IW 7696177

1O ALL TO WHOMTHESE; PRESENTS; SHANL) COME3

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

October 16,2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE
RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS
OF:

MANANERRARAR AR

APPLICATION NUMBER: 09/608,266
FILING DATE: June 30, 2000
PATENT NUMBER: 6,771,646
ISSUE DATE: August 03, 2004

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United Stat atent and Trademark Office

S s L E L L b S R B E Tutal) o T

" 5\3“““

fop o

NOAC Ex. 1017 Page 1

s, T T T T T T TR
281 ° A ‘ ti vy 1| PATENT NUMBER
@ | = . e s
83| . I s SNNEER
® | L ; SEENY f L=
Z El N ﬂj | e771848 |,
N T] 1]
’ o 5 | T RN BT T TR e e 1 6771646
T) - 1J.S. UTILITY Patent Application -
i ‘ W OlPE. | PATENTDATE.
X - 4 /[7 ' - 7004
L, STCANNED a4 o.A.,OC/ G 00 L
v b - == ———— . . . —
APPLICATION NO, CONT/PRIOR | CLASS | SUBCLASS ART UNIT EXAMINER 1
! 0o/608566 o- {370 Do 2apd- S, L
C C . AT g -
N \ —
"\ ' % o ar -) /('/'ir'/{ é/’ SR /Lf g
g Certificate)
< er_tlflca C . po
VLR erfificate
E of Correction SEP 21 2804 P10.2040
12799
i C i~ - £ 2™ L B
S CERTIFICATE Q1 Lofreciion
T zq 2014
ISSUING CLASSIFICATION
x ORIGINAL i i CROSS REFERENCE(S)
CLASS SUBCLASS CLASS SUBCLASS (ONE SUBCLASS PER BLOCK)
) ‘} 270 A'»?'ql 4:’ 370 .«L//?. 285N
| INTERNATIONAL CLASSIFICATION | 372 s
T felel R 37/0& 701 223
i : 7/] 119
L, i ’ . "] Continued on 1ssue Slip Inside File Jacket
? TERMINAL DRAWINGS CLAIMSATLOWED
j’ ’,‘ DISCLAIMER Sheets Drwg. ./ "IEigs. Drvg. | Print Fig. Totalgairﬁ's/ Print Claim for O.G.
‘ 20 | 2z | g | S 7

NOTICE OF ALLOWANCE MAILED

. {J The term of this patent e -) e
4 subsequent to (date) - A ’&r\ V. /\/qm/fr\ 7//9/,1

’ }' has been disclaimed. - (Assistant Examingt) 7 ~ {Date)
o 7 The term of this patent shall v \" ~ jo L{ e
/ -

t extend beyond th iration d ‘n o
v — Clergf? s v e
cKY NGO =t
R AmountDue |~ Dath Paid
PRIMARY EXAMINER " / I /09- p L / .
, - {Primary Examiner) (Date) , 8 ‘22,,‘@/ [//7(/

JSSUE BATCH NUMBER
'

(3 The terminal ____months of / /, by / 4 é} lég /x : b
n) {Opte)

this patent have been disclaimed. %
(Legal fistrurnerits Exa ol

WARNING: »
The infosmation disclosed herein may be restncted Unauthonzed disclosure may be prohibited by the United States Code Title 35, Sections 122, 181 and 368
Possession outside the U.S. Patent & Trademark Office s restncted to authonzed employees and contractors-onty.

P oy FILED WiTH:; [_]DisK (cRF) [(JFicHE []co-ROM
(Attached In pocket on right inside flap)

ISSUE FeE IN FILE

R AR et Ry
UEELAN, ko~ DUCY o SV U,

SRS TROR
b
o ——TI .
et
-
1
1Y
>

B . v
ﬂ\i ol
l‘

4
\

(FACE)

[

NOAC Ex. 1017 Page 2

UNITED STATES PATENT AND TRADEMARK OFFICE

Page 1 of |

ilIII!IIIIlI!IIIIIlIlIIIIIHIIllIIII!Illlllllllllllll!II!IH{IIIIIIIII

COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK QOFFICE

WASHINGTON, D C. 2023l
www uspto gov

Bib Data Sheet
FILING DATE
TORN
SERIAL NUMBER 06/30/2000 CLASS GROUP ART UNIT DAOTC}C()ET 55
09/608,266)
RULE 370 2731 APPT-001-4
JIAPPLICANTS
Haig A. Sarkissian, San Antonio; TX:”
Russell S. Dietz, San Josey CA;
i s L/)
b % CONTINUING DATA ek kAkkdhkkkk Ak kkkkkkkkkkk
THIS APPLN, CLAIMS BENEFIT OF 60/141,903 06/30/1999
‘#é‘
kd FORE‘GN APPL‘CATIONS tiit!:ligr}g'/*tt*t*t**
/R
IF REQUIRED, FOREIGN FILING LICENSE
GRANIED **09/01/2000 -
Foreign Pnonty claimed a yes @ no, -
s USC 119 (a-d) conditions [D STATEOR] SHEETS TOTAL |[INDEPENDENT
et ‘ yes 1o L met ater COUNTRY | DRAWING | CLAIMS CLAIMS
Hlowarce - TX 21 20 3
[Venfied and -
cknowledged Exarmrférs S‘fgnature Initiais I
IADDRESS
Dov Rosenfel -
5507 College’ Avenue
Suite 2
Oakland ,CA 94618
TITLE
Associative cache structure for lookups and updates of flow records in a network monitor
O Al Fees
(1 1.16 Fees (Filing)
FILING FEE [FEES: Authority has been given in Paper D 117 Fees (Processing Ext. of
RECEIVED |No. to charge/credit DEPOSIT ACCOUNT {ltime)
840 NoC. for following: O 1 18 Fees (Issue)
O other
U Credit

-

file://C:\APPS\PreExam\correspondence\l A .xml

117

NOAC Ex. 1017 Page 3

Y

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE
FEE RECORD SHEET

»

PTO-1556
(5/87)

*U.S. GPO: 1999.459-082/19144

NOAC Ex. 1017 Page 4

NI,

'S'n 96Lof

Wl er o

e Wt @

Lalt 1,

i

AL

i i

>

0} -03-=¢

IN THE U.S. PATENT AND TRADEMARK OFFICE
Application Transmittal Sheet

Our Ref./Docket No.: _ APPT-001-4

- PTO
§

Box Patent Application
ASSISTANT COMMISSIONER FOR PATENTS

Washington, D.C. 20231

82
L

7501

1l

Dear Assistant Commissioner:

Jjc8l
09

g

Transmitted herewith is the patent application of

INVENTOR(s)/APPLICANT(s)
Last Name First Name, MI Residence (City and State or Country)
Sarkissian Haig A. San Antonio, Texas
Dietz Russell S. San Jose, CA

TITLE OF THE INVENTION

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A
NETWORK MONITOR

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387

5507 College Avenue, Suite 2

Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS (check all that apply)

Included are:

X 65 _ sheet(s) of specification, claims, and abstract
X 21 sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson

Information Disclosure Statement.
Form PTO-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a

copy of each references included in PTO-1449.

Declaration and Power of Attorney

An assignment of the invention to_Apptitude, Inc.

A letter requesting recordation of the assignment.

An assignment Cover Sheet.

Additional inventors are being named on separately numbered sheets attached hereto.
X Return postcard.

This application has:
a small entity status. A verified statement:

is enclosed
was already filed.

The fee has been calculated as shown in the following page.

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961895US in an envelope addressed to Box Patent

Appﬁc%jtam Commissioner for Patents, Washington, D.C. 20231 on.
/ 93, 02@‘5'@ Signed”

Date:
Name: Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1017 Page 5

S i

i bl

S R,

{0

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. _APPT-001-4
NO. OF EXTRA RATE EXTRA CLAIM
TOTAL CLAIMS CLAIMS FEE
TOTAL 20 0 $18 $ 0.00
CLAIMS
INDEP. 3 0 $78 $ 0.00
CLAIMS
BASIC APPLICATION FEE: $690.00
- TOTAL FEES PAYABLE: $ 690.00
METHOD OF PAYMENT

A check in the amount of

A check in the amount of $ 40.00 is attached for recordation of the Assignment.

The Commissioner is hereby authorized to charge payment of the any missing filing or other fees
required for this filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

]M30@0Q

Respectfully Submitted,

g e

Date

Correspondence Address:
Dov Rosenfeld

is attached for application fee and presentation of claims.

I/Dov Rosenfeld , Reg. No. 38687

5507 College Avenue, Suite 2
Oakland, California, 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

NOAC Ex. 1017 Page 6

Aol Tl il ot e

S

NN e AW

Our Ref./Docket No: APPT-001-4 Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian, et al. Group Art Unit: unassigned

Title: ASSOCIATIVE CACHE STRUCTURE FOR | Examiner: unassigned
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

LETTER TO OFFICIAL DRAFTSPERSON
SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find 21 sheets of formal drawings to be made of record for the above
identified patent application submitted herewith.

Respectfully Submitted,

S 30 2000

¢/ Date Dov Rosenfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):
Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2
Oakland, CA 94618 »
Telephone: (510) 547-3378; Fax: (510) 653-7992

[Certificate of Mailing under 37 CFR 1.10

L hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961895US in an envelope addressed to Box Patent

Applicatign, Assistant Commissioner for Patents, Washington, D.C. 202
Dmﬁ%\,ﬁ, 3@, Z@’ﬁ'@ Signed;
| Nathe” Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1017 Page 7

Y

Todl Baall it Buse aonett sesnre

Our Ref./Docket No.: APPT-001-4

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

Inventor(s):

SARKISSIAN, Haig A.
San Antonio, Texas

DIETZ, Russell S.
San Jose, CA

Certificate of Mailing under 37 CFR 1.10

T hereby cert‘ffy that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(Express Mail Label: EI1417961895US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,

Washington, D.C. 20231 on.
Date: ? Q/ ﬂ@_&@_ Si gn ed: /%—\/

NOAC Ex. 1017 Page 8

5
/
Y loq
10
¢
C 15
C. 20
L
25

SN D

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN A NETWORK MONITOR

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.:
60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference. 4.5, . et nd

This application is related to the followingAU .S. patent applications, each filed
concurrently with the present application, and each assigned to Apptitude, Inc., the

assignee of the present invention:

NO. (D,'P‘S }(’)Ql
U.S. Patent, . Application Serat-No~ koo for METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK, to inventors Dietz, et al., fledJune36;
2000;-AttorneytAgent Reference NumberAPPF-001-, and incorporated herein by

reference.
No. (‘71("("5/71'S
U.S. Patent, Applisation-Sertat-New__~droe, for PROCESSING PROTOCOL
SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE, to inventors Koppenhaver, et al., filed June-38;-2000;

AttorneyfAgent-Reference NumberARPT-001-2, and incorporated herein by

reference.
o) et e

U.S. Patent Application Serial No)\&: for RE-USING INFORMATION FROM
DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK

MONITORING, to inventors Dietz, et al., filed Jare-36,26006y AttorneyfAgent

Reference-NumberARRT-064-3, and incorporated herein by reference.
&‘“//é o7
U.S. Patent Application Serial No)\ et for STATE PROCESSOR FOR

PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors
Sarkissian, et al., fledJune-30,-20

S, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

NOAC Ex. 1017 Page 9

10

20

25

30

0 b

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor
that can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.
No. &,651,099
Related and incorporated by reference U.S. Patentepplication— L. au., for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, AtterneviAsentDocket-APRT-064-1, describes a network monitor
that includes carrying out protocol specific operations on individual packets including
extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

NOAC Ex. 1017 Page 10

10

20

25

30

O)

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor
that can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.
No. & b51,899
Related and incorporated by reference U.S. Pateng@m for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, Atterrey/AgentBecket-APPT-064-1, describes a network monitor
that includes carrying out protocol specific operations on individual packets including
extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

NOAC Ex. 1017 Page 11

(™

10

15

20

25

30

0 b

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor
that can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.
No. (6,571,899
Related and incorporated by reference U.S. Patenw for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, Atterney/AgentDocket-ARPT-0614, describes a network monitor
that includes carrying out protocol specific operations on individual packets including
extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

NOAC Ex. 1017 Page 12

3

10

15

20

25

O D

4

likely that a packet associated with the least recently used flow-entry will soon arrive.

A hash is often used to facilitate lookups. Such a hash may spread entries

randomly in a database. In such a case, a associative cache is desirable.

There thus is a need for a associative cache subsystem that also includes a LRU

replacement policy.

SUMMARY

Described herein is an associative cache system for looking up one or more
elements of an external memory. The cache system comprises a set of cache memory
elements coupled to the external memory, a set of content addressable memory cells
(CAMs) containing an address and a pointer to one of the cache memory elements, and
including a matching circuit having an input such that the CAM asserts a match output
when the input is the same as the address in the CAM cell,\Wh%;; cache memory
elergg‘;ﬁﬁa particular CAM points to changes over time. In the preferred implementation,

the CAMs are connected in an order from top to bottom, and the bottom CAM points to

the least recently used cache memory element.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed
preferred embodiments, these should not be taken to limit the present invention to any
specific embodiment because such embodiments are provided only for the purposes of
explanation. The embodiments, in turn, are explained with the aid of the following

figures.

FIG. 1 is a functional block diagram of a network embodiment of the present
invention in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their
formats that might be exchanged in starting, as an illustrative example, a conversational
flow between a client and server on a network being monitored and analyzed. A pair of
flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be

NOAC Ex. 1017 Page 13

A

ax
-

. b

generated and used in the process of analyzing packets and of recognizing the particular

server applications that produce the discrete application packet exchanges.

FIG. 3'is a functional block diagram of a process embodiment of the present
inventioh that can operate as the packet monitor shown in FIG. 1. This process may be
7/

implémented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and
optimization process, which in one embodiment may be used to generate data for

monitoring packets according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part

of the analyzer in an embodiment of the inventive packet monitor.

. FIG. 9 is d flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including
the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine
process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

NOAC Ex. 1017 Page 14

0)

6

FIG. 14 is a simple functional block diagram of a process embodiment of the
present iny,ent'ion that can operate as the packet monitor shown in FIG. 1. This process

may be ﬁnplemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

5 FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of
the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of
10 FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet
shown in FIGs. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

15 FIG. 18A is a three dimensional structure that can be used to store elements of
the pattern, parse and extraction database used by the parser subsystem in accordance to

one embodiment of the invention.

FIG. 18B ‘gs,a'ri'altemate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment

20 of the invention.

FIG. 19 is a block diagram of the cache memory part of the cache subsystem /

N

1115 of the analyzer subsystem of FIG. 11. -

FIG. 20 is a block diagram of the cache memory controller and the cache CAM

controller of the cache subsystem.

FIG. 21 is a block diagram of one implementation of the CAM array of the cache
subsystem 1115.

NOAC Ex. 1017 Page 15

S D

7
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may
include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

5 invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network
102 that communicates packets (e.g., [P datagrams) between various computers, for

10 example between the clients 104107 and servers 110 and 112. The network is shown
schematically as a cloud with several network nodes and links shown in the interior of
the cloud. A monitor {08 examines the packets passing in either direction past its
connection point 121 and, according to one aspect of the invention, can elucidate what
application programs are associated with each packet. The monitor 108 is shown

15 examining packets (i.e., datagrams) between the network interface 116 of the server 110
and the network. The monitor can also be placed at other points in the network, such as
connection point 123 between the network 102 and the interface 118 of the client 104, or
some other location, as indicated schematically by connection point 125 somewhere in
network 102. Not shown is a network packet acquisition device at the location 123 on

20 the network for converting the physical information on the network into packets for input

nto monitor 108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the
required communication, e.g., TCP/IP, etc. Any network activity—for example an
application program run by the client 104 (CLIENT 1) communicating with another
running on the server 110 (SERVER 2)—will produce an exchange of a sequence of
Ppackets over network 102 that is characteristic of the respective programs and of the
network protocols. Such characteristics may not be completely revealing at the
individual packet level. It may require the analyzing of many packets by the monitor 108
to have enough information needed to recognize particular application programs. The

Packets may need to be parsed then analyzed in the context of various protocols, for

NOAC Ex. 1017 Page 16

10

15

© b

8

example, the transport through the application session layer protocols for packets of a

type conforming to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol
stack. The ISO (International Standardization Organization) has defined a general model

that provides a framework for design of communication protocol layers. This model,
-

shown in table form below, serves as a basic reference for understanding the

functionality of existing communication protocols.

i T s

ISO MODEL

Layer Functionality | Example

7 Application Telnet, NFS, Novell NCP, HTTP,
H.323

6 Presentation XDR

5 Session RPC, NETBIOS, SNMP, etc.

4 Transport TCP, Novel SPX, UDP, etc.

3 Network IP, Novell IPX, VIP, AppleTalk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,
ATM, T1 (Hardware Connection)

Different communication protocols employ different levels of the ISO model or

may use a layered model that is similar to but which does not exactly conform to the ISO

s s 0 A e

et e

model. A protocol in a certain layer may not be visible to protocols employed at other
layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

In some communication arts, the term “frame” generally refers to encapsulated
data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

NOAC Ex. 1017 Page 17

S

EA
2
+

L

10

15

20

25

J b

9
“packet” generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the

term “datagram” is also used. In this specification, the term “packet” is intended to
encompass packets, datagrams, frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields and headers for
transmission across a network. For example, a data packet typically includes an address
destination field, a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and footers to identify the beginning
and end of the packet. The terms “packet format” and “frame format,” also referred to as

“cell format,” are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.
However, not every packet carries the same information useful for recognizing all levels
of the protocol. For example, in a conversational flow associated with a particular
application, the application will cause the server to send a type-A packet, but so will
another. If, though, the particular application program always follows a type-A packet
with the sending of a type-B packet, and the other application program does not, then in
order to recognize packets of that application’s conversational flow, the monitor can be
available to recognize packets that match the type-B packet to associate with the type-A
packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be
identified as being associated with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying other packet exchanges that are
parts of conversational flows associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of a flow is an indication of all
previous events in the flow that lead to recognition of the content of all the protocol
levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a
signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

In real-world uses of the monitor 108, the number of packets on the network 102
passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

NOAC Ex. 1017 Page 18

15

20

25

I
l : j D
N

10
and identify and maintain the state of the flows passing through the connection point.
The monitor 108 therefore masks out all the unimportant parts of each packet that will
not contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application
programs according to the packets that their executions produce, is a multi-step process
within the monitor 108. At a first level, for example, several application programs will
all produce a first kind of packet. A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efficiently any packets that belong to the
same flow. In some cases, that packet type may be sufficiently unique to enable the
monitor to identify the application that generated such a packet in the conversational
flow. The signature can then be used to efficiently identify all future packets generated in

traffic related to that application.

In other cases, that first packet only starts the process of analyzing the
conversational flow, and more packets are necessary to identify the associated
application program. In such a case, a subsequent packet of a second type—but that
potentiaily belongs to the same conversational flow—is recognized by using the
signature. At such a second level, then, only a few of those application programs will
have conversational flows that can produce such a second packet type. At this level in
the process of classification, all application programs that are not in the set of those that
lead to such a sequence of packet types may be excluded in the process of classifying the
conversational flow that includes these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is produced that allows recognition

of any future packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to
proceed to a third level of analysis using the second level signature. For each packet,
therefore, the monitor parses the packet and generates a signature to determine if this
signature identified a previously encountered flow, or shall be used to recognize future
packets belonging to the same conversational flow. In real time, the packet is further
analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

NOAC Ex. 1017 Page 19

[R

10

15

20

25

30

11

flows associated with different applications. A new signature for recognizing future
packets may also be generated. This process of analysis continues until the applications
are identified. The last generated signature may then be used to efficiently recognize
future packets associated with the same conversational flow. Such an arrangement makes
it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative
embodiments of the present invention capable of eavesdropping, once the monitor 108
has recognized the executing application programs passing through some point in the
network 102 (for example, because of execution of the applications by the client 105 or
server 110), the monitor sends a message to some general purpose processor on the
network that can input the same packets from the same location on the network, and the
processor then loads its own executable copy of the application program and uses it to
read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present
invention that can be implemented with computer hardware and/or software. The system
300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet
acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,
for example in an attempt to determine its characteristics, e.g., all the protocol
information in a multilevel model, including what server application produced the

packet.

The packet acquisition device is a common interface that converts the physical
signals and then decodes them into bits, and into packets, in accordance with the
particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what
operations need to occur on packets of different types—accomplished by compiler and
optimizer 310, (2) the processing—parsing and extraction of selected portions—of

packets to generate an identifying signature—accomplished by parser subsystem 301,

NOAC Ex. 1017 Page 20

10

15

20

25

30

O >

12
and (3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific
information to parser subsystem 301 and to analyzer subsystem 303. The initialization

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the
network. For each protocol there are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these and other fields are used in
monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304
that parses the packet and determines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction process 306 in parser
subsystem 301 extracts characteristic portions (signature information) from the packet
302. Both the pattern information for parsing and the related extraction operations, e.g.,
extraction masks, are supplied from a parsing-pattern-structures and extraction-
operations database (parsing/extractions database) 308 filled by the compiler and

optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and
states of all protocols that an occur at any layer, including how to interpret header
information, how to determine from the packet header information the protocols at the
next layer, and what information to extract for the purpose of identifying a flow, and
ultimately, applications and services. The layer selections database 338 describes the
particular layering handled by the monitor. That is, what protocols run on top of what
protocols at any layer level. Thus 336 and 338 combined describe how one would
decode, analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data
structures. The first is the set of parsing/extraction operations 308. The pattern structures
include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elements of a packet are to be extracted from

NOAC Ex. 1017 Page 21

10

15

20

25

30

O »

13
the packets based on the patterns that get matched. Thus, database 308 of
parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that

indicate a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state
patterns and processes 326. These are the different states and state transitions that occur
in different conversational flows, and the state operations that need to be performed (e.g.,
patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the
information it needs to begin processing packets. In an alternate embodiment, the
contents of one or more of databases 308 and 326 may be manually or otherwise
generated. Note that in some embodiments the layering selections information is inherent
rather than explicitly described. For example, since a PDL file for a protocol includes the

child protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input
into a packet buffer. The pattern recognition process 304 is carried out by a pattern
analysis and recognition (PAR) engine that analyzes and recognizes patterns in the
packets. In particular, the PAR locates the next protocol field in the header and
determines the length of the header, and may perform certain other tasks for certain types
of protocol headers. An example of this is type and length comparison to distinguish an
IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also
called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures
and extraction operations database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the next protocol layer. Once a
pattern or a set of patterns has been identified, it/they will be associated with a set of
none or more extraction operations. These extraction operations (in the form of
commands and associated parameters) are passed to the extraction process 306
implemented by an extracting and information identifying (EII) engine that extracts
selected parts of the packet, including identifying information from the packet as

required for recognizing this packet as part of a flow. The extracted information is put in

NOAC Ex. 1017 Page 22

15

20

25

30

O .

14
sequence and then processed in block 312 to build a unique flow signature (also called a
“key”) for this flow. A flow signature depends on the protocols used in the packet. For
some protocols, the extracted components may include source and destination addresses.
For example, Ethernet frames have end-point addresses that are useful in building a
better flow signature. Thus, the signature typically includes the client and server address

pairs. The signature is used to recognize further packets that are or may be part of this

flow.

In the preferred embodiment, the building of the flow key includes generating a
hash of the signature using a hash function. The purpose if using such a hash is
conventional—to spread flow-entries identified by the signature across a database for
efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet—a parser record—
that includes the signature (i.e., selected portions of the packet), the hash, and the packet
itself to allow for any state processing that requires further data from the packet. An
improved embodiment of the parser subsystem might generate a parser record that has
some predefined structure and that includes the signature, the hash, some flags related to
some of the fields in the parser record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further processing, e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation
of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal
data store of records of known flows that the system has already encountered, and
decides (in 316) whether or not this particular packet belongs to a known flow as
indicated by the presence of a flow-entry matching this flow in a database of known

flows 324. A record in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The
UFKB stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

NOAC Ex. 1017 Page 23

10

15

20

25

30

O b

15

stores the packet sequence number, and another is filled with state information in the

form of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already
exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses
the hash in the UFKB record to lookup if there is a matching known flow. In the
particular embodiment, the database of known flows 324 is in an external memory. A
cache is associated with the database 324. A lookup by the LUE for a known record is
carried out by accessing the cache using the hash, and if the entry is not already present

in the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow-
signature, state information, and extracted information from the packet for updating
flows, and one or more statistical about the flow. Each entry completely describes a flow.
Database 324 is organized into bins that contain a number, denoted N, of flow-entries
(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.
Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser
subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the
database to allow for fast lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory attached to the monitor, and
the number of bits of the hash data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a
16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a
new flow, then a protocol and state identification process 318 further determines the
state and protocol. That is, process 318 determines the protocols and where in the state
sequence for a flow for this protocol’s this packet belongs. Identification process 318
uses the extracted information and makes reference to the database 326 of state patterns

and processes. Process 318 is then followed by any state operations that need to be

NOAC Ex. 1017 Page 24

10

15

20

25

30

O D,

16

executed on this packet by a state processor 328.

If the packet is found to have a matching flow-entry in the database 324 (e.g., in
the cache), then a process 320 determines, from the looked-up flow-entry, if more
classification by state processing of the flow signature is necessary. If not, a process 322
updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor
328 carries out any state operations specified for the state of the flow and updates the
state to the next state according to a set of state instructions obtained form the state

pattern and processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze
all levels of the protocol stack, ultimately classifying the flows by application (level 7 in
the ISO model). It does this by proceeding from state-to-state based on predefined state
transition rules and state operations as specified in state processor instruction database
326. A state transition rule is a rule typically containing a test followed by the next-state
to proceed to if the test result is true. An operation is an operation to be performed while
the state processor is in a particular state—for example, in order to evaluate a quantity
needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a
packet, and carrying out the operation or operations may leave one in a state that causes
exiting the system prior to completing the identification, but possibly knowing more
about what state and state processes are needed to execute next, i.e., when a next packet
of this flow is encountered. As an example, a state process (set of state operations) at a

particular state may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up
using the information from previously encountered flows, the network traffic monitor
300 provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet
protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub-flows that occur in server announcement type flows.

NOAC Ex. 1017 Page 25

10

15

20

25

5 b

17
What may seem to prior art monitors to be some unassociated flow, may be recognized

by the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packet for this
particular flow-entry. A process 330 decides if more operations need to be performed for
this state. If so, the analyzer continues looping between block 330 and 328 applying
additional state operations to this particular packet until all those operations are
completed—that is, there are no more operations for this packet in this state. A process
332 decides if there are further states to be analyzed for this type of flow according to the
state of the flow and the protocol, in order to fully characterize the flow. If not, the
conversationai flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing
by using the last protocol recognized by the parser as an offset into a jump table (jump
vector). The jump table finds the state processor instructions to use for that protocol in
the state patterns and processes database 326. Most instructions test something in the
unified flow key buffer, or the flow-entry in the database of known flows 324, if the
entry exists. The state processor may have to test bits, do comparisons, add, or subtract
to perform the test. For example, a common operation carried out by the state processor

is searching for one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an
end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process
322.

The flow-entry also is updated after classification finalization so that any further
packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

NOAC Ex. 1017 Page 26

10

15

20

25

0 §

18

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically
maintains flow-entries, which in one aspect includes storing states. The monitor of
FIG. 3 also generates characteristic parts of packets—the signatures—that can be used to
recognize flows. The flow-entries may be identified and accessed by their signatures.
Once a packet is identified to be from a known flow, the state of the flow is known and
this knowledge enables state transition analysis to be performed in real time for each
different protocol and application. In a complex analysis, state transitions are traversed
as more and more packets are examined. Future packets that are part of the same
conversational flow have their state analysis continued from a previously achieved state.
When enough packets related to an application of interest have been processed, a final
recognition state is ultimately reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow. The signature for that final
state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.
Once a particular set of state transitions has been traversed for the first time and ends in a
final state, a short-cut recognition pattern—a signature—can be generated that will key
on every new incoming packet that relates to the conversational flow. Checking a
signature involves a simple operation, allowing high packet rates to be successfully

monitored on the network.

In improved embodiments, several state analyzers are run in parallel so that a
large number of protocols and applications may be checked for. Every known protocol
and application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are
automatically generated on-the-fly, and as further packets in the conversational flow are
€ncountered, signatures are updated and the states of the set of state transitions for any
Potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

NOAC Ex. 1017 Page 27

10

15

20

25

30

0)

19

or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation
process. That is, part of the initialization generates the pattern structures and extraction
operations database 308 and the state instruction database 328. Such initialization can

occur off-line or from a central location.

The different protocols that can exist in different layers may be thought of as
nodes of one or more trees of linked nodes. The packet type is the root of a tree (called
level 0). Each protocol is either a parent node or a terminal node. A parent node links a
protocol to other protocols (child protocols) that can be at higher layer levels. Thus a
protocol may have zero or more children. Ethernet packets, for example, have several
variants, each having a basic format that remains substantially the same. An Ethernet
packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet
Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE 803.2 packet.
Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP

protocol, and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,
packet) of information and includes information on the destination media access control
address (Dst MAC 1602) and the source media access control address (Src MAC 1604).
Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now shows the header information for the next level (level-2) for an
Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the
packet that indicates the next layer level is a two-byte type field 1702 containing the
child recognition pattern for the next level. The remaining information 1704 is shown
hatched because it not relevant for this level. The list 1712 shows the possible children
for an Ethertype packet as indicated by what child recognition pattern is found offset 12.
FIG. 17B shows the structure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the [P protocol are shown in table 1752.

NOAC Ex. 1017 Page 28

10

15

20

25

30

) D

20
The pattern, parse, and extraction database (pattern recognition database, or
PRD) 308 generated by compilation process 310, in one embodiment, is in the form of a
three dimensional structure that provides for rapidly searching packet headers for the
next protocol. FIG. 18A shows such a 3-D representation 1800 (which may be
considered as an indexed set of 2-D representations). A compressed form of the 3-D

structure is preferred.

An alternate embodiment of the data structure used in database 308 is illustrated
in FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid
searches to be performed by the pattern recognition process 304 by indexing locations in
a memory rather than performing address link computations. In this alternate
embodiment, the PRD 308 includes two parts, a single protocol table 1850 (PT) which
has an entry for each protocol known for the monitor, and a series of Look Up Tables
1870 (LUT’s) that are used to identify known protocols and their children. The protocol
table includes the parameters needed by the pattern analysis and recognition process 304
(implemented by PRE 1006) to evaluate the header information in the packet that is
associated with that protocol, and parameters needed by extraction process 306
(implemented by slicer 1007) to process the packet header. When there are children, the
PT describes which bytes in the header to evaluate to determine the child protocol. In
particular, each PT entry contains the header length, an offset to the child, a slicer

command, and some flags.

The pattern matching is carried out by finding particular “child recognition
codes” in the header fields, and using these codes to index one or more of the LUT’s.
Each LUT entry has a node code that can have one of four values, indicating the protocol
that has been recognized, a code to indicate that the protocol has been partially
recognized (more LUT lookups are needed), a code to indicate that this is a terminal
node, and a null node to indicate a null entry. The next LUT to lookup is also returned

from a LUT lookup.

Compilation process is described in FIG. 4. The source-code information in the
form of protocol description files is shown as 402. In the particular embodiment, the
high level decoding descriptions includes a set of protocol description files 336, one for

each protocol, and a set of packet layer selections 338, which describes the particular

NOAC Ex. 1017 Page 29

Loa ot s RAb A

10

15

20

25

30

2 D

layering (sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract
operations 406 is generated (404), and a set of packet state instructions and operations
407 1s generated (405) in the form of instructions for the state processor that implements
state processing process 328. Data files for each type of application and protocol to be
recognized by the analyzer are downloaded from the pattern, parse, and extraction
database 406 into the memory systems of the parser and extraction engines. (See the
parsing process 500 description and FIG. §; the extraction process 600 description and
FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each
type of application and protocol to be recognized by the analyzer are also downloaded
from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links

the three dimensional structure (one embodiment) or the or all the lookup tables for the

Because of the large number of possible protocol trees and subtrees, the compiler
process 400 includes optimization that compares the trees and subtrees to see which
children share common parents. When implemented in the form of the LUT’s, this
process can generate a single LUT from a plurality of LUT’s. The optimization process
further includes a compaction process that reduces the space needed to store the data of

the PRD.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be
thought of as a set of 2-D structures each representing a protocol. To enable saving space
by using only one array per protocol which may have several parents, in one
embodiment, the pattern analysis subprocess keeps a “current header” pointer. Each
location (offset) index for each protocol 2-D array in the 3-D structure is a relative
location starting with the start of header for the particular protocol. Furthermore, each of
the two-dimensional arrays is sparse. The next step of the optimization, is checking all
the 2-D arrays against all the other 2-D arrays to find out which ones can share memory.
Many of these 2-D arrays are often sparsely populated in that they each have only a small

number of valid entries. So, a process of "folding" is next used to combine two or more

NOAC Ex. 1017 Page 30

10

15

20

25

30

O D

22
2-D arrays together into one physical 2-D array without losing the identity of any of the
original 2-D arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur
between any 2-D arrays irrespective of their location in the tree as long as certain
conditions are met. Multiple arrays may be combined into a single array as long as the
individual entries do not conflict with each other. A fold number is then used to associate

each element with its original array. A similar folding process is used for the set of LUTSs

1850 in the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting
at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next
(initially the first) packet component from the packet 302. The packet components are
extracted from each packet 302 one element at a time. A check is made (504) to
determine if the load-packet-component operation 503 succeeded, indicating that there
was more in the packet to process. If not, indicating all components have been loaded,

the parser subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched
(505) from the pattern, parse and extraction database 308 to provide a set of patterns and
processes for that node to apply to the loaded packet component. The parser subsystem
301 checks (506) to determine if the fetch pattern node operation 505 completed
successfully, indicating there was a pattern node that loaded in 505. If not, step 511
moves to the next packet component. If yes, then the node and pattern matching process
are applied in 507 to the component extracted in 503. A pattern match obtained in 507
(as indicated by test 508) means the parser subsystem 301 has found a node in the

parsing elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test
508), the parser subsystem 301 moves (510) to the next pattern node from the pattern
database 308 and to step 505 to fetch the next node and process. Thus, there is an
“applying patterns” loop between 508 and 505. Once the parser subsystem 301
completes all the patterns and has either matched or not, the parser subsystem 301 moves

to the next packet component (511).

Once all the packet components have been the loaded and processed from the

NOAC Ex. 1017 Page 31

10

15

20

25

30

w

D)

23
input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6

stz

FIG. 6 is a flow chart for extracting the information from which to build the

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this
point parser subsystem 301 has a completed packet component and a pattern node
available in a buffer (602). Step 603 loads the packet component available from the
pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there
was indeed another packet component, the parser subsystem 301 fetches in 605 the
extraction and process elements received from the pattern node component in 602. If the
fetch was successful (test 606), indicating that there are extraction elements to apply, the
parser subsystem 301 in step 607 applies that extraction process to the packet component
based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this
component, and if not, the parser subsystem 301 moves back to 603 to load the next
packet component at hand and repeats the process. If the answer is yes, then the parser
subsystem 301 moves to the next packet component ratchet. That new packet component
is then loaded in step 603. As the parser subsystem 301 moved through the loop between
608 and 603, extra extraction processes are applied either to the same packet component
if there is more to extract, or to a different packet component if there is no more to

extract.

The extraction process thus builds the signature, extracting more and more
components according to the information in the patterns and extraction database 308 for
the particular packet. Once loading the next packet component operation 603 fails (test
604), all the components have been extracted. The built signature is loaded into the
signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and
the pattern node elements are available (702). The parser subsystem 301 loads the next
pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

NOAC Ex. 1017 Page 32

24
hash elements that are found in the pattern node that is in the element database. In 706

the resulting signature and the hash are packed. In 707 the parser subsystem 301 moves

on to the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left
s (test 704). Once all the patterns of elements have been hashed, processes 304, 306 and
312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the
form of a UFKB record which is similar to a parser record, but with one or more

10 different fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine
(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with
the parser record that includes a signature, the hash and at least parts of the payload. In
802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the
15 lookup engine 314 computes a “record bin number” from the hash for a flow-entry. A
bin herein may have one or more “buckets” each containing a flow-entry. The preferred

embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

20 Thus, in 804, the system looks up the cache for a bucket from that bin using the
hash. If the cache successfully returns with a bucket from the bin number, indicating
there are more buckets in the bin, the lookup/update engine compares (807) the current
signature (the UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in the cache) is marked in step

25 810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the

UFKB-entry in 802 has a status of “found.” The “found” indication allows the state
: processing 328 to begin processing this UFKB element. The preferred hardware
embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

30 In the preferred embodiment, a set of statistical operations is performed by a

NOAC Ex. 1017 Page 33

o S A o

;
r
4
t
§

15

20

25

J b

25
calculator for every packet analyzed. The statistical operations may include one or more
of counting the packets associated with the flow; determining statistics related to the size
of packets of the flow; compiling statistics on differences between packets in each
direction, for example using timestamps; and determining statistical relationships of
timestamps of packets in the same direction. The statistical measures are kept in the
flow-entries. Other statistical measures also may be compiled. These statistics may be
used singly or in combination by a statistical processor component to analyze many
different aspects of the flow. This may include determining network usage metrics from
the statistical measures, for example to ascertain the network’s ability to transfer
information for this application. Such analysis provides for measuring the quality of
service of a conversation, measuring how well an application is performing in the

network, measuring network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more
counters that are part of the flow-entry (in the cache) in step 812. The process exits at
813. In our embodiment, the counters include the total packets of the flow, the time, and

a differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In
such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The lookup/update engine thus
continues lookup up buckets of the bin until there is either a match in 808 or operation
804 is not successful (test 805), indicating that there are no more buckets in the bin and

no match was found.

If no match was found, the packet belongs to a new (not previously encountered)
flow. In 806 the system indicates that the record in the unified flow key buffer for this
packet is new, and in 812, any statistical updating operations are performed for this
packet by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“new” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash may be used that corresponds to a single flow-entry. In such an

NOAC Ex. 1017 Page 34

;
:
t
L
{
i
i

10

20

25

» D

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the
system are now described with reference to FIGS. 10 and 11. Note that while we are
describing a particular hardware implementation of the invention embodiment of FIG. 3,
it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be
implemented in software running on one or more general-purpose processors, or only
partly implemented in hardware. An implementation of the invention that can operate in
software is shown in FIG. [4. The hardware embodiment (FIGS. 10 and 11) can operate
at over a million packets per second, while the software system of FIG. 14 may be
suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem
1000) as implemented in hardware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is
the extraction-operation database memory, in which the extraction instructions are
stored. Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3.
Typically, the system is initialized from a microprocessor (not shown) at which time
these memories are loaded through a host interface multiplexor and control register 1005
via the internal buses 1003 and 1004. Note that the contents of 1001 and 1002 are
preferably obtained by compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory
1008 using control signals 1021 and 1023, which control an input buffer interface
controller 1022. The buffer 1008 and interface control 1022 connect to a packet
acquisition device (not shown). The buffer acquisition device generates a packet start
signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive
data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a
packet starts loading into the buffer memory 1008, pattern recognition engine (PRE)
1006 carries out the operations on the input buffer memory described in block 304 of
FIG. 3. That is, protocol types and associated headers for each protocol layer that exist in

the packet are determined.

NOAC Ex. 1017 Page 35

TROVETE FAF ™ ™ =P A p monn ar

10

15

20

25

30

o D

27
The PRE searches database 1001 and the packet in buffer 1008 in order to
recognize the protocols the packet contains. In one implementation, the database 1001
includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.
The first lookup table is always at address zero. The Pattern Recognition Engine uses a
base packet offset from a control register to start the comparison. It loads this value into
a current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a
terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a
first stage that checks the protocol type field to determine if it is an 802.3 packet and the
field should be treated as a length. If it is not a length, the protocol is checked in a
second stage. The first stage is the only protocol level that is not programmable. The
second stage has two full sixteen bit content addressable memories (CAMs) defined for

future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for
the extraction engine (also called a “slicer”) 1007. The recognized patterns and the
commands are sent to the extraction engine 1007 that extracts information from the
packet to build the parser record. Thus, the operations of the extraction engine are those
carried out in blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to
slicer 1007 in the form of extraction instruction pointers which tell the extraction engine
1007 where to a find the instructions in the extraction operations database memory (1.e.,

slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol
identifier and a process code to the extractor. The protocol identifier is added to the flow
signature and the process code is used to fetch the first instruction from the instruction
database 1002. Instructions include an operation code and usually source and destination
offsets as well as a length. The offsets and length are in bytes. A typical operation is the
MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains

NOAC Ex. 1017 Page 36

- — -

LN 95 Q) S - A W

10

15

20

25

30

J D

28
a byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.
The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the
input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction
engine 1007 performs extraction operations on data in input buffer 1008 already
processed by PRE 1006 while more (i.e., later arriving) packet information is being
simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,
the hash is loaded into parser output buffer memory 1010. Any additional payload from
the packet that is required for further analysis is also included. The parser output memory
1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output buffer memory 1010, a data ready
signal 1025 is asserted by analyzer interface control. The data from the parser subsystem
1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem
that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is
initialized prior to operation, and initialization includes loading the state processing
information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an
analyzer host interface controller 1118, which in turn has access to a cache system 1115.
The cache system has bi-directional access to and from the state processor of the system
1108. State processor 1108 is responsible for initializing the state processor instruction

database memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

NOAC Ex. 1017 Page 37

e

10

15

20

25

29
comprising packet signatures and payloads that come from the parser into the unified
flow key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB
records. A UFKB record is essentially a parser record; the UFKB holds records of
packets that are to be processed or that are in process. Furthermore, the UFKB provides

for one or more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:
the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow
insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more
finite state machines (FSM's). There is bi-directional access between each of the finite
state machines and the unified flow key buffer 1103. The UFKB record includes a field
that stores the packet sequence number, and another that is filled with state information
in the form of a program counter for the state processor 1108 that implements state
processing 328. The status flags of the UFKB for any entry includes that the LUE is done
and that the LUE is transferring processing of the entry to the state processor. The LUE
done indicator is also used to indicate what the next entry is for the LUE. There also is
provided a flag to indicate that the state processor is done with the current flow and to
indicate what the next entry is for the state processor. There also is provided a flag to
indicate the state processor is transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been
processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB
record data may be processed by the flow insertion/deletion engine 1110 after being
processed by the state processor 1108 or only by the LUE. Whether or not a particular
engine has been applied to any unified flow key buffer entry is determined by status
fields set by the engines upon completion. In one embodiment, a status flag in the
UFKB-entry indicates whether an entry is new or found. In other embodiments, the LUE
issues a flag to pass the entry to the state processor for processing, and the required

operations for a new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

NOAC Ex. 1017 Page 38

Bkt v

Tl AL e

TAVAER T =n e

10

15

20

25

30

» b

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem
1115 that includes a caching engine. Cache 1115 is designed to have information flowing
in and out of it from five different points within the system: the three engines, external
memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and
a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host
interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor)

can thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content
addressable memory cells (CAMSs) each including an address portion and a pointer
portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.
The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The
bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.
Whenever there is a cache miss, the contents of cache memory pointed to by the bottom
CAM are replaced by the flow-entry from the flow-entry database 324. This now
becomes the most recently used entry, so the contents of the bottom CAM are moved to
the top CAM and all CAM contents are shifted down. Thus, the cache is an associative

cache with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the
operation of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate
that a “new” UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read
a matching bin of up to four buckets from the cache. The cache system attempts to obtain
the matching bin. If a matching bin is not in the cache, the cache 1115 makes the request

to the UMC 1119 to bring in a matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket
and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from
the cache, a time stamp in set in the flow key of the UFKB record, a protocol
identification and state determination is made using a table that was loaded by

compilation process 310 during initialization, the status for the record is set to indicate

NOAC Ex. 1017 Page 39

oo Pl Mo Mipere e e

10

15

20

25

30

» D

31
the LUE has processed the record, and an indication is made that the UFKB-entry is
ready to start state processing. The identification and state determination generates a
protocol identifier which in the preferred embodiment is a “jump vector” for the state
processor which is kept by the UFKB for this UFKB-entry and used by the state
processor to start state processing for the particular protocol. For example, the jump

vector jumps to the subroutine for processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a
previously encountered flow, then a calculator component enters one or more statistical
measures stored in the flow-entry, including the timestamp. In addition, a time difference
from the last stored timestamp may be stored, and a packet count may be updated. The
state of the flow is obtained from the flow-entry is examined by looking at the protocol
identifier stored in the flow-entry of database 324. If that value indicates that no more
classification is required, then the status for the record is set to indicate the LUE has
processed the record. In the preferred embodiment, the protocol identifier is a jump
vector for the state processor to a subroutine to state processing the protocol, and no
more classification is indicated in the preferred embodiment by the jump vector being
zero. If the protocol identifier indicates more processing, then an indication is made that
the UFKB-entry is ready to start state processing and the status for the record is set to

indicate the LUE has processed the record.

The state processor 1108 processes information in the cache system according to
a UFKB-entry after the LUE has completed. State processor 1108 includes a state
processor program counter SPPC that generates the address in the state processor
instruction database 1109 loaded by compiler process 310 during initialization. It
contains an Instruction Pointer (SPIP) which generates the SPID address. The instruction
pointer can be incremented or loaded from a Jump Vector Multiplexor which facilitates
conditional branching. The SPIP can be loaded from one of three sources: (1) A protocol
identifier from the UFKB, (2) an immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic unit (SPALU) included in the

State processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

NOAC Ex. 1017 Page 40

10

20

25

30

0 b

32

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and
String Compare functions necessary to implement the State Processor instructions. The
main blocks of the SPALU are: The A and B Registers, the Instruction Decode & State
Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference
Search Register set, and a Compare block which compares two operands by exclusive-

or-ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state
operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor 1s
entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is
new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified
flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used
to set the state processor’s instruction counter. The state processor 1108 starts the
process by using the last protocol recognized by the parser subsystem 301 as an offset
into a jump table. The jump table takes us to the instructions to use for that protocol.
Most instructions test something in the unified flow key buffer or the flow-entry if it
exists. The state processor 1108 may have to test bits, do comparisons, add or subtract to

perform the test.

The first state processor instruction is fetched in 1304 from the state processor
instruction database memory 1109. The state processor performs the one or more fetched
operations (1304). In our implementation, each single state processor instruction is very
primitive (e.g., a move, a compare, etc.), so that many such instructions need to be
performed on each unified flow key buffer entry. One aspect of the state processor is its
ability to search for one or more (up to four) reference strings in the payload part of the
UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

NOAC Ex. 1017 Page 41

vy Bovin I sl ot 30 T e TN L W)

TYFETN e ~Fs 0~

10

15

20

25

30

9)
33
In 1307, a check is made to determine if there are any more instructions to be
performed for the packet. If yes, then in 1308 the system sets the state processor
instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by

the SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This
state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet
has resulted in a final state. That is, is the analyzer is done processing not only for this
particular packet, but for the whole flow to which the packet belongs, and the flow is
fully determined. If indeed there are no more states to process for this flow, then in 1311
the processor finalizes the processing. Some final states may need to put a state in place
that tells the system to remove a flow—for example, if a connection disappears from a
lower level connection identifier. In that case, in 1311, a flow removal state is set and
saved in the flow-entry. The flow removal state may be a NOP (no-op) instruction which

means there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP
or otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in
1310 the system saves the state processor instruction pointer in the current flow-entry in
the current flow-entry. That will be the next operation that will be performed the next
time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer
1103 and the flow-entry in the cache. Once the state processor is done, a flag is set in the
UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be
inserted or deleted from the database of flows, control is then passed on to the flow
insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB-entry indicating that

NOAC Ex. 1017 Page 42

Sl Bl B Rl e

ol

CRELNEN . TR

10

15

20

25

30

J)

34

the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the
flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are
grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that
may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin
(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that
matches the hash of the UFKB, so this bin may already have been sought for the UFKB-
entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be
maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the
bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket
and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp
that is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and
bucket record flow signature to the packet to verify that all the elements are in place to
complete the record. In 1211 the system marks the record bin and bucket as “in process”
and as “new” in the cache system (and hence in the external memory). In 1212, the initial
statistical measures for the flow-record are set in the cache system. This in the preferred
embodiment clears the set of counters used to maintain statistics, and may perform other
procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow,

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next
bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,
1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid
bucket, the unified flow key buffer entry for the packet is set as “drop,” indicating that
the system cannot process the particular packet because there are no buckets left in the
system. The process exits at 1213. The FIDE 1110 indicates to the UFKB that the {low
insertion and deletion operations are completed for this UFKB-entry. This also lets the
UFKB provide the FIDE with the next UFKB record.

NOAC Ex. 1017 Page 43

10

15

20

25

30

» D

35

Once a set of operations is performed on a unified flow key buffer entry by all of
the engines required to access and manage a particular packet and its flow signature, the
unified flow key buffer entry is marked as “completed.” That element will then be used
by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and some are maintained
in the cache 1115. The cache system 1115 is intelligent enough to access the flow
database and to understand the data structures that exists on the other side of memory
interface 1123. The lookup/update engine 1107 is able to request that the cache system
pull a particular flow or “buckets” of flows from the unified memory controller 1119 into
the cache system for further processing. The state processor 1108 can operate on
information found in the cache system once it is looked up by means of the
lookup/update engine request, and the flow insertion/deletion engine 1110 can create
new entries in the cache system if required based on information in the unified flow key
buffer 1103. The cache retrieves information as required from the memory through the
memory interface 1123 and the unified memory controller 1119, and updates information

as required in the memory through the memory controller 1119.

There are several interfaces to components of the system external to the module
of FIG. 11 for the particular hardware implementation. These include host bus interface
1122,which is designed as a generic interface that can operate with any kind of external
processing system such as a microprocessor or a multiplexor (MUX) system.
Consequently, one can connect the overall traffic classification system of FIGS. 11 and
12 into some other processing system to manage the classification system and to extract

data gathered by the system.

The memory interface 1123 is designed to interface to any of a variety of memory
systems that one may want to use to store the flow-entries. One can use different types of
memory systems like regular dynamic random access memory (DRAM), synchronous
DRAM, synchronous graphic memory (SGRAM), static random access memory
(SRAM), and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012—a general interface that works in tandem with the signals of the input buffer

NOAC Ex. 1017 Page 44

.

e

ST TRV s T e 4 L om0 o

10

15

20

25

v J

36

interface control 1022. These are designed so that they can be used with any kind of
generic systems that can then feed packet information into the parser. Another generic
interface is the interface of pipes 1031 and 1033 respectively out of and into host
interface multiplexor and control registers 1005. This enables the parsing system to be
managed by an external system, for example a microprocessor or another kind of
external logic, and enables the external system to program and otherwise control the

parser.

The preferred embodiment of this aspect of the invention is described in a
hardware description language (HDL) such as VHDL or Verilog. It is designed and
created in an HDL so that it may be used as a single chip system or, for instance,
integrated into another general-purpose system that is being designed for purposes
related to creating and analyzing traffic within a network. Verilog or other HDL

implementation is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in
FIGS. 10 and 11 are implemented in a set of six field programmable logic arrays
(FPGA'’s). The boundaries of these FPGA'’s are as follows. The parsing subsystem of
FIG. 10 is implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and
1012, parts of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013,
1011 parts of 1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented
as a single FPGA. State processor 1108 and part of state processor instruction database
memory 1109 is another FPGA. Portions of the state processor instruction database
memory 1109 are maintained in external SRAM’s. The lookup/update engine 1107 and
the flow insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes
the cache system 1115, the unified memory control 1119, and the analyzer host interface

and control 1118.

Note that one can implement the system as one or more VSLI devices, rather than
as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is
anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a “core”) of a larger single chip unit.

NOAC Ex. 1017 Page 45

PN

TR TN A S LR

TRTYETT ey -

i

10

15

20

25

30

9, D

37
Opetration of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to
analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all packets passing point 121 in
either direction are supplied to monitor 300. Monitor 300 comprises the parser sub-
system 301, which determines flow signatures, and analyzer sub-system 303 that
analyzes the flow signature of each packet. A memory 324 is used to store the database
of flows that are determined and updated by monitor 300. A host computer 1504, which
might be any processor, for example, a general-purpose computer, is used to analyze the
flows in memory 324. As is conventional, host computer 1504 includes a memory, say
RAM, shown as host memory 1506. In addition, the host might contain a disk. In one
application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an optional Simple
Network Management Protocol (SNMP) implementation. Fig. 15 describes how one
would, for example, implement an RMON probe, where a network interface card is used
to send RMON information to the network. Commercial SNMP implementations also
are available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state
analysis for packet exchanges that are commonly referred to as “server announcement”
type exchanges. Server announcement is a process used to ease communications between
a server with multiple applications that can all be simultaneously accessed from multiple
clients. Many applications use a server announcement process as a means of
multiplexing a single port or socket into many applications and services. With this type
of exchange, messages are sent on the network, in either a broadcast or multicast
approach, to announce a server and application, and all stations in the network may

receive and decode these messages. The messages enable the stations to derive the

NOAC Ex. 1017 Page 46

2 D

38

appropriate connection point for communicating that particular application with the
particular server. Using the server announcement method, a particular application
communicates using a service channel, in the form of a TCP or UDP socket or port as in

the IP protocol suite, or using a SAP as in the Novell IPX protocol suite.

5 The analyzer 303 is also capable of carrying out “in-stream analysis” of packet
exchanges. The “in-stream analysis” method is used either as a primary or secondary
recognition process. As a primary process, in-stream analysis assists in extracting
detailed information which will be used to further recognize both the specific application
and application component. A good example of in-stream analysis is any Web-based

10 application. For example, the commonly used PointCast Web information application
can be recognized using this process; during the initial connection between a PointCast
server and client, specific key tokens exist in the data exchange that will result in a

signature being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server
15 announcement process. In many cases in-stream analysis will augment other recognition
processes. An example of combining in-stream analysis with server announcement can

be found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking
applications in client/server packet exchanges. The process of tracking sessions requires
20 an initial connection to a predefined socket or port number. This method of
communication is used in a variety of transport layer protocols. It is most commonly

seen in the TCP and UDP transport protocols of the IP protocol.

W e By e T

During the session tracking, a client makes a request to a server using a specific
port or socket number. This initial request will cause the server to create a TCP or UDP
% 25 port to exchange the remainder of the data between the client and the server. The server
then replies to the request of the client using this newly created port. The original port
used by the client to connect to the server will never be used again during this data

1 exchange.

One example of session tracking is TFTP (Trivial File Transfer Protocol), a
30 version of the TCP/IP FTP protocol that has no directory or password capability. During

the client/server exchange process of TFTP, a specific port (port number 69) is always

NOAC Ex. 1017 Page 47

o

WP My BB R e

e

LI T R

| et

10

15

20

25

30

D D
39

used to initiate the packet exchange. Thus, when the client begins the process of
communicating, a request is made to UDP port 69. Once the server receives this request,
a new port number is created on the server. The server then replies to the client using the
new port. In this example, it is clear that in order to recognize TFTP; network monitor
300 analyzes the initial request from the client and generates a signature for it. Monitor
300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for

monitoring the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular
connections in the network. Connection-oriented exchanges often benefit from state
tracking to correctly identify the application. An example is the common TCP transport
protocol that provides a reliable means of sending information between a client and a
server. When a data exchange is initiated, a TCP request for synchronization message is
sent. This message contains a specific sequence number that is used to track an
acknowledgement from the server. Once the server has acknowledged the
synchronization request, data may be exchanged between the client and the server. When
communication is no longer required, the client sends a finish or complete message to
the server, and the server acknowledges this finish request with a reply containing the
sequence numbers from the request. The states of such a connection-oriented exchange

relate to the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the
basic underlying process remains similar. A typical server announcement message is sent
to one or more clients in a network. This type of announcement message has specific
content, which, in another aspect of the invention, is salvaged and maintained in the
database of flow-entries in the system. Because the announcement is sent to one or more
stations, the client involved in a future packet exchange with the server will make an
assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto,

California) of the Remote Procedure Call (RPC), a programming interface that allows

NOAC Ex. 1017 Page 48

R e e v -~ o = R

10

15

20

25

® b

40

one program to use the services of another on a remote machine. A Sun-RPC example is

now used to explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must

establish a connection, for which the RPC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database
called the port Mapper. The port Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for TCP or UDP
implementations). An application or program number is a 32-bit unique identifier
assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,
www.icann.org), which manages the huge number of parameters associated with Internet
protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on
a Sun-RPC server can present the mappings between a unique program number and a
specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1)
making a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a
predefined UDP or TCP socket. Once the port Mapper process on the sun RPC server

receives the request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2
(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request
(rpcBindLookup). TCP or UDP port 111 is always assoctated Sun RPC. This
request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and
version identifier from the request. The server also uses the fact that this
packet came in using the TCP transport and that no protocol was specified,

and thus will use the TCP protocol for its reply.

NOAC Ex. 1017 Page 49

10

15

20

25

2 D

41
3. The server 110 sends a TCP packet to port number 111, with an RPC
Bind Lookup Reply. The reply contains the specific port number (e.g., port
number ‘port’) on which future transactions will be accepted for the specific

RPC program identifier (e.g., Program ‘program’) and the protocol (UDP or
TCP) for use.

It is desired that from now on every time that port number ‘port’ is used, the
packet 1s associated with the application program ‘program’ until the number ‘port’ no
longer is to be associated with the program ‘program’. Network monitor 300 by creating
a flow-entry and a signature includes a mechanism for remembering the exchange so that
future packets that use the port number ‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways
that a particular program—say ‘program’—might be associated with a particular port
number, for example number ‘port’. One is by a broadcast announcement of a particular
association between an application service and a port number, called a Sun RPC
portMapper Announcement. Another, is when some server—say the same SERVER 2—
replies to some client—say CLIENT l—requesting some portMapper assignment with a
RPC portMapper Reply. Some other client—say CLIENT 2—might inadvertently see
this request, and thus know that for this particular server, SERVER 2, port number ‘port’
is associated with the application service ‘program’. It is desirable for the network
monitor 300 to be able to associate any packets to SERVER 2 using port number ‘port’

with the application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3
for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is
communicating via its interface to the network 118 to a server 110 (e.g.,, SERVER 2 in
FIG. 1) via the server’s interface to the network [16. Further assume that Remote
Procedure Call is used to communicate with the server 110. One path in the data flow
900 starts with a step 910 that a Remote Procedure Call bind lookup request is issued by
client 106 and ends with the server state creation step 904. Such RPC bind lookup

request includes values for the ‘program,” ‘version,” and ‘protocol’ to use, e.g., TCP or

NOAC Ex. 1017 Page S0

10

15

20

25

30

2 D

42

UDP. The process for Sun RPC analysis in the network monitor 300 includes the

following aspects. :

e Process 909: Extract the ‘program,’ ‘version,” and ‘protocol’ (UDP or TCP). Extract
the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

e Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If value is
portMapper, save paired socket (i.e., dest for destination address, src for source
address). Decode ports and mapping, save ports with socket/addr key. There may be
more than one pairing per mapper packet. Form a signature (e.g., a key). A flow-

entry is created in database 324. The saving of the request is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The
packet monitor 300 will extract a signature from the packet and recognize it from the
previously stored flow. The monitor will get the protocol port number (906) and lookup
the request (905). A new signature (i.e., a key) will be created and the creation of the
server state (904) will be stored as an entry identified by the new signature in the flow-
entry database. That signature now may be used to identify packets associated with the

Server.

The server state creation step 904 can be reached not only from a Bind Lookup
Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an
RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol
can announce that it is able to provide a particular application service. Embodiments of
the present invention preferably can analyze when an exchange occurs between a client
and a server, and also can track those stations that have received the announcement of a

service in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such
causes various clients to execute a similar set of operations, for example, saving the
information obtained from the announcement. The RPC Reply portMapper step 901
could be in reply to a portMapper request, and is also broadcast. It includes all the

service parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

NOAC Ex. 1017 Page 51

TR AN NN TR B

ot

ahy P, e,
PR R

i

10

15

20

25

30

J J
43
FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature
and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun
Microsystems Remote Procedure Call protocol. A method embodiment of the present
invention might generate a pair of flow signatures, “signature-1” 210 and “signature-2"

212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206
corresponds to such a request sent from CLIENT 3 to SERVER 2. This packet contains
important information that is used in building a signature according to an aspect of the
invention. A source and destination network address occupy the first two fields of each
packet, and according to the patterns in pattern database 308, the flow signature (shown
as KEY1 230 in FIG. 2) will also contain these two fields, so the parser subsystem 301
will include these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address
identifies the client 106 (shown also as 202), the label used in the drawing is “C;”. If
such address identifies the server 110 (shown also as server 204), the label used in the

drawing is “S;”. The first two fields 214 and 215 in packet 206 are “S;” and C;” because

packet 206 is provided from the server 110 and is destined for the client 106. Suppose

for this example, “S;” is an address numerically less than address “C;”. A third field

“p!” 216 identifies the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate
port numbers that are used. The conversation direction determines where the port
number field is. The diagonal pattern in field 217 is used to identify a source-port
pattern, and the hash pattern in field 218 is used to identify the destination-port pattern.

The order indicates the client-server message direction. A sixth field denoted “i1” 219 is

IR

P

an element that is being requested by the client from the server. A seventh field denoted

“sya” 220 is the service requested by the client from server 110. The following eighth

field “QA” 221 (for question mark) indicates that the client 106 wants to know what to

use to access application “sja”. A tenth field “QP” 223 is used to indicate that the client

wants the server to indicate what protocol to use for the particular application.

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

NOAC Ex. 1017 Page 52

= R oot e N e B]

{
[

15

20

25

30

» »

44
packets, and is transmitted to the server 110 on a well-known service connection

identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the

RPC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224-233. The destination and source addresses are

carried in fields 224 and 225, e.g., indicated “C,” and “S”, respectively. Notice the

order is now reversed, since the client-server message direction is from the server 110 to
the client 106. The protocol “pl” is used as indicated in field 226. The request “i!” is in
field 229. Values have been filled in for the application port number, e.g., in field 233

and protocol ““p2” in field 233.

The flow signature and flow states built up as a result of this exchange are now
described. When the packet monitor 300 sees the request packet 206 from the client, a
first flow signature 210 is built in the parser subsystem 301 according to the pattern and
extraction operations database 308. This signature 210 includes a destination and a
source address 240 and 241. One aspect of the invention is that the flow keys are built
consistently in a particular order no matter what the direction of conversation. Several
mechanisms may be used to achieve this. In the particular embodiment, the numerically
lower address is always placed before the numerically higher address. Such least to
highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume “S,”<"“C,”, the order is address “S;”
followed by client address “C;”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p!”. The next
field used for the signature is field 243, which contains the destination source port
number shown as a crosshatched pattern from the field 218 of the packet 206. This
pattern will be recognized in the payload of packets to derive how this packet or
sequence of packets exists as a flow. In practice, these may be TCP port numbers, or a
combination of TCP port numbers. In the case of the Sun RPC example, the crosshatch

represents a set of port numbers of UDS for p! that will be used to recognize this flow

(e.g., port 111). Port 111 indicates this is Sun RPC. Some applications, such as the Sun
RPC Bind Lookups, are directly determinable (“known”) at the parser level. So in this

case, the signature KEY-1 points to a known application denoted “al”” (Sun RPC Bind

NOAC Ex. 1017 Page 53

AR Ay

T I AN Yy
H " VAL R

WoAR N

PN Oyt s s 4 3

15

20

25

‘\J S

45

Lookup), and a next-state that the state processor should proceed to for more complex

recognition jobs, denoted as state “stpy” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built
by the parser. This flow signature is identical to KEY-1. Hence, when the signature
enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow-

entry is obtained, and in this flow-entry indicates state “stpy”. The operations for state

[

stp” in the state processor instruction database 326 instructs the state processor to build
and store a new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature
built by the state processor also includes the destination and a source addresses 250 and

251, respectively, for server “S;” followed by (the numerically higher address) client
“Cy”. A protocol field 252 defines the protocol to be used, e.g., “p?” which is obtained

from the reply packet. A field 253 contains a recognition pattern also obtained from the
reply packet. In this case, the application is Sun RPC, and field 254 indicates this
application “aZ”. A next-state field 255 defines the next state that the state processor
should proceed to for more complex recognition jobs, e.g., a state “st!”. In this particular
example, this is a final state. Thus, KEY-2 may now be used to recognize packets that
are in any way associated with the application “a2”. Two such packets 208 and 209 are
shown, one in each direction. They use the particular application service requested in the
original Bind Lookup Request, and each will be recognized because the signature KEY-2

will be built in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “S;” followed by client “C;”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,
large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented
by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address S; and Cy, in a pair of fields 260 and 261. A field v

T S

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

NOAC Ex. 1017 Page 54

AR R

e

-

e AL
nonnoa gt

4

[}

10

20

25

30

J D

46
Some network-server application recognition jobs are so simple that only a single
state transition has to occur to be able to pinpoint the application that produced the
packet. Others require a sequence of state transitions to occur in order to match a known

and predefined climb from state-to-state.

Thus the flow signature for the recognition of application “a2” is automatically
set up by predefining what packet-exchange sequences occur for this example when a
relatively simple Sun Microsystems Remote Procedure Call bind lookup request
instruction executes. More complicated exchanges than this may generate more than two
flow signatures and their corresponding states. Each recognition may involve setting up a
complex state transition diagram to be traversed before a “final” resting state such as

“st;” in field 255 is reached. All these are used to build the final set of flow signatures

for recognizing a particular application in the future.

The Cache Subsystem

Referring again to FIG. 11, the cache subsystem 1115 is connected to the lookup
update engine (LUE) 1107, the state processor the state processor (SP) 1108 and the flow
insertion/deletion engine (FIDE) 1110. The cache 1115 keeps a set of flow-entries of the
flow-entry database stored in memory 1123, so is coupled to memory 1123 via the
unified memory controller 1119. According to one aspect of the invention, these entries

in the cache are those likely-to-be-accessed next.

It is desirable to maximize the hit rate in a cache system. Typical prior-art cache
systems are used to expedite memory accesses to and from microprocessor systems.
Various mechanisms are available in such prior art systems to predict the lookup such
that the hit rate can be maximized. Prior art caches, for example, can use a lookahead
mechanism to predict both instruction cache lookups and data cache lookups. Such
lookahead mechanisms are not available for the packet monitoring application of cache
subsystem 1115. When a new packet enters the monitor 300, the next cache access, for
example from the LUE 1107, may be for a totally different flow than the last cache
lookup, and there is no way ahead of time of knowing what flow the next packet will

belong to.

One aspect of the present invention is a cache system that replaces a least recently

NOAC Ex. 1017 Page 55

S

L
:
g
L
3
I
5
¢
8

B I a—

10

15

20

25

30

) D,

47

used (LRU) flow-entry when a cache replacement is needed. Replacing least recently
used flow-entries is preferred because it is likely that a packet following a recent packet
will belong to the same flow. Thus, the signature of a new packet will likely match a
recently used flow record. Conversely, it is not highly likely that a packet associated with

the least recently used flow-entry will soon arrive.

Furthermore, after one of the engines that operate on flow-entries, for example
the LUE 1107, completes an operation on a flow-entry, it is likely that the same or
another engine will soon use the same flow-entry. Thus it is desirable to make sure that

recently used entries remain in the cache.

A feature of the cache system of the present invention is that most recently used
(MRU) flow-entries are kept in cache whenever possible. Since typically packets of the
same flow arrive in bursts, and since MRU flow-entries are likely to be required by
another engine in the analysis subsystem, maximizing likelihood of MRU flow-entries
remaining in cache increases the likelihood of finding flow records in the cache, thus

increasing the cache hit rate.

Yet another aspect of the present cache invention is that it includes an associative
memory using a set of content addressable memory cells (CAMs). The CAM contains an
address that in our implementation is the hash value associated with the corresponding
flow-entry in a cache memory (e.g., a data RAM) comprising memory cells. In one
embodiment, each memory cell is a page. Each CAM also includes a pointer to a cache
memory page. Thus, the CAM contents include the address and the pointer to cache
memory. As is conventional, each CAM cell includes a matching circuit having an input.
The hash is presented to the CAM’s matching circuit input, and if the hash matches the
hash in the CAM, the a match output is asserted indicating there is a hit. The CAM
pointer points to the page number (i.e., the address) in the cache memory of the flow-

entry.

Each CAM also includes a cache address input, a cache pointer input, and a cache
contents output for inputting and outputting the address part and pointer part of the
CAM.

The particular embodiment cache memory stores flow-entries in pages of one

bucket, i.e., that can store a single flow-entry. Thus, the pointer is the page number in the

NOAC Ex. 1017 Page 56

:
:
3

2wl jl e

10

15

20

25

30

. b

48
cache memory. In one version, each hash value corresponds to a bin of N flow-entries
(e.g., 4 buckets in the preferred embodiment of this version). In another implementation,
each hash value points to a single flow record, i.e., the bin and bucket sizes correspond.

For simplicity, this second implementation is assumed when describing the cache 1115.

Furthermore, as is conventional, the match output signal is provided to a
corresponding location in the cache memory so that a read or write operation may take

place with the location in the cache memory pointed to be the CAM.

One aspect of the present invention achieves a combination of associatively and
true LRU replacement policy. For this, the CAMs of cache system 1115 are organized in
what we call a CAM stack (also CAM array) in an ordering, with a top CAM and a
bottom CAM. The address and pointer output of each CAM starting from the top CAM

is connected to the address and pointer input of the next cache up to the bottom.

In our implementation, a hash is used to address the cache. The hash is input to
the CAM array, and any CAM that has an address that matches the input hash asserts its
match output indicating a hit. When there is a cache hit, the contents of the CAM that
produced the hit (including the address and pointer to cache memory) are put in the top
CAM of the stack. The CAM contents (cache address, and cache memory pointer) of the
CAMs above the CAM that produced are shifted down to fill the gap.

If there is a miss, any new flow record is put in the cache memory element
pointed to by the bottom CAM. All CAM contents above the bottom are shifted down
one, and then the new hash value and the pointer to cache memory of the new flow-entry

are put in the top-most CAM of the CAM stack.

In this manner, the CAMSs are ordered according to recentness of use, with the
least recently used cache contents pointed to by the bottom CAM and the most recently

used cache contents pointed to by the top CAM.

Furthermore, unlike a conventional CAM-based cache, there is no fixed
relationship between the address in the CAM and what element of cache memory it
points to. CAM’s relationship to a page of cache memory changes over time. For
example, at one instant, the fifth CAM in the stack can include a pointer to one particular

page of cache memory, and some time later, that same fifth CAM can point to a different

NOAC Ex. 1017 Page 57

LA B L& A

10

49

cache memory page.

In one embodiment, the CAM array includes 32 CAMs and the cache memory
includes 32 memory cells (e.g., memory pages), one page pointed to by each CAM
contents. Suppose the CAMs are numbered CAM, CAM;, ..., CAM5, respectively,

with CAM_, the top CAM in the array and CAM5 the bottom CAM.

The CAM array is controlled by a CAM controller implemented as a state
machine, and the cache memory is controlled by a cache memory controller which also is
implemented as a state machine. The need for such controllers and how to implement
them as state machines or otherwise would be clear to one skilled in the art from this
description of operation. In order not to confuse these controllers with other controllers,
for example, with the unified memory controller, the two controllers will be called the

CAM state machine and the memory state machine, respectively.

Consider as an example, that the state of the cache is that it is full. Suppose
furthermore that the contents of the CAM stack (the address and the pointer to the cache
memory) and of the cache memory at each page number address of cache memory are as

shown in the following table.

CAM Hash Cache Point Cache Addr. | Contents
CAM, hashy pageq pageg entryg
CAM; hash, page; page; entry;
CAM, hash, page, page, entry,
CAM; hash; pages pages entrys
CAM, hashy pagey pagey entryy
CAM; hashg pages pages entrys
CAMg hashg pageg pageg entryg
CAM; hash, pagey pagey entry;
CAM;q hashyg pageyg pagesg entry,g
CAM;y hashs pagesg pagesg entrysg
CAM3, hashsy; pages; pages; entrys,

This says that CAM, contains and will match with the hash value hash,, and a lookup

with hash, will produce a match and the address page, in cache memory. Furthermore,

NOAC Ex. 1017 Page S8

TEFUOR AR AR

LA L R 4 i i

10

15

20

50
pagey in cache memory contains the flow-entry, entry,, that in this notation is the flow-
entry matching hash value hashy. This table also indicates that hashg was more recently

used than hash;, hashs more recently than hash,, and so forth, with hashs the least

recently used hash value. Suppose further that the LUE 1107 obtains an entry from
unified flow key buffer 1103 with a hash value hash;,. The LUE looks up the cache

subsystem via the CAM array. CAM3 gets a hit and returns the page number of the hit,
i.e., pages. The cache subsystem now indicates to the LUE 1007 that the supplied hash
value produced a hit and provides a pointer to pages; of the cache memory which
contains the flow-entry corresponding to hashsy, i.e., flowy;. The LUE now retrieve the
flow-entry flows from the cache memory at address pages;. In the preferred

embodiment, the lookup of the cache takes only one clock cycle.

The value hashs is the most recently used hash value. Therefore, in accordance

with an aspect of the inventive cache system, the most recently used entry is put on top
of the CAM stack. Thus hashsy; is put into CAMj, (pointing to pages ;). Furthermore,
hashs is now the LRU hash value, so is moved to CAM3 . The next least recently used
hash value, hash,q is now moved to CAM3, and so forth. Thus, all CAM contents are
shifted one down after the MSU entry is put in the top CAM. In the preferred
embodiment the shifting down on CAM entries takes one clock cycle. Thus, the lookup
and the rearranging of the CAM array to maintain the ordering according to usage
recentness. The following table shows the new contents of the CAM array and the

(unchanged) contents of the cache memory.

NOAC Ex. 1017 Page 59

PSR - ppinas < ar o tum g o o e 4 e v cr ek e v s e o
o ~1\i| AR . ' ‘ "

CeloW

R HH

D D,

51

CAM Hash Cache Point Cache Addr. | Contents

CAM, hashs; pages; pageg entryg
CAM, hash pageg page; entry;
CAM, hash; page; page, entry,
CAM; hash, page, page; entrys
CAM, hashy pages pagey entry,
CAM; hash, pagey pages entrys
CAMg hashs pages pageg entryg
CAM;, hashg pageg page; entry-
CAM,g | hashyg pagesg pPageyg entryyg
CAM3, | hashy pageng pagesg entrysg
CAM3; hashsy pagesg pages; entrys;

To continue with the example, suppose that some time later, the LUE 1007 looks
up hash value hashs. This produces a hit in CAMg pointing to pages of the cache
memory. Thus, in one clock cycle, the cache subsystem 1115 provides LUE 1007 with an
indication of a hit and the pointer to the flow-entry in the cache memory. The most
recent entry is hashs, so hashs and cache memory address pageg are entered into CAM,.
The contents of the remaining CAMs are all shifted down one up to and including the
entry that contained hashs. That is, CAM;, CAMyg, ..., CAM3; remain unchanged. The
CAM array contents and unchanged cache memory contents are now as shown in the

following table.

NOAC Ex. 1017 Page 60

ey T A

RS et B) | o N o —————
" L] (4 VrIll L] ENC ST I3

fru oW

7

w A AR B

10

15

9, D

52
CAM Hash Cache Point Cache Addr. | Contents
CAM, hashs pages page, entryg
CAM,; hashs, pages; page; entry,
CAM, hashy pageg page, entry,
CAM; hash; page,; pages entrys
CAMy hash, page, pagey entry,
CAM; hash; pages pages entrys
CAMgq hashy pagey pageg entryg
CAM;, hashg pageg pagey entry
CAMyg hashyg pageog pageng entry,g
CAM3, | hashyg pageg pagesg entrysq
CAM3; | hashyg pageso pages; entrys;

Thus in the case of cache hits, the CAM array always keeps used hash values in

the order of recentness of use, with the most recently used hash value in the top CAM.

The operation of the cache subsystem when there is a cache hit will be described
by continuing the example. Suppose there is a lookup (e.g., from LUE 1107) for hash
value hash,y. The CAM array produces a miss that causes in a lookup using the hash in
the external memory. The specific operation of our specific implementation is that the
CAM state machine sends a GET message to the memory state machine that results in a
memory lookup using the hash via the unified memory controller (UMC) 1119.
However, other means of achieving a memory lookup when there is a miss in the CAM

array would be clear to those in the art.

The lookup in the flow-entry database 324 (i.e., external memory) results in a hit
or a miss. Suppose that the database 324 of flow-entries does not have an entry matching

hash value hash,z. The memory state machine indicates the miss to the CAM state

machine which then indicates the miss to the LUE 1007. Suppose, on the other hand that

there is a flow-entry—entry,3— in database 324 matching hash value hash3. In this

case, the flow-entry is brought in to be loaded into the cache.

In accordance with another aspect of the invention, the bottom CAM entry

CAMj5, always points to the LRU address in the cache memory. Thus, implementing a

true LRU replacement policy includes flushing out the LRU cache memory entry and

NOAC Ex. 1017 Page 61

RN 74_ i o S A i 1

v D

53

inserting a new entry into that LRU cache memory location pointed to by the bottom
CAM. The CAM entry also is modified to reflect the new hash value of the entry in the

pointed to cache memory element. Thus, hash value hashys is put in CAM3; and flow-
entry entry,s is placed in the cache page pointed to by CAM 31. The CAM array and

now changed cache memory contents are now

CAM Hash Cache Point Cache Addr. | Contents
CAM, hashs pages pageg entryg
CAM,; hashs pages| page; entry
CAM, hashy, pageg page, entry,
CAM; hash, page; pages entrys
CAMy hash, page, pagey entryy
CAM; hash; pages pages entrys
CAMg¢ hashy pageq pageg entryg
CAM, hashg pageg pagey entry;
CAMpyg | hashyg pageog pagezg entryyg
CAM5, hashyg pagesg pages entryys
CAM, hashys pagesg pages; entrysq

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAM5 are now moved to CAM and the entries previously in the top 30 CAMs moved

down so that once again, the bottom CAM points to the LRU cache memory page.

NOAC Ex. 1017 Page 62

o

10

D

54
CAM Hash | Cache Point Cache Addr. | Contents
CAM, hashy3 pagesp pageg entry
CAM;, hashs pages page; entry,
CAM, hashs pages; page, entry,
CAM; hash,, pageg pages entrys
CAM, hash; page; page4 entry,
CAM; hash, page, pages entrys
CAMgq hash; pages; pageg entryg
CAM, hashy page, page; entryy
hashg pageg
CAMyg Pageng entrysg
CAM3g hash,g page,g pagesg entry,s
CAM;3, hashyg pageyg pages, entrys,

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAMj;; are now moved to CAM and the entries previously in the top 30 CAMs moved

In addition to looking up entries of database 324 via the cache subsystem 1115
for retrieval of an existing flow-entry, the LUE, SP, or FIDE engines also may update the
flow-entries via the cache. As such, there may be entries in the cache that are updated
flow-entries. Until such updated entries have been written into the flow-entry database
324 in external memory, the flow-entries are called “dirty.” As is common in cache
systems, a mechanism is provided to indicate dirty entries in the cache. A dirty entry
cannot, for example, be flushed out until the corresponding entry in the database 324 has

been updated.

Suppose in the last example, that the entry in the cache was modified by the

operation. That is, hashys is in MRU CAM,, CAM, correctly points to pagesq, but the
information in pages of the cache, entry,3, does not correspond to entry,43 in database
324. That is, the contents of cache page page;q is dirty. There is now a need to update the

database 324. This is called backing up or cleaning the dirty entry.

As is common in cache systems, there is an indication provided that a cache
memory entry is dirty using a dirty flag. In the preferred embodiment, there is a dirty flag

for each word in cache memory.

NOAC Ex. 1017 Page 63

Tk

W R hA R

Rt

15

20

25

o >

55
Another aspect of the inventive cache system is cleaning cache memory contents
according to the entry most likely to be first flushed out of the cache memory. In our
LRU cache embodiment, the cleaning of the cache memory entries proceeds in the
inverse order of recentness of use. Thus, LRU pages are cleaned first consistent with the

least likelihood that these are the entries likely to be flushed first.

In our embodiment, the memory state machine, whenever it is idle, is
programmed to scan the CAM array in reverse order of recentness, i.e., starting from the
bottom of the CAM array, and look for dirty flags. Whenever a dirty flag is found, the

cache memory contents are backed up to the database 324 in external memory.

Note that once a page of cache memory is cleaned, it is kept in the cache in case
it is still needed. The page is only flushed when more cache memory pages are needed.
The corresponding CAM also is not changed until a new cache memory page is needed.
In this way, efficient lookups of all cache memory contents, including clean entries are
still possible. Furthermore, whenever a cache memory entry is flushed, a check is first
made to ensure the entry is clean. If the entry is dirty, it is backed up prior to flushing the
entry.

The cache subsystem [115 can service two read transfers at one time. If there are

more than two read requests active at one time the Cache services them in a particular

order as follows:

(1) LRU dirty write back. The cache writes back the least recently used cache
memory entry if it is dirty so that there will always be a space for the fetching

of cache misses.
(2) Lookup and update engine 1107.
(3) State processor 1108.
(4) Flow insertion and deletion engine 1110.
(5) Analyzer host interface and control 1118.

(6) Dirty write back from LRU ~1 to MRU; when there is nothing else pending,

the cache engine writes dirty entries back to external memory.

FIG. 19 shows the cache memory component 1900 of the cache subsystem 1115.

NOAC Ex. 1017 Page 64

[—

Rl Ra¥ad

&

M

IV Y IV BV

10

15

20

25

J D

56
Cache memory subsystem 1900 includes a bank 1903 of dual ported memories for the
pages of cache memory. In our preferred embodiment there are 32 pages. Each page of
memory is dual ported. That is, it includes two sets of input ports each having address
and data inputs, and two sets of output ports, one set of input and output ports are
coupled to the unified memory controller (UMC) 1119 for writing to and reading from
the cache memory from and into the external memory used for the flow-entry database
324. Which of the output lines 1909 is coupled to UMC 1119 is selected by a
multiplexor 1911 using a cache page select signal 1913 from CAM memory subsystem
part of cache system1115. Updating cache memory from the database 324 uses a cache

data signal 1917 from the UMC and a cache address signal 1915.

Looking up and updating data from and to the cache memory from the
lookup/update engine (LUE) 1107, state processor (SP) 1108 or flow insertion/deletion
engine (FIDE) 1110 uses the other input and output ports of the cache memory pages
1903. A bank of input selection multiplexors 1905 and a set of output selector
multiplexors 1907 respectively select the input and output engine using a set of selection

signals 1919.

FIG. 20 shows the cache CAM state machine 2001 coupled to the CAM array
2005 and to the memory state machine 2003, together with some of the signals that pass
between these elements. The signal names are self-explanatory, and how to implement
these controllers as state machines or otherwise would be clear from the description

herein above.

While the above description of operation of the CAM array is sufficient for one
skilled in the art to design such a CAM array, and many such designs are possible, FIG.
21 shows one such design. Referring to that figure, the CAM array 2005 comprises one
CAM, e.g., CAM[7] (2107), per page of CAM memory. The lookup port or update port
depend which of the LUE, SP or FIDE are accessing the cache subsystem. The input data
for a lookup is typically the hash, and shown as REF-DATA 2103. Loading, updating or
evicting the cache is achieved using the signal 2105 that both selects the CAM input data
using a select multiplexor 2109, such data being the hit page or the LRU page (the
bottom CAM in according to an aspect of the invention). Any loading is done via a 5 to

32 decoder 2111. The results of the CAM lookup for all the CAMs in the array is

NOAC Ex. 1017 Page 65

U W

n By R L

10

) D

57
provided to a 32-5 low to high 32 to 5 encoder 2113 that outputs the hit 2115, and which
CAM number 2117 produced the hit. The CAM hit page 2119 is an output of a MUX
2121 that has the CAM data of each CAM as input and an output selected by the signal
2117 of the CAM that produced the hit. Maintenance of dirty entries is carried out
similarly from the update port that coupled to the CAM state machine 2001. A MUX
2123 has all CAMs’ data input and a scan input 2127. The MUX 2123 produces the dirty
data 2125.

Although the present invention has been described in terms of the presently
preferred embodiments, it is to be understood that the disclosure is not to be interpreted
as limiting. Various alterations and modifications will no doubt become apparent to
those of ordinary skill in the art after having read the above disclosure. Accordingly, it is
intended that the claims be interpreted as covering all alterations and modifications as

fall within the true spirit and scope of the present invention.

NOAC Ex. 1017 Page 66

58

CLAIMS

What is claimed is:

’ ,"/ . .
,,y% % [1. A packet monitor for examining packets passing through a connection point on a
i .

computer network, each packets conforming to one or m(/;(re protocols, the monitor
5

comprising: /
/

(a) a packet acquisition device coupled to the cqnnection point and

configured to receive packets passing throughfthe connection point;

(b) a memory for storing a database comprising none or more flow-entries for

previously encountered conversational flows to which a received packet may

nnownu

10 belong;

(©) a cache subsystem coupled to the flowfentry database memory providing

o 4R

N

. for fast access of flow-entries from the flow-entry database; and

(d) a lookup engine coupled to the pacltet acquisition device and to the cache

bk T

subsystem and configured to lookup whether a received packet belongs to a

15 flow-entry in the flow-entry databasg, the looking up being in the cache

w VK BH B4

subsystem.
2. A packet monitor according to claim /1, further comprising:

a parser subsystem coupled fo the packet acquisition device and to the
lookup engine such that the agquisition device is coupled to the lookup
20 engine via the parser subsysfem, the parser subsystem configured to extract

identifying information frgm a received packet,

wherein each flow-entry is idengified by identifying information stored in the flow-
entry, and wherein the cache lpokup uses a function of the extracted identifying

information.

25 3. A packet monitor according to claim 2, wherein the cache subsystem is an
associative cache subsyste,

cells (CAMs).

including one or more content addressable memory

4. A packet monitor acA\ording to claim 2, wherein the cache subsystem includes:

NOAC Ex. 1017 Page 67

R R R TN S TRt

PRI NN

Y

R

wo ol W

10

15

20

9)

e

59

@) a set of cache memory elements coupled/to the flow-entry database
memory, each cache memory element inclpding an input port to input an

flow-entry and configured to store a ﬂow/-entry of the flow-entry database;

(i1) a set of content addressable memoZ{/c‘ells (CAMs) connected according to

an order of connections from a top C to a bottom CAM, each CAM

containing an address and a pointer tof one of the cache memory elements,

and including:

a matching circuit having an input such that the CAM asserts a
match output when the inplit is the same as the address in the CAM

cell, an asserted match output indicating a hit,
a CAM input configyred to accept an address and a pointer, and
a CAM address output and a CAM pointer output;
(iii) a CAM controller coupled to the CAM set; and

(iv) amemory controller coupled to the CAM controller, to the cache memory

set, and to the flow-entry

wherein the matching circuit inppits of the CAM cells are coupled to the lookup
engine such that that an input tof the matching circuit inputs produces a match output

in any CAM cell that contains an address equal to the input, and

wherein the CAM controller js configured such that which cache memory element a

particular CAM points to changes over time.

A packet monitor accorgling to claim 4, wherein the CAM controller is
configured such that the Yottom CAM points to the least recently used cache

memory element.

NOAC Ex. 1017 Page 68

10

15

20

25

6.

3)

60

2
A packet monitor according to claim 5, wherein the address and pointer output of

each CAM starting from the top CAM is coupled to the address and pointer input of

the next CAM, the final next CAM being the bottom CAM, and wherein the CAM
controller is configured such than whefi there is a cache hit, the address and pointer
contents of the CAM that produced the hit are put in the top CAM of the stack, the
address and pointer contents of the CAMs above the CAM that produced the

asserted match output age/ shifted down, such that the CAMs are ordered according
to recentness of use/with the least recently used cache memory element pointed to

by the bottom (}A(M and the most recently used cache memory element pointed to
by the top Cf).M.

A cache system for looking up one or more elements of #n external memory,

comprising:

(a) a set of cache memory elements coupled to the external memory, each
cache memory element including an input porf to input an element of the

external memory and configured to store the/input external memory element;

(b) a set of content addressable memory c¢lls (CAMs) connected according to
an order of connections from a top C to a bottom CAM, each CAM
containing an address and a pointer tefone of the cache memory elements,

and including

. . //
(1) amatching circuit having ut-such that the CAM asserts a match

output when the input is the/same as the address in the CAM cell, an

asserted match output indicating a hit,
(i1) a CAM input confjgured to accept an address and a pointer, and
(1i1) a CAM address putput and a CAM pointer output, and
(©) a CAM controller coypled to the CAM set;

(d) a memory controllef coupled to the CAM controller, to the cache memory

set, and to the external memory,

NOAC Ex. 1017 Page 69

10

15

20

25

10.

I1.

12.

J D

61

wherein the matching circuit inputs of the CAM cells/are coupled such that that an

input to the matching circuit inputs produces a matcH output in any CAM cell that

contains an address equal to the input, and

wherein the CAM controller is configured such that which cache memory element a

particular CAM points to changes over time.

A cache system according to claim 7, whereinf the CAM controller is configured
such that the bottom CAM points to the least re¢ently used cache memory element,
and wherein the CAM controller is configured fo implement a least recently used
replacement policy such that least recently usefl cache memory element is the first

memory element flushed.

A cache system according to claim 8, whefein the address and pointer output of
each CAM starting from the top CAM is coyipled to the address and pointer input of
the next CAM, the final next CAM being the bottom CAM, and wherein the CAM
controller is configured such than when thefte is a cache hit, the address and pointer
contents of the CAM that produced the Aif are puf in the top CAM of the stack, the
address and pointer contents of the CAMSs\above the CAM that produced the
asserted match output are shifted down/such that the CAMs are ordered according
to recentness of use, with the least recgntly used cache memory element pointed to
by the bottom CAM and the most recgntly used cache memory element pointed to

by the top CAM.

A cache system according to clatm 9, wherein the CAM controller is configured
such that replacing any cache merfory elements occurs according to the inverse
order of recentness of use, with the least recently used entry being the first flushed

cache memory entry.

A cache system according to claim 7, wherein each memory element is a page of

memory.

A cache system according to claim 7, wherein each cache memory element is
provided with an indication of whether or not it is dirty, and wherein the CAM
controller is configured t¢ clean any dirty cache memory elements by backing up the

dirty contents into the external memory.

NOAC Ex. 1017 Page 70

13.
14.

| 5
15.

: 10
B 16.
. 17.

) 15
18.

%

20 19,

25

62

A cache system according to claim 12, wherein the contents of any cache
memory element are maintained after cleaning unti} such cache contents need to be

replaced according to the LRU replacement policy.

A cache system according to claim 8, whereiny each cache memory element is
provided with an indication of whether or not it/is dirty, and wherein the CAM
controller is configured to clean any dirty cachg memory elements by backing up the

dirty contents into the external memory.

A cache system according to claim 14, wherein the CAM controller is further
configured to clean any dirty cache memory glements prior to replacing the cache

memory element contents.

A cache system according to claim 15, wherein the CAM controller is further
configured to clean any dirty cache memogy elements prior to replacing the cache

memory element contents.

A cache system according to claim 9/ wherein each cache memory element is

provided with an indication of whet not/i{/is dirty, and wherein the CAM
controller is configured to clean dirty ¢ache memory elements by backing up the

dirty contents into the external memoty in reverse order of recentness of use.

A cache system according to claimi 17, wherein said cleaning in reverse order of

recentness of use automatically progeeds whenever the cache controller is idle.

A cache system for looking up gne or more elements of an external memory,

comprising:

(a) a set of cache memory/elements coupled to the external memory, each
cache memory element including an input port to input an element of the
external memory and cgnfigured to store the input external memory element;

and

)} a set of content addressable memory cells (CAMs) containing an address

and a pointer to one of the cache memory elements, and including a
matching circuit having an input such that the CAM asserts a match output

when the input is the same as the address in the CAM cell,

NOAC Ex. 1017 Page 71

n o

PR

R T

T 08 T

ORI IR

J D

63

wherein which cache memory element a particular CAM points to changes over

time.

20. A cache system according fgtclaim 19, wherein the CAMs are connected in an
order from top to bottom, 9.n/d wherein the bottom CAM points to the least recently

used cache memory elendent.

il #
/

/

NOAC Ex. 1017 Page 72

R TR B0 A LI O IR T

RO LRI TN

i

IR COTI (

10

64

ABSTRACT

ncludes
A cache system for looking up one or more elements of an external MEMOry,SOMPHSHAE

a set of cache memory elements coupled to the external memory, a set of content
addressable memory cells (CAMs) containing an address and a pointer to one of the
cache memory elements, and»i%elﬁéi-ng a matching circuit having an input such that the
CAM asserts a match output Whep the input is the same as the address in the CAM cell.
W’Q'g%\cache memory elemen\tia ‘;articular CAM points to changes over time. In the

preferred implementation, the CAMs are connected in an order from top to bottom, and

the bottom CAM points to the least recently used cache memory element.

A\ NOAC Ex. 1017 Page 73

T ST PRINT OF DRAWINGS
! ASORIGINALLY
' s 4
340\399
\U‘})
e 1/21
| 100

CLIENT 4

ol
9

ANALYZER

SERVER 2
Mo

121

4

CLIENT 3

DATA COMMUNICATIONS
NETWORK

R)

I TR T I

- 102
b 125
118
SERVER 2 105 e
™ CLIENT 2 |/ CLIENT 1~
112 104

FIG. 1

@ NOAC Ex. 1017 Page 74

|
| H3ZAIWNY |
| NOILYEIdO |
ONSS3I00Hd
| 31vLS I HIAVT olLdIns3a
I _ WYHOYLYQ 1020104d
A
|) |
| ON 8zt |
| g92¢ | ‘ gee
| I HAZIWILLO
I 3svaviva ! — UnNv
) ve WOZ NOILDNHLSNI | H311dINOO
| HOSS300Hd I
31VLS — oig
I | NOwvZITYNId eee * [7
1 [T NLvoIdIssY 1D _
_ re
— _ e e o o] - — - — — — _
(4] | S3A
=~ |
™, ocoMmm | _ 3svavlva [
NOILYDIJiLNIQl | NOILOVH X3 80¢
| NMONY g J1VLS ¥ | | any NS Eh
| MO, 10001044 | PSHVd ‘NH3Llvd _
| 31vadn | |
gee gre—~~" [_ |
L F———— | |
|11||“ _ | _
n m. Y e e e _ 4 l
M A | e R T r zie !
x> _ yeeaa) | | ! /[_ |
3 m SMOT4 40 ! Squoosd| 1 | A3 MO (13) zo_F«ﬂ\mMEz* _
; N NM M "
a m‘ 3svawiva | | 1 3RO noua feHidivstannoot] e e NE3 L 1vd E
°2 _ dnoo1 | | H[3noinnatina 3ZIND0D3Y | |
= [[10vH1X3 aNV FZATYNY
35 ¢ g | [—g08 - _
&3 v2g e e e 3l vog

! F IR TN I S U I T I [

NOAC Ex. 1017 Page 75

AT TRV .

|
| €0¢ y |
| HIZAIWNY I
_ ENOILYHILO |
HNSSIO0HJ
_ ETRAES I HIAV] OlLdiOs3a
I I WVYHOVYLYA 700010Hd
A
! mNWU !
| ON I
I 9ze I
| | H3ZIWILHO
< aNv
| 3svaviva !
| V€ §—oN NOILONHLSNI _ H31IdNOO
| HOSS3I0O0Hd I
31VLS ole
I NOILYZITYNI [42> 4 I Y
i [| NLvoidissvio I
— | r S [
& v ! ! _
™ ! | 3svaviva _
ayoo3y NOILYDI4ILNIal | NOILOVH1X3 80g|
I NMONM JIVIS 3 | ! anv ~J
I m%mo,_%m 1000104d | | BSHVd ‘NHILlvd |
I 22 glLe—" 4 | | |
L — L _ r—_—-—-——- | |
_ | _
n m. - - J |
Q | r~ |
4 Y JHOVO VIA I FAR
z > vee ga) I \; . I
SAHOo3y I _ (Hvd)
3 [113) [
g 5l SMOTI4 0 NMONM | 4 | ABEMOTEL | [ool] INOLLYWHOSNI
= 8 3SVavLYQ WO [« NOLLYSHIANOOH—| WOV IO L ¥ 3 g
° m_ danxood | ! VanoiNn ating OvHLX3 3ZINDOO3H |
) \ e | | oo aNv 3ZATYNY] | 20€
m) vee e - - L o J 1 C— voe

\ R TN TR nUE i

NOAC Ex. 1017 Page 76

[T

foby

(R

U S)

PRINT OF DRAWINGS
AS QRIGINALLY D
e — T T rr— bt

3404

GENERATE
PACKET
PARSE AND
EXTRACT
OPERATIONS

4/21

401

402
HIGH LEVEL
PACKET
DECODING
ESCRIPTION

COMPILE

AND
EXTRACTION

C o

ESCRIPTIONS > INSTRUCTIONS

405

GENERATE
PACKET
STATE

AND
OPERATIONS

407

STATE
PROCESSOR
INSTRUCTION

DATABASE C 408 409) DATABASE
LOAD LOAD STATE
,| PARSING NSTRUCTION
»1SUBSYSTEM DATABASE
MEMORY MEMORY

400

:410

FIG. 4

NOAC Ex. 1017 Page 77
——————EEEEEEEEEEE

YRR

I

1l

Wl

L A A

Qarki

PRINT OF DRAWINGS
AS ORIGINALLY D

5/21

INPUT PACK%

503 LOAD PACK
% COMPONEN:\“"’T

3

FETCH NODE A
PROCESS FROM
|__PATTERNS

506

PROCESS TO
COMPONENT

510 509

‘ \¥
PATTERN
NODE

NOAC Ex. 1017 Page 78

[T

i

KR

Lor

PRINT OF DRAWINGS
ASORIGINALLY tp

6/21

601

PACKET 602
COMPONENT AND
E

PATTERN NOD

603 i

LOAD PACKET

COMPONENT - —I

LOAD KEY
BUFFER

PATTERNS

FETCH EXTRACTION
AND PROCESS FROM 605

NO
606
ELEMENTS?

611

NEXT
N PACKET 609
COMPONEN

4

607 2’ APPLY EXTRAC

COMPONEN

MORE TO

TION
PROCESS TO
T \

EXTRACT?

600
608

FIG. 6

YES—

NOAC Ex. 1017 Page 79

» Canti.
' : PRLNT OF DRAWING
ASORIGINALLY £p

R

i

I

ol

b g

703

704

LOAD PATTERN
NODE ELEMENT

708

OUTPUT TO,
ANALYZER

MORE PATTERN
NODES?

YES

Y
HASH KEY BUFFER
ELEMENT FROM N 705

PATTERN NODE

709

4

J’\{PACK KEY & HAﬂ
706 \

v

NEXT PACKET
COMPONENT
707

FIG. 7

700

NOAC Ex. 1017 Page 80

HE T RO AR R TR

il

i1}

|

LR |

Qaelsi-

PRINT OF DRAWINGS
AS ORIGINALLY <p

8/21
801

UFKB ENTRY FOR 802
PACKET

4

COMPUTE CONVERSATION

RECORD BIN FROM HASH |/ 803

4

Q 809

REQUEST RECORD BIN/
BUCKET FROM CACHE

ORE BUCKET.
IN THE BIN?

COMPARE CURRENT BIN = 807
AND BUCKET RECORD KEY
TO PACKET

NEXT BUCKET [«-NO @ 808

YES

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

4

SET UFKB FOR PACKET
AS ‘FOUND'

\ 4

UPDATE STATISTICS FOR

f‘810

e 804

5 806

SET UFKB FOR
PACKET AS 'NEW!

RECORD IN CACHE

8‘3x(l) FIG. 8

NOAC Ex. 1017 Page 81

e

IR

i

BN

NN

I

Qarlr

PRINT OF DRAW |
AS ORIGIVALLY F_:p

901

PORTMAPPER

903 ‘\

EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION!, PORT* AND
'PROTOCOL (TCP OR
UDP)

904 \

]

CREATE SERVER STATE

SAVE 'PROGRAM!,
"VERSION', ‘PORT' AND
'PROTOCOL (TCP OR
UDP)' WITH NETWORK
ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

LOOKUP REQUEST EXTRACT
PROGRAM
/ FIND ‘PROGRAM'
900 AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF '‘PROTOCOL (TCP
SOURCE NETWORK OR UDPY'.
ADDRESS.

9/21

RPC

REQUEST

i 909

EXTRACT PORT

GET 'PROGRAM',
'VERSION' AND
‘PROTOCOL (TCP OR
UDP)

908
: SAVE REQUEST

SAVE 'PROGRAM:,
'VERSION' AND
'PROTOCOL (TCP OR
UDP) WITH
DESTINATION
NETWORK ADDRESS.
BOTH MAKE A KEY.

907

/" 905 906 W

S

FIG. 9

NOAC Ex. 1017 Page 82

Carliaat

A e

il

H

IR

N

1021:]
PACKET

START /| INPUT BUFFER
INTERFACE

PRINT OF DRAWINGS
ASORIGINALLY gp

1000 —y 10/21

100

PATTERN
RECOGNITION
DATABASE

EXTRACTION
OPERATIONS
DATABASE

MEMORY
100 1031
Er\ 1004
INFOIOUT,
HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRLIN
. 1031
1006 PATTERN 1007
RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)
(PRE)
1008 1013
. PARSER
PACKET PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAD
MEMORY
1012

1010

1011 ANALYZER DATA READ

INTERFACE
CONTROL

CONTROL

ANALYZER
READY

1023 FIG 10 1027

NOAC Ex. 1017 Page 83

g

[

iy

W

Qavliar
PRINT OF DRAWINGS
ASORIGINALLY' “p

S11O1 1103

PARSER 1\

INTER-
FACE

LOOKUP/
UPDATE
ENGINE

DATABASE

PROCESSR

DELETION
ENGINE
(FIDE)

UNIFIED
MEMORY
CONTROL
(UMC)

1119 112j‘Z

MEMORY
INTER-
FACE

NOAC Ex. 1017 Page 84

hoali.

I R

vy

P

o

PRINT OF DRAWINGS
AS ORIGINALLY "D

N

1200 —y

12/21

1201

1206-f

REQUEST NEXT
BUCKET FROM
CACHE

1208

SET UFKB FOR
PACKET AS
‘DROP'

1212 ['SET INITIAL STATISTICS

A
ACCESS

RECORD BIN

'

REQUEST RECORD BIN/

<BIN/BUCKET EMPTY

IN BUCKET, MARK 'USED
WITH TIMESTAMP

v

AND BUCKET RECORD
KEY TO PACKET

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

h 4

FOR RECORD IN CACHE

6/1213

FIG. 12

NOAC EX 1017 DaCC 8 ey

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW!'

CONVERSATION f1 203

.
BUCKET FROM CACHE |/~ 124

INSERT KEY AND HASH | /~ 1207

OMPARE CURRENT BIN—1209

L/—1211

[

Gdhwe v

' ‘J‘\ ' l‘ [N

il

[

Yo

Chevlsi

PRINT OF DRAWINGS

S ORGRALLY "

13/21

@\/1301

1309

1300 —y UFKB ENTRY FOR
PACKET WITH STATUS
'NEW' OR 'FOUND' 1302
v
SET STATE PROCESSOR
INSTRUCTION POINTER TO
VALUE FOUND IN UFKB ENTRY
FETCH INSTRUCTION FROM
> STATE PROCESSOR
INSTRUCTION MEMORY
A4
PERFORM OPERATION BASED
ON THE STATE INSTRUCTION
SET STATE
PROCESSOR
INSTRUCTION DONE PROCESSING
POINTER TO STATES FOR THIS
VALUE FOUND IN PACKET?
CURRENT STATE
1308
1310
SAVE STATE
PROCESSOR
INSTRUCTION | _NO DONE PROCESSING
POINTERIN | TATES FOR THIS FLOW?2
CURRENT FLOW
RECORD

v
SET AND SAVE FLOW REMOVAL]
STATE PROCESSOR
INSTRUCTION iN CURRENT

FLOW RECORD

> 1313

FIG. 13

NOAC Ex. 1017 Page 86

140

Bl e

R R BT

R

DATABASE
OF FLOWS

4

UPDATE
"FLOW"
KNOWN

RECORD

3

1404 —> 1406 — 14127 Lro1a14—_ 1418
ANALYZE AND EXTRACT i1 | LOOKUP
RECOGNIZE | | IDENTIFYING ||, BULD_ 1, | KNOWN
PATTERN INFO & PROCL FLOW" KEY[™™ RECORDS
INFORMATION ISTATE Il [(DB 1424)
1
nEEEE J
l |
| |
| |
PATTERN o
STRX%URES o CLASSIFICATION
EXTRACTION []
OPERATIONS o
|
(o 1!
PARSER 1408 b)
SUBSYSEM _ _ _ _ _ _ _ b STATE
| MACHINE
| SELECTOR
1400 : 1426J
: YES
FIG. 14 el
=
| STATE
| ANALYSIS | | T
| DPERATIONS (=
|

v

CLASSIFICATN
FINALIZATION

4

NO—

Ci434

ANALYZER
SUBSYSTEM

1422

- .- - -—-=--- - - - - - =-=- -7 1

|
!
|
I
|
|
|
|
|
I
I
|
I
!
|
!
|
I
I
[
|
I
I
I
I
!
|
]
|
|

NOAC Ex. 1017 Page 87

LS/l

_JATIVNIOTHO §v
SONTMVHQ 30 INTHd .

al

Sl Ol

v

15/21

5 ORIGINALLY 7~ 5p

AS ORIGIN

* PRINT OF DRAWINGS

h S13M0vd
aa
9 QHvO 1
Nalle IDV4HILNI 01
MHOMLIN
A
8051 OBFM
| o 1ZL
HOLINOW
AHOWIN LHOSS3IO0Hd
1SoH [T 1SOH
J p 30IA3Q
9061 pOS1L < NOILISINDO Y«
TAHOWIN) 13M0vd
SMOT4
mm,mwzo " e 10€ c0s} J
HIZATYNY H3SHvd
vmmp

LU L P O T A I yopk, T T

NOAC Ex. 1017 Page 88

[N

ko

R T

PRINT OF DRAW N

AS ORIGINALLY\ 2D Ny
16/21
1602 0 - 3Bytes
A&— 1600
i Dst MAC
offset 0 - 11 |- Dst MAC | Src MAC _//1604
Src MAC N

/_,_,_> e 1606
1608 j/
Dst MAC (6)

[Dst Hash (2] 1610

1612 Src MAC (8)

\ Src Hash (2

1614

et=12
FIG. 16

NOAC Ex 1017 Page 29

" Carkic

PRINT OF DRAWINGS
As_wcﬂ!;ug{iv

17/21
1702
1704

\
ST e TR

-
X 1706

1708\ Type (2)
Hash (1
1710 ash {1) ¥— 1700

\[L3 Offpet = 14

FIG.17A

-
1712

=
iDP = 0x080G*
iP = 0x0800™
CHAOSNET = 0x0804
ARP = 0x0806
VIP = 0x0OBAD*

VLOOP = Ox0BAE
VECHO = OxOBAF
NETBIOS-3COM = 0x3C00 -
0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5*
ATALKARP = 0x80F3
IPX = 0x8137*
SNMP = 0x814C#
IPv6 = 0x86DD*
LOOPBACK = 0x9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

i TR 8 e]
L3to | {////emier//// a4V [FrAd Offs6Y ICMP = 1
(5o [T Potocol e
1] Src Address TCP f 6*
D.stAddress ' 1532 ;S
/1] [D0tiots B Fraddind////]///]]] fUR =12
XY uoe 37
¥— 1750 ISO-TP4 = 29#
Dst Address] lSl())[-)lg ;%
Dst Hash (2)r VIP =83#
Src Address E(l)%};;}: ;gg

Src Hash (2)[

L3 Re-Decoding

[Protodol (1) FIG. 17B 413 R Draos

et = L3 + (IHL/4)

NOAC Ex. 1017 Page 90

[a e

D

PRINT OF DRAWINGS
AS QRIGINALLY
e T I T wrne—

18/21

PROTOCOL

/Mﬁ\\\\\\\\\

1870
NOAC Ex. 1017 Page 91

2| [TITTITT1
S\ L

ai3id 40

3d0D 31A8

FIG. 18A
FIG. 18B

A—1850

J_OOO._.Om.n_

HLON37 1314

19/21

D

ALLY

T r—

PRINT OF DRAWINGS
AS ORIGIN

6161
// H
Vlva>2
—I13S3a13™] "
—735dS > SaXNW 10373 LNd1NO Vivarg
=6l —1383N1> <F<ov~«4m
m
13S39vdvD
L‘ SQK
<
< C .
VIVa-OWN-vO| X[© BN
o . , 6061
\\ 91nho vINO . e . g1ho v N0 g1mo v 1Lho
:mT\ 6061 viya viya viba Viva VNG Vira
> LNO-te-39vd 1N0-0-39vd
S3HOULS 3L1dMm mzoﬂw (2€) S39Vd Wvd 1HOd TvNd
—> NI-1E-3Ovd NI-0-39Vd
Gl6l €061 423 IS . . . X 3 X 4 ' S I W
U[mwmmoo<-<o > vivd jHaav
— VAVA-Y2-0-DNN—> o
tmﬁ\ vlva Haav Ammw o
—73S3d14™
—13SdS >) SAXNI LD3713S LNdNI m&mmﬁ
—13S3n7+ Haay n
Viva—

006} \
6161
5061

L BUE g

NOAC Ex. 1017 Page 92

R A

N

PRINT OF DRAWINGS
AS ORIGINALLY -p
T e,

20/21

/ 2001 2005

L——LUEMEMREO—»
~—SETLUEREADY —
——SETLUESEL—]

| | LUE PORT

- FIDEMEMREQ-»]
<~ SETFIDEREADY —
| «— SETFIDESEL—

[N

CACHE_CAM_SM

FSEL_LUE_FIDE-»
e——CAM_HIT—-

|«—CAM_HITPAGE —-

<CAM_LRUPAGE —

CAM_ARRAY

——LOAD_CAM—»

—REFRESH_CAM-—p|

[FIDE PORT

GET BACKUP GOT

|1

|

l L/ 2003

CACHE MEM

3 SIGNALS

CACHE PORT

|

CACHE_MEM_SM

——SEL_CACHE —»

———~CA-MEM-REQ—J
——CA-MEM-WRITE—»|

UumcC

-UMC-O-CA-NEXTADBH

+——UMC-O-CA-READY—

FIG. 20

NOAC Ex. 1017 Page 93

b

[l AH

PRINT OF DRAWI
AS ORIGINALLY, :p
- — N ————

21/21
| CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA —
- K v, —2109
LOAD, REFRESH, EVICT _ "7 _REF-DATA
\2105 v 2111 | 2103
CAM_INPUTDATA 2113
Y Y
—LOADO->{ CAM[0] FMATGHO + /
pATAd L
—LOAD1-»| CAM[1] FMATCH1 »
DATAZ] L
—LOAD2-{ CAM[2] F-MATCH2 »
—LOAD3-»| CAM[3] FMATCH3 »
ig —LOAD4-»{ CAM4] [FMATCHA > - o o115
o : . T
w 570 32 {—LOAD5»{ | CAM[5] FMATCH5 » | ow O
*_
o - 10 lcam | &
o DECOD {—LOAD6-»| CAM[6] FMATCHB »| HIGH T 2
I 0
ENCOD C
—LOAD7-»| CAM[7] FMATCH7 »
. 2107
—LOAD30%| CAM[30] FMATCH30
—LOAD31»] CAM[31] FMATCH31»
. DATA3
CAM_LRUPAGE
CAM—NIUMBER - CAM| NUMBER
[[| |
2127 DATAO| | « « « DATA31 DATAQ| | * + « DATA31
v v Y Y
> NMuxs2 2123 F NMUX32 &
{} 2121 &
[DIRTYENTRY | |[CURRENT ENTRY| o117
| 1 —
DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET = CAM_HITPAGE
\ \J
FIG. 21

NOAC Ex. 1017 Page 94

AN Y

PRINT OF DRAWINGS

AS OFLGINALLY/” |p T
~(_ W,
1/21
100 A 108
CLIENT 4 |
S ANALYZER
107
116
_/
CLIENT 3 SERVER 2
] \1 10
106 121
DATA COMMUNICATIONS
NETWORK
102
125
118
SERVER 105 —
™ CLIENT 2 CLIENT 1
12 ﬁ104

FIG. 1

NOAC Ex. 1017 Page 95

LT N (O

nhn [N T

e h

(214 (215 216 217,218 219 200,221,222 223 -
1 S11 Cq p! i |sa] galsh| QP o——— %
......... (206 (224 (225 226 227228,229 230231232 233 ?‘
e d Ci1 1 S p1 il |sh H s1p p2 2
219\ 2402%41 242 243 244 245
- T X ;
KEY-1Y S | C 1 b ~» a t Y
202 (106 L B @ D 20 —
21 \S)
(=] ‘S
(250 (251 (252 Q2\53 @54 (255 =5 N
KEY-2) Sq | Cy | p2 ||| 4=~ - a2 stq S T
L "2_jn00ooug}_
A
! CLIENT 3 SERV
: (260 (261 262 263 264 (265 APPLICATION $ERVER 2
s 7 ‘
N1} 841 Gy | p? l t datum request o————iﬁ
S TJ Czoe (270 271 272 273 274 275 }r
‘ ——— Ci 1 G4 p2 ’ datum reply No ' FlG 2
j N C L/ L '
209
NOAC Ex. 1017 Page 96

JATIVRIZTAO §v
SONIMVAG 30 1NTHd

—

al

30¢€
HIZATYNY

A

SNOILYH3dO
HNSS3IO0Hd
J1IViS

4

)

NOAC Ex. 1017 Page 97

|
|
|
|
l
|
_ 82t
] ON
| 9ze
I HIZINILJO
« v
| 3SVY8vIva anN
C | gmN —ON NOILONYLSNI HITINOD
P | HOSS3I00Yd
31VLS
I | NoivzIvNI- cee * ‘
i [NLvoIdissY 10
P—-—
- | B
Ql S3A I
Ny ¥ !
Sl | | 3svaviva
a"ooay NOILYDILILNIal | NOILOVHLX3 808
I NMONM <-on A1VLS ¥ | _ anvy ~JS
| MO, 1000104d | 3SHYd ‘NY3LLlvd
31vadn !
I 2ge gle—" b | |
. ———
L . _]
]
q | S)
Mt\, r “ 3HOVD VIA _ _7 zie
3> | veeaa) | [!
! sadoo3y| | | . (Hvd)
b SMOT4 40 (113)
2 _ 0 | £ AHODIY NMONM | | || A3X.MOTd, NOLLYWHO4NI | |NOLLYWHOAN!
o 3svaviva MOT4. MAN WOHA [+ NOLLYSHIANOOR—' 2 IR NY3LLvd
oL ! dmoot | 1 Y 1EnoiNn aling 3ZINDOO3Y
=~ m_ —91€ 10vd1Xx3
7 G N I e | | T ANV IZATYNY
i | T 308 — voe
a vee -lllllllll.«fll\v_smmmmmé
oce T - - - T T T T T T oo o= -

H

LI L S T S N T

Coatiion:

S uy b g

fi

PRINT OF DRAWINGS

AS ORIG M{jm

g 404

GENERATE
PACKET
PARSE AND

4/21

401

402
HIGH LEVEL
PACKET
DECODING
DESCRIPTION

405

"GENERATE
PACKET
COMPILE STATE

EXTRACT
OPERATIONS

DESCRIPTIONS > INSTRUCTIONS

AND
o

OPERATIONS

407

406 RATTERN, PARS STATE
AND PROCESSOR
EXTRACTION INSTRUCTION
DATABASE <:~408 409-:> DATABASE
LOAD LOAD STATE
.| PARSING NSTRUCTION
”1SUBSYSTEM DATABASE
MEMORY MEMORY
k\woo
e
410

FIG. 4

NOAC Ex. 1017 Page 98

Qarkie T
PRINT OF DRAWINGS

A&Q&Q@A&g(:;m i
N N

5/21

/INPUT PACKEW 502

y

503 1 LOAD PACKET

COMPONENT [*
512

. BUILD
. 504 PACKET
) KEY
= FETCH NODE ANO
- » PROCESS FROM)

PATTERNS 505
: 513
g NEXT

PACKET /Z

z 506 COMPONENTC 544

A

APPLY NODE AND
(| PROCESSTO
507 COMPONENT

500

510—\J

EXTRACT
509 S ELEMENTS

FIG. 5

NOAC Ex. 1017 Page 99

~ -

PRINT OF DRAW{ O

5, ;
AS ORIGIVALLY ¥, ' .y
| 6/21
E
, 601
PACKET 602
COMPONENT AND
PATTERN NODE
603 .

5| LOAD PACKET

COMPONENT -

604

LOAD KEY
BUFFER

FETCH EXTRACTION
AND PROCESS FROM/&
PATTERNS 605

z NO
- 606 NEXT
ORE EXTRACTION~ _NOpl PACKET 609
ELEMENTS? COMPONENT
A
5072/ APPLY EXTRACTION
PROCESS TO
COMPONENT \

600

MORE TO 608

EXTRACT?

YES—

FIG. 6

NOAC Ex. 1017 Page 100

Cmuliia

PRINT OF DRAWINGS -

AS ORIGINALLY, = g
ﬁ’ﬁs——&’f—‘n \\/

N

)
—h,

701

EY BUFFER AND 702
PATTERN NODE

4
LOAD PATTERN

703 <
__~1 NODE ELEMENT 208 w

Py

q.r

4

MORE PATTERN
NODES?

YES @
N h 4

) HASH KEY BUFFER

ELEMENT FROM |_§ 705

= PATTERN NODE
= 709
A 4

f\ PACK KEY & HASH

704 3\ »| OUTPUT TO
ANALYZER

706

700

A 4
NEXT PACKET

5_ COMPONENT
707

FIG. 7

NOAC Ex. 1017 Page 101

*3‘

IR

gt

(ANt

CAvirie

PRINT OF DRAWE
AS ORIGINALLY Fiz D

800

8/21

801

UFKB ENTRY FOR 802
PACKET

COMPUTE CONVERSATION| o3
RECORD BIN FROM HASH |/~

A

REQUEST RECORD BIN/
BUCKET FROM CACHE |/ 804

805

5 806

ORE BUCKET
IN THE BIN?

SET UFKB FOR
PACKET AS 'NEW!'

AND BUCKET RECORD KEY

COMPARE CURRENT BIN = 807

TO PACKET

Q 809

NEXT BUCKET {4-NO w 808

YES

MARK RECORD BIN AND 810
BUCKET 'IN PROCESS'IN |/~
CACHE AND TIMESTAMP

4

811

SET UFKB FOR PACKET
AS 'FOUND!

4

UPDATE STATISTICS FOR
RECORD IN CACHE

xé FIG. 8

NOAC Ex. 1017 Page 102

dopnr

B (T

S

R

Qarlk

PRINT OF DRAWINGS
ASORIGINALLY[“D

N’

EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION', 'PORT' AND
'PROTOCOL (TCP OR

UDP)

[)

CREATE SERVER STATE

T

904
T

SAVE 'PROGRAM',
‘VERSION', ‘PORT' AND
'PROTOCOL (TCP OR
UDP)' WITH NETWORK
ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

LOOKUP REQUEST EXTRACT
PROGRAM
/ FIND 'PROGRAM'
900 AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF 'PROTOCOL (TCP
SOURCE NETWORK OR UDPY.
ADDRESS.

/A 905

BIND LOOKURH

K 909

EXTRACT PORT

GET 'PROGRAM;,
'VERSION' AND
'PROTOCOL (TCP OR
UDP)

908
<<: SAVE REQUEST

SAVE 'PROGRAM;,
'VERSION' AND
'PROTOCOL (TCP OR
UDP) WITH
DESTINATION
NETWORK ADDRESS.
BOTH MAKE A KEY.

907

906 \

.

FIG. 9

NOAC Ex. 1017 Page 103

Qarlirai.

IR T R

b

[RENEN W

[RANER

PRINT OF DRAW Fa
AS__QE_G“F_%‘ kLLY ~ D \J

1000 ~— 10/21

100

PATTERN EXTRACTION

RECOGNITION OPERATIONS
DATABASE DATABASE
MEMORY 1001 MEMORY

100\
INFOIOUT,

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS [saNTRLIN

1031
1006 PATTERN 1007
RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)
(PRE)
1010

1008

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOAD
MEMORY

PACKET PARSER INPUT BUFFER
INPUT MEMORY

1012
1010

1021 :] 1025
PACKET

INTERFACE INTERFACE
JEX CONTROL CONTROL
PACKET

102

1023 FIG. 10 1027

NOAC Ex. 1017 Page 104

AR NN

i

NN

T

[
PRINT OF DRAWINGS)
A-S_%I.GL“;QL@D O

11/21
1100 —y

R1101 81103 31118 1122>

o
ENGINE %%%T
(LUE) INTER-
FACE
(HIB)

PARSER
INTER-
FACE

(1119 1123&

UNIFIED § |MEMORY
MEMORY J.\ INTER-
CONTROLM+ FACE

(UMC)

DELETION

NOAC Ex. 1017 Page 105

EE R TREE

R [

i g

Won

PRINT OF DRAWINGS
AS ORIGINALLY FILED

12/21

1201

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW'

Y
ACCESS
CONVERSATION /1 203
RECORD BIN

'

REQUEST RECORD BIN/| 120
BUCKET FROM CACHE |/~ 129

1200 —y

REQUEST NEXT | NO
{| BUCKET FROM
1206 CACHE

IN/BUCKET EMPTY

B

l

INSERT KEY AND HASH | /~ 1207
IN BUCKET, MARK 'USED
WITH TIMESTAMP

— 3
COMPARE CURRENT BIN—1209

1210\ AND BUCKET RECORD
SET UFKB FOR
PACKET AS KEY TO PACKET
'‘DROP!

MARK RECORD BIN AND
BUCKET N PROGESS' |/~ 2™
AND 'NEW' IN GAGHE

!

1212 _JsET INITIAL STATISTICS
FOR RECORD IN CACHE

é/‘1 213

FIG. 12

NOAC Ex. 1017 Page 106

Shenba i i e

ChR

NEEERE

Cavi
PRINT OF DRAWINGS

AS_—Q&Q@__A&_Y@

/

13/21

1300 — UFKB ENTRY FOR
PACKET WITH STATUS
'NEW' OR 'FOUND’ 1302

v

SET STATE PROCESSOR
INSTRUCTION POINTER TO
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM
STATE PROCESSOR

SET STATE
PROCESSOR
INSTRUCTION
POINTER TO

VALUE FOUND IN
CURRENT STATE

SAVE STATE
PROCESSOR
INSTRUCTION
POINTER IN
CURRENT FLOW
RECORD

A4

INSTRUCTION MEMORY

v

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

DONE PROCESSING
STATES FOR THIS
PACKET?

1308
1310

DONE PROCESSING
TATES FOR THIS FLOW?2

1305

1309

v
SET AND SAVE FLOW REMOVAH
STATE PROCESSOR
INSTRUCTION IN CURRENT

FLOW RECORD

=<5\f1313

FIG. 13

NOAC Ex. 1017

Page 107

-

140

1404 — 1406 —) 1412’\ 11 1414
ANALYZE AND EXTRACT 1 | LOOKUP
RECOGNIZE | | IDENTIFYING || ., BUILD _ 1, . | KNOWN
PATTERN INFO & PROCL| | "FLOW" KEY™1RECORDS
INFORMATION /STATE Il |(DB 1424)
i I
TSI EIs
: |
!
;!
PATTERN |
STRUCTURES b
AND I
EXTRACTION P!
OPERATIONS] Y
|
(s 1
PARSER 1408 P M
SUBSYSEM _ _ _ _ _ _ _ b STATE
| MACHINE
| . SELECTOR
1400 : 1426~
|
FIG. 14 . 1428
| (LJ__ 1432
| STATE
| ANALYSIS | |
| DPERATIONS [—==
|

AT N W

i g n b

DATABASE
OF FLOWS

UPDATE
"FLOW"
KNOWN

RECORD

A

YES

A 4

CLASSIFICATN
FINALIZATION

NO— |

Cia3a

ANALYZER
SUBSYSTEM

fr--—--—-=-=---- - -~"=- - == -~ 1

1416\

1
I
I
|
|
|
|
|
|
!
!
|
|
!
!
|
|
|
1
|
|
|
|
!
|
l
|
f
|
|

NOACE€ Ex- 1017 Page168

Laivl

1

ATIVNIDINO §Y
SHINIMVEG 40 INTHY

\

PRINT OF DRAW NG
AS ORIGIN

Y

£ F

NALLY [

15/21

Gl Ol

-

P S13IMOVd
dda "
9 advo
ssig | | 30v4u3LNI 201
NHOMLIN
—x
A
8051 0LSH J
v 008
HOLINOW
AHOW3W | H0OSS3ID0Hd
LSOH LSOH >
7 L 30iA3q
930Gt b0S 1 - NOILISINDOY«-
(RHOWIN) 13X0vd
SMOT4 7
40 o I —
£08 LOE 2051
3SvavLlva HIZATVNY H3ISHVd

144 L

PRI T

T TR

IXTET

B

Ll

NOAC Ex. 1017 Page 109

—

PRINT OF DR.AWLX A (,7
ASORIGINALLY b o \
P 16/21
1602 0 - 3 Bytes
A— 1600
= Dst MAC
offset 0 - 11 T~ Dst MAC | Src MAC ~j1604
Src MAC -]
- NI
= y 1606
o 1608
= Dst MAC (6)
, i [Dst Hash (2] 1610
{ 5 1612 Src MAC (6)
', 16 14_Src Hash (21

:i It

et=12
FIG. 16

b b don

NOAC Ex. 1017 Page 110

i

S

PRCI I

MR EYREE

Qanhelric

PRINT OF DRAWINGS
A&.Q&G.U‘:M,L_Y_C)D

17/21
1702
1704
ST e TR
__ J
Y 1706

1708

Type (2)
\»Hash 1) X— 1700

1710

\JL3 Offpet = 14

FIG. 17A

NETBIOS-3COM = 0x3C00 -

O
IDP = 0x0600*
IP = 0x0800*
CHAOSNET = 0x0804
ARP = 0x0806

ViP = 0x0BAD*
VLOOP = O0xOBAE
VECHO = Ox0BAF

0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5

/ SNA-TH = 0x80D5*
1 ATALKARP = 0x80F3
1712 IPX =0x8137*
SNMP = 0x814C#
IPv6 = 0x86DD *
LOOPBACK = 0x9000
Apple = 0x080007
* L3 Decoding
L5 Decoding
1752
VerinG [30e/Tpe/ Yot Leide /]
[LL33t° //1/1G58Rer/ /] AV [FRAG OfReY IoMP = 1
* Protocol 7 =
27 of VLIIEL Protoco st e i
- Dst Address I(ESSE fg
(1111100993 B iraddig///////1//] PUP = 12
CHAOS =16
X i
e | woghea,
Dst Address 1SO-IP Z 80
Dst Hash (2)] \Sg = gg#
SrcAddress | EIGRP =
Src Hash (2) OSPF =89
* L4 Decoding
[Frotodol (1) FIG.17B #L3 Re-Decoding

et = L3 + (IHL/4)

NOAC Ex. 1017 Page 111

QA

PRINT OF DRAWINGS
AS ORIGINALLY

18/21

PROTOCOL

1802-1

A—1800

HLON31 g13i4

W,

FIG. 18A

R R T

1870

ME\SS

2| [TITT7/T71
= LT

ai3id 40

3d00 31A8

A—1850

10200104d

FIG. 18B

NOAC Ex. 1017 Page 112

LI I

Thwhn”

i

TR AR

[1905

1800

‘_-L? —DATA -»] 4)
i_ADDETR’ «LUESEL—
n A » .
;J: ADDR INPUT SELECT MUXES .ﬁ;:g;
- . .
wl_ 1917
o™ ieNg ADDR_DATA /
| <«—UMC-O-CA-DATA -
<——CA-ADDRESS
ADDR/[DATA c
Yy \ 2 4 vy Y tr \ 2R J v 1903 : 1915
PAGE-0-IN PAGE-31-IN <
DUAL PORT RAM PAGES (32) <
PAGE-0-OUT PAGE.31.0UT | CACHE WRITE STROBES
DATA DATA DATA
DATA DATA ... DATA 1909 1911
0 : >%< CA-UMC-DATA
\\/ - 35 >
=
1907
- CAPAGESEL
l
?]*DATA N CLUESEL— _1q13
0]<DATA | OUTPUT SELECT MUXES < SPSEL—
2 «FIDESEL—

L.

8]4- DATA —t

FIG.19

\1919

NOAC Ex. 1017 Page 113

12/61

el g e

“

ATIVNIOTHO SV
TINTMVHE 40 INTHg

o

HEEEN

IR

b

L R T

W g

*t PRINT

OF DRAWINGS

ASORIGINALLY T

| FIDE PORT I ILUE POF{TJ

20/21

/ 2001

2005

F——LUEMEMREQ-—»
e—SETLUEREADY —
e—SETLUESEL——

——FIDEMEMREQ-+
SETFIDEREADY —
—SETFIDESEL—

[N

CACHE_CAM_SM

-SEL_LUE_FIDE-»
r———CAM_HiT———
«—CAM_HITPAGE —
-CAM_LRUPAGE —
——LOAD_CAM—

—REFRESH_CAM-—»

CAM_ARRAY

1

GET BACKUP GOT 2003
Ll

|

CACHE MEM

3 SIGNALS

CACHE PORT

CACHE_MEM_SM

—SEL_CACHE—»

FIG. 20

NOAC Ex. 1017 Page 114

———CA-MEM-RE@—»
——CA-MEM-WRITE—»

-UMC-O-CA-NEXTADBH

l¢—UMC-O-CA-READY—]

umcC

i PR I A TR

Wi i

]

= < PRINT OF DRAWINGS

ASORIGINALLY 2D

21/21
CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA —
2109
LOAD, REFRESH, EVICT REE-DATA
\2105 | 2111 2103
/ CAM_INPUTDATA 2113
Y Y
—LOADO-+{ CAM[0] -MATCHO +
DATAY L~
—LOAD1-»| CAM[1] |MATCH1 »
DATARY L
—LOAD2»{ CAM[2] FMATCH2 +}
—LOAD3-»[CAM[3] -MATCH3 »
»%—: —LOAD4-»{ CAM4] FMATCHA > o 1 & o115
i) - i
w 5TO 32 —LOAD5»{ CAM(5] FMATCH5» (ow S
S JLT o |/ |a
=2
< DECOD | —LOADG-»{ CAM[6] FMATCHe» HIGH (L7 o g
4 > !
—LOAD7+{_ CAM[Z] __ |-MATCH7 » ENCOD -
. 2107
—LOAD30»{ CAM[30] FMATCH304
—LOAD31»{ CAM[31] FMATCH31
. DATA3
CAM_LRUPAGE
CAM_NUMBER - CAM| NUMBER
! [l |
2127 DATAQ| | - + » DATA31 DATAO| | - + * DATA31
Y | Y Y
> NMUx3z2 /2123 F NMUX32 4
2121 s &
| DIRTY ENTRY CURRENT ENTRY
| ;] E I | 2117 L—
DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET CAM_HITPAGE
\ \
FIG. 21 o

NOAC Ex. 1017 Page 115

SZﬁ(issian etal. APPT-001-4

. (33

6771646

1/21

100

P
’
-

FIG. 1

CLIENT 4 108
ANALYZER
107
7y 116
. J
SERVER 2
CLIENT 3
\\ VMo
121
. DATA COMMUNICATIONS
NETWORK
E
102
; 125
\ 118
SERVER 2 105 —/
M CLIENT 2 |/ CLIENT 11—
1 112 104

NOAC Ex. 1017 Page 116

[P L Y LT i [4o d W owanoan

&214 (215 Q216

4N

@17 218 219 (220,221,222 223
1 (-~

1(Sq Cq p' |- /j il |sh QA s1p QP o———-————-i’\
- N
P < 206

X /‘><

(224 (225 Q226 Q227§228(229 (230 231S232 233 ><

) Cqi | Sq p! :;<j // il

sta sh| p2| 2

. »
210\ 24020541 242 243 244 245 :
\ \ \ \ :
/ KEY-1\ Sq Cq p1 \<\> ------- - al stp \ v
202 (106 > 20 =
N
21 =] B
(250 (251 (252 253 254 (255 =" N>
A 2 1 —e = - 2 —
evd o1 | o | @ [[[[f-meo £ s, (1IN0
\ J Zthtnt
: CLIENT 3
: 260 261 (262 263 264 265 APPLlCATIONS
JNN L« ¢

N1l 811 Cq p2

ERVER 2 :

-

datum request

o ,I< - (270 (271 272 273 (274 275 ;r
D | e Cq| Sq| PP datum reply no| |
_ | FIG.2
l 209

NOAC Ex. 1017 Page 117

e UBQQSNWS :

-100-LddV

302 ANALYZE AND
! RECOGNIZE
morerZyod i L
INFORMATION

PROTOCOL

DESCIPTIO
LANGUAGE

304 —

PARSER 301
306 —)
EXTRACT BUILD UNIQUE
I:\?FE(;\IJ'\IAFA?%% »{CONVERSATION
(EN) "FLOW" KEY

(PAR)

A

HI L T V)

Bwowonow

314

LOOKUP
» FROM

a12/

KNOWN
RECORDS
(DB 324
\VIA CACHE

324

DATABASE
OF FLOWS

)

—_——t — -

"FLOW"
KNOWN
RECORD

|

(- =
' |
| |- = ——-
PATTERN, PARSE | : PROTOCOL
] AND | & STATE
308 EXTRACTION | | IDENTIFICATION
DATABASE l |
______ — |
_—
|
4 ' STATE Y
! PROCESSOR
| INSTRUCTION
COMPILER
AN R | DATABASE
OPTIMIZER |
I 326
| 328
' (
DATAGRAM I
LAYER , \ STATE
PROCESSNG
I OPERATIONY
|
|

-7
322 |
|

UPDATE "
g

FINALIZATION

CLASSIFICATN | |

NGO

ANALYZER
303

P G

Lc/e

NOAE Ex— M 7Page 118

¥-100-LddV

a

garkissian etal. APPT-001-4

4/21

401

402
HIGH LEVEL
PACKET
DECODING
ESCRIPTION
3404 405
A

GENERATE GSEEEéYTrE
PAPIQSCSELD COMPILE STATE
- ARSE AND e DESCRIPTION§ ™ ”NSTRUCTIONS
OPERATIONS OPERATIONS

L)

W

AT

406 RATTERN, PARSH
AND

EXTRACTION
DATABASE
———/

[T T B LI 1 IR

C 408

C 403

407

STATE
PROCESSOR
INSTRUCTION
DATABASE

409 >

LOAD
PARSING
SUBSYSTE
MEMORY

LOAD STATE
NSTRUCTION
DATABASE
MEMORY

M

:410

400

FIG. 4

NOAC Ex. 1017 Page 119

.

1

TR AR VR TR o LT

garki

ssian et al.

APPT-001-4

5/21

/IT\IPUT PACK% 502

503 X/

504

LOAD PACKET |,
COMPONENT
512
BUILD
PACKET
KEY
EETCH NODE AN
» PROCESS FROM)
PATTERNS 505
513
NEXT
PACKET /2_
COMPONENTC 511

506

APPLY NODE AN
PROCESS TO
COMPONENT

510\

508

EXTRACT

h

ELEMENTS

FIG. 5

N

500

NOAC Ex. 1017 Page 120

T

.5 sarkissian et al. APPT—04
T e o]

[TR S TR

Woen i

6/21

601

PACKET 602
COMPONENT AND
PATTERN NODE

603
LOAD PACKET
———— L—————
COMPONENT 610
604 3
LOAD KEY
BUFFER
FETCH EXTRACTION
AND PROCESS FROM 7
PATTERNS 605
NO 611
606 NEXT
ORE EXTRACTION>_NO»| PACKET | (=609
ELEMENTS? COMPONENT
A
607 1 APPLY EXTRACTION
PROCESS TO
COMPONENT ,\
600
MORE TO 608

EXTRACT?

YES—

FIG. 6

NOAC Ex. 1017 Page 121

garkissian et al. APPT-001-4

‘O JD

7/21

701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN |

708 w

OUTPUT TO
> ANALYZER

2 YES

: 4

: HASH KEY BUFFER @
: ELEMENT FROM f_§ 705

PATTERN NODE

I

‘g\ PACK KEY & HASH
706

704

[T U R R T)

Wt non

700

A
NEXT PACKET

f COMPONENT
707

FIG. 7

NOAC Ex. 1017 Page 122

AT U L A U

noa

i

I

[T LT IP T B BT

Sarkissian etal. APPT-001-

O

800 \

4

8/21
801

UFKB ENTRY FOR
/ PACKET Jéf 802

A

COMPUTE CONVERSATION
RECORD BIN FROM HASH

803

/

REQUEST RECORD BIN/

805

NEXT BUCKET

Q 809

BUCKET FROM CACHE

804

ORE BUCKET
IN THE BIN?

5 806

SET UFKB FOR
| PACKET AS '‘NEW'

COMPARE CURRENT BIN
AND BUCKET RECORD KEY
TO PACKET

/— 807

YES

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

/‘—810

A

SET UFKB FOR PACKET

811 —~_| AS 'FOUND'

A

812 ™ UPDATE STATISTICS FOR

RECORD IN CACHE

813\/(5 FIG. 8

NOAC Ex. 1017 Page 123

T

N BT R PR T R 1 I T T

B

RN

garkissian et al.

901

903 \

904 \

PORTMAPPEH

APPT-001-4

EXTRACT PROGRAM

GET 'PROGRAM!,
‘VERSION', ‘PORT' AND
'PROTOCOL (TCP OR

UDP)

[)

CREATE SERVER STATY

SAVE 'PROGRAM',
"VERSION', 'PORT' AND
‘PROTOCOL (TCP OR
UDP) WITH NETWORK
ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

K‘ 905

900/

LOOKUP REQUESY

T

FIND 'PROGRAM'
AND 'VERSION'
WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

.

EXTRACT PORT

GET 'PROGRAM,,
'VERSION' AND
'PROTOCOL (TCP OR
UDP)'

908
< SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND
'PROTOCOL (TCP OR
UDP) WITH
DESTINATION
NETWORK ADDRESS.
BOTH MAKE A KEY.

907

906 1

EXTRACT
PROGRAM

GET 'PORT' AND
'PROTOCOL (TCP
OR UDPY.

S

FIG. 9

NOAC Ex. 1017 Page 124

) g

arkissian etal. APPT-001-4

0 .

1000 —y 10/21

PATTERN EXTRACTION
RECOGNITION OPERATIONS
DATABASE DATABASE

MEMORY MEMORY

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL IN

100 PATTERN I 1007
RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)
(PRE)

100

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOA
MEMORY

PARSER INPUT BUFFER
MEMORY

PACKET

INPUT BUFFER
INTERFACE
CONTROL

ANALYZER DATA REA
INTERFACE
CONTROL

ANALYZER

PACKET READY

1023 FIG. 10 1027

NOAC Ex. 1017 Page 125

Y

kissian et al. APPT-001-4

gar " |

11/21
1100 —a
" 1o 1115 11g 112
///—4107 g
o
ANALYZE HOST
ENGINE NALYZ 105
(Le) INTEBFACH INTER-
AND FACE
controL) | (HIB)
(ACIC)
INSTRUCN -
/| DATABASE
(SPID)
1108
PARSER
INTER-
FACE
STATE
PROCESSR
(SP) (11191123Z
uNniFieED | IMEMORY
MEMORY I INTER-
CONTROLA~| FACE

(UMC)

DELETION
ENGINE
(FIDE)

‘r

Salrkis,sian etal. APPT-001-4

O >

12/21
1201
UFKB ENTRY FOR
PACKET WITH 1202
STATUS ‘NEW'
1200 A
A ACCESS
CONVERSATION f1 203
RECORD BIN
REQUEST RECORD BIN/
BUCKET FROM CACHE |/~ 129
REQUEST NEXT
| BUCKET FROM <BIN/BUCKET EMPTY 1205
1206 CACHE

NG |INSERT KEY AND HASH f1207
5 IN BUCKET, MARK 'USED
1208 WITH TIMESTAMP

v
VES COMPARE CURRENT BIN—1209

B~ serormron] | MO
PACKET AS
‘DROP'

\ 4

MARK RECORD BIN AND
BUCKET 'IN PROCESS' _/_1211
AND 'NEW' IN CACHE

4

SET INITIAL STATISTICS
FOR RECORD IN CACHE

é/ms

FIG. 12

1212

NOAC Ex. 1017 Page 127

Y

APPT-001-4

Sarkissian et al.

1300 —y /

13/21

1301

A 1302
SET STATE PROCESSOR

INSTRUCTION POINTER TO
VALUE FOUND IN UFKB ENTRY

UFKB ENTRY FOR
PACKET WITH STATUS
'NEW! OR 'FOUND!'

FETCH INSTRUCTION FROM

STATE PROCESSOR
INSTRUCTION MEMORY

\

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

SET STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS
VALUE FOUND IN PACKET?
CURRENT STATE
1308
1310
SAVE STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLOW?2
CURRENT FLOW
RECORD
A 4
SET AND SAVE FLOW REMOVAL
STATE PROCESSOR \f1311
INSTRUCTION IN CURRENT
FLOW RECORD

1313

FIG. 13

NOAC Ex. 1017 Page 128

140

NOAC Ex. 1017 Page 129

1404— 1406 — 14127 L 1414- 1416
ANALYZE AND EXTRACT 11 | LOOKUP ‘*L
RECOGNIZE | | IDENTIFYING |y gy SHIFR -y [yl KNOWN | AEW "FLOW
PATTERN INFO & PROCL || |RECORDS RECORD? 4| | | DATABASE
INFORMATION /STATE | (DB 1424) OF FLOWS
- - - - - ==,
: I
| #
L |
B 1422
PATTERN o i
STRUCTURES | CLASSIFICATION NO» «NOWN
AND ! RECORD
EXTRACTION ! il
OPERATIONS o }
|
!
(| I \ 4
PARSER 1408 |
SUBSYSEM __ _ _ _ _ _ b STATE
| MACHINE
| SELECTOR .
1400 : 1426J
| YES CLASSIFICATN
FlG 1 4 | 1428Y FINALIZATION
. | (. o] 1432 _
| STATE > NG Ciaze
| ANALYSIS | |
DPERATIONS (==
! — ANALYZER
| SUBSYSTEM

lf--- - - - - - - - - - - - -7 = 7 = 1

|
|
!
I
I
I
I
I
[
I
I
|
I
I
I
I
I
I
!
I
I
I
f
I
|
I
!
I
|
I

LIV L

‘[10 UBISSIES

£00-LddY

—

~ A

5

Gl 'Ol
H —»

S13aMovd

15/21

APPT-001-4

salrkissiam et al.

v

dad *
9 ayvo
sisia 3DV4HILNI
e MHOMLIN
A
80G 1} o:tL
— KAl
v 00t
HOLINOW
AHOWIW |, . HOSS3IO0Hd
LSOH I 1SOH ¢ >
p L 30IA30d
9051 Y051 «— < NOILISINDOY«
(KEOWIN) 13MOvd
SMOT4 L
m_m%mwﬁo | BoE 108 cost
IZKIYNY Y3SHVd
vmmp

NOAC Ex. 1017 Page 130-

Y

sa(kissian etal. APPT-001-4

9 3

16/21
1602 0 - 3 Bytes
K A— 1600
Dst MAC
offset 0 - 11 |- Dst MAC | Src MAC _./_/1604
Src MAC R
N J/
>/ 1606
1608
Dst MAC (6) =
 Dst Hash (2] 1610
161{\ Src MAC (5)
1614 Src Hash (2

et=12
FIG. 16

Y

APPT-001-4

»)

Sarkissian et al.

17/21
1702

\ 1704

offset P = 0x0800*
it I CHAOSNET = 0x0804
VIP = OxOBAD*

Y 1706

1708 Type (2)

Hash {1
1710) Y— 1700

\ ‘LB OffFet =14

FIG. 17A

1712

e e
Lsto | [/ I0ERARRE 1] FiAGY FAG Oifsey

(L3 + /‘}77‘)1/ Protocol /H}éﬁ@é?/r/#ﬁ?‘#‘/
("':L/ 4 Src Address
-1 Dst Address

TR R aaaal [111/1]

Y— 1750

Dst Address __‘
Dst Hash (2)
Src Address
Src Hash (2)

[Frofdol (1 FIG.17B

L4 Offket = L3 + (IHL/4)

VLOOP = 0x0BAE
VECHO = 0xOBAF
NETBIOS-3COM = 0x3G00 -

DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5"

ATALKARP = 0x80F3

LOOPBACK = 0x9000

* L3 Decoding
L5 Decoding

IDP = 0x0600*

0x3COD#

RARP = 0x8035

IPX = 0x8137*
SNMP = 0x814C#
|Pv6 = 0x86DD "

Apple = 0x080007

1752

ICMP =1
IGMP =2
GGP =3
TCP =6~
EGP =8
IGRP =9

PUP =12
CHAOS =16
ubpP =17*
IDP =22#
ISO-TP4 =29
DDP =37#
ISO-IP =80
VIP =83#
EIGRP =88
OSPF =89

* L4 Decoding
L3 Re-Decoding

APPT-001-4

sarkissian et al.

N
-/

18/21

PROTOCOL

_/

[o

[/]]]: 3

§§ D)
EExsnsnyEny,

o
o
0
H

H19ON31 d131d

FIG. 18A

1870

N

.

TTT71/TT1
s,

Q1314 40

MHESS

3400 31Ad

A—1850

—
700010¥4d

FIG. 18B

NOAC Ex. 1017 Page 133

L [—DATA >

/1905

S —ADDR-»
0. DATA »
W (-ADDR»

L |—DATA -

_|H_l

|__,D__|

= —ADDR-»

ADDR DATA

INPUT SELECT MUXES

1900

ol

¢ L UESEL—
e~ SPSEL—
«FIDESEL—

ADDR

[1917
«—UMC-O-CA-DATA - —

OATA

y N Yy Vv

o o o
A A 4 Y Y

A

PAGE-O-IN

PAGE-0-OUT

DUAL PORT RAM PAGES (32)

A 2 / Yy
PAGE-31-IN

PAGE-31-OUT

CA-ADDRESST
~———1903 1915

<
b

"CACHE WRITE STROBES

DATA
oura O

1909
N

DATA
UT B

DATA

DATA Sl B ... D

TA DATA

OUT A Ol

IT A

olrs /1999

1911
/‘

Al
|2 | CA-UMC-DATA

1907
/

) >
=)

T CAPAGESEL

%3'4- DATA —
O
%EIqDATA —

L
Q |-DATA —
T

OUTPUT SELECT MUXES

-« UESEL— \\1913
<« SPSEL—

<FIDESEL—

FIG. 19

\1919

NOAC Ex. 1017 Page 134

Lc/6}

(& 18 UeISSPHES

¥-100-LddV

C

Y

sarkissian etal. APPT-001:4

D
20/21
/ 2001 2005~
| | UEMEMREQ—» _SEL_LUE_FIDE-»
ETLUEREADY
S <«—CAM_HIT—
| «— SETLUESEL—

<—CAM_HITPAGE —
CACHE_CAM_SM

<-CAM_LRUPAGE —
——FIDEMEMREQ—» -

<«-SETFIDEREADY — - LOAD_CAM—»
l«—SETFIDESEL—

FIDE PORT l I LUE PORT}
CAM_ARRAY

—REFRESH_CAM—»1

(

1
GlIET BACIKUP GOT/ 2003

S T

|

—SEL_CACHE—»

CACHE MEM ——CA-MEM-REQ—»

SIGNALS | —— CA-MEM-WRITE—»
CACHE_MEM_SM

« UMC-0-CA-NEXTADE]

+—UMC-O-CA-READY—

CACHE PORT
UMC

t

FIG. 20

NOAC Ex. 1017 Page 135

sarkissian etal. APPT-001-4

21/21
CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA —
! y 2109
LOAD, REFRESH, EVICT REF-DATA
2105 § 2111 — 2103
M CAM_INPUTDATA 2113
A Y
—LOADO-» CAM[O] |-MATCHO + L/
DATAY &
—LOAD1-»{ CAM[1] -MATCH1 »
DATAZY L
—LOAD2-»| CAM[2] [-MATCH2 >/
—LOAD3»{ CAM[3] FMATCHS »
= —LOAD4-»! CAM4] FMATCHA > o, - ¢ D115
O <
o
0 5TO 32 (—LOAD5»| CAM[5] -MATCH5» Low
Z J0 o |/
5 DECOD | 0AD6-»] CAM[6] |-MATCHe6 » HIGH %,T»
= > ENCOD
—LOAD7-»{ CAM[7] FMATCH7 »
: 2107
—LOAD30>{ CAM[30] FMATCH30
—LOAD3 15 CAM[31] FMATCH31
. DATA3
CAM_LRUPAGE
CAMIUMBER - CAM| NUMBER
| | | 1
2127 DATAO| | « « + DATAS3{ DATAO| | * » » DATA31
Y Y Y Y
QGM»\ NMUX32 /2123]\ NMUX32 4
{} 2121 &
— [DIRTY ENTRY | [CURRENT ENTRY |
I B 2117 —
DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET = CAM_HITPAGE
\ \/
FIG. 21 e

NOAC Ex. 1017 Page 136

LOOKUP PORT

A Page 1 of 1
-/

UNITED STATES PATENT AND TRADEMARK OFFICE

COMMISSIONER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D C 20231

www uspto gov
[apeLicATION NUMBER | FILING/RECEIPT DATE | FIRSTNAMED APPLICANT | ATTORNEY DOCKET NUMBER |
09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4

FORMALITIES LETTER

WL R T AL R R

0OC000000005373402

Dov Rosenfeld

5507 College Avenue
Suite 2

Qakland, CA 94618

Date Mailed- 09/05/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION
FILED UNDER 37 CFR 1.53(b)
Filing Date Granted

An application number and filing date have been accorded to this application The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file ail
required items and pay any fees required below to avoid abandonment Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

o The statutory basic filing fee is missing.

Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1 27).

e The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

¢ To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)
of $130 for a non-small entity, must be submitted with the missing items identified in this letter

¢ The balance due by applicant is $ 820.

A copy of this notice MUST be returned with the reply.

N/
74/:'/5 ’
;L

Customer Service Certer
Initial Patent Examination Division (703) 308-1202
PART 3 - OFFICE COPY

file://C\APPS\PreExam\correspondence\2_C.xml 9/1/00
NOAC Ex. 1017 Page 137

o » 0

O Ref./Docket No: APPT-G1-4 -

/n b Patent
i ‘,L :u .
! & 1h 2 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
‘ S
& & . -
T Eﬂﬁjphcant(s): Sarkissian, er al. Group Art Unit: 2731

Application No.: 09/608266
Filed: June 30, 2000

Examiner: (Unassigned)

Title: ASSOCIATIVE CACHE STRUCTURE FOR
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Cominissioner for Patents
Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration;
X Executed Assignment with assignment cover sheet.

X Acredit card payment form in the amount of $___860.00 is attached, being for:
X Statutory basic filing fee: $ 690

X Additional claim fee of $0
X Assignment recordation fee of $ 40
X Missing Parts Surcharge $130

_ X Applicant(s) believe(s) that no Extension of Time is required. However, this conditional
petition is being made to provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

__ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)
two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

envelope addressed to the Assistant Commussioner for Patents, Washington, D 31 on
Date: /6 c o “ZC; PR ol Signedit 7

Name. Dov Rosenfeld, Reg. No 38687

NOAC Ex. 1017 Page 138

7 -

S

Application 09/608266, Page 2

-/

\

X _The Commissioner is hereby authorized to charge payment of any missing fees associated
with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,
Lt 2 opee L
Date BerRosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Tel. (510) 547-3378; Fax: (510) 653-7992

NOAC Ex. 1017 Page 139

PATENT APPLICATION

ATTORNEY DOCKET NO._APPT-001-4

As a below named nventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name 1s listed below) or an oniginal, first and joint nventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent 1s sought on the invention entitled:

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES QOF FLOW RECORDS IN A NETWORK MONITOR

the specification of which is attached hereto unless the following box 1s checked:
(X} was filed on June 30, 2000 as US Application Serial No 09/608266 or PCT International Application Number and
was amended on (if applicable).

[hereby state that [have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all mformation which is materal to patentability as defined in 37 CFR 1 56.

Foreign Applicatioa(s) and/or Claim of Foreign Priority

[hereby claim foreign prionty benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority 1s claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
YES: NO:
YES: NO:

Provisional Application
[hereby claim the benefit under Title 35, United States Code Section 119(e) of any Umited States provisional application(s) listed bclow:

APPLICATION SERIAL NUMBER FILING DATE

U.S. Priority Claim

[hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the clamms of this application 1s not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, [acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1 56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a named inventor, [hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this appliication and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg No 38,687

Send Correspondence to:
Dov Rosenfeld

Direct Telephone Calls To:
Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2

Tel: (510) 547-3378

Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or mprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inveator: Haig A. Sarkissian Citizenship: USA

Resideace: 8701 Mountain Top. San Antonijo, Texas 78255

Post Office Address: Same

Ui A AO\FMM;\, Suk 11, {000

First Inveftor’s Signature Date

NOAC Ex. 1017 Page 140

! ‘ h a ;/
Declaration and Power of Attorney (Continued)

Case No; «Case__CaseNumben
Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA__95120-2736

entor’s SigAature

NOAC Ex. 1017 Page 141

."-\ ——
\ PE >~\ .) M
(0] Our Ref./Docket No: APPT01-4 ! Patent
LW o

¢ IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Frie

A

1
{Qg\
& &
&y & TTABPlicant(s): Sarkissian, ef al,

Group Art Unit: 2731

Application No.: 09/608266 Examiner: (Unassigned)

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE FOR
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

REQUEST FOR RECORDATION OF ASSIGNMENT

Assistant Commissioner for Patents
Washington, D.C. 20231
Attn: Box Assignment

Dear Assistant Commissioner:

Enclosed herewith for recordation in the records of the U.S. Patent and Trademark Office is an
original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the
Assignment.

Respectfully Submitted,

Ot 22, 28e /7/—7

Date = Dov Rosenfeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2

Qakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commussioner for Patents, Wasth on.

v o o :
Date: &F‘(»—74‘9/ P i 2 SxM

Name: Dov Rosenfeid, Reg. No. 38687

NOAC Ex. 1017 Page 142

/O‘PE\\

—~ ™
\/) / o) Page 1 of |
0T 24 2000 & —
> “ ,
?\’7? cé’s) “E

P
A

Ty et
3 UNITED STATES PATENT AND TRADEVMARK OFFIGE
2 .s COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARKX OFFICE
WASHINGTON, D C 2023t

www uspto gov
F APPLICATION NUMBER | FILING/RECEIPT DATE | FIRST NAMED APPLICANT | ATTORNEY DOCKET NUMBER 1
09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4

FORMALITIES LETTER
5507 College Avenue A
?):llt(?aid, CA 94618

Date Mailed: 09/05/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION
FILED UNDER 37 CFR 1.53(b)
Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below,
however, are missing. Applicant 1s given TWO MONTHS from the date of this Notice within which to fite all
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1 136(a).

¢ The statutory basic filing fee is missing.
Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1.27).

e The oath or declaration is missing
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

e To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)
of $130 for a non-small entity, must be submitted with the missing items identified in this letter.

¢ The balance due by applicant is $ 820.

A copy of this notice MUST be returned with the reply.

/7’ <
.
7 //, /!
(ﬂK 7[J-‘/
Customer Service Center
Initial Patent Examination Division (703) 308-1202

PART 2 - COPY TO BE RETURNED WITH RESPONSE

N

i _—te .
J A

Tl s i PR

|
-t

! ‘ BRI

file://C\APPS\PreExam\correspondence\2_B.xml . E 9/1/00
NOAC Ex. 1017 Page 143

< %ﬁmocka No: APPT 4
. IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
g ,
& -
&’F/Vr& TE:\i\l“éa;p/}}l'c:ant(s): Sarkissian, et al. Group Art Unit: 2731
“Application No.: 09/608266

Filed: June 30, 2000

Examiner: (Unassigned)

! Title: ASSOCIATIVE CACHE STRUCTURE FOR
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents
Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration;
X Executed Assignment with assignment cover sheet.

X A credit card payment form in the amount of $___860.00 is attached, being for:
X Statutory basic filing fee: $ 690

X _ Additional claim fee of $0
X Assignment recordation fee of $ 40
X __ Missing Parts Surcharge $130

_ X __Applicant(s) believe(s) that no Extension of Time is required. However, this conditional
petition is being made to provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

___ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)
two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

2 ol

i
«"‘p,

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

envelope addressed to the Assistant Commissioner for Patents, Washington, D.C on.
Date: (9L t 20 200 Signed.~ 4

Narfe: Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1017 Page 144

s T

R T L

- e PN NSRS -7, NI o o o 7 4 S
R x o

L

M A T, W e e

P

=,

" Application 09/608266, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

(.6 20, 1080 G2

Date %enfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Tel. (510) 547-3378; Fax: (510) 653-7992

NOAC Ex. 1017 Page 145

; N W
17 Our Docket/Ref. No.: APPT-0Q4 ﬁ

<4 Patent ; é éc/

5
g% IN THE UNITED STATES PATENT AND TRADEMARK OFFICE RS
#
E4
Applicant(s): Sarkissian et al. #7!:
Serial No.: 09/608266 Group Art Unit: 2731 l l
i er — ~12-0
: Filed: June 30, 2000 Examinet o -l
3 A D
Title: ASSOCIATIVE CACHE =
f STRUCTURE FOR LOOKUPS AND S oo
! UPDATES OF FLOW RECORDS IN £ o~ 2
A NETWORK MONITOR = = om
S = ©
(]
=z

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner;

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449,

X Return postcard.
X

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

a

fiov Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

‘ Date: ’Dj‘gr "l/ 290 |

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

4
o
Certificate of Mailing under 37 CFR 1.18

} I hereby certify that this correspondence is being deposited with the United States Postal Service as first
3 class mail 1n an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.
3
3 Date of Deposit® ﬂ-'pf‘ q 9—9‘@ [
4
: Signature.

Dov eld, Reg. No. 38,687

NOAC Ex. 1017 Page 146

.

Qur Docket/Ref. No.: APPT-001 ;4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al. c_-',’
Serial No.: 09/608266 Group Art Unit: 2731 > . O
E . . (e} el IR]
Filed: June 30, 2000 xaminet < = -
L o» — ™~ —
Title: ASSOCIATIVE CACHE G\PE > Z . <
STRUCTURE FOR LOOKUPS AND ~ G o 8 O

UPDATES OF FLOW RECORDS IN 11 2000 e

A NETWORK MONITOR RPR x

)

Commissioner for Patents
Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Cominissioner:
This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or
(Within three months of filing national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever

occurs last)

under 37 CFR 1.97(c) together with either a:
___ Certification under 37 CFR 1.97(e), or
_ a$180.00 fee under 37 CFR 1.17(p)
(After the CFR 1.97(b) time period, but before final action or notice of
allowance, whichever occurs first)

under 37 CFR 1.97(d) together with a:

___ Certification under 37 CFR 1.97(e), and

___apetition under 37 CFR 1.97(d)(2)(i1), and

__a$130.00 petition fee set forth in 37 CFR 1.17(1)(1).

(Filed after final action or notice of allowance, whichever occurs first, but before
payment of the issue fee)

_X _ Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: A"ﬂr q/ o0 |

Signature.

Do &RgZereld, Reg. No. 38,687

Lo

NOAC Ex. 1017 Page 147

» haawa

O O

S/N: 09/608266 Page 2 IDS

X Some of the references were cited in a search report from a foreign patent office in a
counterpart foreign application. In particular, references AD, AF, AH, CI, EA, EB, EC, and ED
were cited in a search report from a foreign patent office in a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR 1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation is
being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

ov Rosenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: &7"‘ q/ o0 |

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

NOAC Ex. 1017 Page 148

W7 L 5 N LA R e W T

AR e, Y Yo

3y TIPSR, AR O

i S RS NI

L peeen

i—

B T R —
e - ——

oy

. gt al.FURM - 1449 £\ N SHEET 1 OF 5.
St {) — —_
- 1_’\"‘
ATTY. DOCKET NO. SERIAL NO.
APPT-001-4 09/608266
INFORMATION DISCLOSURE STATEMENT APPLICANT
Sarkissian et al.
AP E
' wlse several sheels if necessary) FILING DATE GROUP
% 6/30/2000 2735
b 1 1 2001 zb2
y U.S. PATENT DOCUMENTS
&
m\g}ﬁ& FILING DATE
‘EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS |IF APPROPRIATE
INITIAL NUMBER
aa 4736320 Apr. 5, IBristol 364 (300 Oct. 8,
A~ 1988 1985
4B 4891639 Jan. 2, [Nakamura 340 {825.500 |[Jun. 23,
Ar? 1990 1988
AC 5101402 Mar. 31, |Chui et al. LB+~ KT May 24,
kv 1992 1988
D 5247517 Sep. 21, [Ross et al. 370 |85.5 Sep. 2,
A~ 1993 1992
A AE 5247693 Sep. 21, Bristol 395 1800 Nov. 17,
[
1993 1992
2 P315580 May 24, [Phaal IFe— |3 Aug. 26,
A~ 1994 1991
15339268 Aug. 16, [Machida 365 |49 Nov. 24,
A~ AG 1994 1992
5351243 Sep. 27, {Kalkunte et. al. 330 19~ Dec. 27,
—~r AH 1994 1991
Al 5365514 Nov. 15, [Hershey et al. Fo— 7 Mar. 1,
Vi 1994 1993
a 5375070 Dec. 20, [Hershey at al. 364 (550 Mar. 1,
A 1994 1993
£ P 5394394 Feb. 28, |Crowther et al. - 460 Jun. 24,
1995 1993
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
AM
AN
OTHER DISCLOSURES (including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
T‘
"Technical Note: the Narus System," Downloaded April 29, 1999 fram
/_\,b, AR [www.narus.com, Narus Corporation, Redwood City California. o
no
(&5 T jJ
o ol
AS o ;g m
- —— O
Mo 0T
——r<s =T
D
EXAMINER / ATE CONSIDERED , = &_’3 !7-’
< 7/ v)es s~ ©
*EXAMINER: initial i citatior-eonsidered, whether or not citation 1s in conformance with MPEP 609. Draw ling through citation if not in conformance
e and not considered Include a copy of this form with next communication to Applicant.

NOAC

Ex. 1017 Page 149

oo

1

- gt al.FORM - 1449

)

SHEET 2 OF 5.

-4
ATTY. DOCKET NO. SERIAL NO
APPT-001-4 09/608266
INFORMATION DISCLOSURE STATEMENT APPLICANT
Sarkissian et al.
Use several sheets if necessary) FILING DATE GROUP
ﬁlPE 6/30/2000 27—
f— - '/U _7044 -
‘g’ U.S. PATENT DOCUMENTS
APR 11 2001 \
(o FILING DATE
MINER CUMENT DATE NAME CLASS | SUB-CLASS |IF APPROPRIATE
NUMBER
A 'BA 5414650 May 9, Hekhuis 364 1715.02 Mar. 24,
1995 1993
. . 15430709 Jul. 4, [Galloway 3740~ 43 Jun. 17,
1995 1992
yw BC 15432776 i;;S 11, [Harper B+ &= f§§3 30,
e 80 5493689 Feb. 20, Waclawsky et al. 395 [821 Mar. 1,
1996 1993
A BE 15500855 Mar. 19, [Hershey et al. B Jan. 26,
1996 1994
5568471 Oct. 22, [Hershey et al. 370 [+ Sep. 6,
A BF 1996 1995
A 5G 15574875 INov. 12, [Stansfield et al. 395 1403 Mar. 12,
1996 1993
586266 Dec. 17, |[Hershey et al. 395 J200.11 [oct. 15,
A/'_/ BH ﬁ 19
96 1993
X g [P606668 Feb. 25, [Shwed 395 |200.11 |pec. 15,
g 1997 1993
A’\-’ 8J 15608662 F’Iar. 4, Large et al. 364 |724.01 (Jan. 12,
1997 1995
BK 5634009 May 27, |Iddon et al. 395 |200.11 Joct. 27,
v 1997 1995
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
B8M
BN
OTHER DISCLOSURES {(Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
o
B8R g%
T g D
o B T
A)
BS : (3 %) m
oL =
| AR~} HLE
EXAMINER DATE CONSIDERED ;(g =2
-~
AL %/ 7 / z / 0% -2
‘EXAMINER: inutial if cnation({:onsidered, whether or not citation 1s in conformance with MPEP 609. Draw line through citation if not in conformance
and not considered. Include a copy of this form with next communication to Applicant

NOAC Ex. 1017 Page 150

4

-" EtalFORM - 1449 /Q\ O\d () SHEET 3 OF 5.
/. %)
. 0\ ATTY. DOCKET NO. SERIAL NO.
APRll 20 APPT-001-4 09/608266
INFORMATION DISCL RE STATEM APPLICANT
W‘”ﬁ Sarkissian et al.
(Use several sheets if necessary) FILING DATE GROUP
6/3072000 43T
A
U.S. PATENT DOCUMENTS
FILING DATE
“EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | F BPPROPRIBTE
INITIAL NUMBER
g , cA 5651002 Jul. 22, [Van Seters et all. 370 [392 Jul. 12,
1997 . 1995
cs 5684954 Nov. 4, |Kaiserswerth et al. 395 [200.2 Mar. 20,
o 1997 ‘ 1993
cc 15732213 Maxr. 24, [Gessel et al. 395 [200.11 Mar. 22,
AN 1998 1996
co 5740355 Apr. 14, Watanabe et al. 395 [183.21 [Jun. 4,
y ad 1998 1996
/f/\/ cE 5761424 Jun. 2, Adarps et al. 395 [200.47 [Dec. 29,
1998 1995
cF 5764638 Jun. 9, [Ketchum 370 1401 Sep. 14,
W 1998 ‘ 1995
ce 5781735 Jul. 14, [Southard 395 200.54 [Sep. 4,
AT 1998 1997
~ cH 5784298 Jul. 21, Hershey et al. 364 |557 Jul. 11,
A 1998) 1996
P‘/ ol 5787253 Jul. 28, McCreery et al. 395 [200.61 May 28,
al 1998 ' 1996
15805808 Sep. 8, [Hansani et al. 395 [200.2 Apr. 9,
A cJ 1998 - 1997
Ar oK 5812529 Sep. 22, |Czarnik et al. 370 [245 Nov. 12,
1998 1996
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
cM
CN
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
cR
_f
E [ap]
no
(en]
cs W
=
R)
— = po—1I1]
EXAMINER ' DATE CONSIDERED s =
e o & LB M
o — O
*EXAMINER initial if citation considered, whether or not citation 1s in conformance with MPEP 609 Draw line through citation if not in confo@nce
and not considered. include a copy of this form with next communication to Applicant,
NOAC Ex. 1017 Page 151
1

F

© EtalFORM - 1449 o (:“\) SHEET 4 OF 5,
—
ATTY. DOCKET NO. SERIAL NO
APPT-001-4 09/608266
INFORMATION DISCLOSURE STATEMENT APPLICANT
Sarkissian et al.
O\PE
.»” (Use several sheeﬁq‘& ecessary) FILING DATE GROUP
6/30/2000 <z73T
APR 11 2001 b
«’ =
& <® U.S. PATENT DOCUMENTS
%.LTRW‘” - FILING DATE
‘EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | IF BPPROPRIBTE
INITIAL NUMBER
DA 5819028 Oct. 6, Manghirmalani et al. 395 |185.1 Apr. 16,
Ar 1998 1997
, 0B 5825774 Oct. 20, Ready et al. 370 401 Jul. 12,
AN 1998 1995
oC 5835726 Nov. 10, [Shwed et al. 395 |200.59 |Jun. 17,
. /(/\/ 1998 1996
; oD 15838919 Nov. 17, |Schwaller et al. 395 [200.54 |Sep. 10,
: Ar’ 1998 : 1996
) E 15841895 Nov. 24, |[Huffman 382 155 Oct. 25,
Av 1998 . 1996
v oF 5850386 Dec. 15, |aAnderson et al. 370 241 Nov. 1,
A 1998 - 1996
N oG 5850388 Dec. 15, |Anderson et al. 370 252 Oct. 31,
A 1998 - 1996
M DH 15862335 Jan. 19, Welch, Jr. et al. 395 {200.54 fjapr. 1,
1999 . 1993
o 15878420 Mar. 2, [|de la Salle 707 |10 Oct. 29,
o 1999 1997
o 15893155 Apr. 6, [Cheriton 711 144 Dec. 3,
Ar 1999 : 1996
AV DK 15003754 May 11, |Pearson 395 680 Nov. 14,
1999 1997
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
DM
DN
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) —
3
ro
DR @ = A
< O M
c T o
4 o M
DS > -
S M
2 =2 O
p=4
EXAMINER DATE CONSIDERED =
ﬂ (?5 4 / 7 / 27
‘EXAMINER® nitial if citation considé/red, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance
and not considered. Include a copy of this form with next communication to Applicant,
NOAC Ex. 1017 Page 152

- Etal.FORM - 1449 (\, Q SHEET 5 OF 5.
‘ ATTY. DOCKET NO. SERIAL NO.
APPT-001-4 09/608266
INFORMATION DISCLOSURE STATEMENT APPLICANT
Sarkissian et al.
o\ E
(Use severaMaets if necessary) FILING DATE GROUP
‘ 6/30/2000 2B s
e
&
U.S. PATENT DOCUMENTS
\“ FILING DATE
*EXAMINER ™" DOCUMENT DATE NAME CLASS | SUB-CLASS | F BPPROPRIBTE
INITIAL NUMBER
A-V " 5917821 Jun. 29, [Gobuyan et al. 370 [392 Aug. 16,
1999 1996
; 5414704 May 9, Spinney 370 466 Apr. S,
EB
K 1995 1994
fre e 6014380 Jan 11, [Hendel et al. 370 392 Jun. 30,
2000 1997
. D 5511215 Apr. 23, |Terasaka et al. 395 800 Oct. 26,
V g 1996 1993
EE
EF
EG
EH
El
EJ
EK
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
oM
DN
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
DR
DS
EXAMINER DATE CONSIDERED /
(e tlels>
*EXAMINER: nitial if citation con5|de;ed, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance
and not considered. Include a copy of this form with next communication to Applicant.
NOAC Ex. 1017 Page 153
‘l

R

-
¢

}

United States Patent [
Gobuyan et al.

Lo
R0 0 O T
US005917821A

5,917,821
Jun. 29,1999

(111 Patent Number:
451 Date of Patent:

[54] LOOK-UP ENGINE FOR PACKET-BASED
NETWORK

[75] Inventors: Jerome Gobuyan, Kanata; Wayne
Burwell, Ottawa; Nutan Behki,
Nepean, all of Canada

[73] Assignee: Newbridge Networks Corporation,
Kanata, Canada

[21] Appl. No.: 08/663,263

[22] PCTFiled: Dec.21,1994

[86] PCT No.: PCT/CA94/00695
§371 Date: Aug. 16, 1996

§ 102(e) Date: Aug. 16, 1996
[87] PBCT Pub. No.: WO95/18497
PCT Pub. Date: Jul. 6, 1995
[30] Foreign Application Priority Data

Dec. 24, 1993 [GB] United Kingdom wc.oooecmereereee 9326476
[51] Int. CLS HO04L 12/46
[52] US.CL 370/392; 370/401
[58] Field of Search ... 370/392, 395,

370/400, 401405, 465, 466, 351, 389,
396, 397, 474; 395/200.68

[56} References Cited

U.S. PATENT DOCUMENTS

5,095,480 3/1992 Fenmercceceee
5,463,777 10/1995 Bialkowski et al.

Primary Examiner—Chau Nguyen
Attorney, Agent, or Firm—Marks & Clerk

[57] ABSTRACT

An arrangement is disclosed for parsing packets in a packet-
based data transmission network. The packets include
packet headers divided into fields having values representing
information pertaining to the packet. The arrangement
includes an input receiving fields from the packet headers of
incoming packets, a:memory for storing information related
to possible valucs of said fields, and a device for retrieving
the stored information appropriate to a received ficld value.
The retrieving device compriscs a look-up engine-including
at least onc memory organized in a hierarchical tree
structure, and a controller for controlling the operation of the
memory. The arrangement is capable of performing fast
look-up operations at a low cost of implementation.

29 Claims, 11 Drawing Sheets

DESTINATION ADDRESS LOOKUP ENGINE - -

DESTINATl%NADDREESS‘/\5V %\\Lﬁ 16
1~ | LOOKUP GONTROLLER [=—] M. -

!

¢—11

T

AXE >
Input 9 FIFO Nx 18 |-
P 2 LOOKUP ENGINE Output to AXE
L. v conCEONTROLLER FIFONx18,—>ROutput }ﬁ
M [
s EA"QZ‘/\“ e \ eassemble
8K x RAM | 12
Reassembler 128K X 16 4.
Input 3j X 10
= i
2. __L | SOURGE ADDRESS SALE | | g
T LoOKUP CONTROLLER | o 6‘/

SOURCE ADDRESS LOOKUP ENGINE -~ ——-

NOAC Ex. 1017 Page 154

U.S. Patent Jun. 29,1999 Sheet 1 of 11 5,917,821
1007 101W 102W 103W 104j
Dest | Source ‘ NL Dest |NL Source
Address | Address Net Layer Protocol Type Address | Address
Tree Tree Microcode Tree Tree
Search Search Comparisons Search Search

FIG. 1
-=To ATM
15 16
Quad Control
FIG. 2 t L From ATM
DESTINATION ADDRESS LOOKUP ENGINE
DESTINATION ADDRESS 9 %AAﬁ +re6
1—7 | LOOKUP CONTROLLER [=+——) . A
A
T ———
(L LOOKUP ENGINE FIFO N 18 [Qutput to AXE
Rl;\(;w _ DcEONTROLLER RO N 18} Outpt to
32x 32 :EA,\%{,M oA \Reassembler
Reassembler /| == RaM_ |12
= i
2.+ | " SOURCE ADDRESS SALE | 1
LOOKUP CONTROLLER [515!(\'\1!16* 8
FIG. 3

SOURCE ADDRESS LOOKUP ENGINE

NOAC Ex. 1017 Page 155

[PV

U.S. Patent Jun. 29,1999 Sheet 2 of 11 5,917,821

20

SIB DATABUS OUT SIBDATABUSIN SIB ADDRESS BUS

! SIB RAM

[}

v

TO/FROM
SALE, DALE uCODE ADDRESS BUS ~ pCODE DATABUS IN uCODE DATA BUS OUT

~—40

]

21+
INTERFACE RAM '

INTERFACE DATABUS IN INTERFACE ADDRESS BUS

A2 —;_-EBBLE INDEX
s
(| *

INDEX POINTERS

A
| S— \) I DATA REGISTER
LOOKUP POINTERS

CANADIAN CODE

/ COMP \

/| LU | OPCODE | DIAP | PARAMETER |

[35
f o | | P\ mx /

PORT

X
| REGISTER

MICROCODE RAM

FIG. 4

NOAC Ex. 1017 Page 156

PN S———

O o

U.S. Patent Jun. 29,1999 Sheet 3 of 11 5,917,821

AXE 1
lnput44 DESTINATION ADDRESS LOOKUP ENGINE |

/2| [oesTvamion aooRess 5 | DALE |t
32 BIT LATCH LOOKUP CONTROLLER [=—— RAM
. 519K x 16
42
/ ! .
f
FIFON x 18 —)
FIFON x18 b4x16 721 S
) FIF
4 Y LOOKUP ENGINE IFO N x 18 [Output to AXE
43 CONTROLLER
FIFO N x 18. - Output to
32 BIT LATCH WCODERAM |, AE \Reassembler
? 8K x 32 RaM | 12
128K x 16 -
Reassembler ~——10
Input
2.1 [SOURCE ADDRESS SME | | g
11| LOOKUP CONTROLLER f=—1 RAM Y1
\ 512K x 16
/
(SOURCE ADDRESS LOOKUP ENGINE
7

NOAC Ex. 1017 Page 157

U.S. Patent Jun. 29,1999 Sheet 4 of 11 5,917,821

20 8 (6 —42,43
SBRAM '/ “SALE RAM DALE RAM T SNOOP FIFOS
AND RESULT FIFQS SALE SALF DALE DALE
SIBO(I50) SIBAG0) SIBA(S:4)} | AD(194) ABD) | | AD(19:4) A30) MF D{16:0)
L1 3 1t 11 RIE
SALE DALE | [INTERFACERAM | EFbRb
NIBBLE RAM NIBBLE RAM

T |RAMD(150) | RAMA(40)
SALE DALE | (

 [SALE ReGiSTER] || [pALE REGiSTER] 21

23 $ L '1\ L .._L0.1AD

INDEX POINTER .=+
> 2
jim LOOKUP POINTERS | v v é 0
ALE RESULT BUS

!

EEG 51

2~

CHECKSUM
0K LEGE

CHECKSUM
ENGINE m

MF DATA BUS
4 LOGIC UNIT DATA BUS
| MICROCODE PARAMETER BUS

55\ REGITERS —]
| OPCODE | DIAP]PARAMETER |
LN 52 INSTRUCTION
R
28 L xres MUX pp [oCLEMR T

PC —DD
{'SREG } +

5 56
Y REG N ;
MUK STATUS
BS | uCODEA(11:0) WCODE D(31:0)
SPDI

FUNG MICROGODE RAM

FIG. 6

NOAC Ex. 1017 Page 158

S SRR 2SR

v s — 3 AU oA

U.S. Patent Jun. 29, 1999 Sheet 5 of 11 5,917,821

BIT19-4 BT3-0 R
POINTER NIBBLE INDEX (n)

DALE RAM DALE RAM

512K x 16 912K x 16 N

8
-6
8000 n-FFFFn 80[]0 n FFFF n

FIG. 7

AN T8 16
0000 n-01FF n

POINTER ARRAY (MSB=1) nex7 pOINTER ARRAY POINTER (19-0)
p POINTER OR DATA NIBBLE INDEX

/ |
[

16x16
l_POl\ﬂER ARRAY (MSB=1) SIB (MSB=0)

/ FIG. 8

16x16 16x16

NOAC Ex. 1017 Page 159

AT sk Sonp 7 e

U.S. Patent

Jun. 29,1999 Sheet 6 of 11 5,917,821

ROOT POINTER
NIBBLE 1= $0

NIBBLE2=$0
NIBBLE 3 = $8
NIBBLE 4 = §F
NIBBLE 5 = §C
NIBBLE 6 = $2
NIBBLE 7 = $8
NIBBLE 8 = §6
NIBBLE 9= $5
NIBBLE 10=$7
NIBBLE 11 = §3
NIBBLE 12 = §9

MAC ADDRESS TREE - EXAMPLE $008FC2865739

o

SO0 JUIRIL 0L

FIG. 9

SiB

ROOT POINTER

FIG. 1

NOAC Ex. 1017 Page 160

U.S. Patent

Jun. 29, 1999

Sheet 7 of 11

5,917,821

SOURCE ADDRESS LOOKUP ENGINE
Hg
] 9 MAC->Found/Not Found
% b
§7
S8
89
s
§12
Address Match » (SIB Pointer
Address Match Fail = (Null Pointer
FIG. 11
DESTINATION ADDRESS LOOKUP ENGINE
[o1] D2
03 | MAC->Found/Not Found
Hem
07
D8
D9
M0
D12
Address Match — (SIB Pointer
Address Match Fail e (Nl Pointer
FIG. 12

NOAC Ex. 1017 Page 161

% #?"»%’t.ﬁﬂfjﬁym JEUPRR

el A e

U.S. Patent Jun. 29,1999 Sheet 8 of 11 5,917,821
e BRI 4 BIT3-0] uCODEWORD
| BT 15-0 | l LP
| BIT19-4 [BIT3-0]| SIBADDRESS

FIG. 13
e L Lt ettt L L 11 1 i 1 ! |
Status Flags| 0l Status Fags | EA | RX | RP
.
m% ';}gg: RP-ROUTED PDU
Hags Proto 1 Area
Hags | Proto 2 Area Encap Fags | 0 [FU | EN
Hags Proto 3 Area FU-FUTURE USE
20~ Hags Proto 4 Area EN-MAC ENCAP FORMAT
Hags Proto 5 Area
Other Area Pointer PhotoFags|{ PA | PV | MI | MH
Enc | Proto1 Dest Arca gegg%gggkm\&
Enc | Proto2 Dest Area MI-MULT-INTERFACE
Enc | Proto3 Dest Area MH-MULTI-HOMED
Enc { Proto4 Dest Area
Enc | Protod Dest Area
Other Dest Area Pointer FIG' 14

STATION INFORMATION BLOCK

NOAC Ex. 1017 Page 162

U.S. Patent

Jun. 29,1999 Sheet 9 of 11 5,917,821

PhotoFlags { PA | PV | 1 | 1
PortSet PA-PROTOCOL ACTIVE
PV-PROTOCOL VALID
Hags | 1PX802.2 Area
Hags | IPX SNAP Area
Hags IPX Raw Area
Flags IPX Ether Area
[PX 802.2 Dest Area
[PX SNAP Dest Area
[PX Raw Dest Arsa
{PX Ether Dest Area
PORT INFORMATION BLOCK
Dest Area nibble 1 FIG. 15
Dest Area nibble 2
Dest Area nibble 3
3 nibble destination area
Source Area Y
Pointer —
2 nibble destination area
Filtering Rule [o Jar1jarefaralardlansi 0 fo Jofofofofofoo o]

ARx-ALLOW ROUTING PROTOCOL x

FIG. 16

NOAC Ex. 1017 Page 163

pos——

U.S. Patent Jun. 29, 1999 Sheet 10 of 11 5,917,821

oReset

oF|FO empty

*snoop done State 73

estop AND snoop done
*FiFO not empty P d estop AND snoop

not done

*FIFO not empty
AND (Group=7)

oFIF0 empty

*FIFQ not empty
AND (Group<4)

State 1

*F|FO not empty
AND (Group=/)
OR (Group=6)

*FIFO not empty
AND (Group=5)

oSIB_TA true

FIG. 17

NOAC Ex. 1017 Page 164

R Ak V,Fﬂ
w—

R Rk

PR ;‘»‘wtﬁmﬁwfw s

it — . =

U.S. Patent

Jun. 29, 1999 Sheet

5,917,821

11 of 11

Increment Branch Instructions {Group 2, no wait states)

POk A AN\ N\

/F Addr A Incrementy No Increment

I/F Data KX Valid I/F Data in Valid I/F Data in

Inst Addt PC XPC+1] PC PC+dispX

Inst Reg_ KX Valid Opcode XX Valid Opcode

Condition OOXUCONNGX_— TRUE Y0000 FALSE YX0X

State X S2 X S3[X SO X ST X S2 X S3|X S0 X ST Y S2 X S3

EXECCYCLE \ | / _ 1| / __|

PC_ADD [\ |
FIG. 18 | Increment/Branch instruction | Increment/Branch instruction

(Condition=TRUE})

(Condition=FALSE)

SIB RAM Access Instructions (Group 5)

PCLK WA AW WIAW A WA
SIB_RQ / _
SIB_GR / |
SIB_CS / N
SIB_TA v |
SIB_Addr)
SIB_WEb(Write] /]
SIB_Data(Write) JOCOERA Valid SIB Data
SIB_OEb(Read) (. /]
SIB_Data(Read) Valid SIB Data
Inst Addr X IPC XPC+1
Inst Reg XXX Vaiid Opcode
State X S2 X S3[X SO X ST Y S2 YS»Y S3
EXECCYCLE ~— [/ |
SIB RAM Access
(No wait states)

FIG. 19

NOAC Ex. 1017 Page 165

5,917,821

1

LOOK-UP ENGINE FOR PACKET-BASED
NETWORK

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION

This invention relates to the field of data communications,
and more particularly to packet-based digital communica-
tions networks.

There are two broad classes of network: circuit-based and
packet-based. Conventional telephone networks are circuit
based. When a call is established in a circuit-based network,
a hard-wired connection is set up between the calling parties
and remains in place for the duration of the call. Circuit-
based networks are wasteful of available bandwidth and lack
flexibility.

Packet-based networks overcome many of the disadvan-
tages of circuit-based networks. In a packet-based network,
the data are assembled into packets containing one or more
address fields which define the context of a packet, such as
protocol type and relative positions of other fields embedded
in the packet. LAN bridges and routers use the information
in the packet to forward it to the destination.

In a packet-based network, a packet must be parsed as it
flows through the network. Parsing is the process of extract-
ing and analyzing the information, such as source and
destination address and net layer protocol, contained in the
packets.

In known networks, packet parsing is generally performed
with a microprocessor, which provides flexibility in ban-
dling different packet types and can be upgraded to handle
new packet types as they are defined. Content Addressable
Memory (CAM) is commonly used for hardware assistance
to speed up searches through a list of known addresses. This
is a tedious task. CAMs are also rclatively expensive and
limited in size and availability.

General purpose processor architectures are not specifi-
cally directed toward the types of operations required in
packet parsing and so they tend to be inefficient. To mect
performance requircments, a fast but expensive processor
based solution can be implemented. In the highest perfor-
mance systems, hardware solutions arc implemented to
increasc speed, but at the cost of flexibility.

SUMMARY OF THE INVENTION

An object of the invention is to provide a fast, but
inexpensive solution to the problem of packet-parsing in
packet-based networks.

According to the present invention there is provided an
arrangement for parsing packets in a packet-based digital
communications network, said packets including packet
headers divided into ficlds having values representing infor-
mation pertaining to the packet, said arrangement compris-
ing an input memory for receiving fields from said packet
headers of incoming packets; and a look-up engine for
retrieving stored information appropriate to a received ficld
value. The look-up cngine includes at least one memory
storing information related to possible values of said fields
in a hierarchical tree structure and associated with a respec-
tive field of packet headers; 2 memory controller associated
with cach said memory storing information related to pos-
sible values of said ficlds for controlling the operation
thereof to retrieve said stored information therefrom; and a
microcode controller for parsing a remaining portion of the
packet header while said stored information is rctneve:d and
controlling the overall operation of said look-up cngine.

The memory and retricving means cousl{tl{lc a logk-up
engine, which is the central resource containing all infor-

10

25

30

45

55

65

2

mation necessary for forwarding decisions. In 2 preferred
embodiment the look-up engine includes a source address
look-up engine and a destination address look-up engine.

In a packetized data transmission conforming to IEEE802
standards, the packets have 2 MAC (medium access control)
beader containing information about the destination and
source addresses and the net layer protocol. The invention
permits packet switching to be achieved in a bridge-router,
for example an Ethernet to ATM bridge-router, at a rate of
about 178,000 packets per second using 64 byte minimum
Ethemet packets. This means that the MAC headers are
interpreted once every 5.6 micro seconds.

The look-up cngine preferably employs table look-ups
using nibble indexing on variable portions of the packet,
such as MAC and network layer addresses, and bit patten
recognition on fixed portions for network layer protocol
determination.

Each look-up table is organized into a hexadecimal search
tree. Bach scarch tree begins with a 16 word root table. The
scarch key (c.g. MAC address) is divided into nibbles which
are used as indices to subscquent tables. The 16 bit entry in
the table is concatenated with the next 4 bit nibble to form
the 20 bit address of the next 16 word table. The final leaf
entrics point to the desired information.

Bit pattern recognition is achieved by a microcode
instruction sct. The microcode engine has the ability to
compare ficlds in a packet to preprogrammed constants and
perform branches and index increments in a single instruc-
tion cycle typically. The microcode engine has complete
control over the scarch procedure, so it can be tailored to
specific look-up functions. New microcode is downloaded
as new functions are required.

The look-up engine can perform up to two tree searches
in parallel with microcode execution. Look-up time is quick
because the microcode determines the packet’s network
layer format while the source and destination addresses are
being searched in parallel. The results of the source and
destination look-ups and the protocol determination arrive at
roughly the same time, at which point the next level of
decisions is made.

The look-up enginc also performs protocol filtering
between arcas. The system allows devices to be grouped
arbitrarily into arcas on a per protocol basis and defines
filtering rules among these areas. The look-up engine keeps
track of cach station’s area for each of its protocols. The
source and destination areas are cross-indexed in a search
tree, which is used to find the filtering rule between the two
areas. Separate filtering rules are defined for bridging and
network layer forwarding; bridging is normally allowed
within an arca while network layer forwarding is selectively
allowed between arcas.

The parsing controller typically has a pointer to the
current field in the packet being examined. The controller
moves this pointer to the next ficld in the packet after all
decisions based on the current field are made.

At each decision point on a tree, the current field is
compared to a known value or range. If the comparison
yields a true condition, the controller moves to the next
decision point by moving the current field pointer. Other-
wise the field pointer is left alone and controller branches to
new code to compare the current field to a different value or
range. This process is repeated until a final decision is made.

Moving to the next decision point requires several dis-
crete steps in a general purpose processor. Unlike a general
purpose processor, which has the disadvantage that it only
has a single memory bus for both instruction and data
fetches, the Look-up engine controller has separate buses for
instruction and data and typically performs onc decision per
step. Fast decisions are made possible by a special set of

NOAC Ex. 1017 Page 166

o il e o

T v TN

s i
e

g e

i i w oses myes

5,917,821

3

instructions which both conditionally move the pointer and
conditionally branch to new code in a single step. The
comparisons and pointer movements can be byte or word
wide, according to the current field’s size.

The look-up engine implements other optimized instruc-
tions which perform bit level logical comparisons and
conditional branches within the same cycle as well as other
instructions tailored to retrieving data from nibble-indexed
data structures.

The look-up engine is preferably divided into the follow-
ing sections:

a) onc or more nibble tree address look-up engines (ALE)
b) one microcode engine

Each ALE is used to scarch for addresses in 2 tree
structure in its own large bank of memory. The result of a
search is a pointer to pertinent information about the
address. An ALE is assigned to destination addresses
(DALE) and source addresses (SALE). The ALEs operate
independently of each other.

The microcode engine is used to coordinate the search. It
invokes the SALE and DALE to search for the source and
destination addresses respectively and continues on to parse
the remainder of the packet using an application-specific
instruction set to determine the protocol.

The SALE, DALE and microcode engine can execute in
parallel and arrive at their corresponding results at roughly
the same time. The microcode engine then uscs the SALE
and DALE results along with its own to arrive at the
forwarding decision.

c advauntage of using RAM over a CAM is expand-
ability and cost. Increasing RAM is a trivial and inexpensive
task compared to increasing CAM size.

e advantage of the microcode engine over a general
purpose processor is that an ASIC implementation of the
function is much less expensive and less complex than a
processor-based design with all the overhead (RAM, ROM)
associated with it.

The invention also related to a method of parsing packets
in a packet-based data transmission network, said packets
including packet headers divided into fields baving values
representing information pertaining to the packet, compris-
ing storing information related to possible values of said
fields, receiving fields from said packet headers of incoming
packets, and retricving said stored information appropriate
to a received field value, characterized in that said informa-
tion is stored in a memory organized in a hierarchical tree
structure.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in more detail, by
way of cxample only, with reference to the accompanying
drawings, in which:

FIG. 1 is an example of a MAC laycr header of a typical
packet;

FIG. 2 shows the data paths in a typical bridge-router
between Ethernet LAN and ATM networks;

FIG. 3 is a block diagram of a first embodiment of a
look-up engine in accordance with the invention;

FIG. 4 is a block diagram of a look-up engine controller
for the look-up engine shown in FIG. 3;

FIG. 5 is a block diagram of a second embodiment of a
look-up engine in accordance with the invention;

FIG. 6 is a block diagram of a look-up engine controller
for the look-up engine shown in FIG. 5;

FIG. 7 is a map of look-up engine Address Look-up
engine (ALE) memories;)

FIG. 8 is a diagram illustrating search iree operation in an
ALE;

10

30

35

45

50

55

60

4

FIG. 9 shows one example of a MAC search tree;

FIG. 10 shows the effect of the organizationally unique
identifier of the MAC addresses on the size of the search
tree;

FIG. 11 shows the source address look-up engine table;

FIG. 12 shows the destination address look-up table;

FIG. 13 illustrates the look-up engine addressing modes;

FIG. 14 shows a station information block;

FIG. 15 shows a port information block;

FIG. 16 shows an example of protocol filtering;

FIG. 17 shows a look-up engine controller Instruction
State Machine;

FIG. 18 shows a typical fast timing diagram; and

FIG. 19 shows a typical SIB RAM access instruction
timing diagram.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A typical look-up engine (LUE) in accordance with the
invention is designed to be used in a twelve-port wire speed
Ethernet to ATM bridge-router capable of switching about
178,000 packets per sccond using 64 byte minimum Ether-
net packets. This packet rate corresponds to a look-up
request occurring every 5.6 usecs. The LUE is used each
time a packet is received off the Ethemet or the ATM
network. The type of information that the engine provides
depends on the direction of packet flow and the type of
packet.

The look-up engine provides all the information needed to
find the path to each known destination, as well as default
information in the case of woknown destinations.

FIG. 1 shows a typical MAC layer header format for a
packet that can be parsed with the aid of the look-up engine
in accordance with the invention. The header comprises
destination and source address fields 100, 101, a network
layer protocol type ficld 102, and network layer destination
and source address fields 103, 104. FIG. 1 also illustrates
how the header is parsed in accordance with the invention.
All fields except 102 are parsed using a tree search. The Net
Layer Protocol Type field 102 is parsed by using microcode
comparisons in the microcode engine 1o be described.

On a bridge-router, cach port is represented by a corre-
sponding bit in a PortSet (Ports 0-11), which is a 16 bit value
that has local significance only. The Control Processor and
ATM are cach assigned a port.

The following definitions are special cases of a PortSet:

SinglePortSet

a PortSet with a single bit set.

HostPortSet

a SinglePortSct corresponding to the Control Processor
MyPortSet

a SinglcPortSet corresponding to the source port of this packet.
NullPortSct

a PortSet of no parts.

A Connection Identifier (CI), which is a 16 bit value with
local significance only, is used to map connections into
VPI/VCI values.

The following definitions are special cases of CI:

Mesh_CI
2 CI orresponding to a path towards the destination endstation's
Bridge-router. ’

NOAC Ex. 1017 Page 167

(5

R Dt

RV

birs # % g1 ek e

NN

e

.
——

3

(ool

)

5,917,821

5

-continued

Null_Ct

a Cl connected to nothing. It is returned when the destination is
attached to the local Bridge-router or if the connection is not
allowed.

RS_CI

a CI corresponding to a path to the Route Server.

ABS_C1

a CI corresponding to a path to the Address/Broadcast Server.

6

The Bridge command instructs the AXE (Transfer
Enginc) to use RFC-1483 bridge encapsulation. BridgeProp
command instructs the AXE to use bridge-router encapsu-
lation (include source PortSet in encapsulation)

Unknown_SA —-> BridgeProp, Null _CI, HostPortSct, MyPortSet
* Unknown SA - send to HP for Spanning Tree processing

* HP will decide whether to forward it to ABS for leaming,

d ding on Spanning Tree state

MAC layer addresses are globally unique 48 bit values,
except in some protocols such as DECNet, where they may
not be globally unique.

10

Unicast DA -> Bridge, Mesh_CI, NullPortSet
* DA in the same area on a different Bridge-router
Unicast_ DA -> Bridge, Null CI, NullPortSet
* DA not in the same area (reject)

* Protocol not allowed to bridge-router

* DA on the same port

Unicast_ DA -> Bridge, Null _CI, SinglePortSet
Unicast_ DA 15 « DA in the same arca on the same Bridge-router but on a different
MAC In destinati dd. f d-station port
;oum:_DYAer oL an e Unknown_DA -> BridgeProp, ABS__CI, NullPortSet, MyPortSect
a MAC layer destination address of the Route Scrver. An end- * DA not fonnd in the ta.b.le - send to ABS for fiood processing
station sends packets to the Route Server when it cannot send to Broadcast DA -> BridgeProp, ABS_CI, NullPortSet, MyPortSet
the destination directly at the MAC layer. * Broadcast DA - Send to Control Processor for broadcast
Broadcast_DA 20 processing
the broad MAC Inyer address (all oncs) which is received by Multicast_ DA -> BridgeProp, ABS__CI, NullPortSet, MyPortSet
all end-stations. It cannot be a source address. * Malticast DA - Scnd to ABS for multicast processing
Multicast DA Multicast_ DA —> Bridgeprop, Null__CL HostPortSct, MyPortSet
a multicast MAC Iayer address (group bit set) which is received by * Malticast DA is of interest to HP (g Spanning Tree)
end-stations that recognize that multicast address. e whether to forward it to or multicast
gnize * HP wil.l decide wheth fc d it to ABS for mmlti
25 P g
Network layer (NL) addresses are metwork protocol Routi - - .
o X outing occurs when the destination address is the unjcast
depondent Thy re pevrly dividd o Nk, oty e i, Tieag e teveen e 4
all three present, The Network Layer Address Field Sizes (in ,, SPlcitly defined per protocol The per protocol source arca
bits P ized in the tabl yb Tow. 30 js an attribute of the source MAC address and the per
its) are sum I © below. protocol destination area is an attribute of the destination NL
address.
i Both source MAC and destination NL addresses must be
Protocol Total Size Network Stibnet Node known before network layer forwarding can occur.
g 32 8116124 variable variable 35 The packet will be bridged to the Route Server if any of
PX 0 nfa 32 & £ addros) the following are true:
& 8S -
AppleTlk 24 1 16 8 IP options are present
DECNet 64 16 38 10 Protocol is unknown
(reserved) ('l:gc;RD') The packet will be dropped if any of the following are
(6 = subner) 40 true:))
Source area is not allowed to send to Destination area for
this protocol
adgthezsgsok-up engine handles unicast network layer Source NL address is invalid (e.g. any IP broadcast
y address)
When the look-up enginc is used in a bridge-router 45 1 s
providing an interface between an Ethernet and ATM Che s invalid .
network, packets coming from the Ethemet side are fed into Time-To-Live ficld expires
the Look-up Engine. The result of the look-up has the form:
s0 Unicast NLDA -> Route, Mesh_CI, NullPortSct
* NL node on a different bridge-router
Input —> Command, CI, PortSet Unicast_ NLDA -> Route, Null_CI, SinglePortSct
* NL node on the same bridg-e-mumr (could be same port)
where Input is derived from the first few bytes of the packet ?mmumunﬁ e e MB';A%";“};SE?V’C :quronSet
and Command is an opcode to the AXE (Transfer engine). Usknown_Protocol -> Bridge, RS_CI, NullPortSet
The Quad MAC status word distinguishes between router 55 * protocol unknown, or packet with options
MAC, broadcast and multicast MACs.
Bridging occurs when the destination address is a unicast . . .
address other than the Route Server address. Bridging is CoFl;It% 1 2 ::;ws th; Gd;m paths ni’ a typltct:la.l ?Ondgc-g'ou.tcrf
allowed between two cndstations in the same area for a processor as control over the formatting o
given protocol " packets it sends apd receives. If the control processor 16
Both so and destination MAC addresses must be wants 190k-up cngine 17 to perform a look-up, it forn}als the
urce A ey AR 3 packet in the same way as Quad Mac 15; otherwise it sends
koown before automatic bridging/filtering is performed; t . L
. g it as a raw packet, which does not require a lengthy look-up.
otherwise, the packet is sent to the Route Server for: The control processor predetermines the destination by
SA (Source Address) validation 1{ the SA has neverbeen providing a CI (Connection Identifier) and an output Portset
seen speaking a given protoco 65

DA (Destination Address) resolution if the DA was not
found in the local MAC cache.

as part of the data stream. A bit in the Quad MAC status
word indicates a raw packet and the look-up engine simply
retrieves the CI and Portset as part of the data streant. A bit

NOAC Ex. 1017 Page 168

5,917,821

7

in the Quad MAC status word indicales a raw packet and the
look-up engine simply retrieves the CI and Portset from the
data stream and feeds it to the AXE (Transfer Engine)
through the result FIFO. The Control processor is respon-
sible for correctly formatting the required encapsulation.

As shown in FIG. 2, packets coming from the ATM side
are fed into the look-up engine. The look-up engine accepts
an RFC-1483 encapsulated packet and determines whether
to look at a MAC or NL address. The result of the look-up
will have the form:

Input - PortSet

Filtering is not performed in this direction. It is assumed
that the all filtering is done at the ingress side. It is also
assumed that the destination endstation is known to be
attached to the receiving Bridge-router, so unicast packets
with unknown destination addresses are dropped.

Flood and broadcast packets are encapsulated in a special
format which includes an explicit output PortSet.

Unicast. DA ~-> SinglePortSet

* DA on this Bridge-router

Unknown_DA -> NullPortSet

* DA not in the table (drop) - this situation should not occur.
Unicast_NLDA -> SinglePortSet

* NLDA on this Bridge-ronter

Unknown _NLDA ~> NullPortSet

* NLDA not in the table (drop) - this situation should not occur.
Broadcast_ DA,PortSet —> PortSet

* Proprietary Broadcast request received from RS

Multicast_ DA,PortSet ~> PortSet

* Proprictary Multicast request received from RS
Unknown__DA,PortSet —> PortSet

* Proprictary Flood request received from RS

Turning now to FIG. 3, the look-up enginc consists of
three functional blocks, namely a destination address look-
up engine (DALE) 1, a source address look-up engine
(SALE) 2, and a look-up engine controller (LEC) 3, which
includes a microcode ram 4. DALE 1 includes a destination
address look-up controller 5 and DALE RAM 6. SALE 2
includes a source address look-up controller 7 and SALE
RAM 8. The input to the look-up engine is through a fast
16-bit wide /F RAM 9 receiving input from the AXE
(Transfer Engjne) and reassembler. The output from the
look-up engine is through word-wide FIFOs 11, 12.

One embodiment of look-up engine controller (LEC) 3 is
shown in more detail in FIG. 4. This compriscs (Station
Information Block) SIB ram 20, interface ram 21, and
microcode ram 22. The SIB ram 20 is connected to look-up
pointers 23. Interface ram 21 is connected to data register 25
and index pointers 26 connected to ALU (Arithmetic Logic
Unit) 27. Microcode ram 22 is connected to instruction
register 28.

The look-up Engine controller 3 is a microcoded engine
tailored for efficient bit pattern comparisons through a
packet. It communicates with the Source Address Look-up
Engine 2 and the Destination Address Look-up Engine 1,
which both act as co-processors to the LEC 3.

The look-up engine snoops on the receive and transmit
data buscs and deposits the header portion of the packet into
the I/F RAM 9. The look-up response is senl to the appro-
priate FIFO 11, 12.

FIGS. 5 show an alternative embodiment of the loop-up
engine and controller. In FIG. 5, the LEC 3 includes a 64x16
I/F (Interface) ram 41 connected to FIFO’s 42, 43 (First-in,
First-out memories) respectively connected to latches 44, 45
receiving AXE (Transfer Engine) and reasscmbler input.

Referring now to FIG. 6, the LEC 3 also contains several
registers, which will now be described. Register select
instructions are provided for the register banks (XP0-7,
LP0O-7).

10

50

s5

65

8

Index Pointer register (IP) 50 is a byte index into the I/F
RAM 21. Under normal operation, the index pointer register
50 points to the current packet field being examined in the
I/F RAM 21 but it can be used whenever random access to
the I/F RAM 21 is required.

The IP 50 can be modified in one of the following ways:

1) loaded by the LOADIP instruction (e.g. to point to the
beginning of the packet)

2) incremented by 1 (byte compare) or 2 (word compare) if

a branch condition is not met.

3) incremented by 2 by a MOVE (IP)+ type instruction.

Data Register 51 contains the 16 bit value read from I/F
RAM 21 using the current IP. The DR 51 acts like a one
word cache; the LEC keeps its contents valid at all times.

Program Counter 52 points to the current microcode
instruction. It is incremented by one if a branch condition is
true, otherwise the displacement field is added to it.

The Lookup Pointers (ILP0-7) 23 are 16 bit registers
which contain pointers to the SIB RAM 20. The LPs are
used to store pointers whenever milestones are reached in a
search. One LP will typically point to a source SIB and
another will point to a destination SIB. The LP provides the
upper 16 bits of the pointer; the lower 4 bits are provided by
the microcode word for indexing into a given SIB.

The LPs are also used to prime the SALE and DALE with
their respective root pointers.

X,Y Registers 53, 54 are general purpose registers where
logic manipulations can be made (AND, OR, XOR). They
are used for setting and clearing bits in certain words in the
SIB RAM (e.g. Age bit) and to test for certain bits (e.g. status
bits). The X Register 53 can be selected as Operand A to the
Logic Unit while the Y Register can be selected as Operand
B.
The BYZ and BYNZ instructions conditionally branch on
Y=0 and Y<0 respectively.

The Y Register 54 is the only register source for moves to
the result FIFOs.

The X Register 53 can be saved to or restored from X'
Registers (X'0-X'7) 55. The mpemonic symbol for the
currently selected X' register is XP.

The S Register 56 is a pipelining stage between SIB RAM
20 and the Logic Unit. It simplifies read access from SIB
RAM 20 by relaxing propagation delay requirements from
SIB RAM 20 valid to register sctup. It provides the added
advantage of essentially caching the most recent SIB RAM
access for repeated use. It is loaded by the GET Index(LF)
instruction.

As in FIG. 3, the LEC 3 controls the operation of the
look-up engine. All look-up requests pass through the LEC
3, which in turn activates the SALE 2 and the DALE 5§ as
required. The LEC 3 is microcode based, ruoning from a
32-bit wide microcode RAM. The instruction set consists
mainly of compare-and-branch instructions, which can be
used to find specific bit patterns or 1o check for valid ranges
in packet fields. Special I/O instructions give the LEC
random read access to the interface RAM.

The LEC has access to 3 memory systems: the interface
RAM 9, the SIB RAM 20 and the Microcode RAM 22,

ThetErTace RAN Y 156822 (5 feed Packet dita 0o the
LEC 3. The look-up engine hosts dump packet headers into
this RAM through snoop FIFOs 42, 43. This RAM is only
accessible through the snooped buses.

The SIB RAM 20 is used to hold information for each
known end-station. The LEC 3 can arbitrarily retrieve data
from this RAM and transfer it to onc of the response FIFOs
11, 12 or to internal registers for manipulation and checking.
High speed RAM is also used to minimize the data retrieval
time. The size of the SIB RAM 20 is dependent on the
maximum number of reachable end-stations. For a limit of
8,000 end-stations, the SIB RAM size is 256K bytes. This
RAM is accessible directly to the Control Processor for
updates. .

[wcle

NOAC Ex. 1017 Page 169

e A

[————

v v

5,917,821

9

The Microcode RAM 22 is dedicated to the LEC 3. It
contains the 32 bit microcode instructions. The LEC 3 has
read-only access to this high speed RAM normally, but it is
mapped directly to the Control Processor’s memory space at
startup for microcode downloading.

Variable fields of a packet, such as addresses, are searched
in one of many search trees in the ALEs 1, 2, (FIG. 5), which
are nibble index machines. Each ALE 1,2 has its own search
trec RAM 6, 8 (FIG. 7), which is typically high density but
low speed. This RAM is divided into 32 byte blocks which
can either be Index Arrays or Information Blocks.

The searches in the ALEs 1, 2 are based strictly on the root
pointer, the search key and scarch key length it is given. A
Iook at the look-up engine memory map (FIG. 7) as viewed
from the ALEs shows how the mechanism works.

All search trees in a given ALE 6, 8 reside in the upper
half of its memory. The 16-bit root pointer given to the ALE
will have the most significant bit sct. The scarch key (e.g.
MAC address) is divided into nibbles. The first nibble is
concatenated with the root pointer to get an index into the
root pointer array. The word at this Jocation is retrieved. If
the MSB (Most Significant Bit) (P Bit) is set, the next nibble
is concatenated with the retrieved word to form the next
pointer. If the P Bit is clear, the search is finished. The final
result is given to the LEC, which uses it either as a pointer
into the SIB RAM, or as data, depending on the context of
the search. A zero value is reserved as a null pointer value.
FIG. 8 illustrates scarch tree operation.

The search key length limits the number of iterations to a
known maximum. The control processor manipulating the
search tree structure may choose to shorten the search by
putting data with a zero P bit at any point in the tree.

“Don’t Care” ficlds arc also achievable by duplicating
appropriate pointers within the same pointer array. Search
trees arc maintained by the Control Processor, which has
direct access to the SALE and DALE RAMs 6, 8.

FIG. 9 is a diagram illustrating a MAC secarch tree
example. The main purposc of the ALE RAMs 6, 8 is to hold
MAC layer addresses. The size of the RAM required for a
MAC address tree depends on the statistical distribution of
the addresses. The absolute worst case is given by the
following formula:

N=ZL:mi1(]6"‘l,X

=L

where

X is the number of addresses

L is the number of nibbles in the address

N is the number of pointer arrays

The amount of memory required, given 32-byte pointer
arrays, is 32N. The number obtained from this formula can
be quite buge, especially for MAC addresses, but some
rationalizations can be made.

In the case of MAC addresscs, the first 6 nibbles of the
address is the Organizationally Urique Identifier (OUI),
which is common to Ethernet cards from the same manu-
facturer. It can be assumed that a particular system will only
have a small number of different QUIs.

The formula for MACs then becomes:

N= zalmiﬂlﬁ"l, M) +i imm"’,xj
= L=t

where

M is the number of different OUls

X; is the number of stations in oul;

Assuming, that the addresses are distributed cvenly over
all OUIs,

5

10

30

45

50

55

60

65

10

6 12
. X
N= Z (1652, M)+ MZ min(167, %

i=1 =7

The effect of OUI on Search Tree Size is shown in FIG.

Similar rationalizations can be made with IP and other
network layer protocol addresses. An IP network will not
bave very many subnets and even fewer network numbers.

Although the SALE 2 typically bolds locally attached
source MAC addresses and the DALE 1 typically holds
destination MAC addresses, either ALE 1, 2 is capable of
bolding any arbitrary search tree. Network layer addresses,
intra-area filters, and user-defined MAC protocol types can
all be stored in search trees. The decision to put a search tree
in cither SALE or DALE is implementation dependent; it
relies on what scarches can be done in paralie] for maximum

The principal function of the SALE 2 is to keep track of
the MAC addresses of all stations that are locally attached to
the bridge-router. Typically one station will be attached to a
bridge-router port, but connections to traditional hubs,
repeaters and bridge-routers are allowed, so more source
addresses will be encountered.

Using the formula for RAM size above, typical RAM
calculations for the source address trees are as follows:

Number of
Number of OUls Stations Total Bytes
20 400 65,440
2 500 65,184
20 500 71984
20 800 116,284
5 1,000 131,552

The number of source stations is limited to some fraction
of the total allowable stations. The limit is imposed here
because the SALE will most likely hold many of the other
search trees (¢.g. per protocol NL address scarch trees,
intra-area filters).

‘Whenever a new source address is encountered, the SALE
1 will not find it in the MAC source address search tree. The
LEC 3 realizes the fact and sends it to the Control Processor.
The new source address is inserted into the search tree once
validation is reccived from the Route Server.

Whenever a previously learned address is re-encountered,
the Age entry in the SIB 20 is refreshed by the LEC 3. The
control processor clears the Age entry of all source addresscs
every aging period. The entry is removed when the age limit
is exceeded.

The source address look-up engine table is shown in FIG.
1.
The DALE 1 keeps track of all stations that are directly
rcachable from the bridge-router, including those that are
locally attached. The DALE search trees are considerably
larger because they contain MAC addresses of up to 8,000
stations.

Typical memory sizes for MAC destination address
search trees would be:

Number of Number of
OuLs Stations Total Bytes
10 8,000 856,992
20 8,000 945,824
30 8,000 1,034,464

A §tation’s MAC address will appear in the MAC search
tree if the station is reachable through MAC bridging. A

NOAC Ex. 1017 Page 170

ey

.
P

R

s R R R R I e N BRIV |

5,917,821

11

slation’s network layer address will appear in the corre-
sponding network layer search tree if it is reachable through
routing.

The destination address look-up engine MAC table is
shown in FIG. 12.

IP masking may be required if a particular port is known
to have a router attached to it. Masking is achieved by
coanfiguring the IP network layer search tree in such a way
that the node portion of the address is treated as Don’t Care
bits and the corresponding pointers point to the same Next
Index Array.

The SALE and DALE RAM:s 8, 6 are divided up into 16
word blocks. These RAMSs are accessible only to the corre-
sponding ALE and the Control Processor. These RAMs
contain mostly pointer arrays organized in several search
trees.

The SIB RAM 20 is divided into 16 word blocks which
can be treated as records with 16 fields. Each block typically
contains information about an endstation. This RAM is
accessible only to the LEC and the CP.

The LEC 3 uses the lookup pointer (LP) as a base pointer
into a SIB 20. The contents of the LP is obtained either from
the result of a SALE 2 or DALE 1 search to access
end-station information, or from a constant loaded in by the
microcode to access miscellancous information (e.g. port
information). The LP provides the upper sixteen bits and the
microcode word provides the lowest four bits of the SIB
RAM address.

The lookup Engine addressing scheme is shown in FIG.

The SIB RAM 20 (FIG. 14) generally contains informa-
tion about the location of an endstation and how to reach it.
For example, the PortSet field may keep track of the port that
the endstation is attached to (if it is locally attached) and the
connection index refers to a VPI/VCI pipe to the endstation
(if it is remotely attached). Other fields are freely definable
for other things such as protocol filters, source and destina-
tion encapsulation types and quality-of-service parameters,
as the need arises.

A variant of the SIB is the Port Information Block (PIB)
(FIG. 15). PIBs contain information about a particular port.
Certain protocols have attributes attached to the port itself,
rather than the endstations. An endstation inherits the char-
acteristics assigned to the port to which it is attached.

The definition of the SIB is flexible; the only requirement
is that the data be easily digestible by the LUE instruction
set. The field type can be a single bit, a nibble, a byte, or a
whole word.

In FIG. 14, the ClI (Connection Identifier) field is a
reference to an ATM connection to the endstation if it is
remotely attached. This field is zero for a locally attached
endstation.

The PortSet field is used both for determining the desti-
nation port of a locally attached endstation, and for deter-
mining whether a source endstation has moved. In one
Newbridge-router Networks system, a2 moved cndstation
must go through a rcadmission procedure to preserve the
integrity of the network. This field is zero for a remotely
attached endstation.

The MAC Index is a reference to the 6-byte MAC layer
address of the endstation. This field is used for network layer
forwarded packets, which have the MAC layer encapsula-
tion removed. The MAC layer address is re-attached when
a packet is rc-cncapsulated before retransmission out an
Ethernet port. The encapsulation flags determine the MAC
re-encapsulation format.

The Proto Arca and Proto Dest Area ficlds are used for
filtering operations. Becausc the Newbridge-router system
essentially removes the traditional physical copstraints on a
network topology, the area concept logically re-imposes the
constraints to allow existing protocols to function properly.

10

15

45

55

65

12

Filtering rules defined between areas determine whether two
endstations are logically allowed to communicate with each
other using a specific protocol.

The Proto Area ficld is a pointer to a filtering rule tree,
which is similar in structure to the address trees. The Dest
Area field is a search key into the tree. The result of the
search is a bitfield in which each protocol is assigned one bit.
Communications is allowed if the corresponding bit is set.

FIG. 16 shows a filtering rule tree.

The microcode for the LEC 3 will now be described. The
LEC microcode is divided into four main ficlds as shown in
the table below. The usage of each field is dependent on the
instruction group.

3129 28-24 23-16 15-0
Inst Instruction Displ P
Group

The instruction group ficld consists of instructions
grouped according to similarity of function. A maximum of
eight instruction groups can be defined.

The Instruction field definition is dependent on Instruc-
tion Group.

In branch instructions, the Displacement field is added to
the PC if the branch condition is true. This field is used by
non-branch instructions for other purposes.

The Parameter field is a 16 bit value used for comparison,
as an operand, or as an index, dependent on the instruction.=

The functions of the groups are set out in the following
table.

Index Pointer/Bank Sclect
Instructions

These instructions manipulate the
IP and the register bank select
register.

Fast Move Instructions

These instructions move data
between I/F RAM and internal
registers.

Conditional Branch Instructions
These instructions branch when a
given condition is met. They can
optionally increment the IP.

X Register Branch Instructions
These instructions branch on an X
Register logic comparison.

Not Used

Siow Move Instructions

These instructions gencrally
involve the SIB RAM bus. The
access time to the SIB RAM is
longer becanse of address setup
time considerations and because
the CP may be accessing it at the
same tme. Access to the Result
FIFOs are included here.

Not Used

Misc Instructions

These instructions invoke special
functions.

Group 2

Group 4
Group 5

Group 6
Group 7

The following table describes the use of each of the ficlds.

NOAC Ex. 1017 Page 171

L 720 Rt o

T

4,

S AR e

JIER

RN

i ayv iRy & SR,

S WEe T

b e

s

‘ 5,917,821
17-16
Grp 3129 2826 2524 2321 20-18 18-16* 150
0 000 000 Oper. 111 110 BSel Emmediate Value (15-0)
or
Register Select (15-4)
1 001 Dest Size LScl ASel BScl Immediate Value (15-0)
Register Select (15-4)
or Index (3—0)
2 010 Cond. Size Disp. (8 Comparand
3 011 Cond. 00 LSel Disp. (5) Comparand
4 100
5 101 Dest Size LSel ASel BScl Immediate Value (15-0)
Register Select (15-4)
or Index (3—0)
6 110
7 111 000 Size goo 000 g0 codes
*when LSel = 110
20 -continued
Condition Condition

000 - (IP) = Comparand

001 - (IP) < Comparand

010 - (IP) > Comparand

011 - True

100 - Extended Condition = True

101 - Extended Condition = False

110-Y=0

M-Y<0

Dest - Destination

000 - currently active FIFO

001 - X Register

010 - Lookup Engine Address RAM

011 - Group 5: S Register
otherwisc: None

100 - Y Register

101 - Index (LP) (SIB RAM)

110 - XP Register

111 - Lookup Pointer

Openation - IP/Register Select operation

00 - Register Select

10 - Load

Size - IP increment size

00 - no increment

01 - byte (+1)

10 - word (+2)

Displacement (8 bits)

00000001 - next instruction

00000000 - same instruction

Displacement (5 bits)

00001 - next instruction

00000 - same ihstruction

LSel - Logic Unit Select

000 - AAND B

001-AORB

010 - AAND NOT B

011 - AOR NOT B

100 - AXOR B

101 - Reserved

010- B

1-A

ASecl - Operand A Select

000 - (IP), (IP)+ Indirect I/F Data
001 - X X Register
010-S S Register

011 - XP X' Register

100 - XP X' Register

101 -

110 -

111 -

BSel - Operand B Select

0W-Y Y Register

01 - #Value Immediate Value
11- Special Function

‘When LSel = 110:

35

45

50

55

60

65

010 - DALE Lookup Resuit

110 - SALE Lookup Result

Immediate Value

Word values fill the whole ficid

Byte values mmst be repeated twrice to fill the ficld
‘When BSel = 11 (Special Functions):

Value Function Mnemonic

$0000 X rotate left 4 1LAX),R12(X)

$1000 X rotate 8 (byte swap) SWAP(X),L8(X),R8(X)

$2000 X rotate right 4 R4(X),L12(X)

$3000 portset(X) PSET(X)

$4000 X rotate left 1 L1(X)

$5000 X rotate right,1 R1(X)

$6000 fip X FLIP(X)

$7000 LUE Version pumber VER

When Value = $3000 (Portset Function):

X(11:8) f(15:0)

0 0000000000000001

1 0000000000000010

2 0000000000000100

3 0000000000001000

4 (0000000000010000

5 0000000000100000

6 0000000001000000

7 0000000010000000

8 0000000100000000

9 000001000000000

10 0000010000000000

1 0000100000000000

12 0001000000000000

13 0010000000000000

14 0100000000000000

15 1000000000000000

FIFO Write Instructions

3129 2826 2524 23-21 20-18 17-16 150

101 000 00 110 Extra BSel Immediate
Value (15-0)

NOAC Ex. 1017 Page 172

‘ 5,917,821

15
Occ 01 MOVEF #Value Extra
Move Immediate Value to FIFO with Extra bits
Qec 00 MOVEF Y,Exira
Move Y Register to FIFO with Extra bits
1ec 00 MOVEF Index(LP),Extra

Move Indexed Lockup Data to FIFO with Extra bits

The FIFO write instructions are used to write data into the
currently active result FIFO. The Extra field control bits 16
and 17 in the FIFO data bus.

The third instruction in the list is a direct memory access
from SIB RAM to the active FIFO. SIB RAM is enabled
while the active FIFQ is sent a write pulse. Doing so avoids
having SIB data propagate through the LUE. Bit 20 differ-
cntiatcs between a DMA and a non-DMA instruction.

The X register cannot be used as a MOVEF source
because what would normally be the ASel ficld conflicts
with the Extra field.

Usage:

MOVEF #PSnap,0 ; Packet is IP over SNAP
Interface RAM Data Read Instructions

31-29 2826 2524 23-21 2018 17-16 150

001 Dest Size 111 000 00 Unused

Dest/Size
001 00 MOVE (P)X
Move IP indirect to X Regiater
001 10 MOVE (IPH+X
Move Ip indirect autoinc to X Register
100 00 MOVE (IP),Y
Move IP indirect to Y Register
100 10 MOVE (IP+Y
Move IP indi to Y Regist:
111 00 MOVE (IP),LP
Move IP indirect to LP Register
111 10 MOVE (IPM4,LP

Move IP indirect autoinc to LP Register

Interface RAM Data Read instructions are used to read
data from the Interface RAM 41 into the X, Y or LP Register.
The LP used is preselected using the RSEL instruction.

Lookup Pointer Instructions
3120 28-26 2524 2321 20-18 17-16 15-0
Group Dest 00 LSel AScl BSel Immediate
or Value (15-0)
Extra Reg Sel
(15-4)
or Index
-9

Group/Dest/LScl/ASel/BSe! - Instruction Type

101 101 111 0601 00 MOVE X,Index(LP)
Move X Register to Indexed Lookup Data

15

35

45

55

60

65

16

-continued

Group/Dest/LScl/ASel/BScl - Instruction Type

101 101 110 000 00

101 011 000 000 00

001 111 110 000 00

001 111 110 000 01

001 111 111 001 00

MOVE Y,Index(LP)

Move X Register to Indexed Lookup Data
GET index(LF)

Load S Register with Indexed Lookup Data
MOVEY|LP

Move X Register to Lookup Pointer
MOVE #Value,1P

Move Immediate Value to Lookup Pointer
MOVE X,LP

Move X Register to Lookap Pointer

Lookup Pointer instructions are used to load the Lookup

Pointers or to store and retrieve values in Lookup RAM.

Usage:
MOVE Age(LP),X ; Get Age field
.- ; check age
. ; resct age
MOVE X,Age(LP) ; put it back in
Logic Instructions
31-29 2826 25-24 23-21 20~18 17-16 150
001 Dest 00 LSel AScl BSel Immediate
Value (15-0)
or Index
(-0

Logic instructions are used to perform logic manipula-

tions on the X and Y Registers. Combinations of the
selections above yield the following (useful) instructions:

Dest/LSel/ASc]l/BSel

001 110 000 00 MOVE YX
Y->X

100 111 001 00 MOVE X)Y
X->Y

001 111 010 00 MOVE S$X
§->X

100 111 010 00 MOVE S,Y
S$->Y

001 110 000 01 MOVE #Value, X

100 110 000 01
001 000 001 00
001 000 010 00
001 000 001 01
001 000 010 01

100 000 001 00

Immediate Value —> X
MOVE #Value,Y
Immediate Value —> Y
AND X, YX
XANDY > X

AND S, YX
SANDY-—>X

AND X #Value X

X AND Value -> X
AND S#Value, X

S AND Value -> X
AND XYY
XANDY —>Y

NOAC Ex. 1017 Page 173

' 5,917,821

-continued -continued
Dest/LSel/ASel/BSel Cond/LSel
100 000 010 00 A XY« s 111100 BXNE #Value,Label
100 000 001 01 AND X #Value,Y Branch if X is not equal to value
X AND Value —> Y 110 000 ANDBZ #Valuc,Label
100 000 010 01 AND S#Value,Y Branch if X AND Value is cqual to zero
S AND Value -> Y 111 000 ANDBNZ #Value,Label
OR, ANDN, ORN and XOR arc aimilar to AND: Branch if X AND Value is not equal to zero
dst 001 asa bb OR anabb,dst 10 110 010 ANDNBZ #Value,Label
a2a OR bb —> dst Branch if X AND NOT Value s equal to zero
dst 010 asa bb ANDN aaabb,dst 111 010 ANDNBNZ #Valae,Label
aaa OR bb —> dst . .
dat 011 ana bb ORN anabbydst Branch if X AND NOT Value is not equal to zero
222 OR bb —> dst
dst 100 aaa bb XOR aaabbdst 15
aaa OR bb—> dst X Register Branch instructions are derived from the X
Register Logic instructions with Operand A always set to the
) Conditional Branch Instructions X Register and Operand‘ B always set to the Immediate
% value. The X Register is pot affected by any of these
4 20 instructions. The displacement ficld is reduced to 5 bits
X 31-29 28-26 25-24 2316 15-0 (+/-32 instructions)
010 Cond. Size Displ ; Comparand Usage:
25 See Destination Lookup Instruction example
SKIPw ; ignore the next word field
Cond/Size
000 01 ESCNEb #Com bel .
Escape if Byte Not Epnmquﬂd’h Other Branch Instructions
000 10 ESCNE.w #Comparand,Label 30
Escape if Word Not Equal
00101 ESCGEb #Comparand,Label 3129 28-26 2524 23-16 154 30
Escape if Byte Greater or Equal
001 10 ESCGEw #Comparand,Label 010 Cond Size Disp ExiCond ExtDisp
Eacape if Word Greater or Equal
010 01 ESCLEb #Comparand,Label
Escape if Byte Leas or Equal 35
010 10 ESCIE.w #Comparand,Label
Escape if Word Less or Equal iz/Disp/ExtCond/ExtDi
110 00 BYZ Label Cond/Si -
Branch if Y Register is zero 100 00 $00 $000 0 DWAIT
111 00 BYNZ Label Wait for DALE
Branch if Y Register is not zero 40 100 00 $00 $800 0 SWAIT
‘Wait for SALE
. . 101 00 $00 $C00 0 FWAIT
% Increment Branch instructions arc used to compare the Wait for Snoop FIFO done
¢ current packet ficld with an immediate value. If the condi- 101 00 ddd $400 0 BCSERR ddd
. e h is taken: oth ise IPisi ted Branch on checksum error
! tion is met, the bran'c is taken; otherwise IP is incremented 45 411 01 $01 $000 0 SKIPb
b by the Increment Size. Skip Byte (same as [BRAb +1)
i Usage: 011 10 $01 $000 0 SKIP.w
") Skip Word (same 2s [BRA.w +1)
: 011 01 ddd $000 0 IBRAbL 1abel
5 " Increment Byte and Branch Always
3 Labell: ; check if SNAP header sp 011 10 ddd $000 d [BRA w Label
- ESCNE. w #5AAAA Label2 ; compare to SNAP value Increment Word and Branch Always
y ESCNEw #$0003,0therlabel 011 0O 000 $800 0 SWITCH
Switch on X (add X to PC)
3 Labe12: 011 00 ddd $000 d BRA.u Label
N Branch Always
X Register Branch Instructions 55

These instructions are derived from the conditional
branch instructions. Wait instructions loop until the extended
condition is false. Skip instructions move to the next instruc-
011 Cond 00 LSel Disp Valie o tion and increment the IP appropriately.

More branch instructions can be defined easily by using
Cond=100 or 101 and picking an unused ExtCond pattern.

oo When Cond=011 (True), the displacement field is

- X g5 cxtended to 12 bits.
110 100 BXEQ # ,Lab - .
Branch if X is c:lclal toevaluc The SWITCH instruction adds the least significant nibble

of X to the PC. If X(3:0)=0, 16 is added to the PC. -

31-29 28-26 2524 23-21 20-16 15-0

NOAC Ex. 1017 Page 174

' 5,917,821

19
Usage:

SKIP.w ; igmore the next word field
Index Pointer/Register Select Instructions

Index Pointer/Register Select Instructions

31-29 2826 25-24 2321 1716 150

20-18
Group Dest Oper LSel ASel BSel Immediate
Value (15-0)
or
Register Select
154
Group/Dest./Oper/1.Sel/ASel/BSel
001 110 00 111 000 00 ST X[, XPn,1Pn]
X > XP, optionally swiltch to XPn,LPn
00100100 11110000 LD X]
XP —> X, optionally switch to XPn,LPn
001 011 00 111 000 00 RSEL XPn,LPn
switch to XPn,1Pn
000 011 10 111 000 01 LOADIP # Valoe
Load [P immediate
000 011 10 111 001 00 LOADIP X
Load IP with X

Index Pointer instructions are used to perform manipula-
tions on the index pointer.

Traosfers from the X registers are not normally used in a
lookup function but may be useful for general purpose
transfers from interface RAM.

The Register Select instruction selects a register from
cach of the register banks. The format of the Bank Select
Bits field is:

15-12 n 10-8 7 64 30

XXXX XEn XSel LPEn LPSel XXXX

The En bits detcrmine whether the corresponding select
bits are valid. If En is zero, the corresponding register
selection remains unchanged. If En is one, the corresponding
sclect bits are used. This mechanism allows register sclec-
tions to be made independent of each other.

Destination Lookup Instructions
3129 28-26 25-24 23-21 20418 17-16 150
001 010 Size 111 ASel 00 Command/
Address
Size/ASel
00 001 DLOAD X,Address [,Command]
Load X into DALE
00 000 DLOAD (IP),Address [,Command]
Load IP indirect into DALE / load Command Reg
10 000 DLOAD (IP)+,Address {,Command]

Load IP indirect autoinc into DALE / load Command Reg

10

15

20

35

45

50

55

60

65

3129 2826 25-24 23-21 20-18 17-16 15-0
001 Dest 00 110 000 10 not uscd
Dest
1 DMOVE LP
Move DALE result pointer into Lookup Pointer
001 DMOVE X
Move DALE result pointer into X Register
100 DMOVE Y

Move DALE result pointer into Y Register

The destination lookup instructions set up the DALE and
read results from it. The currently sclected lookup pointer is
used as the root pointer.

The DLOAD instruction loads words into the 16 by 16 bit
DALE Nibble RAM and loads the Command Register. The
DMOVE instruction returns the DALE result.

Command Register
15 14 13-12 114 30
Sat 0 Nibble 00000000 Address
Offset

The Start bit signals the DALE to start the lookup.

The Nibble Offset ficld points to the first valid nibble in
the first word loaded into the Address RAM.

The Address field points to the word being written in
Nibble RAM.

The DMQVE instruction gets the 16 bit DALE result
pointer. DMOVE should be preceded by DWAIT, otherwise
the result may be invalid.

Usage:

LOADIP #StartOfPacket ; point to start of packet

DLOAD (AP)+, Wordl ; load DA word 1

DLOAD (P)+,Word2 ; load DA word 2

DLOAD (IP)+,Word3,Start ; load DA word 3 and start lookup
. : do other stuff

DMOVE X 3 get result

BXNE #Null DAFound ; address found in table

Source Lookup Instructions

3129 2826 25-24 2321 2018 17-16 15-0
001 010 Size 111 ASel 01 Command/
Address

Size/AScl
00 001 SLOAD X,Address [,Command}

Load X into SALE
00 000 SLOAD (IP),Address [,Command}

Load IP indirect into SALE / load Command Word
10 000

SLOAD (IP)&-,Address [,Command}
Load IP indirect autoinc into SALE / load Command Word

NOAC Ex. 1017 Page 175

1

Hp2
e

™ ore td

AT s)

g R | LR

R

x>

o XY

e e

g

Sy :«7‘3;;\: % “‘"R.\’q: e Ms:n,ﬂweﬁ“{\gf‘ wnd RIRM

5,917,821

21

31-29 28-26 2524 2321 2018 17-16 15-0

001 Dest 00 110 001 10 Immediate
Value (15-0)
Dest
1 SMOVE LP
Move SALE result pointer into Lookup Pointer
001 SMOVE X
Move SALE result pointer into X Register
100 SMOVE 'Y

Move SALE result pointer into Y Register

The destination lookup instructions set up the SALE and
read results from it. The currently selected lookup pointer is
used as the root pointer.

The SLOAD instruction loads words into the 16 by 16 bit
SALE Nibble RAM and loads the Command Word. The
SMOVE instruction returns the SALE result.

Command Word

15 14 1312 11-4 30
Start 0 Nibble 00000000 Address
Offset

The Start bit signals the SALE to start the lookup.

The Nibble Offset field points to the first valid nibble in
the first word loaded into the Address RAM.

The Address field points to the word being written in
Address RAM.

The SMOVE instruction gets the 16 bit SALE result
pointer. The SMOVE instruction should be preceded by
SWAIT, otherwise the result may be invalid.

Usage:
SLOAD (IP)+,Word1 ; load DA word 1
SLOAD (IP)+,Word2 ; load DA word 2
SLOAD (IP)+,Word3,Start
; load DA word 3 and start lookup
PN ; do other stoff
SWAIT ; wait for SALE to finich
SMOVE X 5 get result
BXNE #Null,SAFound ; address found in table

Checksum Engine Instructions

3129 2826 2524 2321 20-18 17-16 15-0

001 010 Size 111 ASel 10 $8000
Size/ASel
00 001 CLOAD X
1oad X into Checksum Engine and start
00 000 CLOAD (IP)
Load [P indirect into Checksum Engine and start
10 000 CLOAD (IB)+

Load [P indirect autoinc into Checksum Engine and start

The CLOAD instruction loads a word counnt into ‘I.he
checksum engine, clears the checksum and starts the engine.
The word currently indexed by IP is subsequently added to

5

10

15

30

35

45

50

55

60

65

22
the checksum each time the IP crosses a word boundary until
the count is exhausted.
Miscellaneous Instructions

3129 28-16 15-0
111 00000000 Code (2-0)

These instructions invoke special functions

Code
001 STOP
Stop execution until next lookip request

The lookup engine operation will now be described in more
detail. The instruction State Machine (ISM) is shown in FIG.
17.

A lookup engine microcode will typically take four clock
cycles. At 50 MHz, the instruction cycle takes 80 ns to
exccute. Instructions that require access to SIB RAM, which
require arbitration with the Control Processor, and any
future extensions that require more time to execute will
require one or more additional cycles to complete.

After reset, the 3 LEC is in the idle state, As soon as one
of the snoop FIFOs 42, 43 is non-cmpty, the ISM enters the
main instruction cycle loop.

A microcode instruction cycle is typically divided into
four main states. State 3 and State 0 allow the microcode
contents to propagate through the LEC. The instruction
group is determined in State 1. If a fast instruction is being
cxecuted (Groups 0-3), Statc 2 is entered immediately.
Otherwise the appropriate next state is entered according to
the Group ficld.

FIG. 18 shows a typical fast instruction.

By the time State 2 is reached, all signals will have settled.
New values for the PC and if necessary, the IP and/or the
selected destination, are loaded at the end of this state.

State 42 is a dummy state for currently undefined groups.

State 52 is a wait state for external accesses to SIB RAM.
The ISM exits this state when the SIB RAM has been
granted to the LEC long enough for an access to complete.

FIG. 19 shows a typical SIB RAM access instruction.

States 72 and 73 are executed during the STOP instruc-
tion. State 73 flushes the snoop FIFOs in case.

The LEC cycles through States 0 to 3 indefinitely until a
STOP instruction is encountered, which brings the LEC
back to the idle state.

The lookup request mechanism for a MAC layer lookup
is as follows:

The requester (e.g. the AXE) places information, gener-
ally a packet header, into the snoop FIFO.

The empty flag of the FIFO kickstarts the LEC,

The LEC instructs the DALE to look up the destination
address.

The LEC instructs the SALE to look up the source
address.

The LEC looks into the packet o determine the network
layer protocol in case it needs to be forwarded.

The LEC wails for the SALE and reads the Source
Address SIB pointer.

The source port is compared against the previously stored
portset to sec if the source endstation has moved.

The LEC waits for the DALE and reads the Destination
Address SIB pointer.

P

?{OUSS

NOAC Ex. 1017 Page 176

.;:;:;"f,m "

Rty
T

‘ ' 5,917,821
23 24
The destination area is compared to the source area to sec Packets are discarded if they serve no other useful pur-
if the endstations are in the same arca. pose (e.g. SA and DA on the same port or in different areas,

. i L errored packets). Otherwise they are sent to the Control
The source port is compared agains! the destination port Processor for further processing,

to sec if the cndstations are on the same port. Sample Program

; File: BDG.a
; Unicast Bridging Case
3 Release 1.1 Functionaiity

£

h
BDG__Start:

;XO = Packet Status Word

;[P = Points to 2nd byte of PSW

_—
"

T

P ;DR = Contains Packet Statns Word
i ;XO, LPO arc default XP, 1P
,‘; MOVE $8000,LP ;Look up Destination MAC
& DLOAD (P)+0 ;Load Dst Addr bits 0-15
L DLOAD (IP)+,1 ;Load Dst Addr bits 16-31
s ;Load Dst Addr bits 32-47
g DLOAD (IP)+,2,$8000 ;and start loakup
r MOVE $8000,LP ;Look up Source MAC
< SLOAD (IP)+0 ;Load Src Addr bits 0-15
SLOAD (IP)+,21 ;Load Src Addr bits 16-31
;Load Src Addr bits 3247
SLOAD (IP)+.2,$8000 ;and start lockup
; determine protocol here
BSCGE.w 1500, scheck if 802.3 format
CheckEnctType
ESCNE.w SAAAA scheck DSAP/SSAP
UnkmownType
ESCNE.w $0300, scheck CTL field
SNAPUnknown-
c
ESCNE.w 28800,
SNAPUnknown-
e
ESCNE.w }Xgoo, ;check protocol type field
SNAPUnknown-
Protocol
; It’s IP over SNAP
BdgSNAPIP:
CLOAD 5 ;assume IP
header length is
5
ESCNE.w $4500, scheck IP header
BdgSNAPIP__
withOpts
SKIE.w ;kip length
SKIP.w ;akip identifica-
tion
SKIP.w sakip offsct
ESCLEb $01, scheck TTL
BdgSNAPIP__
TTLExpired
SKIPb skip protocol
SKIPw ;akip checksum
MOVE (IF)+,X ;read NLSA
3 MOVE R12(X),X ;shift first nibble
. to bottom
* SWITCH scheck IP Class
. BRAUu BdgSNAPIP- ;0xxx = Class A address
. ClassA
: BRAu BdgSNAPIP-
. ClassA
BRA.u BdgSNAPIP-
: ClassA
BRAu BdgSNAPIP-
ClassA
BRAu BdgSNAPIP-
ClassA
BRAu BdgSNAPIP-
ClassA
BRA.u BdgSNAPIP-
ClassA
BRA.u BdgSNAPIP- ;10xx = Class B address
CiassB
BRAu BdgSNAPIP-
ClassB
BRA.U BdgSNAPIP-
ClassB
BRA.U BdgSNAPIP-
ClassB
NOAC Ex. 1017 Page 177

~
3
¢
H
#
}4
. s
A
%
: , : 5,917,821
: 25 26
-continued
BRAu BdgSNAPIP- ;110x = Class C address .
ClassC
BRAu BdgSNAPIP-
ClassC
! BRA.u BdgSNAPIP- ;1110 = Class D address
ClassD
£ BRA.u BdgSNAPIP- ;1111 = Class E address (future)
M ClassE
d BRAu BdgSNAPIP- ;0xxx = Class A Address
* ClassA
. BdgSNAPIPClassA:
E OR X,$FF00,X scheck if broadcast
! BXNE $SFFYT,
- BdgSNAPIP__
A NLSARealign
M MOVE I@®)x+,X scheck lower address word
> BXEQ $SFFFF, ;all ones host address
. BdgSNAPIP__
. NLSAlnvalid
BRA.u BdgSNAPIP__ ;broadcast SA is not allowed
NLSAValid
- BdgSNAPIP__
i SKIP.w
BRA.u BdgSNAPIP__
. NLSAvalid
- BdgSNAPIPClassB:
MOVE (P)+.X ;check lower address word
° BXNE $SFFFF,
. BdgSNAPIP__
NLSAValid
BRA.u BdgSNAPIP__
NLSAValid
BdgSNAPIPClassC:
MOVE IP+X ;check lower address byte
OR X$FF00,X ;check if broadcast
BXEQ SFFFF,
. BdgSNAPIP__
i NLSAlnvalid
BRA.u BdgSNAPIP__
NLSAValid
BdgSNAPIPClassD:
SKIP.w
BRA.u BdgSNAPIP__
NLSAValid
BdgSNAPIP__
NLSAlnvalid
SWAIT sclean up after
SALE and
DALE
DWAIT
OR XPCMD__ ;Load command Word
DISCARD |
CMD__
N UNICAST,Y
MOVEF Y, FIRST ;Send Command Word
JH MOVEF NULL_CI ;Send CI Index
MOVEF PORT__CP ;Dest Port is CP
MOVEF RSN_FRC_ ;Send Reason
MAC_SRC_
INVALID
STOP
BdgSNAPIP__
NLSAValid:
SKIP.w ;skip NLDA
SKIP.w
BCSERR BDG__
SNAPIP__CSError
RSEL Lp1 ;Store source SIB pointer in LP1
SWAIT
SMOVE Y ;Y contains SALE result
MOVE Y,LP,1P2 ;LF1 points to Source Addr SIB
;Store dest SIB pointer in LP2
BYNZ BDG_SrcHit
BDG__SrcMiss: ;*** Source
Cache Miss ***
OR XP,CMD__ ;Load command Word
FWDCP |
CMD__
UNICAST,Y
;Default MAC Ethernet Type
;Detault Low priority
MOVEF Y, FIRST ;Send Command Word
NOAC Ex. 1017 Page 178

A e s

o SR o w e

g

<% ko L K5 s

o X -

o e S R

5,917,821
27 28
-continued
MOVEF NULL_CI ;Send CI Index
MOVEF PORT_CP ;Dest Port is CP
MOVEF RSN_FRC__ ;Send Reason
MAC_SRC_
MISS
SToP ;Donel!!
BDG__SNAPIP__
CSError:
OR XPCMD__ ;Load command Word
DISCARD |
CMD__
UNICASTY
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_ I ;Send CI Index
MOVEF PORT_CP ;Dest Port is CP
MOVEF RSN_FRC__ ;Send Reason
MAC_CSERR
STOP
BDG_ SrcHit:
DWAIT
DMOVE Y ;Get DALE result
MOVE RAVAS S ;point to source SIB
BYNZ BDG_ and check source port
CheckSrcPort
BDG__DestMiss: ;*™* Destination
Cache Miss ***
OR XP,CMD_ ;Load command Word
FWDCP |
CMD_.
UNICAST,Y
;Defanlt MAC Ethernet Type
;Default Low priority
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_CI ;Send CT Index
MOVEF PORT_CP ;Dest Port is CP
MOVEF RSN_FRC_. ;Send Reason
MAC_DST__
MISS
STOP sDone!!!
BDG__CheckSrcPort:
GET SIB_MAC__ ;Compare portsets in LP => Src SIB
PORTSET(LF)
AND S,PSET(X),Y ;Y = src addr bit AND arc port bit
BYNZ BDG__ ;source moved if bits don’t mmtch
CheckDestArea
BDG_SrcMove: ;*** Source
Moved *=*
OR XP,CMD__ ;Load command Word
FWDCP
CMD__
UNICAST,)Y
;Default MAC Ethernet Type
;Default Low priorty
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_CI ;Send CI Index
MOVEF PORT_CP ;Dest Port is CP
MOVEF RSN_FRC__ ;Send Reason
SRC_MOVED
STOP ;Done!l!
BDG._CheckDestArea:
RSEL LP2 ;point to dest SIB
GET SIB_PROTO__ ;get IP Dest Area
AREA_1(LP)
AND S,MASK__
AREA,Y;Mask
off top 4 bits
BYNZ BDG__
CheckSrcArea
BDG_DestArealnvalid: ;*** Destination
Arca Invalid ***
LD X
OR X.CMD__ ;Load command Word
DISCARD |
CMD__
UNICAST,Y
;Default MAC Ethernet
Type
;Default Low priority
;Default Multicast
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_CI ;Send CI Index
MOVEF PORT_CP ;Dest Port is CP

NOAC Ex. 1017 Page 179

hd v
- . ‘e
iy ‘
f
7
1 : 5,917,821
»
. 29 30
1 -continued
g MOVEF RSN_DRC__ ;Send Reason
& DST_AREA__
E INV
% STOP ;Donet!!
. BDG.__CheckSrcArea:
L RSEL 1r1 ;get ready for Source Addr check
iy GET SIB_PROTO__
¥ AREA_1(LP)
£ OR S,SIB_AREA__ ;sct PA bit in SIB_JPAREA
2 PROTO_
L ACTIVEX
, MOVE X,SIB_ modify
’ PROTO__
‘ AREA_1(LP) .
A AND XMASK sMask off top 4 bils
‘ AREA, X
4 XOR XY, Y,LF2 scheck against Dest Area
3 switch to LP2 (Dest
b SIB)
¥ BYZ BDG__
N . CheckDestPort
B BDG__SrcArealnvalid: ;*** Source
i Area Invalid ***
% OR XP,CMD__ ;Loed command Word
« DISCARD |
; CMD_
2‘ UNICAST)Y
¥ ;Default MAC Ethernet
¥ Type
7 ;Default Low priority
% ;Default Multicast
. MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_C 35end CT Index
MOVEF PORT._CP ;Dest Port is CP
MOVEF RSN_DRC__ ;Send Reason
SRC__AREA _
INV
STOP ;Donel!!
BDG__CheckDestPort:
;X0, LP2 are
default XP, LP
LD X srestore PSW
GET SIB_MAC__ ;S = dest address portset
AND S, PS] A ;compare against source port portset
BYZ BDG_OK
BDG__SamcPort: 3*** Src Port =
Dest Port *=*
OR XPCMD__ ;Load command Word
DISCARD |
CMD__
UNICAST,Y
;Default MAC Ethemnet
B‘e);nult Low priority
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_CI ;Send CT Index
MOVEF PORT_NULL ;Dest Port is NULL
MOVEF RSN_DRC__ ;Send Reason
DST_SAME
STOP ;Done !
BDG._OK: ;*** Bridge-
router ***
OR XP,CMD__ ;Load command Word
BRIDGE-
ROUTER |
CMD__
UNICAST,Y
;Default MAC Ethernet
[
: ';Igepfmﬂt Low priority
MOVEF Y, FIRST ;Send Command Word
MOVEF SIB_MAC_CI ;Send CI Index from dst SIB
MOVEF gl}l;)_MAC_ :Dest Port is determined from dst SIB
PORTSET(LP)
MOVEF SIB_MAC__~ ;Get MAC Index from dst SIB
MACINDEX
STOP ;(ID!gm!!!
NOAC Ex. 1017 Page 180

h.w.‘ o

N

: 5917821

3

The described look-up engine is capable of performing
bridge-router and most network layer look-ups in less than
5.6 us (1/178,000) with to minimum RAM requirements and
cost and maximizes flexibility for future additions/
corrections without hardware changes.

The intended application of the look-up engine is high
performance AN systems and other packet-based devices.

GLOSSARY

BRIDGE-ROUTER A LAN bridging-routing device, with 12 ethernet
ports and 1 ATM port.

ATM Asynchronoos Transfer Mode. A cell relay
standard.

ABS Address/Broadcast Server A component of a Route
Server that handles address resolution and
broadcast traffic.

AXE A Tranafer Engine

DA Destination Address. The MAC address of the

intended destination of a MAC frame.

DALE Destination Address Look-up Engine. The LUE
p that g iy hes through a table
of MAC Iayer destination addresses.

Cl Connection Identifier. A number intemally used
to indicate a particular ion

P Internet Protocol A popular network layer
protocol used by the Internet community.

IPX Internet Packet Exchange A Novell developed
network layer protocol.

LEC Look-up Engine Controller. The LUE component
that executes microcode.

LUE Look-up Engine.

MAC Medium Access Control. A term commonly
encountered in [EEE 802 standards gencrally
referring to how a particalar medinm (ie.
Ethernet) is used. *MAC address” is commonly
used to refer to the globally unique 48 bit address
given to all interface cards adhering somewhat to
the IEEE 802 standards.

RS Route Scrver.

SA Source Add: The MAC address of the origi
of a MAC frame.

SALE Source Address Look-up Enginc. The LUE
component that generally searches through a table of
MAC layer source addresses.

SIB Station Information Block. The data structure in
the LUE that holds relevant information aboat an
endstation.

CAM Countent Addressable Memory.

VPI Virtual Path Identifier

vCI Virtual Channel Identifier

Control Processor The processor in the Bridge-router that handles
management functions

We claim:

1. An arrangement for parsing packets in a packet-based
digital communications network, said packets inchiding
packet headers divided into fields having values representing
information pertaining to the packet, said arrangement com-
prising:

a) an input memory for receiving fields from said packet

headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a reccived ficld value, said look-up
engine including:

(i) at least one memory storing information related to
possible values of said fields in a hierarchical tree
structure and associated with a respective field of
packet headers;

(ii) 2 memory controller associated with each said
memory storing information related to possible values
of said ficlds for controlling the operation thereof to
retrieve said stored information therefrom; and

(iii) a microcode controller for parsing a remaining, por-
tion of the packet header while said stored information

32

is retrieved and controlling the overall operation of said
look-up engine.

2. An arrangement as claimed in claim 1, wherein said

memory controller associated with each said memory

5 compares, at each decision point on the tree structure, the

10

15

20

35

40

45

50

current field with a stored value or range, and moves to the
next decision point by moving a pointer for the current ficld
and branching to new code if said comparison results in a
first logical condition, and if said comparison results in a
second logical condition the current field is compared to a
different value or range, and so on until said comparison
results in said first logical condition.

3. An arrangement as claimed in claim 1, wherein said
controller associated with each said memory compares val-
ues based on successive nibbles of a field value in said
memory with stored values to locate the related information.

4. An amrangement as claimed in claim 3, wherein said
memory controller associated with each said memory con-
catenates a first nibble of an incoming field value with a root
pointer to obtain an index to a root pointer array, retricves a
word at a location identified by said index, concatenates the
next nibble with the retrieved word to form the next pointer
and so on until said related information is retrieved.

5. An arrangement as claimed in claim 1, wherein said at
least one memory is a random access memory (RAM).

6. An arrangement as claimed in claim 1, wherein one of
said fields comprises a destination address and said related
information comprises the path data associated with said
respective destination addresses.

7. An arrangement as claimed in claim 1, wherein a
plurality of said memories storing information related to
possible values of said fields in 2 hierarchical tree structure
operate in parallel and are associated with respective ficlds
of said packet headers.

8. An arrangement as claimed in claim 7, wherein each
said memory is a random access memory (RAM).

9. An arrangement as claimed in claim 7, wherein one of
said fields comprises a destination address and said related
information comprises the path data associated with said
destination address, and another of said ficlds comprises a
source address, and said look-up engine also locates path
data associated with the source in parallel with the location
of the path data associated with the destination address.

10. An arrangement for parsing packets in a packet-based
digital communications network, said packets including
packet headers divided into ficlds having values representing
information pertaining to the packet, said arrangement com-
prising:

(2) an input memory for receiving fields from said packet

headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including:

(i) a plurality of memories storing information related to
possible values of said fields in a hierarchical tree
structure and operating in parallel, said memories being
associated with respective fields of said packet headers;

(ii) a main controller controlling overall operation of the
look-up engine; and

(iii) a memory controller associated with each said respec-
tive memory for controlling the operation thereof to
retrieve said stored information therefrom.

11. An arrangement as claimed in claim 10, wherein said

main controller is a microcode.

12. An arrangement as claimed in claim 11, wherein said
microcode controller comprises an interface memory for

NOAC Ex. 1017 Page 181

o

33

receiving headers of incoming packets, a station information
block memory for storing information pertaining to
endstations, a microcode memory storing microcode
instructions, and logic circuitry for implementing said
microcode instructions.

13. An arrangement as claimed in claim 11, wherein said
microcode controller parses the remainder of the packet
header using a specific instruction set while said information
is retrieved from said plurality of memories.

14. An arrangement as claimed in claim 13, wherein said
microcode controller comprises separate buses for instruc-
tions and data.

15. An arrangement as claimed in claim 14, wherein said
microcode controller is arranged to implement optimized
instructions that perform bit level logical comparisons and
conditional branches within the same cycle and other
instructions tailored to retrieving date from nibble-indexed
data structures.

16. An arrangement as claimed in claim 15, wherein said
microcode controller is implemented as an ASIC processor.

17. An arrangement for parsing packets in a packet-based
digital communications petwork, said packets including
packet headers including destination and source address
ficlds, said arrangement comprising:

(2) an input memory for receiving ficlds from said packet

headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including:

(i) a source address look-up engine including a memory
storing information related to possible values of said
source address field in a hierarchical tree structure;

(ii) a memory controller associated with said source
look-up engine for controlling the operation thercof to
retrieve stored information therefrom;

(iii) a destination address look-up engine including a
memory storing information relaied to possible values
of said destination address ficld in a hierarchical tree
structure,

(iv) a memory controller associated with said destination
look-up engine for controlling the operation thercof to
retrieve stored information therefrom;

(v) a processor controlling overall operation of said
source and destination address look-up engines, said
source and destination address look-up engines and
said processor operating in parallel.

18. An arrangement as claimed in claim 17, wherein said

processor is a microcode controller.

19. An arrangement as claimed in claim 18, wherein said
memory controllers compare, at each decision point on the
tree structure, the current field with a stored value or range,
and move to the next decision point by moving a pointer for
the current ficld and branching to new code if said compari-
son results in a first logical condition, and if said comparison
results in a second logical condition, the current field is
compared to a different value or range, and so on until said
comparison results in said first logical condition.

20. An arrangement for parsing packets in a packet-based
digital communications network, said packets including
packet headers including destination and source address
fields, said arrangement comprising:

(a) an input memory for receiving fields from said packet

headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriatc to a received ficld value, said look-up
engine including:

20

35

50

55

60

65

5,917,821

34

(i) a source address look-up engine including a memory
storing information related to possible values of said
source field in a hierarchical tree structure;

(ii) 2 memory controller associated with said source
look-up engine for controlling the operation thereof to
retrieve stored information therefrom;

(i) a destination address look-up engine including a
memory storing information related to possible values
of szid destination ficld in a hierarchical tree structure
and an associated memory controller;

(iv) a memory controller associated with said destination
look-up engine for controlling the operation thereof to
retrieve stored information therefrom; and

iii) a microcode processor controlling overall operation of
said source and destination address look-up engine,
said source and destination address look-up engines
and said processor operating in parallel, and said
microcode processor being arranged to parse additional
fields in said packet header while said source and
destination address look-up engines retrieve said
related information.

21. An arrangement as claimed in claim 20 wherein said
microcode processor comprises an interface memory for
receiving said incoming packets, a station information block
memory for storing information pertaining to endstations, a
microcode memory storing microcode instructions, and
logic circuitry for implementing said instructions.

22. A method of parsing packets in a packet-based digital
communications network, said packets including packet
headers divided into fields having values representing infor-
mation pertaining to the packet, comprising the steps of:

(a) recciving fields of packet headers from incoming
packets in an input memory;

(b) retrieving stored information appropriate to a received
ficld value by performing a tree search in a look-up
cngine having at least one memory storing information
related to possible values of said fields in a hicrarchical
tree structure and associated with a respective field of
packet headers, said at least one memory being con-
trolled by a memory controller associated therewith to
retrieve said stored information thercfrom; and

(¢) parsing a remaining portion of the packet header while
said stored information is being retrieved from said at
least one memory with a main controller, which main
controller also controls the overall operation of said
look-up engine.

23. A method as claimed in claim 22, wherein at each
decision point in the tree search, in retrieving said informa-
tion the current ficld is compared with a stored value or
range, a pointer for the current field is moved and branched
to new code if said comparison results in a first logical
condition, and if said comparison results in a second logical
condition, the current field is compared to a different value
or range, and so on until said comparison results in said first
logical condition.

24. A method as claimed in claim 22, wherein values
based on successive nibbles of a field value are compared
with stored values to locate the related information.

25. A method as claimed in claim 24, wherein a first
nibble of an incoming field value is concatenated with a root
pointer to obtain an index to a root pointer array, a word at
a location identified by said index is retrieved, the next
nibble is concatenated with the retrieved word to form the
pext pointer and so on until said related information is
retrieved.

26. Amethod as claimed in claim 22, wherein information
related to a plurality of fields is retrieved in parallel.

NOAC Ex. 1017 Page 182

7 5,917,821

35

27. Amethod as claimed in claim 26, wherein ope of said
fields comprises a destination address and said related
information comprises the path data associated with said
respective destination address, and another of said fields
comprises a source address and said related information
comprises the path data associated with said source address.

28. A method of parsing packets in a packet-based digital
communications network, said packets including packet
headers divided into ficlds having values representing infor-
mation pertaining to a packet, comprising the steps of:

(a) storing in memory information related to possible

values of said fields in a hierarchical tree structure;

(b) receiving a plurality fields from said packet headers of

incoming packets, one of said fields being a destination
address and said related information therefor compris-
ing path data associated with said respective destination
address, and another of said fields being a source

10

15

36

address and said related information therefor compris-
ing path data associated with said source address;

(©) retrieving in parallel said stored information appro-
priate to received field values by performing a tree
search under the control of a microcode controller; and

(d) parsing a remaining portion of the packet header using
a specific instruction set while said related information
is retrieved.

29. An arrangement as claimed in claim 1, wherein said at
least one memory provides table look-ups using nibble
indexing for variable portions of the packet header and said
microcode controller employs bit pattern recognition oa
fixed portions of the packet header for network layer pro-
tocol determination.

NOAC Ex. 1017 Page 183

Our Docket/Ref. No.: APPT-(_E)_A&

p Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al.

Serial No.: 09/608266 Group Art Unit: 2731 -

Examiner: o

Filed: June 30, 2000 xammer: P E o
« o =
Title: ASSOCIATIVE CACHE ; o =
STRUCTURE FOR LOOKUPS AND . APR 112001 <z o
UPDATES OF FLOW RECORDS IN \A Z
A NETWORK MONITOR Doy o 2

Tk wnapa o

b o

=

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X

An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

X _ Return postcard.
X

The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Date: ﬁ{)r q/, 2060 |

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

Respectfully submitted,

/4/

D(m{osenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Certificate of Mailing under 37 CFR 1.18

I'hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C, 20231.

Date of Deposit: &07‘- A > 2001

Signature: /

DoyBafentéld, Reg. No. 38,687

NOAC Ex. 1017 Page 184

(3A1303d

weag I
-~

X s o X

g LN e ¥R e

i

o

@) @!

A
-Our Docket/Ref. No.: APPT:001-4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE #' 5

Applicant(s): Sarkissian et al. /L/ -
Serial No.: 09/608266 Group Art Unit:
Filed: June 30,2000 Examiner:

%
Title: ASSOCIATIVE CACHE %g
STRUCTURE FOR LOOKUPS AND APR 12 2002
UPDATES OF FLOW RECORDS IN
A NETWORK MONITOR

Commissioner for Patents
Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:
This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever
occurs last)

X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

X (Certification) Each item of information contained in this information disclosure
statement was first cited in a formal communication from a foreign patent office in a counterpart
foreign application not more than three months prior to the filing of this information disclosure
statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR 1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this staterent and no representation is
Certificate of Mailing under 37 CFR 1.18

1 hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: 20 'MM 280 2 Si@%
osenfeld, Reg. No. 38,687

NOAC Ex. 1017 Page 185

C O

<3
.. ~S/N: 09/608266 Page 2 IDS

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

%_\

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: 2O /mtu 202

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

NOAC Ex. 1017 Page 186

Et aLFORM - 1449 (L m SHEET 1 oF 1

—N__{ ——
- ATTY. DOCKET NO. SERIAL NO.
APPT-001-4 09/608266
INFORMATION DISCLOSURE ST, APPLICANT

Sarkissian et al. RECEIVE

K]

D
ILING DATE GROUP APR 1 7200 2

§/6/30/2000 A
& < Z4 %chn
2, 5 OIQQJLCther-ZGO(

(Use several sheels if necessa

U.S. PATENT DOCUMENTS
FILING DATE
*‘EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | IF APPROPRIATE
INITIAL NUMBER
) s 13,703,877 Dec. 30, Nuber et al. 370 [395 Nov. 22,
A 1997 1995
5 13,835,963 Nov. 10, [Yoshioka et al. 711 207 Sep. 7,
AV 1998 1995
£ ac 13,860,114 Jan. 12, [Sell 711 (146 Oct. 1,
1999 1997
AD
AE
AF
AG
AH
Al
AJ
AK
AL
AM
AN
FOREIGN PATENT DOCUMENTS
PUBU-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
AO
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Ete.)
AP
’\
EXAMINER , DATE CONSIDERED
Al) o 9/efo
‘EXAMINER: inital if citation é{side‘r/ed, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance
and not considered. Include a copy of this form with next communication to Applicant.

NOAC Ex. 1017 Page 187

kg Bon. s

Ofr Docket/Ref. No.: API(E«T%OIA

Patent 2 A L’/

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE)

Applicant(s): Sarkissian et al.
Serial No.: 09/608266

Group Art Unit: >~ > (

Filed: June 30, 2000 Examiner: RECEIVED
Title: ASSOCIATIVE CACHE APR1 7 200
STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN Technology Center 2600

A NETWORK MONITOR

X

be e |

Date?/—o Mor 20072

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.
Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Rosenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: BQ /rMN 2007 Signature;

Dov Rosenfeld, Reg. No. 38,687

NOAC Ex. 1017 Page 188

Our Docket/Ref. No.: API!C})O 1-4 @ Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al.
Serial No.: 09/608266
Filed: June 30, 2000

Title: ASSOCIATIVE CACHE
STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN
A NETWORK MONITOR

Group Art Unit: 273 \

Examiner:

RECEIVED
APR 1 7 2002
Technology Center 2600

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL:

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449,

A check for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Date: 3@ Msr 2807

Correspondence Address:
Dov Rosenfeld

Respectfully submitted,

Dov R5senfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547-3378

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 2023].

Date of Deposit:% m/]a_.!‘ 29@ L Signature; ﬂ

Certificate of Mailing under 37 CFR 1.18

v Rosenfeld, Reg. No. 38,687

NOAC Ex. 1017 Page 189

O

UNITED STATES PATENT AND TRADEMARK QFFICE

2

o

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address COMMISSIONER FOR PATENTS

PO Box 1450

Alexandna, Vignma 22313-1450
WWW.0spto gov

r APPLICATION NO. I FILING DATE [FIRST NAMED INVENTOR TATI‘ORNEY DOCKET NO 1 CONFIRMATION NO.
09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4 9867
7590 09/10/2003
Dov Rosenfeld [EXAMINER
5507 College Avenue
Suite 2 NGUYEN, ALANV

Oakland, CA 94618

| ART UNIT I PAPER NUMBER
2662
DATE MAILED: 09/10/2003 @

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01)

NOAC Ex. 1017 Page 190

e

4t

Pt fltm o =R Al e o et

o

N ()
- L J Application No. ... Applicant(s)
09/608,266 SARKISSIAN ET AL.
Office Action Summary Examiner Art Unit
Alan Nguyen 2662

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.

If the periad for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.

if NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any

earned patent term adjustment. See 37 CFR 1.704(b).

Status

oo

1) J Responsive to communication(s) filed on
2a)] This action is FINAL. 2b)X] This action is non-final.

3)[] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
Disposition of Claims

4] Claim(s) 1-20is/are pending in the application.
4a) Of the above claim(s) is/are withdrawn from consideration.
5[] Claim(s) is/are allowed.
6)d Claim(s) 1-20 is/are rejected.
7)[] Claim(s) _____is/are objected to.

8)[] Claim(s)
Application Papers

are subject to restriction and/or election requirement.

9)[] The specification is objected to by the Examiner.

10)[] The drawing(s) filed on 06/30/2000 is/are: a)[] accepted or b)[_] objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)[The proposed drawing correction filed on is: a)[_] approved b)[_] disapproved by the Examiner.
If approved, corrected drawings are required in reply to this Office action.

12)[_] The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120
13)[_] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)[JAll b)[] Some* c)] None of:
1[0 Certified copies of the priority documents have been received.

2. Certified copies of the priority documents have been received in Application No.

3.[] Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

14)] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) [] The translation of the foreign language provisional application has been received.
15)] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

1) X Notice of References Gited (PTO-892) 4[] interview Summary (PTO-413) Paper No(s).
2) IZ Notice of Draftsperson's Patent Drawing Review (PT0-948) 5) D Notice of Informal Patent Application (PTO-152)
3) I Information Disclosure Statement(s) (PTO-1449) Paper No(s) 4& 5. 6) [other:

L
US Patent and Trademark Office

PTOL-326 (Rev. 04-01) Office Action Summary NOAC Ex. 1017 Pagerb9iNo. 6

O O

' Application/Control Number: 09/608,266 Page 2
Art Unit: 2662
DETAILED ACTION
Specification
1. The disclosure is objected to because of the following informalities: The serial

numbers of related applications are missing on pages 1 and 2 of the specifications.
Appropriate correction is required.
Claim Rejections - 35 USC § 102
2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that
form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(b) the invention was patented or described in a printed publication in this or a foreign country or in public
use or on sale in this country, more than one year prior to the date of application for patent in the United
States.

(e) the invention was described in a patent granted on an application for patent by another filed in the United
States before the invention thereof by the applicant for patent, or on an international application by another
who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371(c) of this title before the
invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act of
1999 (AIPA) and the Intellectual Property and High Technology Technical Amendments
Act of 2002 do not apply when the reference is a U.S. patent resulting directly or
indirectly from an international application filed before November 29, 2000. Therefore,
the prior art date of the reference is determined under 35 U.S.C. 102(e) prior to the

amendment by the AIPA (pre-AIPA 35 U.S.C. 102(e)).

3. Claims 7-11, 19, and 20 rejected under 35 U.S.C. 102(b) as being anticipated by

Chang (US 4,458,310).

NOAC Ex. 1017 Page 192

O O

Application/Control Number: 09/608,266 Page 3
Art Unit: 2662

Regarding claims 7 and 19, Chang clearly describes a cache memory system
shown in figure 1 element 100 that utilizes a number of content addressable memory
(CAMs). The cache system is coupled to a processor and main memory as, clearly
shown in Figure 1 elements 101 and 102 of Chang. Figure 1 further shows the use of
LRU (least recently used) circuits (elements 104-106), each coupled to cache data
memory (elements 107-109). Figure 2 shows the use of a CAM in each LRU circuit (a
CAM controller coupled to the CAM set). Reverting to figure 1, elements 104-106 clearly
show a top LRU circuit connected to a middle LRU circuit, which is connected to a
bottom LRU circuit. Chang shows in figure 1 a control and sequencer device (element
103) that is coupled to the LRU circuit controlling the CAM, main memory, and the
cache data memory. Chang further explains the function of the LRU circuit’CAM and its
corresponding cache data memory in column 4 lines 13-20 and column 5 lines 26-33.
The CAM responds to the input of the address being received and compares that
address to the contents stored in the CAM. If there is a match, indicating a hit, the LRU
circuit uses that address to point to the cache data memory for accessing. In addition to
checking if the associated cache data has the desired word, the LRU circuit maintains
the priority of each word in the associated cache data memory, this priority information
is automatically updated by the LRU circuit for each access to the associated cache
data memory and defines which word in the cache memory is the least recently used
word. Chang also discloses repeatedly how the address of each new, least recently

used word is written into the CAM. Since each CAM will contain addresses that are

NOAC Ex. 1017 Page 193

O O

Application/Control Number: 09/608,266 Page 4
Art Unit: 2662

constantly changing being written into it, the CAM will therefore point to a different
address in the cache memory element.

In regards to claim 8, with the features in parent claim 7 addressed above,
Chang further discloses a deletion of the least recently used word in column 4 lines 48-
51. ltis stated that the least recently used word of cache data memory 109 no longer
exists in cache memory 100 at the completion of the previous operation after the values
have been shifted down from data memory 107.

In regards to claim 9, with the features in parent claim 7 addressed above,
Chang further discloses an example of a hit, shown in column 9 lines 50-62 and figure
1. LRU circuit 104 and data memory 107 are the priority CAM and cache memory,
respectively. LRU circuit 105 and memory 108 are the next highest priority. The
contents of the match/hit are transmitted and stored within LRU circuit 104 and data
memory 107. The least recently used words from LRU circuit 104 and memory 107 are
transmitted to LRU circuit 105 and data memory 108. The steps above explain the
shifting-down process of the least recently used value. The bottom CAM (LRU circuit
106) will always point to the least recently used value in the device.

In regards to claim 10, with the features in parent claim 7 addressed above,
Chang discloses a deletion of the least recently used word in column 4 lines 48-51. ltis
stated that the least recently used word of cache data memory 109 no longer exists in
cache memory 100 at the completion of the previous operation after the values have

been shifted down from data memory 107. As the replacement process keeps going,

NOAC Ex. 1017 Page 194

O O

Application/Control Number: 09/608,266 Page 5
Art Unit: 2662

shifting of values also continues. This deducts to the replacing of values at the bottom of
the list, which is according to an inverse order of recentness of use.

In regards to claim 11, with the features in parent claim 7 addressed above, it is
understood that cache data memory (figure 1 elements 107-109) contains cells of words
and can be a page of memory.

In regards to claim 20, with the features in parent claim 19 addressed above,
Chang further discloses the use of least recently used (LRU) cache memory element.
Chang discloses in column 4 lines 42-48 an example of a new word placed in cache
data memory (element 107). The LRU word of memory 107 is then shifted down to
cache memory (element 108) and the LRU word of memory 108 is written to cache
memory 109. The address of that LRU word is then written to the CAM (element 106)
associated with memory 109, as described in column 5 lines 49-51, and shown in
Figure 1. Therefore LRU circuit 106 is understood to be the bottom CAM of figure 1 and

points to the least recently used value stored in cache memory 109.

4. Claims 1 and 2 rejected under 35 U.S.C. 102(e) as being anticipated by Gobuyan
et al (US 5,917,821), herein Gobuyan.

Regarding claim 1, Gobuyan discloses an apparatus that examines packets
through a connection point on a network. This indicates that the apparatus has a device
for acquiring packets. Gobuyan shows in figure 3 a device with a lookup engine
(element 3), memory for storage of the entries (elements 6, 8), and a subsystem

accessing the memory (elements 5 and 7). In column 7 lines 41-43 and 56-59, Gobuyan

NOAC Ex. 1017 Page 195

e ®

Application/Control Number: 09/608,266 Page 6
Art Unit: 2662

discloses that the lookup engine receives portions of packets containing identifying
information through a 16-bit I/F RAM (element 9). Regarding claim 2, the apparatus of
Gobuyan inherently includes a parser that extracts packets identifying information

because this operation is necessary for the lookup engine to operate.

Claim Rejections - 35 USC § 103
3. ‘The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in
section 102 of this title, if the differences between the subject matter sought to be patented and the prior art
are such that the subject matter as a whole would have been obvious at the time the invention was made to

a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be
negatived by the manner in which the invention was made.

4. Claim 3-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over
Gobuyan in view of Chang (US 4,458,310).

(a) Regarding claims 3 and 4, Gobuyan discloses the use of a subsystem that
accesses the database memory to search for the stored information. The
lookup engine invokes the address lookup engines (ALE) to search for the
specified address in its bank of memory.

(b) Gobuyan fails to teach the use and function of content addressable memory
(CAM) as a method to search for specified data fields.

(c) Chang teaches the use of a cache memory system that utilizes a set of
CAMs. The cache systemis coupled to a processor and main memory as,
clearly shown in Figure 1 of Chang. Figure 1 further shows the use of LRU

(least recently used) circuits (elements 104-106), each coupied to cache data

NOAC Ex. 1017 Page 196

O O

Application/Control Number: 09/608,266 Page 7
Art Unit: 2662

memory (elements 107-109). Figure 1 further shows a control and sequencer
device (element 103) that is coupled to the LRU circuits. Figure 2 shows the
use of a CAM in each LRU circuit (a CAM controller coupled to the CAM set).
Claim 3 is therefore rejected since Chang indicates the use of CAMs for the
cache subsystem. Reverting to figure 1, elements 104-106 clearly show a top
LRU circuit connected to-a middle LRU circuit, which is connected to a bottom
LRU circuit. Chang shows in figure 1 a control and sequencer device
(element 103) that is coupled to the LRU circuit controlling the CAM, main
memory, and the cache data memory. Chang further explains the function of
the LRU circuit/CAM and its corresponding cache data memory in column 4
lines 13-20 and column 5 lines 26-33. The CAM responds to the input of the
address being received and compares that address to the contents stored in
the CAM. If there is a match, indicating a hit, the LRU circuit uses that
address to point to the cache data memory for accessing. In addition to
checking if the associated cache data has the desired word, the LRU circuit
maintains the priority of each word in the associated cache data memory, this
priority information is automatically updated by the LRU circuit for each
access to the associated cache data memory and defines which word in the
cache memory is the Ieasf recently used word. Chang also discloses
repeatedly how the address of each new, least recently used word is written

into the CAM. Since each CAM will contain addresses that are constantly

NOAC Ex. 1017 Page 197

O)

Application/Control Number: 09/608,266 Page 8
Art Unit: 2662

changing being written into it, the CAM will therefore point to a different
address in the cache memory element.

(d) It would have been obvious to one having ordinary skill in the art at the time
the invention was made for Gobuyan’s arrangement to have a cache memory
subsystem utilizing a stack of CAMs for looking up address fields, the
motivation being improved performance through quicker execution and
accessing, as taught by Chang.

In regards to claim 5, with the features in parent claim 4 addressed above,
Gobuyan fails to disclose the use of CAMs utilizing a least recently used scheme.
Chang teaches the use of least recently used (LRU) cache memory element. Chang
discloses in column 4 lines 42-48 an example of a new word placed in cache data
memory (element 107). The LRU word of memory 107 is then shifted down to cache
memory (element 108) and the LRU word of memory 108 is written to cache memory
109. The address of that LRU word is then written to the CAM (element 106) associated
with memory 109, as described in column 5 lines 49-51, and shown in Figure 1.
Therefore LRU circuit 106 is understood to be the bottom CAM of figure 1 and points to
the least recently used value stored in cache memory 109. It would have been obvious
to one having ordinary skill in the art at the time the invention was made for Gobuyan to
use a cache subsystem having CAMs to utilize a lowest priority word scheme, the
motivation being a much faster lookup time of data fields, as taught by Chang.

In regards to claims 6, with the features in parent claim 4 addressed above,

Gobuyan fails to disclose a CAM scheme that shifts down content due to a more

NOAC Ex. 1017 Page 198

O ®

Application/Control Number: 09/608,266 Page 9
Art Unit: 2662

recently used value. Chang teaches an example of a cache hit, shown in column 9 lines
50-62 and figure 1. LRU circuit 104 and data memory 107 are the priority CAM and
cache memory, respectively. LRU circuit 105 and memory 108 are the next highest
priority. The contents of the match/hit are transmitted and stored within LRU circuit 104
and data memory 107. The least recently used words from LRU circuit 104 and memory
107 are transmitted to LRU circuit 105 and data memory 108. The steps above explain
the shifting-down process of the least recently used value. The bottom CAM (LRU
circuit 106) will always point to the least recently used value in the device.

It would have been obvious to one having ordinary skill in the art at the time the
invention was made for Gobuyan to use a cache subsystem having CAMs utilizing a
LRU element pointed to by the bottom CAM for faster accessing of data fields, as taught

by Chang

5. Claims 12-18 rejected under 35 U.S.C. 103(a) as being unpatentable over Chang
in view of Carter et al (US 6,003,123), herein Carter.

(a) Regarding claims 12, 13, 14, 15, 16, and 17, Chang discloses the use of a
cache system having content addressable memory as a way of looking up
specified addresses quickly.

(b) Chang fails to disclose a method to indicate dirty entries in the cache. A dirty
entry is one that has not been updated by an external memory.

(c) Carter teaches the use of labeling elements as being dirty or not dirty. Carter

discloses in column 15 lines 12-17 the use setting bits as “dirty” to allow

NOAC Ex. 1017 Page 199

O O

Application/Control Number: 09/608,266 Page 10
Art Unit: 2662

hardware to determine if the block has been modified. Carter further explains
that the dirty bit of a block status in the cache is always set to zero when the
block is brought into the cache to reflect the fact that the block has not been
modified since it was brought into the cache. Carter also discloses that if the
block is cleaned, the status remains at zero. When a block is evicted from the
cache, its dirty bit is examined, and the status of the block changed to dirty if
the cache dirty bit is set to one. When an entry is evicted, its block status bits
are copied to the local page table. This is analogous to the address being

written to the main memory in Chang'’s apparatus.

(d) It would have been obvious to one having ordinary skill in the art at the time

the invention was made for Chang to modify the arrangement such that the
use of setting dirty flags to determine if the cache has been modified or not,
the motivation being the prevention of contamination of data. Each cache

memory element would have an indication of whether or not it is dirty. If the

cache element is cleaned the status remains at zero.

In regards to claims 18, with the features in parent claim 17 addressed above,

For Chang's apparatus, it inherently cleans the least recently used cache data first

because the apparatus does use the LRU scheme. The concept of lowest word priority

is 1o flush out the least used word.

Conclusion

NOAC Ex. 1017 Page 200

O O

Application/Control Number: 09/608,266 Page 11
Art Unit; 2662
6. The prior art made of record and not relied upon is considered pertinent to

applicant's disclosure.
The following patents are cited to further show the state of the art with respect to
associative cache memory and content addressable memory:
Colloff et al (US 5,530,834)
Hoover et al (US 5,749,087)
Churchill (US 3,949,369)
Houseman et al (US 4,559,618)
Okamoto et al (US 4,910,668)
Agarwal et al (US 5,530,958)

Inoshita et al (JP 2003044510A)

7. Any inquiry concerning this communication or earlier communications from the
examiner should be directed to Alan Nguyen whose telephone number is 703-305-0369.
The examiner can normally be reached on 8am-5pm ET.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's
supervisor, Hassan Kizou can be reached on 703-305-4744. The fax phone numbers
for the organization where this application or proceeding is assigned are 703-872-9314
for fegular communications and 703-872-9314 for After Final communications.

Any inquiry of a general nature or relating to the status of this application or
proceeding should be directed to the receptionist whose telephone number is 703-305-

4700.

NOAC Ex. 1017 Page 201

O O
| V Page 12
L7 Application/Control Number: 09/608,266
Art Unit: 2662

an
September 3, 2003

/,/

HASSAN KIZOU
SUPERVISORY PAYENT EXAMINER

TECHNOLOGY CENTER 2600

NOAC Ex. 1017 Page 202

Application/Control No. Applicant(syPatent Under
Reexamination
] 09/608,266 SARKISSIAN ET AL.
Notice of References Cited S aminer P
Lﬁ Alan Nguyen 2662 Page 1 of 1
U.S. PATENT DOCUMENTS
* c°unw3%i‘3'§.i'ltmhi‘i:}2§£ Code MMI?$$YY Name Classification
¥ | A | US-5530,958 06-1996 Agarwal et al. 711/3
k| B |US-4,458310 07-1984 Chang, Shih-Jeh 7111119
| C US-6,003,123 12-1999 Carter et al. 711/207
| D [US-5530,834 06-1996 Colloff et al. 711/136
¥ | E US-5,749,087 05-1998 Hoover et al. 711/108
J(F | US-3,949,369 04-1976 Churchill, Jr., William Philip 711/128
& G | US-4,559,618 12-1985 Housem‘an et al. 365/49
/’_ H | US-4,910,668 03-1990 Okamoto et al. 711/207
I | US
J | US-
K | US-
L | US-
M | US-
FOREIGN PATENT DOCUMENTS ’
* Counhs%cc::;:jlrt':tnr\i:mz‘:; Code MMI?ya/tsw Country Classification
N | JP02003044510A 02-2003 JP Inoshita et al GO06F017/30
o]
P
) Q
R
3]
’ T
NON-PATENT DOCUMENTS
* Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
U
\
W
\ N
X ‘
pr of this reference is not being furished with this Office action. (See MPEP § 707.05(a).)
ates in MM-YYYY format are publication dates. Classifications may be US or foreign.
US Patent and Trademark Office
TO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 6

wm o
= o

NOAC Ex. 1017 Page 203

United States Patent [
Agarwal et al.

0 O

(111 Patent Number:
(4s] Date of Patent:

5,530,958
Jun. 25, 1996

[54] CACHE MEMORY SYSTEM AND METHOD
WITH MULTIPLE HASHING FUNCTIONS
AND HASH CONTROL STORAGE

[75] Inventors: Ampant Agarwal, Framingham, Mass.;
Steven D. Pudar, Rancho Cordova,
Calif.

[73] Assignee;: Massachusetts Institute of
Technology, Cambridge, Mass.

[21] Appl. No.: 363,542
[22] Filed: Dec. 23, 1994

Related U.S. Application Data

[63] Continuation of Ser. No. 926,613, Aug. 7, 1992, 2bandoned.

[51] Int. CLS .orerecrecirnaes GO6F 12/10; GO6F 12/08
[52] US. Ch ... 395/403; 395/421.06; 395/435;
395/460; 364/DIG. 1; 364/243.41; 364/244.7;

364/255.8; 364/259.8

[58] Field of Searchrecirvisinn 395/421.06, 403,
395/435, 460

[56] References Cited
U.S. PATENT DOCUMENTS
5235,697 8/1993 Steely, Jr et al. cnvireennee 395/425
FOREIGN PATENT DOCUMENTS
2154106 5/1972 Gemmany .
OTHER PUBLICATIONS

Agarwal, “Analysis of Cache Performance for Operating
Systems and Multiprogramming,” Technical Report No.
CSL-TR-87-332, Computer Systems Laboratory, Stanford
University (May 1987).

Jouppi, “Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully—-Associative Cache and
Prefetch Buffers,” Proc. of the TEEE (1590).

Agarwal, Anant, “Analysis of Cache Performance for Oper-
ating Systems and Multiprogramming, * Kluwer Academic
Publishers, Boston, MA, Title page, Contents pp. vi-ix, pp.
120-124, see p. 122, line 14-p. 124, line 2.

09/01/2003, EAST Version:

Kessler, et al., “Inexpensive Implementations of Set-Asso-
ciativity,” Computer Architecture News 17(3); 131-139
(Jun. 1989).

da Silva, et al., “Psendo-associative Store with Hardware
Hashing,” IEE Proceedings E. Computers & Digital Tech-
nigues 130(1): 19-24 (Jan. 1983).

Anant Agarwal and Steven D. Pudar, “Column-Associative
Caches: A Technique for Reducing the Miss Rate of Direct-
—~Mapped Caches.” In Proceeding ISCA 1993 (Abstract).

Anant Agarwal et al.,, “Cache Performance of Operating
System and Multiprogramming Workloads,” ACM Transac-
tions on Computer Systems, 6(4): 393431, Nov., 1988.

Anant Agarwal et al., “An Analytical Cache Model,” ACM
Transactions on Computer Systems, 7(2): 184-215, May,
1989.

Kimming So and Rudolph N. Rechtschaffen, ‘“‘Cache Opera-
tions by MRU Change,” (Research Report #RC11613
(#51667) Computer Science, pp. 1-19, (Nov. 13, 1985).
Yorktown Heights, NY: IBM T. J. Watson Research Center.

“A High Performance Memory Management Scheme";
Thakkar, Shreekant S. and Knowles, Alan E.; Computer;
May 1986; IEEE Computer Society; pp. 8-20.

Primary Examiner—Eddie P. Chan

Assistant Examiner—Reginald G. Bragdon

Attorney, Agent, or Firm—Hamilton, Brook, Smith & Rey-
nolds

[57) ABSTRACT

A column-associative cache that reduces conflict misses,
increases the hit rate and maintains a minimum hit access
time. The column-associative cache indexes data from a
main memory into a plurality of cache lines according to a
tag and index field through hash and rehash functions. The
cache lines represent a column of sets. Bach cache line
contains a rehash block indicating whether the set is a rehash
location. To increase the performance of the column-asso-
ciative cache, a content addressable memory (CAM) is used
to predict future conflict misses.

25 Claims, 7 Drawing Sheets

TAG DATA FLAG 8

1-09v&%¢ Ex. 1017 Page 204

U.S. Patent Jun. 25, 1996 Sheet 1 of 7 5,530,958

address
Processor dota Main [
Memory —14
)
MZ
) Cache 16
15
f Controller
g |
i7
Address q; /2'
TAG DATA FLAG 18
TAG | INDEX
7 SO
19

Address qj [‘ S6
TAG | INDEX S7

19 21

09/01/2003, EAST Version: 1. 04nNYRE Ex. 1017 Page 205

U.S. Patent Jun. 25, 1996 Sheet 2 of 7 5,530,958

set

0

1

2 a;

3 set

4 0

S 1

6 0] 2 q; Qj

7 3

Column-Associative Two-Way Set-Associative

_/

3528

hit _hi (o] miss
/ \

done Rbit=1?
1 yes \\\\\tz
clobberl h, {a]
‘ 22/// \\\::Bs
done swap clobber2
M+] l
done
3 swap

I

done

;;Zﬁa_‘zg hA+3A

09/01/2003, EAST Version: 10%\18%08123‘ 1017 Page 206

U.S. Patent Jun. 25, 1996 Sheet 3 of 7 5,530,958

g; Gj ay i Gj Ay
SO SO
S1 Gi Gj OX Gi S Oi Gj
S2 S2
S3 S3
S4 5S4
S514q; G Gy S5{9j q; Oy 1
S6 S6
S7 ST
N _/
—~
%9 4
16 18
CAM
/ 4
20

Controller ™15
1,3 5

09/01/2003, EAST Version:

1.04-RYRC Ex. 1017 Page 207

U.S. Patent Jun. 25, 1996 Sheet 4 of 7 5,530,958

‘no/inCAM?\yes‘
) hy [a] h2(a]
h/ \:ss hit/ \rAniss
done Rbit=1? done clobber2
=
) hs [q] ho [a
hit miss hit 2l iss done
/ \ M+1
putinCAM clobbert putincaAM*® clobber2
swap
done done
3 M+2 done swap
3 l
done
M+3
7;5 b
TAG | INDEX TAG DATA
SO '
N
-~ S
S2
S3
ho 5S4
S5 /20
S6
57 CAM
|6.J 1‘

4
y . 7 15~
Controller |e

9/01/2003, EAST V i : 1.04.0000
09/01/ sreton NOAC Ex. 1017 Page 208

U.S. Patent Jun. 25, 1996 Sheet 5 of 7 5,530,958
) h, [a] .
hit 1 miss
/ L
done inCAM?
1 ng/ yes
clobberl hi hz[o]\'
putinCAM y miss
l swap clobber2
done | ‘
M+1 done
3 swap
done
3:‘9 8 M+3
address
bus
22 f24 /23 [25
0
MAR - RAM Array +
> MUX - rehash bit
12
1 LM
1 -— HIT
MSEL —= RD/WT
f(X)
26 | . 30
P (]
1 0
34 DSEL\ X '
) o}
Control Logic ' -
D Dat f
0P, MACK |—= L Duka Buffer
14
STALL, MEM f=— 28 /
\ data bus
LS Swap Buffer 30

Fg 9

09/01/2003,

EAST Version:

1.04.0000

NOAC Ex. 1017 Page 209

5,530,958

Sheet 6 of 7

Jun. 25, 1996

U.S. Patent

K5 e ras] 7 T G
~—|sovngo | = HOLVW %€
L ! 21607 10Hu0) | —= WVILM
2| .ayng domg |bDi| S |e— " C
e aoz_
snq DiDp |
i
/ 8z _ WD a7 L HMB YO o¢
bl 1 | .
jagng oioq QT " XN 13S0
! o)
TI _
W 13sd “ 1 Nop
w og/ L | \ruti\f_
, |
(X)4 “
IM/QY f— wmg k " T3S
LIH >
] L AT
xapul |- :
1q ysoyai -— XN 2|
+ Koay WvY HVIN 0
] / J
G2 €2 va e $58.ppD

09/01/2003, EAST Version: 1.043Q%0 gx, 1017 Page 210

5,530,958

Sheet 7 of 7

Jun. 25, 1996

~—

=1
3

[
=
)
-

#0314 98y
2e\| Jayngdomg STlje—

<] W3W ‘7vls WVJ

snq so\n —=! MOV 4O <—| HOLVW

14 mNu 91607 1044u0) | —= WVOLM

japngopg Q7 fe—
snanba Lpg 0z’ | [oni
8H
— 13Sd —{ 13}4n
o X woo a1 L2 wzmo
8¢
1 oodd ———————— —
I3 ‘ oo -
|
LIH— k _
Wl | !
xapui |-
W
Apaiy NVY HYW x:<o,_
ez’ e 22
sng
SS34ppD

09/01/2003, EAST Version: 1.0408000 b 1017 Page 211

5,530,958

1

CACHE MEMORY SYSTEM AND METHOD
WITH MULTIPLE HASHING FUNCTIONS
AND HASH CONTROL STORAGE

This application is a continvation of No. 07/926,613 filed
Aug. 7, 1992, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates generally to the field of high
performance processors that require a large bandwidth to
communicate with a main memory system. To effectively
increase the memory bandwidth, a cache memory system is
typically placed between the processor and the main
memory. The cache memory system stores frequently used
instructions and data in order to provide fast access from the
main memory.

In order for a processor to access memory, it checks the
cache first. If the desired data is in the cache, a cache hit
occurs, and the processor receives the data without further
delay. If the data is not in the cache, a cache miss occurs, and
the data must be retrieved from the main memory to be
stored in the cache for future use. Main memory accesses
take longer than cache accesses, 50 the processor is stalled
in a cache miss, wasting a number of cycles. Thus, the goal
for nearly all modern computer systems is to service all
memory references from the cache and to minimize refer-
ences which require accesses from the main memory.

In a typical cache system, a portion of 2 main memory
address is used to index a location or a set of locations in
cache memory. In addition to storing a block (or line) of data
at that indexed location, cache memory stores one or more
tags, taken from another portion of the main memory
address, which identify the location in main memory from
which the block of data held in cache was taken.

Caches are typically characterized by their size (ie.,
amount of memory available for storage), their replacement
algorithm (i.c., method of inserting and discarding blocks of
data into a sct), their degree of associativity or set size (i.e.,
number of tags associated with an index and thus the number
of cache locations where data may be located), and their
block or line size (i.e., number of data words associated with
a tag). These characteristics influence many performance
parameters such as the amount of silicon required to imple-
ment the cache, the cache access time, and the cache miss
rate.

One type of a cache that is frequently used with modem
processors is a direct-mapped cache. In a direct-mapped
cache, each set contains only one data block and tag. Thus,
only one address comparison is needed to determine whether
the requested data is in the cache. The direct-mapped cache
is simple, easy to design, and requires less chip area.
However, the direct-mapped cache is not without draw-
backs. Because the direct-mapped cache allows only one
data block to reside in the cache set, its miss rate tends to be
very high. However, the higher miss rate of the direct-
mapped cache is mitigated by a small hit access time.

Another type of a cache that is frequently used is a d-way,
set associative cache. A d-way, set associative cache con-
tains S sets of d distinct blocks of data that are accessed by
addresses with common index fields that have different tag
fields. For each cache index, there are several block loca-
tions allowed, one in each set. Thus, a block of data arriving
from the main memory can go into a particular block
location of any set. The d-way set associative cache has a
higher hit rate than the direct-mapped cache. However, its

09/01/2003, EAST Version: 1'O4N0(3&% Ex. 1017 Page 212

—

0

25

35

45

65

2

hit access time is also higher because an associative search
is required during each reference, followed by a multiplex-
ing of the data block to the processor.

Currently, the trend among computer designers is lo use
direct-mapped caches rather than d-way set associative
caches. However, as mentioned previously, a major problem
associated with direct-mapped caches is the large number of
misses that occur. One particular type of miss that occurs is
a conflict miss. A conflict miss occurs when two addresses
map into the same cache set. This situation occurs when the
addresses have identical index ficlds but different tags.
Therefore, the addresses reference the same set. A d-way set
associative cache typically does not suffer from conflict
misses because the data can co-reside in a set. Although
other types of misses, such as compulsory (misses that occur
when loading a working set into a cache) and capacity
(misses that occur when the cache is full and when the
working set is larger than the cache size) do occur, they tend
to be minimal as compared to conflict misses.

The problem of conflict misses has caused designers to
reconsider using a direct-mapped cache and to begin design-
ing cache memory systems that can incorporate the advan-
tages of both the direct-mapped cache and the d-way asso-
ciative cache. One approach has been to use a victim cache.
A victim cache is a small, fully associative cache that
provides some extra cacbe lines for data removed from the
direct-mapped cache due to misses. Thus, for a reference
stream of conflicting addresses &, 4;, a,, ,, . . . , the second
reference a, misses and forces the data i indexed by a, out of
the set. The data i that is forced out is placed in the victim
cache. Thus, the third reference address, a;, does not require
accessing main memory because the data is in the victim
cache and can be accessed therefrom.

However, there are several drawbacks to the victim cache.
For example, the victim cache must be very large to attain
adequate performance because it must store all conflicting
data blocks. Another problem with the victim cache is that
it requires at least two access times to fetch a conflicting
datum (i.e., one to check the primary cache, the second to
check the victim cache, and maybe a possible third to store
the datum in the primary cache). Still another drawback to
the victim cache is that performance is degraded as the size
of the cache memory is increased because the victim cache
becomes smaller relative to the cache memory, thereby
reducing the probability of resolving conflicts.

Consequently, there is a need for an improved cache
memory system that incorporates the low conflict miss rate
of the d-way set-associative cache, maintains the critical
access path of the direct-mapped cache, and has better
performance than the victim cache.

SUMMARY OF THE INVENTION

To provide a cache memory syster with a high hit rate
and a low hit access time, the present invention has set forth
a column associative cache that uses an area-efficient cache
control algorithm. A column associative cache removes
substantially more conflict misses introduced by a direct-
mapped access for small caches and virtually all of those
misses for large caches. Also, there is a substantial improve-
ment in the hit access time.

In accordance with the present invention, there is a cache
memory having a plurality of cache sets representing a
columnn of sets for storing data. Each cache set is indexed by
memory addresses having a tag field and an index field. A
controller indexes memory addresses to the cache data

5,530,958

3

memory by applying at least one hashing function. A hash-
ing function is an operation that maps the addresses of the
data from a main memory to the cache sets of the cache data
memory. A rehashed location stores data that is referenced
by an alternate hashing function. The use of alternative hash
functions (i.e., hash and rehash) allows cache sets associated
with a common index to be stored within the single cache
column rather than in separate columns, each of which
requires its own memory space. For example, in a direct-
mapped cache, the two hash functions allow two blocks with
the same index to reside in different cache locations. In
accordance with the present invention, hash control data is
stored in the cache memory to direct the cache system to a
hashed location or a rehashed location based on past cache
operations. The hash control data may be a hash/rehash
block associated with each cache location which indicates
whether the hash or rehash function was used to store the
data in that location. Altematively, or in combination with
the hash/rehash block, a memory may identify recent cache
indexes or groups of indexes which have required rehash,

The cache memory system of the present invention
resolves conflict misses that arise in direct-mapped cache
access by allowing conflicting addresses to dynamically
choose altemate hashing functions, so that most conflicting
data can reside in the cache. In the cache memory system of
the present invention, data is accessed from the cache by
applying a first hashing function to the indexed memory
address. If the data is valid, it is a hit and is subsequently
retrieved. For a miss at a rehashed location, as indicated by
a rehash block, the controller removes that data and replaces
it with new data from the main memory. If the cacbe location
is not a rehashed location, then a second hashing function is
applied in order to place or locate the data in a different
location. With a second miss, valid data is accessed and the
controller swaps the data in the cache locations indexed by
the first and second hashing functions.

The preferred first type of hashing function used by the
present invention is & bit selection operation. The bit selec-
tion operation indexes the data in the cache lines according
to the index field. If there is a conflict miss, then the second
hashing function is applied. The preferred second hashing
function of the present invention is a bit flipping operation.
The bit flipping operation inverts the highest order bit of the
index ficld of the address and accesses the data in that
particular Jocation. The present invention is not limited to
two hashing functions and may use more.

In another preferred embodiment of the present invention,
there is provided a content addressable memory (CAM)
coupled to the cache memory system for storing portions of
addresses that are expected to indicate future conflict misses
in the cache. The CAM, preferably a tag memory, improves
the efficiency of the cache by increasing the first time hit
rate. The CAM stores the indexes of cache blocks that are
present in rehashed locations. If the index of an address
matches an index stored in the CAM, then the cache
controller uses the rehash function (instead of the hash
function) for the first time access. Thus, second time
accesses are reduced.

While the present invention will hereinafter be described
in connection with a preferred embodiment and method of
use, it will be understood that it is not intended to limit the
invention to this embodiment. Instead, it is intended to cover
all alternatives, modifications, and equivalents as may be
included in the spirit and scope of the present invention as
defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of a cache memory sysiem
of the present invention.

09/01/2003, EAST Version: 1.04NQPRE Ex. 1017 Page 213

—

5

35

40

30

65

4

FIG. 2A illustrates a column associative cache with
rehash blocks.

FIG. 2B illustrates a comparison of a column associated
cache and two-way set associative cache.

FIG. 3 shows a decision tree for the column associative
cache with rehash blocks.

FIG. 4 shows a comparison between a single column
associative cache and the column associative cache with
rehash blocks.

FIG. 5 shows a column associative cache with a content
addressable memory (CAM) and rehash blocks.

FIG. 6 shows 2 decision tree for a column associative
cache with rehash blocks and a CAM.

FIG. 7 shows a column associative cache with a CAM.
FIG. 8 shows a decision tree for a2 column associative
cache with a CAM.

FIG. 9 shows the circuitry for a column associative cache
with rehash blocks.

FIG. 10 shows the circuitry for a column associative
cache with rehash blocks and a CAM.

FIG. 11 shows the circuitry for a column associative cache
with a CAM.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1 of the present invention, there is
shown a cache memory system 10 placed between a pro-
cessor 12 and a main memory 14. The speed of the cache is
compatible with the processor, whereas the main memory is
lower in speed, The cache anticipates the processor’s likely
use of data in the main memory based on previously used
instructions and data in the cache. Based on an assumption
that a program will sequence through successive instructions
or data addresses, a block or line of several words from the
main memory is transferred to the cache even though only
one word is needed. When the processor needs to read from
mein memory the cache is checked first. If the data is in the
cache, there is g hit and retrieval from cache. If the data is
not in the cache, there is a miss and retrieval is from main
memory.

To provide a cache memory system with a high hit rate
and a low access time, the present invention has set forth a
cache that incorporates the characteristics of a direct-
mapped cache and a d-way set associative cache. The cache
of the present invention is a column associative cache 16 and
is shown in FIG. 2A. The column associative cache contains
a plurality of cache lines that represent a column of sets each
of one line. In FIG. 2A, eight sets, S0-S7 of the cache are
shown, It is noted that the column associative cache would
likely have hundreds or thousands of sets.

To access the cache 16, a memory address 17 is divided
into at least two fields, a tag field 19 (typically the high-order
bits) and an index field 21. As in a conventional direct
mapped cache, the index field is used through a hash
function h, to reference one of the cache sets S0-S7 and the
tag field is compared to the tag of the data within that set. A
tag memory is coupled to the plurality of cache sets for
storing the tags of the data blocks. If the tag field of the
address matches the tag field of the referenced set, then there
is a hit and the data can be obtained from the block that
exhibited the hit. If the tag field of the address does not
match the tag field of the referenced set, there is a miss.

Data addresses are indexed from the main memory 14 to
the column assaciative cache 16 according to two hashing

¥
o

v gl ¢

5,530,958

5

functions, h, and h,, which are applied by controller 15, The
hashing functions are operations that map the data addresses
from the main memory to the cache sets based on spatial and
temporal locality. Spatial locality sugpgests that future
addresses are likely to be near the locations of current
addresses. Temporal locality indicates that future addresses
are more likely to reference the most recently accessed
locations again.

The first hashing function, h,, is preferably a bit selection
operation. In a bit selection operation, data is indexed to the
sets of the column associative cache according to its index
field. Since some data may contain the same index field,
there is high probability that there will be conflict miss
between the data. The column associative cache of the
present invention resolves the conflict by then applying a
second hashing function, h,. The second hashing function
dynamically chooses a different location in which the con-
flicting data can reside. The second hashing function, h,, is
preferably a bit flipping operation that flips the highest
ordered bit of the referenced by the index address and
accesses the conflicting data at the set indexed by the
inverted address. As shown in FIG. 2A, the first hashing
function, h,, indexes address a, 17 to set S1. Address 11 then
attempts to access S1 but there is a miss because address 17
is already there. To resolve the conflict, the second hashing,
h,, function is applied to address 11. This hashing function
flips the highest ordered bit of the index field so that address
11 can be indexed to S5. Thus, S1 and S5 share locations
through h; and b, so that conflicts are resolved not within a
set but within the column of sets of the entire cache.

A comparison of a column associative cache with a
conventional two way sct associative cache is illustrated in
FIG. 2B. In the conventional cache, a set, such as set 2,
stores two lines of data. Thus, if the requested data is stored
in either line of a set, there is a hit. Drawbacks of such a
cache are the high hit access time and hardware complexity.
The column associate cache performs as a direct mapped
cache unless there is a miss. With a miss it accesses another
location within the same memory column. Thus, two sets
share two locations.

Also, shown in FIG. 2A is a rehash block 18 coupled to
each cache set for indicating whether the set has been
rehashed. A rehashed location is a set that has already been
indexed through the second hashing function to store data.
The purpose of the rehash block is to indicate whether a
location stores data through a rehashed index so the data
should be replaced in preference for a non-rehashed index.
Temporal locality suggests that rehashed locations should be
preferentially replaced.

FIG. 3 discloses a controller decision tree for indexing the
cache. Table 1 provides the decision tree mnemonics and
cycle times for cach cycle. First, the first hashing function,
h,, is applied to the memory address a. If the first-time
access is a hit, then the data is accessed to the processor.
However, if the first-time access is a miss, then the rehashed
location block of that set is checked (Rbit=17). If the rehash
block has been set to one, then the data is removed from that
cache set indexed by h,{a] and data from the main memory
is retrieved and substituted therefor (Clobber 1). Next, the
rehash block is reset to zero to indicate that the data in this
set is to be indexed by the first hashing function h, for future
indexes.

On the other hand, if the rehash block is set to zero, then
upon a first-time miss, the second hashing function h, access
is attempted, If the second hashing function indexes to valid
data, then there is a second time hit. For a second time hit,

09/01/2003, EAST

25

30

45

50

55

60

65

version: 1.0400908 Ex. 1017 Page 214

6

the data is retrieved from that cache set and the data in the
cache sets indexed by the first and second hashing functions,
h,{a] and h,{a}, are swapped (SWAP) so that the next access
will likely result in a first time hit (temporal locality).
However, if the second hashing function provides a second
time miss, then the data in that set is replaced (Clobber2).
Data from the main memory is retrieved and placed in the
cache set indexed by the second hashing function, h,[a].
Then the data in the cache sets indexed by the first and
second hashing function, h; and h, are swapped with each
other (SWAP).

TABLE 1
Mnemonic Action Cycles
h,(a] bit-seleciion access 1
) EY] bit-flipping access 1
swap swap data in seis accessed by h,[a} 2
and hyfa]
clobber] get data from memory, place in set M
accessed by h,[a]
clobber2 get data from memory, place in set M
accessed by hyfa]
Rbit=1? check if sct accessed by hyfaj is a Q
rehashed location
inCAM? check if & (or ity index) matchcs 0
a CAM entry
putinCAM place a (or its index) in the CAM 1
putinCAM* place the index of a and the ag 1

present in the cache location
accessed with hy(a) into the CAM

At startup, all of the empty cache sets have their rehash
blocks set to one so that compulsory misses are handled
immediately.

The rehash block 18 increases the hit rate and decreases
the access time for the column associative cache. The
increase in performance is due to the fact that the data in the
non-rehashed location are the most recent accessed data and,
according to temporal locality, this data is more likely to be
needed again, The removal of older data which will probably
not be referenced again whenever a conflict miss occurs
reduces the amount of clobbering. In addition, the ability to
immediately replace a rehashed location on the first access
reduces the number of cycles consumed by rehash accesses.

In addition to limiting rehash accesses and clobbering, the
column-associative cache with rehash block corrects a prob-
lem associated with indexing a reference pattern a,2;3, a, 2,
8, 8, . . . where the addresses a, and a; map into the same
cache location with bit selection, h,, and a, is an address
which maps into the same location with bit flipping, h,. FIG.
4 shows how a single column associative cache and a
column associative cache with a rehash block will index the
above reference pattern. The figure shows at each location,
the data stored in that location after the data request indi-
cated by the input sequence. In the column associative
cache, address a, is shown indexed into set S1 by the first
hashing function, h,. Address &, attempts to index S1 by the
first bashing function, but there is a miss because address i
is there. Then using the second hashing function, h,, address
a; is indexed to S5 and with a miss that data is retrieved and
stored in S5. The data in S1 and S5 is then swapped. Thus,
j is now in S1 and i is now in S5. The next address, a,,
attempts to access S5 but will miss because i is there. Then
the second hashing function is applied to a, and it attempts
to access S1, but there is a miss because j is there. Since this
is a second time miss, the address a; is removed from S1 and
replaced by a.. Then a, and ai, are swapped so that i is in S1
and x is in S5. This pattern continues as long as a, and a,
alternate. Thus, the data referenced by one of a; and a, is

5,530,958

7

clobbered as the data i is swapped back and forth but never
replaced.

This detrimental effect is known as thrashing, but as
shown in FIG. 4, it does not occur in a column-associative
cache with a rehash block. In the column associative cache
with a rehash block, a, is indexed to S1 by the first hashing
function h,. Address a, attempts to index S§1 but misses
because i is there, Since there is a miss, the rehash block for
S1 is checked to see if that set has been already indexed by
the second hashing function h,. Since S1 has not been
indexed by h,, its rehash block is 0. Then, the second
hashing function indexes a; to S5 and the rehash block is set
to 1. Then the datain S1 and S5 are swapped so that j is now
in S1 and i is now in S5, Address a, attempts to access S5
but misses because i is there. However, because the rehash
block of S5 is set to 1, j is removed and replaced by x. Thus
S1 contains j and S5 contains x, eliminating the thrashing of
j. Of course, this column-associative cache suffers thrashing
if three or more conflicting addresses alternate, as in a, 8, a,
2,2;a,3,. .., but this casc is much less probable than in the
case of two alternating addresses. Thus, the rehash block
alleviates thrashing, reduces the number of rehash accesses
and nearly eliminates clobbering.

To further reduce the access time of the column associa-
tive cache, a content addressable memory (CAM) 20 is
added thereto. The purpose of the CAM is to reduce the
number of unnecessary rehash accesses and swaps in the
column associative cache. FIG. 5 shows the CAM 20
coupled to the column associative cache 16. The CAM
stores addresses that potentially cause conflict misses, such
as addresses that have been swapped with the rehashed
location in a second-time hit. If the address in the CAM
matches requested data address, then the controller attempts
to index the referenced data using another hashing function,
such as h,, as the first hash,

FIG. 6 shows a decision tree for indexing an address a to
the column associative cache with the CAM. Table 1 pro-
vides the decision tree mnemonics and cycle times for each
cycle. First, the CAM is checked to determine whether the
index of a matches the address entry within the CAM
(inCAMY?), If there is a match, then h, is used to index &. If
h,[a)] indexes valid data, then there is a hit and the data is
retrieved. However, if there is a miss, then the data is
clobbered and data from the main memory is retrieved and
placed in the cache set accessed by h, (Clobber2).

On the other hand, if there is no match in the CAM, then
h, is applicd to a for indexing. If h;[a] indexes valid data,
then there is a hit. However, if there is a miss, the rehash
block is checked to determine whether the cache set
accessed by h;[a] is a rehashed location (Rbit=1?). If the
cache set is a rehashed location (=1), then h,, is applied to a.
A hit results in a or its index being retrieved and placed in
the CAM (putinCAM) as a potential conflict. A miss causes
the data in the set indexed by h,[a] to be clobbered and
replaced with data retrieved from the main memory (Clob-
ber 1). If the rehash block is not set to 1, then h, is applied
to a for indexing. A hit results in am address from the index
of h,[a} being placed into the CAM (putinCAM¥). The
address is reconstructed from the index of a and the tag at
h, [a). Then data in cache sets accessed by h,[a] and h,[a] are
swapped with each other. A miss causes the data to be
clobbered and replaced with data retrieved from the main
memory and placed in the set indexed by h,{a} (Clobber2)
Then data in cache sets accessed by hy[a] and hy[a] are
swapped with each other (SWAP).

An example of how the CAM provides better perfor-
mance to the column associative cache is evident for the

09/01/2003, EAST Version: 1.04NQAT Ex. 1017 Page 215

35

45

50

55

65

8

following reference pattemn: a,, a;, a, &, To access the
above reference pattern, the column associative cache 18
wastes many cycles swapping a, and a,, repeatedly whereas
the CAM 20 stores the address that referenced the data into
the rehashed location on a second-time hit. For instance, the
third reference, i, results in a second-time hit because the
data j is indexed into the rehashed Jocation as expected, but
its address (i.e., tag and index) is stored in the CAM. The
CAM is then checked in parallel with every first-time access,
and if a match is found, the control logic will find the data
directly by rehashing instead. The benefit of adding a CAM
to the column-associative cache is that a swap is no longer
necessary between the conflicting data because the CAM
quickly points out those addresses which provide second-
time hits. Thus, in the above example, a; remains in the
non-rehashed location and is accessed in one cycle by h)[a;].
The conflicting data a, remains in the rehashed location and
is accessed by h,[a;] after a; is matched with its entry in the
CAM.

An important feature of this design is that the search of the
CAM does not impose a one cycle penalty. This feature is
accomplished by optimizing the CAM so that a search is
completed quickly enough to precede the first-time access in
the cycle. This feature can also be implemented by perform-
ing the CAM access in a previous pipeline stage. However
accomplished, eliminating the penalty of searching the
CAM is crucial because a significant reduction in execution
time is possible only if most of the data in rehashed locations
can be retrieved as quickly as those in non-rehashed loca-
tion.

Another benefit in using a CAM is evident in a first-time
rehash h,[a] (due to a being in the CAM) that misses. The
decision tree shows that in this case, no swap is needed
because data is retrieved from the main memory and left in
the set indexed by hyfa]. This is done because that address
is in the CAM due to a first-time rehash. Therefore, leaving
the data in the rehashed location leads to future first-time
rehash hits in only one cycle.

One of the drawbacks of using a CAM with a column
associative cache is evident in situations when a set accessed
by h,[a] is found to be a rehashed location. Instead of
immediately replacing this data, a rehash access must be
performed to ensure that the desired data is not located in the
rehashed location, This is impossible for the single column-
associative cache with rchash block, however, it is feasible
when 2 CAM is included. For example, suppose an address
exists in the CAM which causes a first-time rehash hit at
h,[a]. The CAM is a finite resource, so this address may be
removed from the CAM after it becomes full. Now, if this
address appears again in the reference stream, there is no
CAM match, so a normal access is attempted when the data
is in the set indexed by h,fa]. Thus, replacing the non-
rehashed location immediately would result in data being
stored in two separate locations. The extra attempted rehash
guards against this wasteful situation, but it adds a one cycle
penalty.

Another embodiment of the present invention is to have
the CAM coupled to the column associative cache without
having a rehash block (see FIG. 7). As in the above embodi-
ment, the CAM 20 improves the efficiency of the column
associative cache by storing portions of addresses that are
expected to indicate future conflict misses. This reduces the
number of unnecessary rehash accesses and swaps in the
column associative cache. For example, after first time
misses, a rehash access is only attempted when the control
logic identifies this miss as a conflict. A conflict is identified
by finding a match in the CAM. This Conflict may be

5,530,958

9

resolved by rehashing, Thus, fewer rehashes are attempted
which improves the second time hit rate and decreases the
extent of data being clobbered.

FIG. B discloses a controller decision tree for indexing an
address to the column associative cache with CAM. Table 1
provides the decision tree mnemonics and cycle times for
each cycle. First, the first hashing function, h,, is applied to
a memory address a. If the first time access is a hit, then the
data is accessed. However, if the first time access is a miss,
the CAM is checked to see if address a matches a CAM entry
(inCAM?).

If address a does not match a CAM entry, the data in
address a is removed (clobberl) and data is retrieved from
the main memory and placed in the cache set accessed by the
first hashing function h,(a]. Then the data from address a is
placed in the CAM (putinCAM).

However, if there is a match in the CAM, then the second
hashing function h,[a] is applied. A hit causes the data to be
accessed and then the data in the cache sets accessed by
h,{a] and h,[a] are swapped (SWAP). A miss causes that the
data to be removed from the cache set and replaced by data
from main memory (clobber2). Then the data in the cache
sets accessed by h,[a] and h,[a] are swapped (SWAP).

For a general understanding of how to implement the
columa associative cache with rehash block, the column
associative cache with the rehash block and CAM, and the
single column associative cache with CAM, reference is
made to FIGS. 9-11 and Tables 2-4. The cache implemen-
tation for both FIGS. 9-11 are discussed at the register
transfer level without the disclosare of the detailed gate and
trangistor designs since the actual control logic can be easily
synthesized from the state flow tables set forth in Tables 2-4.

Furthermore, in order to provide brief yet descriptive
details about the various embodiments, several simplifica-
tions and assumptions have been made. For example, a
discussion regarding the clocking and timing issues is left
out. Instead, it is assumed that the controller 15 receives
input signals at the start of 2 cycle and issues output signals
at the end of the cycle. Also, for simplicity, the bus interface
and driver circuits have been left out.

FIG. 9 shows a hardware implementation of the column
associative cache with rehash block for the present inven-
tion. The primary element of the column associative cache
memory system is a RAM array 23 having a rehash block 25.
The RAM, preferably a tag memory, has a plurality of cache
sels to store memory addresses. The processor sends a data
address via an n-bit multiplexor 22 to a memory address
register (MAR) 24. Connected in between the output of the
MAR and one of the inputs of the multiplexor 22 is an
inverter 26. The multiplexor 22, the MAR 24, and the
inverter 26 interact to index the data address from the
processor to the RAM. More specifically, the multiplexor
and the inverter apply the first hashing function h; and the
second hashing function h, to the data address.

The RAM 23 communicates with the data bus via a data
buffer 28. In between the data buffer and the RAM is a
second n-bit multiplexor 30. A swap buffer 32 communicates
with both the multiplexor 30 and the data buffer 28 so that
current data can be placed in the cache set most likely to be
accessed.

The controller 15 provides the necessary control logic to
each of the above components so that the algorithm of the
decision tree in FIG. 3 is followed. The control signals for
FIG. 9 are summarized in Table 2 as well as the actions taken
for a given state, input, output, and next state. A discussion
of the components and Table 2 is set forth below and can be
followed in FIG. 3.

09/01/2003 , EAST Version: 1. 0%6)&& Ex. 1017 Page 216

20

25

35

40

50

60

65

10
TABLE 2
State Input Output Next state
IDLE opP LM,RD bla]
bla} HIT IDLE
'HIT,'HB STALL,MSEL,LM,RD,LS fl[a}
HIT,HB MEM,STALL XWAIT
flla] HIT MSELLMWT f2[a)
\HIT MEM WAIT}
2a] DSEL,LD f[a]
f3(a) MSELLM,WT IDLE
WAIT1 MACK MSELLM,WT WAIT2
WAIT2 DSEL.LD WAIT3
WAIT3 MSELIMWT IDLE
XWAIT MACK LD,WT IDLE

Upon receiving an opcode signal (OP), the controller
loads (LM) the MAR with an memory address a from the
address bus. Then the controller issues a read or write signal
(RD/WT) to the RAM so thar the first hashing function h, is
be applied to address a. If the RAM returns a hit signal
(HIT), then the data is automatically loaded (LLD) into the
data buffer 32 to be retricved and the controller goes to an
IDLE state. ’

Ifthe h, [a] access misses (! HIT) and the rehash block has
not been rehashed (!HB), then the controller stalls the
processor (STALL), copies (LS) the data from the h,{a]
access into the swap buffer, loads the MAR with the second
hashing function b, (MSEL and LM), issues a read (RD)
signal to the RAM and moves to the fl{a] state. If the access
misses (IHIT) and the rehash block is set to one (HB), then
the data is removed and the controller makes a request to the
main memory (MEM), stalls the processor (STALL), and
moves to the XWAIT state.

In the fl1[a] state, a hit causes the controller to load the
MAR with that index (MSEL, LM), issuc a write signal
(WT) to the RAM and move to the f2[a)] state. For a miss
('HIT), the controller makes a request to the main memory
(MEM) to retrieve data end moves to the WAITT state,

In the f2{a] state, the controller swaps the data in the data
buffer and the swap buffer (DSEL, LD) and moves to the
f3[a] state. :

In the £3[a] state, the controller loads the MAR (MSEL,
LM), issues a write (WT) signal to the RAM, and moves to
the IDLE state.

In the WAIT1 state, the memory acknowledges comple-
tion (MACK), the data is taken from the data bus and loaded
in the MAR (MSEL, LM), a write signal is issued to the
RAM (WT), and the controller moves to the WAIT2 state.

In the WAIT?2 state, the controller swaps the data in the
data buffer (DSEL, LD) and moves to the WAIT3 state.

In the WAIT3 state, the controller loads (MSEL, LM) the
MAR, issues a write signal (WT) to the RAM and moves to
the IDLE state.

In the XWAIT state, the controller receives a signal that
the access is complete (MACK), loads the data into the data
buffer (D), issues a write command (WT), and moves to the
IDLE state.

The circuitry of the column associative cache with CAM
and rehash block is more complex than the cache by itself
(see FIG. 10). For example, there is a CAM 20, a first in first
out (FIFO) counter 36, a CAM buffer 38, and another n-bit
multiplexor 40. The FIFO counter points to the next location
in the CAM that is to be replaced and the CAM buffer holds
indexes while they are being compared or before they are
written into the CAM. Even though this hardware consumes
a great deal of area, the critical access path of the column
associative cache is not affected. Besides the above addi-

5,530,958

1
tions, the MAR 24 and the swap buffer 32 are shown to have
capability for storing partial addresses such as the index and
tag fields, respectively.

The state flow table in Table 3 reveals that the control
logic for the column associate cache with the CAM and
rehash block is more complex. For example, the variables
for each state have changed and are referenced differently
than the column associative cache. Furthermore, upon
receiving an opcode (OP), the controller searches the CAM
to determine if there is a match for the address a. If there is
no initial match (! MATCH) in the CAM, the controller
loads the MAR (LM), issues a read signal (RD) to the RAM,
and moves to the bfa) state. A match (MATCH) in the CAM
enables the controller to load the MAR (MSEL, LM), issues
a read signal (RD) to the RAM; and moves to the fia] state.

A hit (HIT) in the ffa] state enables the controller to place
the index field of the data within the MAR into the CAM
buffer (LDCAM) and then move to the IDLE state. On the
other hand, a miss (! HIT) enables the controller to stall the
processor (STALL), make a request to the main memory
(MEM), and then move to the WAIT state.

A hit (HIT) in state b[a] causes the controller to place the
index field of the data within the MAR into the CAM buffer
38 (LDCAM) and moves to the IDLE state. A miss ({HIT)
with a zero rehash block (! HB) or a one rehash block (HB)
causes the controller to stall the processor (STALL), load the
MAR (MSEL, LM), issue a read signal (RD) to the RAM,
load the swap buffer (LS) with the data from bfa] and move
to the fl[a] and fc[a] state, respectively.

TABLE 3

Next

Stae Input Output State

IDLE OP,!MATCH LMRD bla]

OPMATCH MSELLM,RD fa]

ffia} HIT LDCAM IDLE
IHIT STALL,MEM WAIT

bia] HIT LDCAM IDLE

HIT,!HB STALL,MSEL.LM,RD,LS fl[a]

HITHB STALL,MSEL,LM,RD,LS fe[a]

fl{a) HIT MSEL,LM,WT,CSEL, 2{a}

LDCAM,WICAM

{HIT MEM WAIT1

12(a] DSELLD,INC 3{a]
3[a] MSEL,LM,WT,LDCAM IDLE
fcla) HIT LDCAM, WTCAM fc2{a]
HIT MEM WAIT

fc2]a) INCLDCAM IDLE
WAIT MACK LD,WT,LDCAM IDLE
WAIT1 MACK MSELLMWT WAIT2
WAIT2 DSEL,LD WAIT3
WAIT3 MSEL,LM,WT,LDCAM IDLE

A hit in the fl[a] cavses the controller to load the MAR
(MSEL, LM), issue a write signal (WT) to the RAM, place
the address from the MAR in the CAM (CSEL, LDCAM,
WTCAM), and move to the £2[a] state, A miss (HIT) causes
the controller to make a request to the memory (MEM) and
go to the WAIT1 state.

In the f2[a] state, the controller points to the next location
in the CAM (INC), swaps the data in the data buffer with the
data in the swap buffer (DSEL, LD), and moves to the f3[a)
state.

In the f3[a] state, the controller places an index within the
MAR and the CAM buffer (MSEL, LM, WT, LDCAM) and
moves to the IDLE state.

In the fc[a] state, the data is indexed. A hit (HIT) causes
the controller to place the index within the MAR into the
CAM buffer (LDCAM), place the current index into the
CAM (WTCAM), and move to the fc2[a] state. A miss

—

5

20

30

35

40

45

50

55

60

65

12
(HIT) canses the controller to make a request to the memory
to retrieve data (MEM), and move to the WAIT state.

In the fc2[a) state, the controller issues an INC command
to the FIFO counter in order to point to the next location in
the CAM, places an index within the MAR into the CAM
buffer (LDCAM), and moves to the IDLE state.

In the WAIT state, the controller receives a signal indi-
cating that the access is complete (MACK), loads the MAR
with the next access (LD), issues a write signal to the RAM
(WT), places an index within the MAR into the CAM buffer
(LDCAM) and then moves to the IDLE state.

In the WAIT1 state, the controller receives & signal
indicating that the access is complete (MACK), loads the
MAR (MSEL, LM), issucs a write signal (WT), and moves
to the WAIT?2 state.

In the WAIT? state, the controller swaps data between the
data buffer 28 and the swap buffer 32, loads the data buffer
with the data (DSEL,LD), and moves to the WATT3 state.

In the WAITS3 state, the controller loads the MAR (MSEL,
LM), issues a write signal to the RAM (WT), places the
index within the MAR into the CAM buffer (LDCAM), and
moves to the IDLE state.

Note that all states whose next state is [DLE assert the
LDCAM line. This serves as a reminder that in order for the
CAM senrch and the setting of MATCH to precede the
first-time cache access, the search must be either extremely
fast or part of a previous pipeline stage. LDCAM is listed as
an output of the stages executed before the IDLE state as a
reminder of these potential solutions. In these cases, actu-
ally, the CAM buffer would need to find the next address on
the address bus, because the MAR has not yet latched the
next reference. Also, note that the state flow Table 3 pro-
ceeds similarly to the state flow Table 2 for first-time hits and
first-time misses when the rehash block is zero. The only
cxception is for a second-time hit, when the original non-
rehashed address must be placed in the CAM in addition to
the swap. This is accomplished by asserting CSEL, LDCAM
and WTCAM during state f1[a]. Also, INC is asserted during
f2[a] to increment the FIFO counter, which points to the
location of the next write to the CAM but does not affect the
next CAM search. .

The new entries in the state table involve the paths if an
initial CAM match occurs or if a first-time miss reveals a
rehashed location. If the MATCH line is asserted initially,
then the controller moves to set fi{a) and attempts a standard
rehash access. If successful, nothing remains to be done. If
it misses, then this rehashed location is simply replaced by
data from the memory during the WAIT state, Note that
MSEL and LM are not to be used to change the MAR
contents. Since the address that accesses this location is still
in the CAM, a future reference will be successful in one
cycle. In the case that a first-time miss reveals a rehashed
location, state fclfa] is entered and, unlike the column-
associative cache with rehash block, a rehash is performed
to assure that the data does not exist in the rehashed location.
If this access does indeed hit, the address is simply placed
in the CAM. Thus, a feature reference immediately finds a
match in the CAM and completes a rehash access in one
cycle. If there is & miss, then the algorithm proceeds as in the
column-associative cache with rehash block and replaces the
non-rehashed location.

The circuitry of the column associative cache with a CAM
is shown in FIG. 11. The control signals for FIG. 11 are
summarized in state flow Table 4. A discussion of the
components and Table 4 are set forth below and correspond
to the decision tree of FIG. 8. .

09/01/2003, EAST Version: 1. 04658 Ex 1017 Page 217

5,530,958

13
TABLE 4
state input output next state
IDLE op LM,RD,LDCAM bla)
bla] HIT IDLE
IHITMATCH STALL,MSEL,LM,RD, fifa]
LS
'HIT!MATCH MSEL,STALL,WTCAM XWAIT
flla} HIT MSEL,IM,WT,DSEL.LD R2{a)
THIT MEM WAIT1
2{a} MSELIMWT IDLE
WAIT1 MACK MSEL,LM,WT,DSEL,LD WAIT2
WAIT2 MSEL,LM,WT IDLE
XWAIT MACK INC,LD,WT IDLE

Upon receiving an opcode (OP), the controller loads the
MAR (M), issues a read signal (RD) to the RAM, places
the index within the MAR into the CAM buffer (LDCAM)
and moves to the b[a] state.

A hit in the b{a] state (HIT) causes the data to be accessed
and then the controller moves to the IDLE state. A miss
('HIT) with a match (MATCH) in the CAM causes the
controller to stall the processor (STALL), load the MAR
(MSEL,LM), issue a read signal (RD) to the RAM, load the
swap buffer (LS) with the data from h,{a] and move to the
fi[a) state. A miss ('HIT) without a match (! MATCH) in the
CAM causes the controller to make a request to memory
(MEM), stall the processor (STALL), write into the CAM
(WTCAM) and move to the XWAIT state.

A hit (HIT) in the f1{a] state causes the controller to load
the MAR (MSEL,LM), write the RAM (WT), load the data
buffer with the data (DSEL,LD) and move to the f2[a] state.
A miss ({HIT) causes the controller to make a request to
memory (MEM) and move to the WAIT1 state.

In the f2[a] state, the controller loads the MAR (MSEL,
LM) and issues a writc signal (WT), and moves to the IDLE
state.

In the WAIT1 state, the controller receives an input signal
indicating that the access is complete (MACK), then loads
the MAR (MSEL, LM), issues a write signal (WT), swaps
data between the data buffer and the swap buffer, loads the
data buffer with the data (DSEL, LD), and moves to the
WATT2 state.

In the WAIT?2 state, the controller loads the MAR (MSEL,
LM), issues a write signal to the RAM (WT), and moves to
the IDLE state.

In the XWATT state the controller receives an input signal
indicating that the access is complete (MACK), then the
controller issues an INC command to the FIFO counter in
order to point to the next location the CAM, places an index
into the MAR (LD), writes the RAM (WT), and moves to the
IDLE state.

An important parameter for the CAM disclosed in FIGS.
10 and 11 is its size parameter. Like the victim cache, the
percentage of conflicts removed increases as its size
increases, because there are more locations to store conflict-
ing data removed from the cache. However, this improve-
ment eventually saturates to a constant level, because there
cxists onty so many conflicting data bits which need to
reside therein at one time. However, the CAM can perform
without saturation for up to 128 entries, whereas the victim
cache can perform only up to 16 entries before saturation
OCcurs.

The column associative cache with a CAM can use the
full index field or omit some of the low order bits from the
index fields that are to be placed in the CAM. For example,
if two bits are trapped from the index, then four different
addresses could cause a CAM match with the same entry.

09/01/2003, EAST

20

25

35

55

60

65

Version: 1.0NGACEXx. 1017 Page 218

14

These addresses may be consecutive numbers, since the low
order bits have been dropped. The vse of partial index fields
increase the number of rehashes attempted, because a ref-
erence is predicted to be a conflict if it indexes one of four
consecutive locations. As seen previously, an increase in the
number of rehashes attempted often decreases the second
time hit rate and likely degrades performance. However, this
modification may prove useful in applications where data or
instructions are often known to be storcd sequentially or in
consecutive bits.

Also, note that the present invention is not limited to the
two hashing functions, h, and h,, bit selection operation and
bit flipping operation. Other hashing functions may be used
in addition to bit flipping in order to improve the randomness
of accesses and to decrease the amount of clobbering.

While the invention has been particularly described in
conjunction with a preferred embodiment thereof, it will be
understood that many alternatives, modifications and varia-
tions will be apparent to those skilled in the art without
departing from the spirit and scope of the invention as
defined by the appended claims.

We claim:

1. A cache memory system comprising:

a cache memory having a plurality of cache locations,
cach for storing a cache line of data, separately
accessed from a main memory, and having a first tag
memory, each cache location being indexed by indexes,
taken from memory addresses, through first and second
hashing functions such that plural memory addresses
having a common index access plural memory loca-
tions through the first and sccond hashing functions and
different indexes access common memory locations
through the first and second hashing functions;

hash control storage storing control data comprising hash
data associated with each cache location which indi-
cates the hashing function used to store data in the
cache location; and

a controller coupled to the cache memory responsive to
memory addresses in accesses to the main memory for
accessing data in the cache memory through the first
and second hashing functions and for replacing data in
the cache memory from the main memory responsive to
the control data and to comparisons between tags of the
memory addresses and tags stored in the first tag
memory.

2. A cache memory system as claimed in claim 1 wherein
the controller checks the hash data of the cache location
indexed by the first hashing function when there is a miss at
that cache location and applies the second hashing function
only when said hash data indicates data stored in the cache
Iocation was not stored using the second hashing function.

3. A cache memory system as claimed in claim 1 wherein
the controller responds 1o the hash data to determine whether
to replace data stored in a first location indexed through the
first cache hashing function or a second cache location
indexed through the second hashing function.

4. A cache memory system as claimed in claim 3 wherein
the controller swaps data replaced in a cache location with
data in another cache location indexed by a common index.

5. A cache memory system as claimed in claim 1 further
comprising a second tag memory coupled to the controller
for storing as control data at least portions of memory
addresses that indicate that data stored in a cache location is
likely indexed through one of the hashing functions.

6. A cache memory system as claimed in claim 5 wherein
the controller accesses cache memory locations through the
first hashing function or the second hashing function depen-

5,530,958

15

dent on whether at least a portion of a memory address is
stored in the second tag memory and, where a miss results
at a cache memory location with access through the first
hashing function and the second hashing function, the con-
troller replaces the data stored through the first hashing
function if said hash data indicates the data accessed through
the first hashing function had been stored using the second
hashing function, or through the second hashing function if
said hash data indicates the data accessed through the first
hashing function had been stored using the first hashing
function.

7. A cache memory system as claimed in claim 1 wherein
the hash control storage comprises a second tag memory
coupled to the controller for storing as control data at least
portions of memory addresses that indicate a likely hashing
function through which data stored in cache is indexed.

8. A cache memory system as claimed in claim 7 wherein
the second tag memory is a content addressahle memory.

9. A cache memory system comprising:

a cache memory having a plurality of cache locations,
each for storing a cache line of data, separately
accessed from a main memory, and having a first tag
memory, cach cache location being indexed by indexes,
taken from memory addresses, through first and second
hashing functions such that plural memory addresses
having a common index access plural memory loca-
tions through the first and second hashing functions and
such that different indexes access common memory
locations through the first and second hashing func-
tions;

hash data associated with each of the plurality of cache
locations for indicating the hashing function used to
store dara therein; and

a controller coupled to the cache memory for accessing
data in the cache locations through the first and second
hashing functions and for replacing data in the cache
locations from main memory, the controller being
1esponsive to the hash data and a comparison of tags of
the memory address and stored tags in cache memory
in determining whether to replace data in a first location
accessed through the first hashing function or in a
second location accessed through the second hashing
function.

10. A cache memory system according to claim 9, wherein

the first hashing function is a bit selection operation.

11. A cache memory system according to claim 9, wherein
the comtroller checks the hash data of a cache location
indexed by the first hashing function when there is a miss to
determine whether to apply the second hashing function.

12. A cache memory system according to claim 9, wherein
the second hashing function is a bit selection and flipping
operation.

13. A cache memory system according to claim 9, wherein
the controller removes the data from the cache location
indexed by the second hashing function after a miss and
retrieves new data from the main memory in place therefor.

14. A cache memory system according to claim 13,
wherein the controller swaps the new data in the cache
location indexed by the second hashing function with the
data in the cache location indexed by the first hashing
function.

15. A cache memory system according to claim 9, wherein
the controller responds to a miss at a cache location through
the first bashing function, and to hash data indicating data is
stored at that cache location through the second hashing
function, to remove data from that cache location and
retrieve data from main memory in place therefor.

09/01/2003, EAST Version: 1.0NOAA Ex. 1017 Page 219

10

15

30

40

50

55

60

65

16

16. A cache memory system as claimed in claim 15
wherein the controller swaps data replaced in a cache
location with data in another cache Jocation indexed by a
common index.

17. A cache memory systemn according to claim 9, further
comprising 2 second tag memory coupled to the controller
for storing at least portions of addresses that indicate that
data stored in a cache location is likely to be indexed through
the second hashing function, the controller using the second
hashing fanction in the injtial cache indexing where an
address is found in the second tag memary.

18. A cache memory system comprising:

a cache data memory having a plurality of cache locations
for storing plural cache lines of data, each cache
location being referenced by a memory address having
an index field and a tag field, and each cache location
being indexed by indexes, taken from memory
addresses, through first and second hashing functions
such that plural memory addresses having 2 common
jndex access plural memory locations through the first
and second hashing functions and such that different
indexes access common memory locations through the
first and second hashing functions;

a first 1ag memory coupled 1o the cache data memory for
storing the tag fields of the data stored in the plurality
of cache locations;

hash data coupled to the cache data memory for indicating
hashing functions used to index data in the cache
locations;

a second tag memory coupled to the cache data memory
for storing at least portions of memory addresses that
indicate that data stored in a cache location is likely
indexed through one of the hashing functions; and

a controller responsive to the hash data, the first tag
memory and the second tag memory for indexing
memory addresses according to at least one of the
plural hashing fanctions.

19. A cache memory system according to claim 18,
wherein the controller applies first and second hashing
functions to a memory address, the second hashing function
being a bit selection and bit fiipping operation.

20. A method for accessing data from a cache data
memory, having a plurality of cache locations and a first tag
memory, comprising the steps of:

indexing a memory address baving an index field and a
tag field into an indexed cache location according to &
hashing function;

comparing a tag field of the memory address to a tag field
in the first tag memory for the indexed cache location;
and

generating a hit when the tag field of the memory address
matches the tag field of the indexed cache location, and
generating a miss when the tag field of the memory
address does not match the tag field of the indexed
cache location, and in generaling a miss, choosing
between the step of indexing another cache location
through another hashing function and the step of
replacing data, the step of replacing data in the cache
location being chosen if hash data indicates data
located in the cache location was indexed through
another hashing function.

21. A method according to claim 20, further comprising
the steps of connecting a content addressable memory to the
cache data memory for storing portions of memory
addresses, each portion indicating that data stored in a cache
locaton is likely indexed through one of plural hashing

5,530,958

17

functions, and checking the content addressable memory for
a match with a portion of the memory address.
22. A method as claimed in claim 20 further comprising
swapping the replaced data in a cache location with data in
another cache location indexed by a common index.
23, A method of accessing data from a cache data memory
having a plurality of cache locations and first tag memory
comprising the steps of:
indexing a memory address having an index field and a
tag field into an indexed cache location according to 2
hashing function applied to the index field; and

comparing a tag field of the memory address to a tag field
in the first tag memory for the indexed cache location;
and

storing control data which identifies the hashing function

used to store data in each cache location;

09/01/2003, EAST Version: 1.0NOA Ex. 1017 Page 220

15

18

wherein data is accessed in the cache locations through
first and second hashing functions and data is replaced
in the cache locations from main memory responsive to
the control data which is stored according to past cache
operations and comparisons between tags of memory
addresses and tags stored in the first tag memory.

24. A method as claimed in claim 23 further comprising
determining from a second tag memory & hashing function
through which data stored in a cache location is likely
indexed and selects that hashing function for indexing the
cache location.

25. A method as claimed in claim 23 further comprising
swapping data in the cache location indexed by the second
hashing function with the data in the cache location indexed
by the first hashing function when replacing data.

* * ¥ ¥ %

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 5,530,958
DATED ¢ June 25, 1996
INVENTOR(S) : Anant Agarwal and Steven D. Pudar

tt is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

At column 1, line 4, insert the following paragraph:
-==GOVERNMENT SUPPORT
This invention was made with government support under
Grant Number 9012773-MIP awarded by the National Science

Foundation. The government has certain rights in the
invention.-~--

Signed and Sealed this
Eighth Day of October, 1996

— Unce Tedman

BRUCE LEHMAN

Artesting Officer Commissioner of Patents and Trademarks

09/01/2003, EAST Version: 1.O4N%)X% Ex. 1017 Page 221

United States Patent 5 (1] Patent Number: 4,458,310
Chang s} Date of Patent: Jul. 3, 1984
[54) CACHE MEMORY USING A LOWEST 571 ABSTRACT

PRIORITY REPLACEMENT CIRCUIT

[75] Inventor: Shii-Jeh Chang, Naperville, Ili.

[73] Assignee: ATAT Bell Laboratories, Murray
Hill, NJ.

[21] Appl. No.: 307,857

[22) Filed: Oct. 2, 1981

[51] It. Q2 GOSF 13/00

[52) us.Q. 364/200

[58] Field of Search 364/200 MS FILE, 900 MS

FILE

156] References Cited

U.S. PATENT DOCUMENTS

3,588,329 €/1971
3,240,862 10/1974
3,949,368 4/1976
4,084,230 4/1978
4,123,832 12/1978
4,322,795 3/1982

Primary Examiner—Eddie P. Chan
Assistant Examiner—O. Schatoff

A data processing system having a -processor, main
memory, and & cache memory system which imple-
ments the least recently used replacement ulgorithm in
replacing cache memory words with main memory
words. The cache memory system is comprised of a
cache control circuit and a plurality of cache memories.
Each cache memory stores cache memory words hav-
ing a similar time usage history. The first cache mem-
mory stores cache memory words which are more re-
cently used than the cache memory words in the second
cache memory, and the second cache memory stores
cache memory words which are more recently used
than the cache metnory words in the third cache mem-
ory. When a main memory word must be transferred to
the cache memory, the main memory word is stored in
the first memory; and the first cache memory’s least
recently used cache memory word is stored in the sec-
ond cache memory. The least recently used cache mem-
ory word from the second cache memory is stored in
the third cache memory. These operations maintain the
proper time usage history of the cache memorics.

Attorney, Agent, or Firm—P. Visserman 17 Claims, 5 Drawing Figures
10 702
MAIN
PROCESSOR MEMORY
£ CONTROL BUS 1/
" —ADDRESSBUS /12
OATA BUS 77/
25 - AN MEMCRY READ
126 MAIN MEMORY READY 0
CACHE SYSTEM "
¥ 103
| can:um
X SEQUENCER
I' s-H -::II"I[I T
e 2 107 K
|l /27 CACHE
R {
DRTA
o [cmcor (BT MEMORY
- w2 | 24
] 705, 1L FRPL2 12 o |
] f GACHE
LRY i
He DATA
117} ciRowy NENORY
bse| 1[I L
A i b 7|
L L™ CACHE
Lhy
—1 cimcon DATA
—T™ MEMORY
123 ¥//3
CACHE DATA uoy i
SELECT CACHE DATA
CATING
CIRCUIT
1

NOAC Ex. 1017 Page 222

U.S. Patent Jul 3, 1984 Sheet 1 of 5 4,458,310

FIG. 1
201 102)
PROCESSOR i
1)
£ CONTROL BUS //7
—RDDRESS BUS //2
~DATA BUS J//
125~ |- MAIN MEMORY READ
CACHE J26—"_ -MAIN MEMORY READY 109
DATA CACHE SYSTEM ’
103
READY]
I CONTROL
i & =
) SEQUENCER
R/W)‘ s-HH W]]ﬂ IUO°T4“-
CAGD ~C~ 2
ADDR (1704, 1» RPLI ‘]07 -
LU el |
' (CIRCUIT ML MEMORY
wrl W 2773 229 | 140 -
R e 108,
w2 |
‘ s
ADDR
! 109, } !
| “CACHE
= ; ~DATA
-, =71 — 1 —|_MEMORY
% CACHE DATA H9) i
SELECT CACHE DATA
GATING
CIRCUIT
1

NOAC Ex. 1017 Page 223

4,458,310

Jul. 3, 1984 Sheet 2 of 5

U.S. Patent

K/ |
A nol, e — £r
g .f_..A (eor = 3
vy oz X
262 7T SO
S%w 202
(#ez _
$E2 %\ 27 - p M\
(74 B gee W] 100 Y1V w“w_ g
. —_——l L L
R E==" SRR ey 9 saaiovS— L
m@& ! iz ST 7, [
§2¢ LLP o7 Tz &4¢ A R
m@.wqauﬁ 27 10z 214y %Zd.% K4
UL M
o
\m& a1
: D w&
- : - TM3ETIH1 |
g2t i 500Y

NOAC Ex. 1017 Page 224

- . Y -
N - R

4,458,310

Jul. 3, 1984

U.S. Patent

Sheet 3 of 5

2974

sir -)
—le
N
Gez
0s z_, ‘esz ij ez 0L Tz
826 626 34_, [E€
108~ l_
1o 20 £0 A eTN]
T) _] 2 b _ 0 Y, —
T obeee | Tbeee | I fwze | T see | T bsee | T 2e [—
a% a1) K] W an a4 %) .
ﬂ&% @l&. @.3 @:&m 02€ ﬂl&.
N 80¢.
Y-60¢ or¢ e 2If HlE SIE [
Iﬁ 4 — — T
s o y4 7
| zh| 5774 ez 622 $2z ﬁz, -
a_h-s i AT e —

—

NOAC Ex. 1017 Page 225

4,458,310

Jul. 3, 1984 Sheet 4 of 5

U.S. Patent

) \i
L4
N 5 o L _ ezt
NN m Q¥ m R | S
ot ¥ 7/ 4 \
5/] SHOLYT
.“-M* 54 \Q\A\
. |
:a — _
o Iy
ALOIY | ESTL - 170 VI8 i awﬂ
y m Hobv3s §
R L TLI4
J-..ﬁ SIHOLY . Am MR LTS
— SS3400¥ sS300v 7iva
NMN_ £ 1 _\L ET0T | G0y, = .
11d4-H b1 L/_[NI VIO TMU\ 3 ﬂJ
7
M iz 10 Da¥re-h \MN
il LIV
(S
== T 01
) - . [RREETRS
11-01 o H - 2
300Y
» 9Id

NOAC Ex. 1017 Page 226

4,458,310

Sheet 5 of 5

0 I o t[rTofoTo fws
_ 5 0lojofolo]t s
_ Z tjofolr o]t fes
! olololv vt s
G§OM 380 _ 0N 20K | T0
aHOM
AINII3Y
isv3e | 03103738

Jul. 3, 1984

U.S. Patent

NOAC Ex. 1017 Page 227

1

CACHE MEMORY USING A LOWEST PRIORITY
REPLACEMENT CIRCUIT

TECHNICAL FIELD

My invention relates to computer systems, and, par-
ticularly, to a system using a cache memory in which
the cache storage location for storing new information
is the location of the lowest priority word in the cache
memory.

BACKGROUND OF THE INVENTION

Modern computer systems employ processors which
are capable of operating at much higher rates of execu-
tion than large capacity main memories can support,
and 2 low capacity, high-speed cache memoary is com-
monly used in addition to a large capacity main memory
to improve program exccution speed. The cache mem-
ory stores a limited number of instruction or data
words; and for each memory read operation, the cache
memory is checked to determine if the information is
availsble in the cache memory. If the information is
there, it will be read from the cache memory; otherwise,
it will be read from the main memory. If the information
must be read from the main memory, the new informa-
tion must replace cxisting information in the cache
memory at some cache storage location. A satisfactory
cache storage Jocation for storing new information is
identified by one of the several commonly used replace-
ment algorithms, e.g., random replacement, least re-
cently used, eic. In general, the least recently used re-
placement algorithm is considered to be the most effi-
cient algorithm; however, implementation of this algo-
rithm in & cost-cffective manner without incurring large
time delays in maintaining a priority of cache memory
Iocations, with respect to which is the least recently
used memory location, has proven difficult to achieve.
In particular, it has proven difficult to design a cache
memory which was capable of expansion in the field.

SUMMARY OF THE INVENTION

Advantageously, in a computer system in accordance
with the present invention, the cache memory system is
divided into sections with cach section containing cache
data words which have a similar priority. Each section
has a priority circuit associated with it which maintains
the relstive priority of the cache data words. Further-
more, the time required to update the cache memory
upon receipt of a main memory word which must be
inserted into the cache memory is reduced, since the
main memory data word is written into onc section
simultaneous with the transfer of lowest priority cache
data words from sections having higher priority cache
data words to sections having lower priority cache data
words. .

In one embodiment of the invention, the data process-
ing system consists of a processor, which requests data
words by gemersting main memory address signals, a
main memory and a cache memory system. The cache
memory system is comprised of a cache control circuit
and a first and a second cache memory. The advantage
of configuring the cache memory system into more than
one cache memory is that the system is modular and can
be expanded in the field. Also, each cache memory can
be implemented as one large scale integrated circuit.
Each cache memory stores cache data words which are
duplicates of words stored in thc main memory. Each
cache memory also stores the main memory addresses

4,458,310

10

13

20

k]

43

50

60

65

2

where the associated cache data words are duplicated in
main memory. When the processor requests a data
word by transmitting main memory address signals, the
first and second cache memory compare the stored
memory addresses with these memory signals to deter-
mine if the requested memory word is stored within
cither the first or second cache memory. If a cache
memory finds a match, it transmits to the cache control
circuit a match signal; otherwise, the cache memory
transmits a mismatch, If the cache control circuit re-
ceives mismatch signals from both cache memories, it
generates and transmits the necessary signals to cause
two operations to take plsce. During the firat operation,
the main memory to the main memory address
signals to access and transmit the desired main memory
word 10 the pracessor and to the first cache memory.
Also, during this first operation, the first cache memory
accesses its Jowest priority cache data word with the
associated stored main memory address and transmits
these to the second cache memory. During the second
operation, the first cache memory stores the accessed
main memory word and main memory address signals in
the previously accessed first cache memory locations
and the second cache memory stores the Jowest priority
cache data word and stored main memory address from
the first cache memory in second cache memory loca-
tions.

Further, the cache control means is responsive to 2
mismatch signal from the first cache memory and &
match signal from the second cache memory to cause
two operations to be performed within the cache mem-
ories. During the first operation, the first cache memory
accesses and transmits the lowest priority cache data
word and the associated main memory address to the
second cache memory and the second cache memory
tranamits the cache data word associated with the
matched stored memory address to the first cache mem-
ory and to the processor. During the second operation,
the first cache memory stores the cache data word and
address from the second cache memory in the memory
Jocation formerly used by the lowest priority cache data
word and memory address. Abso, during the second
operation, the second cache memory will store the
transmitted cache dsta word and associated address
from the first cache memory.

Additionally, each cache memory will be comprised
of a match and a data memory. The match memory will
be used to store the stored main memory addresses and
the data memory will be used to store the cache data
words. The match memory will perform a comparison
for each set of main memory address signals which the
processor sends out and this memory will indicate a
match or a mismatch. When a maich is found, the match
memory transmits an address to the data memory so
that it can access and transmit the designated cache data
word. A content addressable memory can be used to
implement the match memory.

Further, each cache memory has a priority circuit
which maintains the priority of each cache data word
with respect to when it was accessed within the first
cache memory. The priority maintained by the priority
circuit is the time usage history of the cache data words.
The lowest priority cache data word is the least re-
cently used cache data word.

In a data processing system comprising a processor,
main memory and cache memory system having two
sections, one illustrative method accesses and updates

o

NOAC Ex. 1017 Page 228

- o

4,458,310

3

the cache memory system by storing the cache data
words into the cache memory system with the first
section containing words which have a higher priority
than the words stored in the second section. When the
processor accesses a data word, each section is checked
to detect whether or not the desired word is contained
in that section. If the desired word is not contained in
any scction, then the main memory will be accessed and
the desired word transmitted to the processor and the
first section. The accessed main memory word will be
used to replace the lowest priority cache data word of
the first section and this word will be designated as the
highest priority cache data word and the word which
had the second lowest priority will be designated as the
lowest priority cache data word. The former lowest
priority cache data word will be transmitted 1o the
second section where it will replace the lowest priority
word of the second section and will become the highest
priority word of that section. The word which had the
second lowest priority in the second section will then be
designated as the lowest priority word.

If the requested word is detected as being in the sec-
ond section, then the word from the second section will
be transmitted to the processor and will be stored in the
first section as the highest priority word of the first
section. The lowest priority word of the first section
will be transferred to the second section where it will
become the highest priority word of the second section.
The lowest priority word can be the least recently used
word, and the highest priority word can be the most
recently used word.

BRIEF DESCRIPTION OF THE DRAWING

The invention may be better understood from the
following detailed description when read with refer-
ence to the drawing in which:

FIG. 1 is a block diagram representation of a data
processing system embodying the present invention;

FIGS. 2 and 3 show in greater detail LRU circuit 105
of FIG. 1;

FIG. 4 shows in greater detail the content address-
able memory of LRU circuit 104 of FIG. 1; and

FIG. 8 shows a table giving an example of the opera-
tion of the priority circuit of FIG. 3.

DETAILED DESCRIPTION

In a data processing system as illustrated in FIG. 1,
data and instruction words are stored in memory loca-
tions of main memory 102 and cache system 100. Pro-
cessor 101 reads thesc -memory -locations by transmit-

. ting an address via address bus 112 and control ‘signals

via control bus 113. The cache system 100 is comprised
of control sequencer 103, LRU circuits 104, 105 and
106, cache data memories 107, 108 and 109, and cache
data gating circuit 110. The LRU circuits and cachc
data memorics are grouped into pairs, and each pair
represents a cache memory unit. For example, LRU
circuit 104 and cache data memory 107 comprise onc
cache memory unit.

The cache data words stored in the cache data memo-
ries arc organized into groups with each group contain-
ing cache data words which were last read by processor
101 at a similar point in time. Each group 13 stored in
one of the cache data memories. For example, the most
recently- used ‘group of -words-is stored in cache data
memory 107, and the least recently uscd group Of\VOl’d;
is stored in cache data memory 109. As processor 10
performs read operations, cache data words may have

20

25

45

b >

60

65

4

to be transferred between cache data memories to main-
tain the time usage history of the memories. For exam-
ple, if it is necessary to read a word from main memory
102, this main memory word will replace the least re-
cently used cache data word of cache data memory 104;
and the replaced cache data word will be transferred to
cache data memory 108.

During a read operation, the address transmitted by
processor 101 is checked by LRU circuits 104, 105, and
106 to determine if the addressed word is contained
within cache data memories 107, 108, or 109, respec-
tively.

For example, if LRU circit 104 determines that the
addressed word is contained within cache data memory
107, it transmits the address of this word to cache dsta

-memory 107 via cable 131. Cache data memory 107

responds to this address by accessing and transmitting
the desired word to cache data gating circuit 110. From
cache data gating circuit 110, the desired data word is
transmitted to processor 101 via data bus 111 If LRU
circuit 104 does not match the address being transmitted
by processor 101 via address bus 112, it transmits to
control sequencer 103 a “1” signal via conductor 114
which indicates a mismatch. The other LRU circuits
function in a similar manner.

In addition to checking if the associsted cache data
memory has the desired memory word, the LRU cir-
cuits maintain the priority of each word in the sssoci-
ated cache data memory. This priority information
antomatically updated by the LRU circuit for each
access to the associated cache data memory and defines
which word in the cache memory is the least recently
used word.

The system’s aperation is further illustrated by the
three following examples. In the first example, it is
assumed that the desired word is not present in the
cache system 100 and must be read from main memory
102. If the desired word is not in the cache system 100,
then all the LRU circuits will be transmitting *1” sig-
nals via the match lines 114, 115 and 116. In response to
these signals, control sequencer 103 will access main

-.memory 102 to obtain the desired word. Since the word

read from main memory 102 is the most recently used
word, it must be placed in cache data memory 107, the
least recently used word from cache data memory 107
must be written into cache data memory 108, and the
least recently used word of cache data memory 108
must be written into cache data memory 109. The least
recently used word of cache data memory 109 no
longer exists in cache memory 100 at the completion of
the previous operations.

In the second example of the operation of cache sys-
tem 100, it is assumed that the desired word is in cache
data memory 107. Since the desired word is in cache
data memory 107, it is not necessary to access a word in
main memory 102 or to transfer a memory word from
cache data memory 107 to cache data memory 108.
Rather, LRU circuit 104 will simply update the priority
information stored internally to circuit 104 to properly
reflect the usage order of memory words in data mem-
ory 107.

In the third example, the desired memory word is
assumed to be in data memory 108. In this case, LRU
circuit 105 would match the address being transmitted
by processor 101 via address bus 112 and cause data
memory 108 to access and transmit the desired word to
data gating circuit 110. Control sequencer 103 would
then cause this desired data word to be transmitted by

e 0,507

NOAC Ex. 1017 Page 229

[

2
i

y]

h

4,458,310

5
dsta gating circuit 110 via data bus 111 to processor 101.
Since this desired word is the most recently used word,
it must be written into data memory 107. The least
recently used word of data memory 107 must be written
into the memory location which had previously held $
the desired memory word in data memory 108.

LRU circuit 105 is illustrated in FIGS. 2 and 3, and
LRU circuit 106 is similar in design. LRU circuit 104 is
illustrated in FIG. 4. FIG. 2 shows the circuit which is
used to check the address transmitted by processor 101 10
via address bus 112 to determine whether the desired
word is in cache data memory 108, and FIG. 3 gives the
details of the priority circuit which is used to keep track
of the least recently used word in cache data memory
108. When processor 101 reads s word, it first transmits 15
the CAGO signal and the clock signal via control bus
113 to the control sequencer 103 and processor 101
transmits the address via address bus 112. Control se-
guencer 103 responds to these signals and generates the
C signal and S signal which are transmitted via conduc- 20
tors 122 and 123 to the LRU circuits. Data selector 202
responds to the C signal on conductor 122 by selecting
the address bits being transmitted via address bus 112
and transmits these address bits via conductors 216
through 223 to the data-in inputs of content addressable 23
memory (CAM) 201. The CAM contains four words,
cach word having cight bits. The CAM responds to the
S input transmitted via conductor 123, and the address
bits being received on the data-in inputs to compare
these address bits with the contents of each of the four 30
words stored internally. If one of the four words
matches the address bits, then a “1” will be transmitted
via the associated coductor 212, 213, 214 or 215. If no
match is found, then a *1” is transmitted via conductor
236 and stored in flip-flop 206 at T1 time. If a match is 35
found, the state of the conductors 212 through 215 will
be stored in latches 204 by the falling edge of the S
signal which is transmitted via conductor 123. Data
selector 208 will sclect the contents of latches 204
which are being transmitted via conductors 224 through 40
227 to be transmitted via conductors 228 through 231
over cable 132 to cache data memory 108. Cache dats
memory 108 will respond to the address being transmit-

. ted via.cable 132 by accessing the desired word and
transmitting this word to data gating circuit 110, as 43
previously described. Assuming that the desired word
was stored in data memory 108, this word now is the
most recently used word and must be transferred to data
memory 107 and the least recently used word of data
memory 107-must-be-transferred_to_data memory 108 50
and the address of this word written into CAM 201

FIG. 4 shows the circuit which is used-to chéck the
address transmitted by processor 10 via address bus 112
to determine whether the desired word is in c.chc dau
memory 107, and FIG. 3 gives the details of the priority 33
circuit which is used lokceptr:ckofthcleutfeee_nﬂy
used word in cache data memory 108. The circuit of
FIG. 4 is identical in operation to FIG. 2 with the ex-
ception that FIG. & does not have s data sclector similar
to data selector 202 of FIG. 2, and includes priority 60
circuit 444. Priority circuit 444 is identical in design t;
the priority circuit described with reference to FIG;_h -
The reason why no data selector is needed is that the
circuit of FIG. 4 always uses the .ddmes being transmit-
ted via address bus 112. The circuit of FIG- 4 does not 65
need a data selector because this circuit 13 associated
with the most recently used words in cache memory
100, hence, does not have to decide whether to use the

6
address from address bus 112 or from an LRU circuit
having higher priority, .as does the circuit- shown in
FIG. 2. This distinction will be illustrated more clearly
in the following example.

To illustrate the operations of the circuits shown in
FIG. 2 and FIG. 4, the previously described example 3
is used. Example 3 described the operations which must
take place when the desired word is in data memory
lwzséfgmm""m'ws' ed-description of this cxample will
now be given by Tirsl describing ff from the point of ™
view of LRU circuit 105, and then describing the corre-
sponding actions in LRU circuit 104. It is presumed that
the word 1 in data memory 108 and word 3 in data
memory 107 are the least recently used words. To per-
form these different operations, the controller se-
quencer 103 generates a variety of timing signals, the
most important of which are T0 through T4. During
TO, the address bits on address bus 112 are selected
through data selector 202 and uscd to search CAM 201
for a match. Assuming that these address bits match the
contents of word 2 in CAM 201, a *1” will be transmit-
ted on conductor 213; conductors 212, 214, and 215 will
be conducting “0s”. This operation is donc under con-
trol of the S signal transmitted via conductor 123 and
the C signal transmitted via conductor 122 to data sclec-
tor 202. The information on conductors 212 through
215 is stored in latches 204 at the end of the S signal. In

- addition, the S signal also clocks the match output ter-

minal of CAM 201 into flip-flop 206. The output of
flip-flop 206 is the M2 signal which is transmitted to
control sequencer 103 via conductor 115.

During T1, data selector 203 responds 1o the M2
signal by selecting the ountput of latches 204 as an ad-
dress which is transmitted to CAM 201 via conductors
208 through 211, and data selector 205 responds to the
M2 signal by sclecting the output of latches 204 as an
address which is transmitted to data memory 108 via
cable 132. In response to the address on conductors 208
through 211, CAM 201 reads the contents of the second
word and transmits these contents to latches 207 in
which these contents are stored at the end of T1. Data
memory 108 reads the contents of its second word in
response to the address transmitted via cable 132, These
contents are stored internal to data memory 108 and
transmitted to data gating circuit 110. During T1, LRU
circuit 104 accesses the address of the least recently
uscd word and transmits this via cable 117 to LRU
circuit 105, and data memory 107 accesses the least
recently used word and transmits this via cable 140 1o
data memory 108, as will be described later. The ad-
dress from LRU circuit 104 must be written into CAM
201 and the corresponding data word written into data
memory 108. During T2, data sclector 203 will again
select the output of latches 204 which contain the ad-
dress for word 2 to be used as an address for CAM 201.
The least recently used address word from LRU circuit
104 will be stored in word 2. During T2, control se-
quencer 103 will transmit the W signal via conductor
124 and the RPL2 signal via conductor 120 which
causcs CAM 201 to write the information present at the
;l::t input tlctmxus:;h into word 2. At the same time, the
|€ast recently word of data memory 107 is written
wmto word 2 of data memory 108 with t;ye address being
supplied by the output of Iatches 204 via data selector
205 and cable 132.. As will be described later, the prior-
1ty circuit shown in FIG. 3 must be updated during T3
to reflect the f; H

act that word 2 is now the most recently

B

NOAC Ex. 1017 Page 230

7 4,458,310

:;s:: s;'ord in LRU circuit 105. During T4, flip-flop 206

Example 3 is now described with respec
circuit 104 with reference to FIG. 4. Dur:nt: 'II:()Rl;r
search is performed of CAM 401; however, since 'no
match is found, the match output terminal is a “p”
which is stored in flip-flop 406, and no M1 signal is
transmitted to control sequencer 103,

During T1, since there is no M1 signal, CAM 401 is
addressed by the address from the priority circuit 444
with an address which is transmitted to the ADDRESS
IN terminals of CAM 401 via conductors 432 through
435, data sclector 403 and conductors 408 through 411.
This address bit is the address-of the least recently-used
word of CAM 401 and data memory 107. Also, during
T1, data memory 107 is addressed by the outputs of the
priority circuit 444 via data selector 405 and cable 131.
At the end of T1, the output data of CAM 401 is
clocked into latches 407. The contents of latches 407 are
transmitted via cable 117 to LRU circuit 105.

During T2 control sequencer 103 transmits the PRL1
and W signals to LRU circuit 104 and data memory 107
via conductors 119 and 124, respectively. In response to
these signals, the contents of address bis 112 are written
into the location of the least recently used word as
determined by the bits on conductors 432 through 435
in CAM 401. At the same time, the word present on
data bus 111 is written into data memory 107 at the
address transmitted vis cable 131. -

During T3, the priority circuit 444 must be updated.
Note, that during this example, it was not necessary to
change any information connected with LRU circuit
106 or data memory 109.

Another previous example to be considered is exam-
ple 1 where the desired word is not contained within
data memories 107 through 109 and must be read from
main memory 102. For this example, nonc of the LRU
circuits will find a match during time TO, and at the end
of time TO, control sequencer 103 will access main
memory 102 to obtain the desired word. Control se-
quencer 103 accesses main memory 102 by transmitting
the main memory read signal via conductor 125. When
msain memory 102 has accessed the desired word, it
responds by transmitting the main memory ready signal
via conductor 126 and placing the desired memory
word on data bus 111. Control sequencer 103 is respon-
sive to the main memory ready signal to generste the
cache data ready signal which informs processor 101
that the data is available on data bus 111 and to exccute
the following steps to update the LRU circuits and the
data memorics,

After receipt of the main memory ready signal, the
control sequencer 103 transmits the T1 signal. The re-
sults of the transmission of the T1 signal are first de-
scribed with reference to FIG. 2, since no match was
found, the M2 signal is not being transmitted via con-
ductor 115, data selector 203 sclects the address of the
least recently used word which is tmnsmitted via con-
ductors 232 through 235 from the priority circuit of
FIG. 3 to perform a read on CAM 201. rilnlewég‘rddrcad
out of CAM 201’5 the address of the lcast recently used
data word which is stored in data memory 108. At the
same time, a read is performed on data memory 108
based on the address being transmitted via cable 132,
which, again, is the address of the least recently used
word. At the end of T1, the address of the least recently
used word is clocked into latches 207 and the data being
accessed from data memory 108 is similarly clocked

8

into a similar set of latches in data memory 1.08. The

same type of operation is being performed in LRU

circuits 104 and 106 and data memory 107 and data

memory 109. . .
During T2, the addresses being transmitted via cable

117 from LRU circuit 104 is written into CAM 201 at

- the address of the lcast recently used word as defined by

25

k1

35

40

45

50

60

65

the address fransmitted via conductors 232 through 235
from the priority circuit of FIG. 3. Similarly, the data
which had been accessed from data memory 107 is
written into data memory 108.

With respect to LRU circuit 104, the address on ad-
dress bus 112 is written into the location in CAM 401
which is addressed by information transmitted via con-
ductors 432 through 435 from priority circuit 444 which
designates the Ieast recently used word address. The
data which is present on data bus 111 is written into the
least recently used word of data memory 107 at the
address of the least recently used word. Similar opera-
tions take place in LRU circuit 106 and data memory
109. During T3, the priority circuits of LRU circuits
104, 105, and 106 must be updated to reflect the fact that
the previously lcast recently used words are now the
most recently used words.

To illustrate the operation of the priority circuit
shown in FIG. 3, reference is made to example 3 which
described the operations when the desired word is con-
tained in data memory 108. The operation of the prior-
ity circuit of FIG. 3 is similar in operation to priority
circuit 444 of FIG. 4 and the priority circuit of LRU
circuit 106. In the previous example, the least recently
used word was word 1 in data memory 108 and the
corresponding address in CAM lacation 1 of LRU cir-
cuit 105. During the match operation which took place
during time TO, word 2 of CAM 201 was found to con-
tain the address which processor 101 was attempting to
read. During time T3, the priority circuit shown in
FIG. S must be updated to reflect the fact that word 2
is now the most recently used word. However, word 1
still remains the least recently used word. Flip-flops 322
through 327 are used to maintain the priority of the
words contained in CAM 201 and data memory 108
with respect to the usage order. NOR gates 328 through
331 decodc the information contained in flip-flops 322
through 327 30 as to indicate which word is the least
recently used word. For example, if NOR gate 328 is
transmitting a “1” via conductor 232, this indicates that
word 0 is the least recently used word. OR gates 309
through 315 and AND gates 316 through 321 are used
to dc:terminc which flip-flops 322 through 327 should be
modified during an update operation on the priority
circuit. Tabie 1 defines the significance of one of these
flip-flops being set. For example, if flip-flop 322 is set,
then flip-flop 322 will transmit the M01 signal as a “1”
to NOR gate 328 via conductor 301. The significance of
the flip-flop 322 being set is that word 0 has been used
‘more recently than word 1.

TABLE 1
Defines
Signal Word
Flip-flop Transmitted used more
Set by Flip-flop recently than Word
n MOo1 o 1
Eril MO02 0 2
324 M03 0 3
325 M2 1 2
326 M13 1 3

NOAC Ex. 1017 Page 231

o

4,458,310

9

TABLE I-continued
Defines

Sigmal Word
Flip-fiop Transmitted wed more
Set by Flip-fiop recestly then Word 3

m M23 2 3

The functions performed by NOR gates 328 through
331 are defined by Table 2. 10

TABLE 2

50 = MO! - M2 - MO
S1 = MO! - M12 - M{3
S2 = MOQ - MI2 - M2
§3 = MO03 - M13 - M23 15

By convention, if a “1” is transmitted via conductor
232, this is defined to mean that the SO signal is being
transmitted. If flip-flop 322 is set, then the value in
Table 2 for M01 is a “1”, and the value for M01 is a “0”; 20
and if flip-flop 322 is reset, then the value for M01 is a
“0” and the value for MO1 is a “1”. For example, if
flip-flops 322, 323 and 324 are reset, then the SO signal is
transmitted via conductor 232.

The operstions of OR gates 309 through 315 and 25
AND gates 316 through 321 at update time is definedd by
Table 3.

TABLE 3

“I” tramemiticd Flip-flope Flip-flops »
vin conductor which which
at update time are set are react

s i, 323, 324

29° 323, 32¢ n

30 27 a, 323

b2l 324, 326, 327 s

Update time occurs at time T3 when the RPL2 signal
is being transmitted vis conductor 120 from control
sequencer 103. T3 and RPL2 and ANDed together by
AND gate 308 which enables the OR gates 309 through 40
315 and AND gates 316 through 321. For example, if a
“1” is being transmitted via conductor 231 during the
update time, then flip-flops 324, 326 and 327 will be
reset. A “1™ being transmitied via conductor 231 indi-
cates that word 3 is now the most recently used word, 45
hence, by Table 1, flip-flops 324, 326 and 327 cannot be
sct becauee they indicate that word 8, word 1 and word
2, respectively, have becn more recently accessed than
word 3.

To more clearly illustrate the operations of the circuit 30
shown on FIG. 3, the previous example of word 2 being
matched during the operation at time T0 will now be
described with respect to FIG. 5. Line 501 shows the
initial state of the fMlip-flops 322 throngh 327. When
word 2 is determined to contain the desired word, the ss
contents of word 2 are accessed in both CAM 201 and
data memory 108 and transmitted and stored within
LRU circoit 104 snd data memory 107. The Jeast re-
cently used words from LRU circuit 104 and data mem-
oryll)’lnrctunsmittedmmudrmit 105 and data 60
memorylmandarestoredinwodlofuchofﬂwfe
memorics. After this information has been stored in
wordz.thmwordZthemostreomﬂynsedwor_dand
flip-flops 322 through 327 must be updated accordingly.
Since word 2 was the selected word, data selector 205 65
of FIG. 2 is transmitting & *1” via conductor 230. OR
gates 309 through 315 and AND_ gau:_316 through 321
respond to the “1” being transmitted via conductor 230

10
to set flip-flops 327 and reset flip-flops 323 and 325. This
is shown on line 502 of FIG. 5. Note, that the least
recently used word is still word 1 in line 502. If, in the
next search operation, the desired word is word 3, the
flip-flops 322 through 327 will be updated during time
T3 to reflect the states shown in line 503. If, on the next
search operation, word 1 is found to contain the desired
information, then the flip-flops 322 through 327 will be
updated to reflect the state shown in line 504. Note, that
the Jeast recently used word is now word 0 which has
not been accessed in the last three operations during
which words 2, 3 and 1 were both accessed.
1t is to be understood that the above-described em-
bodiment is merely illustrative of the principles of the
invention and that other arrangements may be devised
by those skilled in the art without departing from the
spirit and scope of the invention.
What is claimed is:
1. A data processing system comprising:
& processor means for generating main memory ad-
dress signals;
a main memory having a plunality of memory loca-
tions for storing main memory words;
a cache control means;
first and second cache memories each having a plu-
rality of memory locations for storing main mem-
ory addresses and corresponding cache data words
in a priority order, and each responsive to main
memory address signals which mismatch all of the
main memory addresses stored therein to generate
and transmit a mismatch signal to said cache con-
trol means;
said cache control means responsive to concurrent
generation of said mismatch signals by said first and
secorxl cache memories to geaerate and transmit a
first control signal to said main memory and said
first and second cache memories;
said main memory responsive to said first control
signal and said mismatched main memory address
signals to access and transmit a main memory word
to said first cache memory;
said first cache memory responsive to said first con-
trol signal to transmit the lowest priority cache
~ data word and its corresponding stored main mem-
ory address to said second cache memory, and to
store said transmitted main memory word and said
main memory address signals; and
said sccond cache memory responsive to said first
control signal to store the transmitted lowest prior-
ity cache data word and its corresponding main
address.

memory
2. A data processing system in accordance with claim
1 wherein said second cache memory is further respon-
sive to main memory address signals which match a
main memory address stored therein to generate and
transmit a match signal to said cache control means;
said cache control means is further responsive to a
mismatch signal from said first cache memory and
said match signal from said second cache memory
to generate and transmit a second control signal to
said first and second cache memories;
said first cache memory responsive to said second
control signal to transmit the lowest priority cache
data word and its corresponding stored main mem-
ory address to said second cache memory; and
said second cache memory responsive to said second
control signal to store said lowest priority cache

-

NOAC Ex. 1017 Page 232

et

4,458,310

11
data word and said corresponding stored main
memory address transmitted in response to said
second control signal from said first cache memory
in the cache memory locations associated with the
- stored main memory address which matched said
main memory address signals.
3. A data processing system in accordance with claim
2 wherein said second cache memory is further respon-
sive to said second control signal to transmit said
matched main memory address and its corresponding
cache data word to said first cache memory; and
said first cache memory further comprises means
responsive to said second control signal to store
said matched stored main memory address and said
corresponding cache data word in the cache mem-
ory locations of said transmitted corresponding
main memory address and said transmitted lowest
priority cache data word of said first cache mem-
ory, respectively.
4. A data processing system in accordance with claim
1 wherein said first cache memory is further responsive
to said first control signal to store said main memory
word and said mismatched main memory address sig-
nals in the cache memory locations of said transmitied
lowest priority cache dats word and said transmitted
corresponding stored main memory address in said first
cache memory.
5. A data processing system in accordance with claim
1 wherein said second cache memory is further respon-
sive to said first control signal to store said tramamitted
lowest priority cache data word and said transmitted
corresponding stored main memory sddress from said
first cache memory in the cache memory locations of
the lowest priority cache data word and corresponding
stored main memory address of said second cache mem-
ory, respectively.
6. A data processing system in accordance with claim
2 wherein said second cache memory further comprises
a match memory having a plurality of memory loca-
tions for storing said stored main addresses and a data
memory having a plurality of memory locations for
storing said cache data words;
said match memory is responsive to said matched
main memory address signals to transmit said
match signal and to generate and transmit a cache
memory address of the memory location whose
contents matched said matched main memory ad-
dress signals to said data memory, and responsive
to said mismatched main memory address signals to
generate and transmit said mismatch signal; and
said data memory is responsive to said cache memory
address 10 access and transmit said corresponding
cache dats word.
7. A data processing system in accordance with claim
6 wherein said match memory is comprised of a content
addressable memory.
8. A data processing system in accordance with claim
6 wherein each of said first and second cache memories
further comprises a priority means for determining the
least recently used cache data word which is the lowest
priority cache data word.
9. A data processing system in accordance with claim
8 wherein each of said priority means is further adapted
for generating the address of the least recenily used data
word.
10. A data processing system in accordance with
claim 9 wherein said priority means of said first cache

25

s

45

30

55

60

65

12

memory further comprises 8 storage means and a logic
means; and

said logic means responsive to contents of said stor-

age means and said cache memory address to gen-
erate and store information defining the accessed
order of said cache data words of said first cache
memory in said storage means.

11. In a data processing system having a processor for
generating main memory address signals, a main mem-
ory for storing main memory words, first and second
cache memories for storing main memory addresses and
corresponding cache data words and for matching a
stored main memory address word with the main mem-
ory address signals, and a cache control for controlling
said first and second cache memories, a method of ac-
cessing said cache memories and said main memory;

comprising the steps of: :

storing a set of said cache data words and corre-
sponding main memory address words having a
higher priority than another set of said cache data
words and corresponding main memory address
words in said first cache memory; .

storing said other set of said cache data words and
corresponding main memory address words in said
second cache memory;

detecting main memory address signals which mis-

match all of main memory address words stored in
said first and second cache memories;

reading from said main memory, the main memory

word addressed by the mismatched main memory
address signals; .

transferring said main memory word to said proces-

sor and said first cache memory;

storing said main memory word and said mismatched

main memory address signals in said first cache
memory;

transmitting the lowest priority cache data word of

said first cache memory to said second cache mem-

ory;

replacing said lowest priority cache data word of said
first cache memory with said main memory data
word;
memory data word as the highest priority cache
date word and snother cache data word as the
lowest priority cache data word; and

storing said transmitted cache data word from said

first cache memory in szid second cache memory.

12. The invention of claim 11 wherein said transmit-
ting step comprises the steps of:

replacing the lowest priority cache data word of said

second cache memory with said transmitted cache
data word; and

identifying within said second cachc memory said

transmitted cache data word as the highest priority
and another cache data word as the lowest priority
cache dats word.

13. In a data processing system having a processor for
generating main memory address signals, a main mem-
ory for storing main memory words, first and second
cache memories for storing main memory addresses and
corresponding cache data words and for matching the
stored main memory addresses with the main memory
address signals, and a cache control for controlling said
first and second cache memories, a method of accessing
said cache memories and said main memory;

comprising the steps of:

NOAC Ex. 1017 Page 233

4,458,310

13

storing a sct of said cache data words and corre-
sponding main memory addresses having a higher
priority than another sct of said cache data words
and corresponding main memory addresses in said
first cache memory;

storing said other set of said cache data words and
corresponding main memory words in said second
cache memory;

detecting main memory address signals which match
one of the stored main memory addresses in said
second cache memory;

transferring the cache data word corresponding to
the matched one of said stored main memory ad-
dresses from said second cache memory to said
processor and said first cache memory; and

storing said transferred cache data word from said
second cache memory in said first cache memory.

14. The invention of claim 13 wherein said storing of

said transferred cache data word step comprises the
steps of:

transmitting the lowest priority cache data word of
said first cache memory to said second cache mem-
ory,

replacing said lowest priority cache data word of said
first cache memory with said transferred cache
dats word from said second cache memory; and

identifying within said first cache memory said trans-
ferred cache data word from ssid second cache
memory as the highest priority cache data word

15

20

25

30

35

45

55

65

14
and another cache data word as the lowest priority
cache data word.
15. The invention of claim 14 wherein said transmit-
ting step comprises the steps of:
replacing the lowest priority cache data word of said
second cache memory with said transmitted cache
data word from said first cache memory; and

identifying within said second cache memory said
transmitted cache data word from said first cache
memory as the highest priority cache data word
and another cache data word as the lowest priority
cache data word.

16. The invention of claims 11 or 14 wherein said
lowest priority cache dats word of said first cache
memory comprises a least recently used cache data
word of said first cache memory and said transmitting
step comprises the step of transmitting said least re-
cently used cache data word of said first cache memory;
and

said replacing step comprises the step of replacing

said least recently used cache data word of said
first cache memory.

17. The invention of claim 14 wherein said highest
priority cache data word from said cache memory com-
priscs a most recently used cache data word and said
step of transferring comprises the step of transferring
said most recently used cache data word; and

said step of replacing comprises the step of replacing

with said most recently used cache data word.
s % .

* & =

NOAC Ex. 1017 Page 234

IW 7696177

TQ) ALE,

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

October 16,2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE
RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS
OF:

b

APPLICATION NUMBER: 09/608,266
FILING DATE: June 30, 2000
PATENT NUMBER: 6,771,646

ISSUE DATE: August 03, 2004

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

P. SWAI
Certifyifg Officer

PART EA.OF (FPART(S)

.United States Patent [
Carter et al.

US006003123A

(111 Patent Number: 6,003,123
{451 Date of Patent: Dec. 14, 1999

[54] MEMORY SYSTEM WITH GLOBAL
ADDRESS TRANSLATION

[75] Inventors: Nicholas P. Carter, Somerville;
Stephen W. Keckler, Cambridge;
William J. Dally, Framingham, all of
Mass.

[73] Assignee: Massachusetts Institute of
Technelegy, Cambridge, Mass.

[21] Appl. No.: 09/021,658
[22] Filed: Feb. 10, 1998
Related US. Application Data

[62] Division of application No. 08/314,013, Sep. 28, 1994, Pat.

No. 5,845,331
[51] Imt. CL® GO6F 12/10
[52] US.Cl. T11/207; 7117207

[58] Field of Search 711/147, 202,

1203, 206, 207, 209

[56] References Cited
U.S. PATENT DOCUMENTS

4,241,396 12/1980 Mitchell et al. ...
4,408,274 10/1983 Wheatley ct al.
5,075,842 12/1991 Lai 395/479
5,251,308 10/1993 395/425
5,404,478 4/1995 . 395/416
5,465,337 11/1995 395/417

OTHER PUBLICATIONS

Carter, Nicholas P, et al., “Hardwarc Support For Fast
Capability—based Addressing,” Proceedings of the 6th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS VI) ,
Oct. 5-7, 1994, pp. 1-9.

Tyner, Paul, “APX 432 General Data Processor Architecture
Reference Manual, Chapter 3, Objects for Program Envi-
ronments,” Intel Corporation, Jan. 1981, pp. 3-1 to 3-37.
Fabry, R.S., “Capability-Bascd Addressing,” Fourth ACM
Symposium on Operating Systems Principles, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, October
15-17, 1973, pp. 413-412.

Dally, William J. et al., “An Object Oriented Architecture,
”IEEE, 0149-7111/85/0000/0154, 1985, pp. 154-161.
Goodman, James R. et al., “The Wisconsin Multicube: A
New Large Scale Cache—Coberent Multiprocessor,” IEEE,
CH2545--2/88/0000/0422, 1988, pp. 422—431.

Dally, William J, et al., “M—Machine Architecture v1.0 MIT
Concurrent VLSI Architecture Memo 58,” Massachusetts
Institute of Technology, Artificial Inteliigence Laboratory,
Aug. 24, 1994, pp. 1-50.

Primary Examiner—Eddic P. Chan

Assistant Examiner—Kevin Verbrugge

Attorney, Agent, or Firm—Hamilton, Brook, Smith &
Reynolds, P.C.

57 ABSTRACT

A multiprocessor system having shared memory uses
guarded pointers to identify protected segments of memory
and permitted access to a location specified by the guarded
pointer. Modification of pointers is restricted by the hard-
ware system to limit access to memory segments and to limit
operations which can be performed within the memory
segments. Global address translation is based on grouping of
pages which may be stored across multiple nodes. The page
groups are identificd in the global translation of cach node
and, with the virtual address, identify a node in which data
is stored. Pages arc subdivided into blocks and block status
flags are stored for each page. The block status flags indicate
whether a memory location may be read or written into at a
particular node and indicate to 2 home node whether a
remote node has written new data into a location.

12 Claims, 17 Drawing Sheets

Valid
Bit Virtual Page
i st Sbits | 42 bits 16 bits
Wor Unused Starting Node
Pages
Per
Unused Node
Second U3 hirs |6 bits | 6bits[ZY]X
Word
Page Ex'(ent
Length (3 bits/
Dimension)

NOAC Ex. 1017 Page 236

A re < bl s s 5 i b s s o it o S s 4 4

0000
(0/0/0]]
0.0{0)
00l 1
0100
otol
Ootio
oIt
1000
1001
1010
104
1100
1101
o
Hl

.U.S. Patent Dec. 14,1999 Sheet 1 of 17 6,003,123

L

Pointer segment
Tag Length(L) Address ;
["T abits [6bits | 54 bits |
Permission ! |
Bits H t !
[5a-Lbits! Lbits | »
Segment offset
i
?
|
{0000 .
1Gi00 11000
101i0] . e T e
oM~~~ o[oI NN nor T
L=1 L=2 L=3 L=4
.

NOAC Ex. 1017 Page 237

.U.S. Patent

Dec. 14,1999

Begin Memory
Reference

22

Sheet 2 of 17

20

24

6,003,123

Pointer Bit i
Sef on Input >0 —et BT
Address ? P

Yes
Compare Opcode |—26
and
Permission Bits
30
28 /
Operation Raise
Allowed? Exception
Perform Address|__zo
Computation if
Needed
Check for | 34
Segmentation
Violation
36 2’8
Segmentation._ Yes Raise
Violation 2 Exception
NO

Submit Reference
to Memory

o

FIG.

2A

NOAC Ex. 1017 Page 238

.U.S. Patent Dec. 14,1999 Sheet 3 of 17 6,003,123
|
!
s
|
|
Permission Segment 48 |
Bits Length Address offset / x
poimer/l 4 bits | 6 bits sabits || eabits |
42 ~
46 +)}—50

44 Si
/

{

|

Permission Segment |
Check Check ;

!

1] l

Allowed | abits | ebits | 54 bits | valid
Ne \ i

Poim\‘ﬁe'er 54 1

i

FIG. 2B '

NOAC Ex. 1017 Page 239

- e —

Masked Comparator
Bit Cells (54)

Original Pointer

Adder Result

Bit Mask

e NI

60

.U.S. Patent Dec. 14, 1999 Sheet 4 of 17 6,003,123
G ded Mask ;
uarae : Generator
Pointer Length Field
4 6 58
> 54 4
24 1 o
Address /
5‘1 Adder Masked +—= violation »
> comparator -
Offset (54-bit)
54 —w= Result Address
56

Violation ?

68

NOAC Ex. 1017 Page 240

{U.S. Patent Dec. 14,1999 Sheet 5 of 17 6,003,123

62
Bit Mask /

Adder Result ; Q—Illegally Changed Bif ?
Original Address
64

66

FIG. 5

A

IP1
ENTER?2
DATA1
DATA2

B §

P2 Protected
Program RETIP Subsystem

[1] DATA1 2 |

DATA2 coDE
CODE c &
IP2

GP1
RETIP GPo
GP1

GP2

D §

IP1

FIG. 6

NOAC Ex. 1017 Page 241

U.S. Patent Dec. 14,1999 Sheet 6 of 17 6,003,123

A
IP1
ENTER2
DATA1
DATAZ2
ENTER3
R/W
Program B ¥
1] 1P1
ENTER2
-
CODE Protected
ENTER3 Subsystem
@ 2
C
Return _/ CODE
1P2
Segment GPL
3] GP2 GP1
CODE GPe
ENTER3
DATA1L
DATAZ2
N~ RETIP D ¥
IP3
/

NOAC Ex. 1017 Page 242

U.S. Patent Dec. 14,1999 Sheet 7 of 17 6,003,123

External — 71
Memory
)

{_ TTTTT T T T TTTTTTTT T T Memory Interface Bus _}
1 —1 }
R 'y T R Py l
: + :
I i
I Cache Cache Ihrqg??c:ge Cache Cache |- 7°
{ Bank O Bank 1 Bank 2 Bank 3 {
: LTLB }
| |
] % | |
! M-Switch 73
T i ' |
|)) i |
| C- Switch 75
HEERR | |
| I
L ' |
1 ‘ |
| i
| |ClusterOf | Cluster 1 Cluster 2| |Cluster 3| =69
[
| I
|) i i tj |
| |

Network | | Network I
l GTLB Output Input " |
By e — T _Manchip

79 77 b 8
Network

NOAC Ex. 1017 Page 243 i

U.S. Patent Dec. 14, 1999 Sheet 8 of 17 6,003,123
Valid
Bit Virtual Page
First - - .
Word 1 bit 42 bits 20 bits
Lock Physical Page
Second .
t
Word 64 bits
Status Bits
(Bit/block)
Third -
Word 64 bits
Status Bits
(Bit/block)

FIG. 9

NOAC Ex. 1017 Page 244

o]
=
= Ol 9ld
& silg uoltp|sundl Q| eboy ,
sSNJDIS |p2IsAud |[DNYIIA
N\ ' /
syig uonpisund] Q| 8bod SNID}S
= SN0 DoISK IDOLIIA
- 4 .—m _ r_n_ U®+0_>m O+OO DOF
- \ { y 8ujjuaym
3 sniois J 1/
& 8}bpdn
UoIIN T~

Aapue g1
Q uo paidod
2 S41q SnyD}S
T
b D
g 9yoDno mLmEomco o/\k
= ¥20]q uaym

\ 8117 snibjs Ado)

ssiuw g1 64
- uo paidod
= S}HQ SN4DIS
2
= _m\ a|qpl 86Dd |Do0T
v
=

R I R R L IR = & pners W PN SRS s L PR AR Tt L TR S TIRE S RN SRR

NOAC Ex. 1017 Page 245

U.S. Patent Dec. 14,1999 Sheet 10 of 17 6,003,123

i
!
i
{

Virtual Address
7’—=-

LTLB
42
Block Physical |Block Statu Block Status
Select | Translation| bit Word 0 4 64 64 4 bit Word |
Bits
, p——
° h
73 75
(P =g
F'G | | Block Status Bits ;
. for Translated Address {

NOAC Ex. 1017 Page 246

e

pro -

U.S. Patent

Dec. 14, 1999 Sheet 12 of 17 6,003,123
Valid
_ Bit Virtual Page
\';,'gf; 5 bifs 42 bits 16 bifs
Unused Starting Node
Pages
Per
Second Unused Node
Word 43 bits 6 bits | 6bits |Z|Y | X
Page Extent
Length (3 bits/
Dimension)

FIG. |13

NOAC Ex. 1017 Page 247

r

Sk Y Yot R e o

AT L e

2SRRI L . e

R RN R b R NI T RSN RS RS |

U.S. Patent

Dec. 14,1999 Sheet 13 of 17 6,003,123
Start
Translation
106
104
No Signal
Miss
Yes

mask off 108
Pages/Node in
virtual Address

‘

Extract _—110
X-0Offset from
virtual Address

l

Extract L —112
Y-Offset from
virtual Address

l

Extract 114

Z2-Offset from
Virtual Address

|

Add Offsetsto | 116
Sstart Node to get
Node Containing
virtual Address

FIG. 14A

NOAC Ex. 1017 Page 248

ke

U.S. Patent Dec. 14,1999 Sheet 14 of 17 6,003,123

Page Identifier Offset
Virtual Address I— 42 bits j 12 bits

Page Identifier Page Length
| 42bits [ebits|eTLB Entry

126

124 — o -——= Hit

Bit Mask Generator Masked Comparator

FIG. 14B

NOAC Ex. 1017 Page 249

QULE 2R o L et ARy R

“ox ol e BRI

» T s 41

7o AP Seadony, LT

EERRRT Y - A

<o MR ey e AR

AP R I S

U.S. Patent Dec. 14,1999 Sheet 15 of 17 6,003,123

log log sub-cube
pages dimensions

basenode pernode Z Y X
P AU

Zz3¥o o4 |2]2]| 1| 6TLBEniry
1 1 1 1
Page
"8 Offset
%
L
118 v
s
64!
DESTINATION NODE
FIG. ISA
<6.4,1>
S
)/
/
P
ADDRESS L
(54 bits)]
L]
V4 //
I .,Y //
X / -
<3,2,0>/
FIG. I5B

NOAC Ex. 1017 Page 250

A TN NI TRy SN F R K
ik FE L o v R Y S i RS SRR L

LorRhT o,

T

U.S. Patent

Dec. 14,1999

Sheet 16

of 17 6,003,123

120
Input Address Fully - Associative
SRAM Array
Hit
-
» -CV'C"CE
_— = [t | D
x-offset | S | 12| 2183
to |39 3|52
— O 1 1 ol %
>q | x|>|N|&
Bit-Field -———
* t W Extractor
18 18 (8
' 122
i v-Offset
X-Dest Y-Dest Z-Dest
Z-Of fset

FIG. 16

NOAC Ex. 1017 Page 251

U.S. Patent Dec. 14,1999 Sheet 17 of 17 6,003,123

128
start
Reference
132
130 /
Poimier e
xception
Checks ? P

140

I

complete
Reference

Raise 138
Block Status

R Y AT [RO

Exception
£ .
; Raise |—148
: Block Status
3 Check ? Exception
Yes
154 complete |46
r Reference
§
: it Complete | 158
Gl Reference
Table? Remotely
NO
Raise |~ 160
Exception

FIG. I7

NOAC Ex. 1017 Page 252

-

v g Mo

Bl g e

[

e rig X LS R P AP R TS SR

.
]
%

AL 50 RSN

.2 2 Ak Y ST

6,003,123

1

MEMORY SYSTEM WITH GLOBAL
ADDRESS TRANSLATION

RELATED APPLICATION

This application is a divisional of Ser. No. 08/314,013,
filed Sep. 28, 1994, now U.S. Pat. No. 5,845,331, Dec. 1,
1998 the entire teachings of which are incorporated herein
by reference.

GOVERNMENT SUPPORT

The invention was supported, in whole or in part, by a
grant Contract No. F19628-92-C-0045 from the Air Force
Electronic Systems Division. The Government has certain
rights in the invention.

BACKGROUND OF THE INVENTION

In most computer systems, individual programs access
code and data by addressing memory through a virtual
address space. That virtual address space for each program
must then be translated into the physical address space in
which the code and data is actually stored in memory. Thus,
distinct programs may use identical virtual addresses which
translate to different locations in physical memory. The
physical address space utilized by several programs may be
completely distinct or they may overlap. Some level of
security must be provided in order to permit common access
to certain memory locations while protecting against unau-
thorized access to other locations.

Mecmory system designers must provide security without
sacrificing efficiency and flexibility. One process’ objects
must be protected from modification by other, unauthorized
processes, and user programs must not be allowed to affect
the exccution of trusted system programs. It must be pos-
sible to share data between processes in a manner that
restricts data access to authorized processcs; merely provid-
ing the ability to have data be private to a process or
accessible to all processes is insufficient. An efficicnt mecha-
nism must also be provided to change protection domains
(the set of objects that can be referenced) when entering a
subsystem.

The current trend towards the use of multithreading as a
method of increasing the utilization of execution units make
traditional security schemes undesirable, particularly if con-
text switches may occur on a cycle-bycycle basis. Tradi-
tional security systems have a non-zero context switch time
as loading the protection domain for the new context may
require ipstalling new address translations or protection
table entries.

A number of multithreaded systems such as Alewife
(Agarwal, A., et al., “The MIT Alewifc machine: A large-
scale distributed-memory mutiprocessor,” Scalable Shared
Memory Multiprocessors, Kluwer Academic Publishers,
1991.), and Tera (Alverson, R, et al., “The tera computer
system,” Proceedings of the 1990 International Conference
on Supercomputing, September, 1990, ACM SIGPLAN
Computer Architecture News, pp 1-6) have avoided this
problem by requiring that all threads which are simulta-
neously loaded share the same address space and protection
domain. This may be sufficient for execution of threads from
a single user program, but disallows interleaving threads
from different protection domains, which may restrict the
performance of the machine.

SUMMARY OF THE INVENTION

The present invention relates to several aspects of a
memory system which may be used independently or

10

15

45

50

60

65

2

together. The invention is particularly applicable in a virtual
addressing, multiprocessor environment which requires
sharing of data among multiple tasks across multiple nodes.

In accordance with one aspect of the invention, a data
processing system comprises shared memory for storing
instructions and data for plural programs, the shared
memory being accessed in response to pointers. Guarded
pointers address memory locations to which access is
restricted. Each guarded pointer is a processor word which
fully identifics a protected scgment in memory and an
address within the protected segment. Processor hardware
distinguishes guarded pointers from other words and is
operable under program control to modify guarded pointers.
Modification of guarded pointers is restricted so that only
addresses within the identified scgment can be created.
Thus, access outside of a protected segment is prevented. A
permission ficld in the guarded pointer indicates permissible
access to the identified memory scgment such as read only
or read/write. By providing the full virtual address, scgment
information, and a permission ficld, scgment checks and
permission checks can be performed during a memory
access without requiring additional machine cycles.

Preferably, cach guarded pointer comprises a length field
and an address field. The value in the Iength ficld indicates
a division of the address field into a scgment subfield which
identifies a segment location and an offsct subfield which
identifies an offset within an identified scgment. The value
in the length field is preferably logarithmically encoded
using a base 2 logarithm. A tag ficld may be provided to
identify the word as a guarded pointer, and the pointer must
be so identified if it is to be used to access a memory
location. By limiting the ability to sct the flag bit and to
freely modify addresses in pointers to the operating system,
the creation of forged pointers by application programs to
gain access to protected segments is avoided.

The processor hardware may be operable to generale a
second guarded pointer from a first guarded pointer, the
second guarded pointer identifying a subscgment within the
segment identified by the first guarded pointer. To that end,
the processor changes a value in the length ficld to decrease
the number of bits in the offset subfield and to increase the
onumber of bits in the segment subfield. The result is
decreased offset range and finer scgment Jocation resolution
within the original segment. However, the scgment can not
be enlarged by an application program.

The processor hardware may also be operable to generate
a second guarded pointer from a first guarded pointer by
performing an arithmetic operation on the offset. The pro-
cessor hardware checks the second guarded pointer for over
or underflow by detecting a change in value in the segment
subficld. The hardware may also modify the permission field
of a guarded pointer to generate a pointer having only more
restricted access to the indicated secgment. For example, a
program baving permission to read/write may create a
pointer to the same memory segment with permission only
to read.

ENTER guarded pointers may be restricted for processing
by the processor hardware to only jump to the identified
address within the protected segment and to execute. Such
pointers allow access to code beginning at the pointer
address but prevent bypass of portions of the code and
prevent changing or copying of the code. Other prefemred
pointer types are read-only pointers, read/write pointers,
execute pointers and key pointers. Key pointers may not be
modified or used for data access.

In accordance with another aspect of the invention, a
method is provided for global addressing acros$ plural

NOAC Ex. 1017 Page 253

(SNG4 SN AR s 2 B ra

e i

IR o MR

v,

W X IR DA T W T S PRI ¥, 1 B

6,003,123

3

processor nodes. A virtual address is applied to a global
translation buffer to identify a mapping of a page group to
a sct of nodes in a system. From the virtual address and the
identified mapping, the system determines a destination
pode at which a page containing the virtual address resides.
Amessage including the address, which may be in a gnarded
pointer, may be forwarded to the destination node, and
translation of the virtual address to a physical address may
be performed at that node. By translating to groups of nodes,
rather than an individual node for each virtual address, the
size of the global translation buffer can be substantially
reduced.

Preferably, the global translation buffer identifies each
page group by a group size which is logarithmically
encoded. It also specifics, in each group eniry, a start node
and the physical range of nodes within the group. Preferably,
the range is specified in plural dimensions, specifically in the
X, Y and Z dimensions of an array. That range is preferably
also logarithmically encoded. Finally, the translation buffer
may specify the number of pages of the page group per node.

In accordance with another aspect of the invention, virtual
page addresses are translated to physical page addresses at
each processor node and each virtual page is subdivided into
blocks. At cach processor node on which data from a virtual
page is stored, a block status flag is provided for each block
of the virtual page. Blocks of data may be copied between
nodes and, based on the block status flags, access to indi-
vidual blocks on a node is restricted. The use of the blocks
allows for finer granularity in data transfers. The status flags
are preferably stored in a virtual to physical translation
buffer. Block status flags may also be stored with the data in
cache memory, and the block status flags in the translation
buflfer may be updated from cache memory.

The preferred states of the status flags include invalid,
rcad only, read/writc and read/write but dirty. The dirty
designation is provided m order to indicate to the home node
that the data has been changed since being loaded from the
home node.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular description of preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the different views. The drawings are not nec-
essarily to scale, emphasis instead being place upon illus-
trating the principles of the invention.

FIG. 1A illustrates the format of a guarded pointer
embodying the present invention.

FIG. 1B illustrates a simple application of a guarded
pointer having only a four bit address ficld.

FIG. 2A is a flow chart of a memory request in a system
that includes guarded pointers.

FIG. 2B illustrates the hardware utilized in an LEA
operation in which an offset is added to an existing pointer.

FIG. 3 illustrates the adder and segment check of FIG. 2B.

FIG. 4 illustrates the masked comparator of FIG. 3.

FIG. 5 fllustrates a masked comparator bit celt in FIG. 4.

FIG. 6 illustrates register states when a program enters a
protected subsystem by jumping to an enter pointer.

FIG. 7 illustrates register states when two way protection
is provided by creating a return segment.

FIG. 8 is a block diagram of a processor chip used in an
M-Machine embodying the present invention.

20

40

45

55

65

4
FIG. 9 illustrates an LTLB entry having block status bits
in accordance with the present invention.
FIG. 10 illustrates status bit caching in a system using
block status bits.
FIG. 11 is a block diagram of hardware utilized in
determining status bits for a block in the LTLB.

FIG. 12 is a flow chart of a memory request in a system
that includes block status bits.

FIG. 13 is an illustration of a GTLB entry in a system
using global translation in accordance with the present
invention.

FIG. 14A is a flow chart of a GTLB translation process.

FIG. 14B illustrates a masked comparator used in the
GTLB.

FIG. 15A illustrates an example GTLB translation of an
address, and FIG. 15B illustrates the node within a group
identified by the translation of FIG. 15A.

FIG. 16 is a block diagram of a GTLB.

FIG. 17 is a flow chart of a memory request in a system
that includes guarded pointers, block status bits, and a
GTLB.

DETAILED DESCRIPTION OF THE
INVENTION
Guarded Pointers

Guarded pointers are provided as a solution to the prob-
lem of providing cfficient protection and sharing of data.
Guarded pointers encode permission and segmentation
information within tagged pointer objects to implement
capability requirements of the type presented in Fabry, R.,
“Capability-based addressing,” Communications of the
ACM 17,7 (July 1974), 403—412. A guarded pointer may be
stored in a general purpose register or in memory, eliminat-
ing the need for special storage. Because memory may be
accessed directly using guarded pointers, higher perfor-
mance may be achicved than with traditional implementa-
tions of capabilities, as table lookups to translate capabilities
to virtual addresses are not required.

FIG. 1A shows the format of a guarded pointer. A single
pointer bit is added to cach 64-bit memory word. Fifty-four
bits contain an address, while the remaining ten bits specify
the sct of operations that may be performed using the pointer
(4 bits) and the length of the scgment containing the pointer
(6 bits). Segments are required to be a power of two words
long, and to be aligned on their length. Thus, a guarded
pointer specifics an address, the operations that can be
performed using that address, and the scgment containing
the address. No segment or capability tables are required.
Since protection information is encoded in pointers, it is
possible for all processes to share the same virtual address
space safcly, climinating the need to change the translation
scheme on context switches and facilitating the use of
virtually-addressed caches.

All memory operations in a system that use guarded
pointers require that onc of their operands be a guarded
pointer and that the permission ficld of the pointer allow the
aoperation being attempted. Users are not allowed to set the
pointer bit of a word, although they may manipulate pointers
with instructions that maintain the protection scheme. This
prevents users from creating arbitrary pointers, while allow-
ing address arithmetic within the segments that have been
allocated to a uscr program. Privileged programs are allowed
to set the pointer bit of a word and thus can create arbitrary
pointers.

Memory systems that vse guarded pointers provide a
single virtual address space shared by all processés. Each

NOAC Ex. 1017 Page 254

o -7 o~ ndo <t

kel
H
I
¥
i
3

T 0 B T 0 8 e SRR 1 e

3 "N VO

o 1o

T

T e SRR, i e

e e

6,003,123

5

guarded pointer identifics a segment of this address space
that may be any power of two bytes in length, and must be
aligned on its size. These restrictions allow six bits of
segment length information and 54 bits of virtual address to
completely specify a segment. The length ficld of a guarded
pointer encodes the base-two logarithm of the segment
Iength. This allows seémcnts ranging in length from a single
byte up to the cntirc 2°* byte address space in power of two
increments. As shown in FIG. 1 the length ficld also divides
the address into segment identifier and offset ficlds. A
four-bit permission field completes the capability by iden-
tifying the set of operations permitted on the scgment.
FIG. 1B presents a simple illustration of the segment
length and address ficlds of the guarded pointer assuming an
address ficld of only 4 bits and a length field of 3 bits. With
the length L equal to zero, cach segment is of length 2%=1
word in length. As illustrated by the vertical broken line, the
segment length L positions the division between offset and
segment to the far right of the address, so there would be no

offset. Each segment base address would also be the address 2

of the addressed word. With L equal one, each segment is of
21=) words long. The broken line indicates a one bit offset.
Where the full address is 1011, the base address 1010 of the
scgment is defined by setting the offset to zero.

Similarly, with increasing values of L the mumber of
words in the scgment defined by the guarded pointer
increases exponcntially, and the base address for the seg-
ment is defined by setting all offsct bits to zero.

It can be scen from FIG. 1B that two pointers having a
common address 1011 may indicate that the address is
within a segment ranging in length from onc byte to 16
bytes. Since the base address is determined by setting the
offset to zero, segments must be a power of two words long
and must be aligned on their length. As discussed below, the
segment definition is important to define the segment of
addresses within which a particular program may operate by
modifying a given pointer. Generally, permission is granted
to modify addresses only within a segment.

The permission ficld of a pointer indicates how a process
may access the data within the scgment. Pointer pemmissions
may specify data acoess, code access, protected eniry points,
and protected identificrs (keys). The permissions granted are
with respect to use of the pointers. All pointers may them-
sclves be stored in memory and loaded from memory. It is
use of the pointers to access data at the indicated addresses
which is restricted.” The following is a representative set of
permissions:

A Read Only pointer may be used to load data and the

pointer may be altered within segment bounds. Store
and jump operations using the pointer are pot permit-

A Read/Write pointer may be used by load and store
operations, but not jump operations. It may be altered
within its segment bounds.

Execute pointers may be used by jump and load opera-
tions and may be modified within segment bounds.
Thus, holding an exccute pointer to 2 code segment
enables a program to jump to any location within the
segment and to read the segment. Execute pointers may
be cither execute-user or execute-privileged, which
encodes the supervisor mode bit explicitly within the
instruction pointer. Privileged instructions, such as
SETPTR, may only be executed with an execute-
privileged instruction pointer.

Eanter pointers may be used only by jump operations. They
cannot be used for loads and cannot be modified in any
way. Thus, holding an enter pointer enables a program

10

w
[

6

to enter a code segment at a single location. Jurnping to
an enter pointer converts it to an execute pointer which
is then loaded into the instruction pointer. There are two
types of enter pointers: enter-user and enter-privileged,

5 which are converted to the corresponding type of

cxecute pointer by a jump.

A Key pointer may not be modified or referenced in any
way. It may be used as an unforgeable, unalterable
identifier.

Physical: The pointer references data in physical memory
on the local node. This bypasses the virtual memory
system ignoring the LTL.B on cache misses. If the
address exceeds the size of local physical memory, the
top bits are ignored.

Since the set of pointer states does not require all of the
possible four bit values, architects may implement pointer
types to support particular features of their architecture, such
as the following pointer types, which are implemented on
the M-Machine.

Execute Physical: Data may be read or executed as code,
but not written. On cache misses, the TLB is not
accessed. The thread is in privileged mode.

Enter Message: Code at this address may be executed in

2 a message handler. A send operation faults if the

designated IP is not in this state.

Configuration Space: Indicates that the address refers to
an internal register in the processor.

Errval: The pointer has been generated by a deferred

30 cxception. Any attempt to usc an Errval pointer as an

operand will cause an exception.

As noted, each pointer contains a six bit scgment length
field that holds the log base 2 of the size of the segment in
which the address resides. Thus, scgments may be of any
power of 2 size between 1 and 2% bytes. This encoding
allows the base address and the extent of a pointer’s scgment
to be determined without accessing any additional informa-
tion. User-level instructions that manipulate pointers (LEA,
LOAD, STORE) have the lower and upper bounds of their

40 scgment checked automatically to ensure that the operation

does not access memory outside of the allowed scgment.
This segmentation and access control system provides

flexibility to the user, while still permitting strictly enforced

security. Segments can be overlapped and shared as long as

45 cach segment is aligned to an address that is a multiple of its

size. Since all of the necessary segmentation information is
contained within ecach pointer, a separate table of scgment
descriptors is unnecessary. More importantly, instructions
need not access such a table to check segmentation restric-

50 tions on memory accesses. Also, access 10 system functions

and other routines can be given to non-trusted programs, as
the enter-privileged and enter-user permission states ensure
that a user may only exccute code starting at the specified
entry point. A MEMBAR (memory barrier) instruction is

ss used to block further instructions from executing until all

outstanding memory references have completed.
Pointer Operations
Guarded pointers may be implemented by adding a few
pointer manipulation instructions to the architecture of a
60 conventional machine and adding checking hardware to
verify that each instruction operates only on legal pointer
types and that address calculations remain within pointer
bounds.
FIG. 2A shows a flow chart of the steps involved in
65 performing a memory reference beginning at 20 in a system
that incorporates Guarded Pointers. First, the pointer bit of
the operand containing the address being referenced is

NOAC Ex. 1017 Page 255

ATl

" e

B Yo i)

*

et

6,003,123

7

checked at 22 to determine if the address operand is a
guarded pointer. If the pointer bit is not set, an exception
occurs at 24. Second, the permission field of the pointer is
checked at 26 and 28 to verify that it allows the operation
being attempted, and an exception raiscd at 30 if it does not.
If the operation involves address computation, an integer
offset is then added to the address field of the pointer at 32.
Segmentation violation is checked at 34 and 36. An excep-
tion 38 is raised if the result of this add overflows or
underflows into the fixed segment portion of the address,
which would create a pointer outside the original segment.
If all of these checks pass, the operation is submitted to the
memory system at 40 to be resolved.

Load/Store: Every load or storc operation requires a
guarded pointer of an appropriate type as its address argu-
ment. Protection violations are detected by checking the
permission field of the pointer. If the address is modified by
an indexed or displacement addressing mode, bounds vio-
lations are checked by cxamining the length field as
described below. The protection provided by guarded point-
ers does not slow load or store operations. All checks are
made before the operation is issned without reference to any
permission tables. Once these initial checks are performed,
the access is guaranteed not to cause a protection violation,
although events in the memory system, such as TLB misses,
may still occur.

Pointer Arithmetic: An LEA (load cffective address)
instruction may be used to calculatc new pointers from
cxisting pointers. This instruction adds an integer offset to a
data (read or read/write) or execute pointer to produce a new
pointer. An exception is raised if the new pointer would lie
outside the secgment defined by the original pointer. For
cfficiency, a LEAB operation, which adds an offset to the
base of the segment contained in a pointer may be
implemented, as well. If a guarded pointer is used as an input
to a non-pointer operation, the pointer bit of the guarded
pointer is cleared, which converts the pointer into an integer
with the same bit ficlds as the original pointer.

FIG. 2B details the protection check hardware used on a
pointer calculation. The permission ficld of the pointer 42 is
checked at 44 against the opcode 46 to verify that the
requested operation using the pointer is permissible. In that
respect, the permission check hardware need only decode
the opcode to identify permission bits which are appropriate
for that opcode and compare those bits to the permission bits
of the pointer 42 in combinational logic. An integer offsct 48
may be added to the address ficld of the pointer at 50 to
generate the new pointer 54. An exception is raised if the
result of this add over or underflows into the fixed segment
portion of the address, which would create a pointer outside
the original segment. This may be detected in the segment
check 52 by comparing the fixed portion of the address
before the add to the same field of the resulting pointer.

FIGS. 3, 4 and 5 show in greater detail the hardware of
FIG. 2B used in performing an address calculation on a
guarded pointer. The 54-bit address field of the pointer is
added in adder 56 to a 54-bit offset to get the result address.
The 6-bit length field of tbe pointer is fed to a mask
generator 58, which generates a 54-bit output applied as a
mask to masked comparator 60. Each bit in this output is set
to one if the corresponding bit in the address represents a bit
in the segment identifier and to zero if the bit represents a bit
in the offset portion of the address. Bits in the offset portion
of the address arc allowed to change during address
calculation, while bits in the segment identificr arc not.

FIG. 4 illustrates the masked comparator 60. Each bit of
the original address, the corresponding bit of the result

20

25

30

40

65

8

address, and the corresponding bit of the mask are fed into
a comparator cell 62, as shown in FIG. 5. The output of XOR
gate 64 is one if the bit from the original address and the bit
from the result address differ. This output is then ANDed at
66 with the bit from the bit mask, which is one if the bit
being examined is part of the segment portion of the address,
and therefore not atlowed to change. The outputs of all the
comparator cells are ORed together at 68 to determine if any
of the segment bits changed during the addition of the offset,
which indicates that a segmentation violation has occurred.

Guarded pointers expose to the compiler address calcu-
lations that are performed implicitly by bardware in con-
ventional implementations of segmentation or capabilities.
With the conventional approach, the segmentation hardware
performs many redundant adds to relocate a series of related
addresses. Consider, for example, the following loop:

Jor(F=03i<Nyiv+) swstali);

In a conventional system, eacb reference to array a would
require the segmentation hardware to automatically add the
segment offsct for cach a[i] to the segment base. With
guarded pointers, the add can be performed once in
software, and then the resulting pointer can be incrementally
stepped through the array, avoiding the additional level of
indirection.

Languages that permit arbitrary pointer arithmetic or type
casts between pointers and integers, such as C, are handled
by defining code sequences to convert between pointer and
integer types. The pointer-to-integer cast operation takes a
guarded pointer as its input and retums an intcger containing
the offset field of the guarded pointer. This can be performed
by subtracting the scgment base, determined using the
LEAB instruction, from the pointer:

LEAB Ptr, 0, Base SUB Ptr, Base, Int

The integer-to-pointer case operation uses the LEAB
instruction to take an integer and create a pointer into the
data segment of the process with the integer as its offset, as
long as the integer fits into the offset ficld of the data
scgment. Note that neither of these case operations requires
any privileged operations, which allows them to be inlined
into user code and exposed to the compiler for optimization.

Pointer Creation: A process executing in privileged mode,
with an execute-privileged IP, has the ability to create
arbitrary pointers and hence access the entire address space.
Privileged mode is entered by jumping to an enter-privileged
pointer. It is exited by jumping to a user pointer (enter or
exccute). While in privilege mode, a process may execute a
SETPTR instruction to convert an integer into a pointer by
sctting the guarded pointer bit. Thus, a privileged process
may amplify pointer permissions and increase segment
lengths while a usecr process can only restrict access. No
other operations need be privileged, as guarded pointers can
be used to control access to protected objects such as system
tables and 1/O devices.

Restricting Access: A process may create pointers with
restricted permissions from those pointers that it holds. This
allows a process to sharc part of its address space with
another process or to grant another process read-only access
to a segment to which it holds read/write permission.

ARESTRICT instruction takes a pointer, P, and an integer
permission type, T, and creates a new pointer by substituting
T for the protection ficld of P. The substitution is performed
only if T represents a strict subset of the permissions of P so
that the new pointer has only a more restricted access. For
example, a read pointer may be created from a read/write
pointer, but not vice versa. Otherwise, an exception is raised.

Similarly the SUBSEG instruction takes an integer length,
L, and a pointer, P, and substitutes L into P if L. is Iess than

e b e At e

NOAC Ex. 1017 Page 256 |

- ———E.

9

the original length field of P, so that the created segment is
a subsct of the original. Changing to a lesser length
decreases the length of the offset subficld for decreased
offset range and increases the length of the segment field for
finer segment location resolution.

The RESTRICT and SUBSEG instructions allow a user
process to control access to its memory space cfficiently,
without system software interaction. The RESTRICT and
SUBSEG instructions are not completely necessary, as they
can be emulated by providing user processes with enter-
privileged pointers to routines that use the SETPTR instruc-
tion to create new pointers that have restricted access rights
or segment boundarics. The M-Machine, which will be
described in the next section, takes this approach.

Pointer ldentification: The 1SPOINTER instruction is
provided to determine whether a given word is a guarded
pointer. This instruction checks the pointer bit and returns its
state as an integer. Quick pointer determination is useful for
programming systems that provide automatic storage
reclamation, such as LISP, which need to find pointers in
order to garbage collect physical space (Moon, D. A. Sym-
bolics Architecture, IEEE Computer (1987) , 43-52).
Protected Subsystems

ENTER pointers facilitate the implementation of pro-
tected subsystems without kernel intervention. A protected
subsystem can be entered only at specific places and may
execute in 2 different protection domain than its caller. Entry
into a protected subsystem, such as a file system manager, is
illustrated in FIG. 6. A program enters a protected subsystem
by jumping to an enter pointer. After entry the subsystem
code loads pointers to its data structures from the code
segment. A represents the register state of the machine
before the protected subsystem call, B the register state just
after the call, C the register state during the execution of the
protected subsystem, .and D the register state immediately
after the return to the:caller.

Before the call, the calling program (segment 1) holds an
cater pointer to the subsystem’s code segment (segment 2)
which contains the subsystem code as well as pointers to the
subsystem’s data scgments, such as the file system tables. To
coter the subsystem, the caller jumps to ENTER2, causing
the hardware to transfer control to the entry point and
convert the enter pointer to the cxecute pointer IP2 in
register state B. The return instruction pointer (RETIP) is
passed as an argument to the subsystem. The subsystem then
uses the execute pointer to load GP1 and GP2, the pointers
to its data structures (state C). The subsystem returns to the
calling program by overwriting any registers containing
private pointers and jumping to RETIP (state D).

The sequence described above provides one-way
protection, protecting the subsystem’s data structures from
the caller. To provide two-way protection, the caller
(segment 1) encapsulates its protection domain in a return
segment (scgment 3) as shown in FIG. 7. Before the call
(state A), the caller holds both enter and read/write pointers
to a return segment. The caller writes all the Live pointers in
its registers into the return segment to protect them from the
subsystem (scgment 2). It then overwrites all of the pointers
in its register file except the enter pointer to the retun
segment (ENTER3), the subsystem enter pointer
(ENTER2), and any arguments for the call (state B). The
subsystem call then proceeds as described above. After
cntry, the subsystem holds only an enter pointer to the return
scgment and thus cannot directly access any of the data
segments in the caller’s protection domain (state C). The
subsystem returns by jumping to the return segment (state
D), which reloads the caller’s saved pointers and returns to
the calling program.

20

30

35

45

6,003,123

10

ENTER pointers allow efficient realization of protected
system services and modular user programs that enforce
access methods to data structures. Modules of an operating
system, ¢.g., the file-system, can be implemented as unprivi-
leged protected subsystems that contain pointers to appro-
priate data structures. Since these data structures cannot be
accessed from outside the protected subsystem, the file-
system’s data structures are protected from unauthorized
use. Even an 1/O driver can be implemented as an unprivi-
leged protected subsystem by protecting access to the read/
write pointer of a memory-mapped 1/0 device. With pro-
tected entry to user-level subsystems, very few services
actually need to be privileged.

Implementation Costs

Hardware: Guarded pointers have two hardware costs: an
increase in the amount of memory required by a system and
the hardware required to perform permission checking. To
prevent unauthorized creation or alteration of a guarded
pointer, a single tag bit is required on all memory words,
which results in a 1.5% increase in the amount of memory
required by the system.

The hardware required to perform permission checking on
memory access, and scgment bounds checking on pointer
manipulation, is minimal. One decoder for the permission
field of the pointer, onc decoder for the opcode of the
instruction being executed, and a small amount of random
logic are required to determine if the operation is allowed.
The pointer bit of an operand can be checked at the same
time, to determine if it is 2 legal pointer. To check for
scgment bounds violations when altering a pointer, 2 masked
comparator is nceded. 1t compares the address before and
after alteration and signals a fault if any of the scgment bits
of the address field change.

Mcmory systems based on guarded pointers do not
requirc any scgmentation tables or protection lookaside
buffers in hardware, nor is it nccessary to annotate cached
virtual-physical translations with a process or address space
identificr. As with other single address space systems, the
cache may be virtually addressed, requiring translation only
on cache misses.

Address Space: Since 6 to 10 bits are required to encode
the permission and segment length ficld of a guarded pointer,
the virtual address space is reduced. On a 64-bit machipe, a
guarded pointer virtual address is 54 bits, which provides 16
petabytes of virtual address space, enough for the immediate
future. Scveral current processors support 64-bit addresses,
but only translatec some of the bits in each address. For
example, the DEC Alpha 21064 only translates 43 bits of
each 64-bit address (Digital Equipment Corporation, Alpha

50 Architecture Handbook. Maynard, Mass., 1992).

55

60

There is an opportunity cost associated with reducing the
virtual address space, however. Some system designers take
advantage of large virtual address spaces to provide a level
of sccurity through sparse placement of objects. For
example, the Amocba distributed operating system
(Mullender, S. J., Van Rossum, G., Tanenbanm, A. S., Van
Renesse, R. and Van Staveren, H., “Amoeba: A distributed
operating system for the 1990s” JEEE Computer 23 (May
1990), 44-53) protects objects using a software capability
scheme. These capabilities are kept secret by cmbedding
them in a huge virtual address space. This becomes less
attractive if the virtual address space is 1000 times smaller.
Of coursc, this particular use of a sparse virtual address
space can be replaced by the capability mechanism provided
by guarded pointers.

Virtual address space fragmentation is another potential
problem with guarded pointers, as segments must bé powers

NOAC Ex. 1017 Page 257

PR VIO

D e o ————— T

e A B N SIS e WS RW it it BRI T ¥ otz i

6,003,123

1

of two words in length and aligned. Internal fragmentation
may result when the space necded by an object must be
rounded up to the next power of two words. However, this
does not result in much wasted physical memory, since
physical space is allocate on a page-by-page basis, indepen-
dent of segmentation. External fragmentation of the virtual
address space may occur when recycled segments cannot be
coalesced into contiguous sections of usable sizes. A buddy
memory allocation scheme, which combines adjacent free
segments into larger segments, can be used to reduce this
fragmentation problem.

Software Implementations

While guarded pointers enable efficient implementation
of many desirable operating system features, some short-
comings inherent in single-address-space and capability-
based architectures can be addressed by the software system
designer using guarded pointers.

The cfficiency of guarded pointers is largely due to
climinating indirection through protected segment tables.
With guarded pointers there is no need to store these tables
or to access them on each memory reference. Without
protected indirection, modifying a capability requires scan-
ning the entire virtual address space to update all copies of
the capability. This is necded, for example, when relocating
a segment or revoking access rights to a segment. In some
cascs this expepsive operation can be avoided by exploiting
the paging translation, uscr-level indirection or protected
subsystems.

All guarded pointers to a segment can be simultancously
invalidated by unmapping the scgment’s address space in
the page table. All subsequent accesses using pointers to this
segment will raise exceptions. This directly revokes all
capabilitics to a segment. Scgments can be relocated by
updating the pointer causing the exception on each reference
to the relocated segment. One limitation of this approach is
that it operates on a page granularity while segments may be
any size, down to a single byte in length. Thus relocating or
revoking access to a segment may affect the performance of
references to several unrelated bystander segments.

Indirection can be performed explicitly in software where
it is required. If a scgment’s location is unknown or is
cxpected to move frequently, a program can make all
scgment references to offsets from a single segment base
pointer. Only this single pointer needs to be updated when
the segment is moved. With explicit indirection, overhead is
incurred only when indirection is neceded, and then it is
exposed to the compiler for optimization. Since no hardware
prevents user code from copying the segment base pointer,
relocation or revocation through explicit indirection requires
adherence to software conventions.

It is impossible in any capability-based system to directly
revoke a single process’ rights to access a segment without
potentially affecting other processes. Since possession of a
capability confers access rights, the only way to remove
access rights from a single process is to remove all capa-
bilities containing those access rights from the memory
addressable by the process. This can be accomplished by
sweeping the memory that the process can address, and
overwriting the correct capabilitics, so long as none of the
memory containing thosc capabilities is shared. If the point-
ers that need to be overwritten are contained within a shared
scgment, all processes which rely on the pointer will lose
access privileges. This is due to the lack of a protected table
that stores permission information on a per-process basis.

Protected indirection can be implemented by requiring
that all accesses to an object be made through a protected
subsystem. In addition to restricting the access methods for

L

20

25

30

40

50

55

60

12

the object, the subsystem can relocate the object at will and
can implement arbitrary protection mechanisms. For
cxample, the subsystem could implement a per-process
access control list. Revoking a single process’ access rights
can be performed by updating the access control list. Access-
ing an object through a protected subsystem is advisable if
the object must be rclocated or have its access rights
changed frequently and if the object is referenced infre-
quently or only via the subsystem access methods.

Without indirection, address space is allocated “for alt
time,” requiring the system software to periodically garbage
coliect the virtual address space, so that addresses no longer
in service can be reused. This is simplified with guarded
pointers, as pointers are self identifying via the tag bit. Thus,
the live segments can be found by recursively scanning the
reachable segments from all live processes and persistent
objects.

The M-Machine

The M-Machine memory system provides an example of
how guarded pointers may be used. The M-Machine is a
multicomputer with a 3-dimensional mesh interconnect and
multithreaded processing nodes (Dally, W. J., Keckler, S. W.,
Carter, N., Chang, A., Fillo, M., and Lee, W. S. “M-Machine
architecture v1.0,” Concurrent VLSI Architecture Memo 58,
Massachusetts Institute of Technology, Artificial Intelli-
gence Laboratory, January 1994 and Keckler, S. W., and
Dally, W. J., “Processor coupling: Integrating compile time
and runtime scheduling for parallelism”, Proceedings of the
19th International Symposium on Computer Architecture
(Quecnsland, Australia, May 1992), ACM, pp 202-213, and
U.S. application Ser. No. 08/062,388). One of the major
research goals of the M-Machine is to explore the best use
of the increasing number of transistors that can be placed on
a single chip.

The processing nodes of the M-Machine (known as
multi-alu processors, or MAPs) operate on 64-bit integer
and floating-point data types and use 64-bit guarded pointers
(plus a tag bit) to access a 54-bit, byte-addressable, global
address space, which is shared by all processes and nodes of
the machine. FIG. 8 shows a block diagram of a MAP chip.
Each MAP chip contains twelve execution units: four integer
units, four floating-point, and four memory units. These
cxccution units arc grouped into four clusters 69, cach
containing one exccution unit of cach type.

To increase the utilization of these hardware resources
when executing programs that have insufficient instruction-
level parallelism, the M-Machine implements multithread-
ing. Four user threads share the processing resources of cach
cluster, for a total of sixteen user threads in execution at any
time. Each cycle, the hardware on each cluster examines the
threads in execution on it and selects one thread to execute
on the hardware resources. The three exccution units in a
cluster are allocated and statically scheduled as a long
instruction word processor.

Each M-Machine node contains an on-chip 4-bank cache
70 and 1MWord (8MBytes) of off-chip memory 71. The
cache is virtually addressed, and addresses are interleaved
across the baoks. This allows the memory system to accept
up to four memory requests during cach cycle, matching the
peak rate at which the processor clusters can generate
requests. Requests that miss in the cache arbitrate for the
external memory interface 72, which can only handle one
request at a time. The interface 72 also holds the LTLB.
Request to memory arc made by cluster 69 through an
M-switch 73, and responses are passed back through a
C-switch 75. Transfers between clusters are also made
through the C-switch. ’

NOAC Ex. 1017 Page 258

P

e rens

PR P
g ol

gt

LIe]
Cag

o s B

é

ARSI L1

sy r g -

pomat f pe Y

EEs A

[P

R P <4 e s AL -

6,003,123

13

Messages are routed through the network by an output
interface 77 using the GTLB 79. Incoming messages are
queued in an input interface 81.

The M-Machine presents two challenges to a protection
system. The first is cycle-by-cycle interleaving of instruc-
tions and memory references from different protection
domains, while still allowing cfficient sharing among them.
Because guarded pointers provide memory protection with-
out requiring each thread to have its own virtual to physical
translations, memory references from different threads may
be in flight simultaneously without comprising security. This
cnables zero cost context switching as no work must be
performed to switch between protection domains.

The other challenge for both the protection and translation
systems is the interleaved cache of the M-Machine, which
may service up to four references simultancously. The single
address space implemented with guarded pointers allows the
cache to be virtnally addressed and tagged so that transla-
tions nced only to be performed on cache misses. In
addition, encoding all protection information in a guarded
pointer climinates any need for table lookup prior or during
cache access. These two features eliminate the neced to
replicate or quad-port the TLB or other protection tables.
Guarded Pointer Conclusions

We have introduced guarded pointers as a hardware
mechanism to implement capability-based protection and
allow fast muitithreading among threads from different
protection domains, including concurrent execution of user
programs and the operating system. We have described the
M-Machine as an example of an architecture which imple-
ments guarded pointers.

A guarded pointer is an uoforgeable handle to a segment
of memory. Each pointer is comprised of segment
permission, length, base, and offset ficlds. The advent of
64-bit machines allows this information to be encoded
directly in a single word, without unduly limiting the
memory address space. An additional tag bit is provided to
prevent a user from illicitly creating a guarded pointer.
Guarded pointers are an efficient implementation of capa-
bilities without capability tables and mandatory indirection
On memory access.

Guarded pointers can be used to implement a variety of
software systems. Threads in different protection domains
can share data mercly by owning copies of a pointer into that
segment. A thread can grant another thread access to private
data by passing a guarded pointer to it. Protected entry
points and cross-domain calls can be efficiently imple-
mented using an entry type guarded pointer.

The costs of implementing guarded pointers are minimal.
Aq additional tag bit is required to identify pointers, and the
virtual address space is reduced by the number of bits
required to encode segment permissions and lengths. In a 64
bit machine, 54 virtual address bits are left, which is ample
space for the foreseeable future. A small amount of hardware
is also required to perform permission checking on memory
operations.

Like all single global virtual address space systems,
guarded pointers permit processes from different protection
domains to share the cache and paging systems without
comprising security. Also like these systems, guarded point-
ers climinate multiple translations and permit processes to
access an interleaved virtual cache without requiring mul-
tiple TLBs. Guarded pointers do share some of the deficien-
cies of single address space memory systems (garbage
collecting virtual address space), and capability systems
(relocating and revoking access to segments).

By encoding 2 scgment descriptor in the pointer itself and
checking access permissions in the exccution unit, guarded

10

20

45

50

55

65

14

pointers obviate the nced to check protection data in the
cache bank. This permits in-cache sharing, which is not
possible with methods that append the PID to the cache tag,
without the expense of providing protection tables in hard-
ware.

Consequently, guarded pointers concentrate process state
in general purpose registers instead of auxiliary or special
memory. Threads become more agile as less processor
resident state is needed. This will enable better resource
utilization in parallel systems as threads may begin
exccution, migrate and communicate with other threads with
lower latency.

Block Status Bits

The addition of block status bits to a memory system
allows relocation of data objects that are smaller than
individual pages, without requiring a lookup table entry for
each object. Bach page of memory (4 KB) is divided into
64-byte (8 word) blocks. Two block status bits are assigned
to each of the 64 blocks in a page. The status bits are used
to encode the following states:

INVALID: Any attempt to reference the block raises an

exception.

READ ONLY: The block may be read, but an exception
occurs if a write is attempted.

READ/WRITE: Reads and writes to the block are per-
mitted.

DIRTY: Reads and writes to the block are permitted. The
line has been written at least once since the page table
entry was created.

One method in which block status bits may be used to
control the relocation of data is to assign each block in the
memory a home node, which is responsible for managing the
relocation of the blocks assigned to it. A mechanism such as
the GTLB may be used to provide fast location of the home
node of a block, but this is not nccessary.

The home node maintains a software record of which
other nodes have copies of a block, and the status of those
copies. Only one node is allowed to have a copy of a block
that is in the rcad-write state, but many nodes may have
rcad-only copics of a block if no node has a rcad-write copy.
This prevents different nodes from having different versions
of the data in a block.

When a node requests a read-only copy of a block, the
home node examines its records of which nodes have copics
of the block. If no node has a read-write copy of the block,
the home node issues a read-only copy of the block to the
requesting node, and adds the requesting node to the list of
nodes that have a copy of the block. If another node has a
read-write copy of the block, the home node sends an
invalidatc message to the node, telling it to give up its copy
of the block, and to inform the home node of the new
contents of the block if the block has changed. When the
home node receives notification that the read-write copy of
the block has been invalidated, it issues the read-only copy
of the block to the requesting node and records that the
requesting node has a copy of the block.

Requests for read-write copies of a block are handled in
the same manner, except that any node that has a copy of the
block must invalidate its copy before the read-write copy
can be given out, to prevent data inconsistency problems.

When a node receives a message telling it to invalidate its
copy of a block, it cxamines the block status bits of that
block. If the block is in a read-only or read-write state, then
the node has not changed the contents of the block, and the
block can be discarded and the home node informed that this
has been done. If the block is in the dirty state, then its
contents have been changed since the node received its copy

NOAC Ex. 1017 Page 259

;

B Y o Y e NETO S PR 5 o LR

15
of the block, and the node must send the changed copy of the
block back to the home node before its discards the block.

When a data word is accessed in the memory, the block
status bits corresponding to that word are retrieved as well
as the word being accessed. The block status bits are
compared to the operation being attempted; and an excep-
tion is raised if any operation is attempted on a word whose
block status bits are in the invalid state, or if an operation
that modifies memory is attempted on a word whose block
status bits are in the read-only state. If an operation is not
allowed, the operation is cancelled before it modifics the
state of the memory. If the operation modifies the location
being referenced, the block status bits corresponding to that
location are set to “dirty” if the operation is allowed. This
allows the hardware to quickly determine if a block has been
modified, as any modifications to a block will cause its status
bits to enter the dirty state.

The block status bits for cach mapped page on a node are
contained in the local page table of that node. When the
translation for a page is brought into the local translation
lookaside buffer (LTLB), the status bits for the blocks
contained in that page arc copied into the LTLB as well.
When a block of data is brought into the cache from the main
memory, the block status bits for that block are examined in
the LTLB. The cache status of the block is set to read-only
if the block status in the LTLB entry is read-only. If the
LTLB block status is read/write or dirty, then the cache
status is sct to read/write. Attempts to bring a block in the
invalid state into the cache causes an exception. The dirty bit
of a block’s status in the cache is always sct to zero when the
block is brought into the cache to reflect the fact that the
block has not been modified since it was brought into the
cache. This does not change the status of the block in the
LILB. When a block is evicted from the cache, its dirty bit
is examined, and the status of the block in the LTLB changed
to dirty if the cache dirty bit is sct to one. When an LTLB
entry is evicted, its block status bits are simply copicd out to
the local page table, as the LTLB entry contains the maost
recent copy of the status bits.

FIG. 9 shows the format of an LTLB entry, while FIG. 10
shows the transfers of status bits between storage locations,
FIG. 11 shows the hardware that extracts the status bits for
a block from the LTLB, and FIG. 12 is a flow chart of a
memory request using the block status bits.

As shown in FIG. 9, an entry for cach virtual page in the
local page table and local table lookup buffer comprises
three words. The first word includes the translation from
virtual page to physical page. The virtual page is identified
by the first 42 bits of the 54-bit virtual address. Since the
translation to physical address is only for the physical space
on a particular node, 20 bits arc sufficient to identify the
physical page location. The second and third words each
include a single bit for each of 64 blocks of the virtual page.

As shown in FIG. 11, the first 42 bits of the virtual address
are used to locate the page table entry n the LTLB 71 and
three words for that entry are output as shown. To select the
appropriate block status bits, the next 6 bits of the virtual
address, which are the first 6 bits of the page offset, are
applicd to the select inputs of multiplexers 73 and 75, each
sclecting one of the two block space bits for that virtual
address.

Caching the block status bits in the LTLB and in the cache
allows the memory system to examine a word’s block status
bits when that word is referenced without requiring a page
table access on cach memory reference. FIG. 12 shows the
sequence of events involved in performing a memory access
in a system that implements block status bits. First (not

25

30

40

45

50

55

60

65

6,003,123

16

shown on the flow chart) any permission checks thal are
necessary to determine whether or not the user is allowed to
access the address in question are performed. This includes
all of the procedures of FIG. 2A if the system incorporales
Guarded Pointers.

Once that has been done, the request is submitted at 74 to
the cache memory 77 (FIG. 10). If the address is found in the
cache at 76, the block status bils corresponding to the
address are examined and compared to the operation being
performed at 78 and 80. If the operation is allowed, the
cache memory completes the operation at 82 and is ready for
the next request. If the operation is not allowed, an exception
is raised at 84.

If the address is not in the cache 76, the local translation
lookaside buffer (LTLB) 79 is probed at 86 to detcrmine if
it contains a translation for the address. If the LTLB does not
contain a translation, an exception occurs at 88 to check the
local page table 81, and software is invoked at 90 to load a
translation into the LTLB from the local page table. As
shown in FIG. 10, the LTLB entry which is evicted carmics
with it status bits for updating those bits in the local page
table. Similarly, the new entry carries the status bits from the
local page table. When the data is read into the cache
memory 77, the status bits for the cache line are copied from
the associated entry of the LTLB, with the exception that a
dirty entry is entered in the cache as a read/write. The dirty
designation is retained in the LTLB for purposes of provid-
ing the dirty flag to a home node when requested. However,
the operating program which loads from the cache need only
determine whether it is authorized to read or write. Within
the -cache, the status bit will be converted to dirty with a
write to cache in order to-facilitate npdating the status bits
in the LTLB and the data in memory with later eviction of
the cache line.

Once a translation has been found, either in the page table
or the LTLB, the block status bits corresponding to the
address are compared at 92 and 94 to the operation being
performed. If the block status bits allow the operation being
attempted, the operation is completed from the main
memory at 96. If the block status bits do not allow the
operation, an exception is raised at 98.

If po translation for the address can be found in cither the
LTLB or the focal page table, the software attempts at 100
to locate the data on another node, possibly using a GTLB
as described below.

The operating system must have the ability to change the
status bits of 2 memory block. This can be provided either
through privileged operations that probe the cache to change
the status bits in the cache as well as in the LTLB entry, or
by requiring the system to remove the appropriate block
from the cache before altering its status bits, and to ensure
that the block is not returned to the cache before the status
bits have been updated.

These states allow a variety of relocation and replication
(cache coherence) schemes to be implemented cfficiently, by
handling the common case (the user attempting an access
which is allowed) in hardware while giving the software the
ability to determine how illegal accesses are handled. For
cxample, block status bits allow the efficient implementation
of a system in which small data objects are relocated from
node to node. When a data object is brought onto a node, a
page table entry is created for the page containing that object
if one docs not alrcady exist. The status bits for the memory
blocks containing the object being relocated are set to one of
the three valid states, while the status bits for cach memory
block that does not contain valid data on the local nodc are
sct to INVALID. Users can then access the object in any way

NOAC Ex. 1017 Page 260

5, gt

"y

D g Tepe)

T

o> spa B

PRy
o

Ay

s e ke

.;
+
.
i
y
£
H
:
e

6,003,123

17

that is consistent with the status bits associated with it. If a
user attempts to reference a block that has not been brought
on to the local node, its status bits will be in the INVALID
state, and any attempt to reference it will cause an exception,
invoking an cxception bandler to resolve the situation.
Moving an object off of a node can be accomplished by
copying it to apother node, and changing the status bits
associated with it to INVALID, prohibiting access to the
object. This allows small data objects to be relocated
throughout a multicomputer efficiently without requiring
overly large tables to contain information about which
objects are located on a given node. The system will have to
maintain a table in software which contains information on
where each object is in the system, but the space constraints
on software tables are not ncarly as great as on hardware
tables.

Block status bits can also be used to implement cache
coherence schemes. Many cache-coherence schemes assign
states to data which are very similar to the block status
states: INVALID, READ-ONLY, READ-WRITE, and
DIRTY. The differences between these schemes lie in their
bandling of cases where data is referenced in a manner
which is inconsistent with its state. Block status bits allow
the hardware to handle the (common) case where data is
accessed in an allowed manner, with software being invoked
to handle the uncommon case where an illegal access is
attempted. Since system software can manipulate the status
bits of a block, operations such as system-wide invalidation
of a block so that one node can gain an exclusive copy of the
block, can be efficiently implemented.

Global Translation Lookaside Buffer

A Global Translation Lookaside Buffer (GTLB) is used to
cache translations between virtual addresses and the nodes
containing those addresses. Translation of virtual addresses
to physical addresses is handled by a Local Translation
Lookaside Buffer (LTLB) which may essentially be the same
as a conventional translation lookaside buffer. The intended
usc of the GTLB is to allow hardware and software to
quickly detenmine which node of a multicomputer contains
a given datum. A message can then be sent to that node to
access the datum. On the node that contains the datum, the
LTLB can be used to translate the virtual address into a
physical address in order to reference the datum.

In order to allow large blocks of virtual address space to
be mapped by a small number of GTLB entries without
increasing the size of the smallest block of data that can be
mapped, cach GTLB entry maps a variable-sized page-
group of virtual address space across a number of nodes. In
order to simplify the interaction between the local and global
translation mechanisms, and to reduce the number of bits
required to encode the length of a page-group, cach page
group must be a power of two local pages in length.

The address space contained in 2 page-group may be
mapped across a 3-D sub-cube of nodes, with the following
restrictions: each side of the sub-cube must be a power of
two nodes long, and the amount of address space aliocated
to cach node must be a power of two local pages. While
these restrictions constrain the mapping of address space to
nodes somewhat, they greatly reduce the size of the GTLB
entry and the complexity of the hardware needed to perform
the translation.

FIG. 13 shows the format of a GTLB entry. 42 bits encode
the virtual page identifier, which is obtained by truncating
the low 12 bits off a 54-bit virtual address, since these bits
represent the offset within a local page. Sixteen bits encode
the start node of the sub-cube of nodes that the page-group
maps across. This node ID is divided into a six-bit

15

20

25

30

40

50

60

65

18

Z-Coordinate, and 5-bit X- and Y-coordinates to give the
position of the start node within the machine. Six bits encode
the base-2 logarithm of the length of the page-group in local
pages. Six bits encode the base-2 logarithm of the number of
local pages of address space to be placed on cach node.
Three bits encode the base-2 logarithm of the length of the
prism of nodes that the page-group maps across in each of
the X-, Y-, and Z-dimensions.

FIGS. 14A, 14B, 15A and 15B show the manner in which
the GTLB translates a virtual address. The virtual address is
submitted to the GTLB at 102. If a hit is not located at 104,
a miss is signalled at 106 to call an exception which reads
the global page table. FIG. 15A itlustrates an example GTLB
entry located with a hit.

Since the GTLB is fully associative, the page identifier
portion of each virtual address, that is, the first 42 bits of
each virtual address, must be compared to the virtmal page
identifier of each entry in the GTLB. Further, since the
grouping of pages allows for a single GTLB entry for each
page group, the least significant bits of the page identifier
corresponding to the number of pages in the group need not
be considered in the comparison. Thus, as illustrated in FIG.
14B, the six bits of cach GTLB entry which indicate the
number of pages per group can be decoded to create a mask
in bit mask generator 124. Using the bit mask generator 124,
only the more significant bits of the page identifiers required
to identify a group are compared in the mask comparator
126. On the other hand, the full 42 bits of both the virtual
address and the GTLB entry are applied to the comparator
since groups can be of different lengths and thus require
masking of different sets of bits. Applying the full 42 bit
identifiers to the comparator allows for a group of only one
page.

From the entry illustrated in FIG. 15A, it is determined
that the start node of the sub-cube is node [3,2,0] and that 2*
pages of address space arc mapped to each node within the
sub-cube. The page-group is mapped across a sub-cuhe of
nodes that extends 22 nodes in the Z-direction, 22 nodes in
the Y-direction, and 2 nodes in the X-direction. The start
node [3,2,0] and the full cubic group of nodes is illustrated
in FIG. 15B.

To determine the node containing the address being
translated, the GTLB masks off at 108 the page offsct bits of
the address which contain the offsct from the start of the
local page to the address being translated. The next four bits
of address 0101 are discarded, as they all map to the same
node, as shown by the value 4 in the “log pages per node”
filed. The next bit of the address contains the X-offsct from
the start node to the node containing the address, as shown
by the value of 1 in the X subfield of the “log sub-cube
dimensions” ficld, and that bit is extracted at 110. Similarly,
two bits contain the Y-offset and two bits contain the Z~offset
from the start node to the node containing the address being
translated, and those are extracted at 112 and 114. Examin-
ing the selected bit fields reveals that the node containing the
address lies at offsct Xwl, Y=2, Z=3 from the start node.
Adding these values to the coordinates of the start node at
116 in the address 118 gives the coordinates of the node
containing the address X=1, Y=4, Z=6, shown in FIG. 15B.

FIG. 16 shows a block diagram of the GTLB hardware.
The GTLB compriscs a content addressable memory CAM
120 which contains the GTLB entries, a bit-field extractor
122 to cxtract the X-, Y-, and Z-Offset fields from the source
address, and three adders 118 to add the offsets to the
appropriate portioos of the start node. The SRAM array must
be fully-associative, as the variable size of page-groups
makes it impossible to use a fixed number of bits to select

NOAC Ex. 1017 Page 261

o et A o Himm? s o

o At o St b v ot oot WS i b WA < 5 kT Wl

1A R M SR T R

e R AL N S SR T ST

p et

19

a set within the array to be searched. When an address is
submitted to the GTLB for translation, it is passed to the
CAM array. If the address is found in the array, the Hit
output is asserted, and the start node, the page-group length,
the pages-per-node information, and the X-, Y-, and
Z-lengths of the sub-cube of nodes containing the address
being translated are outputted. The bit-field extractor takes
the dimension of the prism, and the page-length and pages-
per-node information, and extracts from the virtual
addresses the bit ficlds containing the X-, Y-, and Z-offscts
from the start node of the page-group to the node containing
the address being translated. The offsets are then added to
the appropriate field within the address of the start node to
get the address of the node containing the address.
Integration of all Three Systems

FIG. 17 shows a flow chart of the execution of a memory
reference from 128 in a system that combines Guarded
Pointers, Block Status Bits, and a Global Translation Looka-
side Buffer. The first step in performing a memory operation
is to perform at 130 the pointer permission checks described
in the section on Guarded Pointers. If those checks pass, the
memory request is sent to the memory system. Otherwise, an
exception is raised at 132.

If the data is located in the cache at 134, its block status
bits are examined at 136, and an exception is raiscd at 138
if they do not allow the operation being attempted.
Otherwise, the operation is completed in the cache at 140. If
the data is not located in the cache, the I'TLB is probed at
142 for a translation for the address. If a translation is found,
the block status bit of the address arc examined at 144, and
the operation completed from the main memory at 146 if the
status bits allow it, or an exception raised at 148 if they do
not.

If a translation for the address is not found in the LTLB
at 142, software scarches the local page for a translation at
150. If a translation is found, the LTLB is updated at 152 to
contain the translation, and the reference proceeds at 144 as
if an LTLB hit occurred.

If no translation is found in the local page table at 150, the
software probes the GTLB at 154 to sce if the node con-
taining the address can he determioed. If a GTLB miss
occurs, the global page table is scarched at 156 for an entry
corresponding to the address. I the node containing the
address can be located ecither through the GTLB or the global
Ppage table, the software can send a message to that node to
complete the request at 158. Otherwise, an error is signalled
at 160, as the reference can not be completed.

‘While each of these mechanisms is useful separately, they
complement each other to form the basis for the memory
system of a multicomputer. Guarded Pointers provide a
protection mechanism that allows a pumber of independent
processes to share the resources of the multicomputer with-
out compromising the security of those processes. The
Global Translation Lookaside Buffer provides an cffective
mechanism for distributing data objects across the multi-
computer by mapping virtual addresses to nodes within the
multicomputer. The block Status Bits make the process of
moving or copying data from node to node more efficient by
reducing the size of the smallest datum that can be relocated,
without increasing the number of translation tablc entries
required if no remotc data is accessed.

Acrclated paper has been submitted for presentation at the
6th International Conference on Architectural Support for

10

15

20

25

30

40

45

50

55

60

6,003,123

20
Programming Languages and Operating Systems (ASPLOS
VD), Oct. 5-6, 1994.
EQUIVALENTS

While this invention has been particularly shown and
described with references to preferred embodiments thercof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention as
defined by the appended claims. Those skilled in the art will
recognize or be able to ascertain using no more than routine
experimentation, many equivalents to the specific embodi-
ments of the invention described specifically herein. Such
cquivalents are intended to be encompassed in the scope of
the claims.

What is claimed is:

1. In a parallel processing system, a method of addressing
data across plural processor nodes comprising:

applying a virtual address to a global translation buffer to
identify a mapping of a page group of plural pages
across a set of plural but less than all processor nodes
in the system, the page group containing the physical
page to which the virtual address corresponds; and

from the virtual address and mapping, determining a
destination node as a node within the set of processor
nodes which contains the physical page to which the
virtual address corresponds.

2. A method as claimed in claim 1 further comprising

forwarding a message to the destination node.

3. Amcthod as claimed in claim 2 further comprising, at
the destination node, translating the virtual address to a
physical address.

4. A method as claimed in claim 1 whercin each page
group is specified by a group size.

5. Amcthod as claimed in claim 4 wherein the group size
is logarithmically encoded.

6. Amethod as claimed in claim 1 wherein the translation
buffer specifies a start node and the range of the set of nodes.

7. A method as claimed in claim 6 wherein the range is
specified in plural dimensions.

8. A method as claimed in claim 7 wherein the range is
logarithmically encoded in cach of the plural dimensions.

9. Amethod as claimed in claim 8 wherein the translation
buffer specifies the mumber of pages of the page group per
node of the set of podes.

10. A method as claimed in claim 6 wherein the transla-
tion buffer specifies the number of pages of the page group
per node of the set of nodes.

11. Amethod as claimed in claim 1 whercin the translation
buffer specifics the number of pages of the page group per
node of the sct of nodes.

12. A data processing system comprising a plurality of
processor nodes, each processor node comprising:

a global translation buffer for identifying relative to a
virtual address a mapping of a page group of plural
pages to a set of plural processor node s in the system,
the page group containing the physical page to which
the virtual address corresponds;

clectronics which determines, from the virtual address
and the identificd mapping, a destination node as a node
within the sct of processor nodes having the physical
address corresponding to the virtual address.

* x * & »

NOAC Ex. 1017 Page 262

v+

s x 0w

e e gy

< B S A e o PR A s LTy s e S e

United States Patent 9
Colloff et al.

T O Y 0

5,530,834
Jun. 25, 1996

(113 Patent Number:
45] Date of Patent:

[54] SET-ASSOCIATIVE CACHE MEMORY
HAVING AN ENHANCED LRU
REPLACEMENT STRATEGY

{75] Inventors: Ian G. Collofl, Ascot; Albert S.
Hilditch, Wokingham, both of England

[73} Assignee: International Computers Limited,
Patney, United Kingdom
[21] Appl. No.: 206,001
[22] Filed: Mar, 3, 1994
{301 Foreign Application Priority Data
Mar. 30, 1993 [GB) United Kingdom 9306647

[51] Imt. CLS GO6F 1212
{52} US. Cl .rcuneenn 395/463; 395/421.06; 395/487
{58] Field Of Search ..o . 395/200, 400,

395/425, 421.06, 463, 445, 486, 487

[56] References Cited
U.S. PATENT DOCUMENTS
3,949,369 4/1976 Churchill, Jr. cccvvrevccennne 340/172.5

4,511,994 9/1982 Webb et al.coveervececmcuserees 395/487

FOREIGN PATENT DOCUMENTS

1087189 10/1967 United Kingdom .
1475785 6/1977 United Kingdom .

Primary Examiner—Jack A. Lane

Assistant Examiner—Fadi A. Stephan

Attorney, Agent, or Firm—Lee, Mann, Smith, McWilliams,
Sweeney & Ohlson

(57 ABSTRACT

A cache memory contains a number of RAMs. The RAMs
are addressed by independent hashing functions, so as to
access a set of locations, one in each RAM., If the required
data item is resident in the addressed set, it is accessed.
Otherwise, the least-recently used location in the set is
selected for overwriting with data from main memory. The
contents of the RAM location that is about to be overwritten
are saved, and then used to access the memory again in order
to address a further set of locations. If any of this further set
of locations is less recently used than the saved contents, the
saved contents are loaded back into that location

3 Claims, 3 Drawing Sheets

| ADDRESS REGISTER |t

lrS)

HASH 0

RAM 0 |40

196)

TAG
(OMPARATOR {49

HASH 1
—{_HAsH1 RAM 1

%—M

197)

TAG
COMPARATOR }—50

SH
— iz L, O3

loB)

TAG
(OMPARATOR |51

HASH 3
RAM 3 [—43

TAG
COMPARATOR |52 53

REGISTER

08/28/2003, EAST Vversion: 1.04.0000) \ ~ pv 1017 Page 263

E

P

s

L T T] v

R

U.S. Patent Jun. 25, 1996 Sheet 1 of 3 5,530,834
1g.1. EN 16
10 SET LEAST K
\ ASSOCIATIVE || RECENTLY)
CACHE USED
DATA MAIN
PROCESSING MEMQRY
UNIT TRANSLATION|| CONTENTS
LOOKASIDE | |ADDRESSABLE
BUFFER MEMORY
W/ CACHEUNIT 15
. |
Fig.2.
ADDRESS REGISTER |44
L5
)
HASH 0
RAM 0 | 40
TAG
COMPARATOR |— 49
1+6)
HASH 1
RAM 1 |41
TAG
COMPARATOR }—50
a7y
SH 2
RASH RAM 2 |42
TAG
COMPARATOR |51
48)
HASH 3
RAM3 |43
TAG
COMPARATOR |—52 [53
REGISTER

ion: 1.04.0000
08/28/2003, EAST version NOAC Ex. 1017 Page 264

G e My W e e o <anE o

U.S. Patent Jun. 25, 1996 Sheet 2 of 3 5,530,834

Fig.3.

CACHE REQUEST MISS

CHOOSE CACHE LOCATION FOR NEW DATA
I
CALCULATE REAL ADDRESS FROM TLB
|
DELETE CAM ENTRY FOR DISPLACED DATA
|

DATA NOT IN CACHE

CHECK CAM FOR PRESENCE OF DATA IN CACHE

DATA IN CACHE

REQUEST REQUIRED DATA

MOVE REQUIRED DATA TO CHOSEN LOCATION

INSERT DATA IN CACHE

UPDATE CAM ENTRY FOR REQUIRED DATA

08/28/2003, EAST Version:

CREATE NEW CAMENTRY

1.04.0000
NOAC Ex. 1017 Page 265

- b e v o s ke oo h oSS A Ak

i

U.S. Patent Jun. 25, 1996 Sheet 3 of 3 5,530,834

Fig. 4.

CACHELSHUNT

l
LOAD SHUNT REGISTER

ACCESS SET ASSOCIATIVE MEMORY

SHUNT DATA=LEAST RECENTLY USED? YES EXIT
NO
REPLACE LRU LOCATION
YES
NUMBER OF SHUNTS=MAXIMUM? EXIT
NO
Fig.5.

NEW CAM ENTRY

ACCESS SET ASSOCIATIVE MEMORY

ANY EMPTY LOCATIONS?
NO YES

SELECT RANDOM LOCATION | [WRITE TO EMPTY LOCATION
{ I
‘ EXIT
LOAD SHUNT REGISTER

+ e e g

08/28/2003, T version: 1.04.0000
i /28/2003, EAST Vers NOAC Ex. 1017 Page 266

ST

[

1

SET-ASSOCIATIVE CACHE MEMORY
HAVING AN ENHANCED LRU
REPLACEMENT STRATEGY

BACKGROUND OF THE INVENTION

This invention rciates to sct-associative memories.

One conventional form of set-associative memory com-
prises a plurality of random access memories (RAMs), each
RAM location holding a data item and a tag value identi-
fying the data. An input address is hashed (i.e. transformed
by a many-to-one mapping function) to produce a hash
address, which is applied in parallel to all the RAMs, so as
to select one location in each RAM. The tag values in the
addressed locations are then examined to see if the desired
data is resident in one of them and, if so, the data is accessed.

If there are n RAMEs, so that n locations at a time are
examined, the memory is referred to as an n-way set-
associative memory and is said to have an associativity of n.
The usual choice for the value of n is 2 or 4.

Such a set-associative memory may be used, for example,
as a cache memory for a computer system. The aim of a
cache is to keep the most useful data of a large amount of
data in a small, fast memory in order to avoid having to
retrieve the data from the larger, slower main memory. If the
required data is in the cache, it is said that a “hit” has
occurred; otherwise a “miss” has occurred. The percentage
of misses is called the “miss rate”. A common engineering
problem in designing a cache is to minimize the miss rate
while keeping the cache size, the access speed, the power
consumption and the amount of implementation logic fixed.

In general, the miss rate of such a cache decreases as its
set associativity increases. On the other hand, the cost of
implementation increases as set associativity increases.
Thus, in general, known caches that deliver minimum miss
rates demand large amounts of logic and space to imple-
ment, while known caches that are the cheapest to imple-
ment deliver higher miss rates.

Another use of set-associative memory is to form a
content addressable memory (CAM). The aim of a CAM is
to store and reference data according to its contents. For
instance, performing a join of two relations within a rela-
tional database query can be implemented by first storing the
contents of one relation in the CAM, indexed by the join
attribute, and then secondly by comparing the rows of the
second relation to the CAM using the join attribute again,
Content addressable memories can be implemented by fully
associative memories but their size is limited by the space
demanded by fully associative logic.

One object of the present invention is to provide an
improved set-associative memory which is capable of per-
forming as well as conventional set-associative memories of
higher set associativity, or better than conventional set-
associative memories of the same set associativity. For
example, when the set-associative memory is used as a
cache, this means that it is able to deliver the same miss rate
as conventional caches of larger size and cost, or lower miss
rates than conventional caches of the same size and cost.

A second object of the present invention is to provide a
CAM using a modified sct-associative memory. This allows
both much larger CAM:s to be constructed and an improved
read performance over present CAMs.

SUMMARY OF THE INVENTION

According to one aspect of the invention, there is pro-
vided an n-way set-associative memory (where n is an

08/28/2003, EAST

5,530,834

2
integer greater than 1), comprising a plurality of n RAMs,
each RAM location holding a data item and a tag value
identifying the data, addressing means for addressing the
RAMs to access a set of locations, one in each RAM, and
5 means for examining said set of locations to detect whether
a required data item is resident in any of those locations,
wherein the addressing means comprises means for perform-
ing n independent hashing functions to hash an input
memory address into n separate addresses for respectively
10 addressing said RAMSs, characterised by means for saving
the contents of a RAM location that is about to be over-
written, means for using the saved contents to access the
memory again to address a further set of locations, and a
means for loading the saved contents into one of said further
15 set of locations.

As will be shown, this “shunting” operation can improve
the performance of the set-associative memory, by effec-
tively increasing its set associativity.

According to a second aspect of the invention there is
provided a contents addressable memory comprising a plu-
rality of n RAMs (where n is an integer greater than 1), each
RAM location holding a data item and a tag value identi-
fying the data, means for performing n independent hashing
functions to hash an input memory address into n separate
addresses, means for addressing the RAMs with said n
separate addresses to access a set of locations, one in each
RAM, a means for examining said set of locations to detect
whether any of said addressed set of locations is empty and, '
if so, loading an input data item into that location and a
means operative if none of said addressed set of locations is
empty, for sclecting one of said addressed set of locations for
replacement, saving the tag value and data item of the
selected location, loading the input data item into the
selected location, using the saved contents to access the
memory again to address a further set of locations and, if any
of the addressed set of locations is empty, loading the saved
data item into that location.

As will be shown, a set-associative memory with repeated
20 shunting can deliver a content addressable memory without

the need for full associativity thus reducing the logic needed
and greatly increasing the size of CAM possible. Further, the
read performance of such a “repeated shunting CAM™ will
be faster than an equivalent fully-associative CAM.

25

45

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system
including a cache comprising a set-associative memory in
accordance with the invention.

FIG. 2 shows a set-associative memory with the enhance-
ment of “shunting”.

FIG. 3 is a flow chart showing the operation of the cache.

55 FIG. 4 is a flow chart showing the way that shunting is
used in operation of the cache.

FIG. 5 is a flow chart showing the operation of a contents

addressable memory using the set-associative memory of
FIG. 2.

50

DESCRIPTION OF EMBODIMENTS OF THE
INVENTION

65 A data processing system embodying the invention will
now be described by way of example with reference to the
accompanying drawings.

version: 1.04.0000 A C Ex. 1017 Page 267

L S A+ et A s g

3

3

Referring to FIG. 1, the data proccssing system comprises
adata processmg unit 10, 2 main memory 11, and a virtually

PRy

addressed cithe Cotrolle; 12 Totinected betweer e pro- -

cessing unit and main memory. The cache within the cache
controller is smaller and faster than the main memory, and
holds copies of the most recently used data items, allowing
these items to be accessed by the processing unit without
having to retrieve them from the slower main memory.
The cache controller 12 comprises a 4-way sct-associative
cache 13, a translation look-aside buffer (TLB) 14, a con-
tents addressable memory (CAM) 15, and a least-recently-
used replacement mechanism (LRU) 16. The set-associative
cache holds the cache data, indexed by the virtual address of
the data. The TLB contains a virtual address to real address
mapping, indexed by the virtual address, for allowing virtual
addresses to be translated into real addresses. The CAM
contains a real.address to cache location number mapping,
indexed by the real address, the purpose of. which will be
described later. The LRU contains recency-of-usage infor-
mation for the data items held in the set-associative memory.

SET-ASSOCIATIVE MEMORY WITH
SHUNTING

FIG. 2 shows the 4-way set-associative memory in more
detail. The memory comprises four RAMs 4043, cach of
which contains a plurality of addressable locations. Each
RAM location holds a data item and a virtual address tag,
identifying the data item.

An input virtual memory address is received in an address
register 44. This input address is hashed in four different
ways by four different efficient hashing functions 45-48 to
produce four scparate hash addresses. The hashing is done
concurrently. A good implementation of the hashing func-
tions can be achieved by using the random matrix hashing
algorithm as described in British patent specification GB
2240413, This algorithm generates an arbitrary number of
independent hashing functions which can be implemented
casily and which allow hashing to be completed within a few
simple gate delays.

The four hash addresses are used to address the four
RAM, 50 as to address four locations, one in cach RAM.
Because the hashing functions are independent, these four
hash addresses will, in general, be different. The virtual
address tags in the four addressed locations are compared
with the input virtmal address by means of comparators
49-52, to see whether any of these locations contains the
desired data.

The set-associative memory also includes a register 53,
referred to herein as the shunt register, the purpose of which
will be described.

OPERATION

s iz

processor requires {6 access 4 | 1tem, ft'sends a request to
the cache, specifying the virtual address of the required data.
The virtual address is loaded into the address register 44, so
as to address four locations in the RAMs. If any of the
addressed locations contains the required data, a hit has
occurred, and the required data can be accessed immediately
from that location. The LRU is updated to reflect the usage
of this data.

If on the other hand none of the addressed locations
contains the required data, a miss has occurred. The opera-
tion of the cache in the event of a miss is shown in FIG. 3.

08/28/2003, EAST version: 1.04.00%OAC Ex. 1017 Page 268

—

0

—

H

20

25

35

55
The opemnon of the cache i3 as follows _When, the data ..

[3

n

5,530,834

4
The LRU is accessed to decide which of the four
addressed RAM locations is least recently used, and this
location is selected for replacement with the desired data.

“The TLR is then consulted to calculate the real address of the

required data, The entry in the CAM for the data to be
replaced is deleted.

The CAM is then consulted, using the real address, to
determine whether the required data is already resident in
the virtual eache, in another cache location under a different
virtual address. If the daa is present in a different cache
location, under a different virtual alias, it is moved to the
required cache location, and the entry for that data in the
CAM is updated to the new cache location number. If on the
other hand the data is not present in the virtual cache under
a different virtual alias, it is requested from the main
memory using the real address obtained from the TLB.

When the required data has been fetched from the main
memory it is stored in the replacement location of the
set-associative memory, and a new entry is added to the
CAM for the new data.

In the case of a cache miss, after the required data has
been requested from the main memory, a shunting procedure
is performed, as will be described with reference to FIG. 4.
This shunting is performed while the required data is being
retrieved from main memory.

Referring to FIG. 4, the first step of the shunting proce-
dure is to load the existing contents of the least-recently used
one of the four addressed locations (i.e. the location that will
be averwritien by the requested data) into the shunt register
53.

The virtual address tag in the shunt register is then used
to address the set-associative memory, in place of the input
virtual memory address. Four RAM locations will therefore
be accessed, one in each of the four RAMs. One of these
locations is where the data was shunted from. However, in
general, the other three locations will be different from those
accessed by the input virtual memory address, because of the
different hashing functions used to access the four RAMs.

The recency of usage of the data in these other threc
addressed RAM locations is then compared with that of the
data in the shunt register. If the data in the shunt register is
more recently used than any of those three RAM locations,
the RAM location with the oldest access time is replaced
with the contents of the shunt register, The existing contents
of the RAM location are loaded into the shunt register.

The shunting procedure is repeated, using the new con-
teats of the shunt register, up to a fixed number of times or
until it is found that the shunted data is less recently used
than the data in any of the addressed RAM locations.

It can be seen that, after shunting is completed, the cache
location lost is the least recently used cache location of ail
those examined. This implies that with a 4-way set-associa-
tive cache, shunting once on each miss provides the equiva-
lent of a 7-way set-associative cache. Repeating the shunt
cach time adds 3 to the effective set associativity.

CONTENTS ADDRESSABLE MEMORY

The set-associative memory shown in FIG. 2 may also be
used as a contents-addressable memory (CAM) such as, for
example, the CAM 15 of FIG. 1.

Since a CAM is only used to store a finite amount of data,
we assume that the number of locations in the RAMs is
cnough to hold all needed data. This means that we never
discard any data in the CAM. However, for the set-associa-

Cni et 8 e o b i o

N

5

tive memory to be used efficiently as a CAM between 20 and
30% of the total locations in the CAM should be surplus to
requirement. This means that the expected number of shunts
is not greater than 1 and optimum efficiency is ensured.

Referring to FIG. §, this shows the operation of the CAM
when it is required to load a new data entry into the CAM.

The address of the data is hashed by the four hashing
functions to access four RAM locations, one in each RAM.
The four addressed locations are then examined to see if any
of them is empty. If so, the new data entry is loaded into that
location, and the process is complete.

If, on the other hand, none of the four addressed RAM
locations is empty, one of these four locations is selected at
random, and its contents are loaded into the shunt register
§3. The address tag in the shunt register is then used to
address the set-associative memory, in place of the original
input address. A further three RAM locations will therefore
be accessed together with the location from which the data
was shunted. This shunting process is repeated until, even-
tually, an empty RAM location is found, and the ncw data
entry is loaded into that location.

‘When the CAM is searched for data, the data will always
be found in one of the four cache locations initially searched.
When adding data to the CAM it may take one or more
shunts in order to find an empty cache location, but an empty
location will always be found eventually. Deletion of data
can be achieved without the need of shunting. A special
command is provided for clearing the CAM for reuse.

The CAM described above has a number of advantages
over CAMs implemented using a fully associative memory:
less logic, less power consumption and faster access times.
This will allow much larger CAMs to be constructed than
normally possible. The CAM described above has two
advantages over CAMs implemented using standard hashing
techniques that must resort to inefficient means for resolving
hashing collisions: better space utilisation and faster access
times.

We claim:

1. A memory system including a main memory and a
faster, smaller cache memory, wherein said cache memory
comprises:

a) a plurality of n RAMSs (where n is an intcger greater
than 1), each RAM comprising a plurality of address-
able locations;

b) hashing means for performing n independent hashing
functions, to hash an input address into n separate

_ addresscs for addressing said RAMs;

¢) LRU means for storing recency-of-use information for
each location in said RAMs;

d) means for applying a memory address as an input to
said hashing means, to access a first set of locations in
said RAMs, one location in each RAM;

¢) means for using said LRU means to select a least
recently used one of said first set of locations;

f) means for applying data from said least recently used
one of said first set of locations as a further input to said

10

20

5,530,834

6
hashing means, to access a further set of locations in
said RAMs, one location in each RAM; and

g) means for using said LRU means to select one of said
further set of locations that is less recently used than
said least recently used one of said first set of locations
and for loading said data from said least recently used
one of said first set of locations into said one of said
further set of locations.

2. A data processing system including a data processing
unit, a main memory, and a faster, smaller cache memory,
wherein said cache memory comprises:

a) a plurality of n RAMs (where n is an integer greater
than 1), each RAM comprising a plurality of address-
able locations;

b) hashing means for performing n independent hashing
functions, to hash an input address into n separate
addresses for addressing said RAMs;

¢) LRU means for storing recency-of-use information for
each location in said RAMs;

d) means for applying 2 memory address as an input to
said hashing means, to access a first set of locations in
said RAMSs, one location in each RAM;

e) means for using said LRU means to select a least
recently used one of said first set of locations;

) means for applying data from said least recently used
one of said first set of locations as a further input to said
hashing means, to access a further set of locations in
said RAMs, one location in each RAM; and

g) means for using said LRU means to select one of said
further set of locations that is less recently used than
said least recently used one of said first set of locations
and for loading said data from said least recently used
one of said first set of locations into said one of said
further set of locations.

3. A method of operating a memory system including a
main memory and a faster, smaller cache memory, the cache
memory comprising a plurality of n RAMs (where n is an
integer greater than 1), and hashing means for performing n
independent hashing functions to hash an input memory
address into n separate addresses for addressing said RAMs,
said method comprising the steps:,

a) applying a memory address as an input to said hashing
means, to access a first set of locations in said RAMSs,
one location in each RAM;

b) selecting a least recently used one of said first set of
locations;

c) applying data from said least recently used one of said
first set of locations as a further input to said hashing
means, to access a farther set of locations in said
RAMs, one location in each RAM; and

d) selecting one of said further set of locations that is less
recently used than said least recently used one of said
first set of locations and loading said data from said
least recently used one of said first set of locations into
said one of said further set of locations.

k X Xk ¥ *x

08/28/2003, EAST Version: 1.04.0000

NOAC Ex. 1017 Page 269

AN+ ot kit i s S 5

[i 1 H
0 0 A 0
US005749087A

United States Patent 9 (111 Patent Number: 5,749,087

Hoover et al. f4s1 Date of Patent: May 5, 1998
y
(54 METHOD AND APPARATUS FOR 5,457,788 10/1995 M3Chida ceovereeoomeomeemsverenernerssenns 395/435
MAINTAINING N-WAY ASSOCIATIVE 5,504,874 2111996 Galles et al. .. . 395/435
IRECTORIES UTILIZING A CONTENT 5530958 61996 Agarwal ctal. .. . 395/435
KDDRES% ABLEU;EMOIE? 5537,623 71996 Chamberlsin etal. e 395435
[75] Toventors: Russell D. H Rochester: Georg Primary Examiner—Frank J. Asta
ven . RUSS . Hoover, Rochester; (seorge Attorney, Agent, Firm—Joan Pennin
W. Nation, Eyota; Kenneth M. Valk, % Agenk or 4 canington
Rochester, all of Minn, [57] ABSTRACT
: . tional Bu: Machin A method and apparatus are provided for maintaining a
(73] Assignee En:mt‘;on, Arnsxi:nf N.Y.c « N-way associative directory utilizing a content addressable

memory (CAM). A congruence class from the N-way asso- -
ciative dircctory including a directory entry identified for a

[21] Appl No.: 688,313 data operation is read into the CAM for the data operation.
[22] Filed: Jul. 30, 1996 The directory entry for the data operation in the CAM is

locked while the data operation is pending. Other entries in
[51] Int CL° GOSF 13/00 ihe congruence class are available, When the data operation

1521 US. CL wcricssssesennennnr T11/108; 711/128; 711/133; . is completed, checking for a state change is performed.
711/141; 711/146; 364/DIG. 1 Responsive to an identified state change, the directory entry

(581 Field of Searchcumemmasinnse 39504335, 449, for the data operation in the CAM is updated or marked as
395/455, 457, 460, 468,473 changed. The congruence class including the updated direc-

tory entry is marked as-dirty. In acoordance with featnres of

[56] References Cited the invention, the changed congruence class directory
entries in the CAM are accumulated and scheduled to be

U.S. PATENT DOCUMENTS written back to the N-way associative directory. The con-

45%7,610 5/1986 Rodmano.. - - 395/417 gruence classes including the changed directory cntrics in
4914,5TT 471990 Stewart et al, ccorensececissnnesnssses 395/417 the CAM arc written back to the N-way associative directory
4972338 11/1990 Crawford ctal 395/416 when the N-way associative directory is idle. After the

5249282 9/1993 SEECIS cunmrmmmmrmmimrene 395440 congruence classes incinding the changed directory entries
5261,106 1171993 Lentz etal. o in the CAM are written back to the N-way associative

sl Tt Hw o ety s CAYE i i ek iy o
383, aare dirty and:can:be.reused.

5404452 41995 Stamm ctal. ...
5404483 4/1995 Stamm et al.

5,414,708 5/1995 SPIDDEY .ieevrmrmsssssssrosasseossenss 16 Claims, 5 Drawing Sheets
SNOOPED
ADDRESS oo o WRITE BACK
ADDRESS
L GDIR
l — 102
|__mpex ,[TAGo [stATEO|TAGt | STATE®
108 | 110 | 198 110 100
1 el
16 J HITMISS
UPDATE
TAG] GOIR
L CcAM
GDIR — . e 104
CAM
row l
"7 H INGEX |TAG 0 [STATE 0 |TAG 1BTATE 1| | BUSY | BUSY | [DIRT]
noole dzo | o122 | 120l 922 0 1
AND X
TAG .
GDIR CAM ROW
| STATE 123
WRITE
BACK
ADDRESS d
] ouT
INDEX,
TAG,
STATE
STATE 0.
STATER,
ROW#M),
COLMN)

09/02/2003, EAST Version: 1.04.0000
NOAC Ex. 1017 Page 270

' U.S. Patent May 5, 1998

FIGURE

1A

Sheet 1 of

5 5,749,087

B e 7 S Y SN

09/02/2003, EAST Version:

SNOOPED
ADDRESS |\ e TEBACK WRITE BACK
ADDRESS
NGE
106 GDIR
— 102
INDEX_, [TAGO |STATEO|TAG 1 | STATE 1
108 | 110 | 108 110
100
TAG L - —
o ARESE 118 HIT/MISS
UPDATE OMPAE
1AG GDIR
DEX / CAM
— _JLJ
GDIR ! 104
CAM
ROW \\
117 " NDEX |TAG 0 ETATE 0 |TAG 1ETATE 1| | BUSY | BUSY | |DIRTY]
noctl 118|120 | i22 | 120] 122 0 1
AND \
TAG \
AY
GDIR CAM ROW
1 STATE 123
WRITE
BACK
ADDRESS
CASTOUT
INDEX,
TAG,
STATE
l
STATE 0,
STATE 1,
| ROWE(M),
~ COL#N)

1.04.0000

NOAC Ex. 1017 Page 271

SET NOT DIRTY
FOR INDEX (A)
604

START
606

FIGURE 6

09/02/2003, EAsT version: 1.04.00Q00 5 gy, 1017 Page 272

CLASS (ROW) - |TAGO STATE| TAG1 STATE

112

U.S. Patent May 5, 1998 Sheet 2 of 5 5,749,087
PRIOR ART
npEX | TAG | BYTE]
MEMORY
, ADDRESS
SELECT A DIRTY FORMAT
AND NOT BUSY
INDEX TO WRITE
BACK, NDEX (4 FIGURE 1B
600
WRITE GDIR CAM
CONGRUENCE CLASS
TO GDIR ADDRESSED
BY INDEX (A)
602
J GLOBAL DIRECTORY 102
CONGRUENCE

108 110 108 110

1]
I
ASSOCIATIVITY CLASS
STATE= INVALID (COLUMN)
SHARED - 14
EXCLUSIVE

FIGURE 1C

!
#

Patent

May 5, 1998

Sheet 3 of 5

ARBITRATION (ARB) FOR GDIR/GDIR CAM ACCESS

op
208

[(ALL GDIR
CAM ROWS BUSY OR
DIRTY) AND >1 GDIR CAM
ROW DIRTY AND NOT BUSY] OR (>3
GDIR CAM ROWS DIRTY AND
NOT BUSY)
202

SNOOP
OPERATION TO
PROCESS
204

>1 GDIR

CAM ROW DIRTY YES

5,749,087
HIGH
PRIORITY
YES \WRITEBACK w

'QG.G

LOW PRIORITY WRITEBACK

e -

o A g

AND NOT BUSY
206

FIGURE 2

09/02/2003, EAST Version:

1.04.0000
NOAC Ex. 1017 Page 273

U.S. Patent

GDIR
CAM INDEX (M)
TAG (N} HIT

300

May 5, 1998 Sheet 4 of 5 5,749,087

GDIR CAM
INDEX (M) HIT GD'RHT#G)
302 o

SET BUSY (N)
318

RETRY FIND GDIR
GDIR CAM NOT
SNOOPED | YES ROW (M) BUSY CAM ROW WITH FOUND

OPERATION 304 ALL TAGS NOT BUSY

308 AND NOT DIRTY

320
START
310

FIND

NOT BUSY YES COPY GDIR
(N) WITH INVALID CONGRUENCE
STATE CLASS TO
312 GDIR CAM
322
CASTOUT TAG . RETRY
{N) THAT IS NOT SNOOPED
BUSY AND NOT OPERATION
INVALID STATE 324
314

(START)
WRITE SNOOPED 326

OPERATIONS' TAG
TO GDIR GAM ROW
(M) TAG (N)
316

FIGURE 3

09/02/2003, EAsT version: 1.04-0000n \ o by 1017 Page 274

U.S. Patent

FIND GDIR
CAM ROW WITH

ALL TAGS NOT BUSY AND

NOT DIRTY
400

COPY GDIR
CONGRUENCE
CLASS TO GDIR

CAM

402 -

FIGURE 4

START
406

NO

May 5, 1998 Sheet 5 of 5 5,749,087
SNOOPED
OPERATION
RETRY
SNOOPED COMPLETES
OPERATION 500
404

IS A STATE
CHANGE NEEDED
502

UPDATE GDIR
CAM WITH
NEW STATE
504

i

SET INDEX
(M) DIRTY
506

RESET TAG
(N) BUSY
508

START
510

FIGURE 5

09/02/2003, EAST Version: 1.04.0010\100AC Ex. 1017 Page 275

5,749,087

1

METHOD AND APPARATUS FOR
MAINTAINING N-WAY ASSOCIATIVE
DIRECTORIES UTILIZING A CONTENT
ADDRESSABLE MEMORY

FIELD OF THE INVENTION

The present invention relates to a N-way associative
directory, and mare particularly to an improved method and
apparatus for maintaining a N-way associative directory
utilizing a content addressable memory (CAM).

DESCRIPTION OF THE PRIOR ART

A content addressable memory (CAM) is known for many
diverse uses. For example, known system have used a
content addressable memory (CAM) for address translation,
for example, as described in U.S. Pat. Nos. 4,972,282 and
5457,788.

U.S. Pat. No. 5,249,282 discloses a cache memory far
interfacing between a central processing unit and a main
system. memory. The cache memory includes a primary
cache comprised of SRAMS and a secondary cache com-
priscd of DRAM. A respective tag directory is associated
with each of a plurality of sccondary data cache memories.
A respective content addressable memory (CAM) is asso-
ciated with each of a plurality of primary data cache memo-
ries. Bach of the CAM3s stores data consisting of a tag and
a value.

In cases where an N-way associative directory is used and
opcrations on multiple lines (including when those lines
belong to the same set) need to be performed in parallel, then
when updating the directory & read modify write must be
performed. For synchronous SRAMs, the performance deg-
radation for changing from a write to a read, or from a read
to a write can be significant. A nced exists for a directory
arrangement that provides improved efficient performance.

. SUMMARY OF THE INVENTION

Important objects of the present invention are to provide
an improved method and apparatus for maintaining a N-way
associative directory ntilizing a content addressable memory
(CAM), to provide such apparatus and method substantially
without negative cffccts and that overcome many disadvan-
tages of prior art arrangements.

In brief, 2 method and apparatus are provided for main-
taining a N-way associative directory utilizing a content
addressable memory (CAM). A congruence class from the
N-way associative directory including a directory entry
identified for a data operation is read into the CAM for the
data opcration. The directary entry for the data operation in
the CAM 1is locked while the data operation is pending.
Other entrics in the congruence class are available. When the
data operation is completed, checking for a statc change is
pecformed. Responsive to an identified statc change, the
directary entry for the data operation in the CAM is updated
or marked as changed or dirty.

In accordance with features of the invention, the changed
directary entries in the CAM are accumulated and scheduled
to be written back to the N-way associative directary. The
changed directory entries in the CAM can be used again
before being written back to the N-way associative directory.
A congruence class including the changed directory entry in
the CAM is written back to the N-way associative directory
when the N-way associative directory is idle. After the
directory entrics in the CAM are written back to the N-way
associative dircctory, these CAM cntries are marked not
busy and not disty and can be reused.

09/02/2003, EAST Version: 1'04'00(NOAC Ex. 1017 Page 276

10

35

40

45

50

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention together with the above and other
objects and advantages may best be understood from the
following detailed description of the prefemred embodiments
of the invention illustrated in the drawings, wherein:

FIG. 1A is a functional data flow block diagram of a
directory system including a global or N-way associative
directory with a content addressable memory (CAM) in
accordance with the present invention;

FIG. 1B is a block diagram illustrating a conventional
memory address format;

FIG. 1C is a block diagram illustrating a global directory
of the present invention; and

FIGS. 2-6 are flow charts illustrating directory mainte-
nance methods in accordance with the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention provides an improved dircctary
arrangement and method for maintaining a global or N-way
associative dircctory utilizing a content addressable memaory
(CAM) that can be used in supporting many processor
caches, each with many outstanding operations; large num-
bers of line fill buffers in a processor (not shown); and in
caches with many outstanding transactions, such as, shared:
caches and lock-up frec caches. ’

Having refercnce now to FIGS. 1A and 1C, in FIG. 1A
there is shown a directory amangernent in accordance with
the invention generally designated 100 including an N-way
assoclative or global, coherence directary generally desig-
nated GDIR 102 with a content addressable memory (CAM)
generally designated GDIR CAM 104. GDIR. CAM 104 is
used in accordance with the invention to improve the
perfarmance of the N-way associative directory GDIR 102.
In accordance with features of the invention, a full congru-
ence class arrow 112, the entry from cach associativity class
or column 114, as illustrated in FIG. 1C including the entries
TAG 0 108, STATE 0 110, TAG 1, STATE 1 110, is the unit
of data moved between the coherence directory GDIR 102
and the GDIR CAM 104. In FIGS. 1A and 1C, a two-way
associtive directory GDIR 102 and GDIR CAM 104 arc
shown; however, it should be understood that the present
invention can be used generaily with an N-way associative
directory. In FIG. 1B, a prior art memory address format
including an index, tag, and byte is shown. In the preferred
embodiment, the lower order address bits or byte of the prior
art memory address format is not used.

In the GDIR CAM 104, cach GDIR CAM row 117
includes a single index 118, multiple keys or tags 120 and
associated statcs 122 together with BDIR CAM row state
information 123 including respective BUSY 0, BUSY 1, and
DIRTY bits. Each key 120 and associated state 122, such as
TAG 0, STATE 0, and TAG 1, STATE 1, corresponds to a
respective associtiviy class 114, CLASS 0, CLASS 1 of the
N-way associtive directory GDIR 102. Moving the full
congruence class 112 avoids having to do read modify write
when data is moved between GDIR CAM 104 and coher-
ence directory GDIR 102. The GDIR CAM 104 contains
GDIR entries that are in transition from one state to another
state. The associated state 110, 122 with a respective direc-
tory tag 108, 120 include exclusive, shared, and iovalid. An
cxclusive statc indicates that onc and only one cache in the
system of the GDIR 102 has this block of data, where a
shared state indicates that the block of data is shared. An
invalid state indicates that the block of data is not cached.

!
1
4
;

P i

£y
faa s

5,749,087

3

GDIR CAM 104 scrves as a CAM for directory enfrics,
When an entry in the GDIR CAM 104 is updated and the
operation using that entry is completed, that GDIR CAM
row 117 is marked as dirty. Dirty GDIR CAM 104 cntrics are
accumulated and scheduled for writing back to the global
coherence directory GDIR 102, The accumulation of write-
packs is more efficicnt because there is a number of cycles
penalty for switching from read to write and vise-versa. The
scheduling of these accumulated writebacks are mare effi-
cicnt because the writes are done when the global coherence
directory GDIR 102 is idle. After the write-backs to the
global coherence directory GDIR 102 arc completed the
entries of the GDIR CAM 104 are marked as not dirty and
can be reused.

GDIR CAM 104 is a small CAM that duplicates some
number of the directary rows 112 of GDIR 102. Global
coherence directory GDIR 102 can be implemented with
external SRAM off-chip because a large on-chip array may
not be feasible to implement the total size needed for the
global coherence directory GDIR 102. An arbitration (ARB)
functional block 106 arbitrates access to GDIR 102 and
GDIR CAM 104. ARB functional block 106 is implemented
with logic amranged for directory access contral of the
invention as illustrated and described with respect to FIGS.
2-6. When an address is presented to the GDIR CAM 104,
the address associated with the tag that matches this address
is accessed. A Hit/Miss indication is provided by compares
116 and possibly, the location within the GDIR CAM 104
that address matched.

When a data linc is accessed, the directory sct or congru-
ence class 112 of GDIR 102 that contains the line is read into
the GDIR CAM 104. While an operation is pending the
GDIR CAM row 117 including the particolar congruence
dlass entry 120, 122, TAG 0, STATE 0, or TAG 1, STATE 1
that contains the line is locked in place and released when
the operation is finished. For an N-way associative directory
GDIR 102, cach of the N entries in a directory row may be
locked by a different operation. When an operation modifies
an entry in a GDIR CAM row 117 held in the GDIR CAM
104, that GDIR CAM row 117 is marked dirty to be written
back to the directory when &l entries are non-busy. The
number of GDIR CAM rows 117 that the GDIR CAM 104
can hold advantageously can be provided to be greater than
2 maximum number of outstanding possible operations. The
writing back dirty GDIR CAM rows 117 in the GDIR CAM
104 can be delayed until a number of GDIR CAM rows 117
are ready to be written back. Thus providing improved
performance, for example, in synchronous SRAMs, group-
ing writes into adjacent cycles rednces the bandwidth taken
up by writes to the SRAM. Also, a dirty GDIR CAM row
117 can be used by another data operation before being
written back to the global coherence directory GDIR 102.

FIGS. 2-6 arc flow charts illustrating directory mainte-
nance methods in accordance with the present invention.
Referring now to FIG. 2, arbitration (ARB) for access to
GDIR 102 and GDIR CAM 104 start at a block 200.
Checking whether all GDIR CAM rows 117 or all indexcs
in the GDIR CAM 104 arc busy or dirty and more than one
GDIR CAM row 117 is dirty and not busy; or more than a
sclected number of, for example, three GDIR CAM rows
117 in the GDIR CAM 104 are dirty and not busy is
performed as indicated at a decision block 202. When
determined at decision block 202 that all GDIR CAM rows
117 or all indexes in the GDIR CAM 104 are busy or dirty
and mare than one GDIR CAM row 117 or index is dirty and
not busy; or more than the selected number of GDIR CAM
rows 117 or indexes are dirty and not busy, then a high

09/02/2003, EAST version: 1.04.000§QAC Ex. 1017 Page 277

25

30

40

43

]

v

60

65

4
priority writcback is performed with the scquential opera-
tions continuing following entry point W in FIG. 6.

Otherwise when determined that it is not true at decision
block 202 that all indexes in the GDIR CAM 104 are busy
or dirty and more than one index is dirty and not busy; or
more than the sclected number of indexes are dirty and not
busy, then checking for a snoop data operation to process is
performed as indicated at a decision block 204. When a
snoop data operation to process is identified at decision
block 204, then the sequential operations continue following
entry point S in FIG. 3. Otherwisc when a snoop data
operation to process is not identified at decision block 204
so that the global coherence directory GDIR 102 is idle, then
checking whether the GDIR CAM 104 has more than one
GDIR CAM row or index that are dirty and not busy is
pedformed as indicated at a decision block 206. When
determined at block 206 that the GDIR CAM 104 has more
than one GDIR CAM row or index dirty and not busy, then
a low priority writeback is performed with the sequential
operations continuing following entry point W in FIG. 6.
When determined at block 206 that the GDIR CAM 104
does not have more than onc GDIR CAM row or index dirty
and not busy, then the sequential steps return to start block
200 with no operation as indicated at a block 208.

Referring to FIG. 3, when a snoop data operation to
process is identified at decision block 204, then the sequen-
tial operations continue following cntry point S. Checking
for a GDIR CAM row or index (M) and tag (N) hit is
provided as indicated at a decision block 300. When a GDIR
CAM row (M) and tag (N) hit is not identified at block 300,
then checking for a GDIR CAM row or index (M) hit is
performed as indicated at a decision block 302. When a
GDIR CAM row or index (M) hit is identified at block 302,
then checking whether all tags are busy at GDIR CAM row
(M) in the GDIR CAM is performed as indicated at a
decision block 304. When a GDIR CAM row (M) hit is not
identified at block 302, then checking for a global directory
tag (N) hit is provided as indicated at a decision block 306.
When a global directory tag (N) hit is not identified at
decision block 306, then the sequential steps continue fol-
lowing entry point 1 in FIG. 4.

Referring to FIG. 4, following entry point 1 checking for
a GDIR CAM row with all tags not busy and not dirty is
provided as indicated af a decision block 400. When a GDIR
CAM row with all tags not busy and not dirty is found at
decision block 400, then the congruence class is copied to
the identified GDIR CAM row as indicated at a block 402.
Then the sequential operations return following entry point
2 in FIG. 3. Otherwise when a GDIR CAM row with all tags
not busy and not dirty is not found at decision block 400,
then the snooped data operation is retried as indicated at a
block 404. Then the sequential steps return to start block 200
in FIG. 2 as indicated at a block 406.

Referring again to FIG. 3, when determined at block 304
that all tags are basy at index (M) in the GDIR CAM, then
the snooped data operation retried as indicated at a block
308. Then the sequential steps return to start block 200 in
FIG. 2 as indicated at a block 310, When determined at block
304 that all tags arc not busy at index (M) in the GDIR CAM
and following an entry point 2 in FIG. 4, then checking for
a not busy tag (N) with an invalid state is performed as
indicated at a decision block 312. When a not busy (N) with
tag (N) having an invalid state is not found at decision block
312, then tag (N) that is not busy and not invalid statc is
castout as indicated at a block 314. Then the snooped data
operations’ tag is written to the GDIR CAM (M) and tag (N)
as indicated at a block 316. After the snooped data opera-

i e

b

N e s

s s

Y
i§
g
i3
}

5,749,087

5

tions’ tag is written at block 316 and when a GDIR CAM
index (M) and tag (N) hit is identified at block 300, the busy
(N) is set as indicated at a block 318. Then the scquential
operations continue following entry point 3 in FIG. 5.

When a global directory tag (N) hit is identified at 3
decision black 306, then checking for a GDIR CAM row not
busy and not dirty is provided as indicated at a decision
block 320. When a2 GDIR CAM row not busy and not dirty
is found at decision block 320, then the congruence class is
copied to the identified GDIR CAM row as indicated at a 10
block 322. Then the steps continue at block 318 where the
tag busy (N) is set. When a GDIR CAM row with all tags not
busy and not dirty is not found at decision block 320, then
the snooped data operation is retried as indicated at a block
324. Then the scquential steps return to start block 200 in 15
FIG. 2 as indicated at a block 326.

Referring now to FIG. 5, following entry point 3, the
snooped data operation completes as indicated at a block
500. Then it is determined whether a state change is needed
as indicated at a decision block 502. When determined that
a state change is nceded at block 502, then the GDIR CAM
is updated with the new state as indicated at a block 504.
Next the index (M) is set dirty as indicated at a block 506.
When determined that a state change is not needed at block
502 and after the index is set dirty at Block 506, then the tag 2°
(N) busy is reset as indicated at a block 508. Then the

sequential stcps return to start block 208 in FIG. 2 as
indicated at a block 510,

FIG. 6 illustrates writeback control flow for writing dirty
catries of GDIR CAM 104 back to GDIR 102. The write-
back steps begin following cotry point W in FIG. 6 with
sclecting a dirty and not busy index to write back, index (A)
as indicated at a block 600. The congruence class addressed
by index (A) is written to the GDIR 102 as indicated at a 4
block 602. Then the GDIR CAM 104 is set to not dirty for
Index (A) as indjcated at a block 606. Then the sequential
steps retum to start block 200 in FIG. 2 as indicated at a
block 606.

‘While the present invention has been described with 49
reference to the details of the embodiments of the invention
shown in the drawing, these details are not intended to limit
the scope of the invention as claimed in the appended
claims.

What is claimed is:

1. A method for maintaining a N-way associative dircc-
tory utilizing a content addressable memory (CAM) com-
prising the steps of:

identifying a data operation to process;

20

identifying a congruence dlass fram the N-way associa- 50

tive directory including a directory entry for said data
operation; sald congruence class directory entry includ-
ing multiple (N) directory entries for cach associativity

6

accumulating a predefined number of said congruence
classes including said updated directory entry in CAM;
and

wilting one of said congruence classes including said

updated directory entry in CAM back to the N-way
associative directary responsive to said accumulated
predefined number of said congruence classes includ-
ing said updated dircctory entry.

3. A method for maintaining a N-way associative direc-
tory utilizing a content addressablc memory (CAM) as
recited in claim 2 further includes the step of responsive to
writing said congruence class including said updated direc-
tory entry in CAM back to the N-way associative directory,
marking said congruence class directary entries in CAM as
not busy and not dirty, whereby said CAM entry can be
reused.

4. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 2 whercin said step of writing said updated
congruence class directory entry in CAM back to the N-way
associative directory includes the steps of:

selecting an index in CAM to write back; said selected

index being an index set dirty and not busy;

writing said congrucnce class in CAM back to the N-way

associative directory addressed by said selected index;
and

rosetting said dirty indication for said sclected index in

CAM.

S. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 1 wherein said step of locking said directory
entry for said data operation in CAM while said data
opezation is pending includes the step of sctting a busy
indication for a tag associated with said data operation and
resetting said busy indication for said tag associated with
said data operation when said data operation is completed.

6. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 2 further includes the step of:

identifying an idle state for the N-way associative direc-

tory;

identifying a second predefined number of said congru-

ence classes including said updated directory entry in
CAM; and
writing a selected: one of said congruence classes includ-
ing said updated directory entry in CAM back to the
N-way associative dircctory responsive fo said identi-
fied second predefined number of said congruence
classes including said updated directory entry in CAM.
7. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 6 whercin said step of identifying said idle
state for the N-way associative directory includes the step of

class; s identifying no data operations to process.

reading sald congruence class from the N-way associative 5
directory and writing said read congrucnce class into
the CAM;

locking said directory entry for said data operation in
CAM while said data operation is pending;

checking for a state change when said data operation is
completed; and

updating said directory entry for said data operation in
CAM responsive to said identificd state change.

8. Apparatus for maintaining a N-way associative dircc-
tory utilizing a content addressable memory (CAM) com-

prising:
means for identifying a data operation to process;

¢0 means for identifying a congruence class from the N-way

associative directory including a directory entry far
said data operation; said congrucnce class directory
entry including mmitiple (N) directory entries for each
associativity class;

2. A method for maintaining a N-way associative dircc- 65 moans for reading said congruence class from the N-way

tory utilizing a content addressable memory (CAM) as
recited in claim 1 further includes the steps of:

09/02/2003, EasT version: 1.04-00Q0 \ o by 1017 Page 278

associative directory and for writing said read congru-
cnce class into the CAM;

Wed

3

ftaie)

bt a2

R

B i

*,

i::‘
<

5,749,087

7

means for locking said directory entry for said data
operation in CAM while said data operation is pending;

means for identifying a state change when said data
operation is completed; and

means for updating said directory enfry for said data

operation in CAM responsive to said statc change
identifying means.

9. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 8 wherein said congrucnce class in CAM
includes a single index.

10. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 9 wherein cach said multiple (N) directory
entries for cach associativity class includes a tag and an
associated state.

1L Apparatus for maintaining a N-way associative direc-
tory utilizing a content addrcssable memory (CAM) as
recited in claim 10 wherein said means for updating said
directory entry for said data operation in CAM responsive to
said state change identifying means includes means for
updating an associated state with a tag of one of said
multiple (N) directory entries for said identified data opera-
tion.

12. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 11 further includes means responsive to said
state change identifying means for sctting a changed indi-
cation for said index for said congruence class in CAM.

13. Apparatus for maintaining a N-way associative direc-
tory utilizing a content zddressable memory (CAM) as
recited in claim 11 further includes means for accummlating
a predefined number of said congruence classes including
said updated directary entry in CAM; and means for writing
back at least one of said congruence classes including said
vpdated directory entry in CAM to the N-way associative

09/02/2003, EAST Version: 1'04'00990AC Ex. 1017 Page 279

30

35

8

directory responsive to said accumulated predefined number
of said congruence classes including said updated directory
enfry in CAM.

14. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 13 further indudes means responsive to said
congruence class writing back means for marking said
multiple directory entries (N) in said at Ieast one congruence
class in CAM as not busy and said at lcast one congruence
class as not dirty, whereby sald CAM index can be reused.

15. Apparatus for maintaining a N-way associative direc-
tory utilizing a2 content addressable memary (CAM) as
recited in claim 12 wherein said means for writing back at
least onc of said congrucnce classes including said updated
directory entry in CAM to the N-way associative directory
include means for sclecting an index in CAM to write back;
said selected index being an index set changed and said
multiple directory entries (N) in said congruence class in
CAM set as not busy; means for writing said congruence
class directary eniry in CAM back to the N-way associative
directory addressed by said sclected index; and means for
resetting said changed indication for said sclected index in
CAM.

16. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 15 further include means far identifying an
idle state of the N-way associative directory; means for.
identifying a second predefined number of said congruence
classes including said updated directory entry in CAM; said
second predefined number being less than said first pre-
defined number; and means for writing a selected one of said
congruence classes including said updated directory entry in
CAM back to the N-way associative directory responsive to
said identified second predefined number of said congruence
classes including said updated directory entry in CAM.

* W o ok *

|
i
i
i
]

United States Patent 119 (1 3,949,369

: Churchill, Jr. [451 Apr. 6, 1976 ;
) {54] MEMORY ACCESS TECHNIQUE Primary Examiner—Garcth D. Shaw
hill Assistant Examiner—James D. Thomas
! (751 lnventor: (‘:v‘a:,nh:;‘ I;l;;l:r Ch h I Atiorney, Agent, or Firm—Jacob Frank
3 {73] Assignee: Data General Corporation, . j
Southboro, Mass. {571 ABSTRACT
, [22] Filed: Jan. 23, 1974 In a digital computer system having a main memory
: (21] Appl. No.: 436,023 operable at a first speed, a high speed buffer operating

at a second speed for temporarily storing selected por-
4 tions of the main memory, an associative memory for

[52] US.CL 340/172.5 temporarily storing selected main memory addresses
[51] Int. CLM........ GOGF 13/00 and comparing the stored addresses with 2 newly re-
[58] Field of Search 340/172.5 ceived address in a read/write operation to generate
comparison data, a read only memory a bit configura-
[56] References Cited tion reflecting an algorithm, connected to the associa-
UNITED STATES PATENTS tive memory for gencrating a new order of priority for
the memory address stored in the associative memory,
3,275,991 9/1966 Schneberger e 340/172.5 .
3,292,153 12/1966 Bartonoreecreceree 340/1725 and a storage unit connected from the read only mem-
3333252 7/1967 Shimabukuro 340/172.5 ory for storing that order of priority for subsequent
3,339,183 8/1967 Bock 340/172.5 feedback to the read only memory in a subsequent
3,344,405 9/1967 Craft................nu.... 340/172.5 cycle as a previous order of priority.
! 3,693,165 9/1972 Reiley.......viiiieiienes 340/172.5
. . 7 Claims, 6 Drawing Figures
‘ M g KTTT
]
E- p| wWAwn 2 RA, A8
. A READ MEM ADR.”|
3 A
- o TN\ MATCH-] ——~MATCH
s 4 WORDS
MAIN
" wEMomRy |WEM DATA
CONTENT ADDRESSABLE
o MEMORY
Aie Hx® i
l'—’ H CAM) 3
] . ;[LOAD CACHE ADR
WA, WD §— -
— WEAW
: PRIOMITY | LRU {11 BITS + 18T WALID)
- (3] REGISTER MEM
e € MEM ADR REG CONTROL
S 33 LoGIC 4,
RASY ¢ N Mooy T — —
RusY ARRAY
: 35 $ wmew aonbus %

»{T NOAC Ex. 1017 Page 280

A .
. At

FIG. 1

"m . FAST MEM.
E L (CACHE)
M 32
WA, WB RA, RB
D ' pu
;T\ READ MEM ADR.
A
o A\ MATCH - | ~MATCH
S 4 WORDS
MAIN
MEM DATA
WA memory |*EM ©
CONTENT ADDRESSABLE
MEMORY
A4 [@x3) @x 4
3 (CAM) 34
LOAD CACHE ADR
WA, WB F—¢ —BLOCK ADR &
VALIDITY BIT
/-
PRIORITY | LRU (Il BITS + | BIT VALID)
REGISTER MEM
36 MEM ADR REG ng;f‘gl-
PROGRAM 33 31
g:g\}’ f~—— LOGIC
ARRAY
d 35 £ MEM ADRBUS B

961 ‘9 udy juded "S-

G JO [1394S

69€°6¥6°E

NOAC Ex. 1017 Page 281

14

HOLYW L 200W3Y

NOAC Ex. 1017 Page 282

e T — =
o)) IAONIY A5 13s3m| 7% s rswau—{ 75 .
81 : LY S—
% TR SNE Hav WaW i AS W3Y el sN8 Ol vivad
a T 4
foe 1 21907
M./ Howvw 125 WRT 9641800) = — ,
\ 13534] AvoW3W 2% NOY |z
o *sn8 o1 vivo o|d 1 —
Slo vb
@ 1
HOLVW ow<mz €7 m»wmm
. Hav » 3 Z= g | ﬂ hew
3HIVD m o9 2= . —
e Y0 z I 3, 93 HAV W3NW 81's] St
© 7] i< m L — A
~ 9 9 oRrF ‘ 8161 vilglel N 2
2 _ H P.— EZ :_. T2 934 ALINOINY 21—
[+
2 oL T =52 9167 $7€1 27 171 |—¥1 dWN8 n
© et B P et S8 ew aw W [
EAISABSASE 23
- g3 Ny —
2
o
) NivH OV 3HOVD Q0T
= vy avor—yq 0P \VM W 2N W ’
< TN 11 IR L
— ™ l I35 | [
= g W3W 118 2)— AVYYY 118-8NO0d ‘THOM-HNOd
Q As8Y —| o} ‘ 11 _
= @ : . 1
L
. 934 g . (=8
7! ASYY — 3 vy os
= gy f—— | “noivw
" .
28 IHOVD op.ﬂ v worvw bl c 9/4

U.S. Patent April 6, 1976 Sheet 30f5 3,949,369

FI6. 3

READ

FROM MEM ADR BUS

SAVE
MATCH
CLOCK
BUMP LR
STORE —J MEM SELECT
N aDR SB
1 REG
3 MATCH -
. ADR UP-DATE CAM\ LRU ADR
i3
, CAM READ
- EQUALITY MATCHN -
SEARCH Jr Jr \l'
v QUERY LOAD CACHE
MAIN LRU WITH
q MEM ~ NEW ADR
MATCH J
bt LOAD CACHE Y
REAgF
% ouT
o
AT ADR FR. MAIN
MEM AT
LRU ADR
. 3 PUT ON MEM DATA BUS §

NOAC Ex. 1017 Page 283

.U.S. Patent April 6, 1976

FlG. 4

WRITE

FROM MEM ADR BUS

Sheet 4 of 5

3,949,369

€<——MEM SELECT

LRU
LOGIC

EQUALITY
SEARCH

LRU ADR\

UP-DATED CAM~

C:;T\G::j/;ATCH (ADR)~,

BUMP LR

UP-DATE

LRU

WRITE COMMAND\

MEM

LOAD
LOAD CACHE
MAIN FR. MAIN
MEM MEM AT
LRU ADR

DATA BUS

NOAC Ex. 1017 Page 284

- U.S. Patent April 6, 1976 Sheet 5 of 5 3,949,369

FlG. 5
READ NEXT
ADR. ADR.
READ LOAD READ
1 t

MEM SELECT __ll_L__JI_—L_J-—
[i

LOAD RA :l l :J—'I_l—'
I

BUMP LR _n__F—L_F_—

FlG. 6
WRITE NEXT
ADR. WRITE ADR.
WRITE LOAD COMMAND LOAD
]

|
! FROM PRElVIOUS READ

MEM SELECT —_ I
{ RA SAVED FROM CAM LOCATION
'—L] TO BE REMOVED

T3

LOAD RA
! NO LOAD RA

)
i - !
BUMP LR l | | UL] OR BUMP LR

i
UPDATES PRIORITY REG.

REMOVE (INVALID) | : RESET AT
i NEXT READ
REMOVE SV | 1 |DaTA BUS

\GENERATES NEWl LRU

Nt

UPDATES CAM WITH LRU

LOAD CACHE ADR

N

MATCH SV

|
INIDICATES MATCH :
| |

TURGY T e T IR W

S
2N

N
'

NOAC Ex. 1017 Page 285

AN s R Vi e s o et v ot o+

3,949,369

1

MEMORY ACCESS TECHNIQUE

CROSS REFERENCE TO RELATED
APPLICATIONS

Filed simultancously with this application is a patent
application assigned to the 1ame assignee as this appli-
cation and is identified as Ser. No. 436,022 filed Jan.
23, 1974 for Automatic Data Priority Technique and,
entitled Automatic Data Priority Technique by Joseph
Thomas West. .

1. Field of the Invention

The ficld of art to which the present invention per-
tains is to memory systems in general and, in particular,
to the improvement of memory systems utilizing high
speed buffers for establishing a storage hierarchy.

2. Description of the Prior Art

Access to memories of high speeds is of utmost con-
cern in order to provide for the rapid processing of data
and to take advantage of the high'speced CPU systems
available today. One maaner of achieving increased
memory speed is providing for a-memory hierarchy
scheme where a large siow memory and a small fast
memory are connected to a central processing umit
(CPU). The fast memory, commonly known as a cache,
serves as a window for the CPU to look at slow mem-
ory. Data from slow memory ix loaded in the cache in
quantities of usually several words (or bytes) at once in
anticipation that subscquent memory request will be
for that data, If 90, then memory speed is increased by
serving the CPU from the cache.

A memory system of this type requires management
which has to determine: first, whether a CPU request
for memory i in cache and if s0, where; second, if not
in cache, at what Jocation in cache is the data from the
slow memory to be loaded; third, how does the CPU
modify fast and slow memory, and; fourth, how is the
system to be initialized on power-up.

Inherent in the cache scheme is an associative mem-
ory which contains the address of data in the cache as
related to the slow memory. This asociative memory is
effectively implemented as a content addressable mem-
ory (CAM) which provides for a simultancous scarch
of all its locations 10 determine if the data desired by
the CPU is in the cache, and if 5o, where.

Among the several items governing the performance
of a memory system of the type being discussed, ia the
ratio of specd between the slow memory and the cache.
This also may te determnined by the relative size of the
cache and slow memory. Once a cache sizo and speed
is sclected that provides the desirable performance, the
problem arises as to how to derive an cfficient method
of replacement of old words in cache with new ones.

If the system is to operate efficiently, replacement of
data in the cache must be carefully accomplished. Al-
though a complcte knowledge of program behavior
would produce the ideal replacement, this may be im-
practical because of the economics involved. A good
approximation is to replace ‘the least recently used
entry. This will require maintaining a priority which is
updated at each memory access. Efficiency can be
further improved if invalidated addresses can be placed
at the bottom of the schedule so they can be replaced
first without destroying the valid entries.

SUMMARY OF THE INVENTION

Accordingly, an object of the present invention is to
provide an improved high specd memory system by

0

25

30

35

40

45

implementation of a least recently used technique hav-
ing a bit configuration representing an algorithm, with
an associative memory to keep track not only of the
least recently used word, but in addition, to establish an
order of word state priority for manipulating cache
stored data, allowing a data priority locating scheme to
be dynamically updated as new usage information be-
comes available.

Another object of this invention is to provide a pro-
grammed word state priority order based on usage that
normally not affected by effecting storage operations
in main memory.

A further object of the present invention is to provide
a programmed word state priority based on usage,
which when containing an address location in an asso-
ciative memory that is subscquently written into in
main memory, invalidates the associative memory.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is an overall block diagram of the preferred
embodiment of the invention.

FIG. 2 is a circuit diagram of the CAM 34, program
logic array 35 and priority register 36, and portions of
memoiy control logic 37, shown in FIG. 1.

FIG. 3 is a flow diagram depicting the sequence of
cvents in the present invention in a read cycle.

FIG. 4 iz a flow diagram depicting the sequence of
events in the present invention in a write cycle.

FIG. § iz a series of time based waveforms illustrat-
ing, with certain signals, the manner of operation of the
invention during a read cycle.

FIG. 6 is a scrica of time based waveforms illustrat-
ing, with certain signals, the manner of operation of the
invention during a write cycle.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference to the drawings, a block diagram
generally describing the present invention is illustrated
at FIG. 1, wherein there is shown a main semi-conduc-
tor memory 31 having a cycle time, for example, of 600
ns and a smaller fast semi-conductor memory 32, gen-
erally referred to as a cache, baving a cycle time, for
cxample, of 100 ns to 200 ns. Main memory 31 is con-
necied from the memory data bus and, in addition,
from a memory address register 33, the latter in tum
connected from the memory bus.

Connected from the memory address on register 33 is
an associative memory in the form of a content ad-

S0 dressable ‘memory (CAM) 34, which is designed to

55

compare data on its inpuis with data already stored in
its memory and indicates a match when these data are
identical. This equality search is performed on all bits
in parallel. The stored data is four 12-bit words and the
signal input is one eleven-bit word from the memory
address register 33 and a validity bit 33. The outputs of
CAM M include a match signal to a cache memory 32
and the main memory 31 and, in addition, an address
denoted as RA and RB, designating a fast memory

60 location in cache 32

65

The main memory 31 is also connected for loading
the cache 32 with four words or one block of memory
data when instructed to do so. The WA and WB signals
which are supplied to the cache 32 will always denote
the cache address where the data from main memory is
to be written, which is to be described in greater detail.
This signal might also be called the LRU, as it identifics
the location of the least recently used data in the cache

NOAC Ex. 1017 Page 286

= situ

-3
m and then the cache address to be loaded, should
uation call for loading of the cache. The LRU sig-
is also supplied to an input of the CAM to update
mlemm:entlymeddataloaﬁonofﬂneCAMwith
tlwmaj,”-nemoryaddmuoftlu:ncwdatalhalti:loadi:d

n the cache. . .
mLRUmdenvedﬁomapmgrmlog)camy3$

" which might comprisc of a selected combination of

gates or a read only memory (ROM). The

a]gorit}nniisuchthatnotonlywillthe least recently
used word be known, but also the next to least recently
used word and so forth. This allows the LRU algorithm

3,949,369

4
formation, enabling it to be re-circulated during the
next cycle back into the program logic array 35.
The memory control logic 37 is connected to each,
cache 32, main memory 31, CAM 34, program logic

5 array 38, and priority register 36, to ensure that the

proper scquence of information handling is maintained,
as will become evident hereinafter.

A more detailed description of CAM 34, priority
register 36, and program logic array 35, may be seen

. logic array defines an LRU algorithm for the !¢ with reference to FIG. 2, wherein there is shown 2 four
four word associative memory or CAM 34. The LRU

word, four-bit array and 12 bit CAM 34 comprising
units 41, 42 and 43. Four input LRU lcads to each of
these units contain LRU information and four other
leads to these respective units comprise three sets of

to be dynamically updated in terms of a time and usage 15 four bit inputs mutually denoted as M;, M, and M,. The

basis as ncwly used information becomes available. In

the present embodiment, since four words of data are
1o be used with the CAM 34 and cache 32, these might
be defined as the MRU (most recently used), NMRU

outputs of the memory address register 33 comprise 11
bits, representing the signal received from the memory
address bus, identifying the location in main memory
31 at which data is to be read in or written out. The

(next most recently used), NLRU (next least recently 20 twelfth bit is a validity bit to denote a validity condition

used) and LRU (least recently used). It is cvident, that

" for these four words there are 24 possible states of the
. algorittm defining 24 distinct combinations of four

word arrangements, depending upon the order of pliqr-

of the signal written in and therefore if written invalid,
the other 11 bits will be ignored. Each of the three units
41, 42 and 43 are also fed with a LOAD CACHE ADR
signal which, when enabled, allows the LRU identified

itics ascertained. 25 address in CAM 34 to receive the newly entered main

In order to dynamically update the algorithm, it is
necessary to know the state or order of priority of the
immediately previous combination of four words, as
well as the address in CAM 34 of the new information

memory address from memory address register to up-
date the units 41, 42 and 43,

The program logic array 35 i shown in the form of
two read only memories, ROM 44 and ROM 485, each

loaded from the memory address register 33. The WA 30 having common inputs including: L, through L, from

and WB signals on the LRU lead denote the address
location in the CAM 34 of the newly entered main
memory address and the cormresponding location in
cache 52 of that address data for the newly entered

the priority register; T; + I, RASV and RBSV, and;
REMSYV. The signal REMSYV to be discussed hercinaf-
ter will indicate whether a CAM stored main memory
address is to be invalidated or not. One possible pro-

information. The RASY and RBSYV zignals are delayed 35 gram logic array table for the ROM’s is shown on the

versions of the RA and RB signals, as will be discussed
hereinafter, to identify the locations in the CAM, if
any, which the new information matches. The informa-
tion as to the absence of a match or if a match was

following page, where given each of the 24 different
word state orders of priority is a binary output on leads
L, through L,. An octal output is provided for the cight
binary output values on the leads of the combined

matched, all contribute to re-establish the new order of 40 ROM's 44 and 45.

PROGRAM LOGIC ARRAY WORD STATE TABLE
Output

Actual Word Output
States L, Ls L+ L, Lse Li L Ly Octal Code
1230 L] 0 [} 1 0 1 1 1 027
1320 [[i] [1 1 1 047
2130 1] L] 1 3 0 1 1 1 067
2310 0] 0 [0 1 1] 107
3120 [} 1 0 1 [} L i [} 127
3210 o 1 3 1] [1 1 1 147
0231 1 0o [} 1 1 Q 1 1 23
0321 1 1] t 0 1 L] 1] 233
2031 1] 1 1 ? [] 1 27
2301 1 1 [[] 1 [} i 1 il
3021 1 i 0 1 1 0 1 1 px X
3201 1 1 1 o 1 L]]] i
0132 14 0 [1 1] 1] 1 036
0312 [} 1] I o 1])] 1 055
1032 [[1] 1 1 0 1 078
1302 [} 1 1] 0 1 1 [1 1s
3012 1] 1 L] t t] 0 1 135
3102 0 1 1 o 1 1 D] 1 155
0213 1 0o [1 1 1 1 0 236
0213 1 0 3 o t 1 1 1] 256
1023 1 [1 1 1 1 1] 276
1203 1 1 0 [1 1 t L] 316
2013 1 1 [} 1] 1 1 [} 336
2103 1 1 1 o 1 1 1 L] 356

priority for determining the new LRU data. As may be
seen, the priority register is utilized for temporarily
storing the immediately previous order of priority in-

1R

In addition, there is a portion of one possible ROM
truth table on the following page showing previous
priority state possibilities and the variations of the in-
puts RASV, RBSV AND REMSYV along with the octal

NOAC Ex. 1017 Page 287

PPV AP e

3,949,369

5

output code for each output state depending on the
variation of the input signals. The octal input on the
following page is based upon the following input signals
in a left to right order: LR1; LR2; LR3; LR4; LRS +
LR6; RB; RA; REM. For example, in word order 0132,
the Octal Input for Octal Output 047 would read left to
right 000 10 000.

ROM TRUTH TABLE
Word Octal Octal Word Octal Octal
Order Input Output Order loput Output
0132 020 047 1032 060 047
021 03s t 081 038
022 253 062 353
023 078 063 075
024 038 064 078
023 336 065 156
026 236 066 276
027 135 067 155
1230 030 027 2130 070 067
031 236 071 256
032 kI k) 072 3
033 07 - 073 027
034 115 074 115
038 067 a75 067
036 k11 . 076 356
037 127 on 147
0312 040 127 1302 100 047
041 0s3 101 038
042 233 102 333
043 078 103 1s
044 0s3 104 115
045 273 105 067
046 236 106 276
047 135 107 155
1320 050 047 2310 110 107
as1 033 11 233
052 353 12 313
083 047 113 027
054 118 114 158
0ss 067 1s 107
056 316 t16 356
0s7 127 "7 t47

When REMSYV is true, it indicates a write instruction
had occurred and address was matched at the zero
location in the CAM 34 3o that the zero location had to
be invalidated and made the LRU as new information is
to be written into that main memory address.

With reference to the above table, it will be seen that
given an order of priority of 0132 for locations in the
CAM 34 and cache 32, a different order or priority
output (octal code) will result for different RASY,
RBSV and REMSYV signals. If RASV and RBSV are
both zeros and REMSYV is true, the new order of prior-
ity is changed to 1320 represented by octal code 047.

5

15

25

s

45

If this were not done, it can be readily observed that

confusion might occur during the reading of subse-
quent information. When REMSY is false, information
is not to be invalidated. However, since the zero loca-
tion iz the one that is matched and active, the same
order of priority 0132 is maintained as is represented
by the octal output 035 which can be verified by look-
ing at the illustrated program logic array word state
table above.

The four outputs from ROM 44 and the two outputs
Ly and L, from ROM 48, are connected back into the
priority register 26 L, to L4 to the inputs of ROM’s 44
and 45, for allowing this information to be used during
a subsequent cycle to establish a new set order priority
should the signals RASV, RBSY and REMSYV require
such.

As will be noted, the signals L, and L, in being re-
tuned to ROM's 44 and 45 are returned via a NOR
gate 46. Furthermore, the REMSYV signal from a regis-
ter 47 is entered into ROM’s 44 and 4S only upon the

50

55

60

65

presence of a change in the order of priority, as when
the address of information to be written in main mem-
ory matches a CAM address that CAM address is to be
invalidated and made the LRU. The DATA TO BUS
signal is used to clear the REMSV on the next cache
access.

It is also noted, signal BUMP LR triggers the priority
register to enter into the ROM’s the old priority order
and then receive the new priority order for the next
cycle in 2 manner 10 be hereinafter discussed.

The output of the CAM 34, including units 41, 42
and 43 provide, via an inverter coupling OR gate 50
and inverter 49, a MATCH AND ﬁ'réﬂ indication
respectively denoting whether or not the 11-bit address
received from the memory address register is common
to any one of the four word, 12 bit arrays stored in the
CAM. Signals RA, RB denote the CAM location of the
address of the data as to which a match has been de-
tected. The signals RA and RB which are respectively
derived from NAND gates 49 and 51 are mutually
routed to registers 52 and 53, so that the signals RA
and RB can be stored and supplied as RASV and RBSV
during a successive cycle depending on whether the
conditions entered into C input of the registers 52 and
§3 are met.

As will be seen, memory control logic 37, upon the
presence of a read and match false signal, will enable
an AND gate 59 connected to one input of a NOR gate
§1, the second input of NOR gate 61 supplied from an
AND gate 62 having write and match inputs. These two
inputs to NOR gate 61 generate a LOAD CACHE ADR
signal. The output of AND gate 62 also provides a
signal which may be denoted as BUMP LR. The write
signal supplied to an input of an AND gate 63 is a write
signal and MATCH signal to generate an output RE-
MOVE. Other signals that are conventional put out by
the memory control logic include a DTI'KE'RTB'US
signal denoting that data has been put on the memory
data bus. A reset signal for a resetting condition is also

and a MEM SEL signal is generated denoting
the Joading of an address from the memory address bus
into the m address register 33. A RESET SV
signal is also delayed for a subsequent cycle.

The BUMP LR signal from AND gate 62 occurs
when the CAM has indicated a match in a WRITE
condition. BUMP LR will also occur from the memory
address register 33 in the form of a delayed load RA,
whereby load RA denotes a previous READ operation
with data loaded into the memory address register from
the memory address bus. Thus, BUMP LR always en-
ables the priority register to load the ROM's each time
an operation has been effected in CAM 34 in a READ
condition and a match occurs in a WRITE condition.
No BUMP LR signal occurs when in a WRITE opera-
tion and match is false.

The various signals fed into the NOR gates 55 to 58
which arc_connected to AND gate 54, establish the
condition LOAD RA which is generated immediately
following the MEM SEL signal that occurs with a
READ or WRITE signal at the loading of the memory
address register.

OPERATION

The operation of the present invention will now be
discussed in connection with the flow diagrams for
READ and WRITE conditions respectively depicted in
FIGS. 3 and 4 and the waveform diagrams for the
READ and WRITE conditions respectively depicted in

NOAC Ex. 1017 Page 288

L 3,949,369

! 7

d 6.
ﬂgi's: assumption will be made that a READ con-
e . ron exists where the computer is reading the address
i dmodam word that is stored in the cache. The memory
ofa of the data is read into the memory address
- jer 33 from the memory address bus and then fed
the CAM 34 on level line M1, M2 and M3. The
has already been updated at the leading edge of
RA with the previous LRU address information
ROM 48. In the CAM, an equality search is made
address and the four memory addresses stored

into

2 from
B iptheCAMto ascertain whether or not a match exists.
: Assuming a matclf is detected, this indicates that the
2 address is already in the CAM and therefore
the corresponding memory data is stored within the
cache. Upon occurrence of a match, a match signal is
. gonerated at the output of Inverter 48 and signals RA
.. and RB are also generated to identify at which one of
. " four locations in the CAM a match occurred. The
match location in terms of RA and RB is set into regis-
. ters 52 and 53 to be saved for updating the priority
#52 register afier this read cycle. At the same time, signals
: RA and RB identify the location of the data in the
i cache 32 which js to be read out onto the memory data
' . bus. The BUMP LR signal, as may be scen from FIG. 5,
> which is LOAD RA delayed, enables the priority regis-
" ter 36 to store the order of priority generated during
the present cycle. At the beginning of the next cycle,
¢ the RA and RB CAM location match saved from the
" previous cycle is generated and together with the sig-
- nals L, through L from priority register 36 are fed
along with REMSV to ROM’s 44 and 45. The informa-
%< tion at the output LRU leads of ROM 485 is represented
by WA and WB and is available for input to the CAM
34 allowing the CAM 34 location of the LRU informa-
tion to be identified for loading in 2 memory address of
new information upon the presence of a LOAD
* CACHE ADR signal. The LRU information repre-
sented by the WA and WB signals also is available for
input to the cache 32 to identify the location in the
¢ cache at which data is to be read into from the main
memory 31, in 2 manner hercinafter to be discussed.
Next, assuming that the computer reads a word
which is not in cache, instead of having a MATCH
output, a MATCH output is gencrated at the output of
CAM 34. This cutput enables main memory to load the
;% data at the address specified at the memory address
A i register into the cache 32. The cache location in which
Je the dam is loaded is indicated by WA and WB which
¥y’ Tepresent the location of the LRU information from the
E last cycle. This data is then read out of the cache onto
S35 the memory data bus. The MATCH signal also in turn
5 Benerates the signal LOAD CACHE ADR to foad the
«. CAM with the new memory address information in the
LRU/CAM location. This, of course, occurs before the
BUMP LR signal causes the priority register to store
the new order of priority.
; If REMSYV is false, no invalidity of the address occurs
... and then the priority of the signals is changed so that
©~ the previous least recently used location in the CAM is
Provided with the new memory address and made the
most recently used location and the previous next to
recently used location is now denoted as the LRU
tion.
Next, assuming that 2 WRITE condition exists, if the
TMemory address information is not matched in the
CAM 34, the data is written into the main memory

10

45

53

60

65

8
address from the memory address register, but the
priority register is not changed at all.

This, however, will not be the case when a MATCH
occurs in the CAM during a WRITE operation. Again,
a loading of the main memory 31 at the memory ad-
dress from the memory ‘address register. As may be
seen with reference to FIGS. 4 and 6 at the MEM SEL
signal, the memory address register is loaded. If a
match occurs, the signals RASV and RBSV denoting
the CAM location of the match cause that Jocation to
be made the LRU location upon the presence of a
REMSY signal. At the same time, the REMOVE signal
at the twelfth bit of the memory address register causes
the address loaded into the CAM at that location where
a match occurred to be invalidated, as the same mem-
ory address has now been used for a write entry.

An interesting aspect of the machine. may be seen
with reference to when the computer would say “write
something in a location” and then *“read from that
same location.” What happens to the priority table in
this case is that it never changes. For example, if one
would consider the case where the computer reads that
location, it puts the address read in the CAM and
makes it the most recently used in terms of priority.
The immediately next persiod when it goes to write in
that same memory address location, it determines that
the memory address location is in the CAM and invali-
dates that location to make it the least recently used in
the priority truth table. The next occasion it goes to
read that same location, it will now read from the same
main memory address and load that CAM location
(which is now the least recently used) and make it the
most recently used location. As is evident here, the
sequence goes back and forth, but what is important is
that the other entries in the other three addresses in the
CAM are undisturbed so that once a program stream is
finished with this sort of re-cycling operation, it can
proceed with previously stored information occurring
before the re-cycling already in the cache.

It shouid be noted, that in a “power-up™ condition,
all the data in the cache is automatically invalidated by
automatically setting all valid bits to false. This is ef-
fected for the reason that when power-up condition
occurs, because of the fact that the cache and CAM
used are semi-conductor memories and therefore will
power up in a random state. It should be evident from
the occurrence of power-up, that although the CAM is
completely invalidated, it is forced to a pseudo-priority
g0 that one can never have the same two words in cache
simultancously.

‘This occurs as a consequence of the proper use of the
determinations MATCH and mﬁ. whereby in a
CAM match, the order of priority of the addresses
already within the priority register s properly updated
by the ROM’s 44 and 48 which consider the new loca-
tion of thc newly entered memory address which
caused the MATCH signal to occur.

As may be observed from the above, the two bits
RASY and RBSY comprise information for causing the
ROM’s 44 and 45 to the arrangement of the order of
word state priority stored in the priority register,
whercas the last bit or REMSV is used to invalidate, if
necessary, information stored in a specific location of
the CAM.

What is claimed is:]

1. In a digital computer system having a main mem-
ory means operable at a first speed, a high speed buffer

_ means operating at a second and higher speed for tem-

INOAC Ex. 1017 Page 289

1

3,949,369

porarily storing sclected portions of the main memory
means, and associative memory means for temporarily
storing selected main memory addresses and compar-
ing the stored addresses with a newly received address
in 2 read/write operation to generate comparison data,
the improvement comprising
read only memory means having a bit configuration
representing an algorithm and connected to said
associative memory means and responsive in a read
operation to both said comparison data and data
representative of a previous order of priority for
said stored address, to provide an cutput represent-
ing a new order of priority for the memory ad-
dresses stored in the associative memory means,
and;
storage means connccted from said read only mem-
ory means for storing said output and connected
for subsequent feed back 1o said read only memory
means as the previous order of priority.
2. In a digital computer system according to claim 1
including
logical circuit means responsive to a write operation
in main memory and a comparison output indica-
tive of an associative memory matched address
comparison for gencrating an output, and;
said read only memory means responsive to said
Jogical circuit means output, for defining the
matched address location in the associative mem-
ory means as the least recently used location during
a successive read operation.
3. In a digital computer system according to claim 2
including

5

25

30

3s

40

45

50

55

65

10
invalidating means for invalidating the address stored
in the associative memory means and identified as
the least recently used in response to an output
generated by said logical circuit means output.

4. In a digital computer system according to claim 1
wherein said means for generating comparison data
includes logic means for identifying for a matched ad-
dress, both its presence and the associative memory
means location.

5. In a digital computer system according to claim 4
where the logic means includes

register means connected to said read only memory

means for storing the location identified in the
associative memory means of a2 matched address
from a first read/write cycle for a subsequent read/-
write cycle.

6. In a digital computer system according to claim 1
wherein the output representing the new order of prior-
ity provided by said read only memory means is defined

afirst set of signals on a first sct of leads connected to
said storage means, denoting an order of priority of
the memory addresses in the associative memory
means, and;

a second set of signals on a second set of leads con-
nected to said storage means and associative mem-
ory means, denoting the least recently used loca-
tion of the associative memory means.

7. In a digital computer system according to claim 6
wherein said first set of leads is connected to said stor-
age means and said second sct of leads is connected to
said associative memory means.

* ¥ 2 &

NOAC Ex. 1017 Page 290

kgt

. i Y

L L

LR

T T

w1

United States Patent 9

Houseman et al.

4,559,618
Dec. 17, 1985

Patent Number:
Date of Patent:

m
i43]

[54] CONTENI-ADDRESSABLE MEMORY
MODULE WITH ASSOCIATIVE CLEAR

[75] Inventors: David L. Hovseman, West Chester,
Pa.; Paul Bowden, Raleigh, N.C.

[73] Assignee: Data General Corp., Westborough,
Mass.

[21] Appl No.: 417,801

[22] Filed: Sep. 13, 1982

[51] Int. CL* G11C 13/00-

[52] US.QL 365/49; 365/230

[58] Field of Searchc.ccovecenemrrnesernseneoes 365749, 230

[56] References Cited

U.S. PATENT DOCUMENTS

3,997,882 12/1976 GOYal wocevrenseerennsrrsesnssnene 365/49
- 4,296,475 10/1981 Nederlof et al. 365/49 X

Primary Examiner—Joseph A. Popek

- Attorney, Agent, or Firm—Gerald Cechony; Joel Wall

[571 ABSTRACT

A content-addressable memory module which performs
an associative clear operation in response to a clear
signal provided on a clear line. The associative clear
operation simultancously clears all registers in the con-
tent-addressable memory module whose contents

memory module. A mask input along with the pattern
determines which bits of the pattern are significant for
the match. Each iegister in the content-addressable
memory module has a bidirectiona! match line associ-
ated with it. A register’s bidirectional match line carries

a match sigral only if that register contains data match- - -

ing the pattern bits specified by the mask and the bidi- *
rectional match line is receiving a match signal from an
external source. Clearing logic associated with each
register clears the register wien a clear signal appears
on the clear line while the register’s bidirectional match .
line is carrying a match signal. In content-addressable '
memories constructed of such content-addressable -
memory modules, memory match lines connect match
lines ascociaied with a number of registers. The memory
match line and all of the mach lines connected to it -
carry matcli signals only if each of the registers associ-
ated with the match lines contains data matching the
pattern and mask input to the content-addressable mem- -
ory module contzining the register. The content-
addressable memory module further contains logic al--
lowing the use of encoded addresses to address individ- .
ual registers in the content-addressable memory mod- ‘-
ule. .

match bits in a pattern input to the content-addressable 38 Claims, 14 Drawing Figures
IASK__I:S E127
sy ‘w
DATA
DATA (g:d ':‘" ouTPUT
ey ’i yll) 110
ir]
15 o
INTERNAL _,.C‘l’.‘i‘ﬁlllz‘ﬂ:h
ADDRESS 123
LINES 115
LINTERNAL
LINES 121
B
LINES 113 {=2=— Pe-CAMM
- 101
CONTROL e
LINES 29 EXTERHAL MATCH
UNES '"‘tr'“\n 125

NOAC Ex. 1017 Page 291

3
(S

%, ' U.S.Patent Dec.17,1985 Sheetlofl4 4,559,618

!
|
MASK LINES E 127 !
o tm j;
?
g

DATA
dig) oY (8 ouTrPUT
DATA : 1 ¢ {LINES Y
INPUT d : (m) -
\NNES D (m) Y 19
7 y | :
q q "
CELL-//q‘ ($.6) (¢.m) . j
107 ¢~~~ : ‘
REGISTER — : : i
105 () :
S S"
' ' B REGISTER AEARINES
RNAL |
L%B%ESS—"—‘ /\K)/S(\l)/‘\ sl 123)
LINES 15 BN - . ‘
.- - INTERNAL
\ (1,4) ' {1,m) 1 M%‘TECSHQI
Ll
-all (@)--c()]mip) F-ml1) -
exteRnAL (Al | Siness vy
: LOGIC
LINES 113 | Al PECODER o e~ CAMM 4
101 '
OE WE CLR
N 131 133 135 ‘
- i3 CONTROL r
LINES 129 E)&TERNAL MATCH .
LINES MA d..iMA(l) 12
';é::. F‘G. |
l g?v;.
' NOAC Ex. 1017 Page 292

(ag]
=)
(g\]
[<P]
on
. <
. .) _r . ' ‘ ’ ’ P
IE A © 102 WVYD . =
- = - L12 =
o0 _ = (1IVIND s3aNIA A
%0 |)) v .)
o : . HOLVYW m
e ; : > (P)YWD VD o
n S2HIVI- -y BV : GZHIVIN - - §ONW . <
) _ - || _ : g22 : . o
< el e 22" iz z
€€l B €El AM WY D S3INN
- e | 122 ._oﬁxmw
b £0! 13§ €0l 13S € 30 Wvo
= 315193y IS LED
o
..,m (4 501 O
7 H31S193Y mupmﬂuum
TN AN e N
CIOLE D)
S0l (Hy .N..nw_
" o | 612 ¥aisiozy_Tv2i907 i RiEe
% 12
a ; n sm,_<_ $3aNM
— WAVD [(9 VY \ z_z<u¢ WAVYD TV [(B)vD Wvo
3]])
o /|| [@—L2] 611 la— L)) 121 e—g1)
o A (DA (A ¥12 SINN
» INdLNO VIVQ WVYD
Y (Y3 . .3
m CI2 SAINIT USYIW WYD
= (@a--{(#)Q €12 SINN
oy LNdNI Yiva WvD
.

NOAC Ex. 1017 Page 294

R ¢eo14
e
N ,
)
<t ¥V371D Y314V 31VIS [0€ . AAILOV 622 ¥1D WVD N3IHM 31V.IS GOE
_ €0¢e 20¢ . €0 20€
A ~— ~— N TN N TN
his Ern 10O 0 ol vt 1 ol o[t 1 oo
S l 000 0010 0 ol1 |1 000 ol oloo ! of9
% 0000 0000 ! ! (I I I I 11 1otls
8 0000 0000 f I 1 |l000O I tlo1o tip
= 000 | 1000 0 I I {000 1| ol oj1 00 ol
0000 00 I | 0 o]l 1looo0o0 o|lojootl If2
0000 0000 1 I I fo 101 I {100 1]i
" 1101 L 1oo| 0 ol 1|1 101 olo]| 1! 1o0o0f0
o0 /
L9 S Y €210 ¥s Gel YW lezolienie 96 ¥ ez2olizWli ez 1 o 6
2 0553 PLIZ VWD <0733
= ®d)
= 102 WVD
¢ Ol SLNdNI I0€
= Frt I 10 Olsig3
0000 000 Ilerzd
- ~79
m N.OW.V g2l 0 OQW..“QQ.\V
3 &)
(3]
oW
v

SETme—r. . e e a4k W ne SB e et e om o o " s - " -
SRS AR, = 5 x PELI IR TR e 7 .H NI Sl LY GD r - A PR !uc..;wA% .

s - L e

NI

i
5

e

e

bas iy b s s L
QIR g g il

NS
P

AR

e

Al

U.S. Patent Dec.17,1985 Sheet4of14 4,559,618
By €a)
Y)
o— 2) ces
\ \
CAMM . CAMM | |CAMM CAMM
402“ ™1 10ta} |404 01w [T1o1 &7 "] 101
Ok y—™ OBy = B T
WEy— WE,—® = e
CLQ"—D cuzz) oy - e —— ~
CMA(,)—-—J' cma s I
SN \/W
403 REGATYS. 405 DATA REGISTERS 417
415

CAM WITH STATUS REGISTERS 40!

FIG. 4

NOAC Ex. 1017 Page 295

R - ~ Rl v b e b -

- US.Patent Dec. 17,1985 Sheet5of14 4,559,618 .

e{3) e(l)(m 505
e((Z)) el V307

Cell 565 (i,0) 5 =
u(i)O-sE‘F"— — 'F — ™~
i weo 5|o| ' ¥
E: dBlozmsHT) »
9 509; 515 22 M 2 mli) *
= s BN PN
I RS(‘.@' J540/ 1
) 1.7 577 B Y533 ;

&
—,

Wlslict
HiL
i

: t 3
— l 4
Hi-——F— —— — — — —— - = —
, gE
! d(2)o, Sy :

K
y

J U0 O

1 i

d.B)cﬁsl s v 4)’ P

- (1 Rsli3) —— \s50:!
3 — A
% | 529 v
_ g O)l I
i dlargg—¢ e (11523 ['
I g
3 514 P

FIG. 5

A
3
H
9

£
S

3

R
:

NOAC Ex. 1017 Page 296

-

- U.S.Patent Dec.17,1985 Sheet6of14 4,559,618 |

OE
508

539 : -
535 2 . 571 (@)
y(i.0] © |s69 35_73"
I

[ytin 4))
— 545 575 Y
| yin, 1)+

lc—CELL 565 (i, 1)

. 1
| i

A g -l-l

i
K.
¥¥
4]
R
)
e
4
3
3
AN
1.
4y |
& .
3
Ry
R
O
< I
.£ .
B
&
K
.
il
&.‘; .
)
A

R T et e L R

Sl 'L'=“' SO Ll
|
|

=1 I Y(i] 2) 1
m ._Daer | Deer@
I I y(n,2) :

—_——
2 le—ceLe 565 ti.2) k
! |
e

— —L—CELL 565 (i, 3)

551 Y{i,3)]
Oy 1 Dgena

| y(;.s) :

]

(*-REGISTER 567(i)

—_ s e —
m(i)
555

-— MA (i) out

|
|
|

|

[rememececem - emme mcmcm s ——e v -

:.1._----'.-.__-__-_..-
| -
L — —

FIG. 5A

NOAC Ex. 1017 Page 297

o
L g

":‘f’é‘",“" G
PR

L U.S. Patent Dec. 17, 1985 Sheet7of 14 4,559,018

¢ 8 L . —en
]
g
L :)
1
:
'
i
3
'
t
- |
]
!
1
- o
' <
"'} t ©
<y N w
N X
' 72]
i o
] '__ -
=
'
' o
D2 'L—i
!
6175 _g
g2 i
: 617 JI
‘t.& - :
- []
1 :
‘s :
5 3
& 6179 :
1
5 .
B H
N i
i
| DATA AND MASK INPUTS 6183 il
Y FIG. 6
N . ‘

NOAC Ex. 1017 Page 298

4,559,618

Sheet 8 of 14

U.S. Patent Dec. 17, 1985

=2
=)
(@]
%)
)
&
=%
~
o
, B, =)
1 A
0 = "
2 m w_ =
P7e) [7]
© Q
I~ , A
(o]
o - Q
: m -
0yl ¥)
ED
£s
o
Iﬂo
- - I '
. __um _
w
o E B
s »
d S
w L
M m
]
f A
~) ¥ _o6 a
7A [77
o 5 g9lx @ w
©h@ e 9 Y Iz
| 8/00 = I '
<
R Ty
= 5 2 &
: e
_ 2
nnnnnnnnnnnnnnnnn S Y |

g

A sy s e P e -
N

29 133HS Ol

CLR®

=
=
en
%)
V]
o]
&
~ o~
. m "- llllllllllll Zlul..llllllllnlIl|ltlllllnlllll:—lllnlllllllI.1||l.clillllllllllnlullu—lll...ll||||.l|||||||IJ Aol
z g : | 2 | g
2 W= —t | 4 . & 4 -9 © \ 4
o ES ﬂ-----.m_:--;:J%.--:------uw/:: - grmogemmrkomo o —— _&w o | <
N 2 o o 1 i w1 e N3] | — I HEH @)
n 3 ~ IS A - B L N o o B I | 74 o
< X 2\ 1S 1 Nel gttt BAe 1l e | .oﬂu IRE S
1 > — | o ". (2] (Vo] | - | “ ~ s O
/_ 0 m © IW b0 O [af] i =) i - = o] Hes © Z.
_ D] S = o m el i s ! =Q¢m.9\ lo
< e P iE TRl i it g
s i (Z)wl 3 || ! ¥ ! i k
A m_ J O o g. ' 1y T f _LNQ_@L
2 a T 5 (2)B! ! h ke e
2 zllipiil T T = i 1T il 5
7 g ez g . L el - Wl 1S os1gd ~a
" _ ol 1IN
e ~ _ } | - _\
oLl ¢ ! e T
s L7 ; 1= s yab r gl T4 ,_M 3
T [}

FIG. 6B

-

'
| !
!]
2 | m _ |
- _“ (S " | _m 8819 ~
e HIEE gl “_ g T
g : = %m ﬁﬂ i a3 o % m_ _ 9819 _
' w1 [H h [\\]
a _ ' b Y t | Wn_ d ._ —R _
< Y= (& M= ol i & o il
) _ _.D o ~n{v W“ —M S—= “ = | w -n/w " .N i —D ._ _
= Qs g 8 |5 1% Tl ge el 5 Sl 81
i) e W.I.h-hu...l..ﬂ.. LR (bt PRty b o o i Any el g e gl B _L © _
£ - g °
v : ’ﬁ < = _
: 3 s He= A |2es ‘ _
= e g ||IBgs |1lggs | |
: v 133HS Wou4 :
R R QLT 2 o e e T e T —— 2 “w,,,ww - n,mw

s N e pr S e > A A

e
>
IS
W
&0
&
B Q9 133Hs Ol >
. _ll..llltllll(lfllllKl'lllllllllllll| ittt e A Al i Al S T | 0
w = ' n Zo 8 —
o ' S SRSV ; Sy O e O = =- = © . i
o | TR YT TR b | 588 o | &
o S - - _x 1| 398 3 2 0 Q0
< My g8 g gE Yl ¢ S
- " Leomg--Xo- 2odl=gmo Xo-- 2o | U} z
! L
vy | .
T 1 — =2 | “ | 3
T T :
5 L o0 Boh, B B EIDe H g
o - [o] [a5] o) - [_& [Ga
2 e g3g e 8 R* g1 28
A =i tFoTo--Tte- S o LT o - Tre- - Fei) .v...\ .
! = 1)
5! p3 > :vﬂ P =g
S A F ettty R e e e . 'S
L] -
& o ! 5 a X b _$ B) a 3
A . | @ 8 © N OISO @ @O N IF 0 i |Vo 5 _
! 1l 2 nm M oo | 6/8
-I’ t 1o (=] < w TR[=] [a] < w 1 _ [O —3 ¢ 0]
— X L=em=0---Xe--Z.0 L2005 -Xo- - T S o
I | — @,
e N
| sy ®ge TSRS TS 2.5
1 ol T = _m v 1t o= n > b -
N i Lo o n T 3 C ! ﬁﬁw
= ! “LGA S0 e < WL%C“. _ _Wo4o
o " RS Y IR 23 | =doy! 8
< ' > 10 o O WA 1 ..nlu e ¢ W_ _ _b
‘ pa r....IAY:O..XQl..(AwLFIO..-O..ll..II - ™ _
=W] | o o W&
. — _ . l gl & @«
e “ <8109 _ _ 1 e | ©
[) —— ——
89 1L33HS WOXJ Tttt
. " ;isfu%%&mw P (u nN)

ek - o o+,
Pl oo

- et o OO

2 ZEDPE ¢ CTEIRE T EIRE g gty sy s
Rag N S S e

(o)
=
en

v
=)
]
=2
. ~
. e
N) . _ w
Q0 ' ~ (= o B)
< <o :
=) L 2 Mo ,
1N " 2 % | 15 <
Ty i —* © : _ o
.) — . o . e s e] Zz
< “ PRy ||7|0|||-..|:.m..m ﬂ.unln-..n..@:Wvl.M.u..-!_ _..w
<< ! —-0 a4 I~ 1y __m y o
= ! al L a Ly] a I B
Qi ' (Vo] I (V] 1 (O] —_ .B TTZ
o } _D [a] ~ Iz e o s w 1o <
) (SN Sw 1, M ~ TV <D=
- : 8 _M z B o | 2 ooo
-) ol Leteo---Co - T 0 LTOTo- - Q- — - -
3 x o 2
7 i ’ o ~
" 1....|||-O.0ll|&la.m.l__.. llllll .Ounlwlll.inq
. *Q _R n 0! 4 0
! X u 7, 1y G_ N |
o t —
“ 28 e ’Es 8 8 e'® u! _
] 1 _D fa) < w NNa) oy < I~ fa)
® u ! X 2 o I 3 !
) ©! LZ=@=@e- -~ 0o -~~~ -T O~ --Z0----% o ©
T - .
= . O
; 51 Pt o) Q--Jbl..w-:.-----.mm ") B L
el ! *d 7 L o 7] b-e
) m“ ! _m 0 ¥ 3 tn |
" e LT3 R g w* oy s
_ 2 W) _._ i
= 8o g ¢ B3 [z % ©
= ' L=9=0-- ~~o--T0Jil-0=0o-X0---"o
1
m "
| .
®
7]
*
) 3 !
uuuuuuuuuuuuuuuuuuuuuuuuuu prmmemmmmom mmedom e -
D9 133HS WOUJd
R o AR PRy re x e = . - R AR TR R

Sheet 12 of 14 4,559,618

U.S. Patent Dec. 17, 1985

S0
S
)
v
)
5]
. o R
~
49 L33HS OL —
O S
' ’ . ' e 1 - —
uuuuuuuuuuuu —0-0 - ||--|..||-0.W----I w s
5] 5 P = _M 1 ! g
1 e - lon i
| (SN 2 NS | — i
9} [v ¢
B8y RBLREYE & ' w S
I O O |y MW“ e o 3 1O
B P OE oV N R A=, FC i U o v z
-
Q
[——
Py 1 L
e e mmemm—ea Qe pommmmmmm e P S 1
.Y&. 3.0.3 .m r 3.0.g .“vlf _
" |5 @ & % 5 " "
m o w_ o =] (
“_wamc_lermBMCM 0! .
i o ° . =3 ._D o I 3! e
bee e 0T O O & -TomoTo------- o ;@
C e
ol
- b
.............. _O.or- RSP . S VT
[9] o v e - , 0
o _R N o (s V)]]]
G| o4 CE '3
el 8 8 W —=! o o N7 IZ Y ' &
o=l & o Ig =g |5 o _M = i
,mn._m L= @7O-SO----% LTOo-0Go------- -0 :
]
//_Illlllluul - e — —\— = T
A o ot m
9 ° m_n — 1t x | = A t
al|i & oAl 2= qf [® "
—]
Bl idug § - -0 1< < 1z =208 W |z @ i
wo® 8 g E8 5 5 IS s | 5. !
_W oz o=pX | U= gm © o |- ® |
=0 o--— el e 1O - SRR - € “
- ¢ |
1
“
H

<
=
en
?)
o0
<
=%
_ o~
Aol
0 . =
s _)
] ~ »
Y
o | b oy =
N A 0 © <
s O] 3 0 1 <
) 9 5 6419 9 | o
< O_ll.lll.l.l*...lnll.lllnllllm.i.llrludllIll..[l.llll_ z
= 1---------w.ﬂ_.mﬂ0¢-.,_ PRI T, |
= o 5 =g T8 P
) ol ! O (v || Z ¥ ©
' o O T (8 s I (o !
e - I > '
= B ols EYiaafg w | 1o
..m 9| ---T 00 0-----0 LTOTOO e ° = I
7) 52 oo e
SR U . PSR- SO i
$ £, CNE S jm
" 5 _s P! 5 As ! i~
o0 M s T
.& ! _Q. hS) _.M . |M|Em | o2 < = "H_“ “S
s 1 (a] m v =2 __D o =, !
= Lm0 70 KO O LT QTGO e &> '3
= |
3 [— S . W “
a - =@ & "
! b 17, B Q o 1 !
Qv U [vap | = _ \
- ST S zw v 28 o |
<! r 2 8 g 22 Ild ° % =) |
) R e e e Ll s e S o TR R o’ |
s "
A |
n J
= . .

—Il.l.lll.llllll.lllllIIllllllld.llllll||llllll|lll|||lvll|L

. 39 133HS WOYd

PRI L R R K 7 T L
e " . % o . oo el

R - R S MR T

ot Sy
B At

et

3
4 %
- SRS
i
= .
g
»
;
,%
.;

A3
e N
i
P
+

U.S. Patent

Dec. 17, 1985 Sheet 14 of 14 4,559,618 !

FIG.T

woto
OO~]le = - —m -~ - ~= o
wotwn !

6051

wom~
OO - — - e . - O —

6053

NAND GATES AND INPUT LINES

oot 1
0 ovo<to
8 vooun |- - — - -~ o - - i
(o] i

oco<wn

OOoMm~~
VOMN | = — — O — - -
ooty

ooto
OO~ |- — — 0 — —= = -
©WOmMmm

6059 | 6057

©O©OMmr~
wvod~|e — 0 = ~ —~ — =~
oMM

6061

ooTo
OCOMN e O e = - = — —
oMM

6063

womr

ADDRESS DECODER 6066 TRUTH TABLE

6064

(DOMLOO'-—‘"_"'-———-

oMM

[N —

A
0
|
o
|
0
I
0
|

VALUES ON
ADDRESS LINES

NOAC Ex. 1017 Page 305 |
i

T T e

L T

el ROREAND
¢ SNl A I SPE.

Syt s gl

s e dd ot &

gty M EN T

o,

R T N %
Ko ot v s . bt o5 o P PA L

!

4,559,618

1

CbNTENT-ADDRESSABLE MEMORY MODULE

WITH ASSOCIATIVE CLEAR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to memory circuits for
use in digital computer systems and more specifically to
content-addressable memory circuits.

2. Description of Prior Art

In the prior art, content-addressable memory mod-
vles (CAMMs) have been developed which perform
match operations in addition to the read and write oper-
ations performed by standard memory circuits. In read
anid write operations, memory modules respond to ad-
dresses. In the read operation, an address is presented to
the memory module and the memory module returns
the data stored at that address; in the write operation, an
address and data are presented to the memory module
and the data is stored at the address.

In the match operation, on the other hand, an item of
data is input to a CAMM, and if a matching item of data
is contained in the CAMM, the CAMM indicates its
location by activating a match line corresponding to the
register containing the matching item of data. The de-
gree of match required to activate the match fine may
be controlled by presenting a CAMM with mask bits as

" well as with the input data. Each mask bit corresponds

10 an input data bit; if the mask bit is set, the correspond-
ing input data bit is ignored when data in the registers is
compared with the item of data presented to the
CAMM. Examples of such prior art CAMMs are the
Intel(R) 3104, the Signetics 10155, and the Fairchild
F100142. Such CAMMs are generally designed so that
they may be easily combined together to form content-
addressable memories (CAMs). A CAM has the same
properties as a CAMM, except that & single CAM regis-
ter is made up of 4 corresponding register from each of
the CAMMSs making up the CAM.

CAMs as described above may be used in digital
computer systems to construct caches allowing fast
access to frequently-used values by means of keys repre-
senting the values. For example, an operand in an in-
struction stream may contain information from which a
memory address may be calculated. Once the memory
address has been calculated, the memory address may
be loaded into a cache and the operand may be used as
a key to access the memory address in the cache. Such
a cache may be constructed by combining a CAM with
a fast-access memory. In the combination, each register
of the fast-access memory may correspond to a register
of a CAM, and a match line from the CAM register may
serve to address the corresponding register of the fast-
access memory. The CAM registers contain operands,
and the corresponding registers of the fast-access mem-
ory contain the memory addresses corresponding to the
operands. When an operand appears in the instruction
stream, it is presented to the CAM. If the CAM contains
the operand, the match line for the CAM register con-
taining the operand becomes active and thereby ad-
dresses the corresponding register of the fast-access
memory. The fast-access memory then respouds by
providing the memory address contained in the corre-
sponding register. If the CAM does not contain the
operand, a fault occurs to which the digital computer
system responds by calculating the memory address
represented by the operand and loading the operand

5

15

30

50

60

65

2
into a CAM register and the memory address into the
corresponding register of the fast-access memory.
The use of prior-art CAMs in applications such as

that just described has been hindered by the amount of ~

time required to clear the registers of prior-art CAMs.
Such clearing is often necessary when a call or return
operation is performed or when one process is removed.
from a processor and another loaded onto a processor.

Such operations occur frequently in modern digital data -
processing systems, and the athount of time required to -

perform them has an important impact on overall sys-

tem performance. In CAMs of the prior art, a register- .

may be cleared only by performing a write operation to
the register to be cleared. Thus, clearing an entire CAM
requires separate write operations to each register in the
CAM and clearing a CAM entry for a given operand
réquires presenting the operand to the CAM to obtain
the address of the register containing the CAM and then.
performing a write operation to the register specified by
the address.

The foregoing problem of the prior art and other
problems as well are solved by the the invention de-

scribed below. o

SUMMARY OF THE INVENTION

The present invention provides a CAMM in which all
registers which contain data matching a pattern input as

modified by a mask input are simultaneously cleared - .°

when a clear signal is received in the CAMM. The mask
input modifies the pattern input by specifying that cer-

tain bits of the pattern input be ignored when testing for .

a match between the pattern input and data stored.in the
registers. If the mask input specifies that all bits of the

pattern input are to be ignored, all data contained in the - :

registers matches the pattern input and all registers of

the CAMM are simultaneously cleared on receipt of the -

clear signal. .
The CAMM includes input lines for receiving data to
be stored in the registers and the pattern input, mask

input lines for receiving a mask, a clear line for receiv- -
ing a clear signal, registers for storing data, and bidirec- .
tional match lines associated with each register for pro- -
viding and receiving a match signal. The bidirectional

match lines carry a match signal only when the register

associsted with the match line contains stored data

matching the pattern input and the match line is simulta-
neously receiving a match signal from an external
source. ’
The registers have three principal componeats: logic
forming flip-flops for storing individual bits of data,

match detection logic responsive to the data stored in

the register, the data input lines, and the mask input

lines for detecting a matching data item and providinga

match signal to the bidirectional match line associated

with the register, and clearing logic responsive to the .

clear line and the bidirectional match line for clearing
the register in respoase to the simultaneous occurrence
of a match signal on the bidiractonal match line and a
clear signal on the clear line. :
CAMMs of the present invention may be combined
to form CAMs with the properties of the CAMM. In
such CAMS, clear lines from the CAMMSs making up
the CAM are connected to a memory clear line and
match lines from registers in the CAMM:s are connected
to memory match lines. A memory match line carries a

match signal only if all match Iines connected to the .
memory match line are providing match signals. Conse-

quently, the match lines connected to a memory match

NOAC Ex. 1017 Page 306

s Sy o

% - 4,559,618
74 i 3 4
. line provide a match signal to the clearing logic only if memorics are first described in general. Next functional
the match detection logic of each register in the CAM descriptions of a content-addressable memory module
register detects @ match. CAMM registers whose match of the present invention and of content-addressable
{ines are connected to a common memory match line memories formed from content-addressable memory
are thercfore cleared only if each of the registers con- 5 modules of the present invention are presented. Finally,
nected to the memory match line contain data matching a detailed implementation of a content-addressable
the pattern input to the CAMM containing that register. memory module of the present invention is disclosed.
It is thus an object of the present invention to provide

“ i an improved digital computer system. 1.1 General Description of Content Addressable R
Rt It is a further object of the present invention to pro- 10 Memories
&5 vide an improved CAMM for use in digital computer A content-addressable memory (CAM) is a memory
& systems. . . . which not only stores data, but also performs a match
: It is another object of the present invention t0 pro- gnerarion, In this operation, the CAM is given an item
vide a CAMM having an associative clear operation. of data as input and if the CAM contains a matching

It is a still further object of the present invention t0 15 ;.. of data, i.e. one in which the values of certain bits)
p.rogdc " us]: 1 ea‘::ld all registers may be are the same as that of corresponding bits of the item of
simultancousty ¢ - R data provided as input, the CAM indicates which regis-

It is yet another Owat. of the %wu?ﬂ o ter of the CAM contains the matching data. In many
provide s?mﬁl‘m”‘ﬁw“u;;’ec'f‘“w:dm of TeBISIERS CAMs, a mask input selects the bits of the input data
m:;y ; : . P 20 \hich are compared with the corresponding bits of the

t is a yet further ob;ect of the par?cnt invention to data contained in the register. A data item stored
pr?:l i‘sies:ill anoﬂlcrh?)‘l;?eitﬂ(;t?otggdpmcnt ingtion 1o i’m@“&mmm ;l;;input data ifdtih: l:itst.hin
provide an improved CAM. . 1 1tem in CAM. register corresponding to the

It is a yet farther object of the present invention to 5 :;c(;:ttl‘:h:s:pm d;:;m:"‘m}z ltth:nmgﬂkx:g::;

provide a CAM having an associative clear operation. I > I
It is a final object of the present invention to provide i the data item stored in the CAM do not affect the

a CAM wherein sets of registers or the entire CAM may match.
-be simultaneously cleared. -
Other objects, advantages, and features of the present 3, 12 CAMs of @e Preseat In.vcnuon
- -invention will be understood by those of ordinary skill Besides performing match operations with or without
- in the art after referring to the following detailed de- masking, CAMs of the present invention perform an
~.scription of the preferred embodiment and drawings, associative clear operation. In a clear operation, all bits
wherein: in a register of a CAM are set to 0; in an associative
clear operation, all bits in a given register of a CAM are
BRIEF DESCRIPTION OF THE DRAWINGS 35 set to O if there is a match between the data input to a
FIG. 1 is a block diagram showing an illustrative CAM as masked by the mask input and the contents of
~embodiment of a content-addressable memory module a given CAM register. Finally, CAMs of the present
- having the properties of the present invention; invention perform read and write operations like those
~ FIG. 2 is a block disgram showing an illustrative ,, of standard memories. .
‘embodiment of a content-addressable memory module .
'employing content-addressable memory modules hav- - 2 Content-Addressable Mcmoty Modules of the Present
ing the properties of the present invention; Invention—FIG. 1

2,

i

b SacmmeTed an s ot K, oy W

éEais

PN

t

™

vl

Rt RNRVRIIG s

L2 bt o WS o

i

3
3 3 FIG. 3 is a representation of the contents of a content A CAM of the present invention may include one or
& addressable memory cmploying content-addressable ,5 more CAM modules (CAMMs). Referring to FIG. 1,
b memory modules having the propertics of the present — there is disclosed a block diagram of a single CAMM
5 invention before and after a clear operation; 101 of the present invention. CAMM 101 contains a

_ FIG. 4 is a block diagram showing a second illustra- plurality of registers 105 for storing data. CAMM 101
¥ tive Fmbodiment of a content-addressable memory em- further receives inputs of data to be stored in registers
b ploying content-addressable memory modules having 5, 105 from data input lines 117, masking inputs from mask
the properties of the present invention; lines 127, addresses of registers 105 from external ad-
_FIG. 5 and 5A are a simplified logic diagram of 2 dreqy lines 113, and control signals from control lines
5 single register of a preferred embodiment of the con- 129, Control lines 129 include output enable (OE) line
¥ tent-addressable memory module of the present inven- 131 for enabling output of data fom CAMM 101, write
S tion; 55 enable (WE) line 133 for enabling the storage of data on
3 FIGS. 6 and 6A through 6F together makeupa com- — gatp input lines 117 in CAMM 101, and clear (CLR) line
5 plete logic diagram of a TTL gate array implementation 135 for enabling the associative clearing of registers 105.
" of a preferred embodiment of a content-addressable CAMM 101 provides outpnts of data stored in registers
f memory module of the present invention; and 105 on data output lines 119. Finally, CAMM 101 both
FIG. 7 is a truth table showing the decoding of the ¢, receives inputs and provides outputs on bidirectional
encoded addresses used in the TTL gate array imple- — external match lines 125. Each external match line 125
mentation of FIG. 6. corresponds to a register 105 in CAMM 101 and a exter-
DESCRIPTION OF THE PREFERRED nal match line 125 may be connected to external match
EMBODIMENTS lines 125 of other CAMMs 101. The input received on

~ . 65 a external match line 125 for a given register 105 indi-
v 1 Introduction cates whether the contents of registers 105 of other
In the following description of the preferred embodi- CAMMs 101 whose external match lines 125 are con-
ments of the present invention, content-addressable nected to the external match line 125 of a given CAMM

NOAC Ex. 1017 Page 307

» sy, 2

s 3

VAL

gy
A

R

S L e L RN

g

LR VR

Loty

4,539,618

5
register 105 match the data inputs to those CAMMS 101
as masked by the mask inputs. The output of an external
match line 125 for a given register 105 indicates
whether the contents of that register matches the data
and mask inputs received by its CAMM 101

3 Internal Structure of CAMM 101

Internally, CAMM 101 is made up of register set 103
consisting of registers 105, address decoder 109 for
decoding addresses of registers 105 received on external
address lines 113, internal address lines 115 for transmit-
ting decoded addresses from address decoder 109 to
registers 105, clear logic 111 for performing the associa-
tive clear operation, internal match lines 121 for trans-
mitting match signals between registers 105, clear logic
111, and external match lines 125, and internal clear

—
(%]

lines 123 for transmitting clear signals between clear

logic 111 and registers 105,
Each register 105 consists of a plurality of cells 107

for storing a single bit of data. Each cell 107 in a given 0

register 105 corresponds to a single data input line 117,
a single data output line 119, and a single mask line 127.
Thus, if each register 105 has 0. . . m cells 107, there are
0. .. m data input lines 117, data output lines 119, and
mask lines 1125. In FIG. 1, the plurality of data input
lines 117 is indicated by d(0) . . . d(m), the plurality of
mask lines by (0) . . . e(m), and the plurality of data
output lines by y(0) . . . y(m). Data input linc d(0) carries
data to cell 167 (0) of a register 105 specified by an
address on external address lines 113, data output line
y(0) carries data from cell 107 (0) of a register 10S speci-
fied by an address, and mask line e(0) masks data input
line d(0).

Each register 105 corresponds to a single internal
address line 115, a single internal match line 121, and a
single internal clear line 123. In FIG. 1, the plurality of
registers 105 is indicated by r(0) . . . i(1), the plurality of
internal address lines 115 by a(0) . . . a(1), the plurality
of internal match lines 121 by m(0) . . . m(1), the ploral-
ity of internal clear lines 123 by c(0) . . . c(1), and the
plurality of external match lines 125 by MA(0) . . .
MAQ). Ifiisin 0 ... 1, then internal address line 115
a(i), internal match line 121 m(i), internal clear line 123
c(i), and external match line 125 MA(i) all correspond
to register r(j) 105. Further, a given cell 107 in registers
105 is indicated by q(i,j), where i specifies register 105 to
which cell 107 q belongs and j specifies a single cell of
107 of cells 107 0 . . . m in register i. Thus, cell 107 (0)
of register 105 r(1) is specified by g(1,0).

Internal match line 121 m(i) and external match line
125 MA() are related as follows: if cither is inactive, the
other is also inactive. Internal match line 121 m(i) is
inactive if its corresponding register 105 r(i) does not
match the data on data mput lines 117 as masked by the
inputs on mask lines 125. The electrical properties of
external match lines 125 are such that corresponding
external match lines from a piurality of CAMMs 101
may be connected together; since each such connected
external match line 125 MA() is inactive if its corre-
sponding internal match line 121 m() is inactive, all
such connected external match lines 125 MA(f) are
inactive if any of the corresponding internal match lines
121 m(j) is inactive, and if an external match lines 125
MAG)) is inactive, all internal match lines 125 m(i) con-
nected thereto are also inactive. In logical terms, there-
fore, the state of an external match line 125 MA() is the
logical product of the states of all mternal match lines

6

wn

6 . - ..

121 m(i) in the CAMM:s 101 whose external match lines * -
125 are connected. -

Clear logic 111 determines the state of an individual _
clear line 123 c(j) in response to external match line 125 '
MA() and CLR line 125. If external match line 125
MA(i) and CLR 135 are simultaneously active, clear E
logic 111 actives clear line 123 c(), thereby setting cells. :.°
107 q(i,0 . . . m) of register 105 (i) to a value indicating
a binary 0. As mentioned above, external match -line .-
MAC() is active only if its corresponding internal match .. | :
line m(@) is active. Where external match lines 125 '+
MAQ) of a plurality of CAMMs 101 are connected -~ -
together, therefore, no register 105 r(i) in any of the -
plurality of CAMMSs 101 is cleared' unless internal .
match lines m(i) 121 in all of the plurality of CAMMs "™~
101 are active, that is, unless the contents of each regis- -
ter 105 (i) in the plurality of CAMMs 101 matches the, "
mputs on data input lines 117 as masked by mask lines .’
125 in that CAMM 101

External address lines 113 consist of a plurality-of - -
address lines A(0) . . . A(k) which transmit a binary . ~
encoded address spectfymg a register 105 to address .¢
decoder 109. Address decoder 108 decodes the address ™ -
and activates internal address line 115 corresponding to . .
register 105 specified on external address lines 113, For
example, in a CAMM 101 with 8 registers 105, the ex-
ternal address lines 113 may consist of lines A(0)
A(2) and internal address lines uSmayconsastoflms
a(0) . . . a(7). The three external address lines 113 allow”
a binary representation of the integers 0 thmugh 7 and
address decoder 109 decodes this binary repmcntan‘on.
and activates internal address line 115 for register 105
specified by the integer represented by external address
lines 113.)

4 Operations Performed by CAMM l(ll

As mentioned above, CAMM 101 performs four op-.
erations: a read operation, a write.operation, a match
operation, and a clear operation. In a read operation,"
OE 131 is active, external address Iines 113 specify a_
register 105 r(i), and data output lines 119 y(0) : . . y(m) .
are set to the values of cells 105 9(,0) . . . g@Gm). Ina’
write operation, WE 133 is active, addresslmu.
113s1>ec|fyaxeg15tet105r('),mdeeﬂs105q(i,ﬂ) I
q(i,m) are sct to the values on data input lines 117 d(ﬂ)' g

. d(m).

Inamatchopcnuon,WEmandCLRmareboth". ;
inactive. The inpuis are data on data lines 117-d(0) . .." -
d(in) and mask enable signals on mask lines 127 &(@ .. . '’
. ¢(m). If a mask line 127 e(j) is active, then the valee of .
data line 117 d(j) is disregarded when testing for a .
match. If the contents of cells 107 qG,0) . . . qG,m) fora™ - .
given register 105 r(i) match all values on data lines 117 <.
d(D). .. d(m) which are not masked by active mask lines - ..
127, then internal match line 121 m(i) becomes active. In -
logical terms, this may be defined as follows:

) = B (et 00 + 01

where P is the logical product.

In the associative clear operation, finally, WE 133 is
inactive and CLR 135 is active. As previously men- ~
tioned, if CLR 135 c(j), internal match line 121 m(), and :
external match line 125 MA() are all active, match and
clear logic 111 clears register r(i). Since external match -
line 125 MAQ) is active only if internal match Lines 121

NOAC Ex. 1017 Page 308

4,559,618

7
m(i) fos all CAMMs 101 whose external match lines 125
MAC() are connected together are active, a clear takes
place only if there are matches for all CAMMs 101
whose external match lines 125 MA) are connected.

3 CAMs Composed of CAMMS 101—FIG. 2

In most applications, an individual CAMM 101 like
the one just described is combined with other CAMMs
101 to make a CAM. FIG. 2 is a block diagram repre-
senting a CAM 201 made up of a plurality of CAMMs
101. Inputs to CAM 201 include data on CAM data
input lines 213, masks on CAM mask lines 215, control
signals on CAM control lines 211, and encoded ad-
dresses on CAM address lines 211. Qutputs include data
on CAM data output lines 214 and CAM match signals
on CAM match lines 217.

4.3.1 Behavior of CAM 201

The behavior of CAM 201 is determined by the man-
ner in which CAMMs 101 making up CAM 201 are
connected by CAM address lines 211, CAM control
lines 212, and CAM match lines 217. CAM address lines
211 CA(0) . . . CA(k) are connected to external address
lines 113 A(0) . . . A(k) of all CAMMs 101 in CAM 201,
and consequently, an address i on CAM address lines
211 specifies register 105 r(i) in all CAMMSs 101 making
upCAMZOl.CAMcontro]linaZlZconsistofCAM
OE: line 221, connected to OE line 131 of all CAMMs

:-lolmakingupCAMZBLCAMWElincm,con-
+: nected to WE line 133 of all CAMMs 101 in CAM 201,
s and CAM CLR line 225, connected to CLR line 135 of
- all CAMMs 101 in CAM 201. As a consequence of these
- connections, when a CAM control line in CAM control
lines 212 becomes active, its corresponding control line
in control lines 129 in ail CAMMs 101 making up CAM
. 201 becomes active. CAM match lines 217 CMAQ@). . .
< CMA(L), finaily, are connnected to external match lines
125 MA(D) . . . MA(D) in-all CAMMs 101 making up
+CAM 201. As previously explained, when external
=ematch lines 125 corresponding to a register 105 1(i) in a
x_plurality of CAMMs 101 are connecied together, a
- failure of the contents of a register 105 r(i) to match the
values of register 205 r(i)’s data inputs 117 as masked by
its mask inputs 125 deactivates its external match line
125 MA(), and this in turn deactivates all external
match lines 125 MA() connected to it. Consequently,
CAM match line 217 CMA() is active only if for each
register 105 r(i) in the group of CAMMs 101 forming
CAM 201, the value of data inputs 117 as masked by
mask inputs 127 of each register 105 r(i) matches the
contents of that register 105 r(i).

As a result of these connections between CAMMs
101 making up CAM 201, corresponding registers 105
(i) in CAMMs 101 making up CAM 201 behave as a
single logical register 219 R(), indicated by dashed lines
in FIG. 2. if CAM 201 contains s CAMMSs 101 and each
register r(i) contains n cells 107, then logical register 219
R(i) contains sn cells 107. In FIG. 2 these cells are speci-
fied as cells 107 qG,0) - - - q(i,p), where p=sn—1. Just as
all registers 105 r{i) in CAMMSs 101 making np CAM
201 form a'logical register R(i) 219, so do all data input
lines 117 in these CAMMs 101 form CAM data input
lines 213, all data output lines 119 form CAM data out-
put lines 214, and all mask lines 127 form CAM mask
lines 215. There are as many CAM data input lines 213,
CAM data output lines 214, and CAM mask lines 215 as
there are cells 107 q in a logical register 219. In FIG. 2,
the lines comprising CAM data input lines 213 are speci-

25

40

8
fied by D(0) . . . D(p), those comprising CAM data
output lines 214 by Y(0) . . . Y(p), and those comprisin9
CAM mask lines 215 by E(0) . . . E(p), where p=sn—1
as before. - o

4.3.2 Operations Performed by CAM 201

As a conseqgence of the manner in which CAMMs 101
are connected to form CAM 201, all of the reading,
writing, matching, and clearing functions performed by
a CAMM 101 can be performed by CAM 201.

In a read operation, CAM OE line 221 is active and
CAM address lines 211 specify an address. Conse-
quently, control line OE 131 of each CAMM 101 is
active, external address lines 113 of each CAMM 101
specify a corresponding register 105 r(i), and data out-
put lines 119 are set to the values of the cells 105 making
up register 105 r(i). Since all the registers 105 r(i) to-
gether make up logical register 219 R(i), and all of the
data output lines together make up CAM data output
lines 214, the result is to set CAM data output lines 214
Y(0) . . . Y(p) to the values of cells 105 q(,0) . . . q(i,p)
in logical register 219 R(i). Similarly, in the write opera-
tion, CAM WE line 223 is active, CAM address lines
211 specify an address, and cells 105 q(3,0) . . . q(i,p) in
logical register 219 R(i) indicated by the address are set
to the values of CAM data input lines 213 D(0) . . . D(p).

In a match opcration, CAM data input lines 213 D(D)
. . . D(p) specify the data to be matched with the con-
tents of logical registers 219 and CAM mask lines 215

E(0) . . . E(p) specify which bits of the data are to be -

ignored in determining whether there is a match. Since
CAM match line 217 CMA(}) corresponding to a logi-
cal register 219 R(i) connects all external match lines
125 MAG) for registers 105 r(i) comprising logical regis-
ter 219 R(i), CAM match line 217 CMA() and all exter-
nal match lines 125 MA (i) are deactivated as previously
described if the contents of any register 105 r(i) fail to
match unmasked bits on CAM data input lines 213 cor-
responding to the cells 105 contained in register 105 r().
The state of CAM match line 217 CMA (i) thus indicates

- whether the contents of logical register 219 R(i) match

45

50

55

60

65

the dats on CAM data input lines 213 D(0) . . . D(p). In
logical terms, this may be expressed as follows:

Aty = P [t D -) + f)
j=0

where P is the logical product as before. As may be scen
from the above equiation, a match operation for a logical
register 219 R(i) in CAM 201 is completely equivalent
to a match operation for a register 105 (i) in CAMM
101

The behavior of the clear operation in CAM 201 is
determined by the behavior of the match operation and
by the fact that CLR lines 135 of all CAMM:s 101 in
CAM 201 are connected to CAM CLR line 225, and
consequently, all CLR lines 135 are active when CAM
CLR line 225 is active. As explained in the description
of CAMMs 101, a register 105 1(i) is cleared only if
CLR line 135 and external match line 125 MAQ) are
both active. External match line 125 MAQ) for a regis-
ter 105 r(i) in a logical register 219 R() is active only if
internal match lines 121 m(i) for all registers 105 r(i)
making up logical register 219 R(i) are active. There-
fore, registers 105 r(i) making up logical register 219
R(), and thus, logical register 219 R(i) itself, are cleared
only if the contents of logical register 219 R(i) match

NOAC Ex. 1017 Page 309

4,559,618

the data on CAM data input lines 213 as masked by the
input on CAM mask lines 215. As with the other opera-
tions, the clear operation on a logical register 219 R(i) is
thus completely equivalent to the clear operation on a
register 105 r(i).

4.3.3 Example Match and Clear Operations—FIG. 3

A concrete example of a match operation and a clear
operations in 2 CAM 201 is provided by FIG. 3. FIG. 3
shows the state of cells 107, CAM data input lines 213,
CAM mask lines 215, internal match lines 121, internal
clear lines 123, and CAM match lines 217 for a CAM
201 comprised of two CAMMSs 101. Each CAMM 101
contains 8 4-bit registers 105, and consequently, CAM
201 of FIG. 3 contains 8 eight-bit logical registers 219.
FIG. 3 represents CAM 201 as follows: Table 301 repre-
sents the inputs to CAM 201 at the time of the match
and clear operations; row D corresponds to CAM data
input lines 213, and row E corresponds to CAM mask
lines 215; the columns specify individual CAM data
input lines 213 and CAM mask Jines 215. The value at
the intersection of a row and a column specifies the
value on the line specified by the column in the set of
lines specified by the row.

‘Tables 305 and 307 show the state of CAM 201 before
and after an associative clear operation. In these tables,
part 302 represents the state of CAMM 101 0 and part
303 the state of CAMM 101 1 making up CAM 201 In
tables 305 and 307, each row corresponds to a logical
register 219 and the numbered columns correspond to
cells 107. The value at the intersection of a row and a
numbered column is thus the value of that cell 107 spec-
ified by the column number in logical register 219 speci-
fied by the row number.’ Table 305 further contains
lettered columns; the letters heading these columns
specify lines in CAMMSs 101 corresponding to registers
105 making up logical registers 219 in CAM 201 and
lines in CAM 201 itself. The letter M 121 specifies inter-
nal match lines 121, the letter C 123 specifies internal
clear lines 123, the letters MA specify external match
line 125, and the letters CMA specify CAM match lines
215. As previously explained, the state of a CAM match
line 215 is the same as the state of the external match
lines 125 connected to it. Again, the value at the inter-
section of a row and a lettered column is the state of the
line specified by the letter corresponding to the register
specified by the row.

Turning now to the operation illustrated in FIG. 3,
the values of CAM mask lines 215 determine which
values on CAM data input lines 213 are relevant to the
match. In FIG. 3, CAM mask lines E(2) . . . E(7) all
have the value 1; consequently, any value i cells 107
q(i,2) . . . q(i,7) produces a match when compared with
the value on the corresponding line of CAM data input
lines 213 D(2) . . . D7) and only the values in cells 107
q(,0) . . . q(i,1) may fail to match when compared with
the value of the corresponding data input line of data
input lines 213 D(D) . . . D(1). The effect of the masking
can be seen in column m for CAMM 1 303. Since all
CAM mask lines 215 corresponding to cells 107 con-
tained in CAMM 1 303 are active, the contents of these
cells are indifferent and ail internal match lines 121 in
CAMM 1 303 arc active. In CAMM 0 302, on the other
hand, only CAM mask lines 215 corresponding to cells
107 q(i,2). .. 9
cells 107 g(,0) and q(i,1) are relevant to the match. As
FIG. 3 shows, only in registers 105 (1), (4), and (5) do
the contents of these cells match the values on the cor-

25

30

35

40

45

50

55

60

(1,3) are active, and thus, the contents of 65

10

responding CAM data lines D(0) . . . D(1), and only

internal match lines 121 corresponding to these registers

105 are active.
Further, since all internal match lines 121 m@) -in

registers 105 r(i) making up a logical register 219 R@i) -)

must be active in order for the CAM match line 217

corresponding to a logical register 219 R(i) to be active, -
only CAM match lines 217 for logical registers 219 (1), -

(4), ang (5) are active. Finally, an

internal clear line 123 -

c(i) in CAMM 0 302 or CAMM 1 303 is active only if ." .
CAM CLR 225 is active and external match line MA (i) -

125 is active. Since the state of external match line

MA() 125 is identical with the state of CAM match line "

217 to which it is connected and only CAM match lines

219 for logical registers (1), (4), and (5) are active, only _
those internal clear lines 123 in CAMM 0 302-and -

CAMM 1 303 are active which correspond to registers . -
105 making np logical registers 219 1, 4, and 5. As ~ '

shown in Table 307 of FIG. 3, showing the state of the

cells 107 in CAM 201 after the clear operation, all cells

107 making up these logical registers 219 havc been set. .

to 0.

The associative clear operation illustrated in FIG. 3. Z\, :

may be used to simultaneously clear all data having a - -
certain type code from a CAM 201 while leaving data. . -
with other type codes undisturbed. For example, the- "

leftmost two bits of the data stored in CAM 201 of FIG-.
3 might be such a type code. In the example of FIG.-

CAM mask lines 215 mask all bits.but those containing *: .

the type code, and the unmasked CAM data input lines ;
213 bave the value 10, specifying a type code. As appar- :

ent in FIG. 3, when CAM CLR line 225 is active, all -~ -~

CAM 201 logical registers zmmnmnmgdanunththe'
type code 10 are cleared. .

434CAMs“nthD1ﬂ'a'eumpcrtﬁFormed from

CAMMS 101—FIG. 4 -

Byvarymgthemannermwh:chCAMMsll)l.m».“

connected together, CAMs with differing properties .
may be formed. FIG. 4 presents an example of such a -

CAM, a CAM with status registers. CAM 401 has two "
main parts: status registers 415 and data registers 417." -,
Datareglsm4l7conmndau,elchregnstarmsnms.-‘r'

o

registers 415 is associated with a data register 417 and. P

contains status information about that data register 417.

Status information might include ‘a bit indicating that' -

the contents of the associated data register 417 are valid .

or one indicating that the associated data register 417 is
being loaded. The association of registers in status regis- -
ters 415 with registers in data registers 417 is accom-

plished by connecting all CAMMs 101 in CAM 401 t0 .

common CAM address lines 404, whereby a single ad-
dress refers either to a register in status registers 415 or
the register in data registers 417 associated with it. The -
division of CAM 401 into two sets of registers is accom-
plished by connecting CAMMSs 101 making up data
registers 417 to one sct 403 of CAM input, output, mask- ’

ing, control, and match lines and CAMM 101 making

up status registers 415 to another set 405, thus making it

possible to perform read, write, match, and clear opera- - ‘4

tions independently on status registers 415 and data
registers 417.

4.4 Implementation of a CAMM 101

The discussion now turns to an exemplary implemen-
tation of a CAMM 101 The exemplary implementation -

is presented merely for purposes of illustration; other -

implementations are possible which are capable of per-

NOAC Ex. 1017 Page 310

PRALERRG <8 ¢ R

PReshin it
PRSPPI

RO

a3

v

S e S

4,559,618

11

" forming the same operations as the excmplary imple-
mentation and are thus equivalent to it. The exemplary
implementation discussed herein uses TTL gate array
technology. In this technology, all logic functions must
be expressed by means of NAND gates and inverters.
Because of the complexities introduced into the imple-
mentation by this constraint, it is advantageous to first
discuss FIGS. 5 and SA, which together present a sim-
plified logic diagram for a single register of a CAMM
101. Thereupon, the discussion will turn to the exem-
plary implementation of CAMM 101 itself.

4.4.1 Simplified Logic Diagram for a Single Register of
a CAMM 101—FIG. §

The logic diagram of FIGS. 5 and 5A employs AND
gates, OR gates, and RS flip-flops, that is, flip-flops
having an S input whose activation sets the flip-flop to
1, an R input whose activation sets the flip-flop to 0,a y
output which has the value to which the flip-flop was
last set, and a y output whose value is the complement

" of that of the y output. FIGS. 5 and 5A represent a
single register 567 (i), outlined in dotted lines, and addi-
tional elements showing register 567 (i)’s relationship to
the remainder of CAMM 101 to which it belongs. Reg-
ister 567 (i) is functionally equivalent to register 105 (i)
of FIG. 1. Register 567 (i) is capable of storing four bits
and consequently is made up of four cells 565 (,0) . . .

. (1,3), equivalent to cells 107 g(,0) . . . q(i,m) of FIG. 1.

4.4.1.1 Inputs and Outputs of Register 567 ()

Inputs to register 567 (i) consist of: mask lines e(0) 501
- through ¢(3) 507, corresponding to mask lines 127 ¢(0) .
" .. e(m) of FIG. 1; data input lines d(0) 509 and d(1) 571
through d(3) 575, corresponding to lines d(0) . . . d(m) of
input data lines 117, data complement lines d(0) 511 and
_ () 577 through d@) 581, carrying values which are
= the logical complement of the values on corresponding
++; data input lines d(0) 509 and d(1) 571 through d(3) 575;
1:0E line 508, corresponding to OE line 131, WE line
_~510, corresponding to WE line 133, internal clear line:
-¢(1) 523 corresponding to clear line c(i) of internal clear
lines 123, and internal address line a(i) 513 correspond-
ing to line a(i) of internal address lines 115.

Register 567 (i)’s outputs include register data output
lines y(3,0) 539 through y(i.3) 551 and an external match
line corresponding to line MA @) of external match lines
MA 125 in FIG. 1. As previously mentioned, external
match lines MA 125 are bi-directional and may be con-
nected to other external match lines MA 125. When so
connected, an external match line MA 125 is active only
if all other external match lines MA 125 connected to it
are active. In FIG. 5, the bidirectional nature of the
external match line and its relationship to correspond-
ing match lines of other CAMMs 101 is expressed by
Tepresenting the external match line for register 567(i)
as two lines, MA(i)out 556 and MA(i)in 559. MA)out
556 is a continuation of internal match line m@) 555;
MA(i)in 559 is connected to CAM match line CMA()
564, corresponding to a line in CAM match lines 217 of
FIG. 2. The relationship between lines MA(iout 556,
MAG)in 559, and their equivalents in other CAMMs
101 is shown by means of wire AND gate 563 (in dotted
lines). Inputs to gate 563 are lines MA()out for
CAMM:s 101 whose external match lines MA 125 are
connected, its output is CAM match line CAMG) 564,
and MA()in 559's valuc is determined by the value of
CAM match line CMA() 564.

ek

30

W
"]

60

12

4.4.1.2 Detailed Discussion of Cell 565 (i,0)

Since all cells 565 in register 567 (i) are identical, only
cell 565 (i,0) is discussed in detail. Cell 565 (i,0)’s inputs
are mask line e(0) 507, data input line d(0) 509, data
complement line d(0) 511, internal address line a(i) 513,
OE line 508, WE line 510, and internal clear line cl(i)
523. Cell 565 (i,0)’s outputs are cell match line m(i) 541

and cell output data line y(i,0) 539. The logical compo- -

nents of cell 565 (j,0) are: AND gate 515, receiving
inputs from WE line 510, data line d(0) 509, and internal
address line a(i) 513; AND gate 517, receiving inputs
from WE line 510, data complement line d(0) 511, and
internal address line a(i) 513; OR gate 525, receiving
inputs from internal clear line c(i) 523 and AND gate
517; RS flip-flop RS(3,0) 529, receiving its S input from
AND gate 515 and its R input from OR gate 525; AND
gate 533, receiving inputs from data line d(0) 509 and
the y output of RS flip-flop RS(i,0) 529; AND gate 534,
receiving inputs from data complement line d(@) 511
and the y output of RS flip-flop RS(j,0); OR gate 540,
receiving inputs from AND gates 533 and 534 and mask
line (0) 507; and AND gate 535, receiving inputs from
internal address line a() 513 and the y output of RS
flip-flop RS(,0) 529.

4.4.1.3 Operations on Register 567 (i)

"When'read, write, match and associative clear opera-
tions are performed on the contents of register 567 (i), .
the components of cell 565 (j,0) interact as follows: In a
write operation to register 567 () to which cell 565 (i,0)
belongs, WE line 510 and internal address line a(i) 513
are both active. Consequently, the states of lines 519 and
$21, carrying the outputs of AND gates 515 and 517
respectively, depend on whether data impat line d(0) 509
is active. If it is, then data complement line d(0) 511 is
inactive, line 519 is active, and line 521 is inactive. If
data input line d(0) 509 is inactive, the reverse is true.
Line 519 is connected to the S input of flip-flop RS(i,0)
529, and comsequently, if line 519 is active, flip-flop
RS(i,0) 529 is set to 1. Line 521 is connected to OR gate
523, which in turn is connected to the R input of flip-
flop RS(1,0) 529. Therefore, if line 521 is active, flip-flop
RS(j,0) 529 is reset to 0. Thus, after a write operation,
the value at the y output of flip-flop RS(,0) 529 is iden-
tical to the value represented on data input line d(0) 509
at the time of the write operation. _

As FIG. 5 shows, internal address line a(i) 513 and .
WE line 510 are connected to other cells 565 in register
567 (i) in the same fashion as they are connected to cell
565 (i,0), and each of the other cells receives inputs from
its equivalents to data input line d(0) 509 and data com-
plement line d(0) 511 in the same fashion as cell 565 (i,0).
Thus, at the end of a write operation, RS flip flops 529
(1,0 . . . 3) in register 567 (i) contain the values on data
input lines d(0) 509 through d(3) 575.

In a read operation, internal address line a(i) 513 and .
OE line 508 are active. Internal address line a(i) 513 and
line 531 from the y output of flip-flop RSG,0) 529 serve
as inputs to AND gaite 535, whose output is cell data
line 539 y(i,0). Thus, when internal address line a(i) 513
is active, the value of the y output of flip-flop RS(i,0)
529 determines the value of cell output data line 539.
Cell output data line 539 is an input to OR gate 569,
along with the equivalent lines from other registers 567.
Thus, if cell output data line 539 is active, line 570, the
output of OR gate 569, is active. Line 570 is one input to
AND gate 571; the other input is OE line 508; conse-

NOAC Ex. 1017 Page 311

o Tt sy st s st X ot vat s oo 53

R T e

N A L o
5 RNy e

i et

PR N

4,559,618

13

quently, when address line a(i) 513 and OE line 508 are
active, cell data output line y(0) 573's value is dcter-
mined by the value of the y output of flip-flop RS(j,0)
529. Since internal address line a(j) 513 and OE linc 508
are connected in the same fashion in all cells 565 making
up register (i) 567, the values at the y outputs of these
registers’ RS flip-flops (i,0 . . . 3) determine the values
on data output lines y(0) 573 through y(3) 579. When a
register is not being addressed, the outputs of the AND
gates corresponding to AND gate 535 are inactive.
Consequently, only the values in cells 565 (3,0. . . 3) of
the addressed register 567 (i) determine the vu]uts of
data output lines y(0) 573 through y(3) 579.

In a match operation, the value at the y output of
flip-flop RS(,0) 529 is compared with the value on data
input line d(0) 509 unless mask line e(0) 517 is active.
When the operation is performed, the value at the y
output of flip-flop RS@,0) 529, carried on fine 531, and
the value on data input line d(0) 509 are both input to
AND gate 533. At the same time the value of the ¥
output of flip-flop RS(,0) 529, carried on line 532, and
the value on data complement line d(0) 511 are both
input to AND gate 534. Consequently, if the value on
data input line d(0) 509 matches the value at the y out-
put, mthetlmcSﬂ,thcoutputofANDgateS&.orlme
536, thcoutpntofANDgatcSM,nsnctwe.meSMns
active if data input line d(0) 509 and line 531, carrying

. the value of the y output, are both active, that is, if the

dataondatzmputlmed(O)SODandthedmmﬂlp-ﬂop
RS(,0) both have the value 1, andlme53615beacnvc
if data complement linc 'd(0) 511 and line 532, carrying
the value of the y output are both active, that is, if the
data on data input line d(0) 509 and the data in flip-flop
RS(1,0) 529 both have the value 0. Lincs 536 and 537 are
inputs to OR gate 540, and conscquently, OR gate 540°s
output,hne&l,uacuvclfmherhne&GorlmcSﬂu
active. If, on the other hand, the data on data input line
d(0) 509 does not match the data in flip-flop RSG,0) 529,
neither AND gate ‘533 nor AND gate 534 has two ac-
tive inputs, and output lines 537 and 536 are both inac-
tive.

The third input to OR gate 540 is mask line ¢(0) 507.
‘When data line d(0) 509 is being masked, mask line ¢(0)
507 is active and OR gate 540’s output line 541 is active
regardiess of the values of lines 536 and 537, that is,
regardless ofwhcthu'dmhned(O)SMhuthe-e
value as flip-flop RSG,0) 529. Line 541 and its equiva-
lents from the other cells 565 in register 567 serve as
mpmstoANDgamSSZi,whoseontputumtemalmatch
line m(i) 555, corresponding to one of internal match
lines 121. Consequently, internal match line m(i) 555 for
aregxstzr(i)Sﬂlsacﬂveonlylfallcellmatchlmsfor
register (i) 567's cells are active.

The associative clear operation takes place when
CLR line 512 is activated. If external match line MA(-
i)in 559 is active when CLR Iine 512 is activated, cell
(10)56515c1cared.CIthne512:ndextcmnlmtch
hneMA(’)m559;rempmstoANDgaxc514 which has
internal clear line c(i) 523 as its output. Internal clear
line c() 523 provides an input to OR gate 525, whose
output is connected via line 527 to the R input of flip-
flop RS(i,0) 529. Thus, when CLR line 512 and external
match line MA(i)in 559 are active, internal clear line (i)
523 is active, line 527 is active, and flip-flop RS(,0) is set

to 0. Since internal clear line c(i) 523 is connected as 65

described above to all other cells 565 in register (i) 567,
all cells 565 in register (i) 567 are cleared simultaneously
with cell (i,0) 565. As previously mentioned, an external

10

15 arre;

20

25

30

40

45

55

14

match line MA(i) 125 is active only if ai] other external -~
match lines MA() 125 from other CAMMs 101 con- .

nected to it are active, and thus, if an associative clear

operation may be performed on register (i) 567, it may -
be performed on corresponding registers 567 whose .

external match lines are connected to regisler (i) 567.

4.5 A TTL Gate Array Implementation of CAMM ™
101—FIGS. 6 and 6A through 6F

FIGS. 6 and 6A through 6F together contain a logic -

diagram for an exemplary TTL gate array implementa- .

tion of an exght-reg:stcr by four-bit CAMM 101. The. - -

form of the logic in this implementation is dictated by
logical and electrical characteristics of the TTL. gate -
array. The only logical devices which may be formed

from the gate array are NAND gates and inverters. ', -

Further, each NAND gate must have three inputs anda , .
given NAND gate or inverter can drive 2 maximum of | .

four other NAND gates or inverters. In FIG. 6, only .

the cells of a singie register are shown in detail; cells of

remaining registers are represented as boxes with’ la- .

belled inputs and outputs; the cells and registers so |

represented are, however, identical to the cells and -

register shown in detail.

4.5.1 Inputs and Qutputs of the TTL.Gate Array
Implcmentauon

CAMM 101 represented in FIGS. 6 and 6A through
6F, has the following inputs: on FIG. 6, data input fines

D? 6167, D1 6171, D2 6175, and D3 6179, correspond-.~
ing to data input lines 117 of FIG. 1; mask lines E0 6169, -

E1 6173, E2 6177, and E3 6181, corresponding to.mask
lines 127 and serving to mask the corresponding data
input line when they are active; on FIG. 6A, external
address lines AQ 6026, A1 6028, and A2 6030, corre- .
sponding to external address lines 113; on FIG. 6D, OE’
line 6197, corresponding to OE 13%; and on FIG: 6A, -
wmcenablehneWEGOG&oormpondmgtoWEl&B
and CLK line 6081,

WE 6068, OF 6197, and

ted in FIG. 6 are data output lines Y0 6147,:Y1 -
6153, Y2 6157, and Y3 6161, on FIGS. 6Dand6Fcorre—
sponding to data output lines 119 and bidirectional ex-*
ternal match lines M0 6182 through-M7-6196 on FIG.

6Coorrupondmgtoextmnlmatchlmu125mFlG L

on FIG. 6C,extemllmnchlmuM06182
throngh M7 6196 are connected to open collector oit-
puts. When one such external match line M0 6182-

through M7 6196 is connected to external match lines

from other CAMM s 101 of the type disclosed in FIG. 6, ~
the result is a wire AND: none of the connected exter-
nal match lines will be active unless all of them are.

4.5.2 Functional Subdivisions of the TTL
Implementation

CAMM 101 of FIG. 6A has the following fnnctlonal
subdivisions, outlined in dashed lines: on FIG. 6, data

and mask input 6183, for receiving inputs from data -

input lines DO 6167 through D3 6179 and mask Lines E0
6169 through E3 6181; on FIG. 6A, address decoder

6067, corresponding to address decoder 109, for receiv- -

ing external address lines A0 6026 through A2 6028 and
decoding addresses received on these lines; on FIGS.
6D and 6E, data outputs 6142 for outputting data re-
ceived from registers 6176; on FIG. 6B, clear logic
6090, corresponding to clear logic 111, for clearing

NOAC Ex. 1017 Page 312

ding to-CLR 135. Lines

6081 are ‘all normally . - -
active and are inactivated to specify a write, read, or: ¢
clear opention respectively. Outputs from CAMM 101~

\

N e s s bt A< AR

e

,;f;' -

oy sl Sk R |
YA s Ul 0 AN o it e+ Tl A it kit by

it o

e B

3

N

i

4,559,

15

*individual registers 6176; and on FIG. 6B, match logic

6189, for detecting matches. In addition, one register,
register (0) 6187, on FIG. 6B, is outlined with dashed
lines, and one cell of register (0) 6187, cell (0,0) 61853, is
so outlined. Registers 6187 correspond to registers 105 5
of FIG. 1, and cells 6185 correspond to cells 107. The
discussion deals first with each of these functional divi-
sions and then with their interaction in the read, write,
match, and associative clear operations.

4.5.2.1 Data and Mask Inputs 6183

Data and mask inputs 6183 on FIG. 6 include data
input lines D0 6167 through D3 6179, mask lines E0
6169 through E3 6181 paired with the data lines, and
associated logic. Since each data input line-mask line 15
pair has the same Jogic,.only that for data input line DO
6167 and mask Iine EO0 6169 is discussed in detail. Begin-
ning with DO 6167, the logic includes inverter 6001,
with D0 6167 .as its input and line 6003 as its output;
inverter 6005, with line 6003 as its input and line 6011 as 20
its output; inverter 6007, with mask line EG 6169 as its
input and line 6009 asits output; NAND gate 6013, with
inputs from lines 6003 and 6009 and an output to line
6017; inverters 6023, having line 6017 as their input and .
lines to cells 6185 as their outputs; NAND gate 6015, 25
with inputs from lines 6009 and 6011 and an output to
line 6019, and inverters 6020, with inputs from line 6019 -
and lines to cells 6185 as their outputs. In the following,

10

: anly IDOA line 6025, the output of inverter 6021, and

IDOA line 6024, the output of inverter 6022, are dis- 30
cossed in detail.

In the portian of data and mask inputs 6183 associated
with data input line DO 6167 and mask linc E0-6169, the
inputs DO 6167 and EO0 6169 and the outputs IDGA 6024
and TDOA 6025 have the following relationships: if data 35
input line DO 6167 is not being masked, that is, if mask

+v~line ED 6169 is inactive, IDOA line 6024 is set to the

- ¥ value of data input line D0 6167 and IDOA line-6025 is

= -set to the complement of that value; if data input line DO

#: 6167 is being masked, that is, if E0 6169 is active, IDOA. 40

#vline 6024 and TDOA. line 6025 are both inactive These
“relationships are achieved as follows: beginning with
the case in which no masking is taking place, when
mask line B0 6169 is inactive, line 6009 is active and the

values of the outputs of NAND gates 6013 and 6015 45

depend on the values of lines 6003 and 6011 respec-
tively. The values of lines 6003 and 6011 in turn depend
on the value of data input line D0 6167. If data input line
DD 6167 is active, line 6003 is inactive and line 6011 is

active. Consequently, line 6019, the output of NAND 50

gate 6015, is inactive, and its inversion, IIDOA. line 6024,
is active, while line 6017, the output of NAND gate
6013, is active, and its inversion, IDOA line 6025, is
inactive. If data input line D@ 6167 is inactive, the re-

verse of the above is true. Thus, when mask line EQ 55

6169 is inactive, IDOA line 6024’s valuc is aiways identi-
cal with that of data input line DO 6167 and IDOA line
6025’s value is always the complement of the value of
data inpat line DO 6167. Whesn data input line D0 6167

is being masked on the other hand, mask line E0 6169 is 60

active, line 6009 is inactive, and consequently, NAND
gates 6013 and 6015 have active outputs 6017 and 6019
and IDOA line 6024 and TDOA line 6025 are inactive
regardless of the value of data input line DO 6167.

4.5.2.2 Address Decoder 6067—FIGS. 6A and 7

Turning now to address decoder 6067, on FIG. 6A,
address decoder 6067's inputs are external address lines

618
16

A0 6026, A1 6028, and A2 6030 and its outputs are
internal address lines 6065, corresponding to internal
address lines 115. Each line in internal address lines

. 6065 is associated with a register 6187. Lines in internal

address lines 6065 are active unless register 6187 associ-
ated with a line is being addressed; in that case, the line
associated with register 6187 being addressed is inac-
tive. Thus, address decoder 6066 operates by activating
all internal address lines 6065 but the one for the register
specified by external address lines A0 6026 through A2
6030.

Address decoder 6066 consists of inverters 6027
through 6043 and NAND gates 6051 through 6054.
Each address line A0 6026 through A2 6030 is input to
an inverter and the output from that inverter is input to
another inverter. Thus, for each address line A0 6026
through A2 6030, there is available from the first in-
verter a signal which is the complement of the signal on
the corresponding external address line and from the
sccond inverter a signal which is identical with that on
the corresponding external address line. The signals
obtained from the inverter outputs are then input to
NAND gates 6051 through 6054. Each of these gates
takes three inputs, one derived from address line A0
6026, one from address line A1 6028, and one from
address line A2 6030. An input derived from a given
address line is obtained from the output of either the

. first or second inverter following the address line. The

input’s value is therefore cither identical with the value
of the address line or the complement of that value. For
example, NAND gate 6063 takes as its inputs line 6033,
line 6035, and line 6049. Line 6033’5 valuc is the comple~
ment of the value of external address line A0 6026, line
6035s value is the complement of the value of external
address line A1 6028, and linc 6049°s value is identical
with that of external address line A2 6030. The inputs to
NAND gates 6051 through 6064 are distributed among
-the gates-in such fashion that-a givencombination of
signals on external address lines ‘A0 6026 through A2
6030 causes one of NAND gates 6051 through 6064.to
have an inactive output and the remainder-to have ac-
tive outputs. For instance, NAND gate 6064 takes as its
inputs line 6037, whose value is the complement of the
value on external address line A2 6030, line 6035, whose
value is the complement of the value on external ad-
dress line Al 6028, and line 6033, whose value is the
complement of the value on external address line 6026.
NAND gate 6064’s output 6067 is active unless line

6037, line 6035, and linc 6028 are all simnltancously

active, and the latter is true only if external address lines
A0 6026 through A2 6030 are simultaneously inactive,
that is, only if the values on external address lines A0
6026 through A2 6030 represent a binary 0. With all
other NAND gates 6051 through 6063, when external
address lines A0 6026 through A2 6030 arc simulta-
neously inactive, at least one input line to each of
NAND gates 6051 through 6063 is inactive, and conse-
quently, all NAND gates 6051 through 6063 have ac-
tive outputs. K

The complete relationship between combinations of
signals on external address lines AQ 6026 through A2
6030 and outputs on internal address lines 6065 is illus-
trated in the truth table in FIG. 7. In that table, the table
rows indicate the eight possible combinations of vatues

65 on address lines A0 6026 through A2 6030 and the table

columns indicate individual NAND gates 6051 through
6054 and their mput lines. The table entries themselves
show the output of the NAND gate specified by the

NOAC Ex. 1017 Page 313

Lo s

.S S g

- h& MW 7 raves Ty

2 s bty

o

4,559,618

17

entry’s column for the values on address lines A0 6026
through A2 6030 specified by the entry’s row.

4.5.2.3 Cell 6185 (0,0)

Turning now to cell 6185 (0,0), on FIG. 6B, cell 6185 5
(0,0) has the following inputs: data line IDOA 6024 and
data complement line IDOA 6025 from data and mask
inputs 6183, internal address line XAO0 6067, from
NAND gate 6064 of address decoder 6066, internal
write enable line WEO 6078, whose value is derived 10
from external write enable line WE 6068 by way of
inverters 6069, 6071, and 6073 on FIG. 6A, and is there-
fore the complement of the value of external write en-
able line 6068, and internal clear line CLRO 6089,
which corresponds to internal clear lines 123 except
that internal clear line CLRO 6089 is inactive when an
associative clear operation is taking place. Outputs from
cell 6185 (0,0) are cell data line IYO 6113, whose value
is the complement of the value stored in cell 6185 (0,0),
and cell match lines 6117 and 6121, which are both 2
active when either data input line DO 6167 is masked or
the value contained in cell 6185 (0,0) matches the value
on data input line DO 6167.

Cell 6185 (0,0) consists of: inverter 6091, receiving its
input from internal address line XAD 6067; NAND gatc
6095, receiving its inputs from inverter 6091, WES line

.6078, and data line IDDA 6024; NAND gate 6097, re-
" ceiving its inputs from inverter 6091, WED linc 6078,

and data complement linc IDOA 6025; NAND gite .,
6103, receiving its mputs from NAND gate 6095 and
NAND gate 6107; NAND gate 6107, receiving its in-
puts from NAND gate 6103, NAND gate 6097, and
internal clear line CLRO 6089; NAND gate 6111, re-
ceiving its inputs from NAND gate 6105 and inverter 35
6091; NAND gate 6115, receiving its inputs from data
line IDOA 6024 and NAND gate 6107, and NAND gate
6119, receiving its inputs from NAND gatc 6103 and
datacomplunmthneIDOAGOZS Finally, connection

. point 6122, connecting the outputs of NAND pgates 44

6115 and 6119, is a wire AND; consequently, if either or

**" . both of lines 6117 and 6119 is inactive, line 6123 is inac-

tive.

The components of cell 6185 (0,0) perform the same
logical functions as the components of cell 565 (i,0) in 45
FIG. 5. NAND gates 6095 and 6097 take inputs which
are equivalent to those for AND gates 515 and 517 in
FIQG. 5 and provide outputs which are the complements
ofthoseofANDp!uSlSandSﬂ.Lineﬂ)”,thc
output of NAND gate 6095, is active unless line 6093, so
line IDOA 6024, and line WED 6078 are all active. Line
6093 is the complement of internal address line X0A
6067, and consequently, is active only when register
6187 is being addressed, while linc WEO 6078 is active
only when a write operation is taking place. Therefore, 55
line 6099 is inactive only when a write operation to
register 6187 (0) is taking place and line IDOA 6024 is
active. During a write operation to register 6187 (0),
line 6099’s value is thus the complement of the value of
line IDOA 6024. NAND gate 6097’s inputs are line 6093, 60
line WED 6078, and line IDOA 6025, and like NAND
gate 6097, its output 6101 is inactive only when a write
operation to register 6187 (0) is taking place and lLine
TDOA 6025 is active. During a write operation, there-
fore, Line 6101’s value is the complement of the value 65
of line IDOA 6025 and also the complement of the value

_ of line 6099. At other times, both line 6101 and linc 6099

are active.

18

NAND gates 6103 and 6107 function as an RS flip- .
flop with R and S inputs which change the flip-flop’s .~
state when they become inactive. NAND gates 6103 -
and 6107 and NAND gates 6095 and 6097 together.thus.
are logically equivalent to AND gates 515 and 517 and -
RS flip-flop 529 in FIG. 5. In the RS flip-flop formed by- = :
NAND gates 6103 and 6107, line 6105, the output of .. <
NAND gate 6103, is the Y output and line 6109, the !
output of NAND gate 6107 is the Y output. The set
operation works as follows: line 6099 is the S input. As "
the output of NAND gate 6095, it is inactive'onlywhen o
input data line IDOA 6024, write enable line WEO 6078, .
and fine 6093, the complement of internal address line "
XAO 6067, are active. When line 6099 is inactive, line -
6105 becomes active, i.e., the Y output is set to 1, At.the " ’
same time, line 6109 becomes inactive, i.e., the Y output
is set to 0. This action takes placc as follows: line 6105,
line 6101 and CLRO line 6089 are inputs to NAND gate ;~ -
6107. On a write opmt:on, CLRO line 6089 is active. If ~
line IDOA 6024 is active, lines 6105 and 6101 are also -
active; consequently, line 6109, the Y output, is inactive. -
If, on the other hand, line IDOA 6024 is inactive, line .
6099 is active, lines 6105 and 6101 are inactive; and’ lmc -
6109 is active. Thus, in this case, the Y output has thc i
value 0 and the Y output the value-L. -

CLRhnc6089actsastbeRmputtotheﬂxp-ﬂop
formed by NAND gates 6103-and 6107 only when:no:-
write operation is taking place. Under these circum- .-
stances, write enable line WED 6078 is inactive, .and”: -
consequently, lines 6099 and 6101 are active. When'the . .°
ﬂxp-ﬂop formed by NAND gates 6103 and 6107-con.
tains the value 0, line 6105 is inactive and linc 6109°is
active regardless of the value of CLK line 6089. When:
the flip-flop formed by NAND gates 6103 and '6107.
contains the value 1, line 6105 is active along with lne
6101 and the value of CLR line 6089- determines-the -
value of lines 6109 and 6105. If CLR line:6089 remains
active, line 6109 remains inactive and line-6105 remains ;
active; if CLR line 6089 becomes inactive, line 6109 -
becomes active and line 6105 -becomes inactive, giving
the flip-flop’s Y output the value O and its Y. output the
value 1. Since either line 6101 or 6089 can-reset-the’
flip-flop formed by NAND gates 6103 and 6107, the
connechonoftheschnuboNANDgateGlW:;func-
tionally equivalent to OR gate 5§25 in-FIG. 5. S

NAND gate 6111 in FIG. 6A inactivates cdldatalme
TY0 6113 when both line 6093 and line 6105 are active.
Line 6093 is the complement of internal address line. -
XAO 6067, and is therefore active when register 6187 .
(0,0) is being addressed. Line 6105 is the Y output ofthe
flip-flop formed by NAND gates 6103 and 6107, and
consequently, when register 6187 (0,0) is being’ ad- -
dressed, cell data line line TYO 6113’s value is the com- .
plement of the value on line 6105. As shown on FIGS..
6E and 6F, cell data line TY0 6113 receives outputs from o
equivalent cells of all registers in the CAMM 101 de-..
scribed in FIG. 6 and then serves as an input to tri-state,
NAND gate 6145 on FIG. 6F. It thus cffectively ORs
these outputs and is equivalent to OR gate 569 in FIG: .~
S. Tri-state NAND gate 6145’s output is data output lmc
YO 6147. This line bas three states, active, inactive, and
off, It is in the latter state when OE line 6197 is inactive .
and its complcment. line 6149, is active; otherwise, mput
line 6143 is at VCC and is always active, and conse-
quently, data output line Y0 6147s value is the comple- .
ment of the value of cell data line IY0 6113, or the value
of the Y output of the flip-flop formed by NAND gates- -
6103 and 6107. Together, NAND gates 6145 and 6111

NOAC Ex. 1017 Page 314

4,559,618

19

output the value of the Y output of cell 6185 (0,0) when
- register 6187 (0) is addressed and output has been en-
abled; NAND gates 6145 and 6111 arc thus logically

. equivalent to AND gates 535 and 571 of FIG. 5.
Turning again to FIG. 6B, NAND gates 6115, 6119,
and the wire AND formed by connection 6122 between
the outputs of NAND gates 6115, 6119, and internal
match line 6123, finally, perform the match function for
cell 6185 (0,0) and are thus equivalent 10 AND gates 533
and 534 and OR gate 540 in FIG. 5. NAND gate 6115
takes as its inputs line IDOA 6024 and line 6109 from the

Y oatput of the flip-flop formed by NAND gates 6103 -

and 6107. NAND gate 6119 takes as its inputs line IDOA.
6025 and line 6105 from the Y output of the flip-flop. If

20

through- 6159. NAND gates 6145 through 6159 are
tri-state, that is, their outputs have three states, active,
inactive, and off. The off state is controlled by OE line
6197. When OE line 6197 is active, line 6149 is inactive,
and NAND gates 6145 through 6159 have no output;
otherwise, their outputs are the NAND of their inputs.
The other input to each of NAND gates 6155 through
6159 is line 6143, which is always active. Consequently,
when OE line 6197 is inactive, the outputs of NAND
gates 6145 through 6159 arc the complements of the
values on lines 6113, 6125, 6131, and 6137, that is, identi-
cal with the values contained in cells 6185 (j,0) through
(3.3) in register 6187 G). ’

- 4.5.2.6 Match Logic 6189

mask line EO 6169 is inactive, then, as described in the 15
discussion of data and mask inputs 6183 above, the val- Match logic 6189 for register 6187 (0), on FIG. 6C,
3 ~ ges on line IDOA 6024 and line TDOA 6025 are comple- consists of internal match line 6123, inverter 6125,
o mentary. As also explained above, the values on lines NAND pgate 6129, and external match line MO 6182.
" 6105 and 6109 are always complementary. Conse- The match logic for the other registers 6187 is identical,
% quently, when the value on line IDCA 6024 is the same 20 and consequently, only that for register 6187