64 blocks in a page. The status bits are used
to encode the following states:

INVALID: Any attempt to reference the block raises an
exception.

READ ONLY: The block may be read, but an exception
occurs if a write is attempted.

READ/WRITE: Reads and writes to the block are per—
mitted.

DIRTY: Reads and writes to the block are permitted. The
line has been written at least once since the page table
entry was aeated.

One method in which block status bits may be used to
control the relocation of data is to assign each block in the
memory a home node, which is responsible for manag'ng the
relocation of the blocks amigned to it. Amechanism such as
the GTLB may be used to provide fast location of the home
node of a block, but this is not necessary.

The home node maintains a software record of which

other nodes have copies of a block, and the status of those
copies. Only one node is allowed to have a copy of a block
that is in the read-write state, but many nodes may have
read-only copies of a block if no node has a read-write copy.
This prevents different 00de from having ditierent versions
of the data in a block.

When a node requests a read-only copy of a block, the
home node examines its records of which nodes have copies
of the block. If no node has a read-write copy of the block,
the home node issues a read-only copy of the block to the
requesting node, and adds the requesting node to the list of
nodes that have a copy of the block. If another node has a
read-write copy of the block, the home node sends an
invalidate message to the node, telling it to give up its copy
of the block, and to inform the home node of the new
contents of the block if the block has changed. When the
home node receives notification that the readerite copy of
the block has been invalidated, it issues the read-only copy
of the block to the requesting node and records that the
requesting node has a copy of the block.

Requests for read-write copies of a block are handled in
the same manner, except that any node that has a copy of the
block must invalidate its copy before the read-write copy
can be given out, to prevent data inconsistency problems.

When a node receives a mesage telling it to invalidate its
copy of a block, it examines the block status bits of that
block. If the block is in a read-only or read-write state, then
the node hm not changed the contents of the block, and the
block can be discarded and the home node informed that this
has been done. If the block is in the dirty state, then its
contents have been changed since the node received its copy

NOAC EX. 1017 Page 259

NOAC Ex. 1017 Page 260

r”,.uw<<~m.--tww.v-mnvswr‘var.WfilI-l'ww‘"

15

of the block, and the node must send the changed copy of the
block back to the home node before its discards the block.

When a data word is accessed in the memory, the block
status bits corresponding to that word are retrieved as well
as the word being accessed. The block status bits are
compared to the Operation being attempted; and an excep-
tion is raised if any operation is attempted on a word whose
block status bits are in the invalid state, or if an operation
that modifies memory is attempted on a word whose block
status bits are in the read—only state. If an operation is not
allowed, the operation is cancelled before it modifies the
state of the memory. If the operation modifies the location
being referenced, the block status bits corresponding to that
location are set to “dirty" if the operation is allowed This
allows the hardware to quickly determine if a block has been
modified, as any modifications to a block will cause its status
bits to enter the dirty state.

The block status bits for each mapped page on a node are
contained in the local page table of that node. When the
translation for a page is brought into the local translation
lookaside bufi'er (LTLB), the status bits for the blocks
contained in that page are copied into the LTLB as well.
When a block of data is brought into the cache from the main
memory, the block status bits for that block are examined in
the LTLB. The cache status of the block is set to read-only
if the block status in the LTLB entry is read-only. If the
LTLB block status is read/write or dirty, then the cache
status is set to read/write. Anempts to bring a block in the
invalid state into the cache causes an exception. The dirty bit
of a block’s status in the cache is always set to zero when the
block is brought into the cache to reflect the fact that the
block has not been modified since it was brought into the
cache. This does not change the status of the block in the
LTLB. When a block is evicted from the cache, its dirty bit
is examined, and the status of the block in the LTLB changed
to dirty if the cache dirty bit is set to one. When an LTIB
entry is evicted, its block status bits are simply copied out to
the local page table, as the LTIB entry contains the most
rwent copy of the status bits.

FIG. 9 shows the format of an [2113 entry, while FIG. 10
shows the transfers of status bits between storage locations,
FIG. 11 shows the hardware that extracts the status bits for
a block from the LTLB, and FIG. 12 is a flow chart of a
memory request using the block status bits.

As shown in FIG. 9, an entry for each virtual page in the
local page table and local table lookup buffer comprises
three words. The first word includes the translation from

virtual page to physical page. The virtual page is identified
by the first 42 bits of the 54-bit virtual address. Since the
translation to physical address is only for the physical space
on a particular node, 20 bits are suflicicnt to identify the
physical page location. The second and third words each
include a single bit for each of 64 blocks of the virtual page.

As shown in FIG. 11, the first 42 bits of the virtual address
are used to locate the page table entry n the LTLB 71 and
three words for that entry are output as shown. To select the
appropriate block status hits, the next 6 bits of the virtual
address, which are the first 6 bits of the page offset, are
applied to the select inputs of multiplexers 73 and 75, each
selecting one of the two block space bits for that virtual
address.

Caching the block status bits in the LTLB and in the cache
allows the memory system to examine a word’s block status
bits when that word is referenced without requiring a page
table acces on each memory reference. FIG. 12 shows the
sequence of events involved in performing a memory access
in a system that implements block status bits. First (not

10

15

20

35

45

50

55

65

6,003,123
16

shown on the flow chart) any permission checks that are
necessary to determine whether or not the user is allowed to
access the address in question are performed. This includes
all of the procedures of FIG. 2A if the system incorporates
Guarded Pointers.

Once that has been done, the request is submitted at 74 to
the cache memory 77 (FIG. 10). If the addres is found in the
cache at 76, the block status bits corresponding to the
addres are examined and compared to the operation being
performed at 78 and 80. If the operation is allowed, the
cache memory completes the operation at 82 and is ready for
the next request. If the operation is not allowed, an exception
is raised at 84.

If the address is not in the cache 76, the local translation
lookaside buifer (LTLB) 79 is probed at 86 to determine if
it contains a translation for the addres. If the LTIB does not

contain a translation, an exception occurs at 88 to check the
local page table 81, and software is invoked at 90 to load a
translation into the LTLB from the local page table. As
shown in FIG. 10, the [ILB entry which is evicted carries
with it status bits for updating those bits in the local page
table. Similarly, the new entry carries the status bits from the
local page table. When the data is read into the cache
memory 77, the status bits for the cache line are copied from
the associated entry of the LTLB, with the exception that a
dirty entry is entered in the cache as a read/write. The dirty
designation is retained in the [111.13 for purposes ofprovid-
ing the dirty flag to a home node when requested. However,
the operating program which loads from the cache need only
determine whether it is authorized to read or write. Within

the cache, the status bit will be converted to dirty witha
write to cache in order to-facilitate updating the status bits
in the LTLB and the data in memory with later eviction of
the cache line.

Once a translation has been found, either in the page table
or the LTIB, the block status bits corresponding to the
addm are compared at 92 and 94 to the operation being
performed. If the block status bits allow the operation being
attempted, the operation is completed from the main
memory at 96. If the block status bits do not allow the
operation, an exception is raised at 98.

If no translation for the address can be found in either the

LTLB or the local page table, the software attempts at 100
to locate the data on another node, posibly using a GTLB
as described below.

The operating system must have the ability to change the
status bits of a memory block. This can be provided either
through privileged operations that probe the cache to change
the status bits in the cache as well as in the [11113 entry, or
by requiring the system to remove the appropriate block
from the cache before altering its status bits, and to ensure
that the block is not returned to the cache before the status
bits have been updated.

These states allow a variety of relocation and replication
(cache coherence) schemes to be implemented efliciently, by
handling the common case (the mer attempting an acces
which is allowed) in hardware while giving the software the
ability to determine how illegal acceses are handled. For
example, block status bits allow the eflicient implementation
of a system in which small data objects are relocated from
node to node. When a data object is brought onto a node, a
page table entry is created for the page containing that object
if one does not already exist. The status bits for the memory
blocks containing the object being relocated are set to one of
the three valid states, while the status bits for each memory
block that does not contain valid data on the local node are

set to INVALID. Users can then access the object in any way

NOAC EX. 1017 Page 260

NOAC Ex. 1017 Page 261

'~hwyN»“we“,assmwywevzwwwwh«W‘nvmwmw
E

{vain’www.mawwvma

i
ii.a
iIze

a:
'5

6,003,123

17
that is consistent with the status bits associated with it If a

user attempts to reference a block that has not been brought
on to the local node, its status bits will be in the INVALID
state, and any attempt to reference itwill cause an exception,
invoking an exception handler to resolve the situation.
Moving an object off of a node can be accomplished by
copying it to another node, and changing the status bits
modated with it to INVALID, prohibiting access to the
object. This allows small data objects to be relocated
throughout a multicomputer efliciently without requiring
overly large tables to contain information about which
objects are located on a given node. The system will have to
maintain a table in software which contains information on

where each object is in the system, but the space constraints
on software tables are not nearly as great as on hardware
tables.

Block status bits can also be used to implement cache
coherence schemes. Many cache-coherence schemes assign
states to data which are very similar to the block status
states: INVALID, READ-ONLY, READ-WRITE, and
DIRTY. The differences between these schemes lie in their

handling of cases where data is referenced in a manner
which is inconsistent with its state. Block status bits allow

the hardware to handle the (common) case where data is
accesed in an allowed manner, with soflware being invoked
to handle the uncommon case where an illegal access is
attempted. Since system software can manipulate the status
bits of a blodr, operations such as system-wide invalidation
of a block so that one node can gain an exclusive copy of the
block, can be efliciently implemented.
Global Translation Lnokaside Bufler

A Global Translation Lookaside Buifer (GTLB) is used tocache translations between virtual addresses and the nodes

containing those addresses. Translation of virtual addresses
to physical addresses is handled by a Local Translation
[ookaside Bufifer (11113) which may essentially be the same
as a conventional translation lookaside bufier. The intended
use of the GTLB is to allow hardware and software to

quickly determine which node of a multicomputer contains
a given datum. Amessage can then be sent to that node to
access the datum. 0n the node that contains the datum, the
L'I‘I‘Bunbeusedtotranslate thevirtualaddrssintoa

physical address in order to reference the datum.
In order to allow large blocks of virtual address space to

be mapped by a small number of GTLB entries without
increasing the size of the smallest block of data that can be
mapped, each GTLB entry maps a variable-sized page-
group of virtual address space across a number of nodes. In
order to simplify the interaction between the local and global
translation mechanisms, and to reduce the number of bits
required to encode the length of a page-group, eadi page
group must be a power of two local pages in length.

The address space contained in a page-group may be
mapped across a 3-D sub-cube of nods, with the following
restrictions: each side of the sub-cube must be a power of
two nodes long, and the amount of addres space allocated
to each node must be a power of two local pages. While
these restrictions constrain the mapping of address space to
nodes somewhat, they greatly reduce the size of the GTLB
entry and the complexity of the hardware needed to perform
the translation.

FIG. 13 shows the format of a GTLB entry. 42 bits encode
the virtual page identifier, which is obtained by truncating
the low 12 hits 0115 a 54—bit virtual address, since these bits
represent the offset within a local page. Sixteen bits encode
the start node of the sub-cube of nodes that the page-group
maps across. This node ID is divided into a six-bit

10

15

30

35

45

55

65

18

Z—Coordinate, and 5-bit X— and Y—coordinates to give the
position of the start node within the machine. Six bits encode
the base-2 logarithm of the length of the page-group in local
pages. Six bits encode the base-2 logarithm of the number of
local pages of address space to be placed on each node.
Three bits encode the base-2 logarithm of the length of the
prism of nodes that the page-group maps across in each of
the X-, Y-, and Z—dimensions.

FIGS. 14A, 14B, 15A and 158 show the manner in which
the GTLB translates a virtual address. The virtual address is

submitted to the GTLB at 102. If a hit is not located at 104,
a mix is signalled at 106 to call an exception which reads
the global page table. FIG. 15Aillustrates an example GTLB
entry located with a hit.

Since the GTLB is fully associative, the page identifier
portion of each virtual address, that is, the first 42 bits of
each virtual address, must be compared to the virtual page
identifier of each entry in the GTLB. Further, since the
grouping of pages allows for a single GTLB entry for each
page group, the least significant bits of the page identifier
corresponding to the number of pages in the group need not
be considered in the comparison. Thus, as illustrated in FIG.
14B, the six bits of each GTLB entry which indicate the
number of page: per group can be decoded to create a mask
in hit mask generator 124. Using the bit mask generator 124,
only the more significant bits of the page identifiers required
to identify a group are compared in the mask comparator
126. On the other hand, the full 42 bits of both the virtual
address and the GTLB entry are applied to the comparator
since groups can be of different lengths and thus require
masking of difierent sets of bits. Applying the full 42 bit
identifiers to the comparator allows for a group of only one
page.

From the entry illustrated in FIG. 15A, it is determined
that the start node of the sub-cube is node [3,2,0] and that 2‘
pages of address space are mapped to each node within the
sub-cube. The page—group is mapped acros a sub-cube of
nodes that extends 22 nodes in the Z-direction, 22 nodes in
the Y—direction, and 2 nodes in the X-direction. The start
node [3,2,0] and the full cubic group of nodes is illustrated
in FIG. 158.

To determine the node containing the address being
translated, the GTLB masks off at 108 the page offset bits of
the address which contain the offset from the start of the

local page to the address being translated. The next four bits
of address 0101 are discarded, as they all map to the same
node, as shown by the value 4 in the “log pages per node”
filed. The next bit of the address contains the X-olfset from

the start node to the node containing the address, as shown
by the value of 1 in the X subfield of the “log sub-cube
dimemions” field, and that bit is extracted at 110. Similarly,
two bits contain the Y-oifset and two bits contain the Z-ofl'set

from the start node to the node containing the addres being
translated, and those are extracted at 112 and 114. Examin-
ing the selected bit fields reveals that the node containing the
address lits at offset X-l, Y-2, Z-3 from the start node.
Adding these values to the coordinates of the start node at
116 in the address 118 gives the coordinates of the node
containing the address X=1, Y—4, Z-6, shown in FIG. 15B.

FIG. 16 shows a block diagram of the GTLB hardware.
The GTLB comprises a content addressable memory CAM
120 which contains the GTLB entries, 3 bit-field extractor
122 to extract the X-, Y-, and Z—Offset fields from the source
address, and three adders 118 to add the offsets to the
appropriate portions of the start node. The SRAM array must
be fully-associative, as the variable size of page-groups
makes it impossible to use a fixed number of bits to select

NOAC EX. 1017 Page 261

<<w.».».»:.......

Wm"...Wa...«,Mtwewmwaw
w...a“.”aw.-...~.M...._~_,...."_.,my...(«Muumwul

NOAC Ex. 1017 Page 262

“"4“thAWN’vwwrm,:Mfi"www.mwezemawgt“
.1.

6,003,123
19

a set within the array to be searched. When an address is
submitted to the G'I'LB for translation, it is passed to the
cAM array. If the address is found in the array, the Hit
output is asserted, and the start node, the page-group length,
the pages-per-node information, and the X-, Y-, and
Z—lengths of the sub-cube of nodes containing the address
being translated are outputted. The bit-field extractor takes
the dimension of the prism, and the page-length and pages-
per-node information, and extracts from the virtual
addresses the bit fields containing the X—, Y-, and Z—ofisets
from the start node of the page-group to the node containing
the address being translated. The oflsets are then added to
the appropriate field within the address of the start node to
get the address of the node containing the address.
Integration of all Three Systems

FIG. 17 shows a flow chart of the execution of a memory
reference from 128 in a system that combines Guarded
Pointers, Block Status Bits, and a Global Translation Looka-
side Buffer. The first step in performing a memory operation
is to perform at 130 the pointer permission checks desa'rbed
in the section on Guarded Pointers. If those checks pass, the
memory request is sent to the memory system. Otherwise, an
exception is raised at 132.

If the data is located in the cache at 134, its block status
bits are examined at 136, and an exception is raised at 138
if they do not allow the operation being attempted.
Otherwise, the operation is completed in the cache at 140. If
the data is not located in the cache, the LTLB is probed at
142 for a translation for the address. If a translation is found,
the block status bit of the address are examined at 144, and
the operation completed from the main memory at 146 if the
slams bits allow it, or an exception raised at 148 if they donot.

If a translation for the address is not found in the LTLB

at 142, software searchw the local page for a translation at
150. If a translation is found, the LTLB is updated at 152 to
contain the translation, and the reference proceeds at 144 as
if an LTLB hit occurred.

If no translation is found in the local page table at 150, the
software probes the GTLB at 154 to see if the node con-
taining the addres can be determined. If a GTLB miss
occurs, the global page table is searched at 156 for an entry
corresponding to the address. If the node containing the
address can be located either through the GTLB or the global
page table, the software can send a message to that node to
complete the request at 158. Otherwise, an error is signalled
at 160, as the reference can not be completed.

While each of these mechanisms is useful separately, they
complement each other to form the basis for the memory
system of a multicomputer. Guarded Pointers provide a
protection mechanism that allows a number of independent
proceses to share the resources of the multicomputer with-
out compromising the security of those processes. The
Global Translation Lookaside Bufier provides an effective
mechanism for distributing data objects across the multi-
computer by mapping virtual addresses to nodes within the
multicomputer. The block Status Bits make the process of
moving or copying data from node to node more efficient by
reducing the size of the smallest datum that can be relocated,
without increasing the number of translation table entries
required if no remote data is accessed.

Arelated paper has been submitted for presentation at the
6th International Conference on Architectural Support for

10

15

35

45

50

55

60

20

Programming languages and Operating Systems (ASPLOS
V1), Oct. 5—6, 1994.
EQUIVALENTS

While this invention has been particularly shown and
described with references to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention as
defined by the appended claims. Those skilled in the art will
recognize or be able to ascertain using no more than routine
experimentation, many equivalents to the specific embodi-
ments of the invention described specifically herein. Such
equivalents are intended to be encompassed in the scope of
the claims.

What is claimed is:

1. In a parallel proce$ing system, a method of addressing
data across plural procesor nodes comprising:

applying a virtual address to a global translation buffer to
identify a mapping of a page group of plural pages
across a set of plural but less than all processor nodes
in the system, the page group containing the physical
page to which the virtual address corresponds; and

from the virtual address and mapping, determining a
destination node as a node within the set of procesor
nodes which contains the physical page to which the
virtual address corresponds.

2. A method as claimed in claim 1 further comprising
forwarding a message to the destination node.

3. A method as claimed in claim 2 further comprising, at
the destination node, translating the virtual address to a
physical address.

4. A method as claimed in claim 1 wherein each page
group is specified by a group size.

5. Amethod as claimed in claim 4 wherein the group size
is logarithmically encoded.

6. Amethod as claimed in claim 1 wherein the translation

bufier specifies a start nod: and the range of the set of nodes.
7. Amethod as claimed in claim 6 wherein the range is

specified in plural dimensions.
8. Amethod as claimed in claim 7 wherein the range is

logarithmically encoded in each of the plural dimensions.
9. Amethod as claimed in claim 8 wherein the translation

bufier specifies the number of pages of the page group pernode of the set of nodes.
10. A method as claimed in claim 6 wherein the transla-

tion buffer specifies the number of pages of the page group
per node of the set of nodes.

11. Amethod as claimed in claim 1 wherein the translation

bufier specifies the number of pages of the page group per
node of the set of nodes.

12. A data processing system comprising a plurality of
processor nodes, each procesor node comprising:

a global translation buifer for identifying relative to a
virtual address a mapping of a page group of plural
pages to a set of plural procesor node 5 in the system,
the page group containing the physical page to which
the virtual addres corresponds;

electronics which determines, from the virtual address
and the identified mapping, a destination node as a node
Within the set of processor nodes having the physical
address corresponding to the virtual addres.

#tttt

NOAC EX. 1017 Page 262

NOAC Ex. 1017 Page 263

f ‘ llllllllllllllllllllll||I|||l|||ll|lll|l||lll||llllllllllllllllllllllllllll

USOOSS3OB34A

Umted States Patent [19] [11] Patent Number: 5,530,834

Collofl‘ et a]. [45] Date of Patent: Jun. 25, 1996

[54] SET-ASSOCIATIVE CACHE MEMORY 4,511,994 9/1932 Webb et a1. -u 395/487
HAVING AN ENHANCED LRU

REPLACEMENT STRATEGY FOREIGN PATENT DOCUMENTS
1087189 10ll967 United Kingdom.

[75] Inventors: Ian G. Collofl', Ascot; Albert S. 1475785 6/1977 United Kingdom .
Hilditch, Wokingham. both of England

Primary Examiner—Jack A. Lane

[73] Assignee: International Computers Limited, Assistant Eaniner~Fadi A. Stephan
Putney, United Kingdom Attorney, Agent, or Firm—Lee, Mann, Smith, McWilliams,

Sweeney & Ohlson

[21] Appl. No.: 206,001 [57] ABSTRACT

g [22] Filed: Mar. 3’ 1994 A cache memory contains a number of RAMs. The RAMs
E [30] Foreign Application Priority Data are addressed by independent hashing functions, so as to:I access a set of locations, one in each RAM. If the required

’ Mu 30' 1993 [GB] United Kingdom 9306647 data item is resident in the addressed set, it is accessed.

[51] Int. Cl.6 .. G06F 12/12 Otherwise, the least-recently used location in the set is
[52] us. Cl.395/463; 395/421.06; 395/437 “lewd f“ “Writing With data fmm main memow- The

. contents of the RAM location that is about to be overwritten

[58] Field Of seaml13195/425421736463- 223/23; 4g); are saved, and then used to access the memory again in order’ ' ’ ’ ’ ’ to address a further set of locations. If any of this further set
. of locations is less recently used than the saved contents, the

[56] References Cited saved contents are loaded back into that location
U.S. PATENT DOCUMENTS

3,949,369 4/1976 Churchill. Jr. 340/1725 3 Claims, 3 Drawing Sheets

RAM 3

TAG
COM PAR ATUR 53

03/28/2003, EAST Version: 1.04.0(NbAC EX. 1017 Page 263

NOAC Ex. 1017 Page 264

«Ww54mwa.

i.51
I

US. Patent

Fig. 7.

10 SET LEAST
ASSOCIAT IVE RECENTLY

CACHE USED

 DATA
PROCESSING

UNIT

TRANSLATION CONTENTS
LOOKASIDE ADDRESSABLE

BUFFER MEMORY

CACHE UNIT

12

Fig.2.

AS

I_-'

Mr

TAG

-OMPARATOR

RAM 1

TAG
COMPARATOR

RAM 2

COMPA’RATOR

HASH 3

TAG
COMPARATOR

53

08/28/2003, EAST Version: 1.04.0000
NOAC EX. 1017 Page 264

Jun. 25, 1996 Sheet 1 of 3 5,530,834

NOAC Ex. 1017 Page 265

US. Patent Jun. 25, 1996 Sheet 2 of 3 5,530,834

Fig. 3.

CACHE REQUEST MISS

CHOOSE CACHE LOCATION FOR NEW DATA

DATA NOT IN CACHE

DATA IN CACHE

MOVE REQUIRED DATA TO CHOSEN LOCATION

INSERT DATA IN CACHE

UPDATE CAM ENTRY FOR REQUIRED DATA

CREATE NEW CAM ENTRY

08/28/2003, EAST Version: 1.04.0000
NOAC Ex. 1017 Page 265

.JWWMWMrm,....mw--Au...”.....H...,A
.AHWA.......~.._..-aA.“W».m.»m-

NOAC Ex. 1017 Page 266

»m«u:-qwrwf,

US. Patent Jun. 25, 1996 Sheet 3 of 3

Fig. 4.
CACHE SHUNT

LOAD SHUNT REGISTER

ACCESS SET ASSOCIATIVE MEMORY

YES
SHUNT DATA= LEAST RECENTLY USED?

SELECT RANDOM LOCATION

LOAD SHUNT REGISTER

NO

REPLACE LRU LOCATION

NUMBER OF SHUNTS=MAXIMUM? YES
NO

Fig. 5.

NEW CAM ENTRY

 ACCESS SET ASSOCIATIVE MEMORY

ANY EMPTY LOCATIONS?
 WRITE TO EMPTY LOCATION

5,530,834

EXIT

EXIT

08 28 2003, T V ion: 1.04.0000/ / EAS ers NOAC EX. 1017 Page 266

NOAC Ex. 1017 Page 267

M"WM”

manic"Mun"....

5,530,834
1

SET—ASSOCIATIVE CACHE MEMORY
HAVING AN ENHANCED LRU
REPLACEMENT STRATEGY

BACKGROUND OF THE INVENTION

This invention relates to set-associative memories.

One conventional form of set-associative memory com-
prises a plurality of random access memories (RAMs), each
RAM location holding a data item and a tag value identi~
fying the data. An input address is hashed (i.e. transformed
by a many-to-one mapping function) to produce a hash
address, which is applied in parallel to all the RAMs, so as
to select one location in each RAM. The tag values in the
addressed locations are then examined to see if the desired
data is resident in one of them and, if so. the data is accessed.

If there are n RAMs. so that n locations at a time are
examined, the memory is referred to as an n-way set-
associative memory and is said to have an associativity of n.
The usual choice for the value of n is 2 or 4.

Such a set-associative memory may be used, for example.
as a cache memory for a computer system. The aim of a
cache is to keep the most useful data of a large amount of
data in a small, fast memory in order to avoid having to
retrieve the data from the larger, slower main memory. If the
required data is in the cache, it is said that a “hit" has
occurred; otherwise a “miss" has occurred. The percentage
of misses is called the “miss rate". A common engineering
problem in designing a cache is to minimize the miss rate
while keeping the cache size, the access speed. the power
consumption and the amount of implementation logic fixed.

In general, the miss rate of such a cache decreases as its
set associativity increases. 0n the other hand, the cost of
implementation increases as set associativity increases.
Thus, in general, known caches that deliver minimum miss
rates demand large amounts of logic and space to imple-
ment, while known caches that are the cheapest to imple-
ment deliver higher miss rates.

Another use of set-associative memory is to form a
content addressable memory (CAM). The aim of a CAM is
to store and reference data according to its contents. For
instance, performing a join of two relations within a rela-
tional database query can be implemented by first storing the
contents of one relation in the CAM, indexed by the join
attribute, and then secondly by comparing the rows of the
second relation to the CAM using the join attribute again.
Content addressable memories can be implemented by fully
associative memories but their size is limited by the space
demanded by fully associative logic.

One object of the present invention is to provide an
improved set-associative memory which is capable of per-
forming as well as conventional set-associative memories of
higher set associativity, or better than conventional set-
associative memories of the same set associativity. For
example, when the set'associative memory is used as a
cache, this means that it is able to deliver the same miss rate
as conventional caches of larger size and cost, or lower miss
rates than conventional caches of the same size and cost.

A second object of the present invention is to provide a
CAM using a modified set-associative memory. This allows
both much larger CAMs to be constructed and an improved
read performance over present CAMS.

SUMMARY OF THE INVENTION

According to one aspect of the invention, there is pro—
vided an n~way set—associative memory (where n is an

08/28/2003, EAST Version: 1.04.00iQ0AC EX. 1017 Page 267

10

15

30

35

40

45

50

55

60

65

2

integer greater than 1), comprising a plurality of n RAMs,
each RAM location holding a data item and a tag value
identifying the data, addressing means for addressing the
RAMs to access a set of locations, one in each RAM, and
means for examining said set of locations to detect whether
a required data item is resident in any of those locations,
wherein the addressing means comprises means for perform-
ing n independent hashing functions to hash an input
memory address into n separate addresses for respectively
addressing said RAMs, characterised by means for saving
the contents of a RAM location that is about to be over-

written, means for using the saved contents to access the
memory again to address a further set of locations, and a
means for loading the saved contents into one of said fin‘ther
set of locations.

As will be shown. this “shunting” operation can improve
the performance of the set-associative memory, by effec—
tively increasing its set associativity.

According to a second aspect of the invention there is
provided a contents addressable memory comprising a plu-
rality of n RAMs (where n is an integer greater than 1), each
RAM location holding a data item and a tag value identi-
fying the data, means for performing a independent hashing
functions to hash an input memory address into n separate
addresses, means for addressing the RAMs with said n
separate addresses to access a set of locations, one in each
RAM, a means for examining said set of locations to detect
whether any of said addressed set of locations is empty and, "
if so, loading an input data item into that location and a
means operative if none of said addressed set of locations is
empty, for selecting one of said addressed set of locations for
replacement, saving the tag value and data item of the
selected location, loading the input data item into the
selected location, using the saved contents to access the
memory again to address a further set of locations and, if any
of the addressed set of locations is empty, loading the saved
data item into that location.

As will be shown, a set-associative memory with repeated
shunting can deliver a content addressable memory without
the need for full associativity thus reducing the logic needed
and greatly increasing the size of CAM possible. Ftnther, the
read performance of such a “repeated shunting CAM" will
be faster than an equivalent fully-associative CAM.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system
including a cache comprising a set—associative memory in
accordance with the invention.

FIG. 2 shows a set—associative memory with the enhance-
ment of “shunting".

FIG. 3 is a flow chart showing the operation of the cache.
FIG. 4 is a flow chart showing the way that shunting is

used in operation of the cache.

FIG. 5 is a flow chart showing the operation of a contents
addressable memory using the set-associative memory ofFIG. 2.

DESCRIPTION OF EMBODIMENTS OF THE
INVENTION

A data processing system embodying the invention will
now be described by way of example with reference to the
accompanying drawings.

f

l.E
t

NOAC Ex. 1017 Page 268

.1.
<,w.:

5,530,834
3

Referring to FIG. 1, the data processing system comprises

adata processingunit 10, a main memory 11, and a virtually.Jraf'rv-v‘] gm»addressedctt’fil’ie‘centre 1%?12conflictedbetweenthe pro— .
cessing unit and main memory. The cache within the cache
controller is smaller and faster than the main memory, and
holds copies of the most recently used data items, allowing
these items to be accessed by the processing unit without
having to retrieve them from the slower main memory.

The cache controller 12 comprises a 4-way set—associative
cache 13, a translation look-aside bufier (TLB) 14, a con-
tents addressable memory (CAM) 15, and a least-recently-
used replacement mechanism (LRU) 16. The set-associative
cache holds the cache data, indexed by the virtual address of
the data. The TLB contains a virtual address to real address

mapping, indexed by the virtual address, for allowing virtual
addresses to be translated into real addresses. The CAM
contains a real.address to cache location number mapping,
indexed by the real address, the purpose ofwbich will be
described later. The LRU contains recency-of-usage infor—
mation for the data items held in the set-associative memory.

SET-ASSOCIATIVE MEMORY WITH
SHUNTING

FIG. 2 shows the 4-way set-associative memory in more
detail. The memory comprises four RAMs 40—43, each of
which contains a plurality of addressable locations. Each
RAM location holds a data item and a virtual address tag,
identifying the data item.

An input virtual memory address is received in an address
register 44. This input address is hashed in four diiferent
ways by four difierent eflicient hashing functions 45—48 to
produce four separate hash addresses. The hashing is done
concurrently. A good implementation of the hashing func-
tions can be achieved by using the random matrix hashing
algorithm as described in British patent specification GB
2240413. This algorithm generates an arbitrary number of
independent hashing functions which can be implemented
easily and which allow hashing to be completed within a few
simple gate delays.

The four hash addresses are used to address the four
RAMs, so as to address four locations, one in each RAM.
Because the hashing functions are independent, these four
hash addresses will, in general, be different. The virtual
address tags in the four addressed 10cations are compared
with the input virtual address by means of comparators
49—52, to see whether any of these locations contains the
desired data.

The set-associative memory also includes a register 53,
referred to herein as the shunt register, the purpose of which
will be described.

OPERATION

10

15

30

35

45

50

55

The operation of the cachers as follows. When“thedata,
11-;AMA—-

processor requires to‘access adatiii1‘tem,1tsends a request to
the cache, specifying the virtual address of the required data.
The virtual address is loaded into the address register 44, so
as to address four locations in the RAMs. If any of the
addressed locations contains the required data, a hit has
occurred. and the required data can be accessed immediately
from that location. The LRU is updated to reflect the usage
of this data.

If on the other hand none of the addressed locations

contains the required data, a miss has occurred. The opera-
tion of the cache in the event of a miss is shown in FIG. 3.

08/28/2003, EAST Version: 1.04.00EQ0AC EX 1017 Page 268

60

65

4
The LRU is accessed to decide which of the four

addressedRAM locationsis least recently used, and this
location'is selected for replacement with the desired data.
The TLB'is then consulted to calculate the real address of the
required data. The entry in the CAM for the data to be
replaced is deleted.

The CAM is then consulted, using the real address, to
determine whether the required data is already resident in
the virtual cache, in another cache location under a difierent
virtual address. If the data is present in a diEercnt cache
location, under a different virtual alias, it is moved to the
required cache location, and the entry for that data in the
CAM is updated to the new cache location number. if on the
other hand the data is not present in the virtual cache under
a difi‘erent virtual alias, it is requested from the main
memory using the real address obtained from the 'I'LB.

When the required data has been fetched from the main
memory it is stored in the replacement location of the
set-associative memory, and a new entry is added to the
CAM for the new data.

In the case of a cache miss, after the required data has
been requested from the main memory, a shunting procedure
is performed, as will be described with reference to FIG. 4.
This shunting is performed while the required data is being
retrieved from main memory.

Referring to FIG. 4, the first step of the shunting proce-
dure is to load the existing contents of the least-recently used
one of the four addressed locations (i.e. the location that will
be overwritten by the requested data) into the shunt register
53.

The virtual address tag in the shunt register is then used
to address the set-associative memory, in place of the input
virtual memory address. Four RAM locations will therefore
be accessed, one in each of the four RAMs. One of these
locations is where the data was shunted from. However, in
general, the other three locations will be diiferent from those
accessed by the input virtual memory address, because of the
difierent hashing functions used to access the four RAMs.

The recency of usage of the data in these other three
addressed RAM locations is then compared with that of the
data in the shunt register. If the data in the shunt register is
more recently used than any of those three RAM locations,
the RAM location with the oldest access time is replaced
with the contents of the shunt register. The existing contents
of the RAM location are loaded into the shunt register.

The shunting procedure is repeated, using the new con-
tents of the shunt register, up to a fixed number of times or
until it is found that the shunted data is less recently used
titan the data in any of the addressed RAM locations.

It can be seen that, after shunting is completed, the cache
location lost is the least recently used cache location of all
those examined. This implies that with a 4-way set—associa-
tive cache, shunting once on each miss provides the equiva-
lent of a 7-way set-associative cache, Repeating the shunt
each time adds 3 to the effective set associativity.

CONTENTS ADDRESSABLE MEMORY

The set-associative memory shown in FIG. 2 may also be
used as a contentsaddressable memory (CAM) such as, for
example, the CAM 15 of FIG. 1.

Since a CAM is only used to store a finite amount of data,
we assume that the number of locations in the RAMs is
enough to hold all needed data. This means that we never
discard any data in the CAM. However, for the set-associa-

t...W..m.m..mm.ws~uv.‘.
iu

1l

NOAC Ex. 1017 Page 269

5

live memory to he used efficiently as a CAM between 20 and
30% of the total locations in the CAM should be surplus to
requirement. This means that the expected number of shunts
is not greater than 1 and optimum efiiciency is ensured

Referring to FIG. 5, this shows the operation of the CAM
when it is required to load a new data entry into the CAM.

The address of the data is hashed by the four hashing
functions to access four RAM locations, one in each RAM.
The four addressed locations are then examined to see if any
of them is empty. If so, the new data entry is loaded into that
location, and the process is complete.

If, on the other hand, none of the four addressed RAM
locations is empty, one of these four locations is selected at
random, and its contents are loaded into the shunt register
53. The address tag in the shunt register is then used to
address the set-associative memory, in place of the original
input address. A further three RAM locations will therefore
be accessed together with the location from which the data
was shunted This shunting process is repeated until, even-
tually, an empty RAM location is found, and the new data
entry is loaded into that location.

When the CAM is searched for data, the data will always
be found in one of the four cache locations initially searched.
When adding data to the CAM it may take one or more
shunts in order to find an empty cache location, but an empty
location will always be found eventually. Deletion of data
can he achieved without the need of shunting. A special
command is provided for clearing the CAM for reuse.

The CAM described above has a number of advantages
over CAMs implemented using a fully associative memory:
less logic. less power consumption and faster access times.
This will allow much larger CAMs to be constructed than
normally possible. The CAM described above has two
advantages over CAMs implemented using standard hashing
techniques that must resort to inefficient means for resolving
hashing collisions: better space utilisation and faster access
times.

We claim:

1. A memory system including a main memory and a
faster, smaller cache memory, wherein said cache memory
comprises:

a) a plurality of n RAMs (where n is an integer greater
than 1), each RAM comprising a plurality of address-
able locations;

b) hashing means for perforating n independent hashing
functions, to bash an input address into n separate
addresses for addressing said RAMs;

c) LRU means for storing recency-of-use information for
each location in said RAMs;

d) means for applying a memory address as an input to
said hashing means, to access a first set of locations in
said RAMs, one location in each RAM;

e) means for using said LRU means to select a least
recently used one of said first set of locations;

f) means for applying data from said least recently used
one of said first set of locations as a further input to said

10

15

20

30

35

45

50

55

5,530,834

6
hashing means, to access a further set of locations in
said RAMs, one location in each RAM; and

g) means for using said LRU means to select one of said
further set of locations that is less recently used than
said least recently used one of said first set of locations
and for loading said data from said least recently used
one of said first set of locations into said one of said
further set of locations.

2. A data processing system including a data processing
unit, a main memory, and a faster, smaller cache memory,
wherein said cache memory comprises:

a) a plurality of n RAMs (where n is an integer greater
than 1), each RAM comprising a plurality of address-
able locations;

h) hashing means for performing n independent hashing
functions. to hash an input address into n separate
addresses for addressing said RAMs;

c) LRU means for storing recency-of—use information for
each location in said RAMs;

d) means for applying a memory address as an input to
said hashing means, to access a first set of locations in
said RAMs, one location in each RAM;

e) means for using said LRU means to select a least
recently used one of said first set of locations;

f) means for applying data from said least recently used
one of said first set of locations as a further input to said
hashing means. to access a further set of locations in
said RAMs, one location in each RAM; and

g) means for using said LRU means to select one of said
further set of locations that is less recently used than
said least recently used one of said first set of locations
and for loading said data from said least recently used
one of said first set of locations into said one of said
further set of locations.

3. A method of operating a memory system including a
main memory and a faster, smaller cache memory, the cache
memory comprising a plurality of n RAMs (where n is an
integer greater than I), and hashing means for performing n
independent hashing fimctions to hash an input memory
address into n separate addresses for addressing said RAMs,
said method comprising the steps;

a) applying a memory address as an input to said hashing
means. to access a first set of locations in said RAMs,
one location in each RAM;

h) selecting a least recently used one of said first set of
locations;

c) applying data from said least recently used one of said
first set of locations as a further input to said hashing
means, to access a further set of locations in said
RAMs, one location in each RAM; and

d) selecting one of said further set of locations that is less
recently used than said least recently used one of said
first set of locations and loading said data from said
least recently used one of said first set of locations into
said one of said further set of locations.

is # it it *

03/28/2003, EAST Version: 1.04.0000
NOAC EX. 1017 Page 269

A»....W.--_a.,.-..._..........a

NOAC Ex. 1017 Page 270

:4.

’c-,~..~..

llllllllllllflllllllllllllllllilllllllllllillllillllllllllllII

United States Patent [19]

Hoover et al.

[54]

[75]

[73]

[21]

[22]

[5 1]
[52]

[5 8]

[55]

METHOD AND APPARATUS FOR
MAINTAINING N-WAY ASSOCIATIVE
DIRECTORIES UTILIZING A CONTENT
ADDRESSABLE MEMORY

Inventors: Russell D. Hoover, Rochester; George
W. Nation, Eyota; Kenneth M. Valk,
Rochester, all of Minn.

Assignee: International Bushes Machines
Corporation, Armonk. N.Y.

App]. No.: 688,313

Filed: Jul. 30, 1996

Int. Cl.‘i-.-........... ...G06F 13/00
U.S. CL 711/108; 711/128; 711/133;

711/141; 7111146; 364/DIG. 1
Fidd of Search 395/435, 449,

395/455, 457, 460, 468, 473

References Cited

U.S. PATENT DOCUMENTS

4537,610 5/1986 Rndman1
4,914,577 4/1990 Stewutetal ..-...
4,972,338 11/1990 (tumult-1.1.-.
5,249,282 9/1993 Sagas-........
5,261,106 11/1993 Lam etal.
5,329,405 7/1994 Houetal.
5,383,146 1/1995 'Ihreewitt .-..
5,404,432 4/1995 Stammetal.
5,404,433 4/1995 Slammetal. .
5.414704 5/1995 Spinney-.... . ..

SNOOPED

ADDRESS “RITEBACK

GDIR
CAM
ROW
11"

ADDRESS casrour
INDEX.
TAG,
STATE

STATE 0.
STATE 1.
ROW).
count)

USUOS749087A

[11] Patent Number: 5,749,087

[45] Date of Patent: May 5, 1998

5,457,733 10/1995 Machida 395/435
5,504,874 411996 Galles etal. .. . 395/435
5,530,958 6/1996 Agarwal an. .. . 395/435
5,537,673 7/1996 Chambedain eta]. ”...--.“ 395/435

Primary Examiner—Frank J. Asta
Attorney Agent, or Firm—Joan Pennington

[57] ABSTRACT

A method and apparatus are provided for maintaining a
N—way associative directory utilizing a content addressable
memory (CAM). A congruence class from the N—way asso— -
ciah‘ve directory including a directory entry identified for a
data operation is read into the CAM for the data operation.
The directory entry for the data opd'afinn in the CAM is
locked while the data opmah'on is pending. Other entn'es in
the congruence class are available. When the data operation

- is completed, checking for a state change is pedcrmed.
Responsive to an identified state change. the directory entry
for the data operation in the CAM is updated or marked as
changed. The congruence class including the updated direc-
tory entry is‘marlced asdirtyIn accordance with features of
the invention, the changed congruence class directory
entries in the CAM are accumulated and scheduled to be
written back to the N—way associative directory. The con-
gruence classes including the changed directory entries in
the CAM are written backto the N—way associative directory
when the N—way associative directory is idle. After the
congru-ce classes including the changed directory entries
in the CAM are written back to the N—way associative
directrryrthese CAM outfits are marked‘as not busy and not
dirty andccanrbereused.

16 Claims, 5 [111ng Sheets

WRITE BACK

GDIR CAM ROW
STATE 123

09/02/2003, EAST Version: 1.04.0000
NOAC EX. 1017 Page 270

NOAC Ex. 1017 Page 271

~“WWW'WW"H’

US. Patent May 5, 1998 Sheet 1 of 5 5,749,087

FIGURE 1A
SNOOPED

ADDRESS WRITE BACKVWMTEBACK
ADDRESS

TAG1 STATE1
108 110

HIT/MISS

GDIR

/CAM
GDIR
CAM
ROW

GDWRCAMIROVV
STATE123

 ADDRESS
CASTOUT

INDEX
TAG,

STATE

STATE 0.
STATE 1,

R0W#(M),
comm

09/02/2003, EAST Version: 1.04.0000
NOAC EX. 1017 Page 271

NOAC Ex. 1017 Page 272

grim

US. Patent May s, 1998 Sheet 2 of 5 5,749,087

PRIOR ART

Irma-am
MEMORY
ADDRESS
FORMAT

FIGURE 18

SELECT A DIRTY

AND NOT BUSY
INDEX TO WRITE

BACK, INDEX (A)
600

 WRITE GDIR CAM

CONGRUENCE CLASS
TO GDIR ADDRESSED

BY INDEX (A)
602

GLOBAL DIRECTORY 102

TAGO STATE TAG1 STATE

10-1101I: 110

|—_—I._____—J
ASSOCIATIVITY CLASS

STATE: INVALID (COLUMN)
SHARED ' 114

FIGURE 6 EXCLUSIVE A
FIGURE 1C

CONGRUENCE

CLASS (ROW)
112

SET NOT DIRTY

FOR INDEX (A)
604

09/02/2003. EAST versi°n= l'04-‘mN’0AC EX. 1017 Page 272

w“.

NOAC Ex. 1017 Page 273

~wa-2"3'“wvmmwm‘w.’

US. Patent May 5, 1998 Sheet 3 of 5 5,749,087

ARBITRATION (ARB) FOR GDIRIGDIR CAM ACCESS

[(ALL GDIR
CAM ROWS BUSY OR

DIRTY) AND >1 GDIR CAM
ROW DIRTY AND NOT BUSY] OR (>3

GDIR CAM ROWS DIRTY AND

NOT BUSY)
202

HIGH
PRIORITY

YES WRITEBACK

SNOOP
OPERATION TO

PROCESS
204

>1GDR
CAM ROW D|RTY

AND NOT BUSY
206

YES LOW PRIORITY WRITEBACK

FIGURE 2

09/02/2003, EAST Version: 1.04.0000
NOAC EX. 1017 Page 273

a

E

NOAC Ex. 1017 Page 274

US. Patent

GDIR
CAM INDEX (M)

TAG (N) HIT
sou

RETRY
SNOOPED

OPERATION
308

 SET BUSY (N)

a...“.2
s2

May 5, 1998 Sheet 4 of 5 5,749,087

 GDIR CAM

INDEX (M) HIT
302

 GDIR TAG (N)

HIT
306

FIND GDIR
CAM ROW WITH

ALL TAGS NOT BUSY
AND NOT DIRTY

320

NOT
FOUND

GDIR CAM
ROW (M) BUSY

304

FIND
NOT BUSY

COPY GDIR

(N) WITH INVALID CONGRUENCE
STATE CLASS T0

312 GDIR CAM
322

CASTOUT TAG

(N) THAT IS NOT
BUSY AND NOT
INVALID STATE

314

RETRY
SNOOPED

OPERATION
324

WRITE SNOOPED
OPERA110N s- TAG
To GDIR CAM ROW

(M) TAG (N)
316

ELQLJBEQ

09/02/2003. EAST ““5“": l'04'OOIN’0AC EX 1017 Page 274

NOAC Ex. 1017 Page 275

ALL TAGS NOT BUSY AND

US. Patent May s, 1993 Sheet 5 of 5 5,749,087

SNOOPED
OPERATION
COMPLETES

500

FIND GDIR
CAM ROW WITH

RETRY
SNOOPED

OPERATION
404

NOT DIRTY
400

 IS A STATE
CHANGE NEEDED

502

NO

 COPY GDIR
CONGRUENCE
CLASS TO GDIR

CAM
402 '

UPDATE GDIR

CAM WITH
NEW STATE

504

 SET INDEX

(M) DIRTY
506 HGURE4

RESET TAG

(N) BUSY
508

HGURE5

09/02/2003, EAST Version: 1.04.0010V,0()AC EX 1017 Page 275

NOAC Ex. 1017 Page 276

5,749,087

1

METHOD AND APPARATUS FOR
MAINTAINING N-WAY ASSOCIATIVE

DIRECTORIES UTILIZING A CONTENT
ADDRESSABLE MEMORY

FED OF THE INVENTION

The present invention relates to a N-way associative
directory, and more particularly to an improved method and
apparatus fCl‘ maintaining a N—Way associative directory
utilizing a content addressable memory (CAM).

DESCRIPTION OF THE PRIOR ART

A content addressable memory (CAM) is known for many
diverse uses. For example, known system have used a
content addressable memory (CAM) for address translation,
for example, as described in U.S. Pat. Nos. 4,972,282 and
5,457,788.

U.S. Pat. No. 5,249,282 discloses a cache memory fCl‘
interfacing between a central processing unit and a main
system memory. The cache memory includes a primary
cache comprised of SRAMS and a secondary cache com-
prised of DRAM. A respective org directory is associated
with each of a plurality of secondary data cache memories.
A respective content addressable memory (CAM) is asso-
ciated with each of a plurality of primary data cache memo-
ries. Each of the CAM: stores data consisting of a tag and
a value.

In cases whue an N—way associative directory is used and
operations on multiple lines (including when those lines
belong to the same set) needto be puformedinparallel, then
when updating the directory a read modify write must be
performed. For synchronous SRAMs, the paformance deg-
mdation for changing from a write to a read, or from a read
to a write an be significant. A need exists for a directory
arrangement that provides improved eficient performance.

. SUMMARY OF THE INVENTION

Important objects of the present invention are to provide
an improved method and apparatus for maintaining a N-way
associative directory utilizing a content addressable memory
(CAM), to provide such apparatus and method substantially
without negative etfects and that overcome many disadvan-
tages of Fior art arrangements.

In brief, a method and apparatus are provided for main-
taining a N—way associative directory utilizing a content
addressable memory (CAM). A congruence class from the
N-way associative directory including a directory entry
identified for a data opa‘ation is read into the CAM for the
data operation. The directory entry for the data operation in
the CAM is locked while the data opu'ation is pending.
Other entries in the congruence class are available. When the
data operation is completed, checking for a state change is
performed. Responsive to an identified state change, the
directory entry for the data opuation in the CAM is updated
or marked as changed or dirty.

In accordance with features of the invention, the changed
directory entries inthe CAM are accurrmlated and scheduled
to be written back to the N-way assodative directra'y. 'Ihe
changed directory entries in the CAM can be used again
before being written backto the N-way associative directory.
A congruence class including the changed directory entry in
the CAM is written back to the N—way associativo directory
when the N—way associative directory is idle. After the
directory entries in the CAM are written back to the N—way
associative direm'try, these CAM entries are marked not
busy and not dirty and can be reused.

09/02/2003, EAST Version: 1'04'00CNOAC EX. 1017 Page 276

10

15

35

45

50

55

65

2
BRJEF DESCRIPTION OF THE DRAWINGS

The present invention together with the above and other
objects and advantages may best be understood from the
following detailed description of the preferred embodiments
of the invention illustrated in the drawings, whuein:

FIG. 1A is a functional data flow block diagram of a
directory system including a global or N—Way associative
directory with a content addressable memory (CAM) in
accordance with the present invention;

FIG. 1B is a block diagram illustrating a conventional
memory address format;

FIG. 1C is a block diagram illustrating a global directory
of the present invention; and

FIGS. 2-6 are flow charts illustrating directory mainte—
nance methods in accordance with the Fesent invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention provides an improved directcn’y
arrangement and method for maintaining a global or N~way
assodatiVe directory utilizing a contentaddressable memory
(CAM) that can be used in supporting many processor
cadres, each with many outstanding operations; large num-
bers of line fill buffers in a processor (not shown); and in
cadres with many outstanding transactions, such as, shared-
eaches and lock-up free caches. '

Having reference now to FIGS. 1A and 1C, in FIG. 1A
there is shown a directory amngement in accordance with
the invention generally designated 100 including an N-way
associative or global, coherence directca'y generally desig-
nated GDIR 102 with a content addressable manory (CAM)
generally designated GDIR CAM 104. GDJR CAM 104 is
used in accordance with the invention to improve the
perfumance of the N—way associative directory GDIR 102.
In awordance with features of the invention, a, full congru-
ence class arrow 112, the entry from each associativity class
or column 114, as illustrated in FIG. 1C including the entries
TAG 0 108, STATE 0 110, TAG 1, STATE 1 110, is the unit
of data moved between the coherence directory GDIR 102
and the GDIR CAM 104. In FIGS. 1A and 1C, a two«way
associtive directory GDIR 102 and GDIR CAM 104 are
shown; however, it should be understood that the present
invention can be used generally with an N—way associative
directory. In FIG. 13, a prior art memory address format
including an index, tag, and byte is shown. In the preferred
embodiment, the lower order address bits or byte of the prior
art memory address format is not used.

In the GDIR CAM 104, each GDIR CAM row 117
includes a single index 118, multiple keys or tags 120 and
associated states 1n together with BDIR CAM row state
information 123 including respective BUSY0, BUSY 1, and
DIKI'Y bits. Each key 120 and associated state 122, such as
TAG 0, STATE 0, and TAG 1, STATE 1, corresponds to a
respective associtiviy class 114, CLASS 0, CLASS 1 of the
N—way associtive directory GDIR 102. Moving the full
congruence class 112 avoids having to do read modify write
when data is moved between GDIR CAM 104 and coha-
encc directory GDIR 102. The GDIR CAM 104 contains
GDIR entries that are in transition from one state to another

state. The associated state 110, 122 with a respective direc-
tory tag 108, 120 include exclusive, shared, and invalid. An
exclusive state indicates that one and only one cache in the
system of the GDIR 102 has this block of data, where a
shared state indicates that the block of data is shared. An
invalid state indicates that the block of data is not cached.

l

’5
£3..

....Jfi-‘fid\..~ra_—.

c—JWM.

NOAC Ex. 1017 Page 277

5,749,087

3

GDIR CAM 104 serves as a CAM for directory entries.
When an entry in the GDIR CAM 104 is updated and the
operation using that entry is completed, that GDIR CAM
row 117 is markedas dirty. Dirty GDIR CAM 104 entries are
accumulated and scheduled for writing back to the global 5
coherence directory GDIR 102. The accumulation of write-
baclrs is more efficient because there is a number of cycles
penalty for switching from read to write and vise-verse. The
scheduling of these accumulated writebaclrs are more em-
eient because the writes are done when the global coherence 10
directory GDIR 102 is idle. After the write-backs to the
global coherence directory GDIR 102 are completed the
entries of the GDIR CAM 104 are marked as not dirty and
can be reused.

GDIR CAM 104 is a small CAM that duplicates some 15
numba' of the directory rows 1.12 of GDJR 102. Global
coherence directory GDIR 102 can be implemented with
external SRAM off-chip because a large on-chip array may
not be feasible to implement the total size needed for the
global cohuence directory GDlR 102. An arbitration (ARB) 20
functional block 106 arbitrates access to GDIR 102 and

GDIR CAM 104. ARB functional block 106 is implemented
with logic arranged for directory access control of the
invention as illustrated and described with respect to FIGS.
2—6. When an address is presented to the GDIR CAM 104, 15
the address associated with the tag that matches this address
is accessed. A Hit/Miss indication is provided by compares
116 and possibly, the location within the GDIR CAM 104
that address matched

When a data line is accessed, the directory set or congru- 30
ence class 112 of GDIR 102 that contains the line is read into

the GDIR CAM 104. While an opuation is pending the
GDIR CAM row 117 including the particular congruence
class entry 120, 122, TAG 0, STATE 0, orTAG 1, STATE 1
that contains the line is locked in place and released when 35
the operation is finished For an N—way associative directory
GDIR 102,eachoftheNentriesinadirectorymwmaybe
locked by a difi'erent operation. When an operation modifies
an entry in a GDIR CAM row 117 held in the GDIR CAM
104, that GDIR CAM row 117 is marked dirty to be written 40
back to the directory when all entries are non-busy. 'Ihe
numbu- of GDIR CAM rows 117 that the GDIR CAM 104

can hold advantageously can be provided to be greater than
a maximum number of outstanding possible operations. The
writing back dirty GDIR CAM rows 117 inthe GDIR CAM 45
104 can be delayed until a [rumba of GDIR CAM rows 117
are ready to be written back. Thus providing improved
performance, for example, in synchronous SRAMs, group-
ing writes into adjacent cycles reduces the bandwidth taken
up by writes to the SRAM. Also, a dirty GDIR CAM row 50
117 can be used by another data operation before being
written back to the global coherence directory GDIR 102.

FIGS. 2—6 are flow drarts illustrating directory mainte-
nance methods in accordance with the present invention.
Referring now to FIG. 2, arbitration (ARB) for access to 55
GDIR 102 and GDIR CAM 104 start at a block 200.

Checking whether all GDIR CAM rows 117 or all indexes
in the GDIR CAM 104 are busy or dirty and more than one
GDIR CAM row 117 is dirty and not busy; or more than a
selected number of, for example, three GDIR CAM rows so
1.17 in the GDIR CAM 104 are dirty and not busy is
performed as indicated at a derision block 202. When
determined at decision block 202 that all GDIR CAM rows

1.17 or all indexes in the GDIRCAM 104 are busy or dirty
andmcrethanone GDIRCAMrow 117 orindexisdirtyand 65
not busy; or more than the selected number of GDIR CAM
rows 117 or indexes are dirty and not busy, then a high

09/02/2003, EAST Version: 1.04.00qq0AC EX. 1017 Page 277

4

priority writeback is performed with the sequential opera-
tions continuing following entry point W in FIG. 6.

Otherwise when determined that it is not true at decision
block 202 that. all indexes in the GDIR CAM 104 are busy
or dirty and more than one index is dirty and not busy; or
more than the selected number of indexes are dirty and not
busy, then checking for a snoop data operation to process is
performed as indicated at a decision block 204. When a
snoop data operation to process is identified at decision
block204, then the sequential operations continue following
entry point S in FIG. 3. Otherwise when a snoop data
operation to process is not identified at decision block 204
so that the global coherence directory GDIR 102 is idle, then
checking Whether the GDIR CAM 104 has more than one
GDIR CAM row or index that are dirty and not busy is
performed as indicated at a decision block 206. When
determined at block 206 that‘the GDIR CAM 104 has more
than one GDIR CAM row or index dirty and not busy, then
a low priority writeback is performed with the sequential
operations continuing following entry point W in FIG. 6.
When determined at block 206 that the GDIR CAM 104

does not have more than one GDIR CAM row or index dirty
and not busy, then the sequential steps return to start block
200 with no operation as indicated at a block 208.

Referring to FIG. 3, when a snoop data operation to
process is identified at decision block 204, then the sequen-
tial operations continue following entry point S. Checking
foraGDlRCAMroworindexM)andtag(N)hitis
provided as indicated at a decision block 300. When a GDIR
CAM row (M) and tag (N) hit is not identified at block 300,
then checking for a GDIR CAM row or index (M) hit is
puformed as indicated at a decision block 302. When a
GDIR CAM row or index (M) hit is identified at block 302,
th. checking whether all tags are busy at GDIR CAM row
(WintheGDlRCAMispecformedasindicatedata
decision block 304. When a GDIR CAM row (M) hit is not
identified at block 302, then checking for a global directory
tag (N) hit is provided as indicated at a decision block 306.
When a global directtry tag (N) hit is not identified at
decision block 306, then the sequential steps continue fol-
lowing entry point 1 in FIG. 4.

Referring to FIG. 4, following entry point 1 checking for
a GDIR CAM row with all tags not busy and not dirty is
provided as indicated at a decision block 400. When a GDIR
CAM row with all tags not busy and not dirty is found at
decision block 400, then the congruence class is copied to
the identified GDIR CAM row as indicated at a block 402.

Then the sequential operations return following entry point
2 in FIG. 3. Otherwise when a GDIR CAM row with all tags
not busy and not dirty is not found at decision block 400,
then the snooped data operation is retried as indicated at a
block404. Then the sequential steps return to start block200
in FIG. 2 as indicated at a block 406.

Referring again to FIG. 3, when deter-ruined at block 304
that all tags are busy at index (M) in the GDIR CAM, then
the snooped data operation retried as indicated at a block
308. Then the sequential steps return to start block 200 in
FIG. 2 as indicated ata block 310. When determined atblock
304 that all tags are not busy at index (M) in the GDIRCAM
and following an entry point 2 in FIG. 4, then checking for
a not busy tag (N) with an invalid state is performed as
indicated at a decision block312. When a not busy (N) with
tag (N) having an invalid state is not found at decision block
312, then tag (N) that is not busy and not invalid state is
castout as indicated at a block 314. Then the snooped data
operations' tag is written to the GDIR CAM (M) and tag (N)
as indicated at a block 316. After the snooped data opera-

lft

NOAC Ex. 1017 Page 278

‘' n...»»~’..,

xx»,’4.1...>1 .~

Vgs

“La.“u.w,

5,749,087
5

tions‘ tag is written at block 316 and when a GDIR CAM
index (M) and tag (N) hit is identified at block 300, the busy
(N) is set as indicated at a block 318. Then the sequential
operations continue following entry point 3 in FIG. 5.

When a global directory tag (N) hit is identified at
decision block 306, then checldng for a GDIR CAM row not
busy and not dirty is provided as indicated at a decision
block 320. When a GDIR CAM row not busy and not dirty
is found at decision block 320, then the congruence class is
copied to the identified GDIR CAM row as indicated at a
block 322. Then the steps continue at block 318 where the
tag busy (N) is set. When a GDIR CAM row with alltags not
busy and not dirty is not found at decision block 320, then
the snooped data operation is retried as indicated at a block
324. Then the sequential steps return to start bled: 200 in
FIG. 2 as indicated at a block 326.

Referring now to FIG. 5, following entry point 3, the
scooped data operation completes as indicated at a block
500. Then it is determined whether a state change is needed
as indicated at a decision block 502. When determined that
a state change is needed at block 502, then the GDIR CAM
is updated with the new state as indicated at a block 504.
Next the index (M) is set dirty as indicated at a block 506.
When determined that a state change is not needed at block
502 and afterthe index is set dirty atblock 506, then the tag
(N) busy is reset as indicated at a block 508. Then the
sequential steps retin-n to start block 200 in FIG. 2 as
indicated at a block 510.

FIG. 6 illustrates writeback control flow fcr writing dirty
entries of GDIR CAM 104 back to GDIR 102. The write-
baclr steps begin following entry point W in FIG. 6 with
selecting a dirty and not busy index to write back, index (A)
as indicated at a block 600. The congruence class addressed
by index (A) is written to the GDIR 102 as indicated at a
block 602. Then the GDIR CAM 104 is set to not dirty for
Index (A) as indicated at a block 606. Then the sequential
steps return to start block 200 in FIG. 2 as indicated at ablock 606.

While the present invention has been described with
reference to the details of the embodiments of the invention
shown in the drawing, these details are not intended to limit
the scope of the invention as claimed in the appended
claims.

What is claimed is:
1. A method for maintaining a N—way associative direc-

tory utilizing a content addressable memory (CAM) com-
prising the steps of:

identifying a data operation to process;
identifying a congruence class from the N-way associa-

five directory including a directory entry for said data
operation; said congruence class directory entry includ—
ing multiple (N) directory entries for each associativity
class;

reading said congruence class from the N-way associative
directory and writing said read congruence class into
the CAM;

locking said directory entry for said data operation in
CAM while said data operation is pending;

checking for a state change when said data operation is
completed; and

updating said directory entry for said data operation in
CAM responsive to said identified state change.

2. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 1 furthe- includes the steps of:

09/02/2003. EAST WSW": 1'04'00990AC EX 1017 Page 278

5

10

15

30

35

41

50

55

60

65

6

accumulating a predefined number of said congruence
classes including said updated directory entry in CAM;
and

writing one of said congruence classes including said
updated directory entry in CAM back to the N-way
associative directory responsive to said accumulated
predefined number of said congruence classes includ-
ing said updated directory entry.

3. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 2 further includes the step of responsive to
writing said congruence class including said updated direc-
tory entry in CAM back to the N-way associative directory,
marking said congruence class directory entries in CAM as
not busy and not dirty, whereby said CAM entry can be
reused.

4. A method for maintaining a N-way associative direc-
tory utilizing a content address-able memory (CAM) as
recited in claim 2 wherein said step of writing said updated
congruence class directory entry in CAM back to the N-way
associative directory includes the steps of:

selecting an index in CAM to write back; said selected
index being an index set dirty and not busy;

writing said congruence class in CAM back to the N—way
associative directory addressed by said selected index;
and

resetting said dirty indication for said selected index in
CAM.

5. A method for maintaining a N—way associative direc-
tory utilizing a content addressable memu'y (CAM) as
recitedin claim 1 wherein said step of locking said directory
entry for said data operation in CAM while said data
opuation is pending includes the step of setting a busy
indication for a tag associated with said data operation and
resetting said busy indication for said tag assodated with
said data operation when said data operation is completed.

6. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 2 furthe- includes the step of:

identifying an idle state for the N—way associative direc-
“1W;

identifying a second {redefined number of said congru-
ence classes including said updated directory entry in
CAM; and

writing a selected one of said congruence classes includ-
ing said updated directory entry in CAM back to the
N—way associative directory responsive to said identi—
fied second predefined ntnnber of said congruence
classes including said updated directory entry in CAM.

7. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 6 wherein said step of identifying said idle
state for the N-way associative directory includes the step of
identifying no data operations to process.

8. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) com-
prising:

means for identifying a data operation to process;
means for identifying a congruence class from the N-way

associative directory including a directory entry for
said data operation; said congruence class directory
entry including multiple (N) directory entries for each
assodativity class;

means for reading said congruence class from the N-way
associative directory and for writing said read congru-
ence class into the CAM;

W...M-M~W

NOAC Ex. 1017 Page 279

.-mwow}..“ta_,

5,749,087
7

means for locking said directory entry for said data
operation in CAM while said data operation is pending;

means for identifying a state change when said data
operation is completed; and

means for updating said directory entry for said data
operation in CAM responsive to said state change
identifying means.

9. Apparatus for maintaining a N—way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 8 wherein said congruence class in CAM
includes a single index.

10. Apparatus for maintaining a N—way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 9 wherein each said multiple (N) directory
entries for each associativity class includes a tag and an
associated state.

11. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 10 wherein said means for updating said
directory entry for said data opmtion in CAM responsive to
said state change identifying means includes means for
updating an associated state with a tag of one of said
multiple (N) directory entries for said identified data Opera-tion.

12. Apparatus for maintaining a N—way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 11 further includes meansresponsive to said
state change identifying means for setting a changed indi-
cation for said index for said congruence class in CAM.

l3. Apparauas for maintaining a N—way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 11 further includes means for accunmlating
a predefined number of said congruence classes including
said updated directay entry in CAM; and means for writing

8

directory responsive to said accumulatedpredefined number
of said congruence classes including said updated directory
entry in CAM.

14. Apparatus for maintaining a N—way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 13 further includes means responsive to said
congruence class writing back means for marking said
multiple directory entries (N) in said at least one congruence
class in CAM as not busy and said at least one congruence
class as not dirty, whereby said CAM index can be reused.

15. Apparatus for maintaining a N—way associative direc-
tory utilin'ng a content addressable memory (CAM) as
recited in claim 12 wherein said means for writing back at
least one of said congruence classes including said updated
directory entry in CAM to the N—way associative directory
include means for selecting an index in CAM to write back;
said selected index being an index set changed and said
multiple directory entries (N) in said congruence class in
CAM set as not busy; means for writing said congruence
class directory entry in CAM back to the N—way assou’ative
directory addressed by said selected index; and means for
resetting said changed indication for said selected index in
CAM.

16. Apparatus for maintaining a N—way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 15 ftn'ther include means for identifying an
idle state of the N—way associative directory; means for.
identifying a second predefined number of said congruence
classes including said updated directory entry in CAM; said
second predefined number being less than said first pre—
defined numba: and means for writing a selectedone of said
congruence classes including said updated directory entry in
CAM back to the N—way associative directory responsive to
said identified swond predefined number of said congruence
classes including said updated directory entry in CAM.

back at least one of said congruence classes including said 35
1: updated directory entry in CAM to the N—way associative * t l- :- =t=

»«new

“a“am.».,
lanai»

‘33:“«.va.’.

.,at»

NOAC Ex. 1017 Page 280

.1NJ“

‘12

;’”$39.:’

United States Patent n91

Churchill, Jr.

[54] MEMORY ACCFSS TECHNIQUE

[75] Inventor: Wllllam Philip Churchill, Jr..
Carlisle, Mass.

[73] Asignee: Data General Corporation,
Southboro, Mass.

[22] Filed: Jan. 23, r974

[21] Appl. No.: 436,023

[52] U.S. C1. ... 340/1715
[51] Int. Cl.I 6065' 13/00
[58] field of Search 340/1715

[56] [elem Cited
UNITED STATES PATENTS

3,275,991 9/1966 Schncberger 340/172.5
3.292.153 12/1966 Barton 340/1715
3,333,252 7/1967 Shimbukuro 340/1725
3,339,183 8/1967 Bock.......... 340/1725
3,344,405 9/ 1967 Crafi...... 340/1715
3,693,165 9/1972 Reiley 340/1725

IAS V
RIS‘I

MCIb-tDUIn:

 r----

[11] 3,949,369

[451 Apr. 6, 1976

Primary Examiner—Gareth D. Shaw
Assistant Examiner—James D. Thomas

Attorney, Agent, or Firm—Jacob Frank

[5%] Answer

In a digital computer lyltem having a main memory
operable at a first speed. a high speed buffer operating
at a second speed for temporarily storing selected por-
tion: of the main memory. an associative memory for
temporarily storing selected main memory addresses
and comparing the stored addresses with a newly re-
ceived address in n read/write operation to generate
comparison data, a read only memory a bit configura-
tion reflecting an algorithm, connected to the associa-
tive memory for generating a new order of priority for
the memory address stored in the auociative memory,
and a storage unit connected from the read only mem-
ory for storing that order of priority for subsequent
feedback to the read only memory in a subsequent
cycle as a previous order of priority.

7Claims,61)nwlngl?|¢nru

CONTENT WHILE
Mm r—---1

41933- L‘l"-—I._4 -.....
(CAI)

ILOCK ADR I
“L101" IIT

(II I173 +101T “L101

um Ann nan CONTROL

L015":fl

NOAC EX. 1017 Page 280

don't...“m”w-

NOAC Ex. 1017 Page 281

. “4.: CM.“ * -
fl La. $3.2, ‘ , . L

[‘76. I

g 50
M "U
D RA. RB 92,A READ MEM ADR. g
T r-r
A

3 3
s E:9‘

CONTENT ADDRESSABLE --
MEMORY $1

[@3233 [4:333 [4:15.31
(CAM) g1

_____.__ g
LOAD CACHE ADR 3

BLOCK ADR a 2‘
VALIDITY BIT ...,UI

PRlORlTY m ans + lBlT VALID)
REGISTER MEM

fl MEM ADR REG ceggfgl- 1.»
33 E c I

RAsv PROGRAM -' 4;LOGIC 3°
RBSV ARRAY W0\

£2 MEM ADR BUS \o

_ , ,, A A V y K . H A m NOAC EX. 1017 Page 281

NOAC Ex. 1017 Page 282

1&3}iiiii3153!.

NOAC EX. 1017 Page 282

3

mpozumDI.

%m>ozmzmammoq2”:.>msum35025o»E3I. I90634:84:.52m:6528uu9,EmmaEozmzma3ou
A

3SA

w

«ca3w.933H2.6%mmmmmo235do«.42mAmm..33332....aI .mumumcCEQE
C

mm..31!amjlx333n._S:mamammag.2>>>f&mv:5

6

Wll1Ems.m3.m'lnnufllr'll
.II«64$6333

«m23S4;‘.m2—-—

3.

2w:.EmN_l><¢md.Emumno...E‘IIIIIIIIIIII4/onEIIIIIIIIImi_l_l_II
on

an.2839*mm522A.3A:

omoiumDOu

U.S. Patent April 6,

> >

E E

I I
—

r:

N.mxk

NOAC Ex. 1017 Page 283

FIG. 3

READ

FROM MEM ADR BUS

U.S. Patent Apn’l 6, 1976 Sheet 3 of 5 3,949,369

3

BUMP LR

 MEM SELECT

MATCH LRU ADR
ADR

READ

EQUALITY

LOAD CACHE
LRU WITH

NEW ADR -~wmA.WMW.,
FR. MAIN

MEM AT
LRU ADR

PUT ON MEM DATA BUS

NOAC EX. 1017 Page 283

NOAC Ex. 1017 Page 284

US. Patent April 6, 1976 Sheet 4 of 5 3,949,369

FIG. 4

WRITE

FROM MEM ADR BUS

MEM SE LECT

LRU ADR

 UP-DATED CAM

CAM
EQUALITY

SEARCH

 CACHE
FR. MAIN
MEM AT

LRU ADR

MEM DATA BUS

NOAC EX. 1017 Page 284

BUMP LR

‘.w.”mm»mmmmw
W

NOAC Ex. 1017 Page 285

T333cc...“‘x‘3.....
3'37»?' Hhfia‘«Kr

-U.S. Patent April 6,1976 ShCCt50f5 3,949,369

F/6‘. 5

READ NEXT
ADR. ADR.

READ LOAD READI I

MEM SELECT __!__L__.!—_L_J——
I I

l

BUMP LR _I____r._—Il__r——

F16'. 6

WRITE NEXT
ADR. WRITE ADR.

WRITE LOAD COMMAND LOAD
I , Il

: FROM PREVIOUS READ .
MEM sELECT __l—£-L___i____———J_

_ RA SAVED FROM CAM LOCATIONTO BE REMOVED

LOAD RA

NO LOAD RA
OR BUMP LR

BUMP LR \ l' UPDATES PRIORITY REG.

REMOVE (INVALID) ______.__.I——__L-——'-——— RESET AT
I NEXT READ

REMOVE sv _ I. . I I |DATA BUS
\GENERATES NEW! LRU

LOAD CACHE ADR __I___J_—’<—-L——:—I

I UPDATES CAM WITH LRU

I I
I

____J_ IMATCH sv ' \ I II
I: INIDICATES MATCHl I

NOAC EX. 1017 Page 285

m»g.«_I”WE-..“-w--m.._..u.D

NOAC Ex. 1017 Page 286

3,949,369
1 2

implementation of a least recently used technique hav~
MEMORY ACCESS TECHNIQUE ing a bit configuration representing an algorithm, with

an associative memory to keep track not only of the

CROSS fiflfigfigggskfimm least recently used word. but in addition. to establish an
5 order of word state priority for manipulating cache

Filed simultaneously with this application is a patent stored data, allowing a data priority locating scheme to
application assigned to the same sssignee as tho appli- be dynamically updated as new usage information be-
cation and is identified as Ser. No. 436,022 filed Jan. comes available.
23, I974 for Automatic Data Priority Technique and. Another object of this invention is to provide a pro-
entitled Automatic Data Priority Technique by Joseph W gra'mmed word state priority order based on usage that
names West. _ normally not affected by‘ effecting storage operations

I. Field of the invention in main memory.
The field of art to which the present invention per- A further object of the present invention is to provide

min: istomemory systems irtgeneralarrd,inparticular. a programmed word state priority based on usage,
to the improvement of memory system utilizing high 15 which when containing an address location in an asso-

bufl'ers for establishing a storage hierarchy. ciative memory that is subsequently written into in

2. Description of.the Prior Art main unitary, invalidates the associative memory.
Accents) memonesot'hrghspeedsrsofutmostcon— DBCRIP’HON OFTHE DRAWINGS

can in order to provide for the rapid processingofdata
and to take advantage of the hiflr'speed CPU systems 20 FIG. 1 is an overall block diagram of the preferred
available today. One manner of achieving increased embodiment of the invention.
memory speed is providing for s-ruemory hierarchy FIG. 2 isacircuitdiagramoftheCAMéM. program
schemewherealargeslowmemoryandasmalltast logicanay35andpriorityregister36,andportionsof
memory are corrnmd to a central processing unit memory control logic 37. shown in FIG. 1.
(CPU).Thefastmernory.eommonlyknownassMe, 25 FIG. 3 '3 a flow diagram depicting the sequence of
servcsaaawindowfortheCPUtolookatelowmem- eventslnthepresentinventioninareedcycle.
ory.Datat'romslowmemoryialoadedinthecechein FlG.4isaflowdiagramdepictingthesequenceot
quantiticsofusuallysevenlwords(orbytes)atoncein eventsinthepresentinventioninawritecycle.
anticipation tint subsequent memory request will be FIG. 5 is a series of time based waveforms illustrat-
forthatdata.lfeo,tbenmemoryspeedisincreesedby 30 ing,withcertainagmls,themannerot'operationofthe
servingtthPUfromthecache. inventiondun'ngareadcycle.

Arnemorysystemofdristyperequiresmanagement HG.6isaaericaoftimebascdwavefonnsillustrat—
whichhumdewmdnafirmwhetheraCPUrequest ing,withcertainsignsis.dremsnnerofoperationofthe
formernory'ninucheandifso,where;second,ifnot invention duringawritecycle.
incache,stwhetlocationincacheisthedatafromthe 35
wmmummmmmm Damnatggmmm
nrodifyfsstandslow-e-ory.snd;fourth,howisthe DIMENT
systemtobeinitialiaedonpower—up. W'rthreferencetothe drawings.ablockdiagram

lnherentinthecacheschemeisanassociativemem- generallydescribingthepresentinventionisillumted

orywhidtcontairutheaddreesofdatainthecacheaa 4° atFlG.l,whereinthereisshownamainsemi-conduc-
relatedtotheslowmemoryflhiamociativenmnoryis tormcmory3lhavirtgacycletime.forexample,of600
etfectivelyimplementedasacomtaddmblemem- mandasmellerfastsemi-conductormemory 32,gen-
ory(CAM)whichpr-ovidesfosasimultaneousseerch erallyret‘erredtoasacadse,lnvingacycletime.for
ofaflitslocationstodetermineifflsedatadesiredby emnple,oflOOmto200ns.Mainmemory3llcon-
theCPUisintheceche,andifso.where. “nectedfromthememorydatabusand. in addition,

Amongtheseveralitemsgovemingtheperfomtance fiomamemoryaddressregister33,thelatterintum
ofamemrysystemofthetypebeingdiscrued.'lthe connectedfi-omthememorybus.
rafioofspeedhetweentheslowmemoryandthecache. Connectedfromdrememoryaddreesouregisternis
'l‘hisalsomayhedcterminedbytherelativesizeofthe anamociativememoryintheform ofacontent ad-
eacheand slowmemory.0nceaceche simmdspeed 50 dreuable 'memory (CAM) 34, which is designed to
isaelected thatpmvides thedcsirabicperformance.thc compare data on its inputawithdataalready stored in
problemarisesastohowtoderiveanefi'identmethod itsmemoryandindicatesamatchwhenthesedataare
ofrcplacementofoldwordsineechewithnewones. identicalThisequalitysearchisperlormedonallbits

lfdresystemitooperateefficiently,replacementof irrparallcl.'lhcstoreddataisfour12-bitwordsandthe
datainutecacbemunbecarehrflyacconrpflsltedAl- 55 siytal input'none eleven-bhwordfromthememory
though a complete knowledge of program behavior addreesreg'mer33andavalidity bit 33.1'heoutputs of
would producedteidealreplacement, th'l maybeirn- CAM34includeamatchsignaltoacachememory 32
practialbecauseoftheeconomicsinvolved.Agood andthemainmemory3land.inaddition,anaddress
approximation is to replace 'ihe least mentiy used denoted as RA and RB, designating a fast memory
entry. 1his will require maintainingapriority whichis 50 location in cache 32.
updated at each memory access. Efficiency can be The main memory 31 isalso connected for loading
further improved if invalidated addresses can be placed the cache 32 with four words or one block of memory
at the bottom ofthcschedulesotheycan be replaced data when instructedtodoso.TheWAandWBsignals

first without destroying the valid entries. which are supplied to thathcache 32 will always denote65 the cache address where e data from main memory is
SUMMARY OF THE INVENTION to be written, which is to be described in greater detail

Accordingly. an object of the present invention is to This signal might also be called the LRU. as it identifies
provide an improved high speed memory system by the location of the least recently used data in the cache

NOAC EX. 1017 Page 286

l
i

i
E

§
§

NOAC Ex. 1017 Page 287

. 3

mmdthentllccaCheaddreutobeloaded,shouId
'fi'imon call for loading or the cache. The uzu sig-
rial is also supplied to an input ofthe CAM to update
mlwmmtlymeddatalomtionoftheCAMwith
”minimum?! addrmofthenewdatathatisloaded
n lbc “d“: . .
mmUrsdenvedfmmaprogramlogicar-myils

‘ iu'cll might comprise of a selected combination of
W gates or a read only memory (ROM). The

{outwardasnociativememoryorCAMM'l'heLRU
algorithmilsuchthatnotonlywillthe leutrecently
Mmmbekmwmbutalcothenexttoleastrecently
”dwardandso forth. This allowatheLRU algorithm

3 ’ basis as newly used information becomes available. In
an pruent embodiment. since four words of data are
mbeusethhtheCAMMandcacheSLIhaemight
be defined as the MRU (most recently used), NMRU

used) and LRU (least recently used). It is evident. that
'rorthesefourwordathere are 24poaiblestateeofthe

3 algorithm defining 24 distinct combinations of four
word anangementa, depending upon the order ofprior-

lnordertodynamiully update the algorithm, it is
necessarytoknowthestateororderofpriorityofthe
immediately previous combination of four words. as
wellastheaddressinCAMMofthenewinfonnation

andWBlignalsontheLRUluddenotetheaddrecs
locationintheCAMMoftheneudyenteredmain
memory addreesandthecorrespondinglocetionin
mheSZofthataddrmdataforthenewlyemered

miomofdwRAuflRBsiyulguwillbediacused
hereinafter. to identify the locations in the CAM. if
any.whichthenewinformetionmatchel.Theinforma-
fimutotheabeenceofamatchorifamatchwu

Actual Word
State-

1230
mo
2m
2310
am
mo
our
on:
203:
2301
WI
nor
om
0312
1032
no:
MHZ
no:

, . . ' om
«~ 3:, 02-3
3“,.» Ion4* no:
{45¢ 20::- no:

i. MmlogicanaydefinuanLRUalgorithmforthe l0

wbedynamically updatedintermsofatimeandueage l5

(next most recently used), NLRU (next least recently .20

itiel ascertained. 7.5

loadedfromthernemoryaddrearegiaterlll'lheWA 30

information. The RASV and RBSV signals are delayed 35

3,949,369
4

fomration, enabling it to be re—circulated during the
next cycle back into the program logic amy 35.

The memory control logic 37 is connected to each.
cache 32, main memory 31, CAM 34, program logic
array 35, and priority reg'uter 36, to ensure that the
proper sequence of infonnation handling is maintained.
as will become evident hereinafier.

A more detailed description of CAM 34, priority
register36,andprogramlogicanay 35,mayhenen
with reference to FIG. 2. wherein there '- Ihown a four
word, four-bit array and l2 bit CAM 34 comprising
units 41, 42 and 43. Four input LRU leads to each of
these units contain LRU infomation and four other

leadatotheserqectiveunitscompriaethreesetsof
four bit inputs mutually denoted as M., M. and M, The
outputsofthernemoryaddressregixterficompriae ll
bite. reprelenting the aigtal received from the memory
Mdmubuflenfifiingflwhcafionhmhmmmy
3latwhichdataistobereadirrorwrittenout'l'he

mellthbitilavaliditybittodenoteavaliditycondition
ofthesignalwritteninandtherefore ifwritteninvalid,
theother ll bitswillbeignoredliachofthethreeunits
41.42 andlaarealsofedwithaIDADCACHEADR
signal which, when enabled, allows the LRU identified
addressinCAMMtoreceivethenewlyenter-edmain
memoryaddreufrommemoryaddressregistertoup—
date the uniu41,42and43.

Theprogramlogicarray35'nshownintheform of
tworendonly memories, ROMuand ROM45,ecch
having common inputs including: L, through L. from
the priority reg‘nter, 1:. +1; rusv and Rusv, and;
REMSV. ThesignalREMSVtobediscusedhereinaf-
terwillindicntewhetheraCAMetoredmaiumemory
addreaistoheinvalidatedornoLOneponible pro-
gnmlogicarraytable fortheROM'sisshownon the
rammwhaegivcneuhormezadmemt
wordstateordenofpriorityiaabinaryoumutonlead:
[qmroughhAnoctaloutput'uprovidedfor-theeight
binary output values on the leak of the combined

matched. all contribute to reestablish the new order of 40 ROM': 44 and 45.

PROGRAM Lm ARMY WORD STATE TABLE

L- l' l" L.
I
I
I
l
l
I
0
(I
0
0
0
0
I
l°_a_a_a_o—e_a—e—o—e—o—c—r?

l.‘
0
0
0
0
0
0
l
l
I
I
l
l
l
l
l
l
I
l
I
I
l
I
I
l

L,
I
l
I
I
l
I
I
I
I
l
I
I
0
I!
0
0
0
0
I
I
I
I
l
l

~—————°c°occ———_—-g°°¢°o ___g°°—_—og°_——oc°___°°o —co——a—gc——a—aa—~a—ec—~O

": {if Work}! for determining the new LRU data. As may be
" 3°C". the priority register is utilized for temporarily

5“"ng the immediately previous order of priority in-

Illl

In addition. there is a portion of one possible ROM
truth table on the following page showing previous
priority state possibilities and the variations of the in-
puts RASV. RBSV AND REMSV along with the coral

NOAC EX. 1017 Page 2'87

4»eww.‘

we.MLMWmMMWM-_--~..—..._»

M

NOAC Ex. 1017 Page 288

3,949,369
5

outpul code for each output state depending on the
variation of the input signals. The octal input on the
following page is based upon the following input signals
in a left to right order: LRI; LRZ; LR3; LRJ; LRS +
[36; RB; RA; REM. For example, in word order 0132,
the Octal Input for Octal Output 047 would read lefi to
right 000 10 000.

RON TRUTH TABLE

Word Octal Octal Word Octal Octal
Outer Input Output Order Input Output
0] 32 020 047 l032 060 047

021 035 ' 061 035
022 253 062 353
023 075 063 075
024 035 064 075
02.1 336 065 356
026 236 066 276
027 I35 067 I”

1230 030 027 2I30 070 067
03l 236 07! 256
032 3] 3 072 3t 3
033 027 ' 073 027
034 I I5 074 I I5
035 067 075 067
036 3 l6 - 076 356
037 127 017 I47

03 I 2 040 127 I302 IN 047
04! 055 IOI 035
042 253 [02 333
043 075 [03 I I5
044 055 104 I Is
045 273 ms 067
046 236 106 276
047 I35 107 [55

I320 050 0.7 2310 no r07
05! 035 I I I 233
052 353 I I2 3] 3
053 041 I I3 027
054 I IS I I4 I”
055 067 I15 IO‘I
056 3 I 6 I [6 356
057 127 I I7 I41

WhmREMSViuueitindicstesawriteinstruction
had occurred and address was matched at the zero
loationintheCAMstothattheaemloeationhadto
beinvalidatedandmadethelRUasnewinformationis

tobewfittenirrtoflntmainmemoryaddress.
Withreferencetotheabovetable,itwillbeseurtlrat

givenanorderofpriorityolOBZfiorbationsinthe
CAM34andcnche32,adiflerentorderorpriority
output (octal code) will result for different RASV.
RBSVandREMSVsigmhlfRASVandRBSVare
bothaesosandREMSVistrue,theneworderofprior~
ityischangedto l320represerrtedhyoctalcode047~

Ifthiswerenotdonefitmnbemdilyobservedthat
oonfirsion might occur during the reading of subse-
quent information.WhenREMSVisfilse, information
isnottobeinvalidated.However.sincetheaeroloca~
tionistheonethntismatchedandactive.thesame
order ofpriority 0132 is maintained as is represented
ltvytheoctalorrtput035whichunheverifiedbylook~
ingattheilhuuatedprogramlogicarraywordstate
tableabove.

ThefouroutputsfromROMMandthetwooutputs
handkfmmROM“,areconnectedbackintothe
priority register“ I..toL.totheinputa of ROM‘s“
and45, for allowing this inflormationtobeusedduring
asubsequentcycletoestablishanewset order priority
should the signals RASV, RBSV and REMSV require
such.

Aswillbenoted,“resignalsl.andl..inbeingre-
tuned to ROM's“ and 45 are returned via a NOR

gate 46. Furthermore. the REMSV signal from a regis-
ter 47 isentered into ROM'sMand45 only uponthe

5

10

I5

25

35

45

55

60

65

6
presence of a change in the order of priority, as when
the address of infomation to be written in main mem-

ory matches a CAM address that CAM address is to be
invalidated and made the LRU. The DATA T0 BUS

signal is used to clear the REMSV on the next cacheaccess.

It is also noted, signal BUMP LR triggers the priority
register to enter into the ROM's the old priority order
and then receive the new priority order for the next
cycle in a manner to be hereinafiet discused.

The output of the CAM 34, including units 41, 42
and 43 provide. via an inverter cou lin OR gate 50
and inverter 49, a MATCH ANDM indication
respectively denoting whether or not the l l-bit address
received fi'orn the memory address register is common
to any one ofthefour word. l2 bit arrays stored in the
CAM. Signals RA, RB denote the CAM location of the
addressofthe dataas towhielrarnatchhasbeen de-

tected. The signals RA and RB which are respectively
derived from NAND gates 49 and SI are mutually
routedto registersSZand53,sothatthesignalsRA
andRBcan bestoredandsuppliedasRASVandRBSV
during a streeessive cycle depending on whether the
conditions entered into C input of the registers 52 and
53 are met.

As will be seen, memory control logic 37, upon the
presence of a read and match false signal, will enable
an AND gate 59 connected to one input of a NOR gate
SI, the second input of NOR gate 61 supplied fiom an
AND gate 62 luving write and match inputs. These two
inputs to NOR gate 61 generate a LOAD CACHE ADR
signal. The output of AND gate 62 also provides a
signal which may be denoted as BUMP LR. The write
sgnalsuppliedtoaninputofanANDgatefiisawrite
signal and MATCH lgnal to generate an output RE-
MOVEOthersignalsthatareoonventional utout by
the memory control logic include a WKE'IU—B‘US
signal denoting that data has been put on the memory
databusAresetsignalforaresettingoonditionisalso

andaMEMSELaignal isgenerateddenoting
theloadingofansddrusfmmthememoryaddmbus
intothememoryaddressregisterlilARESEl‘SV
signal is also delayed for a subsequent cycle.

The BUMP LR signal from AND gate 62 occurs
whentheCAMhasindiutedamatchinaWRl’l‘E

condition. BUMP LRwiIlalsooccurfmm thememory
addressregisterflintheformofadelayed load RA,
whereby load RA denotes a previous READ operation
withdata loadedintothememoryaddressregisterfrom
the memory address bus. Thus. BUMP LR always en-
ables the priority register to load the ROM's each time
anoperationhasbeenefiectedinCAMMinaREAD
condition and a match occurs in a WRITE condition.
NoBUMPLRsigmloccursz-eninaWRl’l'Eoper-a-
tion and match is false.

The various signals fed into the NOR gatu 55 to 58
which are connected to AND gate 54. establish the
condition L035 a which is generated immediately
following the MEM SEL signal that occurs with a
READ or WRITE signal at the loading ofthe memory
address register.

OPERATION

The operation of the present invention will now be
discussed in connection with the flow diagram for
READ and WRITE conditions respectively depicted in
FIGS. 3 and 4 and the waveform diagram for the
READ and WRITE conditions respectively depicted in

NOAC EX. 1017 Page 288

NOAC Ex. 1017 Page 289

.41

x

v I“

3’0“. ;

bfrorn

3,949,369
7

d6.
”65'5” umptionwillbemadethataREADcon—an IE

. (agréfi'" where the computer is reading the address
data word that is stored in the cache. The memory

of the data is read into the memory address

We, 33 from the memory address bus and then fed
into the CAM 34 on level line M1, M2 and M3. The
w has already been updated at the leading edge of

RA with the previous LRU address information
30M 45. In the CAM, an equality search is made

Waddress and the four memory addresses stored
in the GM to ascertain whether or not a match exits.

Assuming a match‘ is detected, this indicates that the
memoryztddreasisalreadyintheCAMitndtherefore
the corresponding memory data is stored within the
cache. Upon occurrence of a match, a match signal is

nerated at the output of Inverter 48 and signal: RA
and RB are also generated to identify at which one of

matchlocationhltemuofRAandRBksetintoregir'
1 ters 52 and 53 tohe saved for updating the priority

register aher this read cycle. At the same time, signals
RAandRBidcntifythelocationofthedatainthe

5f which is LOAD RA delayed, enables the priority regio-
ter 36 to store the order of priority generated during

the present cycle. At the beginning of the next cycle,

5

ll)

15

four locations in the CAM a match occurred. The 20

.~ ache32whichjstobereadoutontothememorydata 25
»bus.'l'lteBUMPLRsignal,asmaybeaeenfi'omFlG.5,

the RA and RB CAM location match saved from the 30
previous cycle is generated and together with the sig-

‘nalaL,througlthfrornpriorityregister36arefed
along with REMSV to ROM's 44 and 45. The informa~
tion at the output LRU leads of ROM 45 is represented
byWAandWBandisavailableforinputtotheCAM 35
34 allowing the CAM 34 location ofthe LRU informad
tion to be identified for loading in a memory address of
new information upon the pruenoe of a LOAD

‘ CACHE ADR signal. The LRU information repre-
ientedbytheWAandWBsignalsalaoilavailablefor 40
inputtotheeacheaztoidentifythelocation'mthe

" achcuWhichdataistobemdintofromthemain

mernory31,inarnarmerhereinaftertobediacusaed.
Next, assuming that the computer reads a word

Which is not in cache, instead of having a MATCH 45
Olltput, a MATCH output is generated at the output of
CAMMTh'aoutputenableamainn-emorytoloadthe
dataattheaddreasspccifiedatthememoryaddreaa
I'figimtrintothlscache32.'l'hecnclrelocationinwhich
thedataisloadedisindicatedhyWAandWBwhich
represent the location of the LRU information from the
latcycle. Thisdata il then readoutofthecacheonto
‘hcmemorydaubua'l'bemsignalalaomm
Benet-ates the signal LOAD CACHE ADR to load the
CAM with the new memory addren information in the
LRU/CAM location. The, of course, occurs before the
BUMP LR signal causes the priority register to store
the new order of priority.

UREMSV isfalse,no invalidity ofthe addraaaoccurs
Ind then the priority of the signals is changed so that
the Previous least recently used location in the CAM it
PI'OVided with the new memory address and made the
moo recently used location and the previous next to
least recently used location is now denoted as the thu
location.

NeXt. assuming that a WRITE condition exists, if the
l"‘0!“er address information is not matched in the
CAM 34. the data is written into the main memory

50

55

65

8
address from the memory address register, but the
priority register is not changed at all.

This, however, will not be the case when a MATCH
occurs in the CAM duringaWRlTEoperation. Again,
aloadingofthemain memory3l atthememoryad-
dress from the memory 'addresa register. As may he
seenwith referencetoFlGSJandGatthe MEMSEL

signal, the memory address register is loaded. If a
match occurs, the signals RASV and RBSV denoting
dreCAMlocationofthematchcausethatlocationto

be made the LRU location upon them of a
REMSV signal. Atthesametirne,the REMOVEsignal
atthetwelflhhitofthemcmoryaddresrregiatereauses
theaddressloadedintotheCAMatthatlocafionwhere
amatch occurred to he invalidated, asthesame mem-
oryaddreuhanowbeenusedt‘orawriteentry.

An interesting apect of the machine. may be seen
with referencetowlren the computer would say“write
something in a location" and then “read from that
samelocation."Whathappcnatotheprioritytablein
this case is that it never changes. For example, ifone
wouldoonsidertheeuewherethecomputerreadsthat
location, itputstheaddreareadintheCAMand
make: it the most recently used in terms ofptiority.
minuncdiatelyneatperiodwhenitgoeatowritein
that same memoryaddreaslocation, it determines that
thememoryaddresalocationisintheCAMandinvali—
thtes that location to make it the least recently used in
the priority truth table. The next ocusion it pea to
readthattameloeationjtwillnowreadfromthesame
main memory address and load that CAM location
(whiehisnowtheleastreeentlyuaed)andmakeitthe
mostrecentlyusedlocatiorLAsiaevidenthere,the
sequence goeabaekandforth,butwlratisimportantis
thattheotherentriesintheotherthreeaddreesesinthe

CAMaremrd'uutrhedsothatonceaprogramstreamis
finishedwithtlrissortofre—cyclirrgoperatiomitean
proceed with previously stored information occurring
before the recycling alreadyin the cache.

ltlhould be noted, that in a “power-up" condition,
allthedatainthecacheiaautomatieallyinvalidatedby
autotnaticallyacttingallvalidhitstofalse'l'hiaiaef-
fected for the m that when power-up condition
occurs.hecauseofthefactthatthecacheandCAM
usedaresemi-conductormemoriaandtherefore will

powerupinarandomstateJtahouldhcevidentfrom
theoceurrenceofpower—up, that althoughtheCAM is
completely invalidated,itisforcedtoapaeudo—priority
sothatoneanneverhavethesametwowordsincache
simultaneously.

Thiaoccursaaaeonsequenceofthe roperuseofthe
determinations MATCH and ms, whereby in a
CAM match, the order of priority of the addresses
alreadywithinthepriorityregisterispmpedy updated
bythe ROM's44and45whichoonsiderthenewloca-
tion of the newly entered memory address which
auscdthemsignaltooccur.

As may be observed from the above, the two bits
RASV and RBSV comprise information for causing the
ROM'IMandfitotheanangementoftheorderof
word state priority stored in the priority register,
whereasthelastbitorREMSViausedtoinvalidate,if
necessary, information stored in a specific location of
theCAM.

What-claimedis: .
I. In a digital computer system having a main mem-

ory means operable atafirst specd,ahighspeedhuffer
’ means operating at a second and higher speed for tem—

lNOAC EX. 1017 Page 289

E

i
r
l
s

5

MI“-

NOAC Ex. 1017 Page 290

3,949,369
9

Family storing selected portions of the main memory
means. and associative memory means for temporarily
storing selected main memory addremes and compar-
ing the stored addresses with a newly received addres
in a read/Write operation to generate comparison data,
the improvement comprising

read only memory means having a bit configuration
representing an algorithm and connected to said
associative memory means and responsive in a read
operation to both said comparison data and data
representative of a previous order of priority for
said stored address, to provide an output represent-
ing a new order of priority for the memory ad-
dresses stored in the associative memory means,
and;

storage means connected from said read only mem-
ory means for storing said output and connected
for subsequent feed back to said read only memory
means as the previous order of priority.

2. In a digital computer system according to claim 1
including

logical circuit means responsive to a write operation
in main memory and a comparison output indica-
tive of an associative memory matched address
comparison for generating an output, and;

said read only memory means responsive to said
logical circuit means output, for defining the
matched addre- location in the asociative mem-

ory means as the least recently used location during
a successive read operation.

3. In a digital computer system according to claim 2
including

5

l0

I5

30

35

40

45

50

55

65

10
invalidating means for invalidating the address stored

in the associative memory means and identified as
the least recently used in response to an output
generated by said logical circuit means output.

4. In a digital computer system according to claim 1
wherein said means for generating comparison data
includes logic means for identifying for a matched ad-
dress, both its presence and the associative memorymeans location.

5. In a digital computer system according to claim 4
where the logic means includes

register means connected to said read only memory
means for storing the location identified in the
mociative memory means of a matched address
from a first read/write cycle for a subsequent read/—
write cycle.

6. In a digital computer system according to claim 1
wherein the output representing the new order ofprior-
ity provided by said read only memory means is defined
by

afirst set ofsignalson afirstsetofleadsconnected to
said storage mums. denoting an order of priority of
the memory addresses in the associative memory
means, and;

asecondsetofsignalsonawcondsetofleadscon—
nected to said storage means and associative mem-
ory means, denoting the least recently used loca-
tion of the asociative memory means.

1. In a diy'tal computer system according to claim 6
wherein said first set of leads is connected to said stor-

agemansandsaidsecondsetofleedsisconnectedto
said associative memory mans.. * O t .

NOAC EX. 1017 Page 290

f

.H.—MMimme-MlA—Aa)‘t.WmmmémWflounm-u,A“....._m-u».....1mm..-”s

NOAC Ex. 1017 Page 291

.4'4‘49“:pt?

.W-wa.J“ a,.‘
a

“t1
2)
,.

United States Patent [19]

Houseman et al.

4,559,618 '

Dec. 17, 1985

[11] Patent Number:

{45] Date of Patent:

[54] CONTENT-ADDRESSABLE MEMORYMODULE WITH ASSOCIATIVE CLEAR

David L Houseman, West Chester,
Pa; Paul Bowden. Raleigh, NC.

Data Guru's] Corp. Westborough,
Mass.

[21] App]. N0.: 417,801

[22] Filed: Sep. 13, 1982

[75] Inventors:

[73] Assignee:

[51] Int. CL‘ ... GllC 13/00-
[52] U.S. Cl. 365/49; 365fl30
[58] Field of Search 365/49, 230

[56] References Cited
U.S. PATENT DOCUMENTS

3,997,882 12/1976 Goya] 365/49
‘ 4,296.475 10/1981 Nederlof ct al. 365/49 X

Primary Examiner—Joseph A. Popek

'Atmrney, Agent, or Finn—Gerald Cechony; Joel Wall

[57] ABSTRACT
A content-addressable memory module which performs
an associative clear operation in response to a clear
signal provided on a clear line. The associative clear
operation simultaneously clear: all registers in the con-
tent-addressable memory module whose content:
match bits in a pattern input to the content-addressable

ADDRESSuuu II5

EXTERNALADDRESS
LINE: u: km

LINES I2.

memory module. A mask input along with the pattern
determines which hits of the pattern are significant for
the match. Each register in the content-addresable
memory module has a bidirectional match line associ-
ated with it. A registcr's bidirectional match line carries
a match signal only if that register contains data match- 5 ‘
ing the pattern bits specified by the mask and the bidi- I.
rectional match line is receiving a match signal from an
external source. Clearing logic associated with each
register clears the register when a clear signal appears
on the clmr line while the register-'5 bidirectional match ' .
line is carrying a match signal. In content-addressable '
memories constructed of such content-addressable ‘
memory moduls, memory match line: connect match
lines associated with a number ofregistus. The memory
match line and all of the march lines connected to‘ it ‘
carry match signals only if ash of the registers associ-
ated with the match lines contains data matching the
pattern and mask input to the coutent-addmble mmn- .-
ory module containing the register. The content:
addrmable memory module further contains logic al-V .
lowing the use of encoded addresses to address individ:
ual registers in the content-addrmable memory,mod-_.‘ _,“ ‘ule.

38Chinml4DrawingFigures

INTERNAL

COflTIOL vwEXTERNAL '1ch"

LINES “W" 125

NOAC EX. 1017 Page 291

NOAC Ex. 1017 Page 292

US. Patent Dec. 17,1985 Sheetl ofl4

MASK LINES E |27

4,559,618 3

DATA

DATA V!” OUTEPSUTI- LIN -
INPUT (m, .-
LINES D v I19
”7

REGISTER

105 (03)

$35.35“
- . INTERNAL

INTERNAL REGISTER CLEARLINES
ADDRESS I23
LINES Il5 ‘

INTERNAL
MATCH

LINES IzI

EXTERNAL Am DD
ADDRESS AIR) ISECSEEFSR
LINES ”3 log CAMM

IOl '

CLR
l3l 133 I35
WV

CONTROL M

LINES I29 EXTERNAL MATCH

LINES MAWMAm I25

FIG. I

NOAC EX. 1017 Page 292

l

I
l

4...L.‘-_.....‘-1.-a......_..--._......u.

NOAC Ex. 1017 Page 293

4,559,618Sheet 2 of 14US. Patent Dec. 17,1985

1Z(.‘.i‘I.‘i.1...3*2:31)}![43.,r§;li£§ m”0....._‘ A__om..z<u
.:m3520..32:.:02:23:5. :20

3:32..352._mmwz<u..mm.mumEmm2£52582....2.mw40$.me
moz<o

mo.Em_$5.8mmoEm
5.m9

55.0%.55.8”.gllllllllllll g)
:Nmmz...

m:AEummmmonZ..253ft;SN$23$3.30«:3:53w..Sm9Nmuzjv5.422(01.0235ENwmzjFan—z.<._.<o$20

NOAC EX. 1017 Page 293

NOAC Ex. 1017 Page 294

.m.059...
6,

9.
5

4midmwt<EfimSm.m>:.u<mwm«So:5Zarawhimmom
_mommom)\/|\IIZ/I)

M______o._cm_ooooo_oo3ooooooo__w.ooooooo0.fi0oo__oo_ooooooo_ooooooooo_o5__o___o__mmbmmwmm.<286.92N.o1§25556s;,00[U
7

15m25
Dtmw.D...s”

:2f.g3.,i.3.3..,..£1...“.3335‘3.a..2iI.f.{4,.y82%;...if«any.3....,.:a,2.Hxia,.w...G..uz,6,‘eflwuw‘fi,
:(,Z‘J..:....(

NOAC EX. 1017 Page 294

NOAC Ex. 1017 Page 295

«1%, .m
”7'

”An.«,"‘1....13;@«mmfiumm'
w“ U.S.Patent Dec.‘17, 1985 Sheet4 of14 4,559,618

9
M...

«;(~55.-uv a-..

‘5.1.340.»

.9’»

Y " I
"x.
12‘ I

STATUS
REGISTERS

4l5

DATA REGtSTERS 4|7

CAM WITH STATUS REGISTERS 40l

FIG.4

,.V 2a:

_(Wm;
H“. ,363'?a-

‘2pk, .«."x

2%“;\1“»(‘VH

NOAC EX. 1017 Page 295

NOAC Ex. 1017 Page 296

‘ .' U.S. Patent Dec. 17, 1985 Sheet50fl4 4,559,618.

50
Call 565 (LO) 50 0 o o o 507 .._,

.43.,“W...»3’was:“4,,.51'A:{we

1 . o(i)- 5‘3 — _ ________ ’ " _—T‘:

3 WE 5m 3
: “W309 5

" l E

‘ I 1

3% H I . 3
1:3 _ - :-

. _ . _ :

i am 57., I I :g
' {m '

.i: 2) ' fl 3:2 3:
‘“ 5731 u:- eg, z

, I 5 i
’ I : g

n2) 1:. 5'
a - 579 I—J ~: :

. .l

““575: 1:" 3 a
I I a .' E :

— -- -
“3 '58: I—J 5

FIG. 5

i?g
.
z;
3:
p.‘ s

,

NOAC EX. 1017 Page 296

NOAC Ex. 1017 Page 297

upm‘ya....“no;'

‘ ..A«V,,.9.44:;uziw’i‘2m652.»,
‘mt

L

' US, Patent Dec. 17,1985

545 :
y(n.l) ‘

ld—CELL 565 (Ll)

y(n.2) :

L—CELL 565 (LZ)
FIG. 5A

Sheet 6 of 14 4,559,618 _

NOAC EX. 1017 Page 297

nu"...H.-,..‘J...MW

W..N--W.mmam“.mflmwnzwx

NOAC Ex. 1017 Page 298
'2‘mm" v3'3;.“ .51.3‘Yrkm;V ',V .u._.

U;S.‘ Patent Dec. 17,1985 Sheet7of14 4,559,618'

TOSHEET6-A
NOAC EX. 1017 Page 298

NOAC Ex. 1017 Page 299

:1!xyt):{51.5.23:3:.27Eti:.5.219:50.3.3}x!jlllll‘lllllllllllllll't11s‘41?:1xcluevaii.il.:1?ll]|xl.§r‘3§n..§mmoGuam9.5..._.
1IIIIIIIIII

‘ 4,559,613

DECODER 6067

L‘ADDRESS

Sheet 8 of 14

FIG. 6A

Illullllllllllll
U.S. Patent Dec. 17,1985

rlIlIIII-llllnllllllllllI

IIIIIIIIIII4|IllllllllllcllllIIIIIVIIIIIIIIIIIlJlllllIDIIII
ohmuIm20mm

NOAC EX. 1017 Page 299

NOAC Ex. 1017 Page 300

y'vo“.~§‘w,‘’
)

‘ ‘1 : US. Patent Dec, 17,.1985 Sheet9of14 4,559,618.

REGISTER 6|87

f CELL6185 (M) “l”
l:T-—-._.T..:T.T-.-T--.-T-_T‘--T---_T-.TI‘ ‘-~.
IIDnA I 6099 .m. sua ."T‘P' 1
. . -@' I-‘m 5|05 . W 6‘5: :J-fi'iiu.mh‘ i '

6024"'mwxgw““nuizu‘zltlxifi‘."

J6“ °fi'_-m55 - :
——— , : 1

' IE-LTQ-A-§9§------ ------_-----‘9?------- _ .- :

;=f.,..“., .M.-ux‘fim“3L. _4-------_..____.._-___---__-..___,

<

. -uJ 2

35%|le MLJWI .1... J. ”322
El - """ :l—
O' I :UJ‘

E5 ‘mfl—Tim e“
£3; ,, I..."i“-| 5‘,
.wz) XA¢I' II .__J .- 3|: :8

Q2. 3‘ ‘

r---_-__---___..__-.-
I

__ __ __l "
LCLEAR LOGIC '6090 '

NOAC EX. 1017 Page 300

NOAC Ex. 1017 Page 301

,,1»!..A‘I:...1Js.;.3x2.§.«11:432.!!!n€,§2flxx.1.311|.t:.u.2§g.if!«5'31,251:}‘wyl1‘.1,(s11855.59.

NOAC EX. 1017 Page 301

1...-----u--..-..--u-n-.—.00.15--11--1---:Ii...--..-..-----...-..n-u..-I:-sl-.---ualI _WC%._61III||Inn-..oI...I0..o-.|9m4IIIIIn:T9:._mw.2_mM.AmmmC5nas_“._s"M13aZ5CC4.IA_CCC4.IEuM,:mm.AM...2mmAMw:IIIIFHQHOIuwA¢-nW¢Lrfl0hp|K°Iluu.

-—_—.—————______——_~———1 ,

Sheet 10 ofl4 4

LEET 6E

5m.

m“MI...22V...Q50.__R8T.__L49.:3BC_M1_:332Lc.8—/9n__DDATo8l"LFIJOIIIIIQI.Mm_|...l||.|l.IIIItmmio20%IIi:-l.1l.0u|l4luJ1IIIIII.H.1olIIJ.lum._mm._mq.u.aI3..gm5muu.m?cmn“aws.n'..94L_IL..lem2ZMMaaMNmama.IA______JM"..Y.CDDW:DDxCw.Im..._IrutIO-JOIKOIII.LFHOHLGIIIIIIoL'9.m_wPu«0.86W&S.m38m_mFl.IU.r------------n--.-.----:-:3:-J------#1----”lil§l._---.------.---._.._moHMMIm20m...

NOAC Ex. 1017 Page 302

Sheet 11 0114 4,559,618US. Patent Dec. 17,1985

TOS EET 5F
*1l‘“""--"""'-“

 «In-11'II7I0IIIII7|IIIO.mmnl|llllll®llll70IIIIJ.loR_.RaB_LM»____II.$.76.DDCIB".DDCIF.B__22MME__337ME“6_DDxW_.DDAW_2rqloulonlvaIIAvLrd..0.d.0.lwAIQII110.._w_3
V-

WaulllmuAVIIImIaol—fillllllIOIIINOIII1IJoRS._RS._aSl0.Sn.0D'8“.0D .I-F___W..W.MME_"_33MME__XW__DDXW._......I..Q.H.0IIIIOIIIOILrunollnoIII111110..111111E911131191“.:111113611...[11-..ams_.Dnso_CBIaSn_CC5MA.CCWE.:m.m.Aa5mmma“FHGHO.IIM011:W°1_.ru..0.u..°cuvh01.-...W10._
_

rIIIIIIIIIIIIIIIIIIIIIIIIII1IIIIIIIIIIIIIIIIIIIIIUmwaIm20m...3.3.:«u1hwy:s i.a1..gm»,

6l43

i2

FlG. 6 D331»,an.““3‘...avyhaw.
203e

g
aP7101x.ECA0N

wwmw

NOAC Ex. 1017 Page 303

:4iilrzi

303no.5
a

. .._ P.m0kmmImO...701m‘7---..---.---.}--.----_.-l--7-.-.-----.---.-u-..-.-.-Jm{0, .lllllll40a .._I."1..lllll|I].lllllllllQoIIIIII Xw.m4“.fiM4.mE5ucc$“nL_%.n_CV,“am4lzimc4cm5“_A4_DouAmm:_omAm“"EO4F---...¢.I¢--.Q----d_rflOllcwmv.......OL._6N1 n6.cm-............¢. _nu.3J..1.........a....... _tn_mq.nn_Ra_uw_BBSn_LS___¢¢3CII._BB3Cw5“_%.mmmmmmeAm..c{3.10-016.....0..r.....Au.uu0wmnv.......O.“__6
.T.E

.1uuuuuuuuuuuuu.140.--."flil--|u-|||~/_OoIIIII “mm.
—

%R"_manu_mQ._.us9EH“BBCSn_Cl5“_MsS(0¢2II“.BB2M_n0.I7_AE._IAERnGimmxM1mmxw":rwMm---I-.Q-.OI¢----.O_r:0-.O..Q........0L0.lllllllltullllnllllllllllnlllllnlllnD.an.........mo5.----s u0I lSn."misAAI“.nch54"_m_.wnl0.IAIAL8E.II8_aa"inmaM...""_Dmmaw.vm._P_W__.|Ic~.um.0..|.°.x.0lullaF...u..0..II.OI°nuuuuuuuon"I6mI _S_uI _U ._L.2 as»:,5 “if., :(Ma.,...§,:x,w.;.S :3a.nus. .2:.me. «ifif‘gw.3{my

NOAC Ex. 1017 Page 304

Sheetl3 of 14 4,559,618.US. Patent Dec. 17,1985

[-6
I

0')

I‘0

.——_._I

...............TO..-J1-15-1..-03it---_3._R7.unWW.5.FnLS.LS_2‘__.I.. ..l66uDW.7 C_S3»"DDCM7.6_. ‘II__.nWDKMcw._:m.mmm“EmFnnnnnH..0:|H.inOI:-u!0_.I..I..o..H..0.-.O...........0.__W.F|_l_
_D

u-u-«--..---|--u............. .60mp:I““-60,90lllllllo"T.nL6n__RS_.E_DC$3__aau.Enw¢s-leunomAMm.rm._ommMW“:mow“_r----.l.0-¢...o.....Qr...¢l.b-¢..........oLKM”.
_R.F

1uuuuuuuuuuuuuuuuu10.oilIII-Innonua:ollllll _-fl5.m__.%O.&onnLSfl"QS_n_CCC$2._W_..¢¢5IE““Cm6..noomMwu“_momw.“_FI:-.l..Q...I.0.-u.0......0..rhuAvluAVuO:........0..m‘.

L

rlllllllllllllllIIIIlllllld.lllll:IlllllllllllllllvlltL.mmkwwIm20¢...

NOAC EX. 1017 Page 304

.:xs..l.fvrltll

éé

.1.i.w..:.«w:.iz,Jovid¢nb$mo\.y‘y.Vv.1.«x.»

. zam.xs.,.13‘

NOAC Ex. 1017 Page 305

Sheet 14 ofl4 4,559,618US. Patent Dec. 17,1985

52....
<00d'0)

£4E:.33....t: .¢

Him::55883.88.0$3320_fl______._.o______o____o______o____o____OO.____o_____o_____o__O_o______o__OO__.__._oooohmhhmmmmhmmmhmwhmmmmhm.mm<_<0<¢¢mv¢¢m¢mm¢¢¢mm¢m¢mmmmmoooooooOooooo0mmmmmmmmmoomooooom.0moowmejmemoo<_mommmommmomhmoommoo.000mmom.voomZOmw34<>$2:Saz.oz<mquoz<zw., .v.w..@ugh“,.fig;§:&wr§;y{¥%; 81!.9:31....i§.:1lséliggz£35.13}?1‘?111;.

 503e

g
aP7101X.ECAON

NOAC Ex. 1017 Page 306

what“.3,raw/,2".$5.9_.
as}.

an

‘n

nu. ~:MMMV‘é;&cs.'.ztmrt
:

4,559,618
1

CONTENT-ADDRESSABLE MEMORY MODULE
WITH ASSOCIATIV'E CLEAR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present inv-tion relates to memory circuits for
use in digital computer systems and more specifically to
content-addressable memory circuits.

2. Description of Prior Art
In the prior art, content-addressable memory mod-

ules (CW5) have been developed which perform
match operations in addition to the read and write oper-
ations performed by standard memory circuits. In read
and write operations, memory modules respond to ad-
dressa. In the read operation. an address is presented to
the memory module and the memory module returns
the data stored at that addrm; in the write operation, an
address and data are presented to the memory module
andthedataisstoredat theaddress.

In the match operation, on the other hand, an itun of
dataisinputtoaCAMandifamatchingitemofdata
is cantained in the CAMM, the CAM indicates its
location by activating a match line corresponding to the
register containing the matching item of data. The de-
gree of match required to activate the match line may
becontrolled bypruentinga CAMM with maskbitsas

lweflaswhhtheinputdataFachmaskbitcorresponds
toaninput databicifthemaskbitissetthecorrespond-
ing input data bit is ignored when data in the register: is
compared with the item of data presented to the
CAM. Examples of such prior art CAMMs are the
Intel(R) 3104, the Signeties 10155, and the Fairchild
F100142. Such CAMMs are genmlly da-gned so that
they may be easily combined together to form content-
addressable memories (CAMs). A CAM has the same
propern’ssasaCAMM, exceptthataaingleCAMregia—
terismadeupofaconespondingregister'fromeachof
the CAM making up the CAM.

CAMsasdacribed-bovemaybeusedindigital
computer systems to construct caches allowing fast
access to frequently-used value by means ofby: repre
senting the valm For example, an operand in an in-
struction stream may contain information from which a
memory addras may be calculated. Once the m-ory
addresshasbeen calculated. the memoryaddressmay
beloadedintoacacheandtheoperandmaybeusedas
a key to access the memory address in the cache Such
a cache may be constructed by combining a CAM with
a fast-access memory. In the combination, each register
of the fast-access memory may correspond to a register
ofaCAM, andamatchlinefromtheCAMregistermay
serve to address the cormponding register of the fast-
acces memory. The CAM registers contain operands.
and the corresponding registers of the fast-access mem-
ory contain the memory addresses corresponding to the
operands. When an operand appears in the instruction
stream, it is presented to the CAM. Ifthe CAM contains
the operand, the match line for the CAM register con-
taining the operand becomes active and thereby ad-
dresses the componding register of the fast-access

memory. The fast-amen memory then respouds by
providing the memory address contained in the corre-
sponding regista'. If the CAM does not contain the
operand, a fault occurs to which the digital computer
system responds by calculating the memory address
represented by the Opel-and and loading the operand

5

10

IS

20

30

35

4O

45

55

65

2
into a CAM register and the memory address into the
consponding register of the fast-access memory.

The use of prior-art CAMS in applications such as
that just described has been hindered by the amount of ‘
time required to clear the registers of prior-art CAMs
Such clearing is often necemary when a call or return
operation is performed or when one process is removed.
from a processor and another loaded onto a processor;
Such operations occur frequently in modern digital data ‘
processing systems, and the amount of time required to ,
perform them has an important impact on overall sys-
tem performance. In CAMS of the prior art, a register L
may be cleared only by performing a write operation to
the register to be cleared. Thus, clearing an entire CAM
requires separate write operations to each register in the
CAM and clearing a CAM entry for a given Operand
requira presenting the operand to the CAM to obtain
the address of the register containing the CAM and then.
perforating a write operation to the register specified by
the address.

The foregoing probi- of the prior art and other
problems as well are solved by the the invention de-
scribed below. , x

SUMMARY OF THE INVENTION L

The present invention provides a CAMM in which all
registus which contain data matching a pattern input as
modified by a mask input are simultaneously elated - .‘
whens clear signal is received inthe CAMM. The mask
input modifies the pattern input by specifying that cer-
tain bits ofthe pattern input be ignored when testing for ,.
a match between the pattern input and data storedin‘th‘e‘
registers. Ifthe mask input specifies that all bits of the
patterninpu‘taretobeignored. all datacontained inthe _' ‘.
registers matches the pattern input and all registers of
the CAM are simultaneously cleared on receipt ofthe- : - i I
clear signal. .

The CAMM includes input lines for receiving data to
bestoredintheregistenandthepatternillputmask
input lines for receiving a mask. a clear line for meiv- ~
mgadearsignahmgistersfmsmrhlgdataaudhidirecu
fionalmatchfineaassociatedwitheachregisterforpro'
viding and receiving a match signal The bidirectional‘
matchlinescarryamatch signal only whenmeregister
associatedwiththematchlinecontainsstoreddata ,‘
matching the pattern input and the match line is simulta-
neously receiving a rmitch signal from an external
source. ‘

The registers have three principal components: logic
forming flip-flops for storing individual bits of data,
match detection logic responsive to the data stored in ‘
the register, the data input lines, and the mask input
lines for detecting a matching data item and providing a ‘
match signal to the bidirectional match line associated
with the register, and clearing logic responsive to the .
clear line and the bidirectional match line for clearing
the register in response to the simultaneous occurrence
ofa match signal on the bidirectona] match line and a
clear signal on the clear line. ‘

CAMMs of the present invention may be combined
to form CAMs with the properties of the CAMM. In
such CAMS. clmr lines from the CAMMs making up
the CAM are connected to a memory clear line and
match lines from registers in the CAMMs are connected
to memory match lines. A Emory match line carries a
match signal only if all match lines connected to the .
memory match line are providing match signals. Conse- .
quently, the match lines connected to a memory match

NOAC EX. 1017 Page 306

.mmW-..w_._.m.n_..

NOAC Ex. 1017 Page 307

is.’

7..3...m“.z.rn.£nwa-L.ae..’
.rx'

«2........
r

u.

w.v. Wm..Hana.‘L-smxu
.4
a;

1i
,3

4,559,618
3

line pmvide a match signal to the clearing logic only if
the match detection logic of arch register in the CAM
register detects a’ match. CAMM registers whose match
[1355 are connected to a common memory match line
”-3 therefore cleared only if mob of the my‘sters con-
nected to the memory match line contain data matching
the pattern input to the CAM containing that register.

It is thus an object of the present invention to provide
an improved digital computer system.

It is a further object of the present invention to pro-
vide an improved CAMM for use in digital computer
systems.

It is another object of the pruent invention to pro-
vide a CAMM having an associative clear operation.

It is a still further object of the present invention to
provide a‘ CAMM wherein allCANIM registers may be
simultaneously cleared.

It is yet another object of the present invention to
provide a CAMM wherein a set of CAM registers
may be simultaneously cleared. _

It is a yet further object of the present invention to
provide a CAMM having encoded addrusing.

It is still another object of the pment inv-tion to
provide an improved CAM. .

It is a yet further object of the present invention to
provide a CAM having an associative clear operation.

It is a final object of the present invention to provide
a CAM whereinsets of registers or the entire CAM may

-be"simultaneously cleared.
Other objects, advantages, and features of the presmt

' invention will be understood by those of ordinary skill
in the art afier referring to the following detailed de-

mscription of the preferred embodiment and drawings,
wherein:

BRIEF DESCRU’I'ION OF THE DRAWINGS

FIG. 1 is a block diagram showing an illustrative
embodiment of a content-addressable memory module
:,_having the propertia of the present- invention;
~ FIG. 2 is a block diagram showing an illustrative
-embodiment of a content-addresable memory module

10

15

20

35

'em‘ploying contrast-addressable memory modules hav— ‘
ing the prOpu-tim of the present invention;

FIG. 3 is a representation ofthe contents ofa content
addressable memory employing contmt-addrmble
memory modules having the propertim of the present
invention before and after a clear operation;

FIG. 4 is a block diagram showing a second illustra-
tive embodiment of a contort-addressable memory em-
ploying content-addressable memory modules having
the properties of the prment invention;

FIG. 5 and 5A are a simplified logic diagram of a
single register of a preferred embodiment of the con-
tent~addressable memory module of the present inven-
tion;

FIGS. 6 and 6A through 6F together make up a com-
plete logic diagram ofa 'I'I'L gate array implementation
of a preferred embodiment of a contain-addressable
memory module of the present invention; and

FIG. 7 is a truth table showing the decoding of the 60
encoded addresses used in the T11. gate array imple-
mentation of FIG. 6.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

1 Introduction

In the following description of the preferred embodi-
ments of the present invention, commit-addressable

45

55

65

4

memories are first described in general. Next functional
descriptions of a content-addressable memory module
of the present invention and of content-addressable
mernoris formed from content-addressable memory
modules of the pmcnt invention are pracnted. Finally,
a detailed implementation of a content-addressable
memory module of the present invention is disclosed.

1.] General Dacription of Content Addressable
Memories

A content-addressable memory (CAM) is a memory
which not only storm data, but also performs a match
operation. In this operation, the CAM is given an item
of data as input and if the CAM contains a matching
item of data, i.e.. one in which the values of certain bits
are the same as that of corresponding bits of the item of
data provided as input, the CAM indicates which regis-
ter of the CAM contains the matching data. In many
CAMs, a mask input selects the bits of the input data
which are compared with the corruponding him of the
data contained in the CAM register. A data item stored
in a CAM register matches thevinput data if the bits in
the data item in the CAM register corresponding to the
bits of the input data item selected by the mask input
match the selected bits of the data input item. Other bits
inthedataitemstoredintheCAMdonotafl‘ectthe
match.

1.2 CAMS of the Present Invention

Baides performing match operations with or without
masking, CAMS of the present invention perform an
associative clear operation. In a clear operation, all bits
inangisterofaCAMaresethinanassociative
clearoperstion, allbitsinagivenregisterofaCAMare
settoOifthereisamatchbetweeu thedatainputtoa
CAMasmaskedbythemaskinputandthecontentsof
a given CAM register. Finally, CAMs of the present
inv-tion perform rad and write operations like those
of standard memoria. .

2 Commit-Addressable Memory Modules ofthe Present
Invention—FIG. 1

A CAM of the prmmt invention may include one or
more CAM modules (CAMMs). Referring to FIG. 1,
thereisdisclosedablockdiagram ofa-gleCAMM
101 of the present inv-tion. CAMM 101 contains a
plurality of register: 105 for storing data. CAMM 101
further receives inputs of data to be stored in registers
105 from data input lines 117, masking inputs from mask
lines .127, addresses of registers 105 from external ad-
dress line 113, and control signals from control lines
129. Control lines 129 include output enable (0E) line
131 for enabling output of data fom CAMM 10], write
enable (WE) line 133 for enabling the storage ofdata on
datainput lines 117 in CAMM 10], and clear (CLR) line
135 for enabling the associative elm-mg ofregistus 105.
CAMM 101 provides outputs of data stored in registas
105 on data output lines 119. Finally, CAMM 101 both
receives inputs and provides outputs on bidirectional
extmnalmatchlineleS.Eachexternalmatchline125

corresponds to a register 105 in CAMM 101 and a exter-
nal match line 125.may be connected to external match
lines 125 of other CAMMs 101. The input received on
a external match line 125 for a given register 105 indi-
cates whether the contents of registers 105 of other
CAMMs 101 whose external match lines 125 are con-
nected'to the external match line 125 of a given CAMM

NOAC EX. 1017 Page 307

NOAC Ex. 1017 Page 308

$5.33tax:“

a
an.

em

.a;mm!»

X.

‘-‘a,,ri_J.

4,559,618
5

register 105 match the data inputs to those CAMMS 101
as masked by the mask inputs. The output ofan extemal
match line 125 for a given register 105 indicates
whether the contents of that register matches the data
and mask inputs received by its CAMM 101.

3 Internal Structure of CAMM 101

Internally, CAMM 101 is made up of register set 103
consisting of registers 105, address decoder 109 for
decoding addresses ofregisters 105 received on external
address lines 113, internal address lines 115 for transmit-
ting decoded addresses from address decoder 109 to
registers 105, clear logic 111 for performing the mela-
tive clear operation, internal match lines 121 for trans-
mitting match signals between registers 105, clear logic

5

10

15

llLandexternalmatchlineleS,andintemalclearv
lines 123 for transmitting clear signals between clear
logic 111 and registers 105.

Each register 105 consists of a plurality of cells 107
for storing a single bit of data. Each cell 107 in a given
register 105 corresponds to a single data input line 117,
a single data output line 119, and a single mask line 127.
ThusifeachregisterlflShasfl...mcellslu7,thaeare
0 . . . in data input lines 117, data output lines 119, and
mask lines 1125. In FIG. 1, the plurality of data input
lines 117 is indicated by d(0) . . . d(m), the plurality of
mask lines by e(0) . . . e(m), and the plurality of data
output lines by y(0) . . . y(m). Data input line d(0) carries

datatocel]107(0)ofaregister105speciiierlbyan30
addrm on external addm lines 113, data output line
y(0) carriudatafromcell 107 (0) ofa register 105 speci-
fiedbyanaddrmandmasklineem)masksdatainput
lined(0).

Each register 105 corresponds to a '-gle internal
addressliue115,asingleiiiternalmatchline121,anda
singleinterualclearlinelza.InFlG.1,theplm'alityof
registers105isindicatedbyr(0)...r(1),thepluralityof
internaladdresslineslls by a(0).. .a(l), the plurality

35

of internal match lina 121 by m(0) . . . m(l), the plural- 40
ityofintemalclearlinesmbyqo)...c(l),andthe
pluralityofesternalmamhlinesmbyMMo)...
MA(1).lfiisino...1,theninternaladdressline115
a0),internalmatchline121m(i),intmnalclearlinem
CG), and external match line 125 MAG) all correspond 45
to register-r(i) 105. Further.agivencell 107inregisters
105ismdicstedbyq(ia'),whereispecifiesregrsterl|15to
whicheellqubelongsandj specifisaasinglecell of
1070fce1151070..minregistai.Thus,ce11107(0)
of register 105 r(l)is specified by q(1,0).

Internal match line 121 m(i) and external match line
125 MAG) are related as follows: ifeither is inactive, the
otherisalsoinactive. InternalmatchlinelZlmG)is
inactive if its corresponding register 105 r(i) don not
match the data on data input lines 117 as masked by the
inputs on mask lines 125. The electrical properties of
external match lines 125 are such that corresponding
external match lines Earn a plurality ofCAMMs 101
may be connected together; since each such connected
external match line 125 MAG) is inactive if its corre
sponding internal match line 121 m(i) is inactive, all
such connected external match lines 125 MAG) are
inactive ifany of the corresponding internal match lines
121m(i)isinactive.andifanexternalmatchline6125
MAG) is inactive. all internal match lines 125 m(i) con-
nected thereto are also inactive. In logical terms, there-
fore, thestate ofanextemalmatchlinelZSMAG)isthe
logical product of the states of all internal match lines

50

55

60

65

6

121 m(i) in the CAMMs 101 whose external match lines : '2'125 are connected.

Clear logic 111 determines the state of an individual A 1 ..
clear line 123 e(i) in response to external match line125 _‘
MAG) and CLR line 125. If external match line 125
MAG) and CLR 135 are simultaneously active, clear
logic 111 actives clear line 123 e(i), thereby setting cells.- :: "
107 q(i,0 . . . m) of register 105 r(i) to a value indicating
a binary 0. As mentioned above, external match -line

MAG) is active only ifits corresponding internal match 5; .. 3
line m(i) is active Where external rnatch lines 125
MAG) of a plurality of CAMMs 101 are connected 31
together, therefore, no register 105 r(i)in any of the’ ‘-
plurality of CAMMs 101 is cleared unless internal
match lines m(i) 121 in all of the plurality'of CAMMs‘ "
101 are active, that is, unless the contents of each regis- :3 4 '
m 105 1(1)m the plurality of CAMMs 101 matches the ' ’g ‘

inputs on data input lines 117 as masked by mask lines 3125inthatCAMh1101.

External address has 113 consist of a pluralityof -_
.A(k) which transmit a binary . ‘;

encoded addrx specifying a register 105 to address‘~-‘
decoder 109. Address decoder 109 decodu the address“ 5‘
and activates internal addm line 115 corresponding to . .

25 register 105 specified on external address lines 113.: For

addren lilies A(0).

example. in a CAMNI 101 with 8 registers 105, the ex—
ternal address lines 113 may consist of lines A(0) .3. ..
A(2) andinternal addresslina flsmayconsistoflines
a(0).. .a(7) The three extunal addm lines 113 allow‘

a binary representation of the integers 0 through7 and
address decoder 109 dwods this binary representation.
and aetivatu internal address line 115 for register 105
specified by the integer represented by external addresslines 113. ‘

4 Operations Performed by CAMM 101

As mentioned above. CAMM 101 performs four op-.,
erations: a read operation. a writeioperation,‘a match
operation, and a clear operation. In a read operation.'~
0E131isatnive,externaladdresslins113sp¢cifya~
register105rfi),anddataoutputlinesl.19y(0);..y(m).
aresettothevaluesofeells1059(i,0). . .q(i,m).lna~
writeoperati‘an.WE1331'sactiveeirterrialaddresslines1
mspedfyaregister105r(i),andcefls105q(i,0)
q(i,m)aresettothe valuesondatainputlineslfl e(0) 51.,

..d(m)

InamatchopaafiomWEmandQLRmar-ebothv'."
inactive. The inputs are data on data lines 117d(0). .
d(m) and mask enable signals on mask lines 127 e(0).
.e(m). lfamaskline127e0')issctive.thenthevalueoi' .~
data line 117 (10') is disregarded when testing for a
match. If the contents of cells 107 q(i,0) . . . q(i,m) for a' .
given register 105 r(i) match all values on data lines 117 5.
d(0).. .d(m) which are not masked by active mask lines
127, then internal match line 121 m(i) becomes active. In 2 h
logical terms, this may be defined as follows:

mm = 1.50 «w: n - do» + eon

where P is the logieal product.
In the associative clear operation, finally, WE 133 is

inactive and CLR 135 is active. As previously men- ‘
tioned, ifCLR 135 0(i), internal match line 121 m(i), and
external match line 125 MAG) are all active, match and V
clear logic 111 clears register r(i). Sincemm}, .
line 125 MAG) is active only ifinternal match lines 121

NOAC EX. 1017 Page 308

NOAC Ex. 1017 Page 309

4,559,613
7

'm(i) {or all CAMMs 101 whose anemia match lines 125
MAG) are connected together are active, a clear takes
place only if there are matches for all CAMMs 101
whose external match lines 125 MAG) are connected.

3 CAMS Cmnposed of CAWS 101—FIG. 2
In most applications an individual CAMM 101 like

the one just described is combined with other CAhdMs
101 to make a CAM. FIG. 2 is a block diagram repre-
senting a CAM 201 made up of a plurality of CAMMs
101. Inputs to CAM 201 include data on CAM data
input lines 213, masks on CAM mask lines 215, control
signals on CAM control lines 211, and encoded ad-
dresses on CAM address lines 211. Outputs include data
on CAM data_output lines 214 and CAM matchsignals
on CAM match lines 217.

4.3.1 Behavior of CAM 201

The behavior ofCAM201isdetermined by theman—
net in which CAMM: 101 making up CAM 201 are
connected by CAM address ling 211, CAM control
lines 212, and CAM match lines 217.CAMaddres lines
211 CA(0) t . . CA(k) unconnected to external addres
1inesll3A(0)...A(k)ofallCAllms101inCAM201,
and consequently, an addrm i on CAM address lines
211 specifies register 105 r(i)inallCAMMs101 making
upCAM201.CAMcontrollin5212consistofCAM
QE-IineZZI. connected to 0E line 131 ofall CAMMa

~54-101makingupCAM201,CAM\VE1iue223,con-
:: nectedtoWEline1330fa11CAWs101inCAM201,
L andCAMCLRlineZZS,connectedtoCLRline1350f
-- aflCAMMlelinCAMMLAsaconsequenceofthese
lr» connections, when a CAM control line in CAM control

lines 212 becomes active, its corresponding control line
inconfl'ollinmminallCAMMslolmaking upCAM

- 201 becomes active. CAM match lines 217 CMA(0) . . .
i CMA(I), finally, are connected to external match lines
#125 mm) . . . MA(1) in-all CAMMs 101 making up
.e- CAM 201. As previously explained, when external
:e‘match lines 125 corresponding to a register 105 r(i) in a
1.plnrality of CAMMs 101 are connected together, a

r failure ofthe contents ofa register 105 r(i) to matchthe
values of reg‘ster 205 r(i)’s data inputs 117 as masked by
itsmaskmputsmducfivatsitseatesnalmatchlhre
125MA(i),andthisinturndeactivatesallextemal
match lines 125 MAG) connected to it. Consequently,
CAM match line 217 CMA(i) is active only if for each
register 105 1G) in the group of CAMMs 101 forming
CAM 201, the value of data inputs 117 as masked by
mask inputs 127 of each register 105 r(i) matches the
contents of that register 105 r(i).

As a result of these connections between CAMMs
101 making up CAM 201, corresponding registers 105
r(i)inCAMMs101makingupCAMZOlbehaveasa
single logical register 219 RG), indicated by dashed lines
inFIG.2.ifCAM201containssCAMMlelandeaeh
register r(i) contains 11 cells 107, then logical register219
R(i)containssnccllle7.InFlG.2thesecellsarespcci-
fied as cells 107 q(i,0) . . . q(i,p), where p=sn— 1. Just as
all registers 105 r(i) in CAMMs 101 making up CAM
201 form a‘logical register RG) 219, so do all data input
lines 117 in thse CAMMS 101 form CAM data input
lina 213, all data output lines 119 form CAM data out—
put lines 214, and all mask lines 127 form CAM mask
lines 215. There are as many CAM data input lin: 213.
CAM data output linm 214, and CAM mask lines 215 as
there are cells 107 q in a logical register 219. In FIG. 2,
the lines comprising CAM data input lines 213 are speci-

10

15

35

40

8

fled by D(0) . . . D(p). those comprising CAM data
output lines 214 by Y(0) . . . Y(p), and those comprisin9
CAM mask lines 215 by 15(0) . . . E(p), where p=sn—1
as before. “ ~ ' '

4.3.2 Operations Performed by CAM 201
As a conseqence of the manner in which CAMMs 101

are connected to form CAM 201, all of the railing,
writing, matching, and cluring functions performed by
a CAMM 101 can be performed by CAM 201.

In a read operation, CAM OE line 221 is active and
CAM address lines 211 specify an address. Conse-
quently, control line OE 131 of each CAMM 101 is
active, external address lit-rs 113 of each CAMM 101
specify a corresponding register 105 r(i), and data out-
put lines 119 are set to the values of the cells 105 making
up register 105 rG). Since all the registers 105 r(i) to—
gether make up logical register 219 RG), and all of the
data output lines together make up CAM data output
lines 214, the result is to set CAM data output lines 214
Y(0) . . . Y(p) to the valus of cells 105 qG,0) . . . qG,p)
in logical register 219 RG). Similarly, in the write opera-
tion. CAM WE line 223 is active, CAM address lines
211 specify an address, and cells 105 qG,0) . . . q(i,p) in
logical register 219 RG) indicated by the address are set
to the values of CAM data input linm 213 D(0) . . . D(p).

In a match operation, CAM data input linele3 D(0)
. . .D(p)specifythedatatobematched withthecon-
tents of logiml registers 219 and CAM mask linu .215
13(0)...E(p)ape<:ifywhichbitr'.ofthedataaretobe~
ignored in determining whethm' there is a match. Since
CAM match line 217 CMA(i) corresponding to a logi-
cal register 219 RG) connects all external ~match lines
125 MAG) for registers 105 r(i) comprising logical regis-
ter 219 RG), CAM match line 217 CMAG) and all exter-
nal match lines 125 MAG) are deactivated as previously
described if the contents of any register 105 r(i) failro
match unmasked bits on CAM data input lines 213 cor-
responding to the cells 105 contained in register 105 :6).
The state ofCAM match line 217 CMAG) thus indicates

' whether the contents of logical register 219 RG) match

45

55

65

thedahonCAMdataiuputlinelefilMO)...D(p).In
logical terms. this may be expressed as follows:

mum - ,5 [mm - ea» + «mJ=0

where P is the logical product as before. As may be seen
from the above equation, a match operation for a logical
register 219 RG) in CAM 201 is completely equivalent
to a match operation for a register 105 r(i) in CAMM
101.

The behavior of the clear operation in CAM 201 is
determined by the behavior of the match operation and
bythefactthatCLRlinesl350fallCAWs101in
CAM201areconnectedtoCAMCLRline225,and
consequently, all CLR lines 135 are active when CAM
CLR line 225 is active. As explained in the description
of CAMMs 101, a register ms r(i) is cleared only if
CLR line 135 and external match line 125 MAG) are
both active. External match line 125 MAG) for a regis-
ter105r(i)inalogieal register219RG)isactiveon1yif
internal match lines 121 m(i) for all registers 105 r(i)
making up logical register 219 R(i) are active. There-
fore, registers 105 r(i) making up logical register 219
RG), and thus, logical register 219 RG) itself, are cleared
only if the contents of logical register 219 RG) match

NOAC EX. 1017 Page 309

NOAC Ex. 1017 Page 310

4,559,618

9

the data 'on CAM data input lines 213 as masked by the
input on CAM mask linu 215. As with the other opera-
tions, the clear operation on a logical register 219 R(i)ls
thus completely equivalent to the clear operation on a
register 105 r(i).

4.3.3 Example Match and Clear Operations—FIG. 3

A concrete example of a match operation and a clear
operations in s CAM 201 is provided by FIG. 3. FIG. 3
shows the state of cells 107, CAM data input lines 213,
CAM mask [ind 215, internal match lines 121, internal
clear lines 123, and CAM match lind 217 for a CAM
201 comprised of two CAMMs 101. Each CAMM 101
contains 8 4-bit registers 105, and consequently, CAM
201 of FIG. 3 contains 8 lght-bit logical registas 219.
FIG. 3 represents CAM 201 as follows: Table 301 repre-
sents the inputs to CAM 201 at the time of the match
and clear operations; row D corresponds to CAM data
input lines 213, and row E corresponds to CAM mask
lines 215; the calm specify individual CAM data
input lines 213 and CAM mask lines 215. The value at
the intersection of a row and a column specifies the
value on the line specified by the column in the set of
lines specified by the row.

Tabla 305 and 307 show the state ofCAM 201 before75
and alter an associative clear operation. In these tables,
part 302 represents the state of CAM 101 0 and part
303thestateofCAMNI 101 lmnkingupCAMZfll. In
tables 305 and 307, each row corresponds to a logical
register 219 and the numbered columns correspond to
cells 107. The value at the intersection of a row and a
umnbered column is thus the value ofthat cell 107 spec-
ified by the column number in logical register 219 speci-
fied by the row number.‘Table 305 further contains
lettered columns; the letters heading these columns
specifylinesinCAMMslfllcorrapondingtoregistua
105 making up logical registers 219 in CAM 201 and
linsinCAMZOl itself. The letterM121 specifimintu—
nalmatchlinulZl,theletterC123specifiesinternal
clearlineslz3.thelettersMAspecifyesrter-nalmatch
line125,andthelettusCMAspecifyCAMmatchlines
215. As previously explained, the state ofa CAM match
liue215isthesameasthestateoftheexternalmatch

lines 125 connected toit. Again, the valueattheinter-
section ofa row and a lettered column is the state ofthe
line specified by the letter corresponding to the register
specified by the row.

Turning now to the operation illustrated in FIG. 3,
the values of CAM mask lines 215 determine which

values on CAM data input lines 213 are relevant to the
matchInFIG.3,CAMmasklinesE(2)...E(7)all
have the value 1; consequently, any value in cells 107
(16,2) . . . q(i,7) produces a match when compared with
the value on the corresponding line of CAM data input
lineleB D(Z). . .D7)andonlythevaluesincells 107
q(i,0) . . . q(i,1) may fail to match when compared with
the value of the corresponding data input line of data
input lines 213 D0) . . . D(1). The efiect of the masking
canbeseenincolumnmforCAMMl303.Sinceall

CAMmaskliueleScorrespondingtocellslMcon—
tained in CAMM 1 303 are active, the contents of these
cells are indifferent and all internal match lines 121 in
CAMM1303areacfive. InCANIM0302,ontheother
hand, only CAM mask lines 215 corresponding to cells

5

10

IS

30

35

40

45

55

107 q(‘1,2) . . . q(i,3) are active, and thus, the contents of 65
cells 107 q(i,0) and q(i,l) are relevant to the match. As
FIG. 3 shows, only in registers 105 (l), (4), and (5) do
the contents of these cells match the values on the cor-

10

responding CAM data lines 13(0) . . . D(l), and only
internal match lines 121 consponding to thse registers
105 are active.

Further, since all internal match lines 121 mCr)-in
registers 105 r(i) making up a logical register 219 R(i) ‘ ‘
must be active in order for the CAM match line 217

corresponding to a logical register 219 R(i) to be active, ’ ‘ i
only CAM match lines 217 for logical registers 219 (1); f '
(4), and (5) are active. Finally, an internal clear line 123 ~ '
c(i) in CAMM 0 302 or CAMM 1 303 is active only if .‘ .,
CAM CLR 225 is active and external match line MA (i) 3 L
125 is active. Since the state of external matchyline'
MAG)125is identical with the state ofCAM match line' >-
217 to which1t is connected and only CAM match lines
219 for logical registers (1), (4), and (5) are active, only _ ‘
thoseinternalclurlinesminCAMM0302and

CAMM 1 303 are active which corrapond to registers .: .
105 making up logiml registm's 219 l, 4, and 5.. As ‘ '
shown in Table 307 of FIG. 3, showing the state of the '
cells 107'1n CAM 201 after the clear operation, all cells
107 making up these logical registers 219 have been set.' ‘ .toO.

The associative clear operation illustrated"1n FIG. 3. .-
may be used to simultaneously clear all data having a .1; '

Beerlaintypecodefi'omaCAMmlwhileleavingdata.
with other type codes undisturbed. For example, the-;~.'~"‘~
lenmost two bits ofthedatastoredmCAMM}ofEIG
3mightbesud1atypecode. IntheexampleofFIG.~
CAM masklines 215 maskall bitsbut-those containing 3: 3:
fltetypecodeandthelmmaskedCAMdatainputlina
213havethevalue10,specifyingstypecode.Asappar-, 3 ,-

entinFIG. 3, wh-CAMCLRlineZISisactiveallj- 1'

CAM20110gicsl registers 219 containing data withthe‘
typecodelOarecleared.

4..34CAMswithDifi'a-entPropertisFormed fromCAMMS 101—FIG. 4-

ByvaryingthemannerinwhichCAWs101are
connected together, CAMs with differing propertis
may be formed. FIG. 4 presmts an example of such a
CAMaCAMwithstatusregistersCAMWlhasnvo;2

mainparts:statusregisters415anddahregisters4l7.fi,
Dataregisters4l7containdata;eschregisterinstatus.-‘I’
registers 415'ls associated with a data register 417 and
contains status information about that data register-417: ,
Status information might include 'a bit indicatingrthar" ‘. '
thecontemaoftheassociateddataregister4l7arevalidi,
or one indicating that the associated data register 417'is

being loaded. The association ofregsters'1n status regis-~
ters 415 with registers in data registers 417'Is accom-
plished by connecting all CAMMs 101In CAM401 to '
common CAM address lines 404, whereby a single ad-
dress refers either to a register in status registers 415 or
the register in data registers 417 associated with it. The ~
division of CAM 401 into two sets of registers is accom-
plished by connecting CAMMs 101 making up data .
registers 417 to one set 403 ofCAM input, output. mask-
ing, control, and match lines and CAM 101 making 5
up status registers 415 to another set 405, thus making it
possible to perform read, write, match, and clair- opera- ~ f
tions independently on status registers 415 and data
registers 417.

4.4 Implementation of a CAMM 101

The discussion now turns to an exemplary implemen-
tation of a CAMM 101. The exemplary implementation ~
is presented merely for purposes of illustration; other ~
implementations are possible which are capable ofper-

NOAC EX. 1017 Page 310

u
1
l

NOAC Ex. 1017 Page 311

weir.'Av:

5%,...‘12333%?W
”241549;;...:
aver..‘z'

i
:5

~é ,
x?

4,559,618
11

' forming the same operations as the exemplary imple-
mentation and are thus equivalent to it. The exemplary
implementation discussed herein uses TI'L gate array
technology. In this technology. all logic firnctions must
be expressed by means of NAND gates and inverters.
Because of the complexities introduced into the imple-
mentation by this constraint, it is advantageous to first
discuss FIGS. 5 and 5A, which together present a sim-
plified logic diagram for a single register of a CAMM
101. Thereupon, the discussion will turn to the exern- 1°
plary implementation of CAM 101 itself.

4.4.1 Simplified Logic Diagram for a Single Register ofa CAMM lfll—FIG. 5

The logic diagram of FIGS. 5 and 5A employs AND
gates, OR gates, and RS flip-flops, that is, flip-flops
having an S input whose activation sets the flip-flop to
1, an R input whose activation sets the flip-flop to 0, a y
output which has the value to which the flip-flop was
last set, and a 37 output whose value is the complement

' of that of the y output. FIGS. 5 and 5A represent a
single register 56'] (i): outlined in dotted lines, and addi-
tional elements showing register 567 (r)'s relationship to
the remainder of CAM 101 to which it belongs. Reg-
ister 567 (i) is functionally equivalent to registu' 105 r(i)
of FIG. 1. Register 567 (i) is capable of storing four hits
and conscqu-tly is made up of four cells 565 (1,0) . . .

A .. (1,3), equivalent to cells 107 q(i,0) . . . q(i,m) of FIG. ‘1.
4.4.1.1 Inputs and Outputs of Register 567 (1)

Inputs to register 567 (i) consist of: mask lines e(0) 501
,2, through e(3) 507, corresponding to mask lines 127 e(0) .
F . . e(rn) of FIG. 1; data input lines d(0) 509 and d(l) 571

through d(3) 575, corresponding to lines «0);. d(m) of
input data lines 117,_d__ata complement lines d(0) 511 and

:36) 577 through d(3) 581, carrying values which are
a: the logical complement of the values on corresponding
'.; data input lines d(0) 509 and d(l) 571 through d(3) 575;
i=:OE line 508, corresponding to OE line 131, WE line

..,_:93:

'_,.510,' corresponding to WE line 133, internal clear line
90(1) 523 corresponding to clear line 06) of internal clear

lines 123, and internal address line a(i) 513 correspond-
ing to line a(i) of internal address lines 115.

Register 567 (0’5 outputs include register data output
lines 96,0) 539 through y(r,3) 551 and an external match
line corresponding to line MAG) ofexternal match lines
MA 1.25 in FIG. 1. As previously mentioned, external
match lines MA 125 are bi-dircctional and may be con-
nectcdtootherexternalmatchlinesMA125.Whenso
connected, an external match line MA 125 is active only
ifallotherexternalmatchlinesMAlZSconnected toit

are active. In FIG. 5, the bidirectional nature of the
external match line and its relationship to correspond-
ing match lines of other CAMMs 101 is errprased by
representing the external match line for register 567(i)
as two lines, MA(i)out 556 and MA(i)in 559. MAG)out
555 is a continuation of internal match line m(i) 555;
MAG)in 559 is connected to CAM match line CMAG)
564. corresponding to a line in CAM match lines 217 of so
FIG. 2. The relationship between lina MA(i)out 556,
MAGhn 559, and their equivalents in other CAMMs
101 is shown by means of wire AND gate 563 (in dotted
mitt)- Inputs to gate 563 are lines MA(i)out for
CAMMslfllwhoseexternalmatehlinesMAlZSare
collnected, its output is CAM match line CAMG) 564,
“‘1 MAG)in 559's value is determined by the value of
CAM match line CMAG) 564.

15

20

35

45

55

65

12

4.4.1.2 Detailed Discussion of Cell 565 (i,0)

Since all cells 565 in register 567 (i) are identical, only
cell 565 (i,0) is discused in detail. Cell 565 (i,0)‘s inputs
are mask line e(0)__5_07, data input line d(0) 509, data
complement line d(0) 511, internal address line a(i) 513,
0E line 508, WE line 510, and internal clear line cl(i)
523. Cell 565 (i,0)'5 outputs are cell match line m(i) 541
and cell output data ling: 3’63) 539. The logical compo- -
nents of cell 565 (i,0) are: AND gate 515, receiving
inputs from WE line 510, data line d(0) 509, and internal
address line a(l) 513; AND gate 517,‘ rccflug inputs
from WE line 510, data complement line d(0) 511, and
internal address line a(i) 513; OR gate 525, receiving
inputs from internal clear line CO) 523 and AND gate
517; RS flip-flop RS(i,0) 529, receiving its S input from
AND gate 515 and its R input from OR gate 525; AND
gate 533, receiving inputs from data line d(0) 509 and
the y output of RS flip-flop RS(i,0) 529; ANDfl534,
rweiving inputs from data complement line d(0) 511
and the y output of RS flip-flop RSG,0); OR gate 540,
receiving inputs from AND gates 53 and 534 and mask
line 6(0) 507; and AND gate 535, receiving inputs from
internal addlus line a(i) 513 and the y output of RS
flip-flop RS(i,0) SD.

4.4.1.3 Operations on Register 567 (i)

'When’ read, write, match and associative clear opera-
tions are performed on the contents of register 567 (i),
the components of cell 565 (i,0) interact as follows: In a
write operation to register 567 (i) to which call 565 (i,0)
belongs. WE-line 510 and internal addrss line a(i) 513
are both active. Consequently, the states oflines 519 and
521, carrying the outputs of AND gats 515 and 517
respectively, depend on whether data input line d(0) 509
is active. If it is, then data complement line m 511 is
inactive,line519isactive,andline521isinactive.lf
data input line d(0) 509 is inactive, the reverse is true.
Line 519 is connected to the S input of flip-flop RS(i,0)
529, and consequently, if line 519 is active, flip-flop
RS(i,0) 529 issettol. Line 521 isoounectedtoOR gate
523, whichinturnisconnectedtotheRin'putofflip-
flop RS('1,0) 529. Therefore. ifline 521 is active, flip-flop
RSG,0)529isrsettoO.Thus,afierawr-iteoperation,
the value at the y output of flip-flop RS(i,0) 529 is iden-
tical to the value repreaarted on data input line d(0) 509
at the time of the write operation.

As FIG. 5 shows, internal address line a(i) 51's and.
WEline510areconnectedtoothercells565inregister
567(i)inthesamefashionastheyareconnectedtocell
565 (i,0), and each ofthe other cells receives inputs from
its equivalentfl) data input line d(0) 509 and data com-
plement line d(0) 511 in the same fashion as cell 565 (i,0).
Thus, at the end of a write operation, RS flip flops 529
(i,0.. .3)inregister567(i)containthevaluesondata
input lines d(0) 509 through d(3) 575.

In a read operation, internal address line a(i) 513 and.
0E line 508 are active. Internal address line a(i) 513 and
line 531 from the y output of flip-flop RS(i,0) 529 serve
as inputs to AND gate 535, whose output is cell data
line 539 y(i,0). Thus, when internal address line a(i) 513
is active, the value of the y output of flip-flop RSG,0)
529 determina the value of cell output data line 539.
Cell output data line 539 is an input to OR gate 569,
along with the equivalent lines from other registers 567.
Thus, if cell output data line 539 is active, line 570, the
output ofOR gate 569, is active. Line 570 is one input to
AND gate 571; the other input is 0E line 508; conse-

NOAC EX. 1017 Page 311

,..—un...“_....wm.mm“..-

NOAC Ex. 1017 Page 312

4,559,618
13

quently, when address line a(i) 513 and OE line 508 are
active, cell data output line y(0) 573's value'is deter-
mined by the value of the y output of flip-flop R56,0)
529. Since internal address line a(i) 513 and DE line 508
are connected in the same fashion in all cells 565 making

up register (i) 567, the values at the y outputs of these
registers’ RS flip-flops 6,0 . . . 3) determine the values
on data output linm y(0) 573 through y(3) 579. When a
register is not being addressed, the outputs of the AND
gates corresponding to AND gate 535 are inactive.
Consequently, only the values'111 cells 565 6.0.. 3.) of
the addresed register5671(i) determine the values of
data output lines y(0) 573 through y(3) 579.

In a match operation, the value at the y output of
flip-flop RSG,0) 53'is compared with the value on data
input line d(0) 509 unlea mask line e(0) 517is active.
When the operation is performed, the value at the y
output of flip-flop RS('i,0) 5”, carried on line 531, and
the value on data input line 11(0) 509 are both input to
AND ga.te533 Atthesamefiinethevalueofthey
output of flipflop 1156.0) 5”, carried__on line 532, and
the value on data complanent line d(0) 511 are both
input to AND gate 534. Consequently, if the value on
data input line d(0) 509 matches the value at the y out-
put, eitherline537,theoutputofANDgate533,orline
536, theoutputofANDgate534,isactive.Line537is
active if data input line d(0) 509 and line 531, carrying

. the value ofthey output, areboth active, thatisifthe
dataondatamputlined(0)509andthedatainflip-flop
RS('i,0)bothhavethevaluel, andline536isbeactive
if data complement line70) 511andline532, carrying
thevalueoftheyomputsrebothacfivethatisifthe
dataondatamputlined(0)509andthedataiuflip-flop
1186.0) 529 both have the value 0. Lines 536md 537are
inputs toOR gate540, andconsequently,0Rgste540‘s
output,line541,isactiveifeitherline5360rline537is
acfivelfiontheotha'hmdthedataondatainputline
d(0)509dosnotmatchthedatainflip—flop 1156.0) 529,
neitherANDgate~533norANDgate534hastwoac~

5

10

IS

:35

tiveinputs,andoutputlines$37and536arebothinar> 40five.

’I'hethirdinputtoORgatefloismasklinedD) 507.
Whendataliued(0)509isbeingmasked.masklinee(0)
507isactiveandORgate540'soutputline541isactive
regardlessofthevaluesoflines536and537,that 'm
regardless ofwhetherdatalined(0)509hastheaane
value as flip-flop RS(i,0) 529.1Jne 541 and its equiva-
lentsfi-omtheothercells565inregistu5675erveas

inputstoANDgate553, whoseoutputisintanal match
line m(i) 555,corrq10nding to one of internal match
lines 121. Consequently, internal match line m6) 555 for
aregisterG)567isactiveonlyifallcellmatchlinsfor
register1(i) 567': cells are active.

The associative clear operation take place when
CLR line 512'is activated. If external match line MA(-
i)in 559is active when CLR line 512is activated, cell
(i,0)56515c1eared.CLRline512andexte1-nalmatch
lineMA(i)in559areinpmstoANDgate514, whichhas
internal clmr line c(i) 523 as its output. Internal clear
line c(i) 523 provides an input to OR gate 525, whose
output is connected via line 527 to the R input of flip-
flop 1186.0) 5”. Thus, when CLR line 512 and external
match line MAOin 559 are active, internal clear line c(i)
523'is active, line 527is active, and flip-flop RS(i,O)is set
too.Sinceinternalclearlinec(i)523isconnectedasss
described aboveto all othercells565inregister(i)567,
all cells 565 in register (1') 567 are cleared simultaneously
with cell (i,0) 565. As previously mentioned, an external

45

55

14
match line MAG) 125 is active only if all other external ~ '
match [ins MAG) 125 from other CAMMs 101 con-
nected to it are active, and thus, if.an associative clear ' :
operation may be performed on register (i) 567, it may
be performed on corresponding registers 567 whose ~.
external match lines are connected to register (i) 567.

4.5 A 111 Gate Amy Implementation of CAM
101—FIGS. 6 and 6A through 6F

FIGS. 6 and 6A through 6F together contain a logic I "
diagram for an exemplary 'ITL gate array implementa—-
tion of an eight-register by four-bit CAMM 101. The.. '-
form of the logicin this implementationis dictated by
logical and electrical characteristics of the TH. gate_
array. The only logical devices which may be formed.
from the gate array are NAND gates and inverters. ._ ~
Further, each NAND gate must have three'inputs and a , ,
given NAND gate or inverter can drive a maximum of"; .
four other NAND gates or inverters. In FIG. 6, only .
thecellsofa single register are shownin detail; cells of
remaining registers are represented as boxes with la- .
belled 'inputs and outputs; the cells and registers so

represented are, however, identical to the cells and. “register shownin detail.

4.5.1 Inputs and Outputs ofthe'I'I'LGate Array
Implementation A .

CAMM 101 representedin FIGS.6 and 6A nests"
6F, has the following inputs: on FIG. 6, data input lines
D0 6167, D1 6171, D2 6175, and D3 6179, correspond--
mg todataiuputlines 1170fFIG hmasklinesE06169,
El 6173, 15.26177, andE36181, corresponding tomask

Iinesl‘flandaervingtomaskthecorrespondingdata
input line when theyareacfivqonFlG. 6A: external
addresslinesA06026A16028, andA26030, corre-

spondingtoexternaladdrusliuealfl; ouFlG. ','6DO—E
line 6197, corresponding to OE 131; and onFlG.6A,
wnteenablehneWEGOQcorrespondingtoWEJS,
andzfilineml.
W 6068, M 61.97, and

represenmdIn FIG. 6 are data output lines Y0 6147,€in
6153, Y26157, andY36161, onFIGS. 6Dand6Fcorre-I'J
spending to data output lins 119 and bidirectional ex-'
ternal match lines M0 6182 throughM7-61.96 on FIG.
6CcorrespondingtoextemalmatchlinesIZSinFlG.1 ,,~_.
AsspecifiedonFIG. 6C,externalmatchlinesM06182
through M7 6196mmnnectedtoopmcollectoroiit-
pumWhenonesuchexternalmatchlineMomz
throughM76196isconnectedtoexternalmatchlines
fiomotherCAMMlelot‘thetypedisclosedinFlG. 6,
theraultisawireAND: noneoftheconnectedexter—
nalmatchlineswillbeactiveunlessallofthanare.

4.5.2 Functional Subdivisions of the TH.
Implementation

CAMM 101 of FIG. 6A has the following functional
subdivisions, outlined in dashed lines: on FIG. 6, data
and mask input 6183, for receiving inputs from data _
input lines D0 6167 through D3 6179 and masklines E0
6169 through E3 6181; on FIG. 6A, address decodu’
6067, corresponding to address decoder 109, for receiv- ~
ing external address lines A0 6026 through A2 6028 and
decoding addresses rccdved on these 11116; on FIGS.
6D and 613, data outputs 6142 for outputting data re-
ceived from registers 6176; on FIG. 613, clear logic
6090, corresponding to clear logic 111, for clearing

NOAC EX. 1017 Page 312

ding tocm135 Lines .136081* are all, normally,
active and are inactivated to specify a write-ma, 0132-" _"
clear operation respectively. Outputs EromQAMM 101~- *

i

oVM.*.-Wmmww...»..

NOAC Ex. 1017 Page 313

'4.

.1...”‘1‘.n"
x."‘.lV1 -kc.".-.iwaJ‘frfinfiefiw.

3d»
....*

54M?

>uvw“-.«4n.
a3.35”

4,559,618
15

'individual registers 6176; and on FIG. 6B, match logic
6189, for detecting matchs. In addition, one register,
register (0) 6187, on FIG. 6B, is outlined with dashed
liuel. and one cell of register (0) 6187, cell (0,0) 6185, is
so outlined. Registers 6187 correspond to registers 105
of FIG. 1, and cells 6185 correspond to cells 107. The
discussion deals first with each of these functional divi—
sions and then with their interaction in the read, write,
match. and associative clear operations.

4.5.2.] Data and Mask Inputs 6183

Data and mask inputs 6183 on FIG. 6 include data
input lines D0 6167 through D3 6179, mask lines E0
6169 through E3 6181 paired with the data lines, and
associated logic. Since each data input line-mask line
pair has the same logic,.only that for data input line D0
6167 and mask line 50 6169 is discussed in detail. Begin-
ning with D0 6167, the logic includes inverter 6001,
with D0 616735 its input and line 6003 as its output;
inverter 6005, with line 6003 as its input and line 6011 as
its output; inverter 6007, with mask line ED 6169 as its
input and line 6009 as-its output; NAND gate 6013, with
inputs from lines 6003_ and 6009 and an output to line

10

IS

6017; inverters 6023, having line 6017 as their input and .
lines to cells 6185 as their outputs; NAND gate 6015,
with inputs from lines 6009 and 6011 and an output to
line 6019, and inverters 6020, with inputs Ruin line 6019 ~
and‘lines to cells 6185 as their outputs. In the following,

=- only IDOA line 6025, the output of inverter 6021, and
."f [DOA line 6024, the output of inverter 6022, are dis-
7: cased in detail.
‘. In the portion ofdata and mask inputs 6183 associated

-. with data input line D0 6167 and mask line E06169, the
inputs D0 6167 and E0 6169 and the outputs IDIIA 6024
and IDOA 6025 have the following relationships: ifdata
input line D0 6167 is not hang masked, that is, if mask

\rlineED 6169 is inactive, IDOA line 6024 is set to the
-- ‘9': Value of data input line D0 6167 and IDOA line6025 is

sirset tothe complement of that value; ifdata input line D0
5"" 6167isbeingmasked, thatis.ifE06169isactive, [DOA
i-yline 6024 and IDOA line 6025 are both inactive Thse
‘helationships are achieved as follows: beginning with
thee-seinwhichnomaskhrgisnkingphcewhen
masklhreB06169isinactiveIh1e6009isactiveandthc
values of the outputs of NAND gates 6013 and 6015
depend on the values of lines 6003 and 6011 respec-
tively. Thevalues oflines 6003 and $11 in turn depend
on the value ofdata input line D0 6167. Ifdata input line
D0 6167 is active, line 6003 is inactive and line 6011 is
active Consequently, line 6019, the output of NAND
gate 6015, is inactive and its inversion, IDOA line 6024,
is active, while line 6017, the output of NAND gate
6013, is active, and its inversion, m line 6025, is
inactive. If data input line D0 6167 is inactive, the re-
verseoftheaboveismre'l‘hm,whenmasklineE0
6169 is inactive, IDOA line 6024’s value is alwafi identi-
cal with that of data input line D0 6167 and IDOA line
6025’: value is always the complain-t of the value of
data input line D0 6167. When data input line D0 6167
isbeingmaskedontheotherhand,masklineE06169is 60
active, line 6009 is inactive, and consequently, NAND
gates 6013 and 6015 have active outputs 6017 and 6019
and IDOA line 6024 and 156A line 6025 are inactive
regardless of the value of data input line D0 6167.

4.5.2.2 Address Decoder 6067—FIGS. 6A and 7

Turning now to address decoder 6067, on FIG. 6A,
address dwoder 6067's inputs are external address lines

16

A0 6026, A1 6028, and A2 6030 and its outputs are
internal address lines 6065. corresponding to internal
address lines 115. Each line in internal address lines

6065 is associated with a register 6187. Lines in internal
addr& lines 6065 are active unless register 6187 associ-
ated with a line is being addressed; in that case, the line
associated with register 6187 being addressed is inac-
tive. Thus, addrms decoder 6066 operates by activating
all internal address lines 6065 but theone for the register
specified by external address lines A0 6026 through A2
6030.

Addres dwoder 6066 consists of inverters 6027

through 6043 and NAND gates 6051 through 6054.
Each addra- line A0 6026 through A2 6030 is input to
an inverter and the output from that inverter is input to
another inverter. Thus,‘ for each addrss line A0 6026
through A2 6030, there is available from the first in-
verter a signal which is the complement of the signal on
the corresponding external address line and from the
second inverter 3 signal which is identical with that on
the corresponding external address line. The signals
obtained from the inverter outputs are then input to
NAND gates 6051 through 6054. Each of these gates
takes three inputs, one derived from address line A0
6026, one from address line A1 6028, and one from
address line A2 6930. An input derived from a given
address linejs obtained from the output of either the

_ first or second inverter following the addrss line. The

35

40

45

55

65

input's value is therefore either identical with the value
of the address line or the complement of that value. For
example, NAND gate 6063 takes as its inputs line 6033,
line 6035; and line 6049. line 6033': value is the comple-
ment ofihc value ofexternal addreaslineAO 6026, line
6035': value is the complement of the value of external
address line A1 6028, and line 6049’s value is identical
withthatofexternaladdreaslineAZ6030.Theinputsto
NAND grits 6051 through 6064 are distributed among

-the gates-in such fashion that: given-combination of
signalsonexternaladdresslinaAomfithroughAz
6030causesoneofNANDgat¢=fll51through606tto
have an inactive output and the remainder‘to have ac-
tiveoutputs. ForinsranceNANDgatemukesasits
inputs line 6037, whose value is the complement of the
value on esternal address line A2 6030, line 6035, whose
value is the complement of the value on external ad-
dres line A1 6028,'and line 6033, whose value is the
complan-t of the value on external address line 6026.
NAND gate 6064's output 6067 is active unless line
6037, 1111:6035, and 1111360” arealLsimultaneously
acfiveandthelatteristrueonlyifcxternal addresslinea
A0 6026 through A2 6030 are simultaneously inactive,
thatis only ifthe valuesonexternaladdrmlinesAfl
6026throughA26030representabinary0.With all
other NAND gates 6051 through 6063, when external
address lines A0 6026 through A2 6030 are simulta-
neously inactive, at least one input line to each of
NAND gates 6051 through 6063 is inactive, and conse-
quently, all NAND gate: 6051 through 6063 have ac-
tive outputs. _

The complete relationship between combinations of
signals on external address lines A0 6026 through A2
6030 and outputs on internal addrm lines 6065 is illus-
trated in the truth table in FIG. 7. In thattable, the table
rows indicate the eight possible combinations of values
on address line: A0 6026 through A2 6030 and the table
columns indicate individual NAND gata 6051 through
6054 and their input lines. The table tries themselves
show the output of the NAND gate specified by the

NOAC EX. 1017 Page 313

NOAC Ex. 1017 Page 314

5w“).uvt:y.m.

«‘5.tiaiéd‘u.»"
~law.,~

'~,~1w«an,

as

.«gufwik,i'.
E'

5;“::3}.
«n

4,559,618
17

entry's column for the values on addrm linm A0 6026
through A2 6030 specified by the entry’s row.

4.5.2.3 Cell 6185 (0,0)

Tun'ling now to cell 6185 (0,0), on FIG. 6B, cell 6185 5

(0,0) has the followinginp_uts: data line [DOA 6024 and
data complement line IDO_A 6025 from data and mask
inputs 6183, internal address line XA—O 6067, from
NAND gate 6064 of address dwoder 6066, iutemal
write enable line WED 6078, whose value is derived 10
from external write enable line WE 6068 by way of
inverters 6069, 6071, and 6073 on FIG. 6A, and is there
fore the com lem-t of the value of external write en-
able line 6068, and internal clear line CLRO 6089,
which corresponds to internal clear lines 123 except
that internal clear line CLRO 6089is inactive when an

associative clear operation is takifiplace. Outputs from
cell 6185 (0,0) are cell data line N0 6113, whose value
is the complement of the value stored in cell 6185 (0,0),
and cell match lin: 61.17 and 6121, which are both
active when either data input line D0 6167 is masked or
the value contained in cell 6185 (0,0) matches the value
on data input line D0 6167.

Cell 6185 (0,0) consists of: inverter 6091, receiving its
input frominternal addrm linem6067; NAND gate
6095, recdving its inputs from invertu' 6091, WE) line

15

A6078, anddatalinelDOA6024;NANDgate6097, re-
' ceivingitsinputsfrominvertu' 6091.WE01ine 6078,

anddatacomplementlinemw; NANDga'te30
6103, rcceivingilsinputsfromNANDgate6095and
NAND gate 6101-NAND gate 6107, receiving its in-
putsfiomNANDgate6103, NANDgate6097, and
internalelesrlineCClio06089;NANDgate6111,re~
eeiving it: inputsfmm NAND gate6105andinveiter 35
6091; NAND gate6115, receiving its inputsfmmdata
linelDOA6024andNANDgate6107, andNANDgate
6119, receivingitsiupu_ts___fminNANDgate6103snd
datacompla‘ueutlineIDOA6025. Finally, connection

.. point 612 connecting the outputs of NAND gates 40
6115and6119,iaawireAND;consequeutly, it'eitheror
bothoflhies6117snd6119ismactiveliiie6123isinae-
five.

The components of cell 6185 (0,0) perform the same
logical functions as the components ofcell 565 (1,0) in 45
FIG. 5. NANDgates6095and6097talteinputswhich
areequivaleuttotboeeforANDgatesSlSandSl7in
FIG. 5 and provide outputs which are the complement:
ofthoseofANDytesSlSand517.Line6099,tbe
output of NAND gate 6095, is active unlas line 6093, 50
line IDOA 6024, and line W130 6078 are all active. Line
6093 is the complement of internal address line m
6067, and consequently, is active only when register
6187 is being addressed, while line WED 6078 is active
only when a write operation is taking place. Therefore, 55
line 6099 is inactive only when a write operation to
register6187(0)istakingplaceandlineIDOA6024is
active. During a write operation to register 6187 (0),
line 6099's valueis thus the complement of the value of
lineIDOA6024. NANDgate_6097’sinputsareline6093, 60
line W130 6078, and line IDO—A 6025, and like NAND
gate 6097, its output 6101'is inactive only when a write
operation to register 6187 (0)'is taking place and line
m 6025'is active During a write operation, there-
fore, Line 6101's value is the complement of the value 65
of line IDOK 6025 and also the complement of the value

. of line 6099. At other times, both line 6101 and line 6099
are active

18

NAND gates 6103 and 6107 function as an RS flip: .
flop with R and S inputs which change the flip-flop’s . '
state when they become inactive. NAND gates 6103 -
and 6107 and NAND gates 6095 and 6097 togetherthus- -
are logically equivalent to AND gates 515 and 517 and ~ 3
RS flip-flop 529'in FIG. 5. In the RS flip-flop formed by =- .:
NAND gates 6103 and 6107, line 6105, the output of- .- ,
NAND gate 6103, is the Y output and line 6109, the.
output of NAND gate 6107is the Y output. The set .. _
operation works as follows: line 6099 is the.S input. As "5 l'.
the output ofNAND gate 6095, it is inactive'onlywhen , ' .
input data line IDOA 6024, write enable line WEO 6078, _ '
and line 6093, the complement of internal address line ' '3
XAO 6067, are active. When line 6099'is inactive, line a": '
6105 becomes active, i.e., the Y output is set to 1; Atthe ' .~ '
same time, line 6109 becomes inactive, i.e., the Y output,~ ‘ .
is set to 0. This action takes place as follows: line 6105,- - '3'
line 6101 and C—LRO line 6089 areinputs to NAND gate 3' ~
6107. On a Wiiteopmtion, CLRO line 6089'is active. If' " -
line lDOA 6024is active, lines 6105 and 6101 are also :
active; consequently, line 6109, the Y output, isinactive.~ ~ -'
If, on the other hand, line IDOA 6024'is inactive,line. 7.. I
6099is active, lin: 6105 and 6101 are inactive, andline. ' .~

6109'is active Thus,in this case, the Y output has thevalue 0 and the Y output the valuel. ‘ /
CLRline 6089 actsas theRinputtothe.flip-flop;

formed by NAND gates 6103 and 6107 only what;no~~
writeoperafionistakingplaceUnderthesecircinn- .,
stanceswdteenablelineWEO6078isina'ctiveand“ . I
consequently, lines 6099 and 6101 are active. Whenthe - f
flip-flop formed by NAND gates 6103 and 6107~con
tains the value 0, line 6105 iai'nactive and line 6109"is
active regard]: ofthe value oft-ii line 6089. When;
the flip-flop formed by NAND gates 6103 and 6107
contains the value 1, line 6105'is active along with line
6101 and the value of CE line 6089-determines'the ~
value of lines 6109 and 6105. Ifm-linejm remainsf
active, line 6109 remains inactiveand line'6105reinains .
active; ifCIRfinembecomesinaefivelineflM'
becomes active and line 6105bwomu inactive, giving
thetlip-flop‘sYoutputthe valueOaiiditsYoutputtlie
value1.Sinceeitlierliiie61010r6089eanreset§‘the'.
flip-flop formed by NAND gates 6103 and 6107; the
connectionoftheselinestoNANDgateflMisfune—'
tionallyequivalenttoORgateSZSin-FIG. 5. ‘ ;' '1 -;

NAND gate6111inFIG. 6Ainactivatescelldatal'me.
W06113 when both line6093andline6105 areactive. ‘5‘»:
Line 6093 is the complement of internal address line?"
m0,6067 and is therefore active when register 6187
(0,0)‘is being addressed. Line 6105'is flieY output ofthe-g
flip-flop formed by NAND gates 6103 and 6107, and~~
consequently, when register6187 (0,0) is being ad- .
dressed, cell data line line 1Y0 6113's valueis the com- ,5
plement of the value on line 6105. As shown on FIGS.‘.
6E and 6F, cell data linemmreceivu outputs from; 9
equivalent cells ofall registers in the CAMM 101 de—.. I,
scribedin FIG. 6and then servesasaninputtou'i-state. '«
NAND gate 61450n FIG. 61". It thus effectively 0R5 ,:

thse outputs andis equivalent to OR.gate 569'in FIGS :‘ ‘
5. Tri-state NAND gate 6145's output is data output line. 1: ~ .
Y0 6147. This line has three states,__active, inactive, and z‘ x
off. Itis in the latter state when OE line 6197'is inactive. W
and its complement, line 6149, is active; otherwise, input- _ .-
line 6143'is at VCC and is always active, and conse'
quently, data output line Y0 6147’s value'is the comple- ._
meat of the value ofcell data line W0 6113, or the value .-
ot' the Y output of the flip-flop formed by NAND gates ~ '
6103 and 6107. Together, NAND gates 6145 and 6111 ,

NOAC EX. 1017 Page 314

NOAC Ex. 1017 Page 315

“Jogger.‘ ...;

5%.

5;...”at“.41.....
,.
5

I,‘
i

W15

4,559,618
19

output the value of the Y output of cell 6185 (0,0) when
. register 6187 (0) is addrefied and output has been en-

a1,1591; NAND gates 6145 and 6111 are thus logically
, equivalent to AND gates 535 and 571 of FIG. 5.

Turning again to FIG. 6B, NAND gata 6115, 6119,
and the wire AND formed by connection 6122 between
the outputs of NAND gates 6115, 6119, and internal
match line6123, finally, perform the match function for
cell 6185 (0,0) and are thus equivalent to AND guts 533
and 534 and OR gate 540 in FIG. 5. NAND gate 6115
takes as its inputs line IBM 6024 and line 6109 from the

5

IO

7' output of the flip-flop formed by NAND gates 6103 -

and 6107. NAND gate 6119 takes as its inputs line IDOA
6025 and line 6105 from the Y output of the flip-flop. If
mask line E0 6169 is inactive, then. as dscribed in the 15
discussion of data and mask inputs.61_83 above, the yal—

‘ ues on line IDOA 6024 and line [DOA 6025 are comple-
mentary. As also explained above, the values on lines
6105 and 6109 are always complementary. Conse-

quently, when the value on line IDOA 6024 is the same 20
IS the value on line 6105, NAND gate 6115 and 611.9
have complementary inputs and their outputs, lines
6117 and 6121, are both active When the value on line
IDDA is different from that on line 6105, one of NAND .

20
through 6159. NAND gates 6145 thrtmgh 6159 are
tri-state, that is, their outputs have three states, active,
inactive, and 011'. The 011' state is controlled by 61: line
6197. When Ci line 6197 is active, line 6149 is inactive,
and NAND gates 6145 through 6159 have no output;
otherwise, their outputs are the NAND of their inputs.
The other input to each of NAND gates 6155 through
6159 '5 line 6143, which is always active. Consequently,
when at line 6197 is inactive, the outputs of NAND
gata 6145 through 6159 are the complements of the
values on lines 6113, 6125, 6131, and 6137,‘ that is, identi-
cal with the values contained in cells 6185 6,0) through
(L3) in regis'ter 6187 (i).

. 4.5.2.6 Match Logic 6189

Match logic 6189 for register 6187 (0), on FIG. 6C,
consists of internal match line 6123, inverter 6125,
NAND gate 6129, and external match line M0 6182.
The match logic for the other registas 6187 is identical,
and consequently, only that for register 6187(0) is ex-
plained in detail.

Internal match line 6123 connects the output of wire
. -AND 6122 with the outputs of equivalent wire ANDs

gates 6115 and 6119has both inputs high, and ling 6117 25
and 6121 have have complementary values. When lines ~
6117 and 6121 are both active, the output from the
ANDformedbyconnection 6122isactiveindicatinga -

. match. When lines 6117 and 6121 have complementary

.6122 is inactive, indicating no match. Thus, when mask ‘
. line E0 6169 is inactive, the output from the AND
.,. formed by connection 6122 is equivalent to the output ~

‘ of OR gate—540 when maskline e(0) 507 is inactive:

.u; ..4

values, the output from the AND formed by connection 30

As mentioned in the discussion of data and mask 35
inputs 6183, when mink line EO 6169 is active, both line'

:: IDOA 6024 and line ID0A16025 are inactive. Sincelinc
e-IDOA 6024 seven as an input to NAND gate 6115, and
;,-,.1ine IDOA as an input to NAND gate 6119, the outputs
got-the NAND gates, lines 6117 and 6121 respectively, 40
bare both active regardless of the values on lines 6105
«and 6109 and the output from the AND formed by

connection 6122 is active, indicating a match. Thus,
data and mask inputs 6183, NAND gala 6115 and 611.9
and the AND formed by connection 612 produce the 45
same results when mask line 50 6169 is active as OR
gate 540 in FIG. 5.

4.5.2.4 Register 6187 (0)

Cell 6185(0,0) and three equivalent cells 6185 form
register 6187(0). All $6185 in register 6187 (0) take
internal address line XAO 606'], and internal clear line
CLRO 6089 as inputs and output to internal matdi line
6123. Because the cells in register 6187 share internal
address line m 606'], internal clmr line 'CLR"''0 6089,
and internal match line 6123, they act as a single unit in
read, write, match, and associative clear operations.

4.5.2.5 Data Outputs 6142

Data outputs 6142, on FIGS. 6D and 6F, outputs data
contained in CAL/[M 101 registers 6187 to data output
lines Y0 6147 through_Y3 6161. Data to be output is
Eeivcd from lines IYO 6113, ffi 6125, m 6131, and
1Y3 6137. As previously explained, wh- a read opera-
tion is being performed, the values on these lines are the
complements of the values in cells 6185 (1,0) through
(L3) of register 6187 (i) currently being addressed. Each
01' these lines is one input to one of NAND gata 6145

50

55

65

in the other cells 6185 of register 6187 (0) and thereby
forms another wire AND taking the output of wire
AND 6m and the outputs of its equivalents as inputs.
Thus, internal match line 6123 is active only if the out-
pumofwireAND6122anditscquivalentsareall ac-
tive,‘ that is,’only if each cell 6185 in register 6187 (0)
indicates a match. Internal match line 6173 thus per-
forms the function of AND gate 553 of FIG. 5.

Internal match liner6123 then serves as an input to-
invertcr 6125, whose output, line 6126, is an input to
NAND gate 61”. The other input to NAND gate 6129, ‘
line ‘6143, is at Vcc.and therefore always active. In
consequence, NAND gate 6129's output is inactive
tmlers line 6126 is inactive, that is, unless internal match
line 6123 is active. As indicated on FIG. 6A, external
match line M0 6182 is an open collector output; hence,
it acts as the output of a wire AND connecting the
outputs of'the equivalents of NAND gate 6129 in all
CAMM registers 6187 whose equivalents to external
matchlincM06182areconnectcdtoexte1-nal match
line M0 6182, and ifany ofthse external match lins are
inactive external match line M0 6182 is inactive.

4.5.2.7 Clear Logic 6090

Clear logic 6090 on FIGS. 6A and 6B activates inter-
nal clear line CLRO 6089 and in equivalents in other
registers 6187. Inputs to clear logic 6090 are Zfi line
6081, which is active except when an associative clmr
opuation is being performed, and external match lines
M0 6182 through M7 6196. Clear logic 6090 includes
inverter 6083~and inverters 6084. Inverters in inverters
6084 are all identical to inverter 6088, and consequently,
only that inverter is described in detail. Inverter 6088
has a control input, entering at the side of inverter 6088,
as well as an input for the signal being inverted. As long
as the control input is inactive, invm’ter 6088’s output is
active; when the control input is active, inverter 6088’s
output is the complement of the value of the sign]
being inverted. Inverter 6088 thus behaves like a
NAND gate in that inverter 6088’s output is inactive
only if the control input and the input signal are both
active. The control input for inverter 6088 is line 6095,
which is the output of inverter 6083 and the signal input
is external match line M0 6182. LinflS’s value is thus
the complement of the value of CLR line 6081, and

NOAC EX. 1017 Page 315

NOAC Ex. 1017 Page 316

46
Q.
1',t
2,3

3’‘c...

4,559,618

21
internal clear line CLRO 6089 is inactive, clearing regis-
ter 6187(0), only ifa line 6081 is inactive when ex-
ternal match line M0 6182 is active Taken together,
therefore, inverter 6083 and inverter 6088 are equiva-
lent to AND gate 514 of FIG. 5. 5

4.5.3 Operations in the T'I'L Gate Array
lmplunentation

Operationsm the TI'L gate array implementation are
analogous to those discussed'in reference to FIG. 5 On to
a write operation to register 6187 (0), on FIG. GB, W
line 6068'is inactive and address lines A0 6026 through
A3 6030 specify reg'ster 6187(0). Consequently, in each

cell 6185 of the reflux WED line 6078 is active, inter-nal address line XAO 6097'is inactive, the line corre- 15

spending to line [DOA 6024in cell 6185 (0,0) has the
value of the line corresponding to data input line D0
6167, and the line corresponding to line IDOA 6025 has
that value’5 complement. As explainedin the discussion
of cell 6185 (0,0), when W130 line 6078'15 active and 20
internaladdresslineXAO6097isinactive, theRSflip—
flop containedin eachcell 6185'is set to the value on the
data input line of data input fins D0 6167 through D3
6179 corresponding to that cell 6185:

In_a__read operation on register 6187 (0), output enable 25line OE 6197IS inactivated and external address lines

-6026 through 6030 specify___register 6187 (0), deactivat-
. inginternal addrmlineXA06067. Asexplainedinthe

discumion of cell6185 (0,0), when internal address line
XAO 6067is inactive. line IYO 6113 and its equivalents 30

~ in the other cells 6185 making up register 6187(0) have
values which are the complement of the value at the Y
output of cell 6185's flip-flop. 'Ihe discussion of data
outputs 6142 further showed that when output enable
line 515 6197 is inactivated, the complements of the 35
values of line 6113 and its equivalents in the other cells
6185 making up register 6187 (0) are output at data
outputs Y0 6147 through Y(3) 6161. Since the values
output at data outputs Y(0) 6147 through Y(3) 6161 are
the complements of the values on line 6113 and its 40
equivalents, they are identical with the values at the Y

- outputs of cells 6185 making up register 6187(0).
Turning now to a match opmtion, as previously

explained with regard to cell 6185 (0,0), whenever a
valueonadatalineD06167throughD36l‘I9matches 45
the value of its corresponding cell 6185 or whenever

mask line ED 6169through E3 6181 is active, the outputof the connection in cell 6185 corrsponding to connecr
tion 6122in cell 6185 (0,0)is active. All of the connec-
tions corresponding to connection 6122'1n cells 6185 50

belonging to a register 6187 (i) are connected by the line
in register 6187 6) corresponding to internal match line
6123 of register 6187 (0). As explained in the discussion
of match logic 6189, internal match line 6123 and its
equivalents function as wire AND: taking the outputs 55
from connection 6122 and its equivalents as inputs. The
equivalent of internal match line 6123 for a register 6187
(i) is therefore active only if all outputs from connec-
tions equivalent to connection 612 are active. If the
equivalent of internal match line 6123 for a register 6187 60
(i) is active, then, as explained in the discussion ofmatch
logic 6189, external match line M0 6182 through M7
6196 corresponding to register 6187 (i) is active unless
external match line M0 6182 through 6196 correspond-
ingtoregister6187(i)isconnectedtoexternalmatch 65
line M0 6182 through 6196 belonging to other CAMMs
101 and one of these external match lines M0 6182
through 6196 is inactive.

22

An associative clear operation, fnally,1s executed for ..-
a register 6187 (i) when external match line M0 6182 l‘ 1.
through M7 6196 corresponding to register 6187 (i).is :1
active and WR— line 6081 is inactivated. As explained in .
the discussion of clear logic 6090, under these circum-,'

stances, the equivalent of line CLRO 6089'is inactive.
and as explained in the discussion of cell 6185 (0,0),

when this'is the ease, all cells 6185-belongingto register,6187 (i) are simultaneously set to 0. ' ,.
Embodiments of the present invention mayhave ‘

specific forms other than those presmted in FIGS. .1 :59
through 7. The functions of the prsent invention may;
be performed by arrangements of logical devices otl1er_.‘ 1

than those presented herein and different techniques.,"7:
may be used to implement the present invention. For
example, the present invention may beimplernented.
using discrete devices, on a chip containing asingle {fl
CAMM 101, or on a chip containing a plurality» of,1:
CAMMs 201, and the devices on the chips may be ‘J ~
formed using various technologies. Similarly, the num-. , '
berofhitsmaregisterandtheninnberofregtstersma,_'

CAMM 101 may vary from implementation to imple- . ‘ .mentation.

'Ihe invention may be embodied'in yet other specific1:, .'

forms without departing from the. spirit or essential
characteristics thereof. 'Ihus, the pruent embodiments 1-
are to be considered in all rupees as illustrativeandhot:
restrictive, the scOpe ofthe invention being indicated b '
the appended claims rather than thevforegoing desci'ip-r
tion, and all changes which come within the meaning

and range of equivaluicy of the claims are thereforel: :
intended to be embraced therein.Whatis claimedis:

1. A content-addressable memory module .compiis-ing:
(l) a plurality of register means, eachregister means of,

said plurality of regista' means containingone storeditem of data; .
(2)meansforrweivingapatternitemofdata; _ .
(3) a plurality ofmeans for detecting said register meansi

conmhiingsaidstmeditemsofdammatchingéaid;
patternitern ofdata, each oneot'saidpluralityo
match detection means being associated with onesaid
regatta-means,beingresponsivetosaidstorediteinot'.>
data contained insaid onesaidregistermeans and to
said pattern item ofdata, and providing a match sig-
nalwhensaidonesaidregistermeansassociated with
said one match detection means contains said stored

itemot'datamatchingsaidpatternitemofdatannd ,
(4) a plurality of bidirectional match signalling mans -

Y .

for providing said match signal from said content- . '
addressable memory module and receiving said
match signal from an external source, each one of said;-
bidirectional match signalling means being associated
with one of said register means and rsponsive to said
match signal from said match detection means associ-
atedwithsaidassociatedregistermeansandtosaid
matchsignalfromsaidexteinalsourceandactingto
provide said match signal only when simultaneously
receiving said match signal from said associated.
match detection means and from said external source ,
2. In the content-addressable memory module of

claim 1, and wherein .
said bidirectional match signalling means is a match line .

connected to said associated match detection means

for providing and receiving a match state and a no-.
match state;

said match signal is said match state; and

NOAC EX. 1017 Page 316

rmm..-a.

w

NOAC Ex. 1017 Page 317

:,ua....
"‘72;5.

:5 ‘-

4,559,618
a 23 24 .

“‘1 ~ “said match line is connected to an open-collector driver (a) a plurality of means for detecting said register
3; circuit in said associated match detection means and means containing said stored items of data match-
»‘f said open-collector driver circuit places said con- _ ing said pattern item of data, each one of said plu-

2% ‘ nected match line in said no match state unless said rality of match detection means being associated
:7: stored item of data in said register means assocmted 5 with one said register means and being rtsponsive
2% with said match detection means matches said pattern to said stored item of data contained in said one
(1% item of data. said register mmns and to said pattern item of data,x x 3. In the content-addressable memory "10‘1““: 0f and each one of said plurality of match detection
E claim 2. and wherein: means acting to provide a match signal when said
“3 said match state is a_high voltage and 10 one said register mans asociated with said one
‘2' said no III-10h state '3 3 10‘” VOI'ZSC- match detection means contains said stored item of
m 4. In the content-addranable memory module of data matching said pattern item of data; .
: claim 3, and wherein: . . . ‘ (b) means for providing a register clearing signal speci-

33, a pattern sequence or “F 1n ““1 pattern “F“ of data fying any one of said register means in response to
F _ _conesponds to a certainsequence oLbits in each one 15 said clear signal and to said match signal; and _

0 0f 33“? stored items 0f 4*“: “d match detection (c) a plurality of means for clearing said register mans,
‘5} means ‘5 responsive to said Pm”?! sequence of b": mch one of said register clearing means being associ—
‘ and to and certain sequence of bits, and said stored ated with one ofsaid register means and being rspon-
" item °f 6?“ “lamb“ i‘ud pattern item of d?“ Yb?“ sive to said register clearing signal.

a sat: hm in said certain sequence match said bits m 20 8. In the commit-addressable memory module of- ”1 Pam-Yn ”film“- . claim 7, and wherein:

3 claim]: :2: fintent-I-addressable memory module of said content-addressable memory module further in-: _ elem. . eludes a plurality of bidirectional match signalling

i Wing‘fxgrmigcrory Foclintgnm ion;- 25 mans for providing said match signal from said con-
3 ‘ specifying said put“meet ”ammo:ofnfiits and _ tent-addresable memory module, receiving . said
1 said match detection means is further connected to said “MM 5131?]. from an external. sour. cc, and 9'0“de
r: d' 'veto mate stgnaltosardregrsterclearmgsrgnalpro—_,_maslnng|temrecetvmgrneansan isresponsra . . . Vidtng means, each bidirectional match srgnallmg
g; mu saidmaskmgrtem ofdata. meansofsaid l . ofbi . . nal h .
' .3 6. In the content-addressable memory module of 30 . _p “"11”. dchuo mat.c s'g'nl'
1': -. claim 5, and wherein: 1";3 "in“: ”GP; Wfimm °“° ‘39:.mm., ; osaipurah oregis meansan goon-
; :gwfeqmgoistdm‘hsmsrsm new. toe-mmwecdonmm:m

L; saidstored items ofdatafurthercontainasecond cer- said Wm“! register means and to saidr‘egrs‘ter
’ min sequence of bits corresponding to said non-pat— 35 clearing 3'8““ ”0‘"qu means, Ind ear-1i said bidi-

(a. tern sequence of bits; and rectional match signalling means provrdmg said
:— one said stored item ofdata matches said pattern item of W5‘9“] to “dWclearing 5'51“] prowdrng

3% u- data when-said first certain sequence of bits matches means 9111? when mid bidirecnonal match Signalling
(n i. v said pattern sequence ofbit; regardless of the values means {5 m‘flt‘nw‘fly mums “"1 match 5‘31“]

2% q;~ofbitsinsaidsecondcu1ainseqnenceofbits. 40 gm‘i'ornanidconxctedmatchdetecnonmeansandfrom: .—.—.. 7. A t-addressab mem modul pris-' extanal urce.
g fling: comm 1e ory c mm 9. In the content-addressable memory module of
' (l)apluralityofregistermeans,eachregistermausof Claim?“w eru:

said plurality of register means containing one stored
item of data; 45

(2)nieans forreceivingapattemitem ofdata;
(3)meansforreceiviugaelear-gnalspecifyingthat

certainonesofsaidpluralityot'registermeansareto

t be cleared, said certain ones being said register meansK containing said stored items of data matching said 50
pattern item of data; and

(4) means for simultaneously clearing said certain on:
of said register means, said simultaneous clearing

=5 means being connected to said plurality of register

% means, to said pattern receiving means and to said 55‘ clear signal receiving means and responding to said
is? stored item of data, said pattern item ofdata, and said

clear signal by simultaneously clearing said certain
ones of said register means on rweipt of said clear
signal in said clear signal receiving means; 60

wherein:

a pattern sequence of hits in said pattern item of data
corresponds to a certain sequence ofbits in each
one ofsaid stored items of data and said stored item
of data matches said pattern item ofdata when said 65
bits in said certain sequence match said bits in said
pattern sequmce;

and wherein said simultaneous clearing means includes:

a:use;.5“J.“
a"‘1

mm...
é!
2:

saidbidirectionalmatchsignallingmeansisamatchline
connected to said match detection means and to said
register daring signal providing means;

said match line provides and receives a match state and
a no-match state;

said match signal is said match state; and
each said match line is connected to an open-collector

driver circuit in said associated match detection

means and said open-collector driver circuit places
said connected match line in said no match state un-
la. said stored item of data in said register means
associated with said match detection means matches
said pattern item of data.
10. A content-addressable memory module compris-

mg:

(l) a plurality of register means, each reg'ster means of
said plurality of register means containing one stored
item of data;

(2) means for receiving a pattern item of data;
(3) means for receiving a clear signal specifying that

certain ones of said plurality of register means are to
be cleared, said certain ones being said register means
containing said stored items of data matching said
pattern item of data; and

NOAC EX. 1017 Page 317

NOAC Ex. 1017 Page 318

 n."
.v/ ra- r.
e5.

eel

25

(4) means for simultaneously clearing said certain ones
of said register. means said simultaneous clearing
means bdng connected to said plurality of register

means, to said pattern receiving means and to said
clear signal receiving means and responding to said 5
stored item of data, said pattern item of data, and said
clear signal by simultaneously clearing said certain
can of said register means on receipt of said clear
signal in said clear signal receiving means;

wherein: lo

a pattern sequence of bits'in said pattern item of data
corresponds to a certain mquence of bits'in each
one ofsaid stored items ofdata and said stored item
of data matches said pattern item ofdata when said
bits in mid certain sequence match said bits in said 15
pattern sequmce.

and wherein:
said content-addrmsable memory further includes

means for receiving a masking item of data for
specifying said pattern sequence of bits and said 20
simultaneous clearing means is fm‘ther connected
to said masking item reca‘ving means andis rmpon-
sive to said maskingitein ofdata;

and wherein:

said masking item of data. further specifies a non—pat- 25
ternsequenceofbitsinsaid pattern data item,

said stoned items of data further contain a second
certain sequence ofbits corresponding to said non-
pattern sequence of bits; and

one said saidstoneditein ofdataniatchusaidpattern 30
dataitemwhenssidfirstcertainsequenceofbits
matches said pattern sequence ofbits. regardless of
thevaluesofbitsinmidsecondcertaiusequenceof
bits;

and wherein: 35

saidmaskingitmnofdataspecifiesallsaidbiisinsdd
patternitemofdataassaidnompaisernaequenceof
bits. whereby all said stored items of data match
saidpauunhanofdamallmidregistermmnsin
said pliiralityofregistermeausaresaidcerlainones 4O
ofmid plunfityofregistermeansandsaidsirmrlta—
neous clearing means simultaneously clean all said
register means in said plurality of registe- means
uponmeiptofsaidclearsignalinmidclearsignal
rweiving means. 45

1]. In the content-addressable memory module of
claim 10, and wherein:
said simultaneous clearing mains further includes

(a) a plurality of means for denoting mid register
meansoontainingsaidstoreditemsofdatamatch— 50
ing said pattern item of data, each one of said plu-
rality of match detection means being associated
with one said register means, beingresponsive to
saidstoreditemdfdatacontainedinsaidonesaid
register means, to said pattern item ofdata, and to 55
said mask item of data, and providing a match
signal when said one said register means associated
with said one match detection means contains said
stored item of data matching said pattern item of
data, 60

(b) means for providing a register clearing signal to
anyoneofsaidregisterrneansinresponsetcsaid
clear signal and to said match signal,

(c) a plurality of means for clearing said register
means, each one of said register clearing means 65
bdng associated with one of said register means
and being responsive to said register clearing sig-nal.

4,559,618
26 .

12 In the content-addressable memory module ‘of
claim 11, and wherein. , - .~

said content-addressable memory module further in- . .~
cludes a plurality of bidirectional match signalling
means for providing said match signal from said con”: ‘ .
tent-addressable memory module, receiving :said.‘ : ;
match signal from an external source, and providing 3
said match signal to said register clearing signal prof a
viding means, each bidirectional match signalling," ,
means of said plurality of bidirectional match signal-i ‘
ling means being associated with one register mmns ~
of said plurality of register means and being con- ;_ ‘
nected to said match detection means associated with . .1
said associated register means and to said register: 3:
clearing signal providing means, and each mid bidi- '

rectional match signalling mains providing said if;
match signal to mid register clearing signal pmviding ”2 . '
means only when said bidirectional match signalling :- .
means is simultaneously receiving said match signal -.,
from said connected match detection means and from
said external source.
13. In the content-addiessable memory ofclaim'l, 10, -.

or 1, and wherein said contain-addressable memory . “
module further comprises: '- "
addm receiving means connected to said pluralityof ”

register means for receiving an encoded addressspec-
ifying an addressed registermeans of said plurality of
registermeans from an external source.decoding said
encodedaddresstogenerateanaddresssignalforsai'd
addressed register means Specified by said encoded.
address, and providing said addrem signal: to said~
addressed register means, each register meats of said

plurality of register means being responsive to‘ said
address signal. a
14. In the content-addressable memory module ofclaim 13 and wherein: ‘ '

said addrss receiving means includm - :3.
(a) encoded address receiving means for receiving an. .‘={

encoded addrms specifying said addressed register ': .
means from said external source; . . 5.

(b)dwodingmeansconnectedtosaidencodedad-z.
drmreceivingmeansandresponsivetosaiden- . C
codedaddressfordecodingsaidencodedaddresslg;_:
and generating said address signal for said ad- ;
dressed register means; and ._ ‘ ,'-.

(c)meansconnectedtosaiddecodingmeansandsaid 1;.
plm-ality of register means for providing said ad-J . .
dress signal to said addressedregister means. 1

15.1n the content-addressable memory module of
claim 7, 10, or 1, and wherein said content-addressable
memory module further comprises: ,
data input means for rmeiving an input item of data _ '

from an external source; _ .
means for receiving an address specifying an addressed ,.

register means ofsaid plurality ofregister means from Z " -
an external source and providing an addrms signal for 5
said addressed register means; ‘

data output means for outputting one said stored itun of 3 '
data from said content-addressable memory module;

means for receiving an output enable signal from an. , _
external 30qu

means for receiving a write enable signal from an exter-
nal source;

data writing means connected to said plurality of regis- ‘
ter means, said address receiving means, said data -.
input means, and said write enable signal receiving ~
means for setting said stored item of datain said ad- ._ ,
dremed register means to the value of said input data

NOAC EX. 1017 Page 318

.we.“.-mmWW-M-_HM_«M-WWW...

NOAC Ex. 1017 Page 319

m.

we.I.‘

.*‘3ti;”&i§a':.'..I.,I.'EI

s;"mgf~«7’

>Wayne,A..

wIsn’t»vat
“mSki-v
auras-2.:

—«:mwe‘mwe

wastage;-w’“

’5vmwiw”##5ij
Maid.

. I 4,559,618
27

item in rmpome to said input item of data, said ad-

IdIata reading mans connected to said plurality of regltn-
,I .;tei'. means. said .addrx receiving means; said data

. ; : output means. aInd said output enable signal Wins! '5-
. ,I . means for providing said stored item of datain said
”I‘ II _.,....addrmsedregistermeanstosaid dataoutputmeansin

‘..;.v:.I

signal-

each content-addressable memory module ol' said
. 1plllflfityh0fI contentnaddrepsable- memory. modules

including ‘.'

”(a) aplurality of register means, each register means 15

Zulu.‘

Istored item of data; .
(b) meanisfor. receivingapattern itemofdata;II '
--.(e) meansfor-receivingla:clear signal specifyinggthatII_II

.: . certaiuonesofsaidplunlit‘yofre'g'istermennsarei20
“"5’. tobedmrfisidcmmnonesbangsaidregister I

means containing said: storediitems ofdata match
' » ing said pattern item of data; and

”5,” -.n 2 (d)1mmnse'for.siuiultaneously. clearing said.certain-
onesofsaidregistermeans, I

h ingrneansbemgconnectedtosardpluralityofre'i'1‘
-m:.-.~:iflcrmesns.tosmdpatternitemreceivmgmeanst

‘andtosudclutSlgnfliwcwmgmnnsafldteé
sphndingmsaidstoeedIuanofdamnidpatta'd

m '.:n_<,..'.:item 'ofldata. and: said? clear. signal by-isimulta-zao
‘ 3; ' neously clearing said certaincues" 'rifi "said register"ll

‘E‘EF- 1:515: meansonrecmptofsaidclearsrgnalinsaidclear
~ :signnlrwdvingmmngandu .5.

(2)memory clear signal providingimeansconnecte'd-to'?
i. 4‘ saidclearsignalreceivingmemsineachoneofsaid 35I

. pluralityof memory modules for simultaneously pro-

;||-:-.....

git”: ‘_".i

1. ' -. Viding said clear signal to all saidcontedediaslble
E!i|i=‘zti"‘inicmdilymoduluinzsaidplma‘lityofcontent-addrew

L. able m—ory modules;
:e-whcrcin: 40
Enid simultaneous clearing means includes
«~‘(D a plurality ofmeans for detecting said register»

means containing said stored items of data match-
ingsaidpatternitanofdata,eachoneofsaidplu-
rality of match detection means being assoa'ated 45
with one said register means and being responsive
tosaidstoreditemofdatacontainedinsaidonc

saidregisterrneansandtosaidpattcrnitemofdam,
and each one of said plurality of match detection
means acting to provide a match signal when aid 50
onesaidregistermeansassociatedwithsaidone
match detection means contains said stored item of
data matching said pattern item of data;

(ii) means for providing a register clearing signal to
any one of said register mans in rsponse to said 55
clearsignalandtosaidmatchsignahand

(iii) a plurality of mmns for clearing said register
means, each one of said register claring means
being associated with one of said register means
and being responsive to said register clearing sig- 60
mil;

said content-addressable memory module further in-
cludes a plurality of bidirectional match signalling
means for providing said match signal from said con-
tent-addressable memory module, receiving said 65
match signal from an external source. and providing
said match signal to said register clearing signal pro-
viding means, each bidirectional match signalling

R’ILII I IdreSSIgllll.’andsaldiwriteenablesigual; :.;..;,: . n:;.-

response tosaid address signal and-said output enable; . j ~: g z

I 3. II H164 A content-addressablememorycomprisingz' . . . r10I . -
' (I1) a pluralityof contentraddressable memory modules?1 I t . . '

: said content-addressablememory .further includes rIi

“3.:matc'li-signalling means and serving as said external

Sim“mama-0m cIlw' if - :Irwhen-illuofsaid-connectedhidirectioml-match signal;- 5 . I : . . 5 _

:v. I whereby.said.goonteutyaddrecsable memory resporIidsIto : I

28
means of said plurality of bidirectional match signal-i = g ' - ' - : l = : ‘ z : . I .
.ling means being associated :with one register means '

-:of saidlplurality of register mans: andnbeing 100m. : z : z :. .~ m.
uectedtosaid matchdetcction meansiassociated with? 2- '3'i=-' “I:

said dissociated~ register means. and- to said register '
I:clearing'signal providing meansi,'and eachtsaid 'bidi-. - I If . . ‘ t :

rectional match signalling ‘means- providing said" "' i' ' ' " '
Ei'n'atch :si'gnal: tosaid register clearing. signal providing .
imeausonlywhensaidbidirectionalmatchsignalling-hiv-I- 4-w-

means in simultaneously receiving 'saidI match sign‘al‘ ' ' = '
.Erdi'n 'saidcormected snatch Hetccfion means and from. -
said externalsource; and

plurality of; manoryl match usignalling means for re-:
ceiVing said match signal from said bidirectional I

source for providingsaid match signal to said bidire'c-iI- . -
tioInal matchsignalling means, each one Iof‘ said'iii‘em-I'
rysinitch. signallingmans correspondingto one of . '

'dbidirecuonalmatchsrgriaflmgmeanshemgconr...g.z=zi.,3 =:..
nectcdta said corresponding said match signalling I'

HImeaInii'1n: eldi ofsaid content-addressable niemory3 -

.wtmcctcd:bidirectional matchI signalling" means IIonly.

ling means are providingsaid match signal;

said Icleear, signaliproindeId shy. said-memory:claIs sign.
.rIIalI promdmgmesnsbycleamgsardregistermeans-.,II

onlinwh‘eImsaid. register means contain said .stored . - ‘
itemsofdatamatohmgsaidpatternitemofdauandunqg.:..:..§.~.
.said register means. are associated with said bidirec-A . . : : .

pfionqlmatdi:signallmsdmcanswhichmreccivingu v:

Ilsaidmatchsignalfrom-saidmemorymatchsignsllhig p...“ gag”.
.17 In the content;admissible memoIny--.ofclaim 16;:

IIandwherein said content-addrImsablc memory furtherI'comprises:

an additional plurality ofaid content-addressable mem.ory module; and
an additional said memory clear signal providing meaIns

connectedtosaidclearsignalrweivingmeansineach
one of said additional plurality of memory modulu,

and wherein each one of said plurality. of m-ory
matchsignallingmeansisfurtherconnectedtosaid
corresponding bidirectional match signalling means
in each content-addressable memory module of said
additional plurality of content-addressable m-ory
modules.
18. In the content-addressable memory of claim 16.

and wherein said content-addressable m-ory further
comprises:
an additional plurality ofsaid content-addressable mem-

ory modules; and
an additional plurality of m-ory match signalling

means, each one of said additional plurality of mem-
ory match signalling means being connected to said 5
corresponding said match signalling means in each of
said content-addrasable manory modqu of said
additional plurality of content-addressable m-ory
modules; and

wherein said memory clear signal providing mans is
further connected to said clear signal receiving means
in each content-addrmable memory module of said
additional plurality of manory modules.
19. In the content-addressable memory of claim 16,

and wherein:

NOAC EX. 1017 Page 319

NOAC Ex. 1017 Page 320

fix

dvtevifl
,“i.

’i‘wiir:«were»
IS}:“'

”v...3, .wsum.
"Ix.«a;.

t

3

it";‘;.:a.5

4.21.34:.441...?mini.
«as5311'1...

4,559,618
29

a pattern sequence of bits in said pattern item of data
corresponds to a certain sequence ofbitsin each one
of said stored items of data and said stored item of

data matches said pattern item of data when said bits
in said certain sequence match said bits in said pattern
sequence
20. In the content-addressable memory of claim 19,

and wherein:
said simultaneous clearing means includa

(1) a plurality of means for detecting said register
means containing said stored items of data match-
ing said pattern item of data. each one of said plu-
rality of match detection means being associated
with one said register means and being responsive
to said stored item of data contained in said one
said register means and to said pattern sequence of
bits, and each one of said plurality of match detec-
tion means acting to provide a match signal when
said one said register means associated with said
one match detection means contains said stored
item of data matching said pattern item of data.

(ii) means for providing a register clearing signal to
any one ofsaid register means in raponse to said
clear signal and to said match signal, and

(iii) a plurality of means for clearing said register
mans, arch one of said register clearing means
beingassociatedwithoneofsaidregistumeans
and being responsive to said register clearing sig-
nal;

said content-addressable memory module further in-
cludes a plurality of bidirectional match signalling
means for providing said match signal from said con-
tent-addressable memory module, receiving said

matchsignalfiomanexternalsom-ceand providing
said matchsignal to said register clearing signal pro-
viding means, each bidirectional match signalling
means of said plurality of bidirectional match signal-
lingmeansbeingassociatedwithoneregistermeans
ofsaidplm'alityofregistumeansandbeingcon-
nectedtosaidmatchdetectionmeansassociatedwith
saidassociatedregistermeansandtosaidregistu
clearing signal providing means, and each said hidi-
rectional match signalling means providing said
matchsignaltosaidregisterclearingsignalproviding
means only when said bidirectional match signalling
means is simultaneously receiving said match signal
from said connected match detection means and from
said external source and

said content-addressable memory further includes a
plurality of manory match signalling means for re
ceiving said match signal from said bidirectional
matchsignallingmeansandservingassaidexternal
source for providing said match signal to said bidirec-
tional match signalling means, each one of said meni-

5

10

15

20

30

35

40

45

ory match signalling means corresponding to one of 55
said bidirectional match signalling means. being con-
nected to said corresponding said match signalling
mmns in each of said content-addressable memory
modules, and providing said match signal to said
connected bidirectional match signalling means only
when all of said connected bidirectional match signal-
ling means are providing said match signal,

whereby said content-addressable memory responds to
said clear signal provided by said memory clear sig-
nal providing means by clearing said register means
only when said register means contain said stored
items of data matching said pattern item of data and
said register means are associated with said bidirec-

30
tional match signalling means which are receiving
said match signal from said memory match signalling
means. .. . ,

21 In the content-addressable memory of claim l9, .. ‘-
and wherein: . ‘ g ‘-
said content-addressable memory module further in- _ _

cludes means for receiving a. masking item of~data for :1 ‘ ‘

Specifying said pattern sequence of bits and f
said simultaneous clearing mans is further connected to _ _ . 5

said masking item receiving means andis responsive . _.to said masking item of data. ’ . 1.

22. In the content-addressable memory of claim 21 ‘1' ,and wherein.

said masking item ofdata further specifies a non-pattem
sequence of bits in said pattern data item; ~ _.

said stored items of data further contain asecond cer- ‘, ‘.

tain sequence of bits corrapondingto said non-pap" ~ '
tern sequence of bits; and

one said stored item ofdata matches said pattern itemof
data when said first certain sequence of bits matches -

said pattern sequence of bits, regardlms of the values _ H
of bits'in said second certain sequence ofbits. _ ~.

23. In the content-addressable memory of claim 22and wherein:

said masking item of data specifies all said bits'in snide.
pattern item of data as said non-pattern sequenceof—-‘bits,

whereby all said stored items ofdata match saidpattern
it-ofdahaflsaidregistermeansinsaidpluralityof'
register means are said certain ones of said plurality

of register means, and said simultaneous clearing»
means simultaneously clmrs all said register means in

said plurality of register means upon reeeipt‘ofmidiclear signalin said clear signal receiving means; i

24. In the content-addressable memory module‘ofclaim 21, and wherdn:
said simultaneous clearing means further includes' ,

(i) a plurality of means for detecting said register:
means containing said stored items of datarnatchs
ing said pattern item ofdata, mch one of said phi:~
rality of match detection means being associated i
with one said registermeans, being mponsiveto,
mid stored item ofdata contained-in said one said;'
registermeans,tosaidpatte1nrteh10fdata,andto » '-
said mask item of data, and providing a match
signal when said onesaid registermeansassociatedwith said one match detection means contains said
stored item of data matching said pattern itun of.

(ii) means for providing a register clearing signal to:
anyoneofsaidregistermeansinrespon‘setoaaid'
clear signal and to said match signal,‘and .

(iii) a plurality of means for clearing said register. 1 1
means, each one ofsaid register clearing means '
being associated with one of said register means
and being responsive to said register clearing sig-
nal;

said content-addressable memory module further in-
cludes a plurality of bidirectional match signalling.
means for providing said match signal from said cori- -
tent-addressable memory module. meiving said .
matchsignalfmmanexternalsour‘ceandproviding ;
said match signal to said registra- clearing signal pro-~ '
viding means, each bidirectional match signalling
means of said plin'ality of bidirectional match signal-
ling means being associated with one register means
of said plurality of register means and being con- .
nected to said match detection means associated with ~ ‘

NOAC EX. 1017 Page 320
" ’“A‘m

NOAC Ex. 1017 Page 321

f1...

snowman»:2»,,
4,3,

as?.

a.‘Kan.“
,2‘

«‘.,,<,.~

:was:W33

nwad},~':W.r;
15.52am

“Mair-o.”,
.3.;'-§»(

4,559,618
31

said‘ associated register mans and to said register
clearing signal providing means. and each said bidi— '
recu'onal match signalling means providing said
match signal to said register clearing signal providing
means only when said bidirectional match signalling 5
means is simultaneously receiving said match signal
from said connected match detection means and from
said external source; and

said content-addressable memory further includes a
plurality of memory match signalling mans for re- 10ceiving said match signal from said bidirectional
match signalling means and serving as said external
source for providing said match signal to said bidirec-
tional match signalling means, each one of said mem-
ory match signalling means correspondingto one of 15
said bidirectional match signalling mans, being con-
nected to said corraponding said match signalling
means in each of said content-addressable memory
modules, and providing said match signal to said
connected bidirectional match signalling means only 20
when all of said connected bidirectional match signal-
ling means are providing said match signal,

whereby said content-addressable memory rmpouds to
said clear signal provided by siid memory clear sig-
nal providing means by clearing said register mans 75
only when said register means contain said stored
items of data matching said pattern item of data and
said register means are associated with said bidirec-
tional match signalling means which are receiving
said match signal from said memory match signalling 30means.

25. In the content-addressable memory of claim 24,
and wherein said content-addressable memory further

comprises:
an additional plurality ofsaid content-addressable mem- 35

ory modules; and
2 an additional said memory clear signal providing means

connected to said clear signal receiving means in each
one of said additional plurality of memory modules,

5; and wherein each one of said plurality of memory 40

;:,_matchsiguallingmeans_isfurtherconnectedtosaidcorresponding bidirectional match signalling means
in each conteut-addressable memory module of said
additional plurality of content~addressable memory
modules. 45
26. In the content-addreuable memory of claim 24,

and wherein said content addressable mimicry furthm'
comprises:
an additional plurality ofsaid content-addressable mem-

ory modules; and 50
an additional plurality of memory match signalling

means, each one of said additional plurality of mem-
ory match signalling means being connected to said
corresponding said match signalling means in each of
said content-addressable memory modules of said 55
additional plurality of content-addressable m-ory
modules; and

wherein said memory clear signal providing means is
further connected to said clear signal receiving means
in each meal" said additional plurality of memory 60

_ modules.
27. A content-addressable memory comprising:

(1) a plurality of content-addressable memory modules.
mch one of said plurality of content-addressable
memory modules including 65
(a) a plurality of register means, each registeemeans

of said plurality of register means containing one
stored item of data;

. 32
(b) means for receiving a pattern item—of data;
(c) a plurality of means for detecting said register

means containing said stored items of data match-
ing said pattern item of data, each one of said plu-
rality of match detection means being associated
with one said register means, being responsive to
said stored item of data contained in said one said

register means and to said pattern item of data, and
providing a inatch signal when said one said regis-ter means associated with said one match detection
means contains said storm! itun of data matching
said pattern item of data; and

(d) a plurality ofbidirectional match signalling means
for providing said match signal from said content-
addressable memory module and receiving said
match signal from an external source, each one of
said bidirectional match signalling means being
associated with one of said register means and re-
sponsive to said match n'gnal fmm said match de-
tection means modated with said associated regis-
ter means and to said match signal from said exter-
nal source, and acting to provide said match signal
only when simultaneously receiving said match. .
signal from said associated match detection means
and from said external source; and

_ (2) a plurality of memory match :gnalling means for
receiving said. match'signal from said bidirectional
match signalling means and serving as said external
source for providing said match signal to said bidirec-
tional match signalling means, each one of said mem-
ory match signalling mans corresponding to one of
said bidirectional match signalling means, being con.
uected to said corruponding said match signalling
means in each of said content-addrssable memory
modules, and providing said match signal to said
connected bidirectional match signalling means only
when all of said connected bidirectional match signal-
ling means art'providing said match signal.
28. In the content-addressable memory of claim 27,

and whaein said contain-addressable memory further
comprises:

an additional plurality ofsaid content-addressable mem-
ory modules; and

an additional plurality of said manory match signalling
mans, each one of said additional plurality of mem-
ory match lgnalling means bdng connected to said
corraponding said match signalling means in each of
said content-addrmsable memory modules of said
additional plurality ofcontent—addressable -memory
modules;

29. In the content-addrmsable memory of claim 27,
and wherein:
said bidircCfional match signalling means is a match line

connected to said match detection means and clmring
signal providing means;

said m-ory match signalling means is a memory match‘
line connected to a corresponding said match line in
each one of said content-addressable memory mod-
ulea;

said match line and said memory match line provide and
receive a match state and a no-match state;

said match signalis said match state; and
each said match line is connected to to an open-collec-

tor driver circuit in said associated match detection
means and said open-collector driver circuit places
said connected match line and said connected mem-

ory match line in said no match state unless said
stored item of data in said register means associated

NOAC EX. 1017 Page 321

was..nnlmasfiuwn..,......~

NOAC Ex. 1017 Page 322

s 3 (a

,1
a”,s

5}: w

a?» ‘
i . ~ 4,559,618

(55 1 33 34
22} p , withsaid match detection means matches said pattern rality of register means from an external source.

9 item of data. _ decoding said encoded addrss to generate an ad- .‘
r: ‘- . 30. In the content-addressable memory of claim 29, dress signal for said addressed registermeans speci-
gs ~ and wherein: fied by said encoded address, and providing said { j

,~ ,5. said match state is a high voltage and said no match 5 addrem signal to said addressed register ineans,- e '—
:§ state is alow voltage. _ each register means of said plurality of register 3 —
(a? a: 31. In the content-addressable memory of claim 30, means being mponsive to said address signal;'nnd ‘, A
a f»! and wherem: _ . _ . (2) memory register addrm providing means oon- , ..
:3; a pattern sequuice of bits in said pattern item of data nected to each said address receiving means in said' 5 -
3;, 3,: corrsponds to a cumin sequence of bus in each 9116 plurality of memory modulm for simultaneously 1“ |
a; : ~ of said stored items of data. said match detection 1° providing 'snid encoded address to said addressi '(,i means is responsive to said pattern sequence of bits rwciving means in ash one of said pluralityof '.

as and to said certain sequence of bits, and said stored memory modules . ' ~ ' .
item of data launches §aid part-n it- of data when whereby said encoded eddies provided by said meni- é T.
said his in 50d m sequence match mid bits 1“ oryregister address providingmeans specifiesamem- ‘. ~'
said pattern sequuice. 15 ory register made up of said addremed register means _‘ 1"

> 3.2. In the content-addressable memory module of in each one of said plurality of memory modules. , ‘ p ‘
_~’ ‘3‘ ’ 019ml 31. 811d wherein: _ 37. In the content-addressable memory of claim 17, :
m: i'» , said content-addressable memory module further m— 13, 25, 26, 28, or 35, and wherein:. .: _..~

,. eludes meansfor recenvmg a mashnwcm ofdam for each content-addressable memory module of said plu- _. . -
g - Speufyms said pattem sequence of bits and rality ofcontent-addressable memory modules and of ,said match detection mans is further connected to said

masking item receiving means and is responsive to -
said masking item of data.
33. In the content-addressable memory module of

claim 32, and wherein:
said masking item of data further specifies a non-pattern 25

sequence of bits in said pattern data item;
saidstoreditemsofdatafurthercontainasecondcer—

-1~-- tainseqnenceofbitacorrespondingtosaid non-pat-
s."- ~~ " tern sequmce ofbits; and

' 1:— one said stored item ofdau matches said pattern item of 30
data whm said first certain sequuice ofbits matches

New said pattern sequence of bits. regardless of the values
new of bits in said second certain sequence of bits.

34. In the contentmddreasable module of claim 33,
and wherein: 35

saidmaskingitemofdataspecifiesallsaid bitsinsaid
pattern item of data as said non-pattern sequence of
bib.

wherebysaidmemorymatchlineismsaidmatchstate
when first certain memory modules ot‘said plurality 40
of memory modules receive said masking items of
dataspecifyingallsaidbitsinmidpatternitemsof

.A datareceivedbysaidfirstcertantmemorymodulesas
.3". said non- bits, second certain memory mod-
“ ' ules ofsaid plurality ofmemory modules receive said

masldngitemsnotspecifyingallsaidbiminsaidpat- 45
tunitanofdataassddbimandsaidstoreditcmsof

5;, datainsaidrcgistermeansassociatedwithsaidmem-
.. orymatchlinesinsaidsecondcertainmemorymod—

g ules match said pattern items received by said second
3 ‘ ' certain memory items. so
1 35. In the content-addressable memory of claim 34,

and wherein said content-addressable memory furtha'
comprises:
an additional plurality of said content-addressable mem-

- . ory modules; and 55

‘ x~ an additional plurality of said memory match signalling
i. means, each one of said additional plurality of mem-

” - orymatch signallingmeansbeingconnectedtosaid
- corrsponding said match signalling means in each of

said content-addressable memory module of said 60
additional plurality of content-addressable memory
modules.
36. In the content-addressable memory of claim 16,

19, 21, or 27. and wherein:
said content—addressable memory module fiirther in-

cludes 65

indies licenses;_,=j',';'*

i‘Vnew...‘

Wm.

emissary?!»““:*
‘2 addrms receiving means connected to said plurality
3; of register means for receiving an encoded address
3,; specifying an addremed registu' means of said plu-
3%

5;?

said additional plurality of content-addressable mem-~ C ’
ory modules further includes address receiving means, ., .
connected to said plurality of registermeans forte: ‘A :
ceivinganmcoded address specifying an addrmd' 2'
registermeans ofsaid plurality ofregistermeansfrom ‘
aneaternalsource, decodingsaidencodedaddr‘eas'to‘l; “
gmerateanaddreeasignalforsaidaddreasedregister' ‘
means specified by said encoded address; and pmvid :
ing said address signal to said addressed register T;
means,eachregistermeansofsaidpluralityofreg‘is— H "_'
termeansbeing ruponsivetosaidaddrassignal; and;.

said oontent-addressablememoryfurtherincludes 11.15117: =.'
.r

ory register address providing meansconnected' to
each said address receiving “in said pluralityoff A
memory modules and to said addrms receiving means r-_; 1
in said additional plurality of memory modules for" r :
simultaneously providing said encoded address to“ i,
said addrem receiving mans in each one of said plu-,‘ T,
rality of memory modules and in .each one of said.
addin'onal plurality ofmanory moduls. - y .- Q; '~
38. In the content-addremable memory of claim 17, 5.:

18.25.26.28.or35,andwhereim - fr ~,3.”.
each content-addressable memory moduleof said— pln- _ .‘ “

rality ofcontent-addressable memory modules and of;
said additional plurality of content-addressablemem- 1
ory modules further includes address receiving means
connected to said plurality ofr‘egistermeansforre-p ”
ceiving an encoded address specifying an addressed-g} s
registermeans ofaaid plurality ofregistermeansfrom "I
anexternalsomcedecodingsaidenoodedaddremto
generate an address signal for said addressed register
means specified by said encoded address. and pmvid— :—
ingsaidaddressignalto said addressedregister w
means. each register means of said plurality‘of regis-
termeansbeingrmponsivetosaidaddresssignahand “

said content-addremable memory further includes ‘ -
memory register addrels providing means connected 2

toeachsaid addressreceivingmeansinsaidplural-
ity of memory modules for simultaneously provid- ‘
ing said encoded address to said addrcs rweiving
means in web one of said plurality of manory
modules; and ' ‘ '

addin'onal memory register addrem providing means .
connected to each said address receiving means in
said additional plurality of memory modulm for
simultaneously providing an additional said 51- '
coded address to said address receiving means in
each one of said additional plurality of memory
modules. , ’

NOAC EX. 1017 Page 322

NOAC Ex. 1017 Page 323

(4.

-43.,t3,

um¥seh§1aflfl3,'i
a”maxi.,
i

,,.whWe:9km.

gag‘6f~"xn‘a.th“_,{">2“!{X‘z{11.x
United States Patent [191
Olmnoto et al.

[54] ADDRESS CONVERSION APPARATUS

[15] Inventors: Tad-hi Ohmoto. Hinkata; Hiroshi
Radon, Toyonnh; Muslin
Nah-jinn, Hinlma. all of Jupsn

[73] Asaignee: Magnum mm mm Co.
m. Osaka. hm

[211 App]. No.: 100.551

[22] Filed: Sep. 24. 19a

[30] Pm Applieoflon Priority pm

Sep. 25, [935 [m lelll m................l............ 51-226697

[51] Int. (14 GNP 12/10
[52] US. Cl. 364/2“)
[58] Flt.“ «Search 364/2“). 900

[55] Rafe-onus Oted
U.S. PATENT DOCMN'TS

4.296.475 IO/l9ll NMet IL 364/”
4,433,339 2/19“ York a ll. 364/9!»

 4,533,241 s/ms Levin et at _.....- .I: 364/900
4.601.331 3/1986 Goodrich, Jr. etll. _. 364/200
4.735.393 11/1933 Joyce a .L 164/200

[11] Patent Number: 4,910,668

[45] Date of Patent: Mar. 20, 1990

Primary Examiner—Gareth D. Shaw
Asin‘ant Examiner—Debra A. Chou
Attorney, Agent. or Fim—Wutderoth, Lind it Pomok

[57] Ansnucr

An addrcs conversion sppmtus includes a content
addremble memory for storing a plurality of logical
Iddrena, and 1 random wees: memory for storing a
plunlity of physical addresses corresponding to the
logical addresses. When an input logical address is re-
ceived. a seurch is conducted to find the same logical
address stored in the memory. When the some logical
address is found, the content addressable memory
wisesthenndomswesememorytooutputscorre-
spending physical address. The content addresssble
memory includes a plurality of logical addren storage
units. Elch unit In: a plurality ofdatn bi! cells for stor-
ing Iddreu data and a prom identification number cell
for storing a pmceu identification number. Thereby, I
plurality of logical Iddrases which correspond to dif-
ferent processes Ire stored in the single content addres-
sble memory.

ZCMMUaniugSheeu

NOAC EX. 1017 Page 323

NOAC Ex. 1017 Page 324

 flhaualiinxiii!X4‘.51“$§§§i§§i.2.xiCisis.{31.I:«|
,

4,910,668

NOAC EX. 1017 Page 324

Sheetlof8

..o_u_

O US. Patent. Mar. 20, 1990

NOAC Ex. 1017 Page 325

3!

4,910,668

III}----«u-u-\li§--l-}mtr)m¢u
Sheet20f8

I'll-IIIII--_m__fiu____Erm
-mflmiin...

Mar. 20, 1990US. Patent

.;,..,aziur..fizAmtastg.fixgxéi.,.1......Y333...«,3»...,.
.FEES.UnlflmflfimgimilEKOm

mama—g.O
n.,23.3%.3;..

“a.“

“EU
.__...m..Ju..Ehm-a

aflmfi-I.‘FEE-inl—l
mm

if........Mfi.e....m:3fl5§...afl,
mlhll);

mmmmmmmmmmmmN.0;

,.a..,..£.33......;

523e
g

aP7101X.ECAON

NOAC Ex. 1017 Page 326

OmNEIillunluululincur._2.
__

E.m.n
_

‘Ailln-IJIIIHIIII-
4,910,668

wNow

Mar. 20,1990 Sheet 3 01'8US. Patent

..as:..:....... .,4.....L......33.A.4.33.1...2.2......33.......33.:W-m,atfimfimue.3.was...,3...}....1...3:23...am.m...4.33..z..1iaixaagfi.%,.£.fikn.....J..a...3 ,,[11.1221..it}!!!3x13§§i1.\a.x.3.1.ll¢.5:,t.§..3!s!2.
a.n3...

a}.+.§.§<2..§2.3...Y
.30..4

NOAC EX. 1017 Page 326

NOAC Ex. 1017 Page 327

Mar. 20, 1990 Sheet4 of8 4,910,668US. Patent

FIG. 4A

———B_

FIG.4B

pii§£4311x.1w

«man—.HHHJ“EEEEEEE

PHYlll

FIG. 4C

‘illi:»(631.1311:
.Z}.xzslldfiI!x:

NOAC EX. 1017 Page 327

NOAC Ex. 1017 Page 328

I)4,910 668Sheet50f8IfiiPan mummy”

FIG. 40

..5.....u.~...4.§...

FIG. 4E

FIG. 4F

mmmmmmnnnnnn
 mmnu

 :1.....33:c2......4..:.....,....,.M.......in...”
;.x.n“...

..I»:.........Q..33..:iéhauézfla
..:I

,2‘.

(Away...9!.». .

NOAC EX. 1017 Page 328

NOAC Ex. 1017 Page 329

.4«.1:

Mar. 20, 1990 Sheet 6 of 8 4,910,668US. Patent

FIG. 46 ID2 L0690

mmmmmmmm“mmmmmmm

FIG. 4H

mmmmmmmmmmmmmmmm____

 FIG. 4d

NOAC EX. 1017 Page 329

NOAC Ex. 1017 Page 330

If

(s

US. Patent

‘FlG.4K

FIG. 4L

Mar. 20,1990

FEE
iTI}!
IE!
:13}

II
II
II
II

II:-
51
II
[I

fifi‘:

Sheet 7 of8

IDz LOGD

4,910,668

NOAC EX. 1017 Page 330

NOAC Ex. 1017 Page 331

FIG.5

.. . y...»

0661‘oz'mwmama'S'fl
8108139115

899‘016‘v

NOAC EX. 1017
 Page 331

.- 4.“ 1 H.____;;;- MMWM

NOAC Ex. 1017 Page 332

1

ADDRES CONVERSION APPARATUS

BACKGROUND OF THE INVENTION

Thisinventionrelatestoanaddressconversion appa-
ratus used in a computer system employing a micro-
processor, and more particularly toan address conver-
sion apparatus capable of efficiently converting from a
logical addressinto a physical address.

In a computer system. the central proeasing unit
outputsalogicaladdresswhen executingacertainpro-
gramoraproceas. Sincethislogicaladdressmerely
indicatesavirtualaddrusontheprogram.whenactu—
allyexecufingthcprostmthilogicaladdreaamuatbe
convenedintoaphyaicaladdreasfihltistheaddreaa
storingtheinstructionordataot‘thememorywhich
stores the content of thepracticalinatruction ordata. It
istheaddrenconversionapparatusthatconvertsfioma
logicaladdrasintoaphysicaladdreas.

FlG.5showsablockdiagramd'atranslationlooka~
side hufler (ILB)asanaddressconversionapparams
for converting a logial addnna intoaphysical address
in the conventional memory management system by
P-sms-

muBiscomposedd'acontentaddrmablemem-
ory (CAM) ufor storingthelogicaladdreasltldeliv-
eredfromtheCl’UJleastrewntlyusedcircniflLRU)
14 for controlling the content thereof, and a random
accusmernoryfllAhDIIbeingacceasedbytheCAM
11 and deliveringa physical address 16. The CAM 12
posses: plural logical address storing parts 20 for
storing plural logical addrasea. In och logical address
storingpartfl,avslidhitflisprovided,anddepending
onwhetherthevafidbitzzislormitisknownwhether

5

IO

15

thelogicaladdressstoredinthecorrespondinglogical 35
addreustoringpartzoisvalid(messary)orinvalid
(unnecessary).'l‘heLRU14iscomposedofanumberof
leastrecentlyusedconntersucorraspondingtothe
plural logical address storingpsrts 20. sndthesecount-
ersuandthelogicaladdressstoringpartsmaremutu. 40
allylinkedbymeansofleaatrwentlymedreplaceword
wiresZGandcontentaddrmaablememorywordwires
28.1'heCAM12andtheLllU14arejoinedbywayol'
contentaddreasablememoryhitwiresn'I‘hellAMll

4,910,668
2

thelogical sddrmdataanditisneceatarytodeletethe
logical addrem data not required for the time being, the
least recently used logical address storing part 20 is
selected by the LRU l4. and the logical address data
storingin thatpartiserned, and thedataofthelogieal
addreastobeusednewlywillbestored.

Thus. while a certain process is being executed, the
input logical address 10 is converted at high speed by
the TLB into an outputwd physical addres 16, but in
theCAMlIot'theTLBJherewasnotfiddto recog-
nize the procus to be executed. Awardingly, when
plural processes, that is. mnltiprocesses are executed in
theprocesaor,ifacontentswitehingoccursduetoa
change-over'oftheproceu to beexecuted, itis neces-
sarytoinvalidatealldataofthelogicaladdrusnewlyin
eachprocesstoupdate'l'hisisbwauseeven atthe
samelogical address, it'the procms tobeexecnted is
different, the address content differs.

Furthermore, in the mnltiproceas environment. each
proceuiascheduled,andtheproceasorisusedmtime
shuingandthereforeineach process. itisneceasaryto
updatealllogicaladdrmesoftheTLBevery time
chanpd over-by theconteatswitch until theproceas is
completely terminated. Therefore the system perfor-
mance was lowered.

SUMMARY OF THE INVENTION

It is hence a primary object of this invention to pra-
ent an address conversion apparatus capable ofconvert-
ing addresses efficiently even in the environment of
frequent context switching. _

It is another object of this invention to present an
address conversion apparatus comprising a content
addressable memory having a field for indicating a pro-
cem identification number. and capable of storing logi-
caladdrassesofditferentproeesseastthesamefirne.

While the novel features of the invention are set forth

in the appended claims. the invmtion both as to organi-
ufionmdcontenewillbebetterunderstoodandappre-
dated. along with other objects and featuru thereof.
from the following detailed description taken in con-
junction with the drawings.

poaeues phyn'cal address storing parts 32 correspond- 45 BRIEF DESCRIPTION OF THE DRAWINGS
ingtothelogicaladdrmssmringpartsmofthecm
12. and the logical address storing parts 20 and the
physicaladdrasastoringpansnarelinkedtogetherby
wayofrandommemoryaccaawordwiru“.

Usually,whenacertainproeesaisexecmedhyapro-
ceasor,anditslogicaladdresseaareconvertedinto
physicaladdreaseaatahighspeedbywayoftheTLB,
theoperationisefi'ectedaccordingtothefollowing
promdure.

AcertainlogiealaddresslllisfedfromtheCPUto
theCAMlLanditcomparedwiththelogicaladdress
smredinthecontentaddreaablememoryllfiereit‘a
logicaladdremcoincidingwiththeinputlogicaladdrm
lflispreaentthedstacorrespondingtothephysical
addrasstoredinthephysicaladdressstoringpannof 60
theRAM lacorreapondingtothatlogicaladdrusis
delivered Asaresultol'thisourpntot'thedatacorre-
spending to the physical address. the data on that physi-
cal addressis read out by theCPUortheprocaaor, and
is processed.

At the time of the above described logical addrm
retrieval. ifno coinciding logical address is present and
the content addressable memory 12 is fully filled with

50

55

65

FIG. 1 is a block diagram of an address conversion
apparatosaccordingtooneol'theembodiments ofthis
invention;

FIG.2isacircuitdiagramd'acontentaddreasable
memory in the same apparatus;

FIG.3|aacircuitdiagramofaleastrecentlyused
circuit of the me apparatus;

FIG. 4A to FIG. 41. are diagrams showing the
changes ofdata in address conversion by using the same
apparatus; and

FIG. 5 is a block diagram of a conventional address
conversion apparatus.

DEIAILED DESCRIPTION OF THE
INVENTION

The addreu conversion apparatus of this invention is
dmcribed below while referring to FIG. 1 which shows
a translation lookaside buffer (118) as one of the em-
bodiments thereof. The TLB shown in this drawing is
similar in basic structure to the conventional TLB

shown FIG. 5 in and identical parts are given same
numerals and detailed dmcriptions are omitted.

NOAC EX. 1017 Page 332

NOAC Ex. 1017 Page 333

4,910,668

3
TheCAMlZcomprisegatthebeginningofesch

logical address storing part 20 for storing the logical
addrelsproducedfromaeertainproceubeingeaecnted
by the processor. a procas identification number part
(proces ID part) for storing the identification number
of that process. a valid bit 22 for indicating the validity
ofonewordstoredinonelogicaladdrmpamMI
priority encoder (PENC) 38 for specifying by selecting
a specific invalid word disposed physically at a higher
position than thewordby referringtothevalidbitn

FurthermoretheCAMlZalsocomprisesabatch
reset wire 40 for initializing the valid bits by simulta-
neously resetting all valid bits 21. a process identifica-
tion numberbatehresetwire IDbatch raet
wire)“ forreferringtotheproceslepan36. andfor
resetting the valid bit 12 of the plural words having the
same unnecessary process identification numba‘ (pro-
eesle)whentheprocessisunnwessaryorwheothe
procemes handled by the processor mod the preset
process control number. a priority encoder word wire

5

[0

15

(PENCwordwire)40fortransrnittingthespecific.
wordspecifiedbyapriorityencoderGENC)3ltothe
LRU l4. and a content addrmable memory full wire
(CAMfirllwire)41forindicatingthattheCAM12is
filled with valid data without any invalid word,tothe
LRUIA.

lnthephysicaladdrmpartnol‘therandomaccess
m-ory laisstoredtheaddreasforstoringthephysical
addreswhichstoresthedataorinatructioncorrespond—
ingto the process identification number oftheprocess
DpartfionelchwordoftheCAMnandthelogical
addremofthelogicaladdrcsstoringpartm.

1heLRUl4comprisesacounterzttacountervalid
bitumindicatewhetherthevalueofthiscotmteruis
valid.alelstrecentlyusedhatehruetwire“forbatch-
resetting thiscounter valid bit“. and aleast recently
usedcontrolcircuirll.

Referring now to FIG.2through FIG.¢.thecireuit
structureoftheTLBisdescribedmorespecifically
below.andtheopmtionoftheprocess[Dpart36
which is one ofthe futures of this invention during
operationofTLBisalsoexplainedindetaiL

HG.2iascircuitdiagramspecificallyillusu-atingthe
CAMIZinFlG.LTheCAM12showncomprises
logicaladdrustoringpernmeomposedofplnnldata
bitcells”,nndaprocesaleafl3‘fotstofing,for
emplefomproceamsmtzlandintheproceu
mpartforexampletherearetwowoeessidentifica-
tionnmnbercells(fl)1.lDz)50.52forsettingthefour
proceesIDsOtoa.

Fminshncewhentheleanrecentusedreplaceword
whelfibecomaslandreplacementisefl'ectedforstor-
inguewlogicaldata.anode22aissetfligh.andthe
validbitZZissetatl.Atthesametime.theprocess
identificationnumberoflbeaddresldlfllndthclogiml
sddrcssareentered intoprocasideotifimtion number
cells(mr.ll)z)50.52andpluraldatabitcells49which
makeupthelogical addreu storingpartzo.

When the process identification number batch reset
of this inventionisefl'ccted.asignal “l"isappliedtoan
arbitrary one of the four prom identification batch
reset wim 42 to indicate four processes fromo to 3, for
example. the resetwirefla correspondingtothesecond
process. In the process identification number part 36,
thedara correspondingtothe second process, thatiS.
the data. for example, of which procm identification
number cell ID; 50 is "l" and prams identification
numbercell ID252is"0" outputs: control signal of “l”

B

35

45

55

65

4
to the reset circuit 51. and the AND of this control
signaland thecontrolsignal “1" ofsaidrmetwirenais
obtainedinthisrssetcircuitSLnndnsaresultofthis
product, thenodenaofthevnlidbitnbecomeslnw,
and that word becomes invalid. This processing is con-
ducted on all words having the same process identifica-
tion numbrn', and each invalid signal is entered into the
priority encoder 38. In the priority encoder 28. with
respect to the input of these plural invalid signals, they
are indicawd to the LRU 14 as being reloadable word
regions of logical addresses. sequentially one by one.
from thehigherones(the wordsathigherpositionsin
FIG. 2). Therefore, if the process identification num-
bersareresetinbalchandplural reloadable words
shouldoccurintheCAMuonlythewordatthe
highest position is noticed to the LRU 14 as a reloadable
word. At the LRU 14, receiving this notice, when the
data of writing logical address is newly entered into the
11.3, this new logical address data is written into the
wordat the highutposition. and the priorityencoder
380ftheCAM12deliversthenextwordinthepriority
orderasthewordatthehighestpositiontothcmu 14.

Furthermore. when the CAM 12 is filled completely
with valid data without any invalid word. the nonactive
stateofthepriorityencodafl isdetected.anditis
transmittedtotheLRU “throughthe CAMfull wire
49.

The content addressable memory hit wire 30 is con-
ncmedmuchwomnndanindicationastowhether
each word is hit or not is forwarded to the LRU l4.

Numeral 54 is a dummy word part for adjusting the
timing of retrieval of the CAM 12.

FIG. 3showstheportion oftheoneword ofLUR l4
ofthe‘IIB.TheLRUisroughlydividedintothe
counterpertflandtheotherLRU control circuit38.

TheeotmterpsrtltisaS—bitcounter.andesehbit
(24atoz4c)hasacounterdatapart SLacarrypropaga-
tionpartflforpropagstingthecarryofthe counter.a
reset part 12 for resetting the counter. and s comparator
part 70 for comparing the counter value with other
word. The LRUcontrolcircuitflcomprisesacounter
validbitutoindicatewhetherthecounteroftheword
isvalid.acarrygeneratingpart76forguseratingn
carryonlytothewordsinwhichtheoountervalidbit
“hasbeensetsofarifthecomparativewordwiress
becomes active or CAM mishit should occur as the

reuievedlogicdaddreuisnotpruennandanLRU
replace word generating part 78 for making the LRU
replacewordwire 26active forthe purpose ofkeeping
nniformityofthemUuandCAMIZRAMllby
referringtothePENCwordwiredOandCAM fullwire
41,and CAMhitwire30and replaceenablesignal 86.
Numerals 140, 142. 144 are the clock wires for adjusting
the timing.

'l'heLRU controlcircuitfljfthereis thesameasthe
retrievallogicaladdrcssinitswordandthehitsignal
fi-omtheCAMnisenteredintotheLRUcontrolcir-

cuit 48 through the content midi-enable memory hit
word wire 30, transmits the value of the counter of that
wordtothecounterreferencebitwiruSGatoGfiin
eachbit Mammofthecounterpart 24.

ll'there is no hit. on the other hand. the value ofthe
counter of other word being hit is received from the
ocunter reference bit wirm “a to 66¢. and it is com.

pared with the value of the own counter in the compar-
ator 70. and if the value of the own counter is smaller
than the value ofthis hit counter. the comparative word
wire 6! is made active. and this signal is trammitted to

NOAC EX. 1017 Page 333

NOAC Ex. 1017 Page 334

=4"wfik-‘bfi’NM.f””a~
*.2‘,A“.30“’5‘»;r"t{5--s

”.4‘

92min

'2"«we...
,3}:

4,910,668
5

theeenygenmfingpm7flandthegenentedcuryis
tranunittedtotheemmterpertflthroughthecarry
wireuandthevalueoftheeounteririncrementedby
l.

HeleacfionsoftheLRUcircfitarepncfiallyde- 5
scribed below. In short, it is intended to prepare for
updatingtheoontentofthelogioeladdresoftheword
tothecontentofthelogieeladdrenofthehighafiposd-
bifityofusebyalwaysreeognizinginthenBthemost
reeentlyusedword. or,inother words, by alwaysreo- 10
ognizing the least rwentlyused word out ofN wordsin
theTLB.Forthiapurpoue,dataoflogieeladdreuuare
storedianordsintheTLB.andforenmple. when
thedataofncertainwordisusedatthek-thtimeoutof
NwordgthevflueoftheeounterpnrtfioftheLRUl‘ 15
iskAecordingly,bythenexteommand,ifthelogienl
addrusofthisk-thwmdianaedtheoounterpertuof
thiswordissettondtheeountersofanwordahnv-
in;sofarthevnlueaof0to(k—l)areincreesedbyl.so
thatthemostrecentlymedwordeenbealmyueoog-zo
nizedutheoomtervduebwomelerrtheleestre-
centlyusedwordeenberecognizedutheoounter
valuebwomaN.

Meanwhile. the explanation of RAM 18 is omitted
bemuseitiaaverycommononeddgnedtodeliverthe 25
contenttoaoertlineddrm

niahubemnbdefexphnntionoflnembodimentof
theflBofthisinvenfimbyCAMlLLRU Maud
RAMIlBelowisdaeribedthepnctiedopentionof
theTLBapebleofflendfyhigthepmmbythiain-so
vention, mainly relatingtotheLRU l4.

IheckmfitwfimhexplfinedinFlG.2,FlG.3,-nd.
datachnngaoftlleTLBhudionaregivenhnFIGJ.
Here, the TLBiseIplninedasSentriea (8 words).

WhentheTLBapebleofideofifyingtheproomofss
mhhvmfionhopmmmoeuaaremughlyeomid-
ered.

(1)0rdinaryaction (notensedby promIDbetch
reeetwiredlandvalidbitnofCAMIZand
counter velid bituofIJlU Marematehed). 40

(2)Emaordinnryaetion(ensedhyprooesleb-tch
raetwire41andvalidbit220fCAM12and
cormtervnlidbituofLRU flarenotnutched).

Thaeectiomarefnrtherdeecribedbelow.

(“Ordinaryaetim
Forinifidinfionofthemmebetchraetwireao

forinifializingthevflidbitflilmadeacfiveinthe
CAMledtheLRUbetehresetwirewintheLRU.
andthevdueoflheoounterflmdtheeounterhituto so
seeifthecomteriaefl'eefiveormtisreeetmdthe
flnhhifidmmmhfimethedmholdingeech
elementofthe'l'LBbeeomeaushowninFlGJAXI'he
solidlineinFlGAAshowsthatthedanisprerentmd
Ooftheeonntervafidbitnvalidbitnmdeoumter 55
paflflindieetanrlthembaequentldmotee
“set"(valid).

(DWhenanemedalogiuladdreumLOGI)
getinwtheCAMlzsincethereisnowordin
whichavalidhitnissetintheCAMILtheoon- 60
tent addressable memory bitwire30beooma inn:-
dveandamia-hitiatransnittedtotheLRUcircuit
14.Atthesa.metime.fromtheoutsidethedatato
bewrittenintotheRAMlsisu-ansferred.mda

replace enshlesignal wire “becomaactive. Here, 65
attheLRUlktheIJlUrqalaoe-wordwirefiis
made activeby theLRU replace word generating
pan 7! of the word located physically higher as

45

6
seenfroln one direction, whilethecounter valid bit
Mofthenmewordisuganduaruultofthis
eerie: of actions, theeontent of the TLB changes
homFIG.4AtoFIG.4B.

(ii) Furthermore, whenanewIDandelogic nddreu
([131. L062) get into the CAM 12, the content
addressable memory hit wireJObecomer inactive
aphmdtheCAMlIindicatesamis-hiLAtthi:
timqthecarrygenentingpartflofthewmdin
whichtheaddreaawasstoredbefore generate-a
carry,mdtheeounterisinereuedbyl,and.the
wordtobesetthiatimeisaetinthesemepmemu
hflaboveueresult ofmis-hit. Indthelogical
addfllisnewly stored. At thistime. thecontent of
theTLBchnngel from FIG. 4BtoFIG.4C.When
mis-hitisrepeeted seven! times. thesameopera-
tiona ofi) and ii) are repeated. and the content of
TLB bwomesuinFlG.4D.

(mjAfierwnrds. suppose the previouslystored logi-
caladdrusel(lD1.LOGz)getin.Atthistime,the
CAMDmnkeetheCAMhitwirewacfive,“
indicate- thnt the logical addreuentered into the
LRUI‘h-ebemhfl'l‘hemUflreoeivesit, 1nd
theoompuntorpart'lflofthewordwhichhasbeen
hithytheCAMthrusmitsthedatnoftbe
oounterdetapartflltothecolmter reference bit
wimifilntheotherwordetheindividualcoumer
dnnparuamdthecounterrefereneebitwiree“
areeompered,andwhenthevalueoftheown
counterislargerthanorequltothevalueofthe
oonnwrnfmbitwfiusswbemfmdtmthe
eompenfivewordwireflismadeaefivebythis
oompmtorpart'lfiandthissignllistnnsmittedto
theenrrygener'atingpm76.kweivhigth'nnignai.
atthecarrygeneratinspm7fiiftheeountervalid
bit“hasbeenset,acanyisgmmted,andthe
anyispmplsmdtothcwrypmpmfionpm
“throughtheeerrywirew.Asaruult.inthe
wordinwhichacarryhasoocurred.thecounteris
hereuedhylonly.buttheconntervnlneisnot
changedinthewordlnvingaoomuer value of
hrgerthnnthehitword.

Asfmdnomntuofthehhwordtheruetwiren
ismadeactivehythelogienlgatell4.andthevulueof
theootmtuisclenfinydueacfionswhenthehit
wordistheaeeondonefromthetontheoontentofthe
TLBchangu fromFlG.thoFIG.4E.

Whamenlofsuchaddrmelgetinmdhitmd
thWWchngingfiomFlG.4Em
FIG.4F.theTLBisfilledup.andtheCAMfiillwin-.41
hwomummfivemmwhichisreceivedbytheLRU
14.

(iv)lnthefilledstateol'theCAM123.-.showuin
FIG. 4F. when logical addreu pincer: IDs not
refuredredtosofar(IDz.LOGg)enter,theCAM
thrumniuthemis-hittotheLRUflinthesame

manneruntentionedaboveWhenareplaoesigml
86 return: from outside. the LRU 14 generates
eurriu for all words in the logical gate 102 of the
carrygenentingpart‘lébeceusetheCAMlZis
full. As I ruult of this carry generation, of all
words of the LRU 14, the highest position any
wire 84 of only one word (in this example. the
word of which counter of LRU 14 change: from7
toll)ismndeactive,lndthecountervalidbit44is
temporarilyreseganditiatnnmnittedtothe LRU
replace word generating part 78, and the LRU
rephce word wire 26hmnde active. At the same

NOAC EX. 1017 Page 334

NOAC Ex. 1017 Page 335

' 7 4,910,668

timethecmintervalidbituisaetlgain. Later,”
for the words ofwhich the LRU replace word wire
26iaactivedataiawrittenintotheCAM12and
RAMllAtthistimethecontuitoftheTLB
changes from FlG. 4F to FIG. 46.

(2) Extraordinary action

(DOFthedatastoredsofarinthe'lLRifanunnecu—
ssry process should occur. for example. supposing
processIDiisunnecelsary,thestatechangeafmm
FIGJGtoFIGJI-[byusingthecircuitforrmet-
tingthevalidbitofthepluralwordahavingthe
ssmeprocessIDandtheprocessIDbatchreset
wire‘lAtthisfimetheresetcircuitflofthe
CAM 12 turns on only the transistor connected
onlytothevalidbitllhavingtheprocesaIDtobe
erased.andthevalidbit22isruet.Atthistime.the
PENCfloftheCAMIZmakesactiveandsets

onlythewordlocawdattbehighestpositionaa
seenfromonedirectioninthephysicalconfigura—
domoutofthewordsbeiiigerased.

Heresupposethelogicaladdressandprocenil)
(ImLOGsflohitgetintotheCAMllAtthiatime.
theLRU l4ret‘erstotheCAMhitsignalwire30snd
thecountervalidbituyandsincethevaluuofall
counters are legal, the operation iv) ofthe above ordi-
narymfionkefiectednndthecontentoftheI‘l—Bis
changedfromFlG.4Hto FIG. 4!.

(ii) Finally, inthisstate. supposethelogical address
and process lD(lD_LOGm) to mil-hit theCAM
getiii.

AtthistimetleENCfloftheCAMDmakes
activeonlythewordatthehighastpositionasseenfmm
onedh-ecdoninthephysicalconfigumfiomandmaku
inactivetheCAMfullwire‘LAtthisthnetheCAM
hitwire30iainactive.

Inthisstate.thesigiialofPENCwordwire7oand
thevalueofcotmtervalidbitnareenteredintothe

logical gate 118 of the LRU replace word generating
part1l.I-Iere,inthewordofwhichvalueofthecounter
vslidbitlZis“1"andPENCwordwire40isactive,tbe

outptdofthelogicdgatelllbecomesactivqsndth‘n
signalmakeaactivetheLRUhitwordwiransa
mulnssmentionedinstepiv)ofordinaryaction.the
'I'LBsetsOthevalneot'thecountei-OTLRUMofthe
wordwhichhasbeenhinasifthemredlogicaladdreas
hadbeenhihandincreasesthecountervaluebylasfor
thewordsrequiriiigincrement.

Attheamefimedifiaentfromstepiv)ofordinary
acdomwhentheLRUreplaceenableaiyialldr-eturns.
theoutputofthemUi-eplacewordgenerafingpart‘ll.
thatistheLRUreplacewordwireZfibecomesactive.
BythisactiveLRUreplacewoi-dwiremthedataof
theCAMlZandRAMllamupdatedAtthistimethe
contentof theTIBchangesasshownin FIG. 4K. Then
byrepeafingsiichmis-hiuthelogicaladdressmcsusing
mis-hitarestoredintheplaceofthewordwherethe
validbitZZofCAMlZiscleared,andtheinformation
ofthephysiealaddrmtobeconvertcdisstoredinthe
processID.RAMll,andastheLRUMgoaonruet-
ting the counter value of the word. the content of the
TLB changes from FIG. 4K to FIG. 4L. thereby re—
turning to the ordinary TLB content. Hence, even after
occurrenceoferasurcbytheprocessmbatchraet
Wirew,theuniformityoftheTLBmaybemaintained
by the operation described above.

By using th'u TLB. the following effects are ex-
pected.

5

10

[5

X)

35

45

55

65

8
(1) If contest switching should occur, it is not neces-

sary to reset the content ofTLB.
(2) The data ofonly the unnecemary processes can be

erased.

(3) It is possible to store the data of difi'erent pro-
cesses having an identical physical addren into the
TLB.

Owing to these effects (1) to (3), it poaible to ice s
high speed translation lookaside buffer (TLB) very
effectively on mulfiprocessu, so that the processing
speed of the processor may be dramatically enhanced.

While specific embodiments of the invention have
been illustrated and described herein. it is realized that
othermodificationsaudchangeswilloccurtothose
skilledintheareltisthereforetobeunderstoodthat

the appended claims are intended to cover all modifica-
tionsandchangesssfallwithinthetmespiritandscope
of the invantion.

We claim:

1. An apparatus for converting a logical addreu out-
putted by s proceuor into an equivalent physical ad-
drem. said apparatus comprising:

a contuit addressable memory;
a random accen memory coupled to said content

addressable memory; and.
a least recently used circuit coupled to said content

addmable manory;
said content addressable memory including a means

for providing a hit word indication to the prom-
sor. said hit word indication indicating that a corre
sponding identification number of a process being
procasedbythe processorandacorresponding
logicaladdmofsaidprocaaaisstoredinsaid
content addressable memory. and furtluu' indicat-
ing that the equivalent physical addrem stored in a
corresponding word location of said random ac-
cess memory is accessible;

said content addressable memory further including a
means for providing a miss-hit word indication to
the processor. said miss—hit word indicatiOn indi-
cating the absence of a oomponding identifica-
tion number and corresponding logical address of
said process and further indicating that the proces-
soristosearchamainmemorytolocatetheequiv-
alent physical address of the logical address,
whereinthelogicaladdreuisstoredinsaidcontent
addressable memory at a word location indicated
bysaidlcsstrwenflyusedcircuieandwhereinthe
thuslocated physical addressisstoredinaeorre
sponding word location of said random access
memory;

said content addressable memory further including: a
logical address area for storing the logical address
ofsaid procm in each word location ofsaid con-
tent addressable memory; a process identification
number storage area for storing the process identi-
fication number in each word location of said con-

tent sddressable memory; a valid bit for providing
an indication of the validity of data stored in both
said logical address area and said process identifica-
tion number storage area in each word location of
said content addressable memory; a word line for
providing a matching word located during a search
of said content addrmable memory; a content
addressable memory bit line for indicating whether
said untching word exists in said content address-
able memory, and a content addressable memory
full line for providing an indication as to whether

NOAC EX. 1017 Page 335

NOAC Ex. 1017 Page 336

4,910,668
9

wordsinsaid content addressable memoryareused

byret‘erringtosaidvalidbitareaofeachword
location ofsaid content addressable memory;

said random access memory including a physical
addrus area for storingthephysicaladdressof the 5
mainmemorytobeaccessedbysaidprocessor:

said least rwently used circuit including a counter
data ares having a reset portion for indicating a
sequenceofsearchingandreadingofdstaofeach
word stored in said least recently used circuit; a
vslidbitforindicafingthevalidityofdatastoredin
uidconnterdauareeacounter data reference bit
linefor providing counterdataof a matching word
when searchingsaidcoment addressablememory 15
andbeingcommonlyoonnectedtothecounterdata
areaofeachword;aoompantoraresdisposedin
eachword location forcotnpalingtheeounterdata
of the reference bit and theconnter data of other
words;scarryareadisposedineachwordforzo
receivingavaluestoredinsaidcounterdatsaresof
each word. and for selectively varying said value
byoneandforresetfingnidcotmterdauareeand
areplacewordgeneratingaresforspeeifyings
wordtobeinputtosaidcomtentarldrassbleIan-25
oryinaccordancewithscarrysignalfrmnsaid
earryarea;

whereimwhenssidleastrwentlymedcircuitdeta-
minesthatthereisanahsenceofamatchingword
insaidcontes'ttaddressablememoryonthebasisot'30
saidcontent addrmablememorybit line, and tin-
therdeterminelthatsaidcontent addressablemem-

oryisfullynnoccnpiedonthehssisofsaidcoutent
addressablememoryfnlllinethevaluestoredin”
saidconnterdataareaisincreasedbyoneandthe
validbitofsaidcounterdataareaofanunused

no

10
wherein, when said least recently used circuit deter-

mines that that is an absence of a matching word
in said content addressable memory on the basis of
said content sddrenable memory bit line. and fur-
ther determines that said content addressable mem-

ory is fully occupied on the basis of said content
addressable memory full line, the value stored in
saidcounterdataareasnd thecarryareaofach
word are simultaneously increased by one. and the
logical address and the process identification num-
bermeived fromtheprocessoraresetin thecor-
responding content addrssable memory of the
replace word generated in accordance with said
replace word generating area by using a carry
signal generated in said carry unit, and the physical
address located by the processor in the main mem-
oryissetintherandomsccasmemoryatacorre—
spending word location of said random seem
memory. and

wherein. when said least recently used circuit deter-
minesthatthereisamatchingwordinsaidcontent
addressable memory on the basis of said content
addreuable memory bit line, nid least recently
used circuit receives said word line indicating the
matching word from said content addressable
manory.andsvalueofsaidconnterdataofacor—
impending word is transmitted to each word
throughthecounterdatareference bit line. and the
value of said counter data of said matching word
and the value of the counter data of each other
wordarecompared. andwhereinthevalueofthe
counterdata ofs word having s value nailer than
thatoftheconnterdanofthematchingwordis
increuedbyoneandthecounterdataofthe
matchingwordisrenderedtosvalueofaninitial
setting by said reset unit.

lAnapparatnsasrecited inclaim I, fur-thercompris-

womhsmmdmelogicdaddreuandpm ingapriorityencoderforselectingoneofthewordsin
identificnion number neuvedfmmthcpm whichsaidvalid uranium, and for transmitting the
andthevzlidbiwormpondinswthemuwdword 40 thus selected word to said least recently used circuit.
aresetinsnidcontemaddmsablemfyinl whacimwhmthereisanabsenceofamstchingword
corresponding word location. and a physical ad- innidcontentaddrmablememory,said least recently
drasloeatedbythepmcessorinsaidmainmcmory teedcircnitinputsthethm selected word specified by
issetinsaidrandomamas-a-oryinacorre- saidpriorityencoder.
spondingwordloeation, 45 ‘ ' ' ‘ '

65

NOAC EX. 1017 Page 336

NOAC Ex. 1017 Page 337

r_,

 PAT—NO: JP02003044510A

DOCUMENT—IDENTIFIER: JP 2003044510 A

TITLE: GATEWAY SYSTEM

PUBN—DATE: February 14, 2003

INVENTOR-INFORMATION:

NAME

COUNTRY

INOSHITA, AKIHITO N/A

SUZUKI, HIROYOSHI N/A

KUBOTA, HIROMI N/A

ASSIGNEE—INFORMATION:

NAME

5 COUNTRY
f MATSUSHITA ELECTRIC IND CO LTD N/A

; APPL—NO: JP2001225981

2 APPL—DATE: July 26, 2001
a

E INT—CL (IPC): G06F017/30, G06F012/00 , G06E013/00

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a gateway

system that enables a network

09/02/2003, EAST Version: 1.04.0000 ,

NOAC Ex. 1017 Page 337

NOAC Ex. 1017 Page 338

terminal user to automatically surf valuable Web

pages without any specified

setting.

SOLUTION: An access monitor unit 25 of a gateway

system 80 detects the URL
for Webs a user frequently accesses and manages the

URL with a URL management

table 30. A surfing unit 40 of the gateway system

3

automatically surfs the Webs

having the URL and stores the Web data in a cache
server 50. The gateway

system generate a management table that includes
not only the frequency of the
accesses but also data for the elapsed time from

the most recent accessed time

to the present time and can automatically surf a
Web site being judged as the

high priority site based on the management table.

COPYRIGHT: (C)2003,JPO

i

i

‘
§

i
’s

09/02/2003, EAST Version: 1.04.0000
NOAC EX. 1017 Page 338

NOAC Ex. 1017 Page 339

5:a}!“i",«f
P

._;4:35.:3‘)?“

n.
'“wva—«Jo:'vA.
mimear-.

ewe;'at.x.»2.4;;

Form PTO-948 (Rev. 0 60Application No.

US. DEPARTMENT OF COMMERCE
US. Patent and Trademark Office

NOTICE OF DRAFTSPERSON'S PATENT DRAWING REVIEW

The drawing(s) filed (insert date) Q L 5!)i l 2 2 are:
A. approved by the Drafisperson under 3 CFR 1.84 or 1.152.

objected to by the Drafisperson under 37 CFR 1.84 or 1.152 for the reasons indicated below. Corrected
rawings are required.

I. DRAWINGS. 37 CFR 1.84(a): Acceptable
categories of drawings: Black ink or
Color (3 sets required).
__ Color drawings are not acceptable until petition is

granted. F1g(s)
_ Pencil and non black ink not permitted. Fig(s)__
2. PHOTOGRAPHS. 37 CFR 1.84(b)
_ One (1) full-tone set is required. Fig(s)
_ Photographs may not be mounted. 37 CFR 1.84(e)
_ Photographs must meet paper size requirements of

37 CFR 1.84(t). Fig(s)
_ Poor quality (half-tone). Fig(s)
3. TYPE OF PAPER. 37 CFR 1.84(e)
_Paper not flexible, strong, white, and durable

Fig(S) _ _ _
Erasures, alterations, overwritings. interlineations,
folds, copy machine marks not accepted.
Fig(s)

4. SIZE OF PAPER. 37 CFR 1.84(t): Acceptable
sizes:

21.0 cm by 29.7 cm (DIN size A4) or
21.6 cm by 27. 9 cm (8 1/2x 11 inches)
~All drawing sheets not the same size.
_Sheet(s)
_Drawings sheets not an acceptable size Fig(s)__
5.—MARGINS. 37 CFR 1.84(g): Acceptable margins.
Top2.5.cmLefi25cmRightl.cmS tomlOcm
_Margins not acceptable. Fig(s)

Top (BX Lefi (L)Right (mx Bottom (B)
6. VIEWS. 37 CFR 84(h)1.
REMINDER: Specification may require revision to
correspond to drawing changes, e.g., ifFig. l is
changed to Fig. 1A, Fig IB and Fig. 1C, etc., the
specification, at the Brief Description of the Drawings,
must likewise be changed.
_Views not labeled separately or properly.

Fig(s)
7. SECTIONAL VIEWS. 37 CFR 1 .84(h)(3)

Sectional designation should be noted with
Arabic or Roman numbers Fig(s)

COMMENTS:

Reviewer

Ifyou have questions, call (703) 305-8404.

8. ARRANGEMENT OF VIEWS. 37 CFR 1.84(i)
Words do not appear on a hor1zontal. lefi-to-right
fashion when page Is either upright or turned so
that the top becomes the right s1de. except for
graphs. F1g(s)

9. SCALE. 37 CFR 1.84(k)
Scale not large enough to show mechanism
without crowding when draw1ng is reduced in
size to two-thirds in reproduction.
Fig(5)

10. CHARACTER 0F LINES, NUMBERS, &
LETTERS. 37 CFR 1.84(1)
__ Lines, numbers & letters not uniformly thick and

well defined, clean, durable, and black (poor line
quality). Fig(s)

lI. SHADING. 37 CFR 1.84(m)
_ Solid black areas pale. Fig(s)
_ Solid black shading not permitted. Fig(s)
12. NUMBERS, LETTERS, & REFERENCE

CHARACTERS. 37 CFR 1.84(p) '
__ Numbers and reference characters not plain and

legible. Fig(s)
__ Figure legends are poor. Fig(s)
__ Numbers and reference characters not oriented in

the same d1rection as the view. 37 CFR l.84(p)(1)
Fig(S)

__English alphabet not used. 37 CFR l. 84(p))(2)
Fig(S)

__Numbers. letters and reference characters must be
at least 32 cm (1/8 inch) 1n height. 37 CFR
l.84(p)(3). Fig(s)

13. LEAD LINES. 37 CFR 1.84(q)
__ Lead lines missing. Fig(s)
14. NUMBERING 0F SHEETS OF DRAWINGS.

37 CFR 1.84(t)
__ Sheets not numbered consecutively, and in Arabic

numbers beginning with number I. Sheet(s)
[SrNUMBERING 0F VIEWS. 37 CFR |.84(u)

Views not numbered consecutively, and in Arabic
numerals, beginning with number I.Fig(s)

I6. DESIGN DRAWINGS. 37 CFR 1.152

Surface shading shown not appropriate.
Fig(S)
Solid black surface shading is not permitted except
when used to represent the color black as well as
color contrast Fig(s)

Date 7

Attachment to Paper No. Q £2

{1 US GOVERNMENT PRINTING OFFICE: 20011-300453

NOAC EX. 1017 Page 339

NOAC Ex. 1017 Page 340

;
I

vi

F‘I‘EV‘EL"e:

Form PTO-948 (Rev. 0 60Application No.
US. DEPARTMENT OF COMMERCE

US. Patent and Trademark Office

NOTICE OF DRAETSPERSON'S PATENT DRAWING REVIEW

The drawing(s) filed (insert date) Q L 5i)' (2 2 are:
A. approved by the Drafisperson under 3 CFR 1.84 or 1.152.

objected to by the Drafisperson under 37 CFR 1.84 or 1.152 for the reasons indicated below. Corrected
rawings are required.

1. DRAWINGS. 37 CFR l.84(a): Acceptable
categories of drawings: Black ink or
Color (3 sets required).

Color drawings are not acceptable until petition lS
granted. Fig(s)
Pencil and non black ink not permitted. Fig(s)

fiHOTOGRAPHS. 37 CFR l.84(b)
One (1) full—tone set is required. Fig(s)

:Photographs may not be mounted. 37 CFR l.84(e)
Photographs must meet paper size requirements of
37 CFR l.84(f). Fig(s)

_ Poor quality (half-tone). Fig(s)
3. TYPE OF PAPER. 37 CFR 1. 84(e)
_Paper not flexible, strong, white, and durable.

Fig(S)
Erasures, alterations, overwritings. interlineations,
folds, copy machine marks not accepted.
Fig(S)

4. SIZE OF PAPER. 37 CFR l.84(f): Acceptable
sizes:

21.0 cm by 29.7 cm (DIN size A4) or
21.6 cm by 27. 9 cm (8 1/2x 11 inches)
_All drawing sheets not the same size.
—Sheet(s)
__Drawmgs sheets not an acceptable size. Fig(s)___
5. MARGINS. 37 CFR 1. 84(g): Acceptable margins.
Top2.5cmLeft25cmRightl.5cm tomlOc
__Margins not acceptable. Fig(s)

Top (BxLeft (L)Right (“fl Bottom (B)
6. VIEWS. 37 CFR l84(h)
REMINDER: Specification may require revision to
correspond to drawing changes, e.g., ifFig. 1 is
changed to Fig. 1A, Fig 1B and Fig. 1C, etc., the
specification, at the Brief Description of the Drawings,
must likewise be changed.
__Views not labeled separately or properly.

Fig(s)
7. SECTIONAL VIEWS. 37 CFR 1. 84(h)(3)

Sectional designation should be noted with
Arabic or Roman numbers. Fig(s)

COMMENTS:

Reviewer .

If you have questions, call (703) 305~8404.

8. ARRANGEMENT OF VIEWS. 37 CFR l.84(i)
__ Words do not appear on a horizontal, left-to-right

fashion when page is either upright or turned so
that the top becomes the rIght side. except for
graphs. FIg(s)

9. SCALE. 37 CFR l.84(k)
__ Scale not large enough to show mechanism

without crowding when drawing is reduced in
size to two-thirds in reproduction.
Fig(S)

10. CHARACTER OF LINES, NUMBERS, &
LETTERS. 37 CFR l.84(l)
_ Lines, numbers & letters not uniformly thick and

well defined, clean, durable, and black (poor line
quality). Fig(s)

ll. SHADING. 37 CFR l.84(m)
__ Solid black areas pale. Fig(s)
_ Solid black shading not permitted. Fig(s)
12. NUMBERS, LETTERS, & REFERENCE
CHARACTERS. 37 CFR l.84(p) '
__Numbers and reference characters not plain and

legible. Fig(s)
__ Figure legends are poor. Fig(s)
____ Numbers and reference characters not oriented in

the same direction as the view, 37 CFR l.84(p)(l)
Fig(s)

____ English alphabet not used. 37 CFR l 84(p)(2)
Fig(s)

__ Numbers, letters and reference characters must be
at least 32 cm (1/8 inch) in height. 37 CFR
1-84(p)(3)- Fig(S)

l3. LEAD LINES. 37 CFR 1. 84(q)
Lead lines missing. Fig(s)

14. NUMBERING OF SHEETS OF DRAWINGS.

37 CFR l.84(t)
__ Sheets not numbered consecutively, and in Arabic

numbers beginning with number 1. Sheet(s)
ISrNUMBERING OF VIEWS. 37 CFR l.84(u)

Views not numbered consecutively, and in Arabic
numerals, beginning with number 1._Fig(s)

16. DESIGN DRAWINGS. 37 CFR 1.152

___Surface shading shown not appropriate.
Fig(S) _
Solid black surface shading is not permitted except
when used to represent the color black as well as
color contrast Fig(s)

Date v

Attachment to Paper No. é b _

{1' US. GOVERNMENT PRINTING OFFICE: 2003400453

NOAC EX. 1017 Page 340

NOAC Ex. 1017 Page 341

02/10/2004 10234 FAX 15102912985 INVENTEK
HECEIVED

sewn. FAXM
Our RefJDocket No: APPT-001-4 _ harem

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian. er (11:

Application No.: 09/608266

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCT FOR

LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONH’O

Group Art Unit: 2662 my =

Examiner: Alan Nguyen

RESPONSE TO OFFICE-ACTION UNDER 37 CFR 1.111

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

This is a response to the Office Action of September 10, 2003.

Any amendments to the specification begin on a new page immediately after these
introductory remarks.

Any am‘endments to the claims begin on a new page immediately after such amendments
to the specification, if any.

Any amendments to the drawings begin on a new page immediately after such
amendments to the claims, if any.

The Remarks/arguments begin on a new page immediately after such amendments to the
drawings, if any.

If there are drawing amendments, anAppenst including amended drawings is attached
following the Remarks/arguments.

Certificate of Facsimile Transnfisiun under 37 CFR 1.8

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class
mail in an envelope addressed to Commissioner for Patents, PO. Box 1450, Alexandria, VA 22313-1450 on.

Date: Egg: HQ, 21% £2 Signed:
Name: Dov

 senfcld, Reg. No. 38687

PAGE 8/19 - ncvn AT 2/10/2004 12:29:32 PM [Eastern Standard Time] - SVR:USPTO—EFXRF-1I1 - DNIS:8729305 - csmnsmzsnaas - nun/men (mm-ss):flT-38

raw.
,3?

FEB l

NOAC EX. 1017 Page 341

0 2004

NOAC Ex. 1017 Page 342

; . 02/2042004 12:25 FAX 15102912985 0 INVENTEK O @003 .
i

t
i

i AMENDMENT(S) TO THE CLAIMS:

The following listing of claims will replace all prior versions, and listings, of claims on the 3
application. All claims are set forth below with one of the following annotations.

S/N: 09/608266 . Page 2

0 (Original): Claim filed with the application. ‘

0 (Currently amended): Claim being amended in the current amendment paper.

- (Canceled): Claim cancelled or deleted from the application. No claim text is
shown.

- (Withdrawn): Claim still in the application, but in a non-elected status.

i 0 (Previously presented): Claim being added in the current amendment paper.

% 0 (Previously presented): Claim added or amended in an earlier amendment paper.

0 (Not entered): Claim presented in a previous amendment, but not entered or whose
entry status unknown. No claim text is shown.

Thefollowing listing ofclaims assumes the amendment submitted on 10 February 2004
has been entered.«a.was»:

 (Previously presented) A packet monitor for examining ackets passing through a

connection point on a computer network, each packets c orming to one or more

protocols, the monitor comprising:

(a) a packet acquisition device coupled to the

E to receive packets passing through the conne tion point;

(b) a memory for storing a database compri mg flow—entries for previously
encountered conversational flows to whi a received packet may belong, a

5- conversational flow being an exchange one or more packets in any direction
‘ as a result of an activity corresponding 0 the flow;

1 (c) a cache subsystem coupled to the ow-entry database memory providing for
fast access of flow-entries from the ow—entry database;

(d) a lookup engine coupled to the acket acquisition device and to the cache

subsystem and configured to 100 p whether a received packet belongs to a

flow-entry in the flow—entry data ase, the looking up being the cache
subsystem; and

(e) a state processor coupled to the lookup engine and to the flow—entry-

database memory, the state p essor being to perform any state operations
specified for the state of the ow starting from the last encountered state of the

flow in the case that the pa et is from an existing flow, and to perform any
state operations required f r the initial state of the new flow in the case that the
packet is from an existin flow.

2. (Original) A packet monitor according to claim I, further comprising:

PAGE 8/13 " RCVD AT 212012004 2:20:59 PM [Eastern Standard Tlme] ‘ SVR:USPTO-EFXRF-1l3 ' DNIS:8729306 ‘ CSDZ15102912985 ' DURATION (mm-ss)205-44 3

NOAC EX. 1017 Page 342

Wm,A.4

NOAC Ex. 1017 Page 343

‘. 02/20/2004 12:26 FAX 15102912985 0 INVENTEK O @009

SIN: 09/608266 Page 3

a parser subsystem coupled to the packet acquisition evice and to the

lockup engine such that the acquisition device18 coupl d to the lookup engine
via the parser subsystem, the parser subsystem confi

information from a received packet,

information.

3. (Original) A packet monitor according to claim 2, w rein the cache subsystem is

an associative cache subsystem including one or more c ntent addressable memory
cells (CAMS).

4. (Currently amended) A packet monitor according t claim 2, wherein the cache

subsystem includes:

(i) a set of cache memory elements coupled t the flow-entry database memory,
each cache memory element including an in ut port to input arr—flew a flow—

enh'y and configured to store a flow-entry o the flow-entry database;

(ii) a set of content addressable memory ce 3 (CAMS) connected according to
M/ an order of connections from a top CAM o a bottom CAM, each CAM

containing an address and a pointer to o

g] including:
a matching circuit having an input such that the CAM asserts a

match output when the input i the same as the address in the CAM

cell, an asserted match output dicating a hit,

of the cache memory elements, and

a CAM input configured t accept an address and a pointer, and

a CAM address output d a CAM pointer output;

(iii) a CAM controller coupled to th CAM set; and

(iv) a memory controller coupled t the CAM controller, to the cache memory

set, and to the flow-entry memo

wherein the matching circuit inputs of e CAM cells are coupled to the lookup engine

such that that an input to the matching circuit inputs produces a match output in any

CAM cell that contains an address eq al to the input, and

é wherein the CAM controller is confi nred such that which cache memory element a

particular CAM points to changes 0 er time.

5. (Original) A packet monitor ac rding to claim 4, wherein the CAM controller is

configured such that the bottom AM points to the least recently used cache memory
element.

6. (Original) A packet monitor ccording to claim 5, wherein the address and pointer

output of each CAM starting fr rn the top CAM is coupled to the address and pointer

input of the next CAM, the fin, next CAM being the bottom CAM, aud wherein the

PAGE 9113 I RCVD AT 212012004 2:20:59 PM [Eastern Standard Time] ' SVRtusFTO-EFXRF-HB ‘ DNIS:8729306 ‘ CSlDz15102912925 ' DURATION (mm-ss):05M

NOAC EX. 1017 Page 343

[1.

NOAC Ex. 1017 Page 344

M”WM:a:Whamm”flare-what
.6......“w.,.
i

E

i
‘3‘
i

02/20/2004 12:26 FAX 15102912985 0 INVENTEK m' @010

S/N: 09/608266 Page 4 7
CAM controller is configured such than when there is a cac e hit, the address and

pointer contents of the CAM that produced the hit are put ' the top CAM of the stack,

the address and pointer contents of the CAMs above the AM that produced the

asserted match output are shifted down, such that the C s are ordered according to

recentness of use, with the least recently used cache me ory element pointed to by the

bottom CAM and the most recently used cache memo element pointed to by the t0p
CAM.

7 .—20. (Cancelled).

21. (Currently amended) A packet monitor for ex ‘ng packets passing through a

connection point on a computer network, each pac ts conforming to one or more

protocols, the monitor comprising:

a packet acquisition device coupled to 6 connection point and configured
to receive packets passing through the co ection point;

an input buffer memory coupled to
the packet acquisition device;

configured to accept a packet from

a parser subsystem'coupled to the ' ut buffer memory, the parsing
subsystem configured to extract select portions of the accepted packet and to
output a parser record containing the elected portions;

a memory to storing a database 0 one or more flow-entries for any

previously encountered conversatio a1 flows, each flow-entry identified by
identifying information stored in flow-entry;

a lookup engine coupled to the output of the parser subsystem and to the

flow-entry memory and configur d to lookup whether the particular packet

whose parser record is output by the parser subsystem has a matching flow—

entry, the looking up using at le t some of the selected packet portions and
determining if the packet is of existing flew £1911;

a cache subsystem coupled o and between the lookup engine and the flow-

entry databm memory provi ing for fast access of a set of likely—to-be-
accessed flow-entries fromt e flow—enh'y database; and

a flow insertion engine c upled to the flow-entry memory and to the lookup
engine and configured to c ate a flow-entry in the flow—entry database, the

flow-entry including iden ' ing information for future packets to be identified
with the new flow-entry,

the lookup engine configured su h that if the packet is of an existing flow, the monitor

classifies the packet as belongin to the found existing flow; and if the packet is of a
new flow, the flow insertion en 'ne stores a new flow-entry for the new flow in the

flow-entry database, including dentifying information for future packets to be
identified with the new flow’

wherein the operation of the arser subsystem depends on one or more of the protocols
to which the packet confo

PAGE 10I13 ' RCVD AT 2120/2004 2:20:59 PM [Eastern Standard Time] " SVRiusPTO-EFXRF-HB " DNISZS729306 ' CSlD115102912985 ' DURATION (mm-ssFOS-ld

NOAC EX. 1017 Page 344

i
i4,l
J
a
1i
I

NOAC Ex. 1017 Page 345

02/20/‘2004 12:27 FAX 15102912985 0 INVENTEK I011

SIN: 09/608266 Page 5

2-1-22. (Currently amended) A monitor according to - .. :- 131m 21, wherein the

lockup engine updates the flow—entry of an existing flow ' the case that the lockup is
successful.

2223 (Currently amended) A monitor according to ‘ 1mm 21, further

including a mechanism for building a hash from the se ected portions, wherein the

hash is included in the input for a particular packet to e lockup engine, and wherein

the hash is used by the lockup engine to search the flow-entry database.

223%. (Currently amended) A monitor accordin to elaiméEG-claim 21, further

including a memory containing a database of parsi g/extraction operations, the

parsing/extraction database memory, coupled to th parser subsystem, wherein the

parsing/extraction operations are according to on or more parsing/extraction

operations locked up from the parsing/extraction - atabase.

34;; (Currently amended) A monitor acccr ing to elairn—S—3—claim 24, wherein the

database of parsing/extraction operations inclu s infonnaticn describing how to
determine a set of one or more protocol depen . nt extraction operations from data in

the packet that indicate a protocol used in the packet

2526. (Currently amended) A method ac rding to slaim—QO—claim 21, further

including a state processor coupled to the 1 . . up engine and to the flow—entry-

database memory, and configured to perfc n any state operations specified for the

state of the flow starting from the last enco Itered state of the flow in the case that the

packet is from an existing flow, and to pe him any state operations required for the

initial state of the new flow in the case th the packet is from an existing flow.

£621. (Currently amended) A metho according to ela'ma—QS—claim 26, wherein the

set of possible state operations that the 5 ate processor is configured to perform

includes searching for one or more pattms in the packet portions.

gags. (Currently amended) A mo . tor according to claim—2401mm 26, wherein the

state processor is programmable, the onitor further including a state

pattems/operaticns memory coupled the state processor, the state operations

memory configured to store a datab e of protocol dependent state pattems/operations.

2822. (Currently amended) A nitcr according to elatm—QS—c‘laim 26, wherein the

state operations include updating th flow-entry, including identifying information for
future packets to be identified with the flow—entry.

29E. (Currently amended) A nethod of examining packets passing through a

connection point on a computer ntwork, each packets conforming to one or more

protocols, the method comprising;

(a) receiving a packet fro a packet acquisition device;

Cb) performing one orure parsing/extraction operations on the packet to

create a parser record Comprising a function of selected portions of the packet;

(c) looking up a flow-e I try database comprising none or more flow-entries for

previously encountere- conversational flows, the looking up using at least

PAGE 11m - RCVD AT 2/20/2004 2:20:59 PM [Eastern Standard Time] - SVR:USPTO-EFXRF-1IJ - DNIS:8729306 - esmnsmzsusss - DURATION (mm-ss):0544

NOAC EX. 1017 Page 345

‘«a...w..~_.,__-1-...M---.4W."dwmtmt(Mmgr—WW“

NOAC Ex. 1017 Page 346

:i

[E
I
3
I

i'
i

.w-.......‘".,.....-........‘

02/20.{2004 12:27 FAX 15102912985 0 INVENTEK ’ ‘
a

SIN: 09/608266 Page 6 }
some of the selected packet portions and determining if the packet15 of an
existing flow, the loolrup being via a cache; /

(d) if the packet is of an existing flow, classify' the packet as belonging to the
found existing flow; and

(e) if the packet is of a new flow, storing a ne flow-entry for the new flow in

the flow-entry database, including identifying information for future packets to
be identified with the new flow-entry,

wherein the parsing/extraction operations depend 0 one or more of the protocols to

which the packet conforms.

30_3__1. (Currently amended) A method accord' g to eieim—ZQ—cihaim30, wherein
classifying the packet as belonging to the found xisting flow includes updating the
flow-entry of the existing flow.

3-l-_3_2. (Currently amended) A method ace ing to elaim—ZQ—claim 30, wherein the

function of the selected portions of the packet orms a signature that includes the

selected packet portions and that can identify ture {makers packets, wherein the

lookup operation uses the signature and whe ein the identifying information stored in

the new or updated flow-entry is a signature or identifying future packets.

32-13. (Currently amended) A method ccording to elairn—ZQ—claim 30 wherein the

looking up of the flow--entry database use a hash of the selected packet portions.

3333. (Currently amended) A metho according to elaim—Z9—claim 30, wherein

step (d) includes if the packet is of an e sting flow, obtaining the last encountered

state of the flow and performing any st operations specified for the state of the flow
starting from the last encountered state of the flow; and wherein step (e) includes if the

packet is of a new flow, perforating state operations required for the initial state of
the new flow.

@012

PAGE 1211: - RCVD AT 2120/2004 2:20:59 pm [Eastern Standard Time) ' svnzuspro-EFXRF-m - nms:8729306 - celonsmzmznsv DURATION (mm-ss):0544

NOAC EX. 1017 Page 346

NOAC Ex. 1017 Page 347

02/2042004 12:28 FAX 15102912985 0 INVENTEK ‘ .013

S/N: 09/608266 Page 7

Claims 1—6 and 21—33 (including two claims numbered 21 prior to this amendment) are the

claims of record of the application. A response to an office action was filed 10 February
2004.

The examiner has indicated to the undersigned that there were two claim 215 in the listing
of claims in the response filed 10 February 2004.

The present amendment corrects several typographical errors found in both the original

application and the previous amendment filed on 10 February 2004. The present

amendment assumes that the previous amendment has been entered.

The undersigned discoveredthe previous amendment incorrectly annotated claims 2-6 as

"previously presented" instead of being annotated as "original." The present amendment
correctly annotates the claims.

E

i
«l REMARKS

i

i
l

i The present amendment corrects the typographical error in the previous amendment of

there being two claim 215. The second instance of claim 21 has been renumbered claim 22,

I and previous claims 22-33 have been renumbered to claims 23—34, respectively. In

addition, newly numbered claims 22—24, 26—29, 31—34 have been amended to depend on
the appropriate newly numbered claims.

Claim 24 of the previous amendment was erroneously dependent on claim 33. The present

amendment corrects this typographical error—newly numbered claim 25 depends on newly
numbered claim 24.r...\‘v'u”

Minor typographical errors were found claims 4. 21, and newly-numbered 32. The present
amendment corrects these typographical errors.

No new matter has been added by this amendment.

The Applicants believe that the remaining claims are allowable. Action to that end is

respectftu requested.

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application, an entail message to the undersigned at dov@inventek.com,

g or a telephone call to the undersigned at +1-510-547-3378 is requested.

i 524 29 200%Date

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. +1-510-547-3378; Fax: +1-510-291~2985
Email: dov@inventek.com

Respectfully Submitted,

 eld, Reg. No. 38687

I’M'EE 13113 ' RCVD AT ZIZDIZOM 2:20:59 PM [Eastern Standard Tlme] ' SVR:USPTO-EFXRF-1I3 ' DNIS:8729305 ' CSID215102912985 ' DURATION (mm-ss):05-44 ',

i NOAC EX. 1017 Page 347

NOAC Ex. 1017 Page 348

”WW-ww«~

,.,2.,,INew-.-“,H,“adamamW1W,AWWM-W
I

rI

J "AGE 1413 '- Revo AT 212012004 2:20:59 PM [Eastern Standard Time] ' svnzusmoeran-m - Dmsmnsaoe * CSID:15102912985 - DURATION (mmserS-M
.1 ,

3

’2004 12223 FAX 15102912985 INVENTEK

INVENTEK _ Fax
Dov Rosenfeld i .5 , a -
5507 College Avenue, SuiteZ ”" 5" * ' "9”“

Oakland. CA 9461 8, USA

Phone: (510)547-3373; Fax: (510) 291-2985
dov@inventek.com

I001

”1
I

 Patent Application Ser. No.1 09/608266

Rafi/Docket No: APPT—OO 1 4

Applicant(s): Sarkissian, et al. Examiner; Alan Nguyen
Filing Date: 'June 30, 2000 Art Unit: 2662

FAX COVER PAGE

TO: Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

United States Patent and Trademark Office

(Examiner Alan Nguyen, Art Unit 2662)

Fax N0.: 703-872—93 06

DATE: ‘ February 20, 2004

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Response to Office Action @
Number ofpages including cover: 3

' OFFICIAL COMMUNICATION

PLEASE URGENTLY DELIVER A COPY OF
THIS RESPONSE TO

EXAMINER ALAN NGUYEN, ART/UNIT 2662

 Certificate of FacsImiIe 'h-tmsmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark Office at
telephone number 703-872—9Q06 addressed the Commissioner for Patents, PO. Box 1450, Alexandria. VA 23134450

Date: fag: 20 A 300 2 ‘ ‘ Signed:
Name:

 osenfeld. Reg. No. 38687

NOAC EX. 1017 Page 348

NOAC Ex. 1017 Page 349

M'«xw‘t
(HM

“we-4H"'1.
“ML..-.0.

’2004 12:24 FAX 15102912985 INVENTEK .002

Appllcatlon Number 09/608266
TRANSMITTAL

FORM
(to be used for all conespondence after initial filing)

Filing Date 30 Jun 2000

Flrst Named Inventor Sarkissian, Haig A.

Group Art Unit

Examiner Name Alan Nguyen

ENCLOSURES check all that a - -I

D Fee Transmittal Form

Assignment Papers D After Allowance Communication
(for an Application) to Group
Drawing(s) Appeal Communication to Board

D Fee Attached ~ ol Appeals and Interferenoes(credit card form)

Amendment (Supplementary) Licensing-related Papers Appeal Communication to Group

III

B (Appeal Notice, Brief, Reply Brief)
. __ D Proprietary Informationand Accompanying Petition

D Affidafits/declaratioms) To Convert a D Status LetterProvisional Application

El

III

III

III

Power of Attorney, Revocation
Change of Correspondence
Address

Terminal Disclaimer

Extension of Time Request Additional Enclosure(s)
(please identify below):

Express Abandonment Request

[I

[I

El

D After Final D Petition Routing Slip (PTO/SW69)

El

El

El

Information Disclosure Statement Small Entity Statement

Certified Copy of Priority Document(s) D Request of Reiund

Response to Missing Parts/ Incomplete Remarks
Application

D Response to Missing Parts under 37CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT] CORRESPONDENCE ADDRESS

Firm or Dov Rosenfeld, Reg. No. 38687
Individual name 4 /’

Date :37-4’
ADDRESS FOR CORRESPONDEN

Firm Dov Rosenfeld

or 5507 College Avenue, Suite 2

Individual name Oakland, CA 94618. Tel: +1-510-547-3378 ‘

CERTIFICATE OF FAcSIMILE TRANSMISSION

I hereby certify that this correspondence is being facsimile transmitted with the United States Patent and Trademark Office at ‘~
P.O. Box 1450. Alexandria, VA

22313-1450 on this date: ‘ ‘

Dov Ro'senfeid. 2/38687

EJEIEIEIEJDUE]

PAGE 2m - RCVD AT 212012004 2:20:59 PM [Eastern Standard Tlme] - SVR:USPTO-EFXRF-1l3 - omsmnoans ' csno:15102912985 - DURATION (mm~ss):O5-u

NOAC EX. 1017 Page 349

NOAC Ex. 1017 Page 350

i

WMWumth—wavm“WWW”..
—C.x.,no,“rammed.ux~7‘rmlw’n‘,‘14 .MW»

i.

§l

‘ !

I2004 12:24 FAX 15102912985 INVENTEK I003

Our RefJDocket No: APPT-001-4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian, et al.

Application No.: 09/608266

Filed: June 30, 2000

Title: ASS OCIATIVE CACHE STRUCTURE

FOR LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONITOR

Group Art Unit: 2662

Examiner: Alan Nguyen

‘ TRANSMITTAL: SUPPLEMENTARY AMENDNIENT

P.O. Box No Fee Amendment

Commissioner for Patents

PO. Box 1450

Alexandria. VA 22313—1450

Dear Commissioner:

Transmitted herewith is a supplementary amendment for the above referenced application.

This application has:

a small entity status. If a claim for such status has not earlier been made, consider

this as a claim for small entity status.

X No additional fee is required.

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-872-9306 addressed the Commissioner for Patents, PO. Box 1450,
Alexandria, VA 22313-1450 on.

Date: fzjé ‘20 . W E - Signed:
Name: Dov Rosenfeld, Reg. No. 38687

PAGE 3113 ' RCVD AT 2I20I2004 2:20:59 PM [Eastern Standard Tlme] ' SVR:USPTO-EFXRF-1l3 ' DNISI8729306 " CSIDt15102912985 ' DURATION (mm-ss):05-44

NOAC EX. 1017 Page 350

NOAC Ex. 1017 Page 351

2' 02/10/2004 10:32 FAX 15102912985 INVENTEK .004~(

if S/N: 09/608266 Page 2

3‘

ii . TOTAL CLAIMS NEW TOTAL NO. OF EXTRA EXTRA CLAIM~' PREVIOUSLY PAlD FOR CLAIMS FEE

TO AL 20 19 $ 0.00
CLAIMS

INDEP. . 3 3 $ 0.00

CLAIMS. '

TOTAL CLAIM FEES PAYABLE:m

Applicant(s) believe(s) thatno Extension of Time is required. However, this
conditional petition‘is .being made to provide for the possibility that applicant has
inadvertently overlOoked the‘need for a petition for an extension of time.

X Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) X two months ($420)

two months ($930) four months ($1450)

If an additional extension of time is required, please consider this as a petition therefbr.

X A credit card payment form for the required fce(s) is attached.

X The Commissioner is hereby authorized to charge payment of the following fees

associated with this communication or credit any overpayment to.Deposit Account

No. 50-0222 (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

X Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims. ‘

X Any missing extension or petition fees required under 37 CFR 1.17.

ResPectfully Submitted,

g

'E ' _ ‘5

)3 M' 2"0 :s a;
’ Date Dov ,Reg.No. 38687 N

a
‘ a

‘: Address for correspondence: g
Dov Rosenfeld 2";

i 5507 College Avenue.Suite 2 3

Oakland, CA 94618 , 5
Tel. +1-510-547-3378; Fax: +1-510-291-2985 a;6:

PAGE 4119 ‘ RCVD AT 2110/2004 12:29:32 PM [Eastern Standard Time] ' SVR:USPTO-EFXRF-1I1 ' DNIS:8729300 ' CSIDI15102912985 ' DURATION (mm-ss):07-36

{ NOAC EX. 1017 Page 351

mma“-..

NOAC Ex. 1017 Page 352

NOAC Ex. 1017 Page 353

NOAC Ex. 1017 Page 354

NOAC Ex. 1017 Page 355

NOAC Ex. 1017 Page 356

NOAC Ex. 1017 Page 357

NOAC Ex. 1017 Page 358

NOAC Ex. 1017 Page 359

NOAC Ex. 1017 Page 360

NOAC Ex. 1017 Page 361

NOAC Ex. 1017 Page 362

NOAC Ex. 1017 Page 363

NOAC Ex. 1017 Page 364

NOAC Ex. 1017 Page 365

NOAC Ex. 1017 Page 366

NOAC Ex. 1017 Page 367

NOAC Ex. 1017 Page 368

NOAC Ex. 1017 Page 369

NOAC Ex. 1017 Page 370

NOAC Ex. 1017 Page 371

NOAC Ex. 1017 Page 372

NOAC Ex. 1017 Page 373

NOAC Ex. 1017 Page 374

NOAC Ex. 1017 Page 375

NOAC Ex. 1017 Page 376

NOAC Ex. 1017 Page 377

NOAC Ex. 1017 Page 378

NOAC Ex. 1017 Page 379

NOAC Ex. 1017 Page 380

NOAC Ex. 1017 Page 381

NOAC Ex. 1017 Page 382

NOAC Ex. 1017 Page 383

NOAC Ex. 1017 Page 384

NOAC Ex. 1017 Page 385

NOAC Ex. 1017 Page 386

NOAC Ex. 1017 Page 387

NOAC Ex. 1017 Page 388

NOAC Ex. 1017 Page 389

NOAC Ex. 1017 Page 390

NOAC Ex. 1017 Page 391

NOAC Ex. 1017 Page 392

NOAC Ex. 1017 Page 393

NOAC Ex. 1017 Page 394

NOAC Ex. 1017 Page 395

NOAC Ex. 1017 Page 396

NOAC Ex. 1017 Page 397

NOAC Ex. 1017 Page 398

NOAC Ex. 1017 Page 399

NOAC Ex. 1017 Page 400

NOAC Ex. 1017 Page 401

NOAC Ex. 1017 Page 402

NOAC Ex. 1017 Page 403

NOAC Ex. 1017 Page 404

NOAC Ex. 1017 Page 405

NOAC Ex. 1017 Page 406

NOAC Ex. 1017 Page 407

NOAC Ex. 1017 Page 408

NOAC Ex. 1017 Page 409

NOAC Ex. 1017 Page 410

NOAC Ex. 1017 Page 411

NOAC Ex. 1017 Page 412

NOAC Ex. 1017 Page 413

NOAC Ex. 1017 Page 414

NOAC Ex. 1017 Page 415

NOAC Ex. 1017 Page 416

NOAC Ex. 1017 Page 417

NOAC Ex. 1017 Page 418

NOAC Ex. 1017 Page 419

NOAC Ex. 1017 Page 420

NOAC Ex. 1017 Page 421

NOAC Ex. 1017 Page 422

NOAC Ex. 1017 Page 423

NOAC Ex. 1017 Page 424

NOAC Ex. 1017 Page 425

NOAC Ex. 1017 Page 426

NOAC Ex. 1017 Page 427

NOAC Ex. 1017 Page 428

NOAC Ex. 1017 Page 429

NOAC Ex. 1017 Page 430

NOAC Ex. 1017 Page 431

NOAC Ex. 1017 Page 432

NOAC Ex. 1017 Page 433

NOAC Ex. 1017 Page 434

NOAC Ex. 1017 Page 435

NOAC Ex. 1017 Page 436

NOAC Ex. 1017 Page 437

NOAC Ex. 1017 Page 438

NOAC Ex. 1017 Page 439

NOAC Ex. 1017 Page 440

NOAC Ex. 1017 Page 441

NOAC Ex. 1017 Page 442

NOAC Ex. 1017 Page 443

NOAC Ex. 1017 Page 444

NOAC Ex. 1017 Page 445

NOAC Ex. 1017 Page 446

NOAC Ex. 1017 Page 447

NOAC Ex. 1017 Page 448

NOAC Ex. 1017 Page 449

NOAC Ex. 1017 Page 450

NOAC Ex. 1017 Page 451

NOAC Ex. 1017 Page 452

NOAC Ex. 1017 Page 453

NOAC Ex. 1017 Page 454

NOAC Ex. 1017 Page 455

NOAC Ex. 1017 Page 456

NOAC Ex. 1017 Page 457

NOAC Ex. 1017 Page 458

NOAC Ex. 1017 Page 459

NOAC Ex. 1017 Page 460

NOAC Ex. 1017 Page 461

NOAC Ex. 1017 Page 462

NOAC Ex. 1017 Page 463

NOAC Ex. 1017 Page 464

NOAC Ex. 1017 Page 465

NOAC Ex. 1017 Page 466

NOAC Ex. 1017 Page 467

NOAC Ex. 1017 Page 468

NOAC Ex. 1017 Page 469

NOAC Ex. 1017 Page 470

NOAC Ex. 1017 Page 471

NOAC Ex. 1017 Page 472

NOAC Ex. 1017 Page 473

NOAC Ex. 1017 Page 474

NOAC Ex. 1017 Page 475

NOAC Ex. 1017 Page 476

NOAC Ex. 1017 Page 477

NOAC Ex. 1017 Page 478

NOAC Ex. 1017 Page 479

NOAC Ex. 1017 Page 480

NOAC Ex. 1017 Page 481

NOAC Ex. 1017 Page 482

NOAC Ex. 1017 Page 483

NOAC Ex. 1017 Page 484

NOAC Ex. 1017 Page 485

NOAC Ex. 1017 Page 486

NOAC Ex. 1017 Page 487

NOAC Ex. 1017 Page 488

NOAC Ex. 1017 Page 489

NOAC Ex. 1017 Page 490

NOAC Ex. 1017 Page 491

NOAC Ex. 1017 Page 492

NOAC Ex. 1017 Page 493

NOAC Ex. 1017 Page 494

NOAC Ex. 1017 Page 495

NOAC Ex. 1017 Page 496

NOAC Ex. 1017 Page 497

NOAC Ex. 1017 Page 498

NOAC Ex. 1017 Page 499

NOAC Ex. 1017 Page 500

NOAC Ex. 1017 Page 501

NOAC Ex. 1017 Page 502

NOAC Ex. 1017 Page 503

NOAC Ex. 1017 Page 504

NOAC Ex. 1017 Page 505

NOAC Ex. 1017 Page 506

NOAC Ex. 1017 Page 507

NOAC Ex. 1017 Page 508

NOAC Ex. 1017 Page 509

NOAC Ex. 1017 Page 510

NOAC Ex. 1017 Page 511

NOAC Ex. 1017 Page 512

NOAC Ex. 1017 Page 513

