
NOAC Ex. 1016 Page 1

'flQJMfiBMWWQMJ“ME31!; 2%.;145,19ngwW3

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 18, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE 32‘: '

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS ; 6;

OF: g5;

APPLICATION NUMBER: 09/609,179

FILING DATE: June 30, 2000 .:

PATENT NUMBER: 6,665, 725 6:,
ISSUE DATE: December 16, 2003 ‘;

x ‘3 : ‘ l f;
,0 ; 19$:

355 :an.; ‘ f1 .

5 By Authorlty of the ~§ ‘

é‘fi Under Secretary of Commerce for Intellectual Property'3 r . .

. g and Director of the Unlted States Patent and Trademark Office

34‘;
1‘ ti .

it a? 5 .I
£13.; ‘ '2 ‘:2

z: A} 4' ‘:i

6:0 P. SWAI .5
£9325 - ' Off 3?waz. 2., CertIfy g Icer ‘3} \‘3‘ . M *0
:g A; :.

fig”; '
; M’s: :

PART (I) OF (‘2) PART(S) ‘1

n

fa

(“AQKV'
NOAC EX. 1016 Page 1”‘2' * “I ‘fig; fif/Ié1:3;f»x

,o .rH. k... .‘9“ .. Wag,2,.

NOAC Ex. 1016 Page 2

-J,L.

. J 4

PATENT‘NUMBER, .
V > -_TI,.__W_.., .

366.57%" {,1 '5 ‘

I VIIIIIIIIIIIIIIIIIIII‘I“ .
66553} . ‘

 ISSUECLASSIFICATION

EXAMINER ‘

'5 [‘1 ”w ‘
r

.' i ”M

‘ 7 APPLICATION NO. ON
D

 09/609179 . r': I"

«Cm-9Almfl'A-yvu' -—p
 ' 4.535; 2:5 5‘ ~ ‘15 CertifiCd‘l’efigjfiI

.JUNV2 9 211m 4‘”
APPLICANTS ’”EL;WWW" 9.. OQ50::o5’

{N‘G‘éLVASSiFICATION A H
9‘7 , cnoss REFERENCHSL . 5 L;

, Q” "f““ss } I,;SUBCLASS (ONE suacmss PEHI‘BLOC

' VINTERNAiIPNEE-gfiflfiégi‘iéfihfli

,. » '5magmammmm.“:51. 5 ~ ‘ < " I ~ i“ 7'
(» .. > ‘ j: "l‘fi‘bfiiéWlNGS-é‘ H

~ :4.— :., ;- , 3 .5 T”? ‘ _ ‘ < ' ‘ , I PfintClaimforO.G‘._ '.~‘ . w » U I, y “ . \
L, : .. L _ ‘ > I.
. .5 ~ .N.» .:<, ‘ v . i

,D Tfiétqtrriof. ‘ A ll '1’, , ‘33, h 4, I 5:

.N;“W,.--.__.-
: sukyse‘quéntto r‘ a T“

’ hah'beén‘dlsqlalffiéflflj

3‘ 'D The igm.offlyl§ gétéfit’éfiuallv‘f" J
;' 5 5 {not e'xtend béypnfif1h? explratiori date, ' ’29 ,, A ‘

’5': ; | I”: :y atq.§Patent.Nq. ‘ . -~ . ‘ :5 ‘ 3 HOSAINIALAM
‘gfl .w- ”f. 3' " A " PB’MARY EXAMWER 5 Amount‘D‘Eie , Date Paid

:9" ' 5 5 I may..- ‘ «6/51"! 0?, #3062?» :55;
I r W I q ,5“;)‘r, . « (Primary Eumlnafl‘ , _ . ‘ ’

D The termlna! . months Cf ' «\L MWthls patent Have been dlsclaimed.

(Lana! Ins msnis Examlner).x‘...’~x«
WARNING:

I
I

J

‘ The Informafion disclosed hereln may be resumed. Unamhorized dlsclosure may be prohiblted by The United States Code Title 35. Sections 122. 181 and 368.

\ Possession outside (he U.S. Patent a Trademark Officer restricted (o authorized employees and comradors only.
|

Fm" "“3“ FILED WITH: D DISK (CRF) |:| FICHE |:| CD~ROM . ‘2;

(Anachad In pocket on right lnulde flap) ' I

E FEE IN F\LE HHMM. “muss

(FACE) (If;
NOAC Ex.10163age2 M5 ,,w- . . L 4L. L - ‘.......~.‘ __._.,.

\A

NOAC Ex. 1016 Page 3

Page 1 O

COMMISSIONER FOR PATENTS

‘1 UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON. D.C. ZOZSI

www.mpto gov
Bib Data Sheet

FILING DATE 6 , ATTORNEY
SERIAL NUMBER 06/30/2000 GROUP ART UNIT DOCKET NO.

09/ 09 179 2755—-
6 ' RULE _ APPT-001-2

A PPLICANTS

Russell 8. Dietz, San Jose, CA; 2'

Andrew A. Koppenhaver, Littleton, CO ;
James F. Torgerson, Andover, MN ;

* CONTINUING DATA ****i***i*i**ii******i***

THIS APPLN CLAIMS BENEFIT OF 60/141,903 06/30/1999

WWII/£9
Id: FOREIGN APPLICATIONS iiiski‘iiiskihkiiiiiiaki

Mm! 100
IF REQUIRED, FOREIGN FILING LICENSE
GRANTED ** 08/23/2000

ForeIgn Priority claimed D yes

35 USC119(a-d) conditions D as
met y

no

M D STATE OR SHEETS TOTAL INDEPENDENT
"0 Me‘afte‘ COUNTRY DRAWING CLAIMS CLAIMSII

A OWQICIQ - CA 20 18 1Examiner‘s in nature Initials

p

CI AII Fees

D 116 Fees (Filing) .

CI 1.17 Fees (Processing Ext. of
to charge/credit DEPOSIT ACCOUNT time)

for followmg: D 118 Fees(Issue a
CI Other

CI Credit

file://C :\APPS\PreExam\correspondence\1_A.xml 1 1/7/00

NOAC EX. 1016 Page 3

NOAC Ex. 1016 Page 4

UU/Ut/9U,

\

IW

Old'S'n{7119311,

WWWWWWI

Mi

h {‘3
IN THE US. PATENT AND TRADEMARK OFFICE

Application Transmittal Sheet

Our Ref./Docket No.: APPT-OOl-Z

Box Patent Application 8 §

ASSISTANT COMMISSIONER FOR PATENTS “'0‘ E
Washington, DC. 20231 01:: :0

°‘ ES
Dear Assistant Commissioner: 3% ES;

. . . $o¥§\
Transrmtted herewrth IS the patent application of 8O :3

n g
INVENTOR(s)/APPLICANT(S)

Last Name First Name, MI Residence (City and State or Country)

Dietz Russell S. San Jose, CA

Torgerson James F. Andover, MN

Koppenhaver Andrew A. Fairfax, VA

TITLE OF THE INVENTION

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387
5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS (check all that a l)i

Included are:

X 129 sheet(s) of specification, claims, and abstract

Information Disclosure Statement.

copy of each references included in PTO—1449.
Declarationand Power of Attorney

An assignment of the invention to Apptitude, Inc.

A letter requesting recordation of the assignment.

An assignment Cover Sheet.

Additional inventors are being named on separately numbered sheets attached hereto.
Return postcard.

This application has:
a small entity status. A verified statement:

is enclosed

was already filed.

NIHHW

The fee has been calculated as shown in the following page.

Certificate of Mailing under 37 CFR 1.10

Application, Assistant Commissioner for Patents, Washington, DC. 20231 on.

20 sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson

I hereby certify that this application and all attachments are being deposited with the United States Postal

Service as Express Mail (Express Mail Label:Win an envelope addressed to Box Patent

Date: C9 ‘ : SiNam.
Name: Dov Rosenfeld, Reg. No. 38687

Form PTO-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a

NOAC Ex. 1016 Page 5

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. APPT-OOl-Z

NO. OF EXTRA RATE EXTRA CLAIM
TOTAL CLAIMS CIAIMS FEE

TOTAL 18 $18 $ 0.00
CLAIMS

INDEP. 1 $78 $ 0.00
CLAIMS

BASIC APPLICATION FEE: $ 690.00

TOTAL FEES PAYABLE: $ 690.00

METHOD OF PAYMENT

A check in the amount of is attached for application fee and presentation of claims.

A check in the amount of § 40.00 is attached for recordation of the Assignment.

The Commissioner is hereby authorized to charge payment of the any missing filing or other fees
required for this filing or credit any overpayment to Deposit Account No. 50—0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

m3029619

ate osenfeld , Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

NOAC EX. 1016 Page 5

NOAC Ex. 1016 Page 6

0 CL

Our Ref/Docket No: APPT-001 -2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, 3’ al. Group Art Unit: unassigned

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON

. SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find 20 sheets of formal drawings to be made of record for the above

identified patent application submitted herewith.ii::'m1!...“Cal1122!!M
. Respectfully Submitted,

W 29 X9979 gfi‘
Date osenfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):

Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone: (510) 547-3378; Fax: (510) 653—7992

11353::£55,.

IIIMII

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label:Win an envelope addressed to Box Patent
Application, Assistant Commissioner for Patents, Washington, DC. 20231 on.

I 1‘33.
Name: Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1016 Page 7

II

D O

Our Ref./Docket No.: APPT—001-2

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION LANGUAGE

IIIIII!III]:121!Min:II...II
Inventor(s):

"3:2;.:s!; DIETZ, Russell S.

San Jose, CA

‘ISEEI!III! KOPPENHAVER, Andrew A.

Fairfax, VA

-IIII"I!III“?2!: TORGERSON, James F.

Andover, MN

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(Express Mail Label: EI417961935US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,
Washington, .C. 20231 on.

/ Na . ov Rosenfeld,Reg. No. 38687

NOAC Ex. 1016 Page 8

0 m\

1

METHOD AND APPARATUS FOR MONITORING

TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of US. Provisional Patent Application Serial No.:

5 60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference.

This application is related to the following US. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc., the

10 assignee of the present invention:

U-S- Patent'Application Serial No. {151 /603.Z'71Ior METHOD AND APPARATUS FOR Mi"?
MONITORING TRAFFIC IN ANETWORK, to inventors Dietz, et al., filed June 30, QWU

2000, Attorney/Agent Reference Number APPT-OOl-l, and incorporated herein by

reference.gI-I'n.l"uu-ws‘gl"I;'33-'4315-35‘31le

15 . . atent pp 1cat10n en 0. I 9 i or - 1US P A l. I S ‘alN q/COK f REUSINGINFORMATIONFROM bu”z:- 1', I ,, ’2
”I V! U 2

DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK 7" /

MONITORING, to inventors Dietz, et al., filed June 30, 2000, Attorney/Agent

:=.= Reference Number APPT-001—3, and incorporated herein by reference. I

3 _ . W/
US. Patent Application Serial No. fifl /@[212' (w for ASSOCIATIVE CACHE (53/ (”fl/J3

20 STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A

NETWORK MONITOR, to inventors Sarkissian, et al., filed June 30, 2000,

Attorney/Agent Reference Number APPT-001—4, and incorporated herein by reference.

- . r 'r‘ 7

US. Patent Application Serial No. /.. “I l J for STATE PROCESSOR FOR 7dg‘1/1Ji) L

PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors

25 Sarkissian, et al., filed June 30, 2000, Attorney/Agent Reference Number APPT-001—5,

and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

elucidation of packets communicated within a data network, including classification

30 according to protocol and application program.

NOAC EX. 1016 Page 8

NOAC Ex. 1016 Page 9

10

15

20

25

30

(W (W

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material that is

subject to copyright protection. The copyright owner has no objection to the facsimile

reproduction by anyone of the patent document or the patent disclosure, as it appears in

the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real-time network monitor that

can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i. e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context (e.g., options selected, service

delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

The recognizing and classifying in such a network monitor should be at all

protocol layer levels in conversational flows that pass in either direction at a point in a

network. Furthermore, the monitor should provide for properly analyzing each of the

packets exchanged between a client and a server, maintaining information relevant to the

current state of each of these conversational flows.

Related and incorporated by reference U.S. Patent application 063 “;C’E' m for

METHOD AND APPARATUS FOR MONITORING TRAFFIC INA NETWORK, to

NOAC EX. 1016 Page 9

NOAC Ex. 1016 Page 10

‘u-HH31.lll'
“"1:x;l-‘

10

15

20

25

30

(V C)

3

inventors Dietz, et a1, Attorney/Agent Docket APPT-OOl-l, describes a network monitor

that includes carrying out protocol specific operations on individual packets including

extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

form a signature (i. e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

The flow signature of the packet, the hash and at least some of the payload are

passed to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem

includes a unified flow key buffer (UFKB) for receiving parts of packets from the parser

subsystem and for storing signatures in process, a lookup/update engine (LUE) to lookup

a database of flow records for previously encountered conversational flows to determine

whether a signature is from an existing flow, a state processor (SP) for performing state

processing, a flow insertion and deletion engine (FIDE) for inserting new flows into the

database of flows, a memory for storing the database of flows, and a cache for speeding

up access to the memory containing the flow database. The LUE, SP, and FIDE are all

coupled to the UFKB, and to the cache.

Each flow-entry includes one or more statistical measures, e.g., the packet count

related to the flow, the time of arrival of a packet, the time differential.

In the preferred hardware embodiment, each of the LUE, state processor, and

FIDE operate independently from the other two engines. The state processor performs one

or more operations specific to the state of the flow.

A network analyzer should be able to analyze many different protocols. At a base

level, there are a number of standards used in digital telecommunications, including

Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital Data Service, FDDI

(Fiber Distributed Data Interface), T1, and others. Many of these standards employ

different packet and/or frame formats. For example, data is transmitted in ATM and

frame—relay systems in the form of fixed length packets (called “cells”) that are 5 3 octets

(i.e., bytes) long. Several such cells may be needed to make up the information that might

be included in the packet employed by some other protocol for the same payload

NOAC EX. 1016 Page 10

NOAC Ex. 1016 Page 11

10

15

20

25

30

C‘» C\,

4

information—for example in a conversational flow that uses the frame-relay standard or

the Ethernet protocol.

In order for a network monitor to be able to analyze different packet or frame

formats, the monitor needs to be able to perform protocol specific operations on each

packet with each packet carrying information conforming to different protocols and

related to different applications. For example, the monitor needs to be able to parse

packets of different formats into fields to understand the data encapsulated in the different

fields. As the number of possible packet formats or types increases, the amount of logic

required to parse these different packet formats also increases.

Prior art network monitors exist that parse individual packets and look for

information at different fields to use for building a signature for identifying packets. Chiu,

et al., describe a method for collecting information at the session level in a computer

network in United States Patent 5,101,402, titled “APPARATUS AND METHOD FOR

REAL-TIME MONITORING OF NETWORK SESSIONS AND A LOCAL AREA

NETWORK.” In this patent, there are fixed locations specified for particular types of

packets. For example, if a DECnet packet appears, the Chiu system looks at six specific

fields (at 6 locations) in the packet in order to identify the session of the packet. If, on the

other hand, an IP packet appears, a different set of six locations are examined. The system

looks only at the lowest levels up to the protocol layer. There are fixed locations for each

of the fields that specified the next level. With the proliferation of protocols, clearly the

specifying of all the possible places to look to determine the session becomes more and

more difficult. Likewise, adding a new protocol or application is difficult.

It is desirable to be able to adaptively determine the locations and the information

extracted from any packet for the particular type of packet. In this way, an optimal

signature may be defined using a protocol-dependent and packet-content-dependent

definition of what to look for and where to look for it in order to form a signature.

There thus is also a need for a network monitor that can be tailored or adapted for

different protocols and for different application programs. There thus is also a need for a

network monitor that can accommodate new protocols and for new application programs.

There also is a need for means for specifying new protocols and new levels, including

new applications. There also is a need for a mechanism to describe protocol specific

operations, including, for example, what information is relevant to packets and packets

NOAC EX. 1016 Page 11

NOAC Ex. 1016 Page 12

10

15

20

25

30

m A'x

5

that need to be decoded, and to include specifying parsing operations and extraction

operations. There also is a need for a mechanism to describe state operations to perform

on packets that are at a particular state of recognition of a flow in order to further

recognize the flow.

SUMMARY

One embodiment of the invention is a method of performing protocol specific operations

on a packet passing through a connection point on a computer network. The packet

contents conform to protocols of a layered model wherein the protocol at a particular

layer level may include one or a set of child protocols defined for that level. The method

includes receiving the packet and receiving a set of protocol descriptions for protocols

may be used in the packet. A protocol description for a particular protocol at a particular

layer level includes any child protocols of the particular protocol, and for any child

protocol, where in the packet information related to the particular child protocol may be

found. A protocol description also includes any protocol specific operations to be

performed on the packet for the particular protocol at the particular layer level. The

method includes performing the protocol specific operations on the packet specified by

the set of protocol descriptions based on the base protocol of the packet and the children

of the protocols used in the packet. A particular embodiment includes providing the

protocol descriptions in a high-level protocol description language, and compiling to the

descriptions into a data structure. The compiling may further include compressing the

data structure into a compressed data structure. The protocol specific operations may

include parsing and extraction operations to extract identifying information. The protocol

specific operations may also include state processing operations defined for a particular

state of a conversational flow of the packet.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

specific embodiment because such embodiments are provided only for the purposes of

explanation. The embodiments, in turn, are explained with the aid of the following

figures.

~ NOAC EX. 1016 Page 12

NOAC Ex. 1016 Page 13

10

iii"”23:“1!...1'21:1!1m2m!
mm.413. 15

=25
:L

1‘!”i‘

20

25

(I (I

6

FIG. 1 is a functional block diagram of a network embodiment of the present

invention in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their

formats that might be exchanged in starting, as an illustrative example, a conversational

flow between a client and server on a network being monitored and analyzed. A pair of

flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be generated

and used in the process of analyzing packets and of recognizing the particular server

applications that produce the discrete application packet exchanges.

FIG. 3 is a functional block diagram of a process embodiment of the present

invention that can operate as the packet monitor shown in FIG. 1. This process may be

implemented in software or hardware.

FIG. 4 is a flowchart of a high—level protocol language compiling and optimization

process, which in one embodiment may be used to generate data for monitoring packets

according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow—signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part of

the analyzer in an embodiment of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including

the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

NOAC EX. 1016 Page 13

NOAC Ex. 1016 Page 14

1:33;“1:22.12:um12.111311!11351:it‘ll.
risers23}:

if]!11.73%1131*3153.:

10

15

20

25

m m

7

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process embodiment of the

present invention that can operate as the packet monitor shown in FIG. 1. This process

may be implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of

the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of

FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet

shown in FIGS. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used to store elements of the

pattern, parse and extraction database used by the parser subsystem in accordance to one

embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment of

the invention.

~ NOAC EX. 1016 Page 14

NOAC Ex. 1016 Page 15

II-IIIIIIIII...|I'I
1133:?.131,

III]!

10

15

20

25

30

(3. fl

8

FIG. 19 shows various PDL file modules to be compiled together by the compiling

process illustrated in FIG. 20 as an example, in accordance with a compiling aspect of the

invention.

FIG. 20 is a flowchart of the process of compiling high—level language files

according to an aspect of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may

include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network 102

that communicates packets (e.g., IP datagrams) between various computers, for example

between the clients 104—107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shown in the interior of the

cloud. A monitor 108 examines the packets passing in either direction past its connection

point 121 and, according to one aspect of the invention, can elucidate what application

programs are associated with each packet. The monitor 108 is shown examining packets

(i. e., datagrams) between the network interface 116 of the server 110 and the network.

The monitor can also be placed at other points in the network, such as connection point

123 between the network 102 and the interface 118 of the client 104, or some other

location, as indicated schematically by connection point 125 somewhere in network 102.

Not shown is a network packet acquisition device at the location 123 on the network for

converting the physical information on the network into packets for input into monitor

108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communication, e. g., TCP/IP, etc. Any network activity—for example an

application program run by the client 104 (CLIENT 1) communicating with another

running on the server 110 (SERVER 2)——will produce an exchange of a sequence of

packets over network 102 that is characteristic of the respective programs and of the

NOAC EX. 1016 Page 15

NOAC Ex. 1016 Page 16

10

M‘Efill“th5!“‘1
:55.I!)"r:
’33]!

:23?!917.3?

@535!If)!3.1th33:;‘3

15

(V C)

9

network protocols. Such characteristics may not be completely revealing at the individual

packet level. It may require the analyzing of many packets by the monitor 108 to have

enough information needed to recognize particular application programs. The packets

may need to be parsed then analyzed in the context of various protocols, for example, the

transport through the application session layer protocols for packets of a type conforming

to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol stack.

The ISO (International Standardization Organization) has defined a general model that

provides a framework for design of communication protocol layers. This model, shown in

table form below, serves as a basic reference for understanding the functionality of

existing communication protocols.

ISO MODEL

Application Telnet, NFS, Novell NCP, HTTP,

H.323

n—_

Data Link Network Interface Card (Hardware

Interface). MAC layer

Physical

Different communication protocols employ different levels of the ISO model or

Ethernet, Token Ring, Frame Relay,

ATM, T1 (Hardware Connection)

may use a layered model that is similar to but which does not exactly conform to the ISO

model. A protocol in a certain layer may not be visible to protocols employed at other

layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2—3).

NOAC EX. 1016 Page 16

NOAC Ex. 1016 Page 17

10

It:

llu":23:ii...“"mun1!.
15

20

25

30

m a

10

In some communication arts, the term “frame” generally refers to encapsulated

data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

“packet” generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the

term “datagram” is also used. In this specification, the term “packet” is intended to

encompass packets, datagrams, frames, and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for transmission

across a network. For example, a data packet typically includes an address destination

field, a length field, an error correcting code (ECC) field, or cyclic redundancy check

(CRC) field, as well as headers and footers to identify the beginning and end of the

packet. The terms “packet format” and “frame format,” also referred to as “cell format,”

are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packet carries the same information useful for recognizing all levels

of the protocol. For example, in a conversational flow associated with a particular

application, the application will cause the server to send a type-A packet, but so will

another. If, though, the particular application program always follows a type-A packet

with the sending of a type-B packet, and the other application program does not, then in

order to recognize packets of that application’s conversational flow, the monitor can be

available to recognize packets that match the type-B packet to associate with the type-A

packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

simultaneously also in partial completion of identifying other packet exchanges that are

parts of conversational flows associated with other applications. One aspect of monitor

108 is its ability to maintain the state of a flow. The state of a flow is an indication of all

previous events in the flow that lead to recognition of the content of all the protocol

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a

signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

NOAC Ex. 1016 Page 17

NOAC Ex. 1016 Page 18

in:Ii...“'3::u113:“it...”
”1:31.53.;ll-

iifji!iii?!13.13%

10

15

20

25

30

(W m\ ,

11

In real-world uses of the monitor 108, the number of packets on the network 102

passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

and identify and maintain the state of the flows passing through the connection point. The

monitor 108 therefore masks out all the unimportant parts of each packet that will not

contribute to its classification. However, the parts to mask—out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application

programs according to the packets that their executions produce, is a multi-step process

within the monitor 108. At a first level, for example, several application programs will all

produce a first kind of packet. A first “signature” is produced from selected parts of a

packet that will allow monitor 108 to identify efficiently any packets that belong to the

same flow. In some cases, that packet type may be sufficiently unique to enable the

monitor to identify the application that generated such a packet in the conversational flow.

The signature can then be used to efficiently identify all future packets generated in traffic

related to that application.

In other cases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated application

program. In such a case, a subsequent packet of a second type—but that potentially

belongs to the same conversational flow—is recognized by using the signature. At such a

second level, then, only a few of those application programs will have conversational

flows that can produce such a second packet type. At this level in the process of

classification, all application programs that are not in the set of those that lead to such a

sequence of packet types may be excluded in the process of classifying the conversational

flow that includes these two packets. Based on the known patterns for the protocol and for

the possible applications, a signature is produced that allows recognition of any future

packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to

proceed to a third level of analysis using the second level signature. For each packet,

therefore, the monitor parses the packet and generates a signature to determine if this

signature identified a previously encountered flow, or shall be used to recognize future

packets belonging to the same conversational flow. In real time, the packet is further

NOAC EX. 1016 Page 18

NOAC Ex. 1016 Page 19

10

u13::u1!..H13:31:»N
15

155:9mi.

“555511I111!

iii!31531!if?$335.?
20

25

30

C) m5»

12

analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

flows associated with different applications. A new signature for recognizing future

packets may also be generated. This process of analysis continues until the applications

are identified. The last generated signature may then be used to efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes

it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative

embodiments of the present invention capable of eavesdropping, once the monitor 108

has recognized the executing application programs passing through some point in the

network 102 (for example, because of execution of the applications by the client 105 or

server 110), the monitor sends a message to some general purpose processor on the

network that can input the same packets from the same location on the network, and the

processor then loads its own executable copy of the application program and uses it to

read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present

invention that can be implemented with computer hardware and/or software. The system

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e. g., from a packet

acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,

for example in an attempt to determine its characteristics, e. g., all the protocol information

in a multilevel model, including what server application produced the packet.

The packet acquisition device is a common interface that converts the physical

signals and then decodes them into bits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects showu here include: (1) the initialization of the monitor to generate what

operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing—parsing and extraction of selected portions—of

NOAC Ex. 1016 Page 19

NOAC Ex. 1016 Page 20

ii"23533::nilii2:112:11:MI
limb.1" u...».......

if]!it'll

10

15

20

25

30

\\ .

13

packets to generate an identifying signature—accomplished by parser subsystem 301, and

(3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

information to parser subsystem 301 and to analyzer subsystem 303. The initialization

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the

network. For each protocol there are known to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and other fields are used in

monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304

that parses the packet and determines the protocol types and associated headers for each

protocol layer that exists in the packet 302. An extraction process 306 in parser subsystem

301 extracts characteristic portions (signature information) from the packet 302. Both the

pattern information for parsing and the related extraction operations, e.g., extraction

masks, are supplied from a parsing-pattem—structures and extraction-operations database

(parsing/extractions database) 308 filled by the compiler and optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and

states of all protocols that an occur at any layer, including how to interpret header

information, how to determine from the packet header information the protocols at the

next layer, and what information to extract for the purpose of identifying a flow, and

ultimately, applications and services. The layer selections database 338 describes the

particular layering handled by the monitor. That is, what protocols run on top of what

protocols at any layer level. Thus 336 and 338 combined describe how one would decode,

analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data

structures. The first is the set of parsing/extraction operations 308. The pattern structures

include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elements of a packet are to be extracted from

‘ ‘ NOAC EX. 1016 Page 20

NOAC Ex. 1016 Page 21

'Ii‘li'.:533..”I;m11.2:",2""3"“u'in
I!II

10

15

20

25

30

m o

14

the packets based on the patterns that get matched. Thus, database 308 of

parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that indicate

a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state

patterns and processes 326. These are the different states and state transitions that occur in

different conversational flows, and the state operations that need to be performed (e. g.,

patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the

information it needs to begin processing packets. In an alternate embodiment, the contents

of one or more of databases 308 and 326 may be manually or otherwise generated. Note

that in some embodiments the layering selections information is inherent rather than

explicitly described. For example, since a PDL file for a protocol includes the child

protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input

into a packet buffer. The pattern recognition process 304 is carried out by a pattern

analysis and recognition (PAR) engine that analyzes and recognizes patterns in the

packets. In particular, the PAR locates the next protocol field in the header and

determines the length of the header, and may perform certain other tasks for certain types

of protocol headers. An example of this is type and length comparison to distinguish an

IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also

called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures

and extraction operations database 308 to identify the next protocol and parameters

associated with that protocol that enables analysis of the next protocol layer. Once a

pattern or a set of patterns has been identified, it/they will be associated with a set of none

or more extraction operations. These extraction operations (in the form of commands and

associated parameters) are passed to the extraction process 306 implemented by an

extracting and information identifying (E11) engine that extracts selected parts of the

packet, including identifying information from the packet as required for recognizing this

packet as part of a flow. The extracted information is put in sequence and then processed

in block 312 to build a unique flow Signature (also called a “kCY”) for this flOW. A flow

NOAC EX. 1016 Page 21

NOAC Ex. 1016 Page 22

min4;n{m..I'a1m.nu”annil-tn'u
H1!:1

anat?u

10

15

20

25

30

fl 0

15

signature depends on the protocols used in the packet. For some protocols, the extracted

components may include source and destination addresses. For example, Ethernet frames

have end-point addresses that are useful in building a better flow signature. Thus, the

signature typically includes the client and server address pairs. The signature is used to

recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key includes generating a

hash of the signature using a hash function. The purpose if using such a hash is

conventional—to spread flow—entries identified by the signature across a database for

efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet—a parser record—that

includes the signature (i.e., selected portions of the packet), the hash, and the packet itself

to allow for any state processing that requires further data from the packet. An improved

embodiment of the parser subsystem might generate a parser record that has some

predefined structure and that includes the signature, the hash, some flags related to some

of the fields in the parser record, and parts of the packet's payload that the parser

subsystem has determined might be required for further processing, e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation

of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal

data store of records of known flows that the system has already encountered, and decides

(in 316) whether or not this particular packet belongs to a known flow as indicated by the

presence of a flow-entry matching this flow in a database of known flows 324. A record

in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The

UFKB stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

stores the packet sequence number, and another is filled with state information in the form

of a program counter for a state processor that implements state processing 328.

' NOAC EX. 1016 Page 22

NOAC Ex. 1016 Page 23

2153:?.ntli"if."1113:!»131.11%‘5???“tin“I'll
ui-uuu

Milli:M!it..."six:

10

15

20

25

30

o 0

16

The determination (316) of whether a record with the same signature already

exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses

the hash in the UFKB record to lookup if there is a matching known flow. In the

particular embodiment, the database of known flows 324 is in an external memory. A

cache is associated with the database 324. A lookup by the LUE for a known record is

carried out by accessing the cache using the hash, and if the entry is not already present in

the cache, the entry is looked up (again using the hash) in the external memory.

The flow—entry database 324 stores flow-entries that include the unique flow—

signature, state information, and extracted information from the packet for updating

flows, and one or more statistical about the flow. Each entry completely describes a flow.

Database 324 is organized into bins that contain a number, denoted N, of flow-entries

(also called flow—entries, each a bucket), with N being 4 in the preferred embodiment.

Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser

subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the

database to allow for fast lookups of entries, allowing shallower buckets. The designer

selects the bucket depth N based on the amount of memory attached to the monitor, and

the number of bits of the hash data value used. For example, in one embodiment, each

flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a

16-bit hash gives two flow—entries per bucket. Empirically, this has been shown to be

more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flowventry found matching the signature, i.e., the signature is for a

new flow, then a protocol and state identification process 318 further determines the state

and protocol. That is, process 318 determines the protocols and where in the state

sequence for a flow for this protocol’s this packet belongs. Identification process 318 uses

the extracted information and makes reference to the database 326 of state patterns and

processes. Process 318 is then followed by any state operations that need to be executed

on this packet by a state processor 328.

If the packet is found to have a matching flow—entry in the database 324 (e.g., in

the cache), then a process 320 determines, from the looked-up flow-entry, if more

NOAC EX. 1016 Page 23

NOAC Ex. 1016 Page 24

51.9M

"3m

"it

10

15

20

25

30

a 0

17

classification by state processing of the flow signature is necessary. If not, a process 322

updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating

includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor

328 carries out any state operations specified for the state of the flow and updates the state

to the next state according to a set of state instructions obtained form the state pattern and

processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze

all levels of the protocol stack, ultimately classifying the flows by application (level 7 in

the ISO model). It does this by proceeding from state—to-state based on predefined state

transition rules and state operations as specified in state processor instruction database

326. A state transition rule is a rule typically containing a test followed by the next~state

to proceed to if the test result is true. An operation is an operation to be performed while

the state processor is in a particular state—for example, in order to evaluate a quantity

needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a packet,

and carrying out the operation or operations may leave one in a state that causes exiting

the system prior to completing the identification, but possibly knowing more about what

state and state processes are needed to execute next, i.e., when a next packet of this flow

is encountered. As an example, a state process (set of state operations) at a particular state

may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up

using the information from previously encountered flows, the network traffic monitor 300

provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub-flows that occur in server announcement type flows.

What may seem to prior art monitors to be some unassociated flow, may be recognized by

the inventive monitor using the flow signature to be a sub—flow associated with a

previously encountered sub-flow.

(NOAC EX. 1016 Page 24

NOAC Ex. 1016 Page 25

V‘WAN“

!!"'13!

3322‘.19:

10

15

20

25

30

O C“

18

Thus, state processor 328 applies the first state operation to the packet for this

particular flow-entry. A process 330 decides if more operations need to be performed for

this state. If so, the analyzer continues looping between block 330 and 328 applying

additional state operations to this particular packet until all those operations are

completed—that is, there are no more operations for this packet in this state. A process

332 decides if there are further states to be analyzed for this type of flow according to the

state of the flow and the protocol, in order to fully characterize the flow. If not, the

conversational flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing by

using the last protocol recognized by the parser as an offset into a jump table (jump

vector). The jump table finds the state processor instructions to use for that protocol in the

state patterns and processes database 326. Most instructions test something in the unified

flow key buffer, or the flow-entry in the database of known flows 324, if the entry exists.

The state processor may have to test bits, do comparisons, add, or subtract to perform the

test. For example, a common operation carried out by the state processor is searching for

one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an

end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process 322.

The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically

maintains flow—entries, which in one aspect includes storing states. The monitor of FIG. 3

also generates characteristic parts of packets—the signatures—that can be used to

recognize flows. The flow—entries may be identified and accessed by their signatures.

NOAC EX. 1016 Page 25

NOAC Ex. 1016 Page 26

1322“.:ll'

10

15

20

25

30

o 0

19

Once a packet is identified to be from a known flow, the state of the flow is known and

this knowledge enables state transition analysis to be performed in real time for each

different protocol and application. In a complex analysis, state transitions are traversed as

more and more packets are examined. Future packets that are part of the same

conversational flow have their state analysis continued from a previously achieved state.

When enough packets related to an application of interest have been processed, a final

recognition state is ultimately reached, i. e., a set of states has been traversed by state

analysis to completely characterize the conversational flow. The signature for that final

state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.

Once a particular set of state transitions has been traversed for the first time and ends in a

final state, a short-cut recognition pattern—a signature—can be generated that will key on

every new incoming packet that relates to the conversational flow. Checking a signature

involves a simple operation, allowing high packet rates to be successfully monitored on

the network.

In improved embodiments, several state analyzers are run in parallel so that a large

number of protocols and applications may be checked for. Every known protocol and

application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the conversational flow are

encountered, signatures are updated and the states of the set of state transitions for any

potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation process.

That is, part of the initialization generates the pattern structures and extraction operations

database 308 and the state instruction database 328. Such initialization can occur off—line

‘NOAC EX. 1016 Page 26

NOAC Ex. 1016 Page 27

...l

xii-htit1:2!1m*1,I
gm,.iv

uh

'.':::il.51

.i!M3!..."1!:
L'

0 O

20

or from a central location.

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

level 0). Each protocol is either a parent node or a terminal node. A parent node links a

protocol to other protocols (child protocols) that can be at higher layer levels. Thus a

protocol may have zero or more children. Ethernet packets, for example, have several

variants, each having a basic format that remains substantially the same. An Ethernet

packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet

Type/Version 2 and a DIX (DIGITAL-Intel—Xerox packet)—-or an IEEE 803.2 packet.

Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP protocol,

and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now shows the header information for the next level (level-2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

packet that indicates the next layer level is a two—byte type field 1702 containing the child

recognition pattern for the next level. The remaining information 1704 is shown hatched

because it not relevant for this level. The list 1712 shows the possible children for an

Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 17B shows the structure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern recognition database, or PRD)

308 generated by compilation process 310, in one embodiment, is in the form of a three

dimensional structure that provides for rapidly searching packet headers for the next

protocol. FIG. 18A shows such a 3-D representation 1800 (which may be considered as

an indexed set of 2-D representations). A compressed form of the 3—D structure is

preferred.

'NOAC EX. 1016 Page 27

NOAC Ex. 1016 Page 28

£253;-.:r::,'."ii"11:23:m‘31::i!niiznziiiih

10

15

20

25

30

C), (Ws.

21

An alternate embodiment of the data structure used in database 308 is illustrated in

FIG. 18B. Thus, like the 3—D structure of FIG. 18A, the data structure permits rapid

searches to be performed by the pattern recognition process 304 by indexing locations in a

memory rather than performing address link computations. In this alternate embodiment,

the PRD 308 includes two parts, a single protocol table 1850 (PT) which has an entry for

each protocol known for the monitor, and a series of Look Up Tables 1870 (LUT’s) that

are used to identify known protocols and their children. The protocol table includes the

parameters needed by the pattern analysis and recognition process 304 (implemented by

PRE 1006) to evaluate the header information in the packet that is associated with that

protocol, and parameters needed by extraction process 306 (implemented by slicer 1007)

to process the packet header. When there are children, the PT describes which bytes in the

header to evaluate to determine the child protocol. In particular, each PT entry contains

theheader length, an offset to the child, a slicer command, and some flags.

The pattern matching is carried out by finding particular “child recognition codes”

in the header fields, and using these codes to index one or more of the LUT’s. Each LUT

entry has a node code that can have one of four values, indicating the protocol that has

been recognized, a code to indicate that the protocol has been partially recognized (more

LUT lookups are needed), a code to indicate that this is a terminal node, and a null node

to indicate a null entry. The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source-code information in the

form of protocol description files is shown as 402. In the particular embodiment, the high

level decoding descriptions includes a set of protocol description files 336, one for each

protocol, and a set of packet layer selections 338, which describes the particular layering

(sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract

operations 406 is generated (404), and a set of packet state instructions and operations

407 is generated (405) in the form of instructions for the state processor that implements

state processing process 328. Data files for each type of application and protocol to be

recognized by the analyzer are downloaded from the pattern, parse, and extraction

database 406 into the memory systems of the parser and extraction engines. (See the

parsing process 500 description and FIG. 5; the extraction process 600 description and

FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each

' NOAC EX. 1016 Page 28

NOAC Ex. 1016 Page 29

11:31:”23:2.'11-1%":11127321W1135:»“.1211
1‘55!!!'1...“

10

._- (I!.

20

25

30

(x m\

22

type of application and protocol to be recognized by the analyzer are also downloaded

from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links

the three dimensional structure (one embodiment) or the or all the lockup tables for the

PRD.

Because of the large number of possible protocol trees and subtrees, the compiler

process 400 includes optimization that compares the trees and subtrees to see which

children share common parents. When implemented in the form of the LUT’s, this

process can generate a single LUT from a plurality of LUT’s. The optimization process

further includes a compaction process that reduces the space needed to store the data of

the PRD.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be

thought of as a set of 2-D structures each representing a protocol. To enable saving space

by using only one array per protocol which may have several parents, in one embodiment,

the pattern analysis subprocess keeps a “current header” pointer. Each location (offset)

index for each protocol 2-D array in the 3—D structure is a relative location starting with

the start of header for the particular protocol. Furthermore, each of the two—dimensional

arrays is sparse. The next step of the optimization, is checking all the 2—D arrays against

all the other 2-D arrays to find out which ones can share memory. Many of these 2—D

arrays are often sparsely populated in that they each have only a small number of valid

entries. So, a process of "folding" is next used to combine two or more 2—D arrays

together into one physical 2-D array without losing the identity of any of the original 2-D

arrays (i.e., all the 2—D arrays continue to exist logically). Folding can occur between any

2-D arrays irrespective of their location in the tree as long as certain conditions are met.

Multiple arrays may be combined into a single array as long as the individual entries do

not conflict with each other. A fold number is then used to associate each element with its

original array. A similar folding process is used for the set of LUTs 1850 in the alternate

embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting

NOAC EX. 1016 Page 29

NOAC Ex. 1016 Page 30

10

it14:21:»

15

llilll‘423..

20

25

30

C o

23

at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next

(initially the first) packet component from the packet 302. The packet components are

extracted from each packet 302 one element at a time. A check is made (504) to determine

if the load—packet-component operation 503 succeeded, indicating that there was more in

the packet to process. Ifnot, indicating all components have been loaded, the parser

subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to provide a set of patterns and

processes for that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determine if the fetch pattern node operation 505 completed

successfully, indicating there was a pattern node that loaded in 505. If not, step 51 1

moves to the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the component extracted in 503. A pattern match obtained in 507 (as

indicated by test 508) means the parser subsystem 301 has found a node in the parsing

elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test

508), the parser subsystem 301 moves (510) to the next pattern node from the pattern

database 308 and to step 505 to fetch the next node and process. Thus, there is an

“applying patterns” loop between 508 and 505. Once the parser subsystem 301 completes

all the patterns and has either matched or not, the parser subsystem 301 moves to the next

packet component (511).

Once all the packet components have been the loaded and processed from the

input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6

FIG. 6 is a flow chart for extracting the information from which to build the

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this

point parser subsystem 301 has a completed packet component and a pattern node

available in a buffer (602). Step 603 loads the packet component available from the

pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there

was indeed another packet component, the parser subsystem 301 fetches in 605 the

extraction and process elements received from the pattern node component in 602. If the

fetch was successful (test 606), indicating that there are extraction elements to apply, the

NOAC EX. 1016 Page 30

NOAC Ex. 1016 Page 31

m~.::!:..It?trimHull'1:::'il|!:::ndin
'55?!III?!""

tiffii1133'If)!2335.2

10

y—A LII

20

25

30

0 m

24

parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this

component, and if not, the parser subsystem 301 moves back to 603 to load the next

packet component at hand and repeats the process. If the answer is yes, then the parser

subsystem 301 moves to the next packet component ratchet. That new packet component

is then loaded in step 603. As the parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component if

there is more to extract, or to a different packet component if there is no more to extract.

The extraction process thus builds the signature, extracting more and more

components according to the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet component operation 603 fails (test

604), all the components have been extracted. The built signature is loaded into the

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301 loads the next

pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

hash elements that are found in the pattern node that is in the element database. In 706 the

resulting signature and the hash are packed. In 707 the parser subsystem 301 moves on to

the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left

(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the

form of a UFKB record which is similar to a parser record, but with one or more different

fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine

NOAC EX. 1016 Page 31

NOAC Ex. 1016 Page 32

l!“n‘iu:u...“w:‘lil‘llm
115:2!4512..

1:11.“'31:?!

1533'13.7!!!14733!153:3.

10

15

20

25

30

0 O

25

(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with

the parser record that includes a signature, the hash and at least parts of the payload. In

802 those elements are shown in the form of a UFKB—entry in the buffer. The LUE, the

lookup engine 314 computes a “record bin number” from the hash for a flow-entry. A bin

herein may have one or more “buckets” each containing a flow-entry. The preferred

embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the

hash. If the cache successfully returns with a bucket from the bin number, indicating there

are more buckets in the bin, the lookup/update engine compares (807) the current

signature (the UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry

signature). If the signatures match (test 808), that record (in the cache) is marked in step

810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the

UFKB-entry in 802 has a status of “found.” The “found” indication allows the state

processing 328 to begin processing this UFKB element. The preferred hardware

embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a

calculator for every packet analyzed. The statistical operations may include one or more

of counting the packets associated with the flow; determining statistics related to the size

of packets of the flow; compiling statistics on differences between packets in each

direction, for example using timestamps; and determining statistical relationships of

timestamps of packets in the same direction. The statistical measures are kept in the flow—

entries. Other statistical measures also may be compiled. These statistics may be used

singly or in combination by a statistical processor component to analyze many different

aspects of the flow. This may include determining network usage metrics from the

statistical measures, for example to ascertain the network’s ability to transfer information

for this application. Such analysis provides for measuring the quality of service of a

conversation, measuring how well an application is performing in the network, measuring

network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more

‘ NOAC EX. 1016 Page 32

NOAC Ex. 1016 Page 33

.l‘

3.2331323).!!m
“:32?!M

1.5233?113..“1223f?!35331.:

10

15

20

25

30

m o

26

counters that are part of the flow~entry (in the cache) in step 812. The process exits at 813.

In our embodiment, the counters include the total packets of the flow, the time, and a

differential time from the last timestarnp to the present timestarnp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again

looks up the cache for another bucket from that bin. The lookup/update engine thus

continues lookup up buckets of the bin until there is either a match in 808 or operation

804 is not successful (test 805), indicating that there are no more buckets in the bin and no

match was found.

If no match was found, the packet belongs to a new (not previously encountered)

flow. In 806 the system indicates that the record in the unified flow key buffer for this

packet is new, and in 812, any statistical updating operations are performed for this packet

by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“new” status or a “found” status.

Note that the above system uses a hash to which more than one flow—entry can

match. A longer hash may be used that corresponds to a single flow—entry. In such an

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the

system are now described with reference to FIGS. 10 and 11. Note that while we are

describing a particular hardware implementation of the invention embodiment of FIG. 3,

it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be

implemented in software running on one or more general—purpose processors, or only

partly implemented in hardware. An implementation of the invention that can operate in

software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

NOAC EX. 1016 Page 33

NOAC Ex. 1016 Page 34

51ml!§:!‘III]!'EEifi»Him1131'
ii“:-

'33:}?1£111!"

4:3!!133'1.3.7.53#55:}.

10

15

20

25

(V (V.

27

FIG. 10 is a description of the parsing subsystem (301, shoWn here as subsystem

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is

the extraction—operation database memory, in which the extraction instructions are stored.

Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3. Typically, the

system is initialized from a microprocessor (not shown) at which time these memories are

loaded through a host interface multiplexer and control register 1005 via the internal

buses 1003 and 1004. Note that the contents of 1001 and 1002 are preferably obtained by

compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface

controller 1022. The buffer 1008 and interface control 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packet start

signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packet starts loading into the buffer memory 1008, pattern recognition engine (PRE) 1006

carries out the operations on the input buffer memory described in block 304 of FIG. 3.

That is, protocol types and associated headers for each protocol layer that exist in the

packet are determined.

The PRE searches database 1001 and the packet in buffer 1008 in order to

recognize the protocols the packet contains. In one implementation, the database 1001

includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.

The first lookup table is always at address zero. The Pattern Recognition Engine uses a

base packet offset from a control register to start the comparison. It loads this value into a

current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a

terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a first

stage that checks the protocol type field to determine if it is an 802.3 packet and the field

should be treated as a length. If it is not a length, the protocol is checked in a second

- NOAC EX. 1016 Page 34

NOAC Ex. 1016 Page 35

10

15

20

25

30

fl 0x

28

stage. The first stage is the only protocol level that is not programmable. The second stage

has two full sixteen bit content addressable memories (CAMs) defined for future protocol

additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for the

extraction engine (also called a “s1icer”) 1007. The recognized patterns and the commands

are sent to the extraction engine 1007 that extracts information from the packet to build

the parser record. Thus, the operations of the extraction engine are those carried out in

blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to slicer 1007 in

the form of extraction instruction pointers which tell the extraction engine 1007 where to

a find the instructions in the extraction operations database memory (i.e., slicer instruction

database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol

identifier and a process code to the extractor. The protocol identifier is added to the flow

signature and the process code is used to fetch the first instruction from the instruction

database 1002. Instructions include an operation code and usually source and destination

offsets as well as a length. The offsets and length are in bytes. A typical operation is the

MOVE instruction. This instruction tells the slicer 1007 to copy 11 bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains a

byte—wise barrel shifter so that the bytes moved can be packed into the flow signature.

The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the

input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already

processed by PRE 1006 while more (i.e., later arriving) packet information is being

simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory 1010. Any additional payload from

NOAC EX. 1016 Page 35

NOAC Ex. 1016 Page 36

.a..."A,q“a“

l!1m11.11‘33339NiimIiffill
3'13!45:.

4332;:liffil

Lilli!lifffi!43.1"#51

10

15

20

25

30

(5) m

29

the packet that is required for further analysis is also included. The parser output memory

1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once

all the information of a packet is in the parser output buffer memory 1010, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is

initialized prior to operation, and initialization includes loading the state processing

information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer

host interface controller 1118, which in turn has access to a cache system 1115. The cache

system has bi~directional access to and from the state processor of the system 1108. State

processor 1108 is responsible for initializing the state processor instruction database

memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

comprising packet signatures and payloads that come from the parser into the unified flow

key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB

records. A UFKB record is essentially a parser record; the UFKB holds records of packets

that are to be processed or that are in process. Furthermore, the UFKB provides for one or

more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:

the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more

finite state machines (FSM's). There is bi—directional access between each of the finite

state machines and the unified flow key buffer 1103. The UFKB record includes a field

that stores the packet sequence number, and another that is filled with state information in

the form of a program counter for the state processor 1108 that implements state

processing 328. The status flags of the UFKB for any entry includes that the LUE is done

and that the LUE is transfem'ng processing of the entry to the state processor. The LUE

__ NOAC EX. 1016 Page 36

NOAC Ex. 1016 Page 37

(a?t“"’9‘“
he»w

,,"paw...WWW“xwwmth

10

11‘"“531;:6.1113

15

5:;

20

25

30

0 fl\ \.

3O

done indicator is also used to indicate what the next entry is for the LUE. There also is

provided a flag to indicate that the state processor is done with the current flow and to

indicate what the next entry is for the state processor. There also is provided a flag to

indicate the state processor is transferring processing of the UFKB~entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been

processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB

record data may be processed by the flow insertion/deletion engine 1110 after being

processed by the state processor 1108 or only by the LUE. Whether or not a particular

engine has been applied to any unified flow key buffer entry is determined by status fields

set by the engines upon completion. In one embodiment, a status flag in the UFKB~entry

indicates whether an entry is new or found. In other embodiments, the LUE issues a flag

to pass the entry to the state processor for processing, and the required operations for a

new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

particular engine.

Each of these three engines also has bi—directional access to a cache subsystem

1115 that includes a caching engine. Cache 1115 is designed to have information flowing

in and out of it from five different points within the system: the three engines, external

memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and

a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host

interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor) can

thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content

addressable memory cells (CAMs) each including an address portion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.

The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The

bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom

CAM are replaced by the flow—entry from the flow—entry database 324. This now becomes

the most recently used entry, so the contents of the bottom CAM are moved to the top

NOAC EX. 1016 Page 37

NOAC Ex. 1016 Page 38

”F"(Wm-Ni?“Iv-«~31.Th
awin"'*

v,m\-¢4v—
(”w;.

51:71%:51'"It!“.3211Ifiitu117.11

10

15

20

25

3O

0 O

31

CAM and all CAM contents are shifted down. Thus, the cache is an associative cache

with a true LRU replacement policy.

The LUE 1107 first processes a UFKB -entry, and basically performs the operation

of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate that a “new”

UFKB-entry is available. The LUE uses the hash in the UFKB—entry to read a matching

bin of up to four buckets from the cache. The cache system attempts to obtain the

matching bin. If a matching bin is not in the cache, the cache 1115 makes the request to

the UMC 1119 to bring in a matching bin from the external memory.

When a flow—entry is found using the hash, the LUE 1107 looks at each bucket

and compares it using the signature to the signature of the UFKB—entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from the

cache, a time stamp in set in the flow key of the UFKB record, a protocol identification

and state determination is made using a table that was loaded by compilation process 310

during initialization, the status for the record is set to indicate the LUE has processed the

record, and an indication is made that the UFKB-entry is ready to start state processing.

The identification and state determination generates a protocol identifier which in the

preferred embodiment is a “jump vector” for the state processor which is kept by the

UFKB for this UFKB-entry and used by the state processor to start state processing for

the particular protocol. For example, the jump vector jumps to the subroutine for

processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a

previously encountered flow, then a calculator component enters one or more statistical

measures stored in the flow—entry, including the timestamp. In addition, a time difference

from the last stored timestamp may be stored, and a packet count may be updated. The

state of the flow is obtained from the flow—entry is examined by looking at the protocol

identifier stored in the flow-entry of database 324. If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

vector for the state processor to a subroutine to state processing the protocol, and no more

classification is indicated in the preferred embodiment by the jump vector being zero. If

the protocol identifier indicates more processing, then an indication is made that the

‘NOAC EX. 1016 Page 38

NOAC Ex. 1016 Page 39

iiiii:

n':'::nrililil'iE':':‘11.n':'::u112311
”1312

niim.mi.

.=:_

10

15

20

25

30

o o

32

UFKB-entry is ready to start state processing and the status for the record is set to indicate

the LUE has processed the record.

The state processor 1108 processes information in the cache system according to a

UFKB-entry after the LUE has completed. State processor 1108 includes a state processor

program counter SPPC that generates the address in the state processor instruction

database 1109 loaded by compiler process 310 during initialization. It contains an

Instruction Pointer (SPIP) which generates the SPID address. The instruction pointer can

be incremented or loaded from a Jump Vector Multiplexor which facilitates conditional

branching. The SPIP can be loaded from one of three sources: (1) A protocol identifier

from the UFKB, (2) an immediate jump vector form the currently decoded instruction, or

(3) a value provided by the arithmetic logic unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and String

Compare functions necessary to implement the State Processor instructions. The main

blocks of the SPALU are: The A and B Registers, the Instruction Decode & State

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference

Search Register set, and a Compare block which compares two operands by exclusive-or—

ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state

operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is

new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB—entry is used

to set the state processor’s instruction counter. The state processor 1108 starts the process

NOAC EX. 1016 Page 39

NOAC Ex. 1016 Page 40

E‘;

s‘

t

1
E
E,
a;

Ek.

5

iF

3‘ 10
a

15

20

25

3o

('1 O

33

by using the last protocol recognized by the parser subsystem 301 as an offset into a jump

table. The jump table takes us to the instructions to use for that protocol. Most

instructions test something in the unified flow key buffer or the flow-entry if it exists. The

state processor 1108 may have to test bits, do comparisons, add or subtract to perform the

test.

The first state processor instruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performs the one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, a compare, etc.), so that many such instructions need to be

performed on each unified flow key buffer entry. One aspect of the state processor is its

ability to search for one or more (up to four) reference strings in the payload part of the

UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

In 1307, a check is made to determine if there are any more instructions to be

performed for the packet. If yes, then in 1308 the system sets the state processor

instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by the

SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet

has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is fully

determined. If indeed there are no more states to process for this flow, then in 1311 the

processor finalizes the processing. Some final states may need to put a state in place that

tells the system to remove a flow—for example, if a connection disappears from a lower

level connection identifier. In that case, in 1311, a flow removal state is set and saved in

the flow-entry. The flow removal state may be a NOP (no-op) instruction which means

there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP or

NOAC EX. 1016 Page 40

NOAC Ex. 1016 Page 41

~<4xr’"p—.:~u'%,w'»
,,~or-m,»~,~

iii:iii]:"

tiff}:u'IffiIHIS}!:iEEEfI

10

15

20

25

30

(W O

34

otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in

1310 the system saves the state processor instruction pointer in the current flow—entry in

the current flow—entry. That will be the next operation that will be performed the next

time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer 1103

and the flow-entry in the cache. Once the state processor is done, a flag is set in the

UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be

inserted or deleted from the database of flows, control is then passed on to the flow

insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB-entry indicating that

the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the

flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are

grouped into bins of buckets by the hash value. The engine processes a UFKB—entry that

may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin

(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that

matches the hash of the UFKB, so this bin may already have been sought for the UFKB—

entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be

maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the

bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket

and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp that

is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and

bucket record flow signature to the packet to verify that all the elements are in place to

complete the record. In 1211 the system marks the record bin and bucket as “in process”

and as “new” in the cache system (and hence in the external memory). In 1212, the initial

NOAC EX. 1016 Page 41

NOAC Ex. 1016 Page 42

EI’
z

E:

human-w»:W'WV“.M
1133:."3322211713331"hisHill'n
"32m.152-12..

‘35-}?!11211.“(Qumrw‘=‘W"‘‘"
tiff]!tiff}?!Jill}:13};

10

15

20

25

30

(“1 m

35

statistical measures for the flow-record are set in the cache system. This in the preferred

embodiment clears the set of counters used to maintain statistics, and may perform other

procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next

bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket,

the unified flow key buffer entry for the packet is set as “drop,” indicating that the system

cannot process the particular packet because there are no buckets left in the system. The

process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow insertion and

deletion operations are completed for this UFKB—entry. This also lets the UFKB provide

the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow key buffer entry by all of

the engines required to access and manage a particular packet and its flow signature, the

unified flow key buffer entry is marked as “completed.” That element will then be used

by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and some are maintained

in the cache 1115. The cache system 1115 is intelligent enough to access the flow

database and to understand the data structures that exists on the other side of memory

interface 1123. The lockup/update engine 1107 is able to request that the cache system

pull a particular flow or “buckets” of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate on

information found in the cache system once it is looked up by means of the lockup/update

engine request, and the flow insertion/deletion engine 1110 can create new entries in the

cache system if required based on information in the unified flow key buffer 1103. The

cache retrieves information as required from the memory through the memory interface

1123 and the unified memory controller 1119, and updates information as required in the

memory through the memory controller 1119.

There are several interfaces to components of the system external to the module of

FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

NOAC EX. 1016 Page 42

NOAC Ex. 1016 Page 43

l

l
E
l

i
;

~.1mm“M

..>)..‘x. (W~,.~,.WmmW1: hwwwagww«mewmm»m~WWMW“>~“‘W‘V"”"'
warw.

Mfizu”552:.11111133:“lliiiil‘if'ziil(this117.111
1117111111!11311”"553:

'iffiliI131!

10

15

20

25

30

fl ,0\

36

processing system such as a microprocessor or a multiplexor (MUX) system.

Consequently, one can connect the overall traffic classification system of FIGS. 11 and 12

into some other processing system to manage the classification system and to extract data

gathered by the system.

The memory interface 1123 is designed to interface to any of a variety of memory

systems that one may want to use to store the flow-entries. One can use different types of

memory systems like regular dynamic random access memory (DRAM), synchronous

DRAM, synchronous graphic memory (SGRAM), static random access memory (SRAM),

and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012—a general interface that works in tandem with the signals of the input buffer

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host interface

multiplexor and control registers 1005. This enables the parsing system to be managed by

an external system, for example a microprocessor or another kind of external logic, and

enables the external system to program and otherwise control the parser.

The preferred embodiment of this aspect of the invention is described in a

hardware description language (HDL) such as VHDL or Verilog. It is designed and

created in an HDL so that it may be used as a single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposes related

to creating and analyzing traffic within a network. Verilog or other HDL implementation

is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in FIGS. 10

and 11 are implemented in a set of six field programmable logic arrays (FPGA’s). The

boundaries of these FPGA’s are as follows. The parsing subsystem of FIG. 10 is

implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts

of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of

1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented as a single

FPGA. State processor 1108 and part of state processor instruction database memory

1109 is another FPGA. Portions of the state processor instruction database memory 1109

are maintained in external SRAM’s. The lockup/update engine 1107 and the flow

NOAC EX. 1016 Page 43

NOAC Ex. 1016 Page 44

,»)4.0.»...uan

,...mwwaw.»-int<

._»l~....,~u...¢_..w.....

’wmmv—"w‘»~

am

115511!.tziii.it'll11:15ILIIii"231311[1214'Iii'fii
limit

iii:lift!iii::1:..-..

10

15

20

25

30

o ox.

37

insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes the cache

system 1115, the unified memory control 1119, and the analyzer host interface and

control 11 18.

Note that one can implement the system as one or more VSLI devices, rather than

as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is

anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a “core”) of a larger single chip unit.

Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets

from a connection point 121 on network 102 so that all packets passing point 121 in either

direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 301 ,

which determines flow signatures, and analyzer sub-system 303 that analyzes the flow

signature of each packet. A memory 324 is used to store the database of flows that are

determined and updated by monitor 300. A host computer 1504, which might be any

processor, for example, a general-purpose computer, is used to analyze the flows in

memory 324. As is conventional, host computer 1504 includes a memory, say RAM,

shown as host memory 1506. In addition, the host might contain a disk. In one

application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one

would, for example, implement an RMON probe, where a network interface card is used

to send RMON information to the network. Commercial SNMP implementations also are

available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state

.NOAC EX. 1016 Page 44

NOAC Ex. 1016 Page 45

fl..;m,u,.x~..rvmn'«wr,x.

MW‘M...,
it?1:33;“Iii]!“552]!"finliIZZil

W1Wu)«beAn~.

10

15

20

25

30

fl 0

38

analysis for packet exchanges that are commonly referred to as “server announcement”

type exchanges. Server announcement is a process used to ease communications between

a server with multiple applications that can all be simultaneously accessed from multiple

clients. Many applications use a server announcement process as a means of multiplexing

a single port or socket into many applications and services. With this type of exchange,

messages are sent on the network, in either a broadcast or multicast approach, to

announce a server and application, and all stations in the network may receive and decode

these messages. The messages enable the stations to derive the appropriate connection

point for cormnunicating that particular application with the particular server. Using the

server announcement method, a particular application communicates using a service

channel, in the form of a TCP or UDP socket or port as in the IP protocol suite, or using a

SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out “in-stream analysis” of packet

exchanges. The “in-stream analysis” method is used either as a primary or secondary

recognition process. As a primary process, in—stream analysis assists in extracting detailed

information which will be used to further recognize both the specific application and

application component. A good example of in-stream analysis is any Web—based

application. For example, the commonly used PointCast Web information application can

be recognized using this process; during the initial connection between a PointCast server

and client, specific key tokens exist in the data exchange that will result in a signature

being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server

announcement process. In many cases in-stream analysis will augment other recognition

processes. An example of combining in~stream analysis with server announcement can be

found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires

an initial connection to a predefined socket or port number. This method of

cormnunication is used in a variety of transport layer protocols. It is most commonly seen

in the TCP and UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

NOAC EX. 1016 Page 45

NOAC Ex. 1016 Page 46

 i137”33:1:IiIIii”5253i!Ii'iiutill!
"$22!!.dfi.

‘fz'ffilrififh"

(Eli:H.227:Iifffii353:3:

10

15

20

25

30

m m

39

port to exchange the remainder of the data between the client and the server. The server

then replies to the request of the client using this newly created port. The original port

used by the client to connect to the server will never be used again during this data

exchange.

One example of session tracking is TFI‘P (Trivial File Transfer Protocol), a

version of the TCP/1P FTP protocol that has no directory or password capability. During

the client/server exchange process of TFI‘P, a specific port (port number 69) is always

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDP port 69. Once the server receives this request, a

new port number is created on the server. The server then replies to the client using the

new port. In this example, it is clear that in order to recognize TFTP; network monitor

300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for monitoring

the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular

connections in the network. Connection—oriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCP transport

protocol that provides a reliable means of sending information between a client and a

server. When a data exchange is initiated, a TCP request for synchronization message is

sent. This message contains a specific sequence number that is used to track an

acknowledgement from the server. Once the server has acknowledged the synchronization

request, data may be exchanged between the client and the server. When communication

is no longer required, the client sends a finish or complete message to the server, and the

server acknowledges this finish request with a reply containing the sequence numbers

from the request. The states of such a connection-oriented exchange relate to the various

types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the

basic underlying process remains similar. A typical server announcement message is sent

to one or more clients in a network. This type of announcement message has specific

content, which, in another aspect of the invention, is salvaged and maintained in the

NOAC EX. 1016 Page 46

NOAC Ex. 1016 Page 47

.Imrlpwvm‘,y,, ii'fi‘mmin‘51:“Ilzim"I.“
”III"all,

...m,,«:~‘4«nou.-;~<«

ram-..

10

15

20

25

fl 0

40

database of flow-entries in the system. Because the announcement is sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun—RPC is the implementation by Sun Microsystems, Inc. (Palo Alto, California)

of the Remote Procedure Call (RPC), a programming interface that allows one program to

use the services of another on a remote machine. A Sun-RPC example is now used to

explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must establish

a connection, for which the RPC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database

called the port Mapper. The port Mapper creates a direct association between a Sun-RPC

program or application and a TCP or UDP socket or port (for TCP or UDP

implementations). An application or program number is a 32-bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a Sun—RPC server can present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1) making

a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined

UDP or TCP socket. Once the port Mapper process on the sun RPC server receives the

request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

NOAC EX. 1016 Page 47

NOAC Ex. 1016 Page 48

:31!Hill11.1111

11..HimIiIIZi‘I':

':::'§fi1133.1'

iififil11.2211113311#5553ywr,...,i,.t.’WMmW-‘WfiaMVMWN,may/u.WWWMtWW1WW "21:11.11

10

15

20

25

30

C1 m

41

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified, and

thus will use the TCP protocol for its reply.

3. The server 110 sends a TCP packet to port number 111, with an RPC Bind

Lookup Reply. The reply contains the specific port number (e. g., port number

‘port’) on which future transactions will be accepted for the specific RPC

program identifier (e.g., Program ‘program’) and the protocol (UDP or TCP)

for use.

It is desired that from now on every time that port number ‘port’ is used, the

packet is associated with the application program ‘program’ until the number ‘port’ no

longer is to be associated with the program ‘program’. Network monitor 300 by creating a

flow-entry and a signature includes a mechanism for remembering the exchange so that

future packets that use the port number ‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways

that a particular program—say ‘program’—might be associated with a particular port

number, for example number ‘port’. One is by a broadcast announcement of a particular

association between an application service and a port number, called a Sun RPC

portMapper Announcement. Another, is when some server—say the same SERVER 2—

replies to some client—say CLIENT 1—requesting some portMapper assignment with a

RPC portMapper Reply. Some other client—say CLIENT 2—might inadvertently see this

request, and thus know that for this particular server, SERVER 2, port number ‘port’ is

associated with the application service ‘program’. It is desirable for the network monitor

300 to be able to associate any packets to SERVER 2 using port number ‘port’ with the

application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e. g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

FIG. 1) via the server’s interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow 900

starts with a step 910 that a Remote Procedure Call bind lookup request is issued by client

‘ NOAC EX. 1016 Page 48

NOAC Ex. 1016 Page 49

"33:1:.ulzfi."liil'nifiniiIIh'EEEEh"in:I121
‘55:)?11231

MJifffi!iiffiii{ESL 10

15

20

25

0 Fr

42

106 and ends with the server state creation step 904. Such RPC bind lookup request

includes values for the ‘program,’ ‘version,’ and ‘protocol’ to use, e.g., TCP or UDP. The

process for Sun RPC analysis in the network monitor 300 includes the following aspects. :

0 Process 909: Extract the ‘program,’ ‘version,’ and ‘protocol’ (UDP or TCP).

Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

0 Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If

value is portMapper, save paired socket (i.e., dest for destination address, src

for source address). Decode ports and mapping, save ports with socket/addr

key. There may be more than one pairing per mapper packet. Form a signature

(e.g., a key). A flow-entry is created in database 324. The saving of the request

is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lookup

the request (905). A new signature (i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow-

entry database. That signature now may be used to identify packets associated with the

server.

The server state creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol can

announce that it is able to provide a particular application service. Embodiments of the

present invention preferably can analyze when an exchange occurs between a client and a

server, and also can track those stations that have received the announcement of a service

in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such

causes various clients to execute a similar set of operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapper step 901 could

be in reply to a portMapper request, and is also broadcast. It includes all the service

parameters.

NOAC EX. 1016 Page 49

NOAC Ex. 1016 Page 50

1113'”337i:tiiilii“:23?!ItfznI11]:
"53:“it.

itIiffit‘

iifffh11.22?!

E\
9/i
Fx
i
'r
a{

warn-w'3‘4.

Poverty»w‘

10

15

20

25

30

O O

43

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206—209 are exchanged, e.g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodiment of the present

invention might generate a pair of flow signatures, “signature—1” 210 and “signature-2”

212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds

to such a request sent from CLIENT 3 to SERVER 2. This packet contains important

information that is used in building a signature according to an aspect of the invention. A

source and destination network address occupy the first two fields of each packet, and

according to the patterns in pattern database 308, the flow signature (shown as KEYI 230

in FIG. 2) will also contain these two fields, so the parser subsystem 301 will include

these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address identifies the

client 106 (shown also as 202), the label used in the drawing is “C1”. If such address

identifies the server 110 (shown also as server 204), the label used in the drawing is “SI”.

The first two fields 214 and 215 in packet 206 are “SI” and C1” because packet 206 is

provided from the server 110 and is destined for the client 106. Suppose for this example,

“SI” is an address numerically less than address “C1”. A third field “pl” 216 identifies the

particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate

port numbers that are used. The conversation direction determines where the port number

field is. The diagonal pattern in field 217 is used to identify a source-port pattern, and the

hash pattern in field 218 is used to identify the destination-port pattern. The order

indicates the client—server message direction. A sixth field denoted “i1” 219 is an element

that is being requested by the client from the server. A seventh field denoted “sla” 220 is

the service requested by the client from server 110. The following eighth field “QA” 221

(for question mark) indicates that the client 106 wants to know what to use to access

application “51a”. A tenth field “QP” 223 is used to indicate that the client wants the

server to indicate what protocol to use for the particular application.

NOAC EX. 1016 Page 50

NOAC Ex. 1016 Page 51

 10

15

11.227!lifffii1m!
20

25

30

m m\

44

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

packets, and is transmitted to the server 110 on a well—known service connection identifier

(port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the

RFC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224—233. The destination and source addresses are

carried in fields 224 and 225, e. g., indicated “C1” and “S 1”, respectively. Notice the order

is now reversed, since the client-server message direction is from the server 110 to the

client 106. The protocol “p1” is used as indicated in field 226. The request “i1” is in field

229. Values have been filled in for the application port number, e.g., in field 233 and

protocol ““p2”” in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a source

address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the paiticular embodiment, the numerically

lower address is always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume “S1”<“C1”, the order is address “SI”

followed by client address “C1”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p1”. The next

field used for the signature is field 243, which contains the destination source port number

shown as a crosshatched pattern from the field 218 of the packet 206. This pattern will be

recognized in the payload of packets to derive how this packet or sequence of packets

exists as a flow. In practice, these may be TCP port numbers, or a combination of TCP

port numbers. In the case of the Sun RPC example, the crosshatch represents a set of port

numbers of UDS for p1 that will be used to recognize this flow (e. g., port 111). Port 111

indicates this is Sun RPC. Some applications, such as the Sun RPC Bind Lookups, are

NOAC EX. 1016 Page 51

NOAC Ex. 1016 Page 52

'I‘J4-16‘“.A».'

"35:1:iiiiiil‘iEEEi!niim7:17.32
11:3:..s::..

:::',‘i!IN!

10

ii

15

20

25

30

fl, 0x.

45

directly determinable (“known”) at the parser level. So in this case, the signature KEY—1

points to a known application denoted “a1” (Sun RPC Bind Lookup), and a next-state that

the state processor should proceed to for more complex recognition jobs, denoted as state

“stD” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY-1. Hence, when the signature enters

the analyzer subsystem 303 from the parser subsystem 301, the complete flow-entry is

obtained, and in this flow—entry indicates state “stD”. The operations for state “stD” in the

state processor instruction database 326 instructs the state processor to build and store a

new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the

state processor also includes the destination and a source addresses 250 and 251,

respectively, for server “31” followed by (the numerically higher address) client “C1”. A

protocol field 252 defines the protocol to be used, e. g., “p2” which is obtained from the

reply packet. A field 253 contains a recognition pattern also obtained from the reply

packet. In this case, the application is Sun RFC, and field 254 indicates this application

“a2”. A next—state field 255 defines the next state that the state processor should proceed

to for more complex recognition jobs, e.g., a state “stl”. In this particular example, this is

a final state. Thus, KEY-2 may now be used to recognize packets that are in any way

associated with the application “a2”. Two such packets 208 and 209 are shown, one in

each direction. They use the particular application service requested in the original Bind

Lookup Request, and each will be recognized because the signature KEY-2 will be built

in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “SI” followed by client “C1”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,

large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented

by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address SI and C1, in a pair of fields 260 and 261. A field

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

NOAC EX. 1016 Page 52

NOAC Ex. 1016 Page 53

10

15

20

25

30

(W m

46

Some network-server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the packet.

Others require a sequence of state transitions to occur in order to match a known and

predefined climb from state-to-state.

Thus the flow signature for the recognition of application “a ” is automatically set

up by predefining what packet—exchange sequences occur for this example when a

relatively simple Sun Microsystems Remote Procedure Call bind lookup request

instruction executes. More complicated exchanges than this may generate more than two

flow signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a “final” resting state such as “stl”

in field 255 is reached. All these are used to build the final set of flow signatures for

recognizing a particular application in the future.

Embodiments of the present invention automatically generate flow signatures with

the necessary recognition patterns and state transition climb procedure. Such comes from

analyzing packets according to parsing rules, and also generating state transitions to

search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Note that one in the art will understand that computer networks are used to

connect many different types of devices, including network appliances such as telephones,

“Internet” radios, pagers, and so forth. The term computer as used herein encompasses all

such devices and a computer network as used herein includes networks of such

computers.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted as

limiting. Various alterations and modifications will no doubt become apparent to those or

ordinary skill in the art after having read the above disclosure. Accordingly, it is intended

that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.

The Pattern Parse and Extraction Database Format

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

NOAC EX. 1016 Page 53

NOAC Ex. 1016 Page 54

1W

,—~why-4mm!»

“My—vWu3....~4--
it

~Ht..1

an»’’»

"23:1:.mfi."n2.minnil:MinEEiniiiilii
‘Fffiliriff???

lifffiltill!IiIffiI':E::'..

10

15

20

25

30

O (W

47

base level). Each protocol is either a parent node of some other protocol at the next later

or a terminal node. A parent node links a protocol to other protocols (child protocols) that

can be at higher layer levels. Thus a protocol may have zero or more children.

As an example of the tree structure, consider an Ethernet packet. One of the

children nodes may be the IP protocol, and one of the children of the IP protocol may be

the TCP protocol. Another child of the IP may be the UDP protocol.

A packet includes at least one header for each protocol used. The child protocol of

a particular protocol used in a packet is indicated by the contents at a location within the

header of the particular protocol. The contents of the packet that specify the child are in

the form of a child recognition pattern.

A network analyzer preferably can analyze many different protocols. At a base

level, there are a number of packet types used in digital telecommunications, including

Ethernet, HDLC, ISDN, Lap B, ATM, X25, Frame Relay, Digital Data Service, FDDI

(Fiber Distributed Data Interface), and T1, among others. Many of these packet types use

different packet and/or frame formats. For example, data is transmitted in ATM and

frame-relay systems in the form of fixed length packets (called “cells”) that are 53 octets

(i.e., bytes) long; several such cells may be needed to make up the information that might

be included in a single packet of some other type.

Note that the term packet herein is intended to encompass packets, datagrams,

frames and cells. In general, a packet format or frame format refers to how data is

encapsulated with various fields and headers for transmission across a network. For

example, a data packet typically includes an address destination field, a length field, an

error correcting code (ECC) field or cyclic redundancy check (CRC) field, as well as

headers and footers to identify the beginning and end of the packet. The terms “packet

format,” “frame format” and “cell format” are generally synonymous.

The packet monitor 300 can analyze different protocols, and thus can perform

different protocol Specific operations on a packet wherein the protocol headers of any

protocol are located at different locations depending on the parent protocol or protocols

used in the packet. Thus, the packet monitor adapts to different protocols according to the

contents of the packet. The locations and the information extracted from any packet are

adaptively determined for the particular type of packet. For example, there is no fixed

' NOAC EX. 1016 Page 54

NOAC Ex. 1016 Page 55

10

11-7lififn11:11"333:?Ii‘fzn111',le
> .
2 15

Iii”!a

‘55}?111711"

FISHI‘Kfi1153:1535}:
20

3‘mm;

25

30

O (V

48

definition of what to look for or where to look in order to form the flow signature. In

some prior art systems, such as that described in United States Patent 5,101,402 to Chiu,

et al., there are fixed locations specified for particular types of packets. With the

proliferation of protocols, the specifying of all the possible places to look to determine the

session becomes more and more difficult. Likewise, adding a new protocol or application

is difficult. In the present invention, the number of levels is variable for any protocol and

is whatever number is sufficient to uniquely identify as high up the level system as we

wish to go, all the way to the application level (in the 051 model).

Even the same protocol may have different variants. Ethernet packets for example,

have several known variants, each having a basic format that remains substantially the

same. An Ethernet packet (the root node) may be an Ethertype packet—also called an

Ethernet Type/Version 2 and a DIX (DIGITAL—Intel—Xerox packet)—or an IEEE

Ethernet (IEEE 803.x) packet. A monitor should be able to handle all types of Ethernet

protocols. With the Ethertype protocol, the contents that indicate the child protocol is in

one location, while with an IEEE type, the child protocol is specified in a different

location. The child protocol is indicated by a child recognition pattern.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i. e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature. Such information is also to be specified in the parsing

structures and extraction operations database 308. This includes all of the header

information at this level in the form of 6 bytes of Dst MAC information 1606 and 6 bytes

of Src MAC information 1610. Also specified are the source and destination address

components, respectively, of the hash. These are shown as 2 byte Dst Hash 1608 from the

Dst MAC address and the 2 byte Src Hash 1612 from the Src MAC address. Finally,

information is included (1614) On where to the header starts for information related to the

next layer level. In this case the next layer level (level 2) information starts at packet

offset 12.

FIG. 17A now shows the header information for the next level (level-2) for an

Ethertype packet 1700.

For an Ethertype packet 1700, the relevant information from the packet that

NOAC EX. 1016 Page 55

NOAC Ex. 1016 Page 56

1.~tr”(Show-W*4.

;arv.xw,w
zany

..“W“,wgaz—r-~9-."w-

1“?»

”33:5:till!'12:}:115.3!1117,11
Iifffnam,

1553.71!113.11

i127}:n‘fifiiJififitin.

10

15

20

25

30

0 0

49

indicates the next layer level is a two-byte type field 1702 containing the child recognition

pattern for the next level. The remaining information 1704 is shown hatched because it

not relevant for this level. The list 1712 shows the possible children for an Ethertype

packet as indicated by what child recognition pattern is found offset 12.

Also shown is some of the extracted part used for the parser record and to locate

the next header information. The signature part of the parser record includes extracted

part 1702. Also included is the 1-byte Hash component 1710 from this information.

An offset field 1710 provides the offset to go to the next level information, i.e., to

locate the start of the next layer level header. For the Ethertype packet, the start of the

next layer header 14 bytes from the start of the frame.

Other packet types are arranged differently. For example, in an ATM system, each

ATM packet comprises a five-octet “header” segment followed by a forty-eight octet

“payloa ” segment. The header segment of an ATM cell contains information relating to

the routing of the data contained in the payload segment. The header segment also

contains traffic control information. Eight or twelve bits of the header segment contain the

Virtual Path Identifier (VPI), and sixteen bits of the header segment contain the Virtual

Channel Identifier (VCI). Each ATM exchange translates the abstract routing information

represented by the VPI and VCI bits into the addresses of physical or logical network

links and routes each ATM cell appropriately.

FIG. 17B shows the structure of the header of one of the possible next levels, that

of the IP protocol. The possible children of the IP protocol are shown in table 1752. The

header starts at a different location (L3) depending on the parent protocol. Also included

in FIG. 17B are some of the fields to be extracted for the signature, and an indication of

where the next level’s header would start in the packet.

Note that the information shown in FIGS. 16, 17A, and 17B would be specified to

the monitor in the form of PDL files and compiled into the database 308 of pattern

structures and extraction operations.

The parsing subsystem 301 performs operations on the packet header data based

on information stored in the database 308. Because data related to protocols can be

considered as organized in the form of a tree, it is required in the parsng subsystem to

NOAC EX. 1016 Page 56

NOAC Ex. 1016 Page 57

”an~mk4¢¢-a‘ -'

“.7.“"a....
:J.a1'WW

10

15

20

25

o a

50

search through data that is originally organized in the form of a tree. Since real time

operation is preferable, it is required to carry out such searches rapidly.

Data structures are known for efficiently storing information organized as trees.

Such storage—efficient means typically require arithmetic computations to determine

pointers to the data nodes. Searching using such storage-efficient data structures may

therefore be too time consuming for the present application. It is therefore desirable to

store the protocol data in some form that enables rapid searches.

In accordance with another aspect of the invention, the database 308 is stored in a

memory and includes a data structure used to store the protocol specific operations that

are to be performed on a packet. In particular, a compressed representation is used to store

information in the pattern parse and extraction database 308 used by the pattern

recognition process 304 and the extraction process 306 in the parser subsystem 301. The

data structure is organized for rapidly locating the child protocol related information by

using a set of one or more indices to index the contents of the data structure. A data

structure entry includes an indication of validity. Locating and identifying the child

protocol includes indexing the data structure until a valid entry is found. Using the data

structure to store the protocol information used by the pattern recognition engine (PRE)

1006 enables the parser subsystem 301 to perform rapid searches.

In one embodiment, the data structure is in the form of a three-dimensional

structure. Note that this three dimensional structure in turn is typically stored in memory

as a set of two-dimensional structures whereby one of the three dimensions of the 3-D

structure is used as an index to a particular 2-D array. This forms a first index to the data

Structure.

FIG. 18A shows such a 3-D representation 1800 (which may be considered as an

indexed set of 2-D representations). The three dimensions of this data structure are:

NOAC EX. 1016 Page 57

NOAC Ex. 1016 Page 58

.r‘25
.'$1.2..."
.‘23:»

g1 10

”:22“.1311-":5I153]:111221!“E33111133:“11.1111Witwatwnmenézmmzv.:"z
15

mam-i!5v1:v 11II

a a “‘1.w

20

, .

9'.

25
’3

’3'
»%3v

1:

’2: 30V6

'3.., a

(W O

5 1

1. Type identifier [1:M]. This is the identifier that identifies a type of

protocol at a particular level. For example, 01 indicates an Ethernet frame. 64

indicates 1P, 16 indicates an IEEE type Ethernet packet, etc. Depending on

how many protocols the packet parser can handle, M may be a large number;

M may grow over time as the capability of analyzing more protocols is added

to monitor 300. When the 3-D structure is considered a set of 2-D structures,

the type ID is an index to a particular 2-D structure.

2. Size [1:64]. The size of the field of interest within the packet.

3. Location [1:512]. This is the offset location within the packet, expressed as

a number of octets (bytes).

At any one of these locations there may or may not be valid data. Typically, there

will not be valid data in most locations. The size of the 3-D array is M by 64 by 512,

which can be large; M for example may be 10,000. This is a sparse 3-D matrix with most

entries empty (i.e., invalid).

Each array entry includes a “node code” that indicates the nature of the contents.

This node code has one of four values: (1) a “protocol” node code indicating to the pattern

recognition process 304 that a known protocol has been recognized as the next (i.e., child)

protocol; (2) a “terminal” node code indicating that there are no children for the protocol

presently being searched, i.e., the node is a final node in the protocol tree; (3) a “null”

(also called “flush”) node code indicating that there is no valid entry.

In the preferred embodiment, the possible children and other information are

loaded into the data structure by an initialization that includes compilation process 310

based on the PDL files 336 and the layering selections 338. The following information is

included for any entry in the data structure that represents a protocol.

(a) A list of children (as type IDs) to search next. For example, for an Ethernet

type 2, the children are Ethertype (IP, IPX, etc, as shown in 1712 of FIG.

17). These children are compiled into the type codes. The code for IP is 64,

that for IPX is 83, etc.

(b) For each of the [BS in the list, a list of the child recognition patterns that

need to be compared. For example, 642080016 in the list indicates that the

' NOAC EX. 1016 Page 58

NOAC Ex. 1016 Page 59

”Qsuntan.”mus“:~. v‘
H.“.

{3.«rt-.21,;Taki’ix:e‘m
.. ,,‘ mums“.vn

~«.1.2n 113:".u:.‘.'."u.-nfim112.11‘33:?1111333:Iiii'ii

M

5—5

2.

10

15

20

25

30

O o

52

value to look for is 0800 (hex) for the child to be type 1D 64 (which is the IP

protocol). 83:813716 in the list indicates that the value to look for is 8137

(hex) for the child to be type ID 83 (which is the IPX protocol), etc.

(c) The extraction operations to perform to build the identifying signature for

the flow. The format used is (offset, length, flow_signature_value__identifier),

the flow_signature_va1ue_identifier indicating where the extracted entry goes

in the signature, including what operations (AND, ORs, etc.) may need to be

carried out. If there is also a hash key component, for instance, then

information on that is included. For example, for an Ethertype packet, the 2-

byte type (1706 in FIG 17) is used in the signature. Furthermore, a 1-byte

hash (1708 in FIG. 17A) of the type is included. . Note furthermore, the child

protocol starts at offset 14.

An additional item may be the “fold.” Folding is used to reduce the storage

requirements for the 3-D structure. Since each 2-D array for each protocol 1]) may be

sparsely populated, multiple arrays may be combined into a single 2-D array as long as

the individual entries do not conflict with each other. A fold number is then used to

associate each element. For a given lookup, the fold number of the lookup must match the

fold number entry. Folding is described in more detail below.

In the case of the Ethernet, the next protocol field may indicate a length, which

tells the parser that this is a [BBB type packet, and that the next protocol is elsewhere.

Normally, the next protocol field contains a value which identifies the next, i.e., child

protocol.

The entry point for the parser subsystem is called the virtual base layer and

contains the possible first children, i.e., the packet types. An example set of protocols

written in a high level protocol description language (PDL) is included herein. The set

includes PDL files, and the file describing all the possible entry points (i.e., the virtual

base) is called virtual.de There is only one child, 01, indicating the Ethernet, in this file.

Thus, the particular example can only handle Ethernet packets. In practice, there can be

multiple entry points.

In one embodiment, the packet acquisition device provides a header for every

packet acquired and input into monitor 300 indicating the type of packet. This header is

' NOAC EX. 1016 Page 59

NOAC Ex. 1016 Page 60

 ,x

51W

53

used to determine the virtual base layer entry point to the parser subsystem. Thus, even at

the base layer, the parser subsystem can identify the type of packet.

Initially, the search starts at the child of the virtual base, as obtained in the header

supplied by the acquisition device. In the case of the example, this has 1]) value 01, which

is the 2-D array in the overall 3—D structure for Ethernet packets.

Thus hardware implementing pattern analysis process 304 (e.g., pattern

recognition engine (PRE) 1006 of FIG. 10) searches to determine the children (if any) for

the 2-D array that has protocol 1]) 01. In the preferred embodiment that uses the 3—D data

structure, the hardware PRE 1006 searches up to four lengths (i.e., sizes) simultaneously.

Thus, the process 304 searches in groups of four lengths. Starting at protocol ID 01, the

first two sets of 3-D locations searched arefl

335f\
-13.‘hTf‘jlfin113311‘EEEEiIz‘rifzni171!
$55.1:n33.

(1,1,1) (1,1, 2)

(1,2,1) (1,2,2)

(1, 3,1) (1, 3, 2)

(1,4,1) (1,4,2)

,xfi/At each stage of a search, the analysis process 304 examines the packet and the 3—

II...“117.1111:11:15}:

D data structure to see if there is a match (by looking at the node code). If no valid data is

found, e.g., using the node code, the size is incremented (to maximum of 4) and the offset

is then incremented as well.

Continuing with the example, suppose the pattern analysis process 304 finds

something at 1, 2, 12. By this, we mean that the process 304 has found that for protocol

1]) value 01 (Ethernet) at packet offset 12, there is information in the packet having a

length of 2 bytes (octets) that may relate to the next (child) protocol. The information, for

example, may be about a child for this protocol expressed as a child recognition pattern.

The list of possible child recognition patterns that may be in that part of the packet is

obtained from the data structure.

The Ethernet packet structure comes in two flavors, the Ethertype packet and

newer IEEE types, and the packet location that indicates the child is different for both.

The location that for the Ethertype packet indicates the child is a “length” for the IEEE

type, so a determination is made for the Ethernet packet whether the “next protocol”

location contains a value or a length (this is called a “LENGTH” operation). A successful

\4; NOAC EX. 1016 Page 60

NOAC Ex. 1016 Page 61

..«iffy:.
$22),

”,1:.~.

2“.7:-u‘:~‘c>.v'.f-~~

.‘:rag”nag.“u,ng....,4.3,.
"iii?1133:“1'11?“1133111122".“111211

i533?iifIiiiii]!iiE::II

1133:»”11'...

155111121711

10

15

20

25

30

54

LENGTH operation is indicated by contents less than or equal to 05DC16, then this is an

IEEE type Ethernet frame. In such a case, the child recognition pattern is looked for

elsewhere. Otherwise, the location contains a value that indicates the child.

Note that while this capability of the entry being a value (e.g., for a child protocol

1D) or a length (indicating further analysis to determine the child protocol) is only used

for Ethernet packets, in the future, other packets may end up being modified.

Accordingly, this capability in the form of a macro in the PDL files still enables such

future packets to be decoded.

Continuing with the example, suppose that the LENGTH operation fails. In that

case, we have an Ethertype packet, and the next protocol field (containing the child

recognition pattern) is 2 bytes long starting at offset 12 as shown as packet field 1702 in

FIG. 17A. This will be one of the children of the Ethertype shown in table 1712 in

FIG. 17A. The PRE uses the information in the data structure to check what the ID code

is for the found 2-byte child recognition pattern. For example, if the child recognition

pattern is 0800 (Hex), then the protocol is IP. If the child recognition pattern is 0BAD

(Hex) the protocol is VIP (VINES).

Note that an alternate embodiment may keep a separate table that includes all the

child recognition patterns and their corresponding protocol ID’s

To follow the example, suppose the child recognition pattern at 1,2,12 is 080016,

indicating IP. The ID code for the IP protocol is 6410). To continue with the Ethertype

example, once the parser matches one of the possible children for the protocl--in the

example, the protocol type is IP with an ID of 64-—then the parser continues the search for

the next level. The ID is 64, the length is unknown, and offset is known to be equal or

larger than 14 bytes (12 offset for type, plus 2, the length of type), so the search of the 3—

D structure commences from location (64, 1) at packet offset 14. A populated node is

found at (64, 2) at packet offset 14. Heading details are shown as 1750 in FIG. 17B. The

possible children are shown in table 1752.

Alternatively, suppose that at (1, 2, 12) there was a length 121110. This indicates

that this is an IEEE type Ethernet frame, which stores its type elsewhere. The PRE now

continues its search at the same level, but for a new ID, that of an IEEE type Ethernet

frame. An IEEE Ethernet packet has protocol 1D 16, so the PRE continues its search of

\A
\e" :1, NOAC EX. 1016 Page 61

NOAC Ex. 1016 Page 62

xnwwfuue-«HWETO‘W“-'~r\.u'.‘~-.-3r~ tliiiu.uEZ."ll?”53:1:IlIIl'u“5.331113.13:“11113:
1(1.11

tiff}!H7335tifili.

10

15

20

25

30

o, o

55

the three-dimensional space with ID 16 starting at packet offset 14.

In our example, suppose there is a “protocol” node code found at (16, 2) at packet

offset 14, and the next protocol is specified by child recognition pattern 080016. This

indicates that the child is the IP protocol, which has type ID 64. Thus the search

continues, starting at (64, 1) at packet offset 16.

Compression.

As noted above, the 3-D data structure is very large, and sparsely populated. For

example, if 32 bytes are stored at each location, then the length is M by 64 by 512 by 32

bytes, which is M megabytes. If M = 10,000, then this is about 10 gigabytes. It is not

practical to include 10 Gbyte of memory in the parser subsystem for storing the database

308. Thus a compressed form of storing the data is used in the preferred embodiment. The

compression is preferably carried out by an optimizer component of the compilation

process 310.

Recall that the data structure is sparse. Different embodiments may use different

compression schemes that take advantage of the sparseness of the data structure. One

embodiment uses a modification of multi—dimensional run length encoding.

Another embodiment uses a smaller number two-dimensional structures to store

the information that otherwise would be in one large three-dimensional structure. The

second scheme is used in the preferred embodiment.

FIG. 18A illustrated how the 3-D array 1800 can be considered a set of 2—D

arrays, one 2-D array for each protocol (i. e., each value of the protocol ID). The 2-D

structures are shown as 1802-1, 1802-2, ..., 1802—M for up to M protocol ID’s. One table

entry is shown as 1804. Note that the gaps in table are used to illustrate that each 2—D

structure table is typically large.

Consider the set of trees that represent the possible protocols. Each node

represents a protocol, and a protocol may have a child or be a terminal protocol. The base

(root) of the tree has all packet types as children. The other nodes form the nodes in the

tree at various levels from level 1 to the final terminal nodes of the tree. Thus, one

element in the base node may reference node ID 1, another element in the base node may

reference node ID 2 and so on. As the tree is traversed from the root, there may be points

' NOAC EX. 1016 Page 62

NOAC Ex. 1016 Page 63

,,«”4,52,;

”fizz:tilllil'ESEE'l!1m:1317.1!
31533;:..:!:I."iii?
I”ml:

10

15

20

25

30

(7 fl'\

56

in the tree where the same node is referenced next. This would occur, for example, when

an application protocol like Telnet can run on several transport connections like TCP or

UDP. Rather than repeating the Telnet node, only one node is represented in the patterns

database 308 which can have several parents. This eliminates considerable space

explosion.

Each 2-D structure in FIG. 18A represents a protocol. To enable saving space by

using only one array per protocol which may have several parents, in one embodiment,

the pattern analysis subprocess keeps a “current header” pointer. Each location (offset)

index for each protocol 2—D array in the 3-D structure is a relative location starting with

the start of header for the particular protocol.

Each of the two-dimensional arrays is sparse. The next step of the optimization, is

checking all the 2—D arrays against all the other 2-D arrays to find out which ones can

share memory. Many of these 2-D arrays are often sparsely populated in that they each

have only a small number of valid entries. So, a process of “folding“ is next used to

combine two or more 2-D arrays together into one physical 2-D array without losing the

identity of any of the original 2-D arrays (i.e., all the 2—D arrays continue to exist

logically). Folding can occur between any 2-D arrays irrespective of their location in the

tree as long as certain conditions are met.

Assume two 2—D arrays are being considered for folding. Call the first 2-D arrays

A and the second 2-D array B. Since both 2-D arrays are partially populated, 2-D array B

can be combined with 2—D arrays A if and only if none of the individual elements of these

two 2-D arrays that have the same 2—D location conflict. If the result is foldable, then the

valid entries of 2—D array B are combined with the valid entries of 2-D array A yielding

one physical 2-D array. However, it is necessary to be able to distinguish the original 2-D

array A entries from those of 2-D array B. For example, if a parent protocol of the

protocol represented by 2—D array B wants to reference the protocol ID of 2-D array B, it

must now reference 2-D array A instead. However, only the entries that were in the

original 2-D array B are valid entries for that lookup. To accomplish this, each element in

any given 2-D array is tagged with a fold number. When the original tree is created, all

elements in all the 2—D arrays are initialized with a fold value of zero. Subsequently, if 2-

D array B is folded into 2—D array A, all valid elements of 2-D array B are copied to the

corresponding locations in 2-D array A and are given different fold numbers than any of

NOAC EX. 1016 Page 63

NOAC Ex. 1016 Page 64

A!

1“,...»

WVs.“7«'"'a:
.r32?"m3.

gm,“wax :1»

..m

“2-:

533“?”<fi"'WW5,AW?"

3‘;$351.:

“”.-1Jfi!,’3.”".,mm?”11’

my.“

"_G_‘$1"m3':an":‘

'zuw,’mg.“.'«.0”364‘
,1,

95,....2‘ ,vk‘

915531:.uff:"Iii?tiff"liIIil“5333'"“in:11.1111
.m"... '.'::.‘llll..."'

......iii'ii11...]:Hull:iEESI

10

H Ul

20

25

30

O O

57

the elements in 2-D array A. For example, if both 2-D array A and 2-D array B were

original 2—D arrays in the tree (i.e., not previously folded) then, after folding, all the 2—D

array A entries would still have fold 0 and the 2-D array B entries would now all have a

fold value of 1. After 2-D array B is folded into 2-D array A, the parents of 2-D array B

need to be notified of the change in the 2-D array physical location of their children and

the associated change in the expected fold value.

This folding process can also occur between two 2—D arrays that have already been

folded, as long as none of the individual elements of the two 2-D arrays conflict for the

same 2—D array location. As before, each of the valid elements in 2-D array B must have

fold numbers assigned to them that are unique from those of 2-D array A. This is

accomplished by adding a fixed value to all the 2-D array B fold numbers as they are

merged into 2—D array A. This fixed value is one larger than the largest fold value in the

original 2—D array A. It is important to note that the fold number for any given 2—D array

is relative to that 2—D array only and does not span across the entire tree of 2-D arrays.

This process of folding can now be attempted between all combinations of two 2—

D arrays until there are no more candidates that qualify for folding. By doing this, the

total number of 2-D arrays can be significantly reduced.

Whenever a fold occurs, the 3-D structure (i.e., all 2—D arrays) must be searched

for the parents of the 2—D array being folded into another array. The matching pattern

which previously was mapped to a protocol ID identifying a single 2—D array must now

be replaced with the 2-D array ID and the next fold number (i.e., expected fold).

Thus, in the compressed data structure, each entry valid entry includes the fold

number for that entry, and additionally, the expected fold for the child.

An alternate embodiment of the data structure used in database 308 is illustrated in

FIG. 18B. Thus, like the 3—D structure described above, it permits rapid searches to be

performed by the pattern recognition process 304 by indexing locations in a memory

rather than performing address link computations. The structure, like that of FIG. 18A, is

suitable for implementation in hardware, for example, for implementation to work with

the pattern recognition engine (PRE) 1006 of FIG. 10.

A table 1850, called the protocol table (PT) has an entry for each protocol knowu

by the monitor 300, and includes some of the characteristics of each protocol, including a

NOAC EX. 1016 Page 64

NOAC Ex. 1016 Page 65

' 3;; (.7 w. "si

58

description of where the field that specifies next protocol (the child recognition pattern)am:2;:44
can be found in the header, the length of the next protocol field, flags to indicate theA.

header length and type, and one or more slicer commands, the slicer can build the key

“is components and hash components for the packet at this protocol at this layer level.

i: 5 For any protocol, there also are one or more lookup tables (LUTs). Thus database

2: i) 308 for this embodiment also includes a set of LUTs 1870. Each LUT has 256 entries

”3;“ indexed by one byte of the child recognition pattern that is extracted from the next

. protocol field in the packet. Such a protocol specification may be several bytes long, and

ii " so several of LUTs 1870 may need to be looked up for any protocol.

'£ 10 Each LUT’s entry includes a 2—bit “node code” that indicates the nature of the
y; 3:: contents, including its validity. This node code has one of four values: (1) a “protocol”

‘ j ;: node code indicating to the pattern recognition engine 1006 that a known protocol has

4 3:; been recognized; (2) an “intermediate” node code, indicating that a multi-byte protocol
: code has been partially recognized, thus permitting chaining a series of LUTs together

i i f“ 15 before; (3) a “terminal” node code indicating that there are no children for the protocol
presently being searched, i.e., the node is a final node in the protocol tree; (4) a “null”

(also called “flush” and “invalid”) node code indicating that there is no valid entry.

In addition to the node code, each LUT entry may include the next LUT number,
the next protocol number (for looking up the protocol table 1850), the fold of the LUT

20 entry, and the next fold to expect. Like in the embodiment implementing a compressed

form of the 3—D representation, folding is used to reduce the storage requirements for the

g , set of LUTs. Since the LUTs 1870 may be sparsely populated, multiple LUTs may be

3 combined into a single LUT as long as the individual entries do not conflict with each

. .3" other. A fold number is then used to associate each element with its original LUT.

f 4. 25 For a given lookup, the fold number of the lookup must match the fold number in

., the lookup table. The expected fold is obtained from the previous table lookup (the “next

E fold to expect” field). The present implementation uses 5—bits to describe the fold and thus

allows up to 32 tables to be folded into one table.

, When using the data structure of FIG. 18B, when a packet arrives at the parser, the

:5 30 virtual base has been pre—pended or is known. The virtual base entry tells the packet

recognition engine where to find the first child recognition pattern in the packet. The

NOAC EX. 1016 Page 65

NOAC Ex. 1016 Page 66

.gagsadgms(m;.,..

.3:«are,a
v"£44.

”1131'1235:“HI'i:
:11!Ifun11:11

10

15

20

25

30

m C)

59

pattern recognition engine then extracts the child recognition pattern bytes from the

packet and uses them as an address into the virtual base table (the first LUT). If the entry

looked up in the specified next LUT by this method matches the expected next fold value

specified in the virtual base entry, the lookup is deemed valid. The node code is then

examined. If it is an intermediate node then the next table field obtained from the LUT

lookup is used as the most significant bits of the address. The next expected fold is also

extracted from the entry. The pattern recognition engine 1006 then uses the next byte

from the child recognition pattern as the for the next LUT lookup.

Thus, the operation of the PRE continues until a terminal code is found. The next

(initially base layer) protocol is looked up in the protocol table 1850 to provide the PRE

1006 with information on what field in the packet (in input buffer memory 1008 of parser

subsystem 1000) to use for obtaining the child recognition pattern of the next protocol,

including the size of the field. The child recognition pattern bytes are fetched from the

input buffer memory 1008. The number of bytes making up the child recognition pattern

is also now known.

The first byte of the protocol code bytes is used as the lookup in the next LUT. If a

LUT lookup results in a node code indicating a protocol node or a terminal node, the Next

LUT and next expected fold is set, and the “next protocol” from LUT lookup is used as an

index into the protocol table 1850. This provides the instructions to the slicer 1007, and

where in the packet to obtain the field for the next protocol. Thus, the PRE 1006

continues until it is done processing all the fields (i.e., the protocols), as indicated by the

terminal node code reached.

Note that when a child recognition pattern is checked against a table there is

always an expected fold. If the expected fold matches the fold information in the table, it

is used to decide what to do next. If the fold does not match, the optimizer is finished.

Note also that an alternate embodiment may use different size LUTs, and then

index a LUT by a different amount of the child recognition pattern.

The present implementation of this embodiment allows for child recognition

patterns of up to four bytes. Child recognition patterns of more than 4 bytes are regarded

as special cases.

In the preferred embodiment, the database is generated by the compiler process

NOAC EX. 1016 Page 66

NOAC Ex. 1016 Page 67

..“.1“
WM”

firefigrmdpg.;
4~wxx,

newn-s‘mw‘iwrfi‘kihntrw:11";
"s‘55!"~9;;*.

”WE’me_

~maria-n,»

"iii?Iliiiziiiilil‘Ei'iii11331:!liillli
"33:1:.niii.

iiiiiffi:

10

15

20

25

30

o o

60

310. The compiler process first builds a single protocol table of all the links between

protocols. Links consist of the connection between parent and child protocols. Each

protocol can have zero or more children. If a protocol has children, a link is created that

consists of the parent protocol, the child protocol, the child recognition pattern, and the

child recognition pattern size. The compiler first extracts child recognition patterns that

are greater than two bytes long. Since there are only a few of these, they are handled

separately. Next sub links are created for each link that has a child recognition pattern size

of two.

All the links are then formed into the LUTs of 256 entries.

Optimization is then carried out. The first step in the optimization is checking all

the tables against all the other tables to find out which ones can share a table. This process

proceeds the same way as described above for two-dimensional arrays, but now for the

sparse lookup tables.

Part of the initialization process (e.g., compiler process 310) loads a slicer

instruction database with data items including of instruction, source address, destination

address, and length. The PRE 1006 when it sends a slicer instruction sends this instruction

as an offset into the slicer instruction database. The instruction or Op code tells the slicer

what to extract from the incoming packet and where to put it in the flow signature.

Writing into certain fields of the flow signature automatically generates a hash. The

instruction can also tell the slicer how to determine the connection status of certain

protocols.

Note that alternate embodiments may generate the pattern, parse and extraction

database other than by compiling PDL files.

The compilation process

The compilation process 310 is now described in more detail. This process 310

includes creating the parsing patterns and extractions database 308 that provides the

parsing subsystem 301 with the information needed to parse packets and extract

identifying information, and the state processing instructions database 326 that provides

the state processes that need to be performed in the state processing operation 328.

Input to the compiler includes a set of files that describe each of the protocols that

‘ NOAC EX. 1016 Page 67

NOAC Ex. 1016 Page 68

‘41".“:yr,

n.”., .~x)”:V.135.'i-«a,~5."‘ ”£53?"1226:“..

.N.r*.::;;,2".M:Ab.m”".i-ez".u..
g“a [“3“

n5&4.

4‘

.‘s’7‘Tfih‘fi‘.*3:M

,f(R:3.

“ l;

IO

m“...
15

11:23::.;:EZ..

"fitiifIiI"

iiLI'iI'if...»u..."
20

25

30

m m

61

can occur. These files are in a convenient protocol description language (PDL) which is a

high level language. PDL is used for specifying new protocols and new levels, including

new applications. The PDL is independent of the different types of packets and protocols

that may be used in the computer network. A set of PDL files is used to describe what

information is relevant to packets and packets that need to be decoded. The PDL is further

used to specify state analysis operations. Thus, the parser subsystem and the analyzer

subsystems can adapt and be adapted to a variety of different kinds of headers, layers, and

components and need to be extracted or evaluated, for example, in order to build up a

unique signature.

There is one file for each packet type and each protocol. Thus there is a PDL file

for Ethernet packets and there is a PDL file for frame relay packets. The PDL files are

compiled to form one or more databases that enable monitor 300 to perform different

protocol specific operations on a packet wherein the protocol headers of any protocol are

located at different locations depending on the parent protocol or protocols used in the

packet. Thus, the packet monitor adapts to different protocols according to the contents of

the packet. In particular, the parser subsystem 301 is able to extract different types of data

for different types of packets. For example, the monitor can know how to interpret a

Ethernet packet, including decoding the header information, and also how to interpret an

frame relay packet, including decoding the header information.

The set of PDL files, for example, may include a generic Ethernet packet file.

There also is included a PDL file for each variation Ethernet file, for example, an IEEE

Ethernet file.

The PDL file for a protocol provides the information needed by compilation

process 310 to generate the database 308. That database in turn tells the parser subsystem

how to parse and/or extract information, including one or more of what protocol—specific

components of the packet to extract for the flow signature, how to use the components to

build the flow signature, where in the packet to look for these components, where to look

for any child protocols, and what child recognition patterns to look for. For some

protocols, the extracted components may include source and destination addresses, and

the PDL file may include the order to use these addresses to build the key. For example,

Ethernet frames have end—point addresses that are useful in building a better flow

signature. Thus the PDL file for an Ethernet packet includes information on how the

NOAC EX. 1016 Page 68

NOAC Ex. 1016 Page 69

.»;3&1"r!13‘“.,‘J...M‘m.e
.s..up“Lawn;

51-"~a
«m-ax.»

.m;u-

’44*net'rmz.’»Lé~am.
2*:‘4,I:

’7‘3117‘12115.
1*mi.

“ism":

I'52:?”11332::ili'fil‘l

i???"lifffil

liffil”milliffil'i:55:

10

._. LII

20

25

30

m a

62

parsing subsystem is to extract the source and destination addresses, including where the

locations and sizes of those addresses are. In a frame-relay base layer, for example, there are

no specific end point addresses that help to identify the flow better, so for those type of

packets, the PDL file does not include information that will cause the parser subsystem to

extract the end-point addresses.

Some protocols also include information on connections. TCP is an example of such a

protocol. Such protocol use connection identifiers that exist in every packet. The PDL file for

such a protocol includes information about what those connection identifiers are, where they

are, and what their length is. In the example of TCP, for example running over IP, these are

port numbers. The PDL file also includes information about whether or not there are states

that apply to connections and disconnections and what the possible children are states. So, at

each of these levels, the packet monitor 300 learns more about the packet. The packet monitor

300 can identify that a particular packet is part of a particular flow using the connection

identifier. Once the flow is identified, the system can determine the current state and what

states to apply that deal with connections or disconnections that exist in the next layer up to

these particular packets.

For the particular PDL used in the preferred embodiment, a PDL file may include

none or more FIELD statement each defining a specific string of bits or bytes (i.e., a field) in

the packet. A PDL file may further include none or more GROUP statements each used to tie

together several defined fields. A set of such tied together fields is called a group. A PDL file

may further include none or more PROTOCOL statements each defining the order of the

fields and groups within the header of the protocol. A PDL file may further include none or

more FLOW statements each defining a flow by describing where the address, protocol type,

and port numbers are in a packet. The FLOW statement includes a description of how

children flows of this protocol are determined using state operations. States associated may

have state operations that may be used for managing and maintaining new states learned as

more packets of a flow are analyzed.

FIG. 19 shows a set of PDL files for a layering structure for an Ethernet packet

that runs TCP on top of IP. The contents of these PDL files are attached as an

APPENDIX hereto. Common.de (1903) is a file containing the common protocol

definitions, i.e., some field definitions for commonly used fields in various network

protocols. Flows.pdl (1905) is a file containing general flow definitions. Virtual.de

-(1907) is a PDL file containing the definition for the VirtualBase layer used. Ethernet.de

(NOAC EX. 1016 Page 69

NOAC Ex. 1016 Page 70

,,,,,

is

3

iii?112111131211iii!ui'fiu11121!
”I?“”13:.

10

15

lifffii

20

25

30

(W O

63

(1911) is the PDL file containing the definition for the Ethernet packet. The decision on

Ethertype vs. IEEE type Ethernet file is described herein. If this is Ethertype, the selection

is made from the file Ethertype.pdl (1913). In an alternate embodiment, the Ethertype

selection definition may be in the same Ethernet file 1911. In a typical implementation,

PDL files for other Ethernet types would be included. IP.de (1915) is a PDL file

containing the packet definitions for the Internet Protocol. TCP.pd1 (1917) is the PDL file

containing the packet definitions for the Transmission Control Protocol, which in this

case is a transport service for the IP protocol. In addition to extracting the protocol

information the TCP protocol definition file assists in the process of identification of

connections for the processing of states. In a typical set of files, there also would be a file

UDP.pdl for the User Datagram Protocol (UDP) definitions. RPC.pdl (1919) is a PDL file

file containing the packet definitions for Remote Procedure Calls.

NFS.pdl (1921) is a PDL file containing the packet definitions for the Network

File System. Other PDL files would typically be included for all the protocols that might

be encountered by monitor 300.

Input to the compilation process 310 is the set of PDL files (e.g., the files of FIG

19) for all protocols of interest. Input to process 310 may also include layering

information shown in FIG. 3 as datagram layer selections 338. The layer selections

information describes the layering of the protocols—what protocol(s) may be on top of

any particular protocols. For example, 1P may run over Ethernet, and also over many

other types of packets. TCP may run on top of IP. UDP also may run on top of IP. When

no layering information is explicitly included, it is inherent; the PDL files include the

children protocols, and this provides the layering information.

The compiling process 310 is illustrated in FIG. 20. The compiler loads the PDL

source files into a scratch pad memory (step 2003) and reviews the files for the correct

syntax (parse step 2005). Once completed, the compiler creates an intermediate file

containing all the parse elements (step 2007). The intermediate file in a format called

“Compiled Protocol Language” (CPL). CPL instructions have a fixed layer format, and

include all of the patterns, extractions, and states required for each layer and for the entire

tree for a layer. The CPL file includes the number of protocols and the protocol

definitions. A protocol definition for each protocol can include one or more of the

protocol name, the protocol ID, a header section, a group identification section, sections

NOAC EX. 1016 Page 70

NOAC Ex. 1016 Page 71

f.

M.9;
*zmwm

.3“.‘..'

03sF:-
x353.

an»

bi" :

*Ming."N1.

;"3mail-e.‘

t“t“.“’..«.uamuw-~«>~".4. 1.,iik.u

.IIEII.“iii."IIfi:IIliliil“32531!Ilia:I'I'LIiI
IIffrII

‘EEESEI1133.11

II'III'III'III'iI'I...II21553:

10

15

20

25

30

(“I (7.x

64

for any particular layers, announcement sections, a payload section, a children section,

and a states section. The CPL file is then run by the optimizer to create the final databases

that will be used by monitor 300. It would be clear to those in the art that alternate

implementations of the compilation process 310 may include a different form of

intermediate output, or no intermediate output at all, directly generating the final

database(s).

After the parse elements have been created, the compiler builds the flow signature

elements (step 2009). This creates the extraction operations in CPL that are required at

each level for each PDL module for the building of the flow signature (and hash key) and

for links between layers (2009).

With the flow signature operations complete, the PDL compiler creates (step

2011) the operations required to extract the payload elements from each PDL module.

These payload elements are used by states in other PDL modules at higher layers in the

processing.

The last pass is to create the state operations required by each PDL module. The

state operations are complied from the PDL files and created in CPL form for later use

(201 3).

The CPL file is now run through an optimizer that generates the final databases

used by monitor 300.

PROTOCOL DEFINITION LANGUAGE (PDL) REFERENCE GUIDE

(VERSION A0.02)

Included herein is this reference guide (the “guide”) for the page description language

(PDL) which, in one aspect of the invention, permits the automatic generation of the

databases used by the parser and analyzer sub—systems, and also allows for including new

and modified protocols and applications to the capability of the monitor.

COPYRIGHT NOTICE

A portion of this of this document included with the patent contains material which is

subject to copyright protection. The copyright owner (Apptitude, Inc., Of San Jose,

California, formerly Technically Elite, Inc.) has no objection to the facsimile reproduction

by anyone of the patent document or the patent disclosure or this document, as it appears

NOAC EX. 1016 Page 71

NOAC Ex. 1016 Page 72

O nx.

65

in the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

Copyright © 1997-1999 by Apptitude, Inc. (formerly Technically Elite, Inc.). All Rights

Reserved.

5 1. INTRODUCTION

The inventive Protocol Definition Language (PDL) is a special purpose language used to

describe network protocols and all the fields within the protocol headers.

Within this guide, protocol descriptions (PDL files) are referred to as PDL or rules when

there in no risk of confusion with other types of descriptions.

.__. O
PDL uses both form and organization similar to the data structure definition part of the C

programming language and the PERL scripting language. Since PDL was derived from a

language used to decode network packet contact, the authors have mixed the language

format with the requirements of packet decoding. This results in an expressive language”55:“is):"iiii'11337;:5122311‘332211123:1:ii}?
that is very familiar and comfortable for describing packet content and the details required

15 representing a flow.
I)will

1. 1 Summary

iifffil11"]!”If.“ The PDL is a non—procedural Forth Generation language (4GL). This means is describes

what needs to be done without describing how to do it. The details of how are hidden in

the compiler and the Compiled Protocol Layout (CPL) optimization utility.

20 In addition, it is used to describe network flows by defining which fields are the address

fields, which are the protocol type fields, etc.

Once a PDL file is written, it is compiled using the Netscope compiler (use), which

produces the MeterFlow database (MeterFlowdb) and the Netscope database

(Netscope.db). The MeterFlow database contains the flow definitions and the Netscope

25 database contains the protocol header definitions.

These databases are used by programs like: mfkeys, which produces flow keys (also

called flow signatures); mfcpl, which produces flow definitions in CPL format; mfpkts

which produces sample packets of all known protocols; and netsc0pe, which decodes

SnifferTM and tcpdump files.

NOAC EX. 1016 Page 72

NOAC Ex. 1016 Page 73

wfififi‘

.{3'93};a:.‘I‘Lr~‘

mmflifiMMJfi
'ii:

flmfi

MWJim

)—| O

U

20

25

30

O. o

66

1.2 Guide Conventions

The following conventions will be used throughout this guide:

Small courier typeface indicates C code examples or function names. Functions are

written with parentheses after them [function()], variables are written just as their

names [variables], and structure names are written prefixed with “struct”

[struct packet].

Italics indicate a filename (for instance, mworks/base/h/basah). Filenames will usually

be written relative to the root directory Of the distribution.

Constants are expressed in decimal, unless written “0x. . .”, the C language notation for

hexadecimal numbers.

Note that any contents on any line in a PDL file following two hyphen (-—) are ignored

by the compiler. That is, they are comments.

2. PROGRAM STRUCTURE

A MeterFlow PDL decodes and flow set is a non—empty sequence Of statements.

There are four basic types Of statements or definitions available in MeterFlow PDL:

FIELD,

GROUP,

PROTOCOL and

FLOW.

2. 1 FIELD Definitions

The FIELD definition is used to define a specific string of bits or bytes in the packet. The

FIELD definition has the following format:

Name FIELD

SYNTAX Type [{ Enums } 1

DISPLAY-HINT "FormatString"

LENGTH "Expression“

FLAGS FieldFlags

ENCAP FieldName [, FieldNameZ]

LOOKUP LookupType [Filename]

ENCODING EncodingType

DEFAULT “value"

DESCRIPTION "Description"

NOAC EX. 1016 Page 73

NOAC Ex. 1016 Page 74

 Min;iiiilh1:111122::tiiilu

:EiiIii]:~nxiumt.i;
1173!III]!tiff]!$5535)‘35

10

m m\ \

67

Where only the FIELD and SYNTAX lines are required. All the other lines are attribute

lines, which define special characteristics about the FIELD. Attribute lines are optional

and may appear in any order. Each of the attribute lines are described in detail below:

2.1.1 SYNTAX Type [{ Enums }]

This attribute defines the type and, if the type is an INT, BYTESTRING, BITSTRING, or

SNMPSEQUENCE type, the enumerated values for the FIELD. The currently defined

types are:

Integer that is numBits bits long.

Unsigned integer that is numBits bits long.

String that is numBytes bytes long.

String that ranges in size from R] to R2 bytes.

String that is numBits bits long.

String with lenBytes header.

Null terminated string.

DNS encoded string.

SNMP Object Identifier.

SNMPTIMETICKS SNMP TimeTicks.

COMBOfield] fiele Combination pseudo field.

2.1.2 DISPLAY-HINT "FormatString"

This attribute is for specifying how the value of the FIELD is displayed. The currently

supported formats are:

Print as a num byte hexidecimal number.

 Print as a num byte decimal number.

NOAC EX. 1016 Page 74

NOAC Ex. 1016 Page 75

2.1.3 LENGTH "Expression"

68

This attribute defines an expression for determining the FIELD's length. Expressions are

arithmetic and can refer to the value of other FIELD’s in the packet by adding a $ to the

5 referenced field’s name. For example, “($tcpHeaderLen *4) — 20” is a valid expression if

tcpHeaderLen is another field defined for the current packet.

2.1.4 FLAGS FieldFlagsHim”133:."if?112311M!"iii!113331(17.11:
The attribute defines some special flags for a FIELD. The currently supported FieldFlags

Illii! are:

W...

2.1.5 ENCAP FieldName [, FieldNameZ]

 ii'ffilliIfIiI‘HIZiI#535.'.'

10

This attribute defines how one packet is encapsulated inside another. Which packet is

determined by the value of the FieldName field. If no packet is found using FieldName

then FieldNameZ is tried.

15 2.1.6 LOOKUP LookupType[Filename]

This attribute defines how to lookup the name for a particular FIELD value. The currently

supported LookupTypes are:

NOAC EX. 1016 Page 75

NOAC Ex. 1016 Page 76

" ,g)”I",’
m m

69

SERVICE Use getservbyportO.

HOSTNAME Use gethostbyaddr().

:21; . MACADDRESS Use $METERFLOW/conf/mac2ip.cf.

‘5 FILE file Use file to lookup value.
%.L

.3}; 2.1.7 ENCODING EncodingType

This attribute defines how a FIELD is encoded. Currently, the only supported

EncodingType is BER (for Basic Encoding Rules defined by ASN.1).

5 2.1.8 DEFAULT “value”

This attribute defines the default value to be used for this field when generating sample

packets of this protocol.iiil'niimIiilll“.2521!91521.lillln
2.1.9 DESCRIPTION "Description"1135!:.1511.
This attribute defines the description of the FIELD. It is used for informational purposes

WWW

10 only.

43“}.’

2.2 GROUP Definitions

«.36...m.. llJillNHl'
The GROUP definition is used to tie several related FIELDS together. The GROUP6.»,‘e...”"41,514.,
definition has the following format:

Name GROUP

15 LENGTH "Expression"
OPTIONAL "Condition“

h SUMMARIZE "Condition" : "FormatString" [

E "Condition" : "FormatString"...]
DESCRIPTION "Description"

20 ::= { Name=Fie1dOrGroup [,

Name=Fie1dOrGroup...] }

“a?6“‘5‘“

I.

Where only the GROUP and ::= lines are required. All the other lines are attribute lines,

which define special characteristics for the GROUP. Attribute lines are optional and may

appear in any order. Each attribute line is described in detail below:

25 2.2.1 LENGTH "Expression"

This attribute defines an expression for determining the GROUP's length. Expressions are

NOAC EX. 1016 Page 76

NOAC Ex. 1016 Page 77

fixinkiai.3»..gw‘v:’y."‘ v.~..1y.“
1:1

iii

H3531:
'iii.

Iiifzn.32..

5‘:

10

15

20

Cl 0

70

arithmetic and can refer to the value of other FIELD’s in the packet by adding a $ to the

referenced field’s name. For example, “($tcpHeaderLen *4) — 20” is a valid expression if

tcpHeaderLen is another field defined for the current packet.

2.2.2 OPTIONAL "Condition"

This attribute defines a condition for determining whether a GROUP is present or not.

Valid conditions are defined in the Conditions section below.

2.2.3 SUMMARIZE "Condition" : "FormatString" ["Condition" :

"FormatString"...]

This attribute defines how a GROUP will be displayed in Detail mode. A different format

(FormatString) can be specified for each condition (Condition). Valid conditions are

defined in the Conditions section below. Any FIELD's value can be referenced within the

FormatString by proceeding the FIELD's name with a $. In addition to FlELD names

there are several other special $ keywords:

2.2.4 DESCRIPTION "Description"

This attribute defines the description of the GROUP. It is used for informational purposes

only.

2.2.5 ::= { Name=FieldOrGroup [, Name=FieldOrGroup...] }

This defines the order of the fields and subgroups within the GROUP.

2.3 PROTOCOL Definitions

The PROTOCOL definition is used to define the order of the FIELDS and GROUPs

within the protocol header. The PROTOCOL definition has the following format:

NOAC EX. 1016 Page 77

NOAC Ex. 1016 Page 78

nifm11...]:

”iii:”:22."iiii'niiiu1122i}:
‘Ffz‘iim:

1112.1“u'fifizIifffh11'5sz
10

E

20

C) (x

71

Name PROTOCOL

SUMMARIZE "Condition" : “FomatString” [

"Condition" : "FormatString"...]

DESCRIPTION "Description"
REFERENCE "Reference"

::= { Name=Fie1d0rGroup [,

Name=Fie1dOrGroup...] }

Where only the PROTOCOL and :2: lines are required. All the other lines are attribute

lines, which define special characteristics for the PROTOCOL. Attribute lines are

optional and may appear in any order. Each attribute line is described in detail below:

2.3.1 SUMNIARIZE "Condition" : "FormatString" ["Condition" :

"FormatString"...]

This attribute defines how a PROTOCOL will be displayed in Summary mode. A

different format (FormatString) can be specified for each condition (Condition). Valid

conditions are defined in the Conditions section below. Any FIELD's value can be

referenced within the FormatString by proceeding the FIELD's name with a $. In addition

to FIELD names there are several other special 3; keywords:

2.3.2 DESCRIPTION "Description"

This attribute defines the description of the PROTOCOL. It is used for informational

purposes only.

2.3.3 REFERENCE "Reference"

This attribute defines the reference material used to determine the protocol format. It is

used for informational purposes only.

NOAC EX. 1016 Page 78

NOAC Ex. 1016 Page 79

aunt“.

fififlmmflflfl

”iii?sifzu111311'iEEEiiHimlili‘ii
nfina“1:2.

WWW

0 <7»

72

2.3.4 ::= { Name=FieldOrGroup [, Name=FieldOrGroup...] }

This defines the order of the FIELDs and GROUPS within the PROTOCOL.

2.4 FLOW Definitions

The FLOW definition is used to define a network flow by describing where the address,

5 protocol type, and port numbers are in a packet. The FLOW definition has the following

format:

Name FLOW

HEADER { Option [, Optionm] }

DLC-LAYER { Option [, Optionm] }

10 NET-LAYER { Option [, Optionm] }

CONNECTION { Option [, Optionm] }

PAYLOAD { Option [, Optionm] }

CHILDREN { Option [, Optionm] }
STATE-BASED

15 STATES “Definitions"

Where only the FLOW line is required. All the other lines are attribute lines, which define

special characteristics for the FLOW. Attribute lines are optional and may appear in any

order. However, at least one attribute line must be present. Each attribute line is described

in detail below:

20 2.4.1 HEADER { Option [, Option...] }

This attribute is used to describe the length of the protocol header. The currently

supported Options are:

LENGTH=number Header is a fixed length of size number.

LENGTH=field Header is variable length determined by value offield.

IN-WORDS The units of the header length are in 32-bit words rather than bytes.

2.4.2 DLC-LAYER{ Option [, Option...] }

25 If the protocol is a data link layer protocol, this attribute describes it. The currently

supported Options are:

DESTINATION=field Indicates whichfield is the DLC destination address.

SOURCE=field Indicates whichfield is the DLC source address.

NOAC EX. 1016 Page 79

NOAC Ex. 1016 Page 80

fl 0

73

PROTOCOL Indicates this is a data link layer protocol.

TUNNELING Indicates this is a tunneling protocol.

2.4.3 NET-LAYER{ Option [, Option...] }

If the protocol is a network layer protocol, then this attribute describes it. The currently

supported Options are:

DESTINATION=field Indicates which field is the network destination address.

SOURCE=field

Indicates whichfield is the network source address.

 TUNNELING Indicates this is a tunneling protocol.

FRAGMENTATION=type Indicates this protocol supports fragmentation. There areiii-Iii"Iiill'iiiiiiHimtill]!
currently two fragmentation types: IPV4 and IPV6.

uffzn.utz,
2.4.4 CONNECTION { Option [, Option...] }

‘IEEEi!11333!‘
If the protocol is a connectiomoriented protocol, then this attribute describes how

connections are established and torn down. The currently supported Options are:

IDENTIFIER=field Indicates the connection identifierfield.

CONNECT-START=”flag” Indicates when a connection is being initiated.

CONNECT-COMPLETE=”flag” Indicates when a connection has been established.

DISCONNECT—START=”flag” Indicates when a connection is being torn down.

DISCONNECT—COMPLETE=”flag” Indicates when a connection has been torn down.

INHERITED

10 2.4.5 PAYLOAD { Option [, Option...] }

{if}!iiffii!Iifffil;i533.f

Indicates this is a connection—oriented protocol but

the parent protocol is where the connection is

established.

This attribute describes how much of the payload from a packet of this type should be

NOAC EX. 1016 Page 80

NOAC Ex. 1016 Page 81

33hitimIt]!
iliizn,iiiii‘iLI':

nffrnKati."ii:

1:3"??253123:'

1.5.73}:it'll!rill:HEELS

10

O (V

74

stored for later use during analysis. The currently supported Options are:

INCLUDE-HEADER Indicates that the protocol header Should be included.

LENGTH=number Indicates how many bytes of the payload should be stored.

DATA=field

Indicates whichfield contains the payload.

2.4.6 CHILDREN { Option [, Option...] }

This attribute describes how children protocols are determined. The currently supported

Options are:

DESTINATION=field Indicates whichfield is the destination port.

SOURCE=field Indicates whichfield is the source port.

LLCCHECK= 0w Indicates that if the DESTINATION field is less than 0x05DC then

use flow instead of the current flow definition.

2.4.7 STATE-BASED

This attribute indicates that the flow is a state-based flow.

2.4.8 STATES “Definitions”

This attribute describes how children flows of this protocol are determined using states.

See the State Definitions section below for how these states are defined.

2.5 CONDITIONS

Conditions are used with the OPTIONAL and SUMMARIZE attributes and may consist

of the following:

NOAC EX. 1016 Page 81

NOAC Ex. 1016 Page 82

fi,,v...

.J,
‘ ‘ m'.

,3. ,1 . \

75

Valuel < Value2 Valuel is less than Value2.

Valuel > Value2 Valuel is greater than Value2.

 Q “ Field m/regex/ Field matches the regular expression regex.‘ii t

W {I Where Value] and ValueZ can be either FIELD references (field names preceded by a $)

; . I or constant values. Note that compound conditional statements (using AND and OR) are
7’

,3. i not currently supported.

2.6 STA TE DEFINITIONS
(7’11"

5 Many applications running over data networks utilize complex methods of classifying

traffic through the use of multiple states. State definitions are used for managing andxx.E'fi‘itféatnow? maintaining learned states from traffic derived from the network.'::':':'H"33:“1E]!
The basic format of a state definition is:

StateName: Operand Parameters [Operand Parameters...]uffm”23:."it?u':'::uMI
10 The various states of a particular flow are described using the following operands:

2.6.1 CHECKCONNECT, operand
.-.:

 Checks for connection. Once connected executes operand.

it E: 2.6.2 GOTO state

% Goes to state, using the current packet.
i
it 15 2.6.3 NEXT state1

Goes to state, using the next packet.

2.6.4 DEFAULT operand

Executes operand when all other operands fail.

2.6.5 CHILD protocol

20 Jump to child protocol and perform state—based processing (if any) in the child.

2.6.6 WAIT numPackets, operand], operand2

Waits the specified number of packets. Executes operand] when the specified number of

packets have been received. Executes operandZ when a packet is received but it is less

.NOAC EX. 1016 Page 82

NOAC Ex. 1016 Page 83

3‘. »

Z . w W* i ‘2 {'t < \) (

76

than the number of specified packets.

2.6.7 MATCH 'string' weight offset LF-ofiset range LF-range, operand

is“ Searches for a string in the packet, executes operand if found.

7"; :
:7. 2.6.8 CONSTANT number offset range, operand

"‘ g j 5 Checks for a constant in a packet, executes operand if found.

2.6.9 EXTRACTIP offset destination, operand

Extracts an IP address from the packet and then executes operand.

2.6.10 EXTRACTPORT offset destination, operand

Extracts a port number from the packet and then executes operand.

._. 0 2.6.11 CREATEREDIRECTEDFLOW, operand

Creates a redirected flow and then executes operand.nunzzzuiL..|1':::':uuziiu‘11..“
”5:21:.222-

:::§!i533!

H.171”;till]!tiff?!its.'.

NOAC EX. 1016 Page 83
,3's
it
5E

NOAC Ex. 1016 Page 84

0 C7

77

3. EXAMPLE PDL RULES

The following section contains several examples of PDL Rule files.

3. 1 Ethernet

V The following is an example of the PDL for Ethernet:
5 MacAddress FIELD

SYNTAX BYTESTRING(6)
DISPLAY—HINT "lxz"
LOOKUP MACADDRESS
DESCRIPTION

10 “MAC layer physical address"

etherType FIELD
SYNTAX INT(16)
DISPLAY-HINT “1x:“

15 LOOKUP FILE “EtherType.cf"
DESCRIPTION

"Ethernet type field"

etherData FIELD
20 SYNTAX BYTESTRING(46. 1500)

ENCAP etherType
DISPLAY—HINT "HexDump"
DESCRIPTION

"Ethernet data“

25
ethernet PROTOCOL

DESCRIPTION
”Protocol format for an Ethernet frame"

REFERENCE I‘RFC 894"

30 ::= { MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,
Data=etherData }

ethernet FLOW

HEADER { LENGTH=14 }
35 DLc—LAYER {

SOURCE=MacSrc,
DESTINATION=MacDeSt,
TUNNELING,
PROTOCOL

40 }
CHILDREN { DESTINATION=EtherType, LLC-CHECK=11C)

NOAC EX. 1016 Page 84

NOAC Ex. 1016 Page 85

o C

78

3.2 [P Version 4

Here is an example of the PDL for the IP protocol:

ipAddreSS FIELD
SYNTAX BYTESTRING(4)

5 DISPLAY—HINT “1d."
LOOKUP HOSTNAME
DESCRIPTION

"IP address"

10 ipVersion FIELD
SYNTAX INT(4)
DEFAULT "4"

ipHeaderLength FIELD
15 SYNTAX INT(4)

ipTypeOfService FIELD
SYNTAX BITSTRING(B) (minCost(l),

maxReliability(2), maxThruput(3), minDelay(4))
20

ipLength FIELD
SYNTAX UNSIGNED INT(16)

ipFlags FIELD
25 SYNTAX BITSTRING(3) (moreFrags(0), dontFrag(1))

IpFragmentOffset FIELD
SYNTAX INT(13)

30 ipProtocol FIELD
SYNTAX INT(B)
LOOKUP FILE “IpProtocol.cf“

ipData FIELD
35 SYNTAX BYTESTRING(0..1500)

ENCAP ipProtocol
DISPLAY-HINT “HexDump”

ip PROTOCOL
40 SUMMARIZE

"$Fragment0ffset != 0':
"IPFragment ID=$Identification Offset=$FragmentOffset"

"Default“
"IP Protocol=$Protocol"

45 DESCRIPTION
"Protocol format for the Internet Protocol“

REFERENCE “RFC 791"

:= (Version=ipVersion, HeaderLength:ipHeaderLength,
TypeOfService=ipTypeOfService, Length=ipLength,

50 Identification=UInt16, IpFlags=ipF1ags,

FragmentOffset=ipFragmentOffset, TimeToLive=IntB,
Protocol=ipProtocol, Checksum=ByteStr2,
IpSrc=ipAddress, IpDest=ipAddress, Options=ip0ptions,
Fragment=ipFragment, Data=ipData)

55

ip FLOW
HEADER (LENGTH=HeaderLength, IN-WORDS)
NET—LAYER (

SOURCE=IpSrc,
60 DESTINATION=IpDest.

FRAGMENTATION=IPV4I
TUNNELING

NOAC EX. 1016 Page 85

NOAC Ex. 1016 Page 86

fl 0

79

CHILDREN (DESTINATION=Protocol)

ipFragData FIELD
SYNTAX BYTESTRING(1 . . l 500)

5 LENGTH "ipLength — ipHeaderLength * 4"
DISPLAY-HINT " HexDump "

ipFragment GROUP
OPTIONAL “$FragmentOffset != 0“

10 ::= (Data=ipFragData)

ipOptionCode FIELD
SYNTAX INT(8) { ipRR(0x07), ipTimestamp(0x44),

ipLSRR(Ox83), ipSSRR(Ox89))
15 DESCRIPTION

“IP option code"

ipOptionLength FIELD
SYNTAX UNSIGNED INT (8)

20 DESCRIPTION
“Length of IP option"

ipOptionData FIELD
SYNTAX BYTESTRING (0 . . 150 0)

25 ENCAP ipOptionCode
DISPLAY-HINT " HexDump "

ipOptions GROUP
LENGTH "(ipHeaderLength * 4) — 20"

30 ::= (Code=ipOptionCode, Length=ipOptionLength, Pointer=UInt8,
Data=ipOptionData)

NOAC EX. 1016 Page 86

NOAC Ex. 1016 Page 87

80

3.3 TCP

Here is an example of the PDL for the TCP protocol:

tcpPort FIELD
SYNTAX UNSIGNED INT(16)

5 LOOKUP FILE "TcpPort.cf"

tcpHeaderLen FIELD
SYNTAX INT(4)

10 tchlags FIELD
SYNTAX BITSTRING(12) (fin(0), syn(l), rst(2), psh(3),

ack(4), urg(5) }

tchata FIELD
15 SYNTAX BYTESTRING (o. .1564)

LENGTH "($ipLength—($ipHeaderLength*4))—($tcpHeaderLen*4)"
ENCAP tcpPort
DISPLAY—HINT "HexDump"

20 top PROTOCOL
SUMMARIZE

uDefault“ .

“TCP ACK=$ACk WIN=$WindowSize"
DESCRIPTION

25 “Protocol format for the Transmission Control Protocol"
REFERENCE ”RFC 793"

2:: (SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,
Ack=UInt32, HeaderLength=tcpHeaderLen, Tchlags=tchlags,
Windowsize=UInt16, Checksum=ByteStr2,

3O UrgentPointer=UInt16, Options=tcp0ptions, Data=tchata }

tcp FLOW
HEADER [LENGTH=HeaderLength, IN—WORDS }
CONNECTION (

35 IDENTIFIER=SequenceNum,
CONNECT-START=“TCpF1ags:l',
CONNECT—COMPLETE:'Tchlags:4",
DISCONNECT—START="Tchlags:0",
DISCONNECT—COMPLETE:'Tchlags:4"

4O)
PAYLOAD (INCLUDE-HEADER)
CHILDREN (DESTINATION=DestPort, SOURCE=SrCPort)

tchptionKindFIELD
45 SYNTAX UNSIGNED INT(8) { thOptEnd(0), thNop(l),

tcpMSS(2), tchscale(3), tcpTimestamp(4) }
DESCRIPTION

"Type of TCP option“

50 tchptionData FIELD
SYNTAX BYTESTRING (0 . . 1 5 0 0)
ENCAP tchptionKind
FLAGS SAMELAYER
DISPLAY—HINT "HexDump"

55

tchptions GROUP
LENGTH "($tcpHeaderLen * 4) — 20“

::= [Option=tcp0ptionKind, OptionLength=UInt8,
OptionData=tchptionData)

6O
thMSS PROTOCOL
':= (MaxSegmentSize=UInt16 }

NOAC EX. 1016 Page 87

NOAC Ex. 1016 Page 88

(\J (W

81

3.4 H'ITP (with State)

Here is an example of the PDL for the HTTP protocol:

httpData FIELD
SYNTAX BYTESTRING(1..1500)

5 LENGTH "($ipLength — ($ipHeaderLength * 4)) — ($tCDHeaderLen * 4)"
DISPLAY—HINT "Text"
FLAGS NOLABEL

http PROTOCOL
10 SUMMARIZE

"$httpData m/‘GETI“HTTPIAHEADl‘POST/“
“HTTP $httpData"

, f “$httpData m/A[Dd]atei“[SS]erver]“[Ll]ast-[Mm]odified/“
{~T; “HTTP $httpData"

’? 15 "$httpData m/“[Cc]ontent—/"
"HTTP $httpData"

“$httpData m/“<HTML>/“ .
"HTTP [HTML document]"

"$httpData m/“GIF/"

20 “HTTP [GIF imageJ"

fig “Default“ .
j‘ "HTTP [Data]"DESCRIPTION

"Protocol format for HTTP.“

25 ::= { Data=httpData)

;I ht tp FLOW
* HEADER { LENGTH=0 }

hi CONNECTION { INHERITED }
j} 30 PAYLOAD { INCLUDE—HEADER, DATA=Data, LENGTH=256)
%: STATES
rag nso: CHECKCONNECT, GOTO 81

3;”: DEFAULT NEXT soago

3%. 35 81: WAIT 2, GOTO S2, NEXT 51

5%: 53 DEFAULT NEXT so
.3 s2: MATCH

w’ ‘\n\r\n' 900 o 0 255 0, NEXT S3

a:“ 40 '\n\n' 900 0 0 255 0, NEXT s3
g ' 'POST /tds?' 50 o 0 127 1, CHILD sybaseWebsql% w '.hts HTTP/1.0' 50 4 0 127 1, CHILD sybaseJdbc

fi 'jdbc:sybase:Tds' 50 4 O 127 l, CHILD sybasers

g 'PCN—The Poin‘ 500 4 1 255 o, CHILD pointcast
j 45 't: Bw-C—' 100 4 1 255 o, CHILD backweb
fl DEFAULT NEXT S3
*2} ‘

'fi S3: MATCH
"H, '\n\r\n' 50 0 0 0 0, NEXT 83

g: 50 ‘\n\n‘ so 0 o o 0, NEXT s3
Q 'Content—Typez' 800 O 0 255 0, CHILD mime
é; 'PCN—The Poin' 500 4 1 255 0, CHILD pointcast
3: 't: BW—C—‘ 100 4 1 255 o, CHILD backweb
, DEFAULT NEXT 50“
*" 55

‘ sybaseWebsql FLOW
‘ STATE—BASED

; sybaseJdbc FLOW
1 60 STATE—BASED

{ sybasers FLOW
STATE-BASED

2 NOAC EX. 1016 Page 88

NOAC Ex. 1016 Page 89

82

pointcas t FLOW
STATE-BASED

5 backweb FLOW
STATE—BASED

‘1 , mime FLOW
fy STATE—BASED
{:52 10 STATES
: x "SO: MATCH
Ei/ 'application' 900 0 0 1 O, CHILD mimeApplication
‘ 'audio' 900 0 0 1 0, CHILD mimeAud'Io

~ 'image‘ 50 0 0 1 O, CHILD mimeImage
15 'text' 50 0 0 1 0, CHILD mimeText

'video' 50 0 0 1 0, CHILD mimevideo
'x—world' 500 4 1 255 0, CHILD mimeXworld

;\ DEFAULT GOTO 80'

20 mimeAppl ication FLOW
STATE-BASED

mimeAudio FLOW
STATE~BASED

 25 STATES
"SO: MATCH

'basic' 100 0 0 1 0, CHILD deasiCAud'Io
'midi‘ 100 o 0 1 o, CHILD deidi

3:: 'mpeg' 100 0 0 1 0, CHILD depegZAudio
; 30 'vnd.rn—rea1audio' 100 o o 1 o, CHILD deealAudio

'wav' 100 0 0 1 0, CHILD deav

31 'x—aiff' 100 o o 1 o, CHILD pdAiff
E 'x—midi' 100 0 0 1 0, CHILD deidi
‘1' ’x—mpeg' 100 0 0 1 0, CHILD depegZAudio
,3; 35 'x-mpgurl' 100 0 0 1 0, CHILD depeg3Audio
“is: 'x—pn—realaudio' 100 0 0 1 0, CHILD deealAud‘Io
" 'x-wav‘ 100 o o 1 o, CHILD deav

”vK:.‘ DEFAULT GOTO SO"

5:44SW:
40 mimeImage FLOW

STATE-BASED
vii“

fat“. ,2;

.M,

mimeText FLOW
STATE—BASED

45
mimevideo FLOW

STATE-BASED

mimeXworld FLOW
50 STATE-BASED

' deaSicAudio FLOW
STATE—BASED

55 deidi FLOW
STATE-BASED

depegZAudio FLOW
STATE-BASED

60

depeg3Audio FLOW
STATE-BASED

deealAud'Io FLOW
65 STATE—BASED

deav FLOW

,m
? NOAC EX. 1016 Page 89«.1

NOAC Ex. 1016 Page 90

O (V

83

STATE— BASED

pdAiff FLOW
STATE-BASED

"if?

1533:»..:::II
a
1

2".,.
,g
}x,.>3
.

k“\
. x
H,2

NOAC EX. 1016 Page 90

NOAC Ex. 1016 Page 91

 10

15

o o

84

Embodiments of the present invention automatically generate flow signatures with

the necessary recognition patterns and state transition climb procedure. Such comes from

analyzing packets according to parsing rules, and also generating state transitions to

search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Note that one in the art will understand that computer networks are used to

connect many different types of devices, including network appliances such as telephones,

“Internet” radios, pagers, and so forth. The term computer as used herein encompasses all

such devices and a computer network as used herein includes networks of such

computers.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted as

limiting. Various alterations and modifications will no doubt become apparent to those or

ordinary skill in the art after having read the above disclosure. Accordingly, it is intended

that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.

NOAC EX. 1016 Page 91

NOAC Ex. 1016 Page 92

85

APPENDIX: SOME PDL FILES.

The following pages include some PDL files as examples. Included herein are the

PDL contents of the following files. A reference to PDL is also included herein. Note that

any contents on any line following two hyphen (-—) are ignored by the compiler. That is,

5 they are comments.

commonpdl;

flows.pdl;

virtual.de;

ethernetpdl;

10 [1313158032.de and IEEE8033.pdl (ethertype files);.~"‘¢’.“'inf—qrm.“-». IIEEEniii]:‘EEEEiiu'lelIlliiil
IP.pdl;

TCP.pdl and UDP.pdl;HESS"”:31
RPC.pdl;War-$4233‘;

'53:)?Iii]?

iil'hIf]!i173!Ilia.
NFS.pd1; and

 15 HTTP.pd1.

_5“. 2-1.in

NOAC EX. 1016 Page 92

NOAC Ex. 1016 Page 93

—— Common.pdl — Common protocol definitions

5 —— Description:
—— This file contains some field definitions for commonly used fields

u —— in various network protocols.

.,‘ —— Copyright:
E K 10 —— Copyright (C) 1996—1999 Apptitude, Inc.

‘& —- (formerly Technically Elite, Inc.)
3’ —— All rights reserved.

—— RCS:

15 -— $Id: Common.pdl,v 1.7 1999/04/13 15:47:56 skip Exp S

Int4 FIELD

SYNTAX INT (4)
20

IntB FIELD

SYNTAX INT (8)

Int16 FIELD

25 SYNTAX INT (16)

Int24 FIELD

SYNTAX INT (24)

30 Int32 FIELD
SYNTAX INT(32)

Int64 FIELD

SYNTAX INT (64)
35

UIntB FIELD

SYNTAX UNSIGNED INT(B)

 UInt16 FIELD

40 SYNTAX UNSIGNED INT(16)

,, ‘ UInt24 FIELD

SYNTAX UNSIGNED INT(24)

gt x 45 UInt32 FIELD
‘3 SYNTAX UNSIGNED INT(32)

; UInt64 FIELD

{g SYNTAX UNSIGNED INT(64)
' 50

SInt16 FIELD

,, SYNTAX INT(16)
; FLAGS SWAPPED

‘ 55 SUInt16 FIELD
~ SYNTAX UNSIGNED INT(16)

FLAGS SWAPPED

E SInt32 FIELD60 SYNTAX INT (32)
FLAGS SWAPPED

ByteStrl FIELD
SYNTAX BYTESTRING(1)

- 65

3 ByteStr2 FIELD
.: SYNTAX BYTESTRING(2)

.NOAC EX. 1016 Page 93

NOAC Ex. 1016 Page 94

w.

a-..

a5.”;T..

10

15

20

25

30

35

40

ByteStr4

Padl

Pad2

Pad3

Pad4

Pad5

macAddress
SYNTAX

(V

FIELD

SYNTAX BYTESTRING(4)

FIELD

SYNTAX BYTESTRING (1)
FLAGS NOSHOW

FIELD

SYNTAX BYTESTRING(2)
FLAGS NOSHOW

FIELD

SYNTAX BYTESTRING(3)
FLAGS NOSHOW

FIELD

SYNTAX BYTESTRING(4)
FLAGS NOSHOW

FIELD

SYNTAX BYTESTRING(5)
FLAGS NOSHOW

FIELD

BYTESTRING(6)
DISPLAY-HINT “1x:"
LOOKUP MACADDRESS
DESCRIPTION

“MAC layer physical address”

ipAddress
SYNTAX

FIELD
BYTESTRING(4)

DISPLAY—HINT “1d."
LOOKUP HOSTNAME
DESCRIPTION

“IP address”

ipv6Address
SYNTAX

FIELD
BYTESTRING(16)

DISPLAY—HINT “1d.“
DESCRIPTION

“IPV6 address”

87

NOAC EX. 1016 Page 94

NOAC Ex. 1016 Page 95

m. .
“h ‘1 a

—— Flows.pd1 - General FLOW definitions

5 -— Description:
—— This file contains general flow definitions.

—— Copyright:

‘(—— Copyright (c) 1998—1999 Apptitude, Inc.
10 —- (formerly Technically Elite, Inc.)

—— All rights reserved.

—— RCS '

-- $Id: Flows.pd1,v 1.12 1999/04/13 15:47:57 skip Exp $
15 —-

chaosnet FLOW

20 spanningTree FLOW

sna FLOW

oracleTNS FLOW

25 PAYLOAD (INCLUDE—HEADER, LENGTH=256)

ciscoOUI FLOW

 30 -— IP Protocols

igmp FLOW

35 GGP FLOW

,. ST FLOW

UCL FLOW

E52 40
'H'* egp FLOW

f igp FLOW

. (45 BBN—RCC-MON FLOW
NVP2 FLOW

PUP FLOW

50
ARGUS FLOW

EMCON FLOW

55 XNET FLOW

MUX FLOW

DCN-MEAS FLOW

\ 60
PIMP FLOW

PRM FLOW

65 TRUNKl FLOW

TRUNK2 FLOW

NOAC EX. 1016 Page 95

NOAC Ex. 1016 Page 96

89

LEAFl FLOW

LEAFZ FLOW
5

RDP FLOW

IRTP FLOW

10 ISO-TP4 FLOW

NETBLT FLOW

MFE—NSP FLOW
15

MERIT—INP FLOW

SEP FLOW

20 PC3 FLOW

IDPR FLOW

XTP FLOW

25
DDP FLOW

IDPR-CMTP FLOW

3O TPPlus FLOW

IL FLOW

SIP FLOW

35
SDRP FLOW

SIP—SR FLOW

4O SIP—FRAG FLOW

IDRP FLOW

RSVP FLOW
45

MHRP FLOW

BNA FLOW

50 SIPP—ESP FLOW

SIPP—AH FLOW

INLSP FLOW
55

SWIPE FLOW

NHRP FLOW

6O CFTP FLOW

SAT-EXPAK FLOW

KRYPTOLAN FLOW
65

RVD FLOW

NOAC EX. 1016 Page 96

NOAC Ex. 1016 Page 97

90

IPPC FLOW

SAT—MON FLOW

5 VISA FLOW

IPCV FLOW

CPNX FLOW

10
CPHB FLOW

WSN FLOW

15 PVP FLOW

BR— SAT—MON FLOW

SUN-ND FLOW

20
WB—MON FLOW

WB—EXPAK FLOW

25 ISO-IP FLOW

V'MTP FLOW

SECURE-VMTP FLOW
3O

TTP FLOW

NSFNET-IGP FLOW

35 DGP FLOW

TCF FLOW

IGRP FLOW
4O

OSPFIGP FLOW

Sprite—RPC FLOW

45 LARP FLOW

MTP FLOW

mm 5 FLOW
50

IPIP FLOW

MICP FLOW

55 SCC—SP FLOW

ETHERIP FLOW

encap FLOW
6O

GMTP FLOW

65 —— UDP Protocols

NOAC EX. 1016 Page 97

NOAC Ex. 1016 Page 98

10

15

20

25

30

35

40

45

50

55

60

65

rje FLOW

echo FLOW

discard

systat FLOW

daytime

qotd FLOW

msp FLOW

chargen

biff FLOW

who FLOW

syslog FLOW

loadav FLOW

notify FLOW

acmaint_dbd

FLOW

FLOW

FLOW

FLOW

acmaint_transd FLOW

puparp FLOW

applix FLOW

ock FLOW

91

tcpmux FLOW

telnet FLOW

CONNECTION (INHERITED)

privMail

nsw—fe FLOW

msg—icp

msg—auth

dsp FLOW

privPrint

time FLOW

rap FLOW

rlp FLOW

graphics

nameserver

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

NOAC EX. 1016 Page 98

NOAC Ex. 1016 Page 99

r

Is?'

b.

x

10

15

20

25

30

35

40

45

50

55

60

65

nicname

mpm—flags

mpm FLOW

mpm—snd

ni—ftp FLOW

auditd FLOW

finger FLOW

re—mail—ck

la—maint

xns—time

xns—ch FLOW

isi—gl FLOW

xns—auth

privTerm

xns—mail

privFile

ni—mail

acas FLOW

covia FLOW

tacacs-ds

sqlnet FLOW

gopher FLOW

netrjs—l

netrjs-Z

netrjs—B

netrjs~4

privDial

deos FLOW

privRJE

vettcp FLOW

hostsZ—ns

xfer FLOW

th FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

’77

NOAC EX. 1016 Page 99

NOAC Ex. 1016 Page 100

10
15

20

25

30
35

4O

w‘ 45

50

55

6O

65

mit—ml—dev

mfcobol

kerberos

su—mit—tg

dnsix FLOW

mit-dov

npp FLOW

dcp FLOW

objcall

supdup FLOW

dixie FLOW

swift—rvf

tacnews

metagram

newacct

hostname

iso—tsap

gppitnp

csnet-ns

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

threeCom—tsmux

rtelnet

snagas FLOW

mcidas FLOW

auth FLOW

audionews

sftp FLOW

ansanotify

uucp-path

sqlserv

cfdptkt

erpc FLOW

smakynet

ntp FLOW

ansatrader

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

93

NOAC EX. 1016 Page 100

NOAC Ex. 1016 Page 101

fimm!

10

15

20

25

3O

35

4o

45

50

55

6O

65

locus—map

unitary

locus-con

gss—xlicen

pwdgen FLOW

cisco—fna

cisco-tna

cisco—sys

statsrv

ingres—net

loc—srv

profile

emfis-data

emfis—cntl

bl—idm FLOW

imap2 FLOW

news FLOW

uaac FLOW

iso—tpO

iso—ip FLOW

cronus FLOW

aed—512

sql—net

hams FLOW

bftp FLOW

sgmp FLOW

netsc-prod

netsc—dev

sqlsrv FLOW

knet—cmp

pcmail—srv

nss—routing

sgmp—traps

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

94

NOAC EX. 1016 Page 101

NOAC Ex. 1016 Page 102

V
q

95

cmip—man FLOW

cmip-agent FLOW

»~“”(5 xns—courier FLOW

s—net FLOW

namp FLOW 10

; rsvd FLOW

E : send FLOW

’ 15 print~srv FLOW

i‘ multiplex FLOW
;« cl—l FLOW
g 20
‘ xyplex—mux FLOW

mailq FLOW

25 vmnet FLOW

genrad—mux FLOW

xdmcp FLOW
30

nextstep FLOW

bgp FLOW

35 r is FLOW

unify FLOW

audit FLOW
4O

ocbinder FLOW

ocserver FLOW

45 remote—kis FLOW

kis FLOW

aci FLOW

mumps FLOW

qft FLOW

55 gacp FLOW

prospero FLOW

osu-nms FLOW
6O

srmp FLOW

irc FLOW

65 dn6—nlm—aud FLOW

dn6—smm—red FLOW

NOAC EX. 1016 Page 102

NOAC Ex. 1016 Page 103

10

15

20

25

30

35

40

45

50

SS

60

6S

dls FLOW

dls—mon

smux FLOW

src FLOW

at—rtmp

at—nbp FLOW

at-3 FLOW

at-echo

at—S FLOW

at—zis FLOW

at—7 FLOW

at-B FLOW

tam FLOW

239-50 FLOW

anet FLOW

vmpwscs

softpc FLOW

atls FLOW

dbase FLOW

mpp FLOW

uarps FLOW

imap3 FLOW

fln—spx

rsh-spx

Cdc FLOW

sur—meas

link FLOW

dsp3270

pdap FLOW

pawserv

zserv FLOW

fatserv

csi-sgwp

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

96

NOAC EX. 1016 Page 103

NOAC Ex. 1016 Page 104

s2

10

15

20

25

30

35

4o

45

50

55

60

65

clearcase FLOW

ul istserv FLOW

legent— l FLOW

legent—Z FLOW

hassle FLOW

nip FLOW

tnETOS FLOW

dsETOS FLOW

is99c FLOW

isSBs FLOW

hp—collector FLOW

hp—managed—node FLOW

hp—alarm-mgr FLOW

arns FLOW

ibm—app FLOW

asa FLOW

aurp FLOW

unidata—ldm FLOW

ldap FLOW

uis FLOW

synotics—relay FLOW

synotics—broker FLOW

dis FLOW

embl—ndt FLOW

netcp FLOW

netware— ip FLOW

mptn FLOW

kryptolan FLOW

work—sol FLOW

ups FLOW

genie FLOW

decap FLOW

nced FLOW

nc 1d FLOW

97

NOAC EX. 1016 Page 104

NOAC Ex. 1016 Page 105

niftn.uf

x, .

10

15

20

25

3O

35

4O

45

50

55

6O

65

imsp FLOW

timbuktu FLOW

prm—sm FLOW

prm—nm FLOW

decladebug FLOW

rmt FLOW

synoptics—trap

smsp FLOW

infoseek FLOW

bnet FLOW

silverplatter FLOW

onmux FLOW

hyper—g FLOW

ariell FLOW

smpte FLOW

arielZ FLOW

ariel3 FLOW

opc—job—start FLOW

opc—job—track FLOW

icad-el FLOW

smartsdp FLOW

svrloc FLOW

ocs__cmu FLOW

ocs__amu FLOW

utmpsd FLOW

utmpcd FLOW

iasd FLOW

nnsp FLOW

mobileip-agent

mobilip-mn FLOW

dna—cml FLOW

comscm FLOW

ds fgw FLOW

FLOW

FLOW

98

NOAC EX. 1016 Page 105

NOAC Ex. 1016 Page 106

99

dasp FLOW

sgcp FLOW

V F, 5 decvms-sysmgt FLOW

:V cvc_hostd FLOW

ht tps FLOW

10
CONNECTION { INHERITED)

snpp FLOW

‘ :5 microsoft—ds FLOW
‘. 15

ddm—rdb FLOW

ddm—dfm FLOW

‘ 20 ddm—byte FLOW

as—servermap FLOW

tserver FLOW

25
exec FLOW

CONNECTION { INHERITED)

a: login FLOW
3O

CONNECTION { INHERITED)
cmd FLOW

CONNECTION (INHERITED }

35 printer FLOW

CONNECTION { INHERITED)
talk FLOW

4O CONNECTION (INHERITED)
ntalk FLOW

CONNECTION { INHERITED }
utime FLOW

45
efs FLOW

timed FLOW

50 tempo FLOW

cour ier FLOW
conference FLOW

55
netnews FLOW

' netwall FLOW

6O apertus—ldp FLOW

uucp FLOW

uucp—rlogin FLOW
65

klogin FLOW

NOAC EX. 1016 Page 106

NOAC Ex. 1016 Page 107

,(u4,,”4....

in

10

15

20

25

30

35

4O

45

50

55

6O

65

100

kshell FLOW

new—rwho FLOW

ds f FLOW

remotefs FLOW

rmoni tor FLOW

moni tor FLOW

chshell FLOW

p9 fs FLOW

whoami FLOW

meter FLOW

ipcserver FLOW

urm FLOW

nqs FLOW

s i ft-uft FLOW

npmp— trap FLOW

npmp— local FLOW

npmp-gui FLOW

ginad FLOW

doom FLOW

mdqs FLOW

el csd FLOW

entrus tmanager FLOW

netviewdml FLOW

netviewdmz FLOW

netviewdm3 FLOW

netgw FLOW

netres FLOW

f lexlm FLOW

fuj itsu-dev FLOW

ris — cm FLOW

kerberos —adm FLOW

rf i le FLOW

pump FLOW

qrh FLOW

NOAC EX. 1016 Page 107

NOAC Ex. 1016 Page 108

101

rrh FLOW

tel l FLOW

n 1 ogin FLOW

con FLOW

ns FLOW

rxe FLOW

quotad FLOW

cycleserv FLOW

omserv FLOW

webs ter FLOW

phonebo o k FLOW

vi (1 FLOW

cadlock FLOW

rtip FLOW

cycleseer FLOW

submit FLOW

rpasswd FLOW

entomb FLOW

wpages FLOW

wpgs FLOW

concert FLOW

mdbs_daemon FLOW

device FLOW

xtreel ic FLOW

maitrd FLOW

busboy FLOW

garc on FLOW

puprouter FLOW

socks FLOW

NOAC EX. 1016 Page 108

NOAC Ex. 1016 Page 109

sly»x...

10

15

20

25

30

35

40

45

50

55

60

65

—- Virtual.pdl — Virtual Layer definition

-- Description:
—— This file contains the definition for the VirtualBase layer used
—— by the embodiment.

—— Copyright:
—— Copyright (C) 1998~1999 Apptitude, Inc.
-— (formerly Technically Elite, Inc.)
—— All rights reserved.

—— RCS:

—— $Id: Virtual.pdl,v 1.13 1999/04/13 15:48:03 skip Exp $

-— This includes two things: the flow signature (called FLOWKEY) that the
—— system that is going to use.

-— note that not all elements are in the HASH. Reason is that these non—HASHED

—— elements may be varied without the HASH changing, whihc allows the system
—— to look up multiple buckets with a single HASH. That is, the MeyMatchFlag,
—— StateStatus Flag and MuliPacketID may be varied.

FLOWKEY {

KeyMatChFlags, —— to tell the system which of the in—HASH elements have to
—— match for the this particular flow record.

—— Flows for which complete signatures may not yet have
—- been generated may then be stored in the system

StateStatusFlags,

GroupIdl IN—HASH, —— user defined
GroupIdZ IN—HASH, —— user defined

DLCProtocol IN—HASH, , —~ data link protocol — lowest level we
—— evaluate. It is the type for the

—— Ethernet V 2

NetworkProtocol IN—HASH, —— IP, etc.
TunnelProtocol IN—HASH, —— IP over IPX, etc.
TunnelTransport IN—HASH,
TransportProtocol IN—HASH,
ApplicationProtocol IN—HASH,

DLCAddresses(8) IN—HASH, —— lowest level address
NetworkAddresses(16) IN—HASH,
TunnelAddresses(16) IN—HASH,

ConnectionIds IN-HASH, .

MultiPacketId —— used for fragmentaion purposes

i- now define all of the children. In this example, only one virtual
—— child — Ethernet.

virtualchildren FIELD
SYNTAX INT(8) (ethernet(l))

-— now define the base for the children. In this case, it is the same as

—— for the overall system. There may be multiples.

VirtualBase PROTOCOL

~:= (VirtualChildren=virtualchildren }

NOAC EX. 1016 Page 109

NOAC Ex. 1016 Page 110

“31%"y.
gig-..

.LawnSyd:M‘U,

10

(7 C“

103

—— The following is the header that every packet has to have and
—— that is placed into the system by the packet acquisition system.

VirtualBase FLOW

HEADER { LENGTH=8)
CHILDREN (DESTINATION=VirtualChildren) -— this will be

—— Ethernet for this example.

—— the virtualBAse will be 01 for these packets.

NOAC EX. 1016 Page 110

NOAC Ex. 1016 Page 111

7’3 __ Ethernet.pd1 — Ethernet frame definition

5 —— Description:
-— This file contains the definition for the Ethernet frame. In this

—— PDL file, the decision on EtherType vs. IEEE is made. If this is
—— EtherType, the selection is made from this file. It would be possible
—— to move the EtherType selection to another file, if that would assist

10 —- in the modularity.

—— Copyright:
-_ Copyright (c) 1994—1998 Apptitude, Inc.

; , —— (formerly Technically Elite, Inc.)
:4‘ 15 —— All rights reserved.

—— RCS:

—— $Id: Ethernet.pdl,v 1.13 1999/01/26 15:15:57 skip Exp $

.3 20 ———

-- Enumerated type of a 16 bit integer that contains all of the
—— possible values of interest in the etherType field of an

25 —— Ethernet V2 packet.

etherType FIELD
SYNTAX INT(16) { xns(0x0600), ip(0x0800),

chaosnet(0x0804), arp(0x0806),
3O vines(0xbad),

vinesLoop(OxObae), vinesLoop(Ox80c4),
vinesEcho(Oxbaf), vinesEcho(0x80c5),
netbios(0x3c00), netbios(0x3c01),
netbios(0x3c02), netbios(0x3c03),

35 netbios(0x3c04), netbios(0x3c05),
netbios(0x3c06), netbios(0x3c07),
netbios(0x3c08), netbios(0x3c09),
netbios(0x3c0a). netbios(0x3c0b),
netbios(0x3c0c), netbios(0x3c0d),

40 dec(0x6000), mop(0x6001), mop2(0x6002),
drp(0x6003), 1at(0x6004), decDiag(Ox6005),
lavc(0x6007), rarp(0x8035), appleTalk(Ox809b),
sna(0x80d5), aarp(0x80f3), ipx(0x8137),
snmp(0x814c), ipv6(0x86dd), loopback(0x9000))

45 DISPLAY—HINT “lxz”

LOOKUP FILE “EtherType.cf”
DESCRIPTION

“Ethernet type field"

50 —— ,
—— The unformatted data field in and Ethernet V2 type frame

etherData FIELD
SYNTAX BYTESTRING(46..1500)

55 ENCAP etherType
DISPLAY—HINT “HexDump”

: ‘ DESCRIPTION

3:5 “Ethernet data"

60 ——

‘32. —— The layout and structure of an Ethernet V2 type frame with
F 9 —— the address and protocol fields in the correct offset position

ethernet PROTOCOL
65 DESCRIPTION

“Protocol format for an Ethernet frame”
REFERENCE “RFC 894”

'NOAC EX. 1016 Page 111

NOAC Ex. 1016 Page 112

C”) (W

105

{ MacDest=macAddress, MacSrczmacAddress, EtherType=etherType,
Data=etherData }

—— The elements from this Ethernet frame used to build a flow key
—— to classify and track the traffic. Notice that the total length
—— of the header for this type of packet is fixed and at 14 bytes or
—— octets in length. The special field, LLC—CHECK, is specific to
—— Ethernet frames for the decoding of the base Ethernet type value.
—— If it is NOT LLC, the protocol field in the flow is set to the
—— EtherType value decoded from the packet.

ethernet FLOW

HEADER (LENGTH=14)
DLC—LAYER (

SOURCE=MacSrc,
DESTINATION=MacDest,
TUNNELING,
PROTOCOL

}
CHILDREN (DESTINATION=EtherType, LLC—CHECK=llC)

NOAC EX. 1016 Page 112

NOAC Ex. 1016 Page 113

£3?

rm“‘1(a.r
1'

10

15

20

25

30

35

40

45

50

55

60

65

—— IEEE8022.pdl - IEEE 802.2 frame definitions

-- Description:
—— This file contains the definition for the IEEE 802.2 Link Layer
—— protocols including the SNAP (Sub—network Access Protocol).

—- Copyright:
—— Copyright (c) 1994—1998 Apptitude. Inc.
-- (formerly Technically Elite, Inc.)
-— All rights reserved.

—— RCS:

—— SId: IEEE8022.pdl,v 1.18 1999/01/26 15:15:58 skip Exp S

—— IEEE 802.2 LLC

llcSap FIELD
SYNTAX INT(16) (ipx(OxFFFF), ipx(OxEOEO), isoNet(OxFEFE),

netbios(OxFOFO), vsnap(OxAAAA), ip(0x0606),
vines(OxBCBC), xns(0x8080), spanningTree(Ox4242),
sna(0x0c0c), sna(OXOBOB), sna(0x0404))

DISPLAY—HINT “lxz”
DESCRIPTION

“Service Access Point”

llcControl FIELD

—~ This is a special field. when the decoder encounters this field, it
—— invokes the hard-coded LLC decoder to decode the rest of the packet.
—— This is necessary because LLC decoding requires the ability to
—~ handle forward references which the current PDL format does not

-— support at this time.
SYNTAX UNSIGNED INT(8)
DESCRIPTION

“Control field”

llcPduType FIELD
SYNTAX BITSTRING(2) { lchnformation(O), llcSupervisory(l),

lchnformation(2), llcUnnumbererd(3))

lchata FIELD

SYNTAX BYTESTRING(38..1492)
ENCAP llcPduType
FLAGS SAMELAYER

DISPLAY-HINT “HexDump”

llC PROTOCOL
SUMMARIZE

“$llcPduType == llcUnnumbered”
“LLC ($SAP) $Modifier"

“$11cPduType == llcSupervisory" .
“LLC ($SAP) $Function N(R)=$NR”

“SllcPduType == 0(2" .
“LLC ($SAP) N(R)=$NR N(S)=$NS"

“Default" .

“LLC ($SAP) $11cPduType"
DESCRIPTION

“IEEE 802.2 LLC frame format”

::= { SAP=11cSap, Control=llcControl, Data=lchata)

llc FLOW

HEADER { LENGTH=3)
DLC—LAYER (PROTOCOL)

NOAC EX. 1016 Page 113

NOAC Ex. 1016 Page 114

“333’

n a

107

CHILDREN (DESTINATION=SAP)

llcUnnumberedData FIELD
SYNTAX BYTESTRING(0..1500)

5 ENCAP 11cSap
DISPLAY—HINT “HexDump”

llcUnnumberedPROTOCOL
SUMMARIZE

10 “Default" .
“LLC ($SAP) $M0difier”

-:= { Data=llcUnnumberedData)

llcSupervisoryData FIELD
15 SYNTAX BYTESTRING(0..1500)

DISPLAY—HINT “HexDump”

llcSupervisory PROTOCOL
SUMMARIZE

20 “Default” .
“LLC ($SAP) $Function N(R)=$NR"

':= (DatazllcSupervisoryData }

lchnformationData FIELD

25 SYNTAX BYTESTRING(0..1500)

ENCAP llcSap
DISPLAY—HINT “HexDump”

lchnformation PROTOCOL
30 SUMMARIZE

“Default”

“LLC ($SAP) N(R)=$NR N(S)=$NS”
:= { Data=lchnformationData }

35 ——
—~ SNAP

snapOrgCode FIELD
SYNTAX BYTESTRING(3) { snap(“00:00:00”), ciscoOUI(“00:00:OC").

5‘ a :5 40 appleOUI(“08:OO:07") }
’v ” DESCRIPTION

‘ “Protocol ID or Organizational Code”

1 1 vsnapData FIELD
wv;2 4S SYNTAX BYTESTRING(46..1500)
.;' ENCAP snapOrgCode

FLAGS SAMELAYER
DISPLAY—HINT “HexDump”
DESCRIPTION

50 “SNAP LLC data"
”a.”«vH

vsnap PROTOCOL
DESCRIPTION

“SNAP LLC Frame”

55 ::= { OrgCode=snapOrgCode, Data=vsnapData }

Vsnap FLOW
HEADER { LENGTH=3 }
DLC—LAYER (PROTOCOL)

60 CHILDREN (DESTINATION=OrgCode)

j} snapType FIELD
" SYNTAX INT(16) { xns(0x0600), ip(0x0800), arp(0x0806),

vines(0xbad),

65 mop(0x6001)I mop2(0x6002), drp(0x6003),
1at(0x6004), decDiag(0x6005), 1avc(0x6007),
rarp(0x8035). appleTa1k(0X809B), sna(0x80d5),

NOAC EX. 1016 Page 114

NOAC Ex. 1016 Page 115

10

15

20

25

(W

108

(“V

aarp(0x80F3), ipx(0x8137), snmp(0x814c), ipv6(0x86dd)
DISPLAY-HINT “lxz”

LOOKUP FILE “EtherType.Cf”
DESCRIPTION

“SNAP type field”

snapData FIELD

snap

snap

SYNTAX BYTESTRING(46..1500)
ENCAP snapType
DISPLAY—HINT “HexDump”
DESCRIPTION

“SNAP data”

PROTOCOL
SUMMARIZE

“$OrgCode == 00:00:00”
“SNAP Type=$SnapType”

“Default"

“VSNAP Org=$OrgCode Type=$SnapType”
DESCRIPTION

“SNAP Frame”

{ SnapType=snapType, DatazsnapData)

FLOW

HEADER { LENGTH=2)
DLC-LAYER { PROTOCOL)
CHILDREN { DESTINATION=SnapType)

NOAC EX. 1016 Page 115

)

NOAC Ex. 1016 Page 116

. 109

§ ——

Z? —— IEEE8023.pdl — IEEE 802.3 frame definitions

.7 5 -— Description:
i —— This file contains the definition for the IEEE 802.3 (Ethernet)

1 —— protocols.

i i —— Copyright:
’1 10 —- Copyright (c) 1994—1998 Apptitude, Inc.

2‘ . —— (formerly Technically Elite, Inc.)
:Lfi: —— All rights reserved.

’; —— RCS:
;‘ ‘ 15 —— $Id: IEEE8023.pd1,v 1.7 1999/01/26 15:15:58 skip Exp $, k —_

20 —— IEEE 802.3

ieee8023Length FIELD
SYNTAX UNSIGNED INT(16)

25 ieee8023Data FIELD
SYNTAX BYTESTRING (38 . . 1492)
ENCAP =llC

LENGTH “$ieee8023Length”
DISPLAY—HINT “HexDump”

30
ieeeB 02 3 PROTOCOL

DESCRIPTION

“IEEE 802.3 (Ethernet) frame"
REFERENCE “RFC 1042 ”

35 ::= { MacDest=macAddress, MacSrc=macAddress, Length=ieee8023Length,
Data=ieee8023Data }

.7 NOAC EX. 1016 Page 116

NOAC Ex. 1016 Page 117

10

15

20

25

30

35

40

45

50

55

60

65

—— IP.pdl — Internet Protocol (IP) definitions

—— Description:
-— This file contains the packet definitions for the Internet
—— Protocol. These elements are all of the fields, templates and
»— processes required to recognize, decode and classify IP datagrams
—— found within packets.

—— Copyright:

—— Copyright (c) 1994—1998 Apptitude, Inc.
—— (formerly Technically Elite, Inc.)
»— All rights reserved.

-_ RCS:

—— $Id: IP.pd1,v 1.14 1999/01/26 15:15:58 skip Exp $

—— The following are the fields that make up an IP datagram.
—- Some of these fields are used to recognize datagram elements, build
—- flow signatures and determine the next layer in the decode process.

ipVersion FIELD
SYNTAX INT(4)
DEFAULT “4”

ipHeaderLength FIELD
SYNTAX INT(4)

ipTypeOfService FIELD
SYNTAX BITSTRING(8) { minCost(1), maxReliability(2),

maxThruput(3), minDelay(4))

ipLength FIELD
SYNTAX UNSIGNED INT(16)

—— This field will tell us if we need to do special processing to support
—— the payload of the datagram existing in multiple packets.

ipFlags FIELD
SYNTAX BITSTRING(3) (moreFrags(O), dontFrag(1))

ipFragmentOffset FIELD
SYNTAX INT(13)

-_ This field is used to determine the children or next layer of the
—- datagram.

ipProtocol FIELD
SYNTAX INT(8)
LOOKUP FILE “IpProtocol.cf"

ipData FIELD
SYNTAX BYTESTRING(O..1500)
ENCAP ipProtocol
DISPLAY—HINT “HexDump”

—— Detailed packet layout for the IP datagram. This includes all fields
—— and format. All offsets are relative to the beginning of the header.

ip PROTOCOL

NOAC EX. 1016 Page 117

NOAC Ex. 1016 Page 118

10

15

20

25

30

35

40

45

50

55

60

D

111

“IPFragment ID=$Identification Offset=$FragmentOffset”

SUMMARIZE

“$FragmentOffset != 0”:

“Default” .

“IP Protocol=$Protocol"
DESCRIPTION

“Protocol format for the Internet Protocol”
REFERENCE “RFC 791”

-:= (Version=ipVersion, HeaderLength:ipHeaderLength,
TypeofService=ipTypeOfService, Length=ipLength,
Identification=UInt16, IpFlags=ipFlags,
FragmentOffset=ipFragmentOffset, TimeToLive=Int8,
Protocol=ipProtocol, Checksum=ByteStr2,
IpSrc=ipAddress, IpDest=ipAddress, Options=ip0ptions,
Fragment=ipFragment, Data=ipData)

—- This is the description of the signature elements required to build a flow
—— that includes the IP network layer protocol. Notice that the flow builds on
—— the lower layers. Only the fields required to complete IP are included.
—— This flow requires the support of the fragmentation engine as well as the
—— potential of having a tunnel. The child field is found from the IP
—— protocol field.

ip FLOW
HEADER (LENGTH=HeaderLength, IN—WORDS)
NET—LAYER (

SOURCE=IpSrc,
DESTINATION=IpDest,
FRAGMENTATION=IPV4,
TUNNELING

)
CHILDREN { DESTINATION=Pr0tOCol)

ipFragData FIELD
SYNTAX BYTESTRING(1
LENGTH “$ipLength —
DISPLAY-HINT “HexDump”

ipFragment GROUP

..1500)

$ipHeaderLength * 4”

OPTIONAL “$Fragment0ffset != 0"
::= (Data=ipFragData)

ipOptionCode FIELD
SYNTAX INT(8) (ipRR(OxO7) , ipTimestamp(0x44),

ipLSRR(Ox83), ipSSRR(Ox89))
DESCRIPTION

“IP option code”

ipOptionLength FIELD
SYNTAX UNSIGNED INT(8)
DESCRIPTION

“Length of IP option”

ipOptionData FIELD
SYNTAX BYTESTRING(0..1500)
ENCAP ipOptionCode
DISPLAY—HINT “HexDump”

ipOptions GROUP
LENGTH “($ipHeaderLength * 4) — 20"

-:= (Code=ip0ptionCode, Length=ip0ptionLength, Pointer=UInt8,
Data=ip0ptionData }

NOAC EX. 1016 Page 118

NOAC Ex. 1016 Page 119

10

15

20

25

3O

35

40

45

50

55

60

65

—- TCP.pdl — Transmission Control Protocol (TCP) definitions

—— Description:
-— This file contains the packet definitions for the Transmission
—— Control Protocol. This protocol is a transport service for
—— the IP protocol. In addition to extracting the protocol information
—— the TCP protocol assists in the process of identification of connections
—— for the processing of states.

—— Copyright:
—— Copyright (c) 1994—1998 Apptitude, Inc.
-— (formerly Technically Elite, Inc.)
—— All rights reserved.

—— RCS:

-- $Id: TCP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp $

—— This is the 16 bit field where the child protocol is located for
—— the next layer beyond TCP.

tcpPort FIELD
SYNTAX UNSIGNED INT(16)

LOOKUP FILE “TcpPort . cf"

tcpHeaderLen FIELD
SYNTAX INT(4)

tchlags FIELD
SYNTAX BITSTRING(12) (fin(0), syn(1), rst(2), psh(3), ack(4), urg(5))

tchata FIELD
SYNTAX BYTESTRING(0..1564)

LENGTH “($ipLength — ($ipHeaderLength * 4)) — ($tcpHeaderLen * 4)”
ENCAP tcpPort
DISPLAY—HINT “HexDump”

—— The layout of the TCP datagram found in a packet. Offset based on the
—— beginning of the header for TCP.

tcp PROTOCOL
SUMMARIZE

“Default” .

“TCP ACK=$Ack WIN=$WindowSize”
DESCRIPTION

“Protocol format for the Transmission Control Protocol”
REFERENCE “RFC 793”

{ SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,
Ack=UInt32, HeaderLength:tcpHeaderLen, Tchlags=tchlags,
WindowSize=UInt16, Checksum=ByteStr2,

UrgentPointer=UIntl6, Options=tcp0ptions, Data=tchata)

-— The flow elements required to build a key for a TCP datagram.
—— Noticed that this FLOW description has a CONNECTION section. This is
—— used to describe what connection state is reached for each setting

—— of the Tchlags field.

tcp FLOW
HEADER { LENGTH=HeaderLength, IN—WORDS)
CONNECTION {

IDENTIFIER=SequenceNum,
CONNECT—START=“Tchlags:l”,

NOAC EX. 1016 Page 119

NOAC Ex. 1016 Page 120

('3 (”‘1

113

CONNECT—COMPLETE:“Tchlags:4”,
DISCONNECT-START=“TCpFlags:0”,
DISCONNECT-COMPLETE=“TCpFlags:4”

}
5 PAYLOAD (INCLUDE—HEADER)

CHILDREN (DESTINATION=DestPort, SOURCE=SrcPort)

tchptionKindFIELD
SYNTAX UNSIGNED INT(8) (tchptEnd(0), thNOp(l), thMSS(2),

10 tchsca1e(3), tcpTimestamp(4) }
DESCRIPTION

“Type of TCP option"

tchptionDataFIELD
15 SYNTAX BYTESTRING(0..1500)

ENCAP tchptionKind
FLAGS SAMELAYER

DISPLAY-HINT “HexDump”

20 tchptions GROUP
LENGTH “($tcpHeaderLen * 4) — 20"

-— SUMMARIZE
—— “Default"

—— “Option=$0ption, Len=$OptionLength, $OptionData"
25 ::= (Option=tcp0ptionKind, OptionLength=UInt8, OptionData=tchptionData }

tcpMSS PROTOCOL
:= (MaxSegmentSize=UInt16 }

NOAC EX. 1016 Page 120

NOAC Ex. 1016 Page 121

—— UDP.pdl — User Datagram Protocol (UDP) definitions

: 5 —— Description:

Q. ~— This file contains the packet definitions for the User Datagram
?: —— Protocol.

. _“ s: — —

gli? —— Copyright:
37 ' 10 -— Copyright (c) 1994—1998 Apptitude, Inc.

—— (formerly Technically Elite, Inc.)
—— All rights reserved.

Bx —— RCS:
£3 15 —— $Id: UDP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp $

’% udpPort FIELD

1; SYNTAX UNSIGNED INT(16)
' 20 LOOKUP FILE “UdpPort . c f"

udpLength FIELD
SYNTAX UNSIGNED INT(16)

25 udpData FIELD
SYNTAX BYTESTRING (0. .1500)
ENCAP udpPort
DISPLAY~HINT “HexDump”

3O udp PROTOCOL
SUMMARIZE

“Default” .

“UDP Dest=$DestPort Src=$SrcPort”

DESCRIPTION

5 35 “Protocol format for the User Datagram Protocol.”
REFERENCE “RFC 768”

':= (SrcPort=udpPort, DestPort=udpPort, Length=udpLength,
Checksum=ByteStr2, Data=udpData }

4O udp FLOW
HEADER (LENGTH=8)

1: CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort)

NOAC EX. 1016 Page 121

NOAC Ex. 1016 Page 122

—— RPC.pdl — RemOte Procedure Calls (RPC) definitions

5 -_ Description:
—~ This file contains the packet definitions for Remote Procedure
-— Calls.

—— Copyright:

10 ~— Copyright (c) 1994—1999 Apptitude, Inc.
—— (formerly Technically Elite, Inc.)
~— All rights reserved.

—— RCS:

15 ~— $Id: RPC.pd1,v 1.7 1999/01/26 15:16:01 skip Exp $

rchype FIELD
SYNTAX.UNSIGNED INT(32) { rchall(O), rpcReply(1))

20

rpcData FIELD
SYNTAX BYTESTRING(0..100)
ENCAP rchype
FLAGS SAMELAYER

25 DISPLAY—HINT “HexDump”

rpc PROTOCOL
SUMMARIZE

“$Type == rchall”
30 “RPC $Program"

“$ReplyStatus == rpcAcceptedReply"
“RPC Reply Status=$Status”

“$ReplyStatus == rpcDeniedReply” :
“RPC Reply Status=$status, Authstatus=$AuthStatus"

35 “Default” .
“RPC $Program”

DESCRIPTION
“Protocol format for RPC"

REFERENCE

;__1 40 “RFC 1057"
E := { XID=UInt32, Type=rchype, DatazrpcData 1

rpc FLOW
HEADER { LENGTH=O }

45 PAYLOAD { DATA=XID, LENGTH=256 }

—— RPC Call

50 rpcProgram FIELD ,
SYNTAX UNSIGNED INT(32) { portMapper(100000), nfs(100003),

mount(100005), lockManager(100021), statusMonitor(100024) }

rpcProcedure GROUP
55 SUMMARIZE

“Default”

“Program=$Program, Version=$Version, Procedure=$Procedure”
-:= { Program=rpcProgram, Version=UInt32, Procedure=UInt32)

60 rpcAuthFlavor FIELD

SYNTAX UNSIGNED INT(32) { null(0>, unix(l), short(2) }

rpcMachine FIELD
SYNTAX LSTRING (4)

65
rpcGroup GROUP

LENGTH “$NumGroups * 4”

NOAC EX. 1016 Page 122

NOAC Ex. 1016 Page 123

(V (V

116

‘:= { Gid=Int32)

rchredentials GROUP
LENGTH “$CredentialLength”

5 ::= { Stamp=UInt32, Machine=rpcMachine, Uid=Int32, Gid=Int32,
NumGroups=UInt32, Groups=rpcGroup }

, rpcVerifierData FIELD
w SYNTAX BYTESTRING(O..400)
" 10 LENGTH “$VerifierLength”

‘g rchncap FIELD
SYNTAX COMBO Program Procedure
LOOKUP FILE “RPC.Cf”

15

rchallData FIELD
SYNTAX BYTESTRING(O..100)
ENCAP rchncap
DISPLAY-HINT “HexDump”

20

rchall PROTOCOL
DESCRIPTION

“Protocol format for RPC call"

-:= { RPCVersion=UInt32, Procedure=rpcProcedure,
25 CredentialAuthF1avor=rpcAuthFlavor, CredentialLength=UInt32,

Credentials=rchredentials,
VerifierAuthFlavor=rpcAuthF1avor, VerifierLength=UInt32,
Verifier=rpcVerifierData, Encap=rchncap, Data=rchallData)

30 —————————————

—- RPC Reply

i rpcReplyStatus FIELD
: SYNTAX INT(32) (rpcAcceptedRep1y(0), rpcDeniedReply(1))~‘ 35

‘: rpcReplyData FIELD
SYNTAX BYTESTRING(0..40000)

ENCAP rpcReplyStatus
FLAGS SAMELAYER

sé 40 DISPLAY-HINT “HexDump”

rpcReply PROTOCOL
DESCRIPTION

“Protocol format for RPC reply"

45 ::= { ReplyStatus=rpcRep1yStatus, Data=rpcReplyData)

1 rpcAcceptStatus FIELD
SYNTAX INT(32) (Success(0), ProgUnavai1(1), ProgMismatch(2),

ProcUnavail(3), GarbageArgs(4), SystemError(5))
50

rpcAcceptEncap FIELD
(SYNTAX BYTESTRING(O)

,fi FLAGS NOSHOW

55 rpcAcceptDataFIELD
SYNTAX BYTESTRING(O..4000O)

ENCAP rpcAcceptEncap
DISPLAY—HINT “HexDump”

60 rpcAcceptedReply PROTOCOL
':= (VerifierAuthF1avor=rpcAuthFlavor, VerifierLength=UInt32,

Verifier=rpcVerifierData, Status=rpcAcceptStatus,
Encap=rpcAcceptEncap, Data=rpcAcceptData }

65 rpcDeniedStatus FIELD
SYNTAX INT(32) { rpcVersionMismatch(O), rpcAuthError(l))

NOAC EX. 1016 Page 123

NOAC Ex. 1016 Page 124

—— NFS.pdl — Network File System (NFS) definitions

5 —— Description:
—— This file contains the packet definitions for the Network File
-_ System.

_- Copyright:
10 —— Copyright (c) 1994—1998 Apptitude, Inc.

—— (formerly Technically Elite, Inc.)
—— All rights reserved.

—— RCS:

15 —— $Id: NFS.pdl,v 1.3 1999/01/26 15:15:59 skip Exp $

nfsString FIELD
SYNTAX LSTRING(4)

20
nszandle FIELD

SYNTAX BYTESTRING(32)
DISPLAY—HINT “16x\n “

25 nstata FIELD
SYNTAX BYTESTRING(0..100)
DISPLAY-HINT “HexDump”

nfsAccess PROTOCOL
30 SUMMARIZE

“Default”
“NFS Access $Fi1ename”

—:= { Handle=nszandle, Filename=nfsstring }

35 nfsStatus FIELD

SYNTAX INT(32) { OK(0), NoSuchFile(2) }
nfsAccessReply PROTOCOL

SUMMARIZE

40 “Default” .
‘NFS AccessReply $Status'

-:= { Status=nfsStatus }

nfsMode FIELD

45 SYNTAX UNSIGNED INT (32)
DISPLAY—HINT “4o”

nfsCreate PROTOCOL
SUMMARIZE

50 “Default” : ~
“NFS Create $Filename”

::= { Handle=nszandle, Filename=nfsstring, Filler=Int8, Mode=nfsMode,
Uid=Int32, Gid=Int32. Size=Int32, AccessTime=Int64, ModTime=Int64 }

55 nstileType FIELD
SYNTAX INT(32) (Regular(l), Directory(2) }

nfsCreateReply PROTOCOL
SUMMARIZE

60 “Default" .
“NFS CreateReply $Status"

.:= (status=nfsStatus, Handle=nszandle, FileType=nstileType,
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int321 NumBlocks=Int64, FileSysId=UInt32, FileId=u1nt32,

65 AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64)

nstead PROTOCOL

NOAC EX. 1016 Page 124”1......“M.

NOAC Ex. 1016 Page 125

0 O

119

SUMMARIZE
“Default” .

“NFS Read Offset=$0ffset Length=$Length”

-:= (Length=Int32, Handle=nszandle, Offset=UInt64, Count=Int32)
5

nsteadReply PROTOCOL
SUMMARIZE

“Default" .

“NFS ReadReply $Status"
10 ::= (Status=nfsstatus. FileType=nstileType,

Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64)

15 nfsWrite PROTOCOL

SUMMARIZE
“Default” .

“NFS Write Offset=$Offset”

-:= (Handle=nszandle, Offset=Int32, Data=nstata)
20

nfsWriteReplyPROTOCOL
SUMMARIZE

“Default”

“NFS WriteReply $Status"
25 ::= (Status=nfsStatus, FileType=nstileType,

Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64)

30 nsteadDir PROTOCOL
SUMMARIZE

“Default" .
“NFS ReadDir'

-= { Hand1e=nszandle, Cookie=Int32, Count=Int32)

35

nsteadDirReply PROTOCOL
SUMMARIZE

“Default” :

“NFS ReadDirReply $Status'
40 ::= { Status=nfsstatus, Data=nstata)

’ nstetFileAttr PROTOCOL

SUMMARIZE
“Default" :

45 “NFS GetAttr”
-:= { Handle=nszandle }

i.'

E

nstetFileAttrReply PROTOCOL
SUMMARIZE

50 “Default” : .
“NFS GetAttrReply $Status $Fi1eType"

:= { Status=nfsStatus, FileType=nstileType,
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,

55 AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64 }

nsteadLink PROTOCOL
SUMMARIZE

“Default" .

6O “NFS ReadLink”
-:= { Handle=nszand1e)

nsteadLinkReply PROTOCOL
SUMMARIZE

65 “Default” :
“NFS ReadLinkReply Path=$Path"

z= { Status=nfsStatus, Pathznfsstring }

NOAC EX. 1016 Page 125

“M...”..mm

NOAC Ex. 1016 Page 126

«Mam.w...

~.....¢.WWMR"..

i

.-M,arm...“”Wanna:.«Mound-AWW.»

(3

120

nfsMount PROTOCOL
SUMMARIZE

“Default” .

5 “NFS Mount $Path”
':= { Path=nfsString }

nfsMountReplyPROTOCOL
SUMMARIZE

10 “Default”
“NFS MountReply $MountStatus”

{ Mountstatus=nfsstatus, Handle=nszandle }
ll

nfsStath PROTOCOL

15 SUMMARIZE
“Default”

“NFS Stath"

-- { Handle=nszandle }

20 nfsStathRep 1y PROTOCOL
SUMMARIZE

“Default” .

“NFS StathReply $Status"

25

nstemoveDir PROTOCOL
SUMMARIZE

“Default” .

30 “NFS RmDir $Name”
-:= { Handle=nszandle, Name=nfsstring }

nstemoveDirReply PROTOCOL
SUMMARIZE

35 “Default” .
“NFS RmDirReply $Status”

:= { Status=nfsStatus }

nfsMakeDir PROTOCOL
40 SUMMARIZE

“Default” .
“NFS MkDir $Name'

-:= { Handle=nszandle, Name=nfsString }

45 nfsMakeDirReply PROTOCOL
SUMMARIZE

“Default” .

“NFS MkDirReply $Status”

-= { Status=nfsStatus }
50

nstemove PROTOCOL
SUMMARIZE

“Default"
“NFS Remove SName”

55 :'= (Hand1e=nszandle, Name=nfsstring }

nstemoveReply PROTOCOL
SUMMARIZE

“Default" .

60 “NFS RemoveReply $Status"
:- { Status=nfsstatus }

{ Status=nfsStatus, Transfersize=UInt32, Blocksize=UInt32,
TotalBlocks=UInt32, FreeBlocks=UInt32, AvailBlocks=UInt32 }

NOAC EX. 1016 Page 126

NOAC Ex. 1016 Page 127

—- HTTP.pdl — Hypertext Transfer Protocol (HTTP) definitions

5 —— Description:
—— This file contains the packet definitions for the Hypertext Transfer
—— Protocol.

—- Copyright:
10 —- Copyright (c) 1994—1999 Apptitude, Inc.

—- (formerly Technically Elite, Inc.)
—— All rights reserved.

—— RCS:

15 -- $Id: HTTP.pdl,v 1.13 1999/04/13 15:47:57 skip Exp $

httpData FIELD
SYNTAX BYTESTRING(1..1500)

20 LENGTH “($ipLength - ($ipHeaderLength * 4)) — ($tcpHeaderLen
* 4)”

DISPLAY-HINT “Text”
FLAGS NOLABEL

25 http PROTOCOL
SUMMARIZE

“$httpData m/“GETI‘HTTPI‘HEADI“POST/”
“HTTP $httpData”

“$httpData m/A[Dd]ate|“[Ss]erver|‘[Ll]ast—[Mm]odified/”
30 “HTTP $httpData"

“$httpData m/“[Cc]ontent—/”
“HTTP $httpData”

“$httpData m/‘<HTML>/”
“HTTP [HTML document]”

35 “$httpData m/“GIF/” :
“HTTP [GIF image]"

“Default” .

“HTTP [Data]”
DESCRIPTION

40 “Protocol format for HTTP.”
-:= { Data=httpData }

http FLOW
CONNECTION { INHERITED }

45 PAYLOAD { INCLUDE—HEADER, DATA=Data, LENGTH=256 }
STATES

“SO: CHECKCONNECT, GOTO S1
DEFAULT NEXT SO

50 31: WAIT 2, GOTO 52, NEXT 51 .
DEFAULT NEXT so

S2: MATCH

a '\n\r\n' 900 0 0 255 0, NEXT S3
'1‘ 55 ‘\n\n‘ 900 o o 255 0, NEXT 53

'POST /tds?' 50 0 O 127 l, CHILD sybaseWebsql
'.hts HTTP/1.0' SO 4 O 127 1, CHILD sybaseJdbc
'jdbc:sybase:Tds' 50 4 O 127 1, CHILD sybasers
'PCN—The Poin' 500 4 1 255 O, CHILD pointcast

60 't: BW—C—' 100 4 l 255 0, CHILD backweb
DEFAULT NEXT S3

S3: MATCH

'\n\r\n' 50 0 O O 0, NEXT S3
65 '\n\n' so 0 o o 0, NEXT 53

'Content-Type:' 800 0 0 255 0, CHILD mime
'PCN—The Poin' 500 4 1 255 O, CHILD pointcast

NOAC EX. 1016 Page 127

NOAC Ex. 1016 Page 128

(‘1 (K3\ \

122

't; BW—C—' 100 4 l 255 0, CHILD backweb
DEFAULT NEXT S0”

sybaseWebsql FLOW
5 STATE—BASED

sybaseJdbc FLOW
STATE-BASED

10 sybasers FLOW
STATE—BASED

pointcast FLOW
STATE—BASED

15
backweb FLOW

STATE—BASED

mime FLOW
20 STATE-BASED

STATES
“S0: MATCH

'application' 900 0 0 l 0, CHILD mimeApplication
'audio' 900 0 O 1 0, CHILD mimeAudio

25 'image' 50 O O l 0, CHILD mimeImage
'text‘ 50 O O l 0, CHILD mimeText
'video' 50 O O 1 0, CHILD mimeVideo
'x—world' 500 4 l 255 0, CHILD mimeXworld

DEFAULT GOTO SO”
30

mimeApplication FLOW
STATE-BASED

i, mimeAudio FLOW
L; 35 STATE—BASED

" STATES

((“S0: MATCH

: 'basic‘ 100 O O l 0, CHILD deasicAudio
¢"w4 'midi' 100 O O 1 0, CHILD deidi

43,5 :J 40 'mpeg' 100 0 O 1 0, CHILD depegZAudio
“ ‘ '~ 'vnd.rn—realaudio' 100 O O l 0, CHILD deealAudio
”yi» 'wav' 100 O O l 0, CHILD deav' x 'x—aiff' 100 0 O l O, CHILD pdAiff

&_ 'x—midi' 100 O O 1 0, CHILD deidi
;,:3 45 'x-mpeg' 100 O O 1 0, CHILD depegZAudio

~ 'x—mpgurl' 100 O O 1 0, CHILD depegBAudio
'x-pn—realaudio' 100 O O 1 0, CHILD deealAudio
'x—wav‘ 100 O O l 0, CHILD deav

DEFAULT GOTO S0”

50
mimeImage FLOW

STATE-BASED

mimeText FLOW
55 STATE—BASED

mimeVideo FLOW
STATE—BASED

60 mimeXworld FLOW
STATE-BASED

deasicAudio FLOW
STATE-BASED

65

deidi FLOW
STATE-BASED

NOAC EX. 1016 Page 128

NOAC Ex. 1016 Page 129

(W (3

123

depeg2Audio FLOWSTATE-BASED

5 depeg3Audio FLOW

STATE-BASED

deealAudio FLOWSTATE—BASED

10

deaV FLOW
STATE—BASED

pdAiff FLOW
\ 15 STATE—BASED

 H

NOAC EX. 1016 Page 129

»9;".

NOAC Ex. 1016 Page 130

124

CLAIMS

What is claimed is:

1.

ox[iii
5

10

15

20

25

A method of pe forming protocol specific operations on a packet passing through

a connection point on a computer network, the method comprising:

(a) receivi the packet;

(b) receivi g a set of protocol descriptions for a plurality of protocols that

conform t a layered model, a protocol description for a particular protocol at

a particul layer level including:

the none or more child protocols of the particular protocol, the(1)

pack t including for any particular child protocol of the particular

prot col information at one or more locations in the packet related to the

part cular child protocol,

(ii) the one or more locations in the packet where information is stored

rel ted to any child protocol of the particular protocol, and

set of rotocol descriptions based on the base protocol of the packet and the

childr n of the protocols used in the packet.

A method according to claim 1, wherein step (c) of performing protocol specific

operations i performed recursively for any children of the children.

A metho according to claim 1, wherein which protocol specific operations are

performed i step (0) depends on the contents of the packet such that the method

adapts to di ferent protocols according to the contents of the packet.

A metho according to claim 1, further comprising:

NOAC EX. 1016 Page 130

NOAC Ex. 1016 Page 131

“#2”>1

,mm“«M» n“8*3‘any.»

:mt;«

 5.

15

6.

20

7.

25

8.

125

storing a d tabase in a memory, the database generated from the set of

protocol descr' tions and including a data structure containing information on

the possible p tocols and organized for locating the child protocol related

information f r any protocol, the data structure contents indexed by a set of

one or more i dices, the database entry indexed by a particular set of index

values includ ng an indication of validity,

wherein the child pr tocol related information includes a child recognition pattern,

wherein step (c) of performing the protocol specific operations includes, at any

particular protoco layer level starting from the base level, searching the packet at

the particular prot col for the child field, the searching including indexing the data

structure until a v id entry is found, and

whereby the dat structure is configured for rapid searches using the index set.

A method ac ording to claim 4, wherein the protocol descriptions are provided in

a protocol desc ption language, the method further comprising:

com iling the PDL descriptions to produce the database.

A method a cording to claim 4, wherein the data structure comprises a set of

arrays, each ay identified by a first index, at least one array for each protocol, each

array further i dexed by a second index being the location in the packet where the

child protocol elated information is stored, such that finding a valid entry in the data

structure prov'des the location in the packet for finding the child recognition pattern

for an identifi d protocol.

A method ccording to claim 6, wherein each array is further indexed by a third

index being t e size of the region in the packet where the child protocol related

information i stored, such that finding a valid entry in the data structure provides

the location nd the size of the region in the packet for finding the child recognition

pattern.

A metho according to claim 7, wherein the data structure is compressed

according to a compression scheme that takes advantage of the sparseness of valid

entries in th data structure.

NOAC EX. 1016 Page 131

NOAC Ex. 1016 Page 132

15

‘, , 20

25

9.

10.

11.

12.

13.

14.

15.

126

A method accor ing to claim 8, wherein the compression scheme combines two

or more arrays that ave no conflicting common entries.

A method accor ing to claim 4, wherein the data structure includes a set of tables,

each table identifi by a first index, at least one table for each protocol, each table

further indexed by a second index being the child recognition pattern, the data

luding a table that for each protocol provides the location in the

packet where the hild protocol related information is stored, such that finding a

valid entry in the ata structure provides the location in the packet for finding the

child recognition attem for an identified protocol.

A method acc ding to claim 10, wherein the data structure is compressed

according to a co pression scheme that takes advantage of the sparseness of valid

entries in the set f tables.

A method acc rding to claim 11, wherein the compression scheme combines two

or more tables t t have no conflicting common entries.

A method acc rding to claim 1, wherein the protocol specific operations include

one or more par ing and extraction operations on the packet to extract selected

portions of the p cket to form a function of the selected portions for identifying the

packet as belon ing to a conversational flow.

A method ac ording to claim 1, wherein the protocol descriptions are provided in

a protocol desc " tion language.

A method acc rding to claim 14, further comprising:

compi ing the PDL descriptions to produce a database and store the

database i a memory, the database generated from the set of protocol

descriptio s and including a data structure containing information on the

possible pr tocols and organized for locating the child protocol related

informatio - for any protocol, the data structure contents indexed by a set of
l

one or more indices, the database entry indexed by a particular set of index

values inclu ing an indication of validity,

NOAC EX. 1016 Page 132

NOAC Ex. 1016 Page 133

25

16.

17.

18.

127

wherein the child protocol related information includes a child recognition pattern,

and

wherein the ste of performing the protocol specific operations includes, at any

particular prot col layer level starting from the base level, searching the packet at

the particular otocol for the child field, the searching including indexing the data

structure until a valid entry is found,

whereby the ata structure is configured for rapid searches using the index set.

A method according to claim 13, further comprising:

looking a flow-entry database comprising none or more flow-entries, at least

one flow—e for each previously encountered conversational flow, the looking up

using at 1e st some of the selected packet portions and determining if the packet

matches existing flow-entry;

if the p cket is of an existing flow, classifying the packet as belonging to the

found e 'sting flow; and

if the acket is of a new flow, storing a new flow—entry for the new flow in the

flow-en ry database, including identifying information for future packets to be

identifi d with the new flow-entry,

wherei the parsing and extraction operations depend on the contents of none or

more cket headers.

A ethod according to claim 13, wherein the protocol specific operations further

includ one or more state processing operations that are a function of the state of the

flow f the packet.

A ethod according to claim 1, wherein the protocol Specific operations include

one o more state processing operations that are a function of the state of the flow of

the p cket.

NOAC EX. 1016 Page 133

NOAC Ex. 1016 Page 134

itim:11".]!man 11:22»all.

‘22P1M?

li-‘Jl31...?!it“?!'42:.”

10

15

20

128

ABSTRACT

A method of performing protocol specific operations on a packet passing through a

connection point on a computer network. The packet contents conform to protocols of a

layered model wherein the protocol at a at a particular layer level may include one or a

set of child protocols defined for that level. The method includes receiving the packet

and receiving a set of protocol descriptions for protocols may be used in the packet. A

protocol description for a particular protocol at a particular layer level includes any child

protocols of the particular protocol, and for any child protocol, where in the packet

information related to the particular child protocol may be found. A protocol description

also includes any protocol specific operations to be performed on the packet for the

particular protocol at the particular layer level. The method includes performing the

protocol specific operations on the packet specified by the set of protocol descriptions

based on the base protocol of the packet and the children of the protocols used in the

packet. A particular embodiment includes providing the protocol descriptions in a high-

level protocol description language, and compiling to the descriptions into a data

structure. The compiling may further include compressing the data structure into a

compressed data structure. The protocol specific operations may include parsing and

extraction operations to extract identifying information. The protocol specific operations

may also include state processing operations defined for a particular state of a

conversational flow of the packet.

NOAC EX. 1016 Page 134

NOAC Ex. 1016 Page 135

' nun 0F memcs

Aéjflgfiéié§£XJEE£J

1/20

— ,

100 CLIENT 4 108
"N ANALYZER

107
116

_ I SERVER A

CLIENT 3 \110
j 121

106

DATA COMMUNICATIONS

: NETWORK

~39" : 102

i 125

123

— J18
SERVER A 105 —

.0 ‘\ CLIENT2 CLIENT1 \
112 104

FIG. 1 ‘

NOAC EX. 1016 Page 135

NOAC Ex. 1016 Page 136

u'ffiil Iiflfi: 1LT!» :iESEI.‘ '::::n ziliit u‘imx‘ "11' Hutuil...!l'!‘:1|l|':l= 6.1,}!

265

stIIIIIII

275

03/3

APPLICATION IsERVER 2

NOAC EX. 1016 Page 136

X'I'IVE’I' S‘DK’IMVHO501mm
b‘rfi‘b‘é‘v

13TH

NOAC Ex. 1016 Page 137

amm~5<z<

..ZO_._.<EMn_Oozwmm—OOIn.

w0<DGZ<Jmm><4O_._.n:0wwo2<EG<H<QJOOOHOmn.

IMN=>=._.n_ODZ<mmn=n=200

05

I

mm<m<._.<n_ZO_._.ODE._.mZ_mOmmMOOmn.

ZO_._.<N3<Z_n_Z._.<0_n=ww<l_0

qII

Wm>_3_mw<m<h<oomoommzo:<o_n_:zmn___zo:o<Exm2265..2oE‘omamfioEfimw_oz<_:59“...#62685%._MERE:__.mmm__1IIIIx/rIIIId_._IL_.0.__I_m__«5wy._momoomm__Efi;_mm_959“.am_Smoommz>>ozx_Ev...>>o._n_._292582.205582._rm.mm<m<k_2,9“...52.205__ofi<wmm>zoowz_>n_:zmn__ZEMEEom““.369_magz:95m5<Exmmuzwoommwo._Em__8m oz<m~>._<z<_«8ma.am_-IIIIIIIIlNV.mmmmme«om__|l||||lllll|lll|lll
8m

.5:_

NOAC EX. 1016 Page 137

NOAC Ex. 1016 Page 138

run;— ”A

PRLVT or nmwmcs A
A5 omcwy U*-"-——'- w—w’

HIGH LEVEL
PACKET

DECODING
II ESCRIPTION ‘

P COMPmE

E PQQEEQEP IESCHPHON‘
V g OPERKHONS

'II,III'II:
407

I!u.II

IIIILLS!IITIiI-F..
STATE

PROCESSOR
INSTRUCTION

DATABASE

 é PARSNG

g SUBSYSTEM{a MEMORY

, \
I 400

410

FIG. 4

NOAC EX. 1016 Page 138

NOAC Ex. 1016 Page 139

Din-17 c

PRLVT 0F DRAWLNGS

As..o_Rx.<2m_A=I.,¢HL.u©

503

504

510

FETCHNODEANI
PROCESSFROM

PA ERN

NOAC EX. 1016 Page 139

NOAC Ex. 1016 Page 140

PRINT 0? DRAWUNGS

AspgczPLALLMY““10
C)

6/20

0

PACKET 602
COMPONENT AND

PATTERN NODE

603

LOAD PACKET
COMPONENT 610

604

MORE PACKE LOAD KEY
COMPONENT BUFFER

YES

FETCH EXTRACTION 6
. ND PROCESS FRO

PATTERNS 505

611

NO

606
NEXT

N. PACKET 609
COMPONEN

3 ,.—.-V a

f

1: YES
_ 607 APPLY EXTRACTIO

a PROCESS TOCOMPONENT \
600

608JCTMSW.\

NOAC EX. 1016 Page 140

NOAC Ex. 1016 Page 141

hind-u r-

PRINT 0F muwmcs
AS email/gm O—..—.._..- v—w’

7/20

. 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN
703 NODE ELEMENT 708

MORE PATTER aflwga704
NODES?

a: YES @
HASH KEY BUFFER

ELEMENT FROM 705
PATTERN NODE

it PACK KEY & HAS
H 706‘ \700

7 ‘_ NEXT PACKETCOMPONENT

707

FIG. 7

709

NOAC EX. 1016 Page 141

NOAC Ex. 1016 Page 142

FM“—

PRLNT 0F DRAWLNGS

AS9£QLALL7r an 0

8/20

. 801

UFKB ENTRY FOR 2PACKET 80

800\ COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE 804 806

N0 SET UFKB FOR
PACKET AS ‘NEW'ORE BUCKET

805 IN THE BIN?

YES

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

YES

809

MARK RECORD B|N AND 810
BUCKET ‘lN PROCESS“ IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
811 AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

81%. FIG. 8

NOAC EX. 1016 Page 142

NOAC Ex. 1016 Page 143

n:n‘-

PRLVT 0F DRAWLNGS

A§_%I_G£N_._ALLY m0 U

9/20

902

RPC

NNOUNCME BIND LOOKU' REQUEST'ORTMAPP '
909

EXTRACTPROGRAM EXTRACTPORT

903 GET 'PROGRAM', GET 'PROGRAM',
'VERSION'. ‘PORT' AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (TCP OR

UDP) UDP)‘

908

SAVEREQUEST

SAVE 'PROGRAM',

 mmNNIMM

SAVE 'PROGRAM', 'VERSION' AND
904 'VERSION', 'PORT' AND 'PROTOCOL (TCP 0R

_» 'PROTOCOL (TCF 0R UDP)“ WITH
2 UDP)‘ WITH NETWORK DESTINATION .
:: ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

BOTH MAKE A KEY.

MMHWMR

EXTRACT
PROGRAM

FIND 'PROGRAM'

900/

AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF 'PROTOCOL (TCP

SOURCE NETWORK OR UDP)‘.
ADDRESS.

FIG. 9

NOAC EX. 1016 Page 143

NOAC Ex. 1016 Page 144

4—4“ ’

nBAO-r n;

PRINT 0!" DRAWU‘GS

A59£QLLALLT rut-.0 , O

1 0/20

100 EXTRACTION

RECOGNITION OPERATIONS
DATABASE 1 001 DATABASE
MEMORY

100 100

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL IN

1031

100-"III"IIIIII"IIIIIIII.II

PATTERN

RECOGNITN
ENGINE

(PRE)

1 007

EXTRACTION ENGINE
(SLICER)
 III‘II,I,

":IIIII!
100:

III!II'IiIIi"IIII“,‘
 PARSER

 PA K PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAVMEMORY

1012

1021

INTERFACE INTERFACE

PACKET CONTROL CONTROL ANAL Z RREADY

102

1023 FIG. 10 1027

NOAC EX. 1016 Page 144

NOAC Ex. 1016 Page 145

h:nQu ,

PRINT 0F DRAWthS

1 AgpmquLLY [-11.10 (E \w :W \J

11/20

1100 “A

1101 1103 1115 1113 “22
1107

m1? - ANALYZE' HOST

(91E) " 015500 = iNTER-
h AND h FACE

(HlB)

PROCESS'
INSTRUCN

, Z PARSER
5 _ INTER- ~=

: FACE

; PROfSES)“ 1119 1123

UNIFIED MEMORY

h MEMORY h INTER-
FLOW CONTROL FACE

INSERTION/ (”MC)

NOAC EX. 1016 Page 145

NOAC Ex. 1016 Page 146

.5. ’ Dietz el '
PRINT OF DRAWINGS

‘« ‘ AS..(&G.UL__A_LL¥ mic Q

12/20

1201

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

1202

1200
N ACCESS

, CONVERSATION 1203
; RECORD BIN

REQUEST RECORD BIN/ 1204
BUCKET FROM CACHE

REQUEST NEXT
BUCKET FROM <'|N/BUCKET EMPTY 1205

1206 CACHE
YES

NO INSERT KEY AND HASH
: N BUCKET, MARK IUSED

1208 WITH TIMESTAMP

11551N.
1207

a
iS

3 YES OMPARE CURRENT Bl 1209
1210 AND BUCKET RECORD

SET UFKB FOR
PACKET AS KEY TO PACKET

'DFIOP'

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

. 1213

FIG. 12

1211

NOAC EX. 1016 Page 146

NOAC Ex. 1016 Page 147

“M. . hint—

PRINT OF DRAWINGS

”ML—PHI“”0 O

13/20

@1301
1300 \A UFKB ENTRY FOR

PACKET WITH STATUS
‘NEW' R F. ND' 1302

I
. 2 SET STATE PROCESSOR

. 3 INSTRUCTION POINTER TO 1303
x- ’ ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

SET STATE

_ PROCESSOR
; INSTRUCTION NO DONE PROCESSING 1307

POINTER "'O STATES FOR THIS
VALUE FOUND IN PACKET?

_ CURRENT STATE

2 1308 YES
1310

SAVE STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO

CURRENT FLOW
RECORD

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR 1311

INSTRUCTION IN CURRENT
FLOW RECORD

@1313
FIG. 13

NOAC EX. 1016 Page 147

NOAC Ex. 1016 Page 148

MMMVflM”MflWWMfiMM

LOOKUP

ANALYZEAND EXTRACT
RECOGNEE DENWFWNG KNOWN NEW"H1NW

PATTERN INFO & PROCL RECORDS RECORD? DATABASE
INFORMATION /STATE (DB 1424) OF FLOWS

UPDATE

ll Wll

STRXSBURES CLASSIFICATION KELSWN
EXTRACTION RECORD
OPERATIONS

PARSER

§U§SIS§M _______ I STATE
MACHINE

SELECTOR

1426

HNAUZAWON

STATE

ANAEYSE

ANALYZER
SUBSYSTEM

NOAC EX. 1016 Page 148

ATIV—h—HDIHOsv sommwaso1mm

NOAC Ex. 1016 Page 149

--._.. -A-
Hun OF nmwmcs

50121613551.“

2‘

DE<Om0<nEmFZ_

olo.mmOtZOE

15/20

mO_>mD29.59300.kmx0<m

mom?

9d.NN>4<Z<

ammmmm<m

mw<m<h<o

g“3....a__V___H._._,

NOAC EX. 1016 Page 149

NOAC Ex. 1016 Page 150

PRLVT 0F DRAWUNGS

16/20

NIIIIIHII

II”"JIIL]I?
III'IiIu"I.

IiiiilIiIC.iItil'fiiii???'flizil”If?!

NOAC EX. 1016 Page 150

NOAC Ex. 1016 Page 151

hind-r

PRLVT or muwmcs

“VS. § 2 \‘ ’1«.9. AS ORIGINAL” Hair; 0“N“ ' \/

17/20
1702

1704 ”311': = 8x838?= x *

12°{Esitsl _WIIIIIIIIL'1 CHAOSNET = 0x0804ARP = 0X0806
VIP = OXOBAD"

VLOOP = OXOBAE

1706 VECHO = OXOBAF
NETBIOS-3COM = 0X3C00 -

OXSCOD#
‘708 Type (2) DEC-MOP = 0x6001

Hash 1) DEC-RC = 0x6002
“”00 0016611111381

. — ' = X
‘ .~ L3 Ofie‘ ' 14 DEC-DIAG = 0x6005

» ; « DEC-LAVC = 0x600?
. RARP = 0x8035

; ATALK = 0x8093*
1 : _ VLOOP = 0x80C4

* “ 5 ' FIG 1 7A VECHO = 0x80C5. SNA-TH = 0x8005*
ATALKARP = 0x80F3

1712 IPX= 0x8137*
SNMP = 0x814C#

IPv6 = 0x86DD*
LOOPBACK = Ox9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

IIIIIH1153:”|

;: , , 1752
Z 1 ~' fiWWMIMIAL‘Zfliififirfl/lfl

€ L3 t° WWW 1"," ICMP =1
1 [135,4 ”mm—mmarhmwm Iggg :g
' (_ 1] Src Address TCP = 6 .

Dst Address EGP = 8

IGRP = 9

VIII/[£111Wifliflifiiillllllllllll PUP =12
CHAOS =16

,: A, UDP = :5;
2-, ,: IDP =

,~ , K 1750 ISO-TP4 = 29
' ‘ Dst Address

Dst Hash (2)

Src Address

Src Hash (2)

if 0' (1) FIG . 1 7B ;t§%:§giiggding
” ' -et = L3 + (lHL/4)

DDP = 37#
ISO-IP = 80

VIP = 83#
EIGRP = 88
OSPF = 89

NOAC EX. 1016 Page 151

NOAC Ex. 1016 Page 152

1802-1

mEII!!!rihhiilismihhiiii!mmhS-fiES-ES-ES1.h“i.§.!.¢hiiimllhummhiliiiiiiii...iiimhniii!iiiN)pEtilhi:m%
P

PROTOCOL

w

IPOZMJDJME

FEE-LY

WMDE.0w.uP

6.9319

ZEEEEE

lulvSun."6

A8

1Ecomtrm
E_.._I

05w

4805mm.

g.2.Ei.gi2___H__

FIG. 188

NOAC EX. 1016 Page 152

NOAC Ex. 1016 Page 153

PRINT 0F DRAWU‘GS

@2131qu 0

19/20

. 1901

COMMONPDL 1903

192 . FIG.19

NOAC EX. 1016 Page 153

NOAC Ex. 1016 Page 154

PRINT OF DRAWUNGS

PPG—P—WWMO O

20/20

. 2001

READ IN PDL SOURCE 2003
MODULES

PARSE MODULES FOR 2 5
SYNTAX 00

FIRST PASS, CREATE
ALL PARSE ELEMENTS 2007

2009 ND PASS, BUILD FLO
SIGNATURE ELEMENT

THIRD PASS, CREATE
PAYLOAD ELEMENTS

FORTH PASS, BUILD 2013
TATES FOR EACH LIN ,

READ IN LAYERING 2015
SOURCE MODULES

WALK LAYERING LINKS 2017
FOR EACH PDL

OUTPUT CPL
2019 INTERMEDIATE FILE

202+”. FIG. 20

II".:I.Itii,”II”III 2011

1:32'IIIIZI‘iI

NOAC EX. 1016 Page 154

NOAC Ex. 1016 Page 155

PRLVT 0F DRAWUNGS

AS.QR_{G.UE_LLY my
1/20

100 ' —
CLIENT 4 108

\107 ANALYZER

116

,, SERVER .

-\ Am
105 121

x _, DATA COMMUNICATIONS

g : NETWORK

j: 102

125

‘ 123
_ 118
SERVER 2 — 105 _—/

N CLIENT 2 CLIENT1 3
112 104

FIG. 1 '

NOAC EX. 1016 Page 155
...

NOAC Ex. 1016 Page 156

3 CLIENT 3

li:illi:::illi.'1li113::":5351||1:"1| IK‘EIII 1:!!I‘ "ii'C II???“ IiCIiI "EEEiI "53m III]:

214 215 K216 217 218 219 220 221 222 223

IlfllfilM

224 225 226 227 228 229 230 231 232 233

m\
N
O

260 261 262 263 K264 (265 ERVER2

 K270 {271 Q272K273 K274 (275

datum reply

NOAC EX. 1016 Page 156

WWW ..M . - 4

\m.

21117339180sv sommvua301mm
Om.

NOAC Ex. 1016 Page 157

Wmmwmfi‘wwldfl, ”m w . *«MIW‘HJ

Ii"'iI Ii"‘II IIITII :IZEIi, "-iiiI II'LII ‘ III III'. "III" III: III ‘ir‘EII IIE3:II IIIIiI’I

._ __________________ I
PARSER €191

ANALYZE AND0)ON

EXTRACT \fi'fldAfi'b’nfif‘sv
RECOGNIZE IDENTlFYING BUILD UNIQUE | LOOKUP ..

PATIERN INFORMATION CONVERSAT'O ’ FROM NEW FLOW DATABASE
INFORMATION I KNOWN RECORD? OF FLOWS
 (pAn) IE“) I RECORDS

I (DB 324IA CACHE)

 EDWMWGJO1mm

UPDATE
I'FLOW"
KNOWN
RECORD

PROTOCOL
& STATE

IDENTIFICATION

MORE
AND CLASSIFICATIO .

EXTRACTION
DATABAS E

YE

08/8
CLASSIFICATN

I INALIz TION
310 ' STATE 332 F A

PROCESSOR
INSTRUCTION

COMPILER 34
AND DATABASE /)

OPTIMIZER

PROTOCOL DATAGRAM
DESCIPTIO LAYER
LANGUAGE SELECTION ' PROCESSNe

OPERATION '- ANALYZER

30_3

____________YE. " 5 A EXLIDIE BageJSL _ _.

NOAC Ex. 1016 Page 158

WMM_.WVH

n;A‘— A;

ii’!I:::uM":21;um:n22!:

'.‘1‘ilN.U

IL.”I!l‘Hl!Elli...

Hun or muwmcs

AS ORIGIN—ALLY 1

404

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

406 7/“A‘I‘I‘ERN, PARSAND

EXTRACTION
DATABASE

4/20

0 401

 HIGH LEVEL
PACKET

DECODING

‘I ESCRIPTION ‘

405

COMPILE
I ESCRIPTION ‘

403

STATE
PROCESSOR
INSTRUCTION

408 409 DATABASE

LOAD LOAD STATE
PARSING NSTRUCTIO

SUBSYSTEM

MEMORY Dhfi‘gfiast
\400

NOAC EX. 1016 Page 158

NOAC Ex. 1016 Page 159

my.WM...»..u

mun or oaawmcs

A-SQELQILALLY r1110 xxU

ninf7 l

502

OREINPACKEV-

FETCHNODEANI
PROCESSFROM

PA E'N

503

PACKET

KEY

504

 uizu..e::."II-3urizuIiiliiv'23:"Im.Ii‘CI

E: 513

_ MORE NEXT

; PATTERN PACKET
;: NODES? COMPONE 511

1-Iv‘.' “"

PROCESSTO
COMPONENT

510
V 500

HUTERN
NODE

 509

NOAC EX. 1016 Page 159

NOAC Ex. 1016 Page 160

T.W-“M»..."A“m

A“WWW.-
.W~“Wm-“WWW
WV..."WM“...m...h.,

"ii?"Il3ftu(HI’iEE‘J'Iwithn'IIiI
”HI«33.1,

PRmTOF memcs
—..——.~--

AS ORIGINALLY U

6/20

0

PACKET 602
COMPONENT AND
PATTERN NODE

603

LOAD PACKET

COMPONENT 61 0

604

LOAD KEY
BUFFER

YES

FETCH EXTRACTION 6
‘ ND PROCESS FRO 1

PATTERNS 605

NO 611
606

NEXT

NO PACKET 609
COMPONEN

ORE EXTRACTIO ‘
ELEMENTS?

YES

607 APPLY EXTRACTION

E%%%%SNSEL?
600

 MORE TO 608

EXTRACT?

YE

FIG. 6

NOAC EX. 1016 Page 160

NOAC Ex. 1016 Page 161

MMMWMWWMm..-nn...

hiniw r

"23:“IL.“'!::‘nIi‘:1»H
5!"

”5:1:..z':..

"1.2“II“II

NullIiiijilM:i:::,,

PRLVT 0F DRAWLI‘GS
..‘.. ---

7/20

701

 702EY BUFFER AND
PATTERN NODE

LOAD PATTERN
NODE ELEMENT

MORE PAT—FER
NODES?

703

OUTPUT To704
ANALYZER

HASH KEY BUFFER
ELEMENT FROM
PATTERN NODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

 709

706
707

NOAC EX. 1016 Page 161

NOAC Ex. 1016 Page 162

vqu.-»¢M-Wd...w~._m.m

hiat—

urnv1.1."I"I‘mIIL'II'IEEEIIII?»III
IIIIIII'ZII:IEEII'.Iii)III

PRINT OF DRAWINGS

A5,,QR_I.G..U_“_A.LL_YEyfx z 3‘ K»:

8/20

. 801

UFKB ENTRY FOR
PACKET

800\
COMPUTE CONVERSATION
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE

ORE BUCKET
IN THE BIN?

805

YES

COMPARE CURRENT BIN
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET N@
YES

809 MARK RECORD BIN AND
BUCKET ‘IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
8“ AS 'FOUND‘

812 UPDATE STATISTICS FOR
RECORD IN CACHE

802

803

804
806

NO SET UFKB FOR
PACKET AS 'NEW'

807

808

810

“N. FIG. 8

NOAC EX. 1016 Page 162

NOAC Ex. 1016 Page 163

I
I
I

I
g
I

I

fibu-

I'Ium 0F memcs , fl

A-SIEQLAELJLEILD

9/20

902 910

RPC
BIND LOOKU '

REQUEST

‘ NNOUNCME

909

EXTRACT PROGRAM EXTRACT PORT

903 GET 'PROGRAM', GET 'PROGRAM',
'VERSION', 'PORT' AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (TCP OR

UDP)‘UDP)

908

SAVE REQUEST

SAVE 'PROGRAM'.

 CREATE SERVER STAT

:1 SAVE 'PROGRAM', 'VERSION‘ AND
='== 904 'VERSION', 'PORT' AND 'PROTOCOL (TCP OR

'PROTOCOL (TCP OR UDP)‘ WITH
UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

 STATE DATABASE. KEY BOTH MAKE A KEY.

ON SERVER ADDRESS
AND TCP OR UDP PORT.

RPC
BIND

LOOKUP
REPLY

 EXTRACT

PROGRAM

LOOKUP REQUE‘

FIND 'PROGRAM'
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

GET 'PORT' AND
'PROTOCOL (TCP

OR UDP)’.

900/

FIG. 9

NOAC EX. 1016 Page 163

NOAC Ex. 1016 Page 164

hzmh .4

iI"Iii-uIIII"TEEIIIII!!
II2"II413..

IIIIIIIII:I-EII'r“:iIII'II

PRLVT OF DRAWLNGS

among) Q

1000 N 10/20

100 EXTRACTION

RECOGNITION OPERATIONS
DATABASE DATABASE
MEMORY 100‘ MEMORY

100 1031
100 1004

 INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL IN

1031

100. PAWERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

100:

PARS ER

PA K PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOA!

MEMORY

1012

1021

PACKET

INPUT BUFFER
INTERFACE
CONTROL

ANALYZER DATA REA IY
INTERFACE
CONTROL

START

 READY

102

1023 FIG. 10 1027

NOAC EX. 1016 Page 164

NOAC Ex. 1016 Page 165

n:.«.. ,-

PRmIOFDRAwmcs b1

115.93.}.qu ‘ U

11/20

1100 N

1101 1103 1115 1118 1122
1107

ANALYZE' HOST
HOST BUS

h INTERFAC .u INTER-
AND FACE

CONTROL (HIB)

PROCESS '
INSTRUCN

IIII “n>Om

3:31111,1 SSR

PROPSEP) ' 1119 1123-

HIIi"1!111.1:1::..
UNIFIED MEMORY

MEMORY INTER-

FLOW 1" CONTROL“ FACE
INSERTION/ (UMC)

NOAC EX. 1016 Page 165

NOAC Ex. 1016 Page 166

Diet7 et '
PRLVT 0F DRAWUNGS

ASPEEDLALELUJQ O

12/20

1201

‘
Iz

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

1202

I ACCESS
; CONVERSATION 1203
j: RECORD BIN
9

E
I
a 1204

E

REQUEST NEXT
BUCKET FROM 1205

1206

NO INSERT KEY AND HASH
g N BUCKET, MARK 'USED

1208 WITH TIMESTAMP

CACHE

1207

"'3IIIIIII

 II."II.II"IIIIII

YES OMPSRE CUTFIFIENg Bl 1209
1210 AND U KE REC FID

SET UFKB FOR
PACKET AS KEY TO PACKET

'DFIOP'

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1211

1213

FIG. 12

NOAC EX. 1016 Page 166

NOAC Ex. 1016 Page 167

nit-d-

‘ISEIIHimIIIXII

mammm
‘I'E'IIIII)

IIIIIII'i:III-‘3'

PRINT OF DRAWINGS

away?

 RECORD

PROCESSOR
INSTRUCTION
POINTEP TO

VALUE FOUND IN
CURRENT STATE

 SAVE STATE
PROCESSOR
INSTRUCTION
POINTER IN

CURRENT FLOW

SET STATE PROCESSOR
INSTRUCTION POINTER TO

ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM

NO

1308

1310

NO

13/20

UFKB ENTRY FOR
PACKET WITH STATUS

'NEWl OR 'F0 L l'

I

STATE PROCESSOR
INSTRUCTION MEMORY

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

DONE PROCESSING
STATES FOR THIS

PACKET?

YES

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

@1313
.FIG. 13

DONE PROCESSING
TATES FOR THIS FLO

1 302

1303

1304

1305

1307

1309

1311

NOAC EX. 1016 Page 167

NOAC Ex. 1016 Page 168

140

A 3 CD
//

EXTRACT

HIE/39$}? IDEONTIFEIgé-‘u NEW "FLOW"INF & P L '7
INFORMATION /STATE RECORD- DATABASEOF FLOWS

UPDATE

PATTERN

STRgfigURES CLASSIFICATION KELSV‘QVN
EXTRACTION RECORD
OPERATIONS

PARSER

§UPSI315M. _______ I STATE
MACHINE

SELECTOR

1426

CLASSIFICATN
FINALIZATION

STATE

ANALYSIS

ANALYZER
SUBSYSTEM

NOAC EX. 1016 Page 168

OZ/17L

A'Trvm'omosv sommvua301mm
_4‘

NOAC Ex. 1016 Page 169

5CmWmDF0w&P
z

I‘,\
~....__.. .

AS omcxyvujr

15/20

QE<Om0<mmm&2.

.OmmeOm-mm<m<H<o

‘,i:11§xtrix§éf(r.

anmObZOE
mlod.MN>u<Z<

amEmmi

.__._H.__

mOSmoAgtwsco‘Hw¥0<m

FN

F

NOAC EX. 1016 Page 169

NOAC Ex. 1016 Page 170

-MW.

n,.M..M......-m..w»vw..(.«.

II."II?»liliuM:w.M
IIIIIH.I'f..

E‘j'lllllJ!

IiilfuuLIIIi'iir:3"‘

nun op muwmcs

AS omc_1_r_v_A_LLY m “x

C}

16/20

0 - 3 Bytes

Dst MAC

Dst MAC Src MAC

Src MAC

NOAC EX: 1016 Page 170

NOAC Ex. 1016 Page 171

m~.WWWW~W.\.1

nicd-r

PRLVT 0F DRAWUVGS

115951993“ m“ Q

17/20
1702

1 '92‘8‘8388‘offset _=_ X t
12 to 13 _Wllllllflli CHAOS'XE; ; 8:888;

VIP = OXOBAD*
VLOOP = OXOBAE

1700 VECHO = OXOBAF

NETBIOS-SCOM = 8x38881711X

H ”f“ DEE1125=3xggggash - = X
1710) 1700 DEC—DRP = 0x6003*

_ DEC-LAT = 0x6004
L3 Ofiet ' 14 DEC-DlAG = 0x6005

DEC-LAVC = 0x6007
RARP = 0x8035

ATALK = OXBOQB"
VLOOP = OXBOC4

FIG 1 7A VECHO = OXBOCS. SNA—TH = 0x80D5*
ATALKARP = Ox80F3

1712 IPX = 0x8137*
SNMP = 0x814C#

IPv6 = 0x86DD*
LOOPBACK = 0x9000

Apple = 0x080007
"1:11!..:::..n”nit-:uu..n1;::n11:111111

* L3 Decoding

E # L5 Decoding

E v _ _ 1752
E Wfl'fl‘lfl'iz’lfliffl'lfififlfi’fillllli

mm mm W =1
M + VIi'lTM—Wisfléfflflflwm 'GMP : 2

9‘1?” #85:;

EGP =8
lGRP =9
PUP =12

CHAOS =16
UDP = 17*

Dst Address—
VIIIII21"»"iiiliWilffiilllllllllllfl

IDP = 22#
lSO-TP4 = 29

DDP = 37#
ISO-IP = 80

VIP = 83#
EIGRP = 88

Src Address OSPF = 89
.

-ol (1) FIG _ 1 7B #ll—j’agifggggding
-et = L3 + (IHLf4)

NOAC EX. 1016 Page 171

NOAC Ex. 1016 Page 172

INnun or memcs

AS ORIGIN—ALLY

PROTOCOL

II......‘i....\

TYPE (I02

IkOZm...D._m=u_

i..5:E.i.am:HH__

1870

/

1802 1

LUT NUM
____;;

FIG. 18A

058H

_.an.E.S.i.mm“2E.__.._H__

@a
Q.._m=n_“.0MQOOmgmAOOOhOmn.

FIG. 18B

NOAC EX. 1016 Page 172

NOAC Ex. 1016 Page 173

1...,MWWWM.MAM/nu.

".uuIi‘.1

IiIiZiI:1,i!Iii'ii»:i-:,.

PRLVT 0F memcsy

awaiwvV‘ /

191

192

“.1 ,./\

19/20

COMMONPDL 1903

—L (0O —L

FLOWS.PDL 1905

VIRTUALPDL 1907

ETHERNETPDL

ETEIERTYPE 1913

IP.PDL 1915

TCP.PDL 1917

1919
RPC.PDL

NFS.PDL

192 . FIG.19

NOAC EX. 1016 Page 173

NOAC Ex. 1016 Page 174

II”.'.IIIIIIII'II
II..II

PRLVT 0F DRAWUNGS

AS ORIGQVALLY my

20/20

NOO A

READ IN PDL SOURCE 2003
MODULES

PARSE MODULES FOR
SYNTAX 2005

FIRST PASS, CREATE
ALL PARSE ELEMENTS 2007

2009 ND PASS, BUILD FLO
SIGNATURE ELEMENT

THIRD PASS, CREATE 20"
PAYLOAD ELEMENTS

FORTH PASS, BUILD 2013
TATES FOR EAC LIN I

READ IN LAYERING 2015
SOURCE MODULES

WALK LAYERING LINKS 2017
FOR EACH PDL

OUTPUT CPL

2019 INTERMEDIATE FILE

202». FIG. 20

NOAC EX. 1016 Page 174

NOAC Ex. 1016 Page 175

7

giet‘zpefwal. APPT—991 -2

I "' ’ ‘Y" z ‘
”wvéfi NI :;«» jfl

1/20

100 _
CUENT4 108

“\ ANALYZER
107

_ SERVER ‘
: CUENT3

”\\ —\H10
106 121

116

I
2
i

DATA COMMUNICATIONS

NETWORK

nifrn12231"35:11niizu1112211

"if:

1133:“”riff.
102

.'::?IIIIICII"

1721?11.2711it???71:3,,‘ 125

123

IIIIIIIII 118

SERVER 4 — 105 —~—/

N CLIENT2 CLIENT1

104

FIG. 1

NOAC EX. 1016 Page 175

NOAC Ex. 1016 Page 176

5 CUENTS
260 Q261 <262 K2§3

Mm

u'IifiJ n'fIIiI riff]! :iL’EII 'ffifis ziIIIi: 1132",;le "iii? niizu xiii?" "333311 u":'::n Iii};

datum reques

264 265

t 1
NOAC EX. 1016 Page 176

<I *"11319zlalds
I.. Z‘L‘O‘O'i‘clcl‘v’

NOAC Ex. 1016 Page 177

III: III i'I'IfI'I Isa: “assIsisz III II; "I: III IIIZZII‘EEEE'II III. III “i?
300 m 1

F- —————————————————— I I. a,»
P SER 301 _____________ .—

: 304 306 AR — I :' 314 I 324 -4
ANALYZE AND I ,_ >

RECOGNIZE IDENTTméfiNG BUILD UNIQUE I I LOOKUP .. ,%
PATTERN INFORMATION CONVERSATIO FROM NEW FLOW DATABASE I ‘13,...

INFORMATION E“ "FLOW" KEY | KNOWN RECORD? OF FLOWS ; o
(PAR) () I RECORDS 3-

(DB 324 m
312 |

U PDATE

l

PATTERN, PARS' I PROTOCOL "FLOW" I
AND & STATE KNOWN

EXTRACTION I IDENTIFICATION RECORD

DATABASE I CC\

| [\D
_ _ J O

l I CLASSIFICATN
I FINALIZATION

310 STATE
I PROCESSOR

INSTRUCTION

CORAIEéLER DATABASE 34
OPTIMIZER

DATAGRAM

DESCIPTIO LAYER

LANGUAGE PROCESSN e
OPERATION '-

 ANALYZER

1&3

NOAC EX. 1016 Page 177

NOAC Ex. 1016 Page 178

by“.m.

II:.:IIII"‘II'IEEIIIII.II..II
MI,I..':..I?

'ISEEIIIIIIIII

ii...“ICE!MIEi:::..

. I .

APE’rT-OO1-2

I ' 9 .V _j -i a 9

4/20

402

HIGH LEVEL

PACKET

DECODING

GENERATE ‘ ' ‘PACKET

PACKET COMPILE STATE
PARSE AND I. ESCRIPTION ~

EXTRACT AND
OPERATIONS OPERATIONS

407

406 ZBATTERNDPARS PRggéSESORA

EXTRACTION INSTRUCTION
DATABASE DATABASE

LOAD LOAD STATE

PARS'NG NSTRUCTIO
SUBSYSTEM DATABASE

MEMORY MEMORY

400

FIG. 4

NOAC EX. 1016 Page 178

NOAC Ex. 1016 Page 179

'T

pietz et al. APPT‘4001—2

MWWHM
W

Him£51.,

37:3}!Iii]!

MMMM‘

mo

O 9

5/20

501

M 502
503 LOADPACKET

COMPONENT
m2

3'.

504 PACKETORE IN PACKE 5"
KEY

FETCHNODEANI

PROCESS FROM
PATTERNS

m3

NEXT

PACKET

COMPONE 5H

"" "OI ‘VI‘

PROCESSTO
COMPONENT

‘ 500
HUTERN

NODE

509 ELEMENTS

FIG. 5

NOAC EX. 1016 Page 179

NOAC Ex. 1016 Page 180

j

_ I "

Dietz et al. ‘AEPT—001-2

6/20

0

PACKET 602
COMPONENT AND

PATTERN NODE

LOAD PACKET

COMPONENT
610

LOAD KEY
BUFFER

603

604

“5:551m11..5!

MORE PACKE
COMPONENT

 I?””2.1%!H...“
YES

FETCH EXTRACTION 6
T‘ ND PROCESS FRO

PATTERNS 605

Him455..

fix."IL]!

NO 611

606

NEXT

NO PACKET 609
COMPONEN

muMilli!M!212;.'
ORE EXTRACTIO ‘

ELEMENTS?

5 YES

607 APPLY EXTRACTION

agacgasgo
P NT . \

600

 MORE TO
EXTRACT?

608

YE

FIG. 6

NOAC EX. 1016 Page 180

NOAC Ex. 1016 Page 181

pietz et al. APIZ’IT-001-2
W

H"! ",1 LT O 0

7/20

701

 702EY BUFFER AND

PATTERN NODE

LOAD PATTERN

NODE ELEMENT

MORE PATTER

NODES?

703

nfiinIii..n'::::nnan:m:
704[1'..

OUTPUT To
ANALYZER

”1131‘71:32..

HASH KEY BUFFER

ELEMENT FROM

PATTERN NODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

"1.:IIIL."

 709MMMm

706
707

NOAC EX. 1016 Page 181

NOAC Ex. 1016 Page 182

Diet; et al. APPT—O‘O1-2
‘_ I‘M,

O O
J m [LI [KR

8/20

. 801

UFKB ENTRY FOR 802
PACKET

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/

BUCKET FROM CACHE 804
806

NO SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET NO@ 808
YES

MARK RECORD BIN AND 810
BUCKET 'IN PROCESS' IN

CACHE AND TIMESTAMP

 ORE BUCKET
805 IN THE BIN?

£3222:II;"IIIuzzzuIII!'::::IIusimIIHII

YES

'1135IIIII:'

III:IIIIII:III."

809

SET UFKB FOR PACKET

811 AS 'FOUND'

I 812 UPDATE STATISTICS FOR
RECORD IN CACHE

813E. FIG. 8

NOAC EX. 1016 Page 182

NOAC Ex. 1016 Page 183

M...

I“
Dietz et al. APPT—001-2

II:::II.II.IITimIII‘!:::IIII:::III.II
'FIIIIIZII

IIIIIIIIIII::':..

9/20

901 902 910

RPC

ENDLOOKU'

REQUEST

909

EXTRACT PROGRAM

GET 'PROGRAM',

'VERSION', 'PORT' AND

'PROTOCOL (TCP OR

UDP)

EXTRACT PORT

GET 'PROGRAM‘,
'VERSION' AND

'PROTOCOL (TCP OR

UDP)‘

903

908

SAVE REQUEST

SAVE 'PROGRAM', CREATE SERVER STAT

SAVE 'PROGRAM', 'VERSION' AND

904 'VERSION', 'PORT' AND ‘PROTOCOL (TCP OR
'PROTOCOL (TCP OR UDP)‘ WITH

UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

 STATE DATABASE. KEY

ON SERVER ADDRESS

AND TCP OR UDP PORT.

BOTH MAKE A KEY.

LOOKUP REQUE ‘

FIND 'PROGRAM'

EXTRACT

P ROG RAM

900/ AND 'VERSION' GET 'PORT‘ AND

WITH LOOKUP OF 'PROTOCOL (TCP

SOURCE NETWORK OR UDP)‘.
ADDRESS.

FIG. 9

NOAC EX. 1016 Page 183

NOAC Ex. 1016 Page 184

I:

pietz _et a]. APPT-001-2

“’I' ”I ,1 ‘ O 3

1 0/20

PATTERN 100 EXTRACTION

RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 100‘ MEMORY

100 1031
100

1004

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL IN

1031

100-11I131III.,III‘E::IIII:::IIIIL'II

PATTERN

RECOGNITN

ENGINE

(PRE)

1007

EXTRACTION ENGINE

(SLICER)

V

IIII'II

::E§IIIII.“

IIIII'I'IIIIiiIIII=I':::..'

PARS ER

PA KET PARSERINPUTBUFFER OUTPUT PACKETKEY
INPUT MEMORY BUFFER AND PAYLOA!

MEMORY

1012

1021

PQTCAKFETT INPUT BUFFER ANALYZER DATA REAY
INTERFACE INTERFACE
CONTROL CONTROL

ANALYZER

READY

FIG. 10

‘ .

PACKET

NOAC EX. 1016 Page 184

NOAC Ex. 1016 Page 185

DietZ at al. APPT5OO1-2

i C O

11/20

11oo-5*

1101 1103 H15 H18 “22
H07

LOOKUP/

ANALYZE' HOST

IMHESFTAC BUS= INTER-
” AND h FACE

CONTROL nus)
(ACKD

INSTRUCN

w DAIABASE
g (SMD)

.3 UNHRED
~ FLOW

a; PARSER KEY
._ INTER- ”'UFFER
E FACE (UFKB)

2 PROCESSR
(SP) 1119 1123

xiii:iii]!113,11:15'13',

LnuHED MEMORY
MEMORY INTER-

“ CONTROLH FACE
(UMC)

 FLOW

INSERRON/

DELETION
ENGINE

(HOE)

NOAC EX. 1016 Page 185

NOAC Ex. 1016 Page 186

‘

Dietz et al. APPT—0201-2

O O
Tu ‘: si—

12/20

1201

UFKB ENTRY FOR

PACKET WITH 1202
STATUS 'NEW'

1200
N ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204
: BUCKET FROM CACHE

: REQUEST NEXT

: BUCKET FROM <.IN/BUCKET EMPTY 1205

:3 1206 CACHE

: NO INSERT KEY AND HASH 1207
-— g N BUCKET, MARK 'USED
21208 WITH TIMESTAMP

32 YES OMPARE CURRENT BI 1209
1210 AND BUCKET RECORD

SET UFKB FOR
PACKET AS KEY TO PACKET

'DROP'

 MARK RECORD BIN AND

BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

 1211

 SET INITIAL STATISTICS

FOR RECORD IN CACHE

FIG. 12

NOAC EX. 1016 Page 186

NOAC Ex. 1016 Page 187

Dietz et al. AP PT—001 ~2
. I.

,-

13/20

1301

f)
1300 N UFKB ENTRY FOR

PACKET WITH STATUS

'NEW' OR 'FOUND' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTIONIIIIISIIIII..,II‘!:::I|II:::IIII..."

IIIIII!IIII.”

SET STATE

_ PROCESSOR
.: INSTRUCTION NO DONE PROCESSING 1307
T POINTER TO STATES FOR THIS

-E.: VALUE FOUND IN PACKET?
;: CURRENT STATE

_: 1308 YES
1310

SAVE STATE
PROCESSOR

INSTRUCTION NO DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO

CURRENT FLOW
RECORD

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT

FLOW RECORD

@1313
FIG. 13

1311

NOAC EX. 1016 Page 187

NOAC Ex. 1016 Page 188

IIIIZII IiIIIII IIIIII IIEEEII ‘SESEII IIIIII IéffzII .IIEIC. "II 7' II33:II IIIIII “EEEEII III“ III

EXTRACT

FIFE/ETQSSEE IDENTIFYING NEW "FLOW"
INFO & PROCL RECORD?

INFORMATION /STATE géififig

UPDATE
"FLOW"

KNOWN

RECORD

PATTERN

STRUCTURES
AND

EXTRACTION

OPERATIONS

 CLASSIFICATION

PARSER

§U_le(s_EM_ _______ I STATE
MACHINE

SELECTOR

1426

CLASSIFICATN

FINALIZATION

STATE

ANALYSIS

ANALYZER

SUBSYSTEM

OZ/I7L

NOAC EX. 1016 Page 188

Te16'21610
JEII’~f‘

z-Ioo-Ifédv
O

NOAC Ex. 1016 Page 189

APPT-001-2Dietz et al.

15/20

Dm<0m0<u_mm_._.z_¥m0>>._.m_z

ammOtZOE

>IO_>_m:>_HmOI

 m0_>m_n_ZOEwSOO.._.m_v_0<n_

mom:

.2»E5W.Ei:L“.a:E.E.E.m:E.__H_._V__an:
NOAC EX. 1016 Page 189

NOAC Ex. 1016 Page 190

APP;;O§07-2

A4 ‘1 ' x I O O
x” l L, 3" 'l

(”diet alr.

16/20

iii?“33:"{'iIZI'Ii‘iz3'1ii113.311111'.“
11:21:..e::..

MHHHI!HIII'IH

l—NE
1' (DH-

II

II_\ —N
I A

i

NOAC EX. 1016 Page 190

NOAC Ex. 1016 Page 191

pietz et al. APPTido1-2‘ 3P"

\H at O m

.5.Vnmwnu~ 1 7/20

1 1702

% '9:=8xg388*
3 offset = X *
3 12 to 13 _Wlllllllfll“ CHAOSNET = 0x0804

ARP = 0x0806
VIP = OxOBAD*

VLOOP = OXOBAE

1706 VECHO = OXOBAF

NETBIOS-3COM = gxggggitX

1708 Type (2) DEC-MOP = 0x6001
Hash 1) DEC-RC = 0x6002

‘71 ° 170° 00?}??? = 9388?_ " = X
L3 Ofiet ‘ 14 DEC-DIAG = 0x6005

DEC-LAVC = 0x600?
RARP = 0X8035

ATALK = 0x8098*
VLOOP = OXBOC4

Fl G 1 7A VECHO = Ox80C5. SNA—TH = Ox80D5*
ATALKARP = Ox80F3

1712 lPX = OX8137*
SNMP = 0x814C#

IPv6 = 0x86DD*
LOOPBACK = 0x9000

Apple = 0x080007

*L3 Decoding

L5 Decoding

'rifzu”211..'13?”‘31::IiI'jil“E???“Him112‘“
'Ffffiliii]:

1752riff]!iifffiiIII]:;i:::..

I'm-wmwwflw L3t° MW -e -e ' ICMP =1
[L3 + WilTM—Wiifléz’fléfl’lm 'GMP = 2
(IHL I 4 Src Address ($.32 :g*
-1]

 Dst Address EGP = 8
IGRP = 9_

VIII/[£9Wififlifiifillllllllllllll pup =12
- CHAOS =16

UDP =17;IDP = 22

k ”5° 'SO'JB’E‘ = 3%
Dst Address ISO-IP = 80

Dst Hash (2) VIP = 83#

Src Address E'GRP = 88

Src Hash (2)

OSPF = 89

-ol (1) FIG _ 1 7B yijsgzcigdeiggding
-:et = L3 + (IHL/4)

NOAC EX. 1016 Page 191

NOAC Ex. 1016 Page 192

O

l-illl!5.5%mI.:5!ihhliil!rihhiiii!.Ih.....\i.l-Enthr-IIINhhiiiisihn.Eh...iiiwhiiii!in.N)-h~h~i~h\§WC“no
0

18/20

3

PROTOCOL

PE

IkOZm—n.D.._m=n_

1',
APPT—OO1~-2

Q
‘r

.‘K

g3.2.2.3»!31.‘ ,

” ‘ pietz et al.

SEES;ix§}x&.11§lfi.l£s)~‘ii1«.E
1802 1

UT NUM
____}

L

Gum—E“.0MDOOm.._.>m
O5w

JOOOFOmQ

FIG. 18A

FIG. 188

#fiiaififififii

«.45321s..i3i-§113x“113.2333;7»(.v,‘sit‘ll.
NOAC EX. 1016 Page 192

NOAC Ex. 1016 Page 193

f

gore” et al. API:I‘-001-2., .9

19 ,t C ,1 OV

19/20

. 1901

COMMON PDL 1903

FLOWS.PDL 1905

VIRTUALPDL 1907

191 ETHERNET.PDL

1913

ETHERTYPE

IP PDL 1915

133:1..:::..11..112:111.111:1112:1111.11
‘f:::l1My.“

MMMM

192 . FIG.19

NOAC EX. 1016 Page 193

NOAC Ex. 1016 Page 194

Dietiét a'I. , APRfirtiom-z
,f‘I LI. /

. . r‘ ‘ ’ ’, .1 «j: - - J V
(I

~~/

20/20

. 2001

READ IN PDL SOURCE 2003
MODULES

PARSE MODULES FOR
SYNTAX 2005

FIRST PASS, CREATE
ALL PARSE ELEMENTS 2007

2009 2ND PASS, BUILD FLO
SIGNATURE ELEMENTII'IZI!.12..II-13ij.II..II‘ILIIIIZIII!IIWII

THIRD PASS, CREATE 20“
g: PAYLOAD ELEMENTS

g5; FORTH PASS, BUILD 2013
g TATES FOR EACH LIN «

READ IN LAYERING 2015
SOURCE MODULES

WALK LAYERING LINKS 2017
FOR EACH PDL

OUTPUT CPL

2019 INTERMEDIATE FILE

202”. FIG. 20

NOAC EX. 1016 Page 194

NOAC Ex. 1016 Page 195

‘ax .'3‘.“

x-.,,

w:. t
l

’4'?

“gnu-“315.,““333.“:9

THE UNITED smusormmw s

IN 7656177

wmwwmow“ME5153 BfléfluJW4(£9.MM“?

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

I I I

‘ 2:

 October 18, 2018

if! 3
THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE ”335‘

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS ‘ f 3f ’
3 ‘1};OF:

a!

\

"fl,’x“
:

R... .w

APPLICATION NUMBER: 09/609,] 79

FILING DATE: June 30, 2000

.-.~_.r ...nunmounuunuu.n.”an“:annuahuuwr ‘'2

a.

5:

PATENT NUMBER: 6,665,725 3n: 2 .

ISSUE DATE: December 16, 2003 “

31‘ E

3“
v4:‘w.
‘-

By Authority of the

Under Secretary of Commerce for Intellectual Property

and Director of the United States Pztent and Trademark Office
P. SW

Certif ' gOfficer

.o «A.

.;;.......‘u...}...........,.'....‘.:7}:

m.“xx I”.r,-uxnaw-vvw-Mhi’oektiu06ha.a-Iu‘Ju‘u£.u.-g‘.l{‘nu¢.s..~.‘..‘.u‘u
i,‘Vmfi‘ rJo“‘~§n-35~CI

3.0.. .1-

PART (5km? (49TPART(S)
a.
’9' (

I a '2’ ’.

. . a: ' M %, 4
d/ it.“ $539,” a:‘8 Q

I ‘l“‘ ’i ‘i “" l ‘ li’n‘VSi ’ ‘ 1 : ‘Jmtlf “(N‘l‘r‘un‘. i a

NOAC Ex. 1016 Page 196
Iofl

< ,) O file:///c:/APPS/preexam/correspondence/4.htm

FORMALITIES LETTER UNITED STATES DEPARTMENT OF COMMERCE

Patent and Trad ark Offic

IlllllllllllllllllllllllllllllllIlll Address; COMMISSIENEROFPATZNTANDTRADEMARKS
'00000000005346098' Washington, D C 2023|

APPLICATION NUIVIBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/609,179 06/30/2000 Russell S. Dietz APPT-OO 1 -2

Dov Rosenfeld

5507 College Avenue
Suite 2

Oakland, CA 94618

Date Mailed: 08/23/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by

filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

n The statutory basic filing fee is missing.
Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1.27).

o The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

0 To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of
$130 for a non-small entity, must be submitted with the missing items identified in this letter.

0 The balance due by applicant is $ 820.

A copy of this notice MUST be returned with the reply.

Ki ‘fqmj
Customer Service Center

Initial Patent Examination Division (703) 308-1202
PART 3 - OFFICE COPY

NOAC EX. 1016 Page 196

8/23/00 657 AM

NOAC Ex. 1016 Page 197

be, 6-11) r‘ W\P Emi/Docket No:APPCin—2 0 Patent
“(‘3 1 :5 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE‘4.

\m%licant(s)z Dietz, et al
Application No.: 09/609179

Filed: June 30, 2000

Group Art Unit: 2756

Examiner: (Unassigned)

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Missing Parts

Dear Assistant Connnissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).

Enclosed is a copy of said Notice and the following documents and fees to complete the filing

requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above—identified application is the

same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet.

X A credit card payment form in the amount of $ 860.00 is attached, being for:

X Statutory basic filing fee: § 690

X Additional claim fee of £9

X Assignment recordation fee of 5 40

X Missing Parts Surcharge $130

X Applicant(s) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

envelope addressed to the Assistant Commissioner for Patents, Washington, DC. 20231 on.

Date. 1)1:l M

NOAC Ex. 1016 Page 198

C 0
Application 09/609179, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

 “(.140 "' /:/;//7/’q
Date “/SDxa/VLRosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547—3378; Fax: (510) 653—7992

NOAC EX. 1016 Page 198

NOAC Ex. 1016 Page 199

0 Cl
PATENT APPLICATION I

DECLARATION AND POWER OF ATTORNEY ATTORNEY DOCKET NO. APPT—OOl-Z
FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

' am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are

\ te elo .)\of the subject matter which is claimed and for which a patent is sought on the invention entitled:

O PROCEéSE PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE
“P °’fl‘b hp cificatifin of which is attached hereto unless the folloWiEc‘hecked:

$3 (X) 6‘: was filed on June 30 2000 as US Application Serial No. 09/609179 or PCT International Application Number and
% was amended on (if applicable).q,

6’73”}. e , e that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
nt(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

_—__
__—_

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS - atented/ -_endin abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon,

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

&6
Date

NOAC EX. 1016 Page 199

NOAC Ex. 1016 Page 200

0

Declaration and Power of Attorney (Continued)
‘Case No;m

Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Andrew A. Koggenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature

Name of Third Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature

Citizenship: USA

Date

Citizenship: USA

Date

NOAC EX. 1016 Page 200

NOAC Ex. 1016 Page 201

DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION

ATTORNEY DOCKET NO. APPT-001-2

I believe I am the original, first and sole inventor (if only one name rs tsted below) or an original, first and joint inventor (ifplural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/609179 or PCl' International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 ofany foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

_ _No:_

._No:_
Provisional Appliation

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section l.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atented/ . endin_ abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the hke so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citiunship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Pest Office Address: Same

First Inventor’s Signature Date

NOAC EX. 1016 Page 201

NOAC Ex. 1016 Page 202

Widget“

0\.

Declaration and Power of Attorney (Continued)
\ C356 No;M

Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Andrew A. Kongenhaver

Residence: 9325 W. Hinsdale Place Littleton CO 80128

Post Office Address: Same

Afifl/T/a
Inventor’s Signature

Name of Third Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature

Citizenship: USA

WDate

Citizenship: USA

Date

NOAC EX. 1016 Page 202

NOAC Ex. 1016 Page 203

PATENT APPLICATION

© DECL A ATTORNEY DOCKET NO. APPT-OOl-Z
 a c _

dig-NT A‘Eial‘gelow named 1nventor,l hereby declare that:
My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which IS claimed and for which a patent is sought on the invention entitled:
PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/609179 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

 _—— was: __ NO _
——— YES: __ NO: _

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35 , United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.5 6(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atented/ nen_din abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld , Dov Roseufeld, Reg. No. 38,687
5507 College Avenue, Suite 2 ‘ Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose: CA 95120-2736

Post Office Address: Same

First Inventor’s Signature Date

NOAC EX. 1016 Page 203

NOAC Ex. 1016 Page 204

r \ Ci (3
Declaration and Power of Attorney (Continued)
Case No; APPT—001-2

Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax: VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Third Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave. NW Andover MN 55304

Inv ntor’s Signature Date

Post Office Address: me

NOAC EX. 1016 Page 204

NOAC Ex. 1016 Page 205

Our Ref./Do,cket No: AP{,i)01-2 C) Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 Applicant(s): Dietz, etal. Group ArtUnit:

Application No.: 09/609179

Filed: June 30, 2000

Examiner: (Unassigned)

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

mEY A PROTOCOL DESCRIPTION2'

0 ($8 diANGUAGE

89 EQ

Wimmd‘“ REQUEST FOR RECORDATION OF ASSIGNMENT
Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Assignment

Dear Assistant Commissioner:

Enclosed herewith for recordation in the records of the US. Patent and Trademark Office is an

original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the

Assignment.

Respectfully Submitted,

00% 2/0 21$} 1%;/,
Date flRasTenfeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

envelope addressed to the Assistant Commissioner for Patents, Washington, DC. on./'—-’

Signed: /

Name: 136%, Rosenfeld, Reg. No. 38687

NOAC EX. 1016 Page 205

NOAC Ex. 1016 Page 206

file:///c:/APPS/preexam/correspondence/S.htm

 FORMALITIES LETTER UNITED STATES DEPARTMENT OF COMMERCEPatent and Trademark Offi

lllllllllllllllllllllIllllllilllllllllllllllillllIlllllllillllll WWNEOFPATENTWWWS
~ocoooooooosa45098* Washington, D c 20231

APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/609, I 79 06/30/2000 Russell S. Dietz APPT-OOl—Z

Dov Rosenfeld

5507 College Avenue
Suite 2

Oakland, CA 94618

“ Date Mailed: 08/23/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below,

however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which 'to file all
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a)

- The statutory basic filing fee is'missing.
Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1.27).

o The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

- To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e) of
$130 for a non-small entity, must be submitted with the missing items identified in this letter.

' The balance due by applicant is S 820.

9’

A copy ofthis notice MUST be returned with the reply. mcr- h—

E a ‘33 gg

_/4 f’ c; 53.8HLO

Customer Service Center g “f g
Initial Patent Examination Division (703) 3084202 ($1 5?,

PART 2 — COPY TO BERETURNED WITH RESPONSE ‘2 3 I _ o o L)
‘ 3 8 o

8 8 o-
. 8 o 55

' a 3%
§ 5

.E ‘52.“ ‘ $U) C
8 H 8 ‘88

.1 , o :0 SE .3“

NOAC EX. 1016 Page 206 g 31-:\ L" 23 mm
a S H coDl’nlnn (:n A It

NOAC Ex. 1016 Page 207

<9 E “Q"
? “gar'rg'gfjoocketNo: APR on Patent0

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

pliCflnt(S): DietZ, er al. Group Art Unit 2756

Application No.2 09/609179 Examiner: (Unassigned)

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing

requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above-identified application is the

same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet.

X A credit card payment form in the amount of $ 860.00 is attached, being for:

X Statutory basic filing fee: $ 690

X Additional claim fee of E

X Assignment recordation fee of 'H

X Missing Parts Surcharge $130

iApplicanKs) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

overlooked the need for a petition for an extension of time.

__ Applicant(s) hereby petition(s) for an Extensionof Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

‘Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

NOAC Ex. 1016 Page 208

Application 09/609179, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50—0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

W fl;
Date ov Rosenfeld Reg No 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547—3378; Fax: (510) 653—7992

NOAC EX. 1016 Page 208

NOAC Ex. 1016 Page 209

Filed:

Title:

Serial No.: 09/609179
Group Art Unit: 2756

June 30, 2000 Examiner:
RECEIVED

PROCESSING PROTOCOL

SPECIFIC INFORMATION IN APR 1 6 2001

PACKETS SPECIFIED BY A TechnotPROTOCOL DESCRIPTION 09" Center 2100
LANGUAGE

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X

L

A

An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy Of each reference cited in form 1449.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50—0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Date: April 9, 2001

v Rosenfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone NO.: +1—510-547-3378

rut—sauna1

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited With the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231. .

Date of Deposn:

Signature:
NOAC EX. 1016 Page 20

NOAC Ex. 1016 Page 210

, a I .maker/Ref. No.: APPTC /i_.2_ m Patent
‘0 ‘50:

Group Art Unit: 2756

Examiner: RECEIVED

APR 1 6 7001

Technology Center 2100

Serial No.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL

SPECIFIC INFORMATION IN

PACKETS SPECIFIED BY A

PROTOCOL DESCRIPTION

LANGUAGE

Commissioner for Patents

Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

under 37 CFR 1.97(c) together with either a:

__ Certification under 37 CFR 1.97(e), or

__ a $180.00 fee under 37 CFR 1.17(p)

(After the CFR 1.97(b) time period, but before final action or notice of

allowance, whichever occurs first)

under 37 CFR 1.97(d) together with a:

Certification under 37 CFR 1.97(e), and

__ a petition under 37 CFR 1.97(d)(2)(ii), and

__ a $130.00 petition fee set forth in 37 CFR 1.17(i)(1).

(Filed after final action or notice of allowance, whichever occurs first, but before

payment of the issue fee)

A Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together

with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being depostted with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC, 20231.

Date of Deposrt: Signature:
e20

NOAC Ex. 1016 Page 211

“a.

S/NZ 09/609179 ‘ PagCZ “ L IDS

2; Some of the references were cited in a search report from a foreign patent office in a
counterpart foreign application. In particular, references AD, AF, AH, Cl, BA, BB, EC, and ED

were cited in a search report from a foreign patent office in a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR l.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

Date: April 9, 2001

v Rosenfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510—547-3378

NOAC EX. 1016 Page 211

NOAC Ex. 1016 Page 212

fl SHEET 1 OF 5.

 ATTY. DOCKET NO SERIAL NO.

APPT-001—2 ' 09/609179
, i: _

APPLICANT -.
Dietz et a1 . W

(Use several sheets if necessary) FILING DATE GFIOUELS‘SEmog6/30/2000 .VCGnter 100
U.S. PATENT DOCUMENTS

'EXAMINER I DOCUMENT NAMEINITIAL NUMBER

W-736320-Bri5t011988

891639 Jan. 2, Iakamura 340

an
5101402 Chui et al. 370

I, 1992 1988
. 21

. 21

,

' _ AD 5247517 3 p , Ross et al. 370 85. . 2,
(1993 1992

'xlFILING DATE
CLASS SUB-CLASS IFAPPFIOPRIATE

L
w (n .JS 300 O O ('1' . 8,

1985

. 23,
1988

g I L
N U1 U1 0 0 C4 3: :3

II—A00 \1 SD l< N 11>

U'I U) (D '0

Q

e

247693 ep I ov 17,01 H P U) ('1' O |,_a
a

‘9
 8-96”- .

1993 ’I07 3 1992
3155801ay 24, Phaal 370 13 ug. 26,

A

339268 ug. 16, Iachida 365 Iov. 24,

A; 1994 1991

1 1994 1993

1994 1993

1995 1993

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY
NUMBER

TRANS-

CLASS SUB-CLASS LATION YES I NO

)>>I!
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

"Technical Note: the Narus System," Downloaded April 29, 1999 from
.narus.com, Narus Corporatlon, Redwood City Callfornla.Ea

AS

II
EXAMINER - - DATE CONSIDERED 9/ 20/03
‘EXAMINEFI Inmal II cIIatIon considered, whether or noI cIIatIon Is In conformance wrth MPEP 609 Draw line through crtatlon If not In conIormance

NOAC Ex. 1016 Page 213

w)

5 US. PATENT DOCUMENTS

9%

$9999

O SHEET 2 OF 5.

ATTY. DOCKET NO.

AP PT- 0 0 1 - 2

SERIAL NO

09/60917QIRE:~C

 INFORMATION DISCLOSURE STATEMENT APPLICANT
Dietz et a1.

(Use several sheets if necessary) FILING DATE
6 / 3 0 / 2 O 0 0

FlLlNGDATE

-W4IWWTIELIIMEIIHEEEWWINITIAL NUMBER

BA
1995 1993

1995 1992

so
1995 1993

5493689 Feb. 20, aclawsky et: a1. ' = - Iar. 1,
--_ e

1996 1994

1996 1995
'

1996 1993

.5586266 Dec. 17, Her hey et al. _ . Oct. 15,1996 70‘] 6' 1993
BI

BJ e et a1.

I

L»)w‘\I\I
OO H

CdUJ \‘l\‘l oo \lg m (D’U

LIJ LO U1 403 $11 *1 12,

U (D O

I WIs

5606668 Feb. 25, Shwed . . 15,

-_-_ ~
56086621ar. 4, Larg I , 1 Jan. 12,-_-_

1997 ' 0‘? #1. 1995

w o"I Ib-\ \J [\J .p. O

‘ FOREIGN PATENT DOCUMENTS

SUB—CLASS
PUBLl-CATION

DOCUMENT DATE COUNTRY CLASS
NUMBER

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

u:(I)
EXAMINER DATE CONSIDERED

EXAMINER InItIaI If citatlon constdered. whether or not citation Is In contormance WIth MPEP 609. Draw IIne through cltatton if not in conformance
and n_ot conSIdered Include a copy of thus form with next communication to Applicant.

NOAC Ex. 1016 Page 214

I7!.

%%%§
a%
m:
IN]
[MI

III

SHEET 3 OF 5._‘.

ATTY. DOCKET NO SERIAL NO.
APPT— O O l — 2

APPLICANT

Dietz et al.

(Use several sheets if necessary) FILING DATE
6 / 3 O / 2 0 O 0

US. PATENT DOCUMENTS

FILING DATE

DOCUMENT DATE SUB-CLASS IF BPPROPRIBTE
NUMBER

'5651002 . 2
.5684954 1 CV.

2,

4,

5732213 . 24,

14,

2,

NAME

-

—7
784298 . 2 .

0/ 787253 . 2 I CCreery et al. '—
1998 ,1

‘ CJ 805808 . 8 ansani et al. ‘71998 ,

CK 5812529 Sep. 22, Czarnik et al.1998

CLASS

9.) 70 392
._. LDC LOP-4 \1

wn

7

B

CC

.5740355 pr.
, 761424 Jun.

' .1 CF -a::1 9
781735 199;; 1

H_ U39! \oH 00L S 1\:

Sm(A) \D U" I-‘ 00 W
1..» LO Lo 00

N962-47

0S N w \J

Ii
P1 (1) rt 0 :r1:E! w \I

I-'

C.Lo |—'L0
00

U) 0 I: (.1. {3' DJ H O:

N ‘N8
7

L: I—" '-
Ii

H :2: (D H (n :rm‘< m n m H w501gig U1 U1

4:

ll

8!

U) (D'O

1aP3N
U) \I 0 lb

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY

NUMBER l

OTHER DISCLOSURES (Including Author, T1tle. Date, Pertinent Pages, Place of Publication. Etc.)

CR

-

EXAMINER: inmal 1t cntation conSIdered, whether or not citatlon is in conformance with MPEP 609. Dr.w Iine throu h c1tat10n it not in contorrna
n e

and fig! conSIdered. Include a copy of this form W1th next communicatlon to ApplucantNOAC X. 1 01 6 Page 21 4

CLASS SUB-CLASS LATION

I
DATE CONSIDERED

NOAC Ex. 1016 Page 215

,~Inwn1a,;

new”'2;,
;~W'J'Kct

%%

UQ

SHEET 4 OF 5.

ATW. DOCKET NO.

APPT—OOl -2

SERIALNO.

09/609179

 INFORMATION DISCLOSURE STATEMENT APPLICANT
Dietz et a1.

(Use several sheets if necessary) FILING DATE
6 / 3 0 / 2 0 0 0

U.S. PATENT DOCUMENTS

FILING DATE

.EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IFBPPROPRIBTE
INITIAL NUMBER

DA 819028 Oct. 6 I anghirmalani et al. m pr. 16,
199 8 20 3 19 97

. 2825774 0 0 FT 0'

, chwaller et al. W Sep. 10,

1998 70 C/ 1996
5841895 I ov. 4, 82

DF 5850386 . 15, ‘ derson et a1.1998

w \l o 13> o I—I

I—ILI ml: \Ol—J U1-

,_. N

|-‘ \D \0 (I)

835726 I ov.

l= DC H \O \O (I)

R

S

U):r2m D. m n m 5—:

‘I.
1‘

N N T‘
H 0:: \05 m.

5—- \l

N

O

7O

i LI

1

5838919 . 1

2 O 0 FT [\J 01:1: :3 H1 H1 3SD :1 b)

241L...) \I O

H L11 L11

H— \00 \D<.‘ m.

l-‘

b>--in\9 UUmm r)n
. 5850388 . 15, ‘ derson et al. 370 252 Oct. 31,

5 1998 1996

.5862335 elch, Jr. et a1. -- 296—34“ pr. 1,1999 70‘? 2‘ Z, 1993

1999 1997

1999 1996

1999 ' 13g 1997
FOREIGN PATENT DOCUMENTS

PUBLl-CATION

DOCUMENT DATE COUNTRY CLASS
NUMBER

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

SUB-CLASS

fl
2 II’ IIIIIIII.

(n

l
EXAMINER

EXAMINER Initial If Citation conSIdered, whether or not citation is in conformance wnh MPEP 609. Draw line through citation if not In conformance

and not considered. Include a copy of this form wnh next communication to Applicant. NOAC EX. 1 01 6 Pa e 2 1 5

NOAC Ex. 1016 Page 216

O SHEET 5 OF 5.

SERIALNO.

09/609179

ATTY. DOCKET NO.

APPT— 0 0 l — 2

INFORMATION DISCLOSURE STATEMENT

APPUCANT

Dietz et a1.

(Use several sheets if necessary)

.EXAMINER DOCUMENT DATE
INITIAL NUMBER

W .59I7821 29, obuyan et al.
1 , Spinney

m .6014380 ,
511215 pr. 23, erasaka et al.

FILINGDATE

6/30/2000

U.SI PATENT DOCUMENTS

wLaDJ \1\1\1Eooo I—‘I—= LoLo LoLo \1m L.) o

FILING DATE

NAME SUB-CLASS IF BPPFIOPRIBTECLASS

392 ug. 16,
I—‘C-I \OC ‘02! Lo

pr. 5,
h.

mu: m 4:. ,— 4:. \I o4:.

H_ KDQ’Lo*< U‘I
u)

H to to I5

endel et al. 392 Jun.
MCI OED 0:! O

I_I I_I
26,

{\¢~% I-‘O L00 WIT L.)“E?
.«{no IT]IT]

4’’1‘”
”’1.11

IT]0

IT]”‘NI‘;n,<‘1‘f"‘!§uni-1In»

._I U) to m

5
amI

E
‘«a2:5“:21

FOREIGN PATENT DOCUMENTS

PUBLI-CATION
DOCUMENT

NUMBER
COUNTRY CLASS SUB-CLASS

‘

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages. Place of Publication, Etc.)

UU
I.

U

'EXAMINER InItial if cnatlon conSIdered whether or not CItaIIon Is In conformance with MPEP 609. WK ' citat '1 i nf rma' ' X. 111111 "Page 2616and QCLI conSIdered. Include a copy of thIs form WIIh next communicanon (0 Applicant

NOAC Ex. 1016 Page 217

Serial No.: 09/609179

Filed: June 30, 2000

Title:

Patent

 Group Art Unit: 2756

Examiner: RECEIVED

PROCESSING PROTOCOL APR 1 6 2001

SPECIFIC INFORMATION IN Center 2100
PACKETS SPECIFIED BY A Technology
PROTOCOL DESCRIPTION

LANGUAGE

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X

L

A

An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50—0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Date: April 9, 2001

Dov osenfeld

Attomey/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

TelephOne No.2 +1-510-547—3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit:

Signature:
(1. Reg, No 38.687

NOAC Ex. 1016 Page 218

‘3 #55
f
i Our Docket/Ref. No.2 APPT—001—2 Patent
i

t IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

i Applicant(s): Dietz et a1.
3: - .
g Serial No.: 09/609179 GIMP A“ UM' 2 7 5 6
i Examiner:

iled: June 30, 2000
JC124

‘6 glare“; PROCESSING PROTOCOL‘5 SPECIFIC INFORMATION IN\ >5

l' ACKETS SPECIFIED BY A

PROTOCOL DES CRH’TION

LANGUAGE

j Commissioner for Patents

2. Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

Y ‘ (Within three months of filing national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever

; occurs last)

L _X_ Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

2((Certification) Each item of information contained in this information disclosure

statement was first cited in a formal communication frorfi a foreign patent office in a counterpart

foreign application not more than three months prior to the filing of this information disclosure

statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit: :fl H” 2&1 Signature: % Zf v Rosenfeld, Reg. No. 38,687
NOAC EX. 1016 Pae 21

NOAC Ex. 1016 Page 219

S/N: 09/609179 Page 2 .. DDS

As prOVided for by 37 CFR1-97(g) and (h), no inference should be made that the information and
references Cited are prior art merely because they are in this statement and no representation is

being made that a search has been conducted or that this statement encompasses all the possible

relevant information: ‘

“ Respectfully submitted,

Date: 30 MM 2667/ ‘

Dov Rosenfeld

Attomey/Agent for Applicant(s)

/ Reg. No. 38687
Correspondence Address:

Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.2 +1-510-547-3378
NOAC EX. 1016 Page 219

NOAC Ex. 1016 Page 220

SHEET 1 OF 1.

A'lTY. DOCKET NO‘

APPT — O 0 l — 2

SERIALNO.

09/609179

 APPLICANT _

Dietz e; a1.

 FILINGDATE

6/30/2000

gt‘1’
‘9

at

2§33>2I‘m
ml

FILING DATE
IF APPROPRIA TEDOCUMENT CLASS SUB-CLASS

NUMBER

b.) L0 L11

\
3‘" 00 N.c‘o r—
I l—‘O Lot) on m.

N O :11o H N'5n:I::3 I

kI
I

1/ <Wen“:§.w.aI"swan...“
.-a.Iu...

Mu—...

loto~< .0co3 co_. m I‘l- c:Dl

V“:

PUBLI—CATION ‘ .
DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION

NUMBER YES I NC

' OTHER DISCLOSURES (Including Author. Title, Date, Pertinent Pages, Place of Publication, Etc.)

II\
3/12? 02:

, E ,
XAM‘NERI Initial it citation considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance

and m considered. Include a copy of this form with next communication to Applicant.

DATE CONSIDERED

NOAC EX. 1016 Page 220

NOAC Ex. 1016 Page 221

t

Ftx
1

”Lax-v»'Wfirm-5.i
lei-ere

wlwflw

tmm‘W‘wvuv-r,axnt
M....“av—fi—Qrfiwnnv

United States Patent [19]
Nuber et al.

Iflllllllllllilllllmllllfllllflllllllflmilllilllll
USOOS703877A

[11] Patent Number:

[45] Date of Patent:

5,703,877

*Dec. 30, 1997

[54] ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED
DATA STREAM

[75] Inventors: Ray Nuber, La Jolla; Paul Momney,
Olivenhain; G. Kent Walker.
Escondido. all of Calif.

[73] Assignee: General Instrument Corporation of
Delaware, Chicago, n1.

[‘] Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5,517,250.

[21] Appl. No.: 562,611

[22] Filed: Nov. 22, 1995

[51] Int. Cl.‘ H041 3/06; H04N 7/12
[52] US. Cl. 370/395; 370/510; 370/514;

375/366; 348/423; 348/462; 348/466; 348/467
[58] Field of Search 370/389, 395.

370/503, 509. 510, 514. 516; 375/362,
365, 366, 368, 371; 348/423, 461, 462,

464, 466, 467

[56] References Cited

U.S. PATENT DOCUMENTS

5,365,272 11/1994 Sincusa 348/461

5,376,969 12/1994 Zdepski 348/466
5,467,342 11/1995 Logston et a], 370053
5,517,250 5/1996 Hoogenboom et a1. 3481467
5,537,409 7/1996 Moriyamaet a1. 370/471

Primary Examiner—Aims H. Hsu
Attorney. Agent, or Firm—Ban'y R. Lipsitz

[57] ABSTRACT

Audio data is processed from a packefized data stream
carrying digital television information in a succession of
fixed length transport packets. Some of the packets contain
a presentation time stamp (PI‘S) indicative of a time for
commencing the output of associated audio data. After the
audio data stream has been acquired. the detected audio
padtets are monitored to locate subsequent Pi‘S‘s for adjust'
ing the timing at which audio data is output. thereby
providing proper lip synchronization with associated video.
Errors in the audio data are processed in a manner which
attempts to maintain synchronization of the audio data
stream while masking the stars. In the event that the
synchronization condition cannot be maintained. for
example in the yesence of enters over more than one audio
frame, the audio data stream is reaequired while the audio
output is concealed An erra- condition is signaled to the
audio decoder by aiming the audio synchronization word
associated with the audio frame in which the error has
occutred.

25 Claims, 4 Drawing Sheets

1 oo
couummroncz IDLE

108

MIMIC) PIS AND DATA
RECENED

ERROR: FTS. SYNC, 0V. ADP.
ENC. RS. AUD. PTRS FULL

RORzmc, ENC. RS.
AUD. PTRS FULL

ERROR: FTS. WC. 0V. ADP. ENC, RS. AUD. PTRS FULL

NOAC EX. 1016 Page 221

NOAC Ex. 1016 Page 222

'M

3'}

10 ‘4 4 14 .C:
\ 12 / 12 f1 12 f .m

'1:

AUDIO FRAME gfimmm g.
aH

U . ‘
8 j

PACKET .3

8q

9
24 g

I:

TRANSPORT 9.,

PACKETS 4*

XPT m j
HDR PAYLOAD \ FIG. 1 1;c

24 m
188 BYTES(MPEG) “a,

N]
N]

NOAC EX. 1016 Page 222

NOAC Ex. 1016 Page 223

TRANSPORT

40

_ STREAM

TIME.LOCK.ECODER

" “merm WuflmQ-fl'mwfi‘fl ~ . r 4

ADDR. + CONTROL
4a

BUFFER VIDEO

AUDIO

mama‘S‘Il
.52

 VIDEO

DECODER
AUDIO

DECODER

54

VIDEO OUT

AUDIO OUT

L661‘05'390
FIG. 2

46

73"Zmils

LLS‘EOL‘S

NOAC EX. 1016 Page 223

Im' . . » I
swap-ma“. «mt-w 5.- v (WWWJW‘. 5 WW"

NOAC Ex. 1016 Page 224

(w wwmt‘ r—u—w «way-wanWVWWWW+WW WME , , 3,»

d

TRANSPORT 70 FIG. 4 gr:
PACKETS PID F5

40 DETECT %
74 E:

72 MODIFIED SYNC AUDIO DATA To

AUDIO PKTS WORD INSERTER BUFFER

DEMUX

‘— 78 EERROR SYNC WORD 9
DEFECT INVERTER .8

CONTROL VIDEO g
PKTS PKTS q

/ gSYNC WORD aLIP SYNC a: IBuFFER 8
44 PCR 5: PTS PTS OUTPUT TIMING CONTROL 8" Z.

DETECT COMPENSATOR 9..uh

AUDIO SAMPLE

& BIT RATE CONTROL
CALCULATOR u:

ADDRESS “5‘
T0 “m
#P 88 31°

\1

NOAC EX. 1016 Page 224

NOAC Ex. 1016 Page 225

O 0

US. Patent Dec. 30, 1997 Sheet 4 of4 5,703,877

,100

COMMAND:FORCE IDLE‘

102

COMMAND:ACQUIRE —

INTERRUPTzDPTS REQ l

DELTA PTS WAIT

104

EVENTlePUT PROCESSOR WRITES DPTS-ACQI ERROR:SYNC.
ENC. RS, AUD.
PTRS FULL

PCR ACQUIRE

106

. ERROR:SYNC. ENC.
EVENT.AUDIO PCR RECEIVED RS, AUD. PTRS

PTS ACQUIRE

 ERROR:SYNC. ENC. RS.

EVENTzAUDlO PTS AND DATA I AUD, PTRS FULLRECEIVED

110 ® ERROR:PCR 0131
ERROR: PTS. SYNC, 0V. ADP,

EVENT28TC=PTS+DPTS l ENC. Rs. AUD. PTRS FULL

ERROR: PTS. SYNC. 0V. ADP, ENC. RS, AUD. PTRS FULL

FIG. 5

NOAC EX. 1016 Page 225

i

E

E

NOAC Ex. 1016 Page 226

“0"?”‘I'var
m.“MW
”‘9va

.r""*'“—‘r~v-«we

O 0

5,703,877
1

ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED

DATA STREAM

BACKGROUND OF THE INVENTION

The Fesent invention relates to a method and apparatus
for acquiring audio data from a packetized data steam and
recovery from errors contained in such data.

Various standards have emerged for the tansport of
digital data. such as digital television data. Examples of such
standards include the Moving Pictures Experts Group
(MPBG) standards and the DigiCipher® 11 standard propri-
etary to Genmrl Instrument Corporation of Chicago, 111.,
U.S.A., the assignee of the present invention. The DigiCi-
pbet® [1 standard extends the MPEG-2 systems and video
standards, which are widely known and recognized as inns-
port and video compression specifications specified by the
International Standards Organization (ISO) in Document
series ISO 13818. The MPEG-2 specification’s systems
"layer" provides a transmission medirnnindependent coding
technique to build bitstreams containing one or more MPEG
Fograms. The MPBG coding technique uses a formal gram-
mar (“syntax") and a set of semantic rules for the construc-
tion of bitstreams. The syntax and semantic rules indude
[revisions for demultiplexing, clock recovery, elementary
stream synchronization and error handling.

The MPEG transport stream is specifically designed for
use with media that can generate data errors. Many
Fograms, each comprised of one or more elementary
streams, may be combined into a transport stream. Examples
of suvices that can be provided using the MPEG format are
television services broadcast over terrestrial. cable television
and satellite networks as well as interactive telephony-based
services. The primary mode of information carriage in
MPEG broadcast applications will be the MPEG-2 tansport
steam The syntax and semantics of the MPEGZ transport
steam are defined in International Organisation for
Standardisation, ISO/[EC 13818-1. Intnnational Standard.
1994 entitled "Generic Coding of Moving Pictures and
Associated Audio: Systems,” recommendation H.222. incor-
porated herein by reference.

Multiplexing according to the MPEG-2 standard is
accomplished by segmenting and packaging elementary
streams such as compressed digital video and audio into
packetized elementary steam (PPS) packets which are then
segmented and packaged into transport packets. As noted
above. each MPEG tranwort packet is fixed at 188 bytes in
length. The first byte is a synchronization byte having a
specific eight-bit pattern. e.g.. 01000111. The sync byte
indicates the beginning of each transport packet.

Following the sync byte is a three-byte field which
includes a one—bit transport packet error indicator, a one-bit
payload unit start indicator, a oncrbit transport priority
indicator. a 13-bit packet identifier (PID). a two-bit transport
scrambling control, a two-bit adaptation field control, and a
four-bit continuity counter. The remaining 184 bytes of the
packet may carry the data to be communicated. An optional
adaptation field may follow the prefix for carrying both
MPEG related and private information of relevance to a
given transptn't steam tr the elementary stream carried
within a given transport packet. Provisions for clock
recovery. such as a program clock refdence (PCR), and
bitstrcam splicing information are typical of the information
carried in the adaptation field. By placing such information
in an adaptation field. it becomes encapsulated with its

10

15

35

55

65

2

associated data to facilitate remultiplexing and network
routing operations. When an adaptation field is used. the
payload is correspondingly shu‘ter in length.

The PCR is a sample of the system time clock (SFC) for
the associated program at the time the PCR bytes are
received at the decoder. The decoder uses the PCR values to

synchronize a decoder system time clock (SI‘C) with the
enooda‘s system time clock. The lower nine bits of a 42—bit
SI‘C Fovide a modulo-300 counter that is incremented at a
27 MHz clock rate. At each modulo-300 rollover. the count

in the upper 33 bits is incremented. such that the upper bits
of the SFC represent time in units of a 90 kHz clock period.
This enables presentation time stamps (HS) and decode
time stamps (DTS) to be used to dictate the paper time for
the decodu to decode access units and to present presenta-
tion units with the accuracy of one 90 kHz clock period.
Since each program or service carried by the data steam
may have its own PCR, the programs can be multiplexed
asynchronously.

Synchronization of audio. video and data presentation
within a program is accomplished using a time stamp
approach. Presentation time stamps (PFSs) and/or decode
time stamps (Dl‘Ss)are insated into the transport steam for
the separate video and audio packets. The [TS and UPS
information is used by the decoder to determine when to
decode and display a picture and when to play an audio
segment. The [TS and UPS values are relative to the same
system time clock sampled to generate the PCRs.

AllMPHivideo and audiodatamustbeformattedinto a

parietized elementary stream (PBS) formed from a succes—
sion ofPES packets. Each PES packet includes aPFS header
followed by a payload The PBS packets are then divided
into the payloads of successive fixed length tansport pack-ets

PBS packets are of variable and relatively long length.
Various optional fields, such as the presentation time stamps
and decode time stamps may be included in the PB header.
When the transport packets are formed from the PE. the
PBS headers immediame follow the transport packet head-
ers. A single PBS packet may span many transport packets
and the subsections of the PES packet must appear in
consecutive transport packets of the same PID value. It
should be appreciated. howeva', that these tansport packets
may be freely multiplexed with other transport packets
having difi’ereut Ple and carrying data from difi’erent
elementary stream within the constraints of the MPEG-2
Systems specification.

Video programs are carried by placing coded MPEG
video streams into PE packets which are then divided into
transport packets for insertion into a transport stream. Each
video PBS packet contains one or more coded video
pictrn'es, rein-red to as video “access units." A PTS and/or a
UPS value may be placed into the PBS packet header that
encapsulates the associated access units. The DTS indicates
when the decoder should decode the access unit into a

presentation unit. The Pl‘S is used to actuate the decoder to
present the associated presentation unit.

Audio programs are provided in accordance with the
MPEG Systems specification using the same specification of
the PBS packet layer. P'I‘S values may be included in those
PES packets that contain the first byte of an audio access unit
(sync frame). The first byte of an audio ams unit is part of
an audio sync word. An audio frame is defined as the data
between two consecutive audio sync words. including the
preceding sync word and not including the succeeding sync
word.

NOAC EX. 1016 Page 226

NOAC Ex. 1016 Page 227

§

E
g

E

i
l

il

g

i
g

D 0

5,703,877
3

In DigiCipher® II, audio transport packets include one or
both of an adaptation field and payload field. The adaptation
field may be used to transport the PCR values. 'lhe payload
field transports the audio PBS. consisting of PBS headers
and PBS data. PES headers are used to transpat the audio
PI‘S values. Audio PBS data consists of audio frames 6

specified. e.g., by the Dolby® AC-3 or Musicam audio
syntax specifications. The AC-3 specifications are set forth
in a document entitled Digital Audio Compression (AC-3).
ATSC Standard. Doc. N52. United States Advanced Tele-

vision Systems Committee. The Musicam specification can
be found in the document entitled “Coding of Moving
Pictures and Associated Audio for Digital Stu-age Media at
Upto About 1.5 MBII‘Is," Parr3 Audio. 11172-3 (MPEG-1)
published by ISO. Each syntax specifies an audio sync frame
as audio sync word, followed by audio information includ-
ing audio sample rate. bit rate and/or frame size. followed by
audio data.

In order to reconstruct a television signal from the video
and audio information carried in an MPEGlDigiCipher® II
mnsponmemadecoderisrequiredtoprocessthevideo
packets frn' output to a video decompression processor
(VDP) and the audio packets for output to an audio decom-
pression processor (ADP). In order to Foperly process the
audio data. the decodu is required to synchronize to the
audio data pacbt stream. In particular, this is required to
enable audio data to be bulfaed fu' continuous output to the
ADPandto enablethe audiosyntaxtobereadforaudiorate
information necessary to delay the audio output to achieve
proper lip synchronization with respect to the video of the
51““: W03“!!!-

Several events can result in mar conditions with respect
to the audio processing. These include loss of audio trans-
port packets due to transmission channel arors. Farms will
also result from the receipt of audio packets which are not
properly decrypted or are still encrypted. Adecoder must be
able to handle such errors without significantly degrading
the quality of the audio output.

The decoder must also be able to handle changes in the
audio sample rate and audio bit rate. The audio sample rate
for a given audio elementary streamed“ rarely change. The
audio bit rate, however. can often change at mogram
boundaries. and at the start and end of commercials. It is
diflicult to maintain synchronization to the audio stream
through such rate changes, since the size of the audio sync
frames is dependent on the audio sample rate and bit rate.
Handling undeteded errors in the audio stream, particularly
in systems who-e error detection is weak. complicates the
tracking of the audio stream through rate changes. When a
received bitstream indicates that an audio rate has changed.
the rate may or may not have actually changed If the
decoder responds to an indication from the bitstream that the
audio rate has changed when the indication is in error and
the rate has not changed. a loss of audio synchronization will
likely occur. This can result in an audio signal degradation
that is noticeable to an end usu'.

To support an audio sample rate change. the audio clock
rates utilized by the decoder must be changed This process
can take significant time. again degrading the quality of the
audio output signal. Still further. such a sample rate change
will require the audio bufiers to be cleared to establish a
diifereut sample-rate-dependent lip sync delay. Thus, it may
not be advantageous to trust a signal in the received bit-
stream indicating that the audio sample rate has changed

Mth respect to hit rate changes. the relative frequency of
such changes compared to undetected errors in the bit rate

10

15

35

45

50

55

65

4

information will be dominated by whether the receiver has
adequate en'or detection. Thus, it would be advantageous to
provide a decoder having two modes of operation. In a
robust error detection environment such as for satellite
communications or cable media, where error dctecfion is
robust. a seamless mode of operation can be provided by
trusting a bit rate drange indication provided by the data. In
a less robust erra- detection environment, indications of bit
rate changes can be ignored, at the expense of requiring
resynchronizau'on of the audio in the event that the bit rate
has achrally changed.

It would be further advantageous to provide an audio
decoder in which synchronization to the audio bitstream is
maintained when the audio data contains errors. Such a

decoder should conceal the audio for those sync frames in
whidrmen‘uhasoccmredtominimize the arm! impact of
audio data arors.

It would be stfll frutlrer advantageous to provide a decoder
in which the timing at which audio data is output from the
decodcr‘s audio buffer is adjusted on an ongoing basis. The
intent of such adjustments would be to insure curred pre-
sentation time for audio elementary streams.

The present invention provides methods and apparatus for
decoding digital audio data from a packetized transport
stream having the aforementioned and other advantages.

SUMMARY OF THE INVENTION

In accordance with the present invention, a method is
provided for processing digital audio data from a packetized
data stream carrying television information in a succession
of fixed length transport packets. Each of the packets
includes a packet identifia- (HD). Some of the packets
contain a program clock reference (PCR) value for synchro—
nizing a decoder system time clock (SI‘C). Some of the
packets contain a presentation time stamp (PPS) indicative
of a time fir commencing the output of associated data for
use iureconstructing a television signal. In accordance with
the method, the PlD‘s for the packets carried in the data
stream are monitored to identify audio packets associated
with the desired program The audio packets are examined
to locate the occurrence of at least one audio synchroniza-
tion wcrd therein for use in achieving a synchronization
condition. The audio packets are monitored after the syn-
chronization condition has been achieved to locate an audio

PI‘S. Altm- the PI‘S is located. the detected audio packets are
aeardred to locate the next audio synchronization word.
Audio data following the next audio synchronization word is
stored in a bulfer. The stored audio data is output from the
buffer when the decoder system time clock reaches a speci-
fied time derived from the Pl‘S;The detected audio packets
are continually monitored to locate subsequent audio Yl‘S‘s
for adjusting the timing at which the stored audio data is
output from the butfer on an ongoing basis.

A PIS pointa' can be provided to maintain a current FI‘S
value and an address of the buffer identifying where the sync
word of an audio frame refured to by the current Pl‘S is
stored. In order to provide the timing adjustment. the FPS
value in the HS pointer is replaced with a new PTS value
after data stored at the address specified by the FPS pointer
has been output from the build: The address specified by the
FPS pointer is then replaced with a new address correspond~
ing to the syncword of an audio frame referred to by the new
PI‘S value. The output of data from the butler is suspended
when the new buffer address is reached during the presen-
tation process. The output of data from the buficr is recom-
menced when the decoder's system time clock reaches a
specified time derived from the new PTS value.

NOAC EX. 1016 Page 227

NOAC Ex. 1016 Page 228

5

5

0

5,703,877
5

In an illustrated embodiment. the output of data from the
buffer is recommenced when the decoder‘s system time
clock reaches the time indicated by the sum of the new PTS '
value and an oifset value. The oflset value provides proper
lip synchronization by accounting for any decoder video
signal processing delay. In this manner, aftu- the audio and
video data has been decoded, the audio data can be presented
synchronously with the video data so that. for example. the
movement of a person’s lips in the video picture will be
sufficiently synchronous to the sound reproduced.

The method of the present invention can comprise the
further step of commencing a reacquisition of the audio
synchronization condition if the decoder’s’system time clock
is beyond the specified time derived from the new P'I‘S value
before the output of data from the buffer is recommenoed.
Thus. if a PTS designates that an audio frame should be
mesented at a time which has already passed, reacquisition
of the audio datawill automah'mlly commence to cmectthe
timing tarot, thus minimizing the duration of the resultant
audio artifact

In the illustrated embodiment. two consecutive audio
synchronization wards define an audio frame therebetween,
including the preceding sync word. but not including the
succeeding sync mud. The occun'enoe of errors may be
detected in the audio packets. Upon detecting a first audio
packet of a current audio frame containing an error. the write
pointer for the buffer is advanced by the maximum number
of bytes (N) contained in one of the fixed length transport
packets. At the same time, the current audio flame is
designated as being in error. The subsequent audio packets
of the cunent audio frame are monitored for the next audio

synchronization word after the error has been detected. Ifthe
synchronization word is not received at the expected point in
the audio elementary stream. subsequent data is not stored in
the buffer until the sync word is located. Stu-age of audio
data into the bufi'er is resumed with the next sync word if the
next audio synchronization wra'd is located within N bytes
after the commencement of the search therefor. If the next

audio synchronization word is not located within N bytes
after the commencement of the search therefor, a reaequi-
sition ofthe synchronization condition is commenced. These
steps will insure the buffer is maintained at the correct
fullness when as many as one transport packet is lost per
audio sync frame. even with the sync frame size changes
such as with a sample rate of44.l ksps, and will resynchro-
nize the audio when too many audio transport packets are
lost.

Whenever the audio data from which the television audio

is being reconstructed is in mot. it is preferable to conceal
the error in the television audio. In the illustrated

embodiment, a current audio frame is designated as being in
error by altering the audio synchronization word for that
frame. For example, every other bit of the audio synchro-
nization word can be inverted. The error in the television

audio for the corresponding audio frame may then be
concealed in response to an altered synchronization word
during the decoding and presentation process. This method
allows the buffering and error detection process to signal the
decoding and presentation process when errors occur via the
data itself, without the need for additional interprocess
signals.

The audio data can include information indicative of an

audio sample rate and audio bit rate, at least one of which is
variable. In such a situation, it is advantageous to maintain
synchronization within the audio elementary stream during
a rate change indicated by the audio data. This can be
accomplished by ignoring an audio sample rate change

10

15

35

45

55

6

indicated by the audio data on the assumption that the
sample rate has not actually changed, and concealing the
audio frame containing the data indicative of an audio
sample rate change while attempting to maintain the syn-
chronization condition. This strategy will properly respond
to an event in which the audio sample rate change or bit rate
change indication is the result of an error in the indication
itself, as opposed to an actual rate change.

Similarly, audio data can be processed in accordance with
a new rate indicated by the audio data in the absence of an
error indication pertaining to the audio frame containing the
new rate, while attempting to maintain the syndtronization
condition. The audio data is processed without changing the
rate if an error indication pertains to the audio frame
containing the new rate. At the same time, the audio frame
to which the error condition pertains is concealed while the
decoder attempts to maintain the synchronization condition.
If the synchronization condition cannot be maintained. a
reacquisition of the synchronization condition is
commenced, as desired when the sample rate actually
changes.

Apparatus in accordance with the present invention
acquires audio information carried by a packetized data
scam. The apparatus also handles errors contained in the
audio infcrmation. Means are provided for identifying audio
packets in the data stream. An audio elementary stream is
recovu-ed from the detected audio packets for storage in a
bufler'. An audio presentation time stamp (PI‘S) is located in
the detected audiopackets. Means responsive to the FPS are
provided for commencing the output of audio data from the
bufl‘er at a specified time. Means are provided frx monitoring
the detected audio packets after the output of audio data
from the buffer has commenced, in rider to locate subse-
quent audio PI‘S’s ftl' use in governing the output of audio
datafromthe butter to insine audiois presented synchronous
to any other elementary streams of the same program and to
maintain correct bufi’er fullness.

The apparatus can furtha' comprise means for maintain-
ingaFI'Spointerwith a wrrentPI‘Svalue andanaddrers
of the butter identifying when: a portion of audio data
refined to by the current W8 is stored. Means are provided
fa- replacing the PPS value in the PPS pointer with a new
cun'entPl‘S valueaftudatastoredatthe address setforthin

the PI‘S point: has been output from the butter. The address
inthePI‘S pointeristhenreplacedwith anew address
corresponding to a portion of audio data refuted to by the
new can-cut PTS vahre. Means responsive to the PPS pointer
are provided for suspending the output of data from the
buffer when the new address is reached. Means are provided
for mcommencing the output of data from the bufler at a
time duived from the new current Pl'S value. In the event
that the new current PI‘S value is outside a predetermined
range, means provided in the apparatus conceal the audio
signal and reestablish syndrronization.

In an illustrated embodiment, the audio transport packets
have a fixed length of M bytes. The transport packets carry
a succession of audio fmnes each contained wholly or
partially in said packets. The audio frames each begin with
an audio synchronization word. Means are provided for
detecting the occurrence of mots in the audio packets. A
write pointer for the bufier is advanced by the maximum
number of audio frame bytes per audio transport packet (N)
and a current audio frame is designated as being in error
upon detecting an error in an audio packet of the current
audio frame. Means are provided for monitoring the detected
audio packets of the current audio frame for the next audio
synchronization word after the error has been detecxed. If the

NOAC EX. 1016 Page 228

NOAC Ex. 1016 Page 229

tarn-“WNW/umnmmas:raw“:Nix“

(W 0

5,703,877
7

synchronization word is not rweived where expected within
the audio elementary stream, subsequent audio data is not
buttered until the next audio synchronization word is
received. This process compensates for too many audio
bytes having been buttered when the errored audio packet 5
was detected. Such an event will occur each time the lost

packet does not carry the maximum number of possible
audio data bytes. Means are provided for resuming the
strange of audio data in the buffer if the next audio syn- ‘
duonization word is located within N bytes after the com— 10
mencement of the search therefor. If the next audio syn-
chronization word is not located within said N bytes after the
commencement of the search therefor. the audio timing will
be reacquired. In this manner. the size of the sync flames
bufiered will be maintained including for those frames that 15
are marked as being in erra, unless the next sync word is not
located where expected in the audio elementary stream to
recover from the error before bufi‘ering any of the next
successive frame. This algorithm allows the decode and
presentation processes to rely on buffered audio flames 20
being the cmeet size in bytes. even when data errors result
in the loss of an unknown amount of audio data.

Means can also be provided for concealing cum in an
audio signal reprodqu from data output flom the bufi'er
when the data output from the bufl‘sr is in error. Means are 25
furtherprovided for altering the audio synchronization word
associated with a atrrent audio frame. to signal the decode
and presentation process that a particular frame is in error.
The concealing means are responsive to altrn'ed syndtroni-
zation words for concealing audio associated with the cor— 30
rewonding audio flame.

Decoder apparatus in accordance with the invention
acquires audio information carried by a packetized data
stream and handles erras therein. Means are provided ft!
identifying audio packets in the data stream. The successive 35
audio flames are extracted from the audio transport packets.
Each audio frame is canied by one or more of the packets.
and the start of each audio frame is identified by an audio
syndironization word. Means responsive to the syndtroni-
zation words obtain a syndrroniution condition enabling 40
the recovery of audio data from the detected audio packets
for storage in a bufisr. Means are provided for detecting the
presence of errors in the audio data. Means responsive to the
error detecting means control the flow of data through the
bum: when an enu- is present, to attempt to maintain the 45
synchronization condition while masking the error. Means
are provided for reestablishing the audio timing if the
controlling means cannot maintain the synchronization con-
dition.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic illustration showing how audio
transport packets are formed from an elementary stream of
audio data;

FIG. 2 is a block diagram of decoder apparatus that can 55
be used in acctrdance with the present invention;

FIG. 3 is a mac detailed block diagram ofthe decoder
system time clock (SI‘C) illustrated in FIG. 2;

FIG. 4 is a more detailed block diagram of the demulti-
pleating and data parsing circuit of FIG. 2; and 60

FIG. 5 is a state diagram illustrating the processing of
audio data in accordance with the present invention

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a diagrammatic illustration showing how one rt
more digital programs can be multiplexed into a stream of

65

8

transport packets. Multiplexing is accomplished by seg-
menting elementary streams such as coded video and audio
into PBS packets and then segmenting these into transport
packets. The figure is illustrative only, since a PBS packet.
sud: as PBS packet 16 illustrated, will commonly translate
into other than the six transport packets 24 illustrated.

in the example of FIG. 1. an elementary stream generally
designated 10 contains audio data provided in audio flames
14 delineated by synchronization words 12. Similar elemen-
tary streams will be provided for video data and othu' data
to be transported.

The first step in fanning a transport packet stream is to
reconfigure the elementary stream for ermh type of data into
a corresponding packetized elementary stream (PBS)
formed from successive PPS packets, such as packet 16
illustrated. Fadr PPS packet contains a PES header 18
followed by a PBS payload 20. The payload comprises the
data to be communicated The PES header 18 will contain

information useful in processing the payload data. such as
the presentation time stamp (NS).

The header and payload data flom eadr PBS packet are
encapsulated into transport packets 24, each containing a
transport header 30 and payload data 32. The payload data
of the transport packet 24 will contain a portion of the
payload data 20 andlor PE? header 18 from PPS packet 16.
In In MPH} implementation, the transport header 30 will
contain the packet identifier (PID) which identities the
transport packet. such as an audio transport packet 24. a
video transport packet 26. or other data packet 28. In FIG.
1. only the derivation of the audio transport packets 24 is
shown. In order to derive video packets 26 and other packets
28, corresponding elementary streams (not shown) are pro-
vided which are processed into PBS packets and tranqiort
packets in essentially the same manner illustrated in FIG. 1
with resped to the formation of the audio transport packets

Each MPEG transport packet contains 188 bytes of data.
formed flom the four-byte transport header 30 and payload
data32,whichea.nbeuptol84bytes.lntheMPFG
implementation. an adaptation field of. e.g., eight bytes may
be provided between the transportheada 30 and payload 32.
The variable length adaptation field can contain. for
example, the trogram clock reference (PCR) used for syn-
chronization of the decoder system time clock (STC).

The plurality of audio transport packets 24. video trans-
port packets 26 and other packet: 28 is multiplexed as
illustrated in FIG. 1 to form a transport stream 22 that is
communicated over the communication channel flom the

encoder to the decoder. The purpose of the decoder is to
demulh'plex the difl'erent types of transport packets flom the
transport stream. based on the PID’s of the individual
packets. and to then process each of the audio. video and
other components for use in reconstructing a television
signal.

FIG. 2 is a block diagram of a decoder for recovering the
video and audio data. The transport stream 22 is input to n
demulliplexer and data parsing subsystem 44 via terminal
40. The demulu‘plexing and data parsing subsystem com-
municates with a decoder microprocessor 42 via a data bus
88. Subsystem 44 recovers the video and audio transport
packets flom the transport packet stream and parses the
PCR, FPS and other necessary data thuefrom for use by
other decoder components. For example. PCR‘s are recov-
ered flom adaptation fields of transptx‘t packets for use in
synchronizing a decoder system time clock (STC) 46 to the
system time clock of the encoder. Presentation time stamps
for the video and audio data streams are recovered from the

NOAC EX. 1016 Page 229

NOAC Ex. 1016 Page 230

{W

5,703,877
9

respective PBS packet headers and conununicated as video
or audio control data to the video decoder 52 and audio

decoder 54. respectively.
The decodu time clock 46 is illustrated in greater detail

in FIG. 3. An important function of the decoder is the
reconstruction of the clock associated with a particular
program. This clock is used to reconstruct. for ample, the
proper horizontal scan rate for the video. The proper pre-
sentation rate of audio and video presentation units must
also be asstned. These are the audio sample rate and the
video frame rate. Synchronization of the audio to the video,
referred to as “lip sync“, is also required.

In order to genaate a synchronized program clock. the
decoder system time clock (STC) 46 receives the PCR‘s via
terminal 60. Before the commencement of the transport
stream decoding. a PCR value is used to preset a counter 68
for the decoder system time clock. As the clock runs. the
value of this counter is fed back to a subtracter 62. The local

feedback value is then compared with subsequent PCR’s in
the transport stream as they arrive at terminal 60. When a
PCR arrives. it represents the eta-sect SI‘C value ft: the
program The difi'erence between the PCR value and the
ETC value, as output from subtracts: 62, is filtered by aloop
filter 64 and used to drive the instantaneous frequency of a
voltage controlled oscillator 66 to either decease or increase
the SFC frequency as necessary. The SI‘C has both a 90kHz
and 27 MHz component. and the loop filte- 64 convu'ts this
to units in the 27 Mhz domain. The output of the VCO 66
is a 27 MI-lzoscillator signal whichisusedastheprogram
clock frequency output from the decoder system time clock.
Those skilledin the artwillrecognize thatthe deeoderu'rne
clock 46 illustrated in FIG. 3 is implemented using well
known phase locked loop (PLL) techniques.

Before beginning audio synduonization. the decoder of
FIG. 2. and particularly subsystem 44, will remain idle until
it is configured by decoder microprocessor 42. The configu-
ration consists of identifying the type of audio data stream
to be processed (e.g.. Dolby AC-3 or Musicam audio);
identifying the PID of packets from which the audio PCR
values are to be extruded, and identifying the PID for audio
packets.

During the idle state. subsystem 44 will instruct audio
decoder 54 to conceal the audio output. Concealment can be
accomplished by zeroing all of the audio samples. Subse-
quent digital signal processing will result in a smooth atn'al
transition from no sound to sound, and back to no sound.
The concealment of the audio output will be terminated
when the synchronization process reaches a tracking state.
Decoder microprocessor 42 configures the audio format as
AC-3 or Musicam, depending on whethu' audio decoder 54
is an AC-3 or Musicam decoder. Microprocessor 42 deter-
mines the audio PID and audio PCR P11) from program map
information provided in the transport stream. The program
map information is essentially a directory of PlD's, and is
identified via its own PID.

Once the demultiplexer and data parsing subsystem 44 is
commanded to enter a Frame Sync state via an acquire
command. it will begin searching for two conseortive audio
sync words and will supply the decoder microprocessor 42
with the audio sampling rate and audio bit rate indicated
within the audio elementary stream. To locate the sync
words, subsystem 44 will receive transport packets on the
audio P11) and extract the PBS data. searching for the
occurrence of the audio sync word, which is a
predetermined. fixed word For example, the AC-3 audio
sync word is 0000 1011 0111 0111 (16 bits) while the
Musicam sync word is 1111 1111 1111 (12 bits).

10

15

35

45

55

65

10
The number of bits between the first bit of two consecu—

tive audio sync words is referred to as the frame size. The
frame size depends on whether the audio stream is AC—3 or
Musicam and has a difiu'ent value for each combination of

audio sample and bit rate. In a preferred embodiment.
subsystem 44 is required to synchronize to A03 and Musi-
cam sample rates of 44.1 ksps and 48 ksps. The AC-3 audio
syntax conveys the audio sample rate and audio frame size
while the Musicam audio syntax conveys the audio sample
rate and audio bit rate. Both A03 and Musicam specify one
sync frame size for each bit rate when the sample rate is 48
ksps. However, A03 and Musicam specify two sync frame
sizes for each bit rate when the sample rate is 44.1 ksps, a
fact which complicates synchronization. especially through
packet loss. When the sample rate is 44.1 ksps. the correct
sync frame size between the two possibilities is indicated by
the least significant bit of the AC-3 frame size code or by a
Musicam padding bit.

Once two consecutive audio sync words have been
received with the carect number of bytes in between. as
specified by the sync frame size. subsystem44 will store the
audio sample rate and audio bit rate implied by the audio
syntax for access by the decoder microprocessor 42. inter-
rupting the miqoproccssrr to indicate that subsystem 44 is
waiting fit the microprocessor to supply it with an audio
PTS correction factor. The correction factor is necessary in
order to know when to output audio data to the audio
decodn' 54 during initial acquisition and dming tracking for
proper lip synchronization The value is denoted as dPTS.
The lip sync value used for tracking is slightly less than that
used for initial acquisition to allow for time errors which will
exist between any two PTS values. namely that which is
used for acquisition and those which are used for tracking.

Decoder miu-oproeessrr 42 sets the ccuection factors
audt that audio and video-will exit the decoder with the

same time relationship as it enteredthe encoder. thus achiev-
ing lip synchronization. These correction factors are deter-
mined based on audio sample rate and videofiame rate (e.g.,
60 Hz or 50 Hz). These dependencies exist because the audio
decompression processing time required by audio decodu
54 potentially depends on audio sample and bit rate while
the video decompression implemented by video decoder 52
potentially depends on video frame rate and delay mode. In
a preferred implementation. the PTS correction factors con-
sist of 11 bits, representing the number of 90 kHz clock
periods by which audio data is to be delayed before output
to the audio decoder 54. With 11 bit values, the delay can be
as high as 22.7 milliseconds.

Once the demultiplexing and data parsing subsystem 44
requests the decoder microprocesscr 42 to supply the cor-
rection factors, it will monitor reception of consecutive sync
words at the expected positions within the audio elementary
stream. If an error condition occurs during this time. sub-
system 44 will transition to searching for two consecutive
audio sync words with the correct number of data bytes in
betWeen. Otherwise. subsystem 44 remains in State dPIS—
wait until the dede microprocessor services the interrupt
from subsystem 44 by writing dPl‘SM to subsystem 44.

Once subwstem 44 is provided with the FPS correction
factors. it checks whether a transport packet has been
received on the audio PCR PID containing a PCR value.
carried in the adaptation field of the packet. Until this has
occurred, reception of consecutive sync words will continue
[StathCR Acquire]. If an error condition occurs during
this time, subsystem 44 will transition to searching for two
consecutive audio sync words [State=Frame Sync].
Otherwise. it will remain in Stat=PCR Acquire until it
receives a PCR Value on the audio PCR P11).

NOAC EX. 1016 Page 230

NOAC Ex. 1016 Page 231

mt‘ 0

5 ,703,877
11

After a PCR has been acquired. subsystem 44 will begin
watching for a PIS [State=PI‘S Acquire], which is carried
in the PES header of the audio transport packets. Until this
has occurred, subsystem 44 will monitor the reception of
consecutive sync words. If an error condition occtns during
this time, it will transition to an error handling algorithm
[Stathtror Handling]. Otherwise, it will remain in the PI8
acquire state until it receives a PIS value on the audio PID.

When subsystem 44 receives an audio PI‘S value, it will
begin searching for reception of the next audio sync word.
This is important since the PIS defines the time at which to
output the data which begins with the next audio frame.
Since audio flames are not aligned with the audio PBS. the
numba of bytes which will be received between the PIS
and the next audio sync word varies with time. If an en'or
condition oceans before reception of the next audio sync
wad, subsystem 44 returns to searching for audio flame
synchronization [State=Frame Sync]. It should be appeci-
ated that since audio sync flames and PBS headers are not
aligned, it is possible for a PBS header, and the PIS which
it may contain, to be received between the 12 or 16 bits
which film an audio sync word. In this case, the sync word
to which the PIS refas is not the sync word which is split
by the PES hearing but rather the following sync word.

When subsystem 44 receives the next sync word, it has
acquired PI‘S. At this point. it will sttre the received PIS
and the PES data (starting with the sync word which first
followed the PI5) into an audio butter 50. together with the
buffer address at which it writes the sync word. This stored
PIS/buffer address pair will allow subsystem 44 to begin
outputting audio PBS data to the audio decoder 54 at the
correct time. starting with the audio sync word. In a pre-
ferred embodiment. the bufier 50 is implemented in a
portion of dynamic random access memory (DRAM)
already provided in the dccoda'.

Once subsme 44 begins bufl‘ering audio data, a number
of parameters must be tracked which will allow it to handle
particular error conditions, such as loss of an audio tranqaort
packet to transmission errors. These parameters can be
tracked using audio pointers including a PIS pointer. a
DRAM oifset address pointer, and a valid flag pointer
discussed in greater detail below.

Alter PIS is acquired. subsystem 44 begins waiting to
synchronize to PIS [State=PI‘S Sync]. In this state, the
demultiplexer and data parsing subsystem 44 continues to
receive audio packets via terminal 40, writes their PBS data
into bufier 50. and maintains the are: pointers. When this
state is entered, subsystem 44 compares its audio SIC to the
correct output start time, which is the P13 value in the PIS
pointer plus the acquisition PIS correction factor (dPISm).
If subsystem 44 discovers that the correct time has passed,
i.e.. PCR>PIS+dPISM. one or more of the three values is
incorrect and subsystem“ will flag decodermieroprocessor
42. At this point. the state will revert to State=Frame Sync.
and subsystem 44 will return to searching fir two consecu-
tive audio sync words. Otherwise. until PCR=PIS+dPIS.M.
subsystem 44 will continue to receive audio packets, write
their PES data into the buffer 50. maintain the error pointers.
and monitor the reception of consecutive sync words.

When PCR=PIS+dPIS¢¢ subsystem 44 has synchro-
nized to PIS and will begin tracking the audio stream
[Stateflhck]. At this time. subsystem 44 will begin trans-
ferring the contents of the audio bulfer to the audio decoder
54 upon the audio decoder requesting audio data, starting
with the sync word located at the bufl‘er address pointed to
by the PIS pointu'. In the tracking state. subsystem 44 will

10

15

35

45

55

65

12

continue to receive audio packets, write their PES data into
the bulfer 50. maintain the arcr pointers, and monitor
reception of consecutive sync words. If an error condition
occurs during this time, subsystem 44 will transition to error
processing. Otherwise. it will remain in State=TYack until an
error occurs or microprocessor 42 commands it to return to
the idle state.

As subsystem 44 outputs the sync word of each sync
flame to the audio decoder 54 as part of the “audio" refuted
to in FIG. 2. it will signal the error status of each audio sync
frame to the audio decoder using the sync word. The sync
word of audio sync flames in which subsystem 44 knows of
no arms will be output as specified by the Dolby AC-3 or
Musicam specification. as appropriate. The sync word of
audio sync flames in which subsystem 44 knows of errors
will be altered relative to the correct sync words. As an
example, and in the preferred embodiment. every other bit of
the sync word of sync flames to which an error pointer
points will be inverted, starting with the most significant bit
of the sync word Thus. the altered AC-3 sync word will be
1010 0001 1101 1101 while the altered Musiczm sync word
will be 0101 0101 0101. Only the bits of the sync word will
be altered. The audio decoder 54 will conceal the audio

errors in the sync frame which it receives in which the sync
word has been altered in this manner. Howevu'. the audio
deooda will continue to maintain synchronization with the
audio bitstream. Synchronization will be maintained assum-
ing the audio bit rate did not change, and knowing that two
sync frame sizes are possible when the audio sample rate is
44.1 ksps.

In accordance with the preferred embodiment. audio
decoder 54 will maintain synchronization through sample
and bit rate changes if this feature is enabled by the decoder
mitroqxocessor 42. If the microprocessor disables sample
rate changes. audio decoder 54 will conceal the audio errors
in each sync flame received with a sample rate that does not
match the sample rate of the sync flame on which the audio
decoder last acquired, and will assume that the sample rate
did not dnnge in order to maintain synchronization. The
audio decode- is required to process through bit rate
changes. If an error in the bit rate information is indicated,
e.g., through the use of a cyclic redundancy code (CRC) as
well known in the art, audio decoder 54 will assume that the
bitrate of the corresponding sync flame is the same bit rate
as the previous sync flame in order to maintain synchroni-
zation. If the decoder mieroprocesscr 42 has enabled rate
changes. the audio decoder 54 will assume that the rates
indicated in the sync flame are correct, will {access the sync
frame, and use the appropriate sync flame size in maintain-
ing synchronization with the audio bitstream.

Demultiplexer and data parsing subsystem“ will also aid
microprocessor 42 in chech'ng that audio data continues to
be output at the correct time by resynchronizing with the
PIS for some PIS values received. To accomplish this.
when a PTS value is received it will be stored in the PIS

pointer, along with the audio ofiset address at which the next
sync word is written in audio bulfer 50. if the FPS pointer
is not already occupied. In doing this, subsystem 44 will
ensure that the next sync word is received at the correct
location in the audio PBS bitstream. Otherwise, the PIS

value will not be stored and subsystem 44 will defer resyn-
chronization until the next successful PIS/DRAM offset

address pair is obtained. Subsystem 44 will store the PIS/
DRAM ofl'set address pair in the PI5 pointer until it begins
to output the associated audio sync flame. Once it begins
outputting audio data to the audio decoder 54, subsystem 44
will continue to service the audio decoder's requests for

NOAC EX. 1016 Page 231

NOAC Ex. 1016 Page 232

O 0

5,703,877

13

audio data. outputting each audio sync frame in sequence.
This will continue until the sync frame pointed to by the PTS

painter is reached. When this occurs. subsystem“ will stop
outputting data to the audio decoder 54 until PCR=PTS+
dFI‘Sm This will detect audio timing mots which may
have occurred since the last resynchronization by this
method.

If PCR>PIS+dPTSm when subsystem 44 completes
output of the previous sync frame, the audio decoder 54 is
processing too slow or an undetected error has occurred in
a PCR or PTS value. After this error condition. subsystem44
will flag microprocessor 42, stop the output to the audio
decoder 54. clear audio buffer 50 and thepointers. andreturn
to searching for two consecutive sync words separated by
the correct number of audio data bytes. If the audio decode-
54 is not requesting data when the butfer read pointer equals
the address pointed to by the PI‘S pointer, an audio process-
ing error has occurred and subsystem 44 will maintain
synchronization with the audio stream, clear its audio butter
and pointers, and return to searching for two consecutive
audio sync words [State=Frame Sync].

In ordd to handle errors, subsystem“ sets a unique ema-
flag for each mot condition. which is reset when micropro-
cessor 42 reads the flag. Each en'or oondition which inter-
rupts microprocessor 42 will be maskable under control of
the microprocessor. Table 1 lists the various error conditions
related to audio synchronization and the response by sub-
system 44. In this table, “Name" is a name assigned to each
error condition as referenmd in the state diagram of FIG. 5.
“Definition" ddincs the conditions indicating that the cor-
responding error has occurred. “INT” is an interrupt desig-
nation which. if “yes", indicates that subsystem 44 will
interrupt microprocessa' 42 when this m'or occurs. “Check
State" and “Next State” designate the states in which the
amt will be detected (checked) and the audio processor will

10

15

14

enter. respectively, with the symbol “>” that the designated
en‘or will be detected when the audio processing state of
subsystem 44 is higher than the designated state. 'Ihe audio
processing state hierarchy. from lowest to highest. is:

1. Idle

2. Frame Sync

3. dPI‘Sm“

4. PCRm,

5. PIS”,
6. PTS Sync
7. 'Il-ack

The symbol “a" preceding a state indicates that the error
will be detected when the audio processing state of sub-
system 44 is equal to or higher than the designated state. The
designated state(s) indicate(s) that the error will be detected
in this state or that the audio processing of subsystem44 will
proceed to this state after the associated actions are mrried
out. The designation "same" indicates that the audio pro-
cessing of subsystem 44 will stay in the same state afier the
associated actions are carried out.

The heading “Butter Action” indicates whetha the audio
bufier is to be flushed by setting its read and write pointers
to be equal to the base address of the audio buffer. The
designation “none" indicates no change from actual audio
buffer management.

The heading “Pointer Action” indicates by the term
“reset" that the FPS pointer, error pointers or both will be
returned to the state specified as if subsystem 44 had been
reset. The designation “none” indicates no change from
normal pointer management The designation "see other
actions” indicates that other actions under the “Other

Actions" heading may indicate a pointer to be set or reset.
The “Other Actions" heading states any additional actions
required of the subsystem 44 as a result of the error.

NOAC EX. 1016 Page 232

NOAC Ex. 1016 Page 233

TABLE 1

SUMMARY OF ERROE, $311193; AND Ag! [038.

Check Next Butter Pointer

Nun: Definition In: Stu: Sum Action Action Other Acticm

me PCR > PIS + MS... ye- mync £1me flush met me
pu_en PCR > PI'S + MS“ ya tuck hm_lync ttush met Stop output to Audio Decoder (ADP).
.ync_m Input prom tones sync with input India yel >idte t'ansym flush mat Slop ompu no ADP.flames

ov_m Audio Butter ova-mm ya iptLlync flung.” huh tact Input pm minninl lynchnmiution with the IndiaHim-urn. Stop output to ADP.

M‘Lfl Audio Bufler who“ no tuck urns m non: Input place-or mninhiu synchronization with the audiobitstxenm. Stop output to ADP.

Len Input prom mache- Alflio PBS dun yea >mme_;ync um: non: non: Continue prone-in; In if the audio ample ma hl‘l not changed.which indium the :udio mic me has
changed since the cunenl PID w mquh-d

Mn Input prom receive- Audb HES duh ya >fi-nm._pync limo nme non: If bit nth chimes m ambled, input procmor will cmfinue
whichiudhmttnuufiobitnhhuchwd WWWWHmhf-etchmgednflumme
nlativztothelastludiosymfi-Imomcbd lppupfilhlymmfiutommuyuhmmfiamlfhitnte change! use not ambled. inpu M”! will nominal:

pmmgmebhmhdkuwdbymelmwoqmfimreached.

pubs Syncwmdnotfolnidmmhncfmdiodnn no ipt:_lcqlfin= "me um: nan: thncdnamcotdifiommayllnqpl’hthiscm.n: I PIS is received

pc:,_dm Inpummnhunmmpmuton no FIJI“: panuhe flush pane-at mmmruwmmmhmmpmmm
theAndioPCRPlDwiththe W IflnmeptionoftbenexxAudbPCRnhn.
dimfimfitym bit of in
ndapufiOLfield ut

1:13;.th hpmwmivunmqaonpcknton no trick nae non: puzxetet InpmpmemrmmmvfluhmePTSpoimetmfil
chudioPCRmeiththe muons IflcrrecepfinnanhenenAudioPCRvnluo.
fimfinfityfiicwx hit of in
ndaput‘nnjleld set

auch-ln Audio data of one tampon packet of the Sec >idlc um: or non: pucnm: Mninnin Auiio Butfer fullness by filming the FIFO write
aminwtryncfiminbltdmmmun ether [nun—W} matinee pohmbytflbytumyusemmpohIHtomukthcactions mother other cunentlymfimuinmmdoominmpoceldngwm

260m Icfionl [muting In immupt. If it is pouible flat more than one nudio
wwoflwubflwififlnmimhgwmepmkzt,-:hn
whcnmmorfingMuliamuyernltleudnnakbpcorACJu
humwhbpgnmmthcfimsymumudummem
inwlftbenexuudioryncwadilnmmmdwhcn
expected, besinlhyae-by-byte lurch forth: udhsyncwmd
duingdnmpfionofmbwthmludhdluOmedn-ync
bmmhhmmmfin‘md‘hmhbufinmfil
finesyncwordinfwdDonotmtheflmbyEumfiled
dwinglhmhRmttm-iuludiodlnwhenunsyncbym
hfulnimrfingwhhflnlymwmdimlfthhclyncwmdilnot
mmmmt 184Wmemwthanme
Symmte’mdgmteminmrupt

SI

91

LLS‘EOL‘S

NOAC EX. 1016 Page 233

NOAC Ex. 1016 Page 234

a ”£37.", ”mm m

TABLE l-continued

M WV's. 1'

SUMMARY OF ERRORS, EXCEPTION§ AND ACTIONS.

Check Nu! Met Poinmr
Nune Definition In sum Stun Action Action 0&1an

nud_:n-lb Adhdmafommrponplcbtoffln y: >idla Wm flush pane-e: um:
cmemhwtsyncfiminbstduummm cum-none
ficmmlahaoccmeddwhghm
inpmsymfnmc

urLen’Z Aldiodluofmorethmmehnspmpuht ya >id1e 5mm flush pmnsel Unmmpoimrlomlrkthecunentlyncfi-Imeasinm.
ofdncumminputryncfi'lmeislostdmto mac :‘lmu othernations

pthull Audiodunofonetnmpon packetilbu ya ZpuJyuc hmeJync flluh rue: Inpmpxoceuor winning lynchonizuion withthaaudio
whihErmrModnkUupmmcted bkstretm. SmpompuHoADP. /“

‘lbknpkmhnbovemmmbrMPEGmDigiCiphnflknpkmnfifimahthwemcmmhhhm-mfiofimemmby: J
wfiuuwmmr'lvdunmeqncEmsizninbyus-elchuyncwmdilwmcl,
dacmnfingmccummumbmhedmdiobym'uflomdinfinAmleufiaWD}
dememeufingthacummhy184bytawhmnchghnudiomqaortpchtilbatbmmpen-mbrthandvmmtofflnmompohmby184,
incrememingflnnotnnarbythomflnofflnmqnchmuiusinbfiueonupoudiumflnmmmhflnmifihlbondecmcmmuhadinnneglfivacammvumfindmfingflnbatmmpccku
pa-iblyconnhedflnmtudio woldmdmmfiubrflnpouibflityflmhludb hanMJquurlfl'elyncfimnizehlchm‘adfimnthelflyrnhmloflnmlhvdu),
mnuingmmel’mloSyncflne' hummmhlmmwhichwu mnivefindicsfiulhebnumspmp-cketposn'blymnimdmommmmeudioqncword),nnd U1
beginninsmcbyw-by-bwsymwmdnnchwhenmcwmmilm. “\1O

5”00
\l
\l

H
on

NOAC EX. 1016 Page 234

NOAC Ex. 1016 Page 235

0 0

5,703,877

19

As indicated above, the demultiplexing and data parsing
subsysteru44 of FIG. 2 maintains sevual pointas to support
audio processing. The PTS pointer is a set of parameters
related to 8 PTS value, specifically a PI‘S value. a DRAM
offset. address. and a validity flag. In the illustrated embodi-
ment. the FPS value comprises the 17 least significant bits
of the PPS value received from the audio PBS header. This
value is assodated with the audio sync frame pointed to by
the pointer's DRAM offset address field. The use of 17 bits
allows this field to specify a 1.456 second time window
((2"—l)/90 kHz). which exceeds the maximum audio time
span which the audio buffer 50 is sized to store.

The DRAM offset address maintained by the PI‘S pointer
is a 13-bit otfset address. relative to the audio buffer base
address. into the DRAM at which the first byte of the audio
sync frame associated with the pointer's PI‘S value is stored.
The 13 bits allows the pointer to address an audio butter as
large as 8192 bytes.

The “‘8 pointer validity flag is a one-bit flag indicating
whether or not this PI‘S pointer contains a valid PTS value
and DRAM offset address. Since MPEG does not require
FI‘S values to be transported mire often than every 700
milliseconds. subsystem 44 may find itselfnot having a valid
PI‘S value for some intervals of time.

After the decoder is reset, the valid flag of the PPS pointer
is set to invalid. When a new P'I‘S value is received, if the

valid flag is set. the newly received PI‘S value is ignored. If
the valid flag is not set, the newly received PI‘S value is
stored into the PPS pointer but its valid flag is not yet set to
valid. After a new PI‘S value is shred into the PTS pointer,

the processing ofaudio data is continued and each audio data
byte is counted. If the next audio sync frame is received and
plawd into the butfer correctly. the DRAM ofl'set address
(which corresponds to the butter address into which the first
byte of the sync word of this sync frame is Sta-ed) is stored
into the pointer's DRAM oifset address field. Then. the
pointa‘s valid flag is set to valid. The next audio sync frame
is received and pm into the bufl'a correctly when no data
is lost for any reason between reception of the Pl‘S value and
reception of a subsequent sync word before too many audio
bytes (i.e.. the number of audio bytes per sync frame) are
buttered. If the next audio, sync frame is not received or
plawd into the bufier correctly. the valid flag is not set to
valid.

After the PI‘S points is used to detect any audio timing
errors which may have owned since the last resynchroni-
zation. the valid flag is set to invalid to allow subsequent
PI‘S pointers to be captured and used. This occurs whether
the PIS pointer is in the PI‘S sync or tracking state.

The error pointers are parameters related to an audio sync
frame currently in the bufier and brown to contain erras.
The error pointers comprise a DRAM ofi'set address and a
validity flag. The DRAM offset address is a 13-bit olfset
address. relative to the audio bufier base address. into the
DRAM at which the first byte of the audio sync frame
known to contain errors is stored. Thirteen bits allows the

point: to address an audio bufier as large as 8192 bytes. The
validity flag is a one-bit flag indicating whether or not this
uror pointer contains a valid DRAM offset address. When
receiving data from a relatively error free medium. sub-
system 44 will find itself not having any valid err-(r pointers
for some intervals of time.

Subsystem 44 is required to maintain a total of two error
pointers and one error mode flag. Afterreset. the validity flag
is set to invalid and the error mode is set to ‘ja'otectedf'

When a sync word is placed into the audio buffer. if the valid

10

15

35

45

50

55

55

20

flag of one or mac error pointers is not set. the buffer
address of the sync wad is recorded into the DRAM ofiset
address of one of the invalid error pointers. At the same time.
the error mode is set to protected. If the validity flag of both
error pointers is set when a sync word is placed into the
buffer, the error mode is set to unprotected but the DRAM
ofl’set address of the sync word is not recorded.

When audio data is placed into the bufl’er and any error is
discovered in the audio data. such as due to the loss of an

audio transport packet (r the reception of audio data which
has not been properly decrypted. subsystem44 will revert to
the PPS acquire state if the error mode is unprotected.
Otherwise, the validity bit of the error pointer which con-
tains the DRAM ofl’set address ofthe sync word which starts
the sync frame umently being received is set. In the rare
eventthat anerroris discoveredin the dataforan audio sync
frame dining the same clock cycle that the sync word for the
sync frame is removed from the buffer. the sync word will
be ccrrupted as indicated above to specify that the sync
frame is known to contain an audio u'ror. At the same time,

the validity bit is cleared such thatit does not remain set after
the sync frame has been output. This avoids the need to reset
subsystem 44 in order to render the pointer useful again.

When audio data is bdng removed from the audio buifu.
the sync word is corrupted if the DRAM otfset address of
any error pointer matches that of the data currently being
removed from the buffer. At the same time. the validity bit
is set to invalid.

The decoder of FIG. 2 also illustrates a video bulfer 58
and video decoder 52. These process the video data at the
same time the audio data is being processed as described
above. The ultimate goal is to have the video and audio data
output togetha at the proper time so that the television
signal can be reconstructed with proper lip synchronization.

FIG. 4 is a block diagram illustrating the demultiplexing
and data parsing subsystem 44 of FIG. 2 in greater detail.
After the transport packets are input via terminal 40, the PID
of each packet is detected by circiit 10. The detedn‘on of the
Ple enables demultiplexer 72 to output audio packets.
video packets and any other types of packets carried in the
data stream, such as packets carrying control data. on
separate lines.

The audio packets output from demultiplexer 72 are input
to the various drcuits necessary to implement the audio
processing as described above. Circuit 74 modifies the sync
word of each audio flame known to contain errors. The

modified sync words are obtained using a sync word inverter
78. which inverts every other bit in the sync wca’ds output
from a sync word PCR and [TS detection circuit 80. in the
event that the audio frame to which the sync word corre-
sponds contains an error. Ems detection is provided by error
detection circuit 76.

The sync word. PCR and P13 detection circuit 80 also
outputs the sync word for each audio frame to an audio
sample and bit rate calculator 86. This circuit determines the
audio sample and bit rate of the audio data and passes this
information to decoder microprocessor 42 via data bus 88.

The PCR and P'I‘S are omput from circuit 80 to a lip sync
and output timing compensator 82. Circuit 82 also receives
the MS values from microprocesscr 42. and adds the
appropriate values to the PTS in order to provide the
necessary delay for proper lip synduonization. Compensa-
tor 82 also determines if the delayed presentation time is
outside of the acceptable range with respect to the PCR. in
which case an error has occurred and resynchronization will
be required.

NOAC EX. 1016 Page 235

NOAC Ex. 1016 Page 236

.w

..w‘.1.:5.
‘asfive.1‘;t”

'P

swazww
"is.<38!me

..a.,. 'v5‘”.2u».:..¢srs,_

“5.4%v-an-
is

“New

5
jg.

4
.

.3}~«

, }1‘s-
$3

”sumac.asa.»
”no.

«

o 0

5,703,877

21

Butter control 84 provides the control and address infor-
mation to the audio output buffer 50. The bufi’er conn'ol 84
is signaled by error detection circuit 76 whenever an error
occurs that requires the temporary suspension of the writing
of data to the butter. The buifer control 84 also receives the
delay values from lip sync and output timing compensator
82 in order to control the proper timing of data output from
the bufl‘er.

HG. 5 is a state diagram illustrating the processing of
audio data and response to arms as set forth in Table 1. The
idle state is represented by box 100. Acquisition of the audio
data occurs during the frame sync state 102. The dPI‘S—wait
state is indicated by box 104. Boxes 106,~ 108 and 110

represent the PCRW PIS“, and HS sync states, respec-
tively. Once audio synchronization has occured. the signal
is tracked as indicated by the tracking state of box 112. The
outputs of each of boxes 104. 106, 108, 110 and 112 indicate
the error conditions that cause a return to the frame syn-
chronization state 102. The error PCR 018] dining the P18
sync state 110 will cause a return to the FPS acquire state,
as indicated in the state diagram of FIG. 5.

It should now be appredated that the present invention
provides methods and apparatus ft! acquiring and process-
ing errors in audio data communicated via a transport packet
scheme. Transport packet errrxs are handled while main-
taining audio synchronization. During such error conditions.
the assoa'ated audio errors are concealed. Corrupted data in
an audio frame is signaled by altering the sync pattern
associated with the audio frame. PI‘S's are used to checkthe

timing of processing and to correct audio timing more.
Although the invention has been described in connedion

with various specific embodiments, it shouldbe appeciated
and undustood that numerous adaptations andmodifications
may be made thereto, without departing from the spirit and
scope of the invention as set forth in the claims.

We claim:

1. A method for processing digital audio data from a
packedzed data stream carrying digital television informa-
tion in a succession of fixed length transport packets, each
of said packets including a packet identifier (PD), some of
said packets containing a program clock reference (PCR)
value for synchronizing a decoder system time clock (STC),
and some of said packets containing a presentation time
stamp (PTS) indicative of a time for commencing the output
of associated data for use in reconstructing a television
signal. said method comprising the steps of:

monitoring the PID’s for the packets carried in said data
stream to detect audio packets, some of said audio
packets carrying an audio PI‘S',

storing audio data from the deteaed audio padrets in a
buffer for subsequent output;

monitoring the detected audio packets to locate audio
PTS's:

comparing a time derived from said STC with a time
derived from the located audio PTS‘s to determine
whetha said audio packets are too early to decode, too
late to decode. or ready to be decoded; and

adjusting the time at which said stored audio data is output
from said buficr on an ongoing basis in response to said
comparing sth.

2. A method in accordance with claim 1 whu'ein a PI‘S
pointer is provided to maintain a current PTS value and an
address of said buifer identifying where a portion of audio
data referred to by said current PTS is stored, said timing
adjustment being provided by the further steps of:

repladng said FI'S value in said P'l‘S pointer with a new
current PTS value after data stored at said address has
been output from said buflerf

5

10

15

35

45

55

22

replacing said address in said PTS pointer with a new
address corresponding to a portion of audio data
referred to by said new current FTS value;

suspending the output of data from said buffer when said
new address is reached; and

recommendng the output of data from said buffer when
said decoder system time clock reaches a presentation
time derived from said new current PTS value.

3. A method in accordance with claim 2 whaein said

presentation time is determined from the sum of said new
current PI‘S value and an ofl‘set value that provides proper
lip synchronization by accounting for a video signal pro-
cessing delay.

4. A method in accudance with claim 1 whuein the time
at which the audio data is output from said bufier is
dependent on an offset value added to said PTS for providing
proper lip synchronization by accounting for a video signal
processing delay.

5. A method in accordance with claim 1 comprising the
further steps of:

examining the detected audio packets to locate the occur-
rence of at least one audio synchronization word
therein for use in achieving a synchronization condition
prior to locating said audio P'I‘S’s;

commencing a reacquisition of said syncln'onization con-
dition if said comparing step determines that said audio
packets are too late to decode.

6. A method in accordance with claim 5 wherein two
consecutive audio synchronization words with a correct
number of audio data bytes in between define an audio
frame. said audio frame including only one of said two
consecutive audio synchronization words. said method com—
prising the further steps of:

detecting the occurrence of errors in said audio packets;
upon detecting a first audio packet of a current audio

frame containing an mar, advancing a write pointer for
said bufi’er by the maximum number of payload bytes
(N) contained in one of said fixed length transport
packets and designating said crn'rent audio frame as
being in error;

monitoring the detected audio packets of said urn-eat
audio frame for the next audio synchronization wca'd
afier said error has been detected. and if said synchro-
nization ward is not received where egreaed in the
audio stream, discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said butter;

resuming the storage of audio data in said buffer upon
detection of said next audio synchronization word if
said next audio synchronization word is located within
N bytes after the commencement of the search therefor;
and

if said next audio synchronization word is not lomted
within said N bytes after the commencement of the
search therefor. commencing a reacquisin'on of said
synchronization condition.

7. A method in accordance with claim 6 comprising the
further step of concealing television audio errors whenever
the audio data from which said television audio is being

50 reconstructed is in error.

65

8. A method in awordance with claim 7 wherein:
a current audio frame is designated as being in error by

altuing the audio synchronization word for that frame;
and

said concealing step is responsive to an altered synchrt}
nization Word for concealing audio associated with the
corresponding audio frame.

NOAC EX. 1016 Page 236

NOAC Ex. 1016 Page 237

few»

o‘penny-tut;a4
{is

‘” .a:

r:,~

v.)as.”
....r”m.«a:

I~».,5,
‘33.?»

x4‘keno-cw?“

no:‘m.3 «w-was...9
N.2%

it»..,

.uaca".5:4
;mpawas";A...
.s‘

".‘.M.,“Lafitku‘as

«any;“16:2,;,A
.‘.—..a....

ia.«fat—mafia.

u!

Packetized data stream carrying digital television informa-
tion in a succession of transth packets having a fixed

length of N bytes. each of said packets including a packet
identifier (PID). some of said packets containing a program 5

O 0

5,703,877

23 24

9. A method for processing digital audio data from a ignoring arate change indicated by said audio data on the
assumption that the rate has not actually changed;

concealing the audio frame containing the data indicative
of an audio sample rate change while attempting to
maintain said synchronization condition; and

commencing a reaoquisition of said synchronization con-

‘3’.a.A...h
clock reference (PCR) value for syncln'onizing a decoder
system time clock, and some of said packets containing a
presentation time stamp (PI‘S) indicative of a time for
commencing the output of associated data for use in recon—
mutating a television signal. said method comprising the 10
steps of:

monitoring the PID's for the packets carried in said data
stream to detect audio packets;

dition if said condition cannot be maintained.
13. A method in accordance with claim 9 wherein said

audio data includes information indicative of an audio

sample rate and audio bit rate, at least one of said audio
sample rate and audio bit rate being variable, said method
comprising the further step of attempting to maintain syn-
chronization of said audio packets during a rate change
indicated by said audio data by:

examining the detected audio packets to locate the occur— processin said audio data in accordance with a new to
rence of audio synchronization words for use in achiev- 1 g ra

5

indicated by said audio data in the absence of an arcr
ing a synchronization condition, each two consecutive
audio synchronization wads defining an audio frame
therebetween;

indication pertaining to the audio frame containing the
new rate. while attempting to maintain said synchro-
nization condition;

monitoring “16 dew audio packets 3ft“ "id synchro— 20 processing said audio data without changing the rate if an
nization condition has been achieved to locate an audio
PI‘S;

searching the deteaed audio paclnzts afta' locating said
audio P'I‘S to locate the next audio synchronization

error indication pertains to the audio fiann: containing
the new rate, while concealing the audio frame to which
said error condition pertains and attempting to maintain
said synchronization condition; and

word; 25 commencing a reacquisition of said synchronization con-

storing audio data following said next audio synchroni-
zation word in a buifer;

detecting the mace of errors in said audio packets;
upon detecting a first audio packet of a current audio

frame containing an error. advancing a write pointerfor 3°
said buEer by N bytes and designating said cm-rent
audio frame as being in error:

monitoring the detected audio packets of said current
audio frame for the next audio synchronization word
after said error has been detected, and if said synchro- 3’
nizrtion word is not received where expected in the
audio stream. discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said bufier,

resuming the storage of audio data in said buffer upon 40
detection of said next audio synchronization word if
said next audio synchronization word is located within
N bytes after the commencement ofthe search therefor,

dition if said condition cannot be maintained.

14. Apparatus for acquiring audio information carried by
a packetized data stream and processing errors therein,
comprising:

means for detecting audio transport packets in said data
stream;

means for recovering audio data from said detected audio
n'anspta't packets for storage in a buffer;

means for locating an audio pesentafion time stamp
(PIS) in said detected audio transpat packets;

means responsive to said PI‘S for commenting the output
of audio data from said bufler at a specified time;

means for monitoring the detected audio transprrt packets
after the output of audio data from said buffer has
commenced. to locate subsequent audio PI‘S's;

means ft: comparing a time derived from a decoder
system time clock (SFC) to a time derived from the
subsequent audio Pl‘S's to detu'mine whether audio
data stored in said bufl'cr is too early to decode. too lateand
to decode. or ready to be decoded; and

45

if said next audio synchronization word is not located
within said N bytes afier the commencement of the means responsive to said comparing means for adjusting
search therefor, commencing a reacquisition of said the time at which said stored audio data is output from
synchronization condition. ‘ said bufi'er.

10. Amethod in accordance with claim 9 comprising the so 15. Apparatus in accordance with claim 14 further com-
further step of concealing television audio errors whenever prising:
the audio data from which said television audio is being means for maintaining :1 PTS pointa' with a current I’I‘S
reconstructed is in mot. value and an address of said buifer identifying where a

11. A method in accordance with claim 10 wherein: portion of audio data refund to by said current PTS is
a current audio frame is designated as being in aror by 55 stored;

altering the audio synchronization word for that frame; means for replacing said I’I‘S value in said PI‘S pointer
and with a new wrrent PI‘S value alter data stored at said

said concealing step is responsive to an altered synchro- iddffif has. been output from said batten. and for
nization word for concealing audio associated with the “131131118 531d address in “"1 P'I‘Spomter W13} a 115‘"
mpondjng audio m. ' 60 address corresponding to a porhon of audio data

12. A method in accordance with claim 9 wherein said Matted to by sud new uncut P'l‘S value:
audio data includes information indicative of an audio means responsive to said PPS pointer for suspending the
sample rate and audio bit rate, at least on: of said audio output of data from said bufl‘er when said new address
sample rate and audio bit rate being variable, said method is reached: and
comprising the further step of attempting to maintain syn- 65 means for recommendng the output of data from said
chronization of said audio packets during a rate change buifer at a time derived from said new current PI‘S
indicated by said audio data by: value.

NOAC EX. 1016 Page 237

NOAC Ex. 1016 Page 238

0

5,703,877
25

16. Apparatus in accordance with claim 15 further oom-
arising:

means for concealing error in an audio signal reproduced
flom data output from said butter and reestablishing the
detection of said audio transport packets if the time
derived from said new current PI‘S value is outside a

predetermined range.
17. Apparatus in accordance with claim 14 wherein said

audio transport packets each contain a fixed number N of
payload bytes, said packets being an-anged into successive
audio flames commencing with an audio synchronization
word. said apparatus furthu' comprising:

means for detecting the occurrence of errors in said audio
packets;

means for advancing a write pointer for said bufier by N
bytes and designating a current audio flame as being in
error upon detecting an error in an audio transport
packet of said current audio flame;

means for monitoring the detected audio transport packets
of said current audio flame for the next audio synchro-
nization word after said errtx has been detected, and if
said synchronization word is not received where
expected in the audio stream, discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said butter;

means for resuming the storage of audio data in said
buffer upon detection of said next audio synchroniza-
tion word if said next audio synchronization word is
located wiminsaidfixednmnberNofbytesaftathe
commencement of the search therefor; and

means for reestablishing the detection of said audio
transport packets if said next audio synchronization
word is not located within said fixed number N of bytes
after the commencement of the search therefor.

18. Apparatus in accordance with claim 17 further com-
prising:

means for concealing error in an audio signal reproduced
from data output from said bufier when the data output
from said buffer is in error.

19. Apparatus in accordance with claim 18 further com-
prising:

means for altering the audio synchronization wad asso-
ciated with a current audio frame to designate that
frame as being in error;

wherein said concealing means are responsive to alttn'ed
syndrronization words fa concealing errors in audio
associated with the corresponding audio frame.

20. Apparatus for acquiring audio information carried by
a packetized data stream and processing mots tlra'ein,
comprising:

means for detecting audio transport packets in said data
stream, said packets being arranged into successive
audio flames commencing with an audio synchroniza-
tion word;

means responsive to said synchronization words for
obtaining a syndaronization condition enabling the
recovery of audio data from said detected audio trans-
port packets for storage in a butter;

means for detecting the presence of errors in said audio
data;

means responlve to said errta‘ detecting means for con-
trolling the flow of data through said buffer when an
error is present, to attempt to maintain said synchroni-
zation condition while masking said «rot; and

26

means for reestablishing the detection of said audio
transport packets if said controlling means cannot
maintain said synchronization condition.

21. Apparatus in accordance with claim 20 wherein said
5 audio u'ansport packets each contain a fixed number N of

payload bytes. and said means responsive to said error
detecting means comprise:

means for advancing a write pointer for said bufi‘er by said
fixed number N of bytes and designating a went

10 audio frame as being in error upon the detection of an
error in an audio transport packet thereof;

means formonittring the detected audio transport packets
of said current audio frame for the next audio synchro-
nization word after said aror has been detected‘ and if

15 said synchronization word is not received where
expected in the audio stream. discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said butter, and

29 means for resuming the sttrrage of audio data in said
buifer upon detection of said next audio synchroniza-
tion word if said next audio synchronization word is
located within said fixed number N of bytes aft: the
commencement of the search therefor.

75 22.. Apparatus in accordance with claim 20 finther com-
prising:

meaus for concealing uror in an audio signal reproduced
from data output flom said buifer when the data output
from said bufier is in error.

23. Apparatus in accordance with claim 2 finther com-
prising:

means for altering the audio synchronization word asso-
ciatedwiflranaudioflamecontainingadataeflu'to
designate that flame as being in ma;

wherein said concealing means are responsive to altered
synchronization words for concealing mots in audio
associated with the corresponding audio frame.

24. A method for managing errrxs in data received in

40 bursts from a packetized data stream carrying digital infor-
mation in a succession of fixed length transport packets. at
least some of said packets containing a presentation time
stamp (PI'S) indicative of a time for commencing the fixed
rate presentation of presentation units from a buffer into

‘5 which they are temporarily stored upon receipt, said method
comprising the steps of:

monitoring received packets to locate associated PIS's.
said received packets carrying presentation units to be
presented;

50 synchronizing the presentation of said rxesentation units
from said bufl‘er to a system time clock (SIC) associ-
ated with the packedzed data stream using timing
information derived from the PI‘S's located in said

monitoring step; and
55 identifying discontinuity mots resulting from a loss of

one or more transmitted packets between successive
ones of the received packets and. if a discontinuity of
no more than one packet is identified, advancing a write
pointer of said buffer by a suitable number of bits to

60 compensate for the discontinuity, while maintaining the
synchronization of said presentation with respect to
said SFC.

25. A method in accordance with claim 24 wherein said

transport packets each contain a fixed number N of payload
55 bytes. said method comprising the further steps of:

advancing said write pointer by said fixed number N of
bytes upon the detection of a discontinuity error;

35

NOAC EX. 1016 Page 238

NOAC Ex. 1016 Page 239

«a;an‘{»

..~.any»?1,.»U.'
mAymaama.

”R‘Jo‘wcn‘kwéat..<-

”MI,",>“~

. O
u

0

. 5,703,877

27

continuing said monitoring step after said discontinuity
error has been detected in order to search for a syn.
chronization wad. and if said synchronization word is
not located where expected. discarding subsequent
presentation units while searching ftr said synchroni-
zation won! rather than storing said subsequent pre-
sentation units in said bufl’er. and

28

resuming the storage of presentation units in said bufier
upon the detection of said synchronization word if said
synchronization Wind is located within said fixed num—
ber N of bytes liter the commencement of the search
therefor.

NOAC EX. 1016 Page 239

NOAC Ex. 1016 Page 240

t..."sawinwhtktnew»
.m..,44.

meumiafler
.9.

lllllllllllllllllllll||l||IllllllllllllllImulllllllllllllllllllIllllllll

United States Patent [19]

U3005826017A

[11] Patent Number: 5,826,017

Holzmann [45] Date of Patent: Oct. 20, 1998

[S4] APPARATUS AND IVIETHOD FOR 5,680,552 10/1997 Netravali et al. 395/200.2

Efii‘tit‘ii‘scéi‘ififitfiis‘ifi‘gfi‘éihEM FOREIGN mm DOCUMENTS
USING A GENERAL PROTOCOL EP—A-

0289248 4/1988 European Pat. 01f. GO6F 13/38

[75] Inventor: Gerard Johan Holzmann, Murray Hill, OTHER PUBLICATIONSNJ.

. , . . Gerard J. Holzmann, “Standardized Protocol Interfaces”,
[73] Assrgnec. Lucent Technologies, Murray H111, NJ. AT&T Bell Labs, Murray Hill, N.J., Oct. 18, 1992.

J. E. Boillat, et al “Communication Protocols and Concur—
[21] Appl. No.: 830,291 rency: An OCCAM Implementation of X25”, 1988 Inter—

. , national Zurich Seminar on Digital Communications, Mar.
[22] Filed. Feb. 10, 1992 8, 1988, pp. 99402

[51] Int. Cl.‘i .. GO6F 11/00 M- H- Sherif, 5‘ 31 “Evaluation Of PTOFOCOIS from Formal
, , , Specifications: A Case Study with LAPD” IEEE Global

[52] US. Cl. 395/200.6, 395/285, 395/500, . . ’ .
370/401; 370/428; 370/465; 370/466; 370/467; Teleggu‘mggncauons Conf., Vol.3, Dec. 2, 1990, San Diego,

370/468; 370/469 glhesson, G, “The Protocol Engine Project” Unix Review
[58] Field of Search 398/200, 500, Sep, 1987. ’ ‘

398/225; 370/401, 467, 428, 465, 465, Toong, l-l.—M., “Microprocessors”, Sci. Am., vol. 237, No.
469; 395/200.6, 200.5, 500 3, p- 145, Sep. 1977,

[56] References Cited Primary Examiner—Christopher B. Shin

U.S. PATENT DOCUMENTS [57] ABSTRACT

4,545,052 10/1985 Steiennan 370/68 Apparatus and methods for communicating using protocols.
4,688,170 8/1987 Waite et 3
4,733,357 3/1988 Peirent
4,754,400 6/1988 Wakahara .
4,855,905 8/1989 Estrada et aI. ..
4,970,716 11/1990 Goto et a1.
5,063,494 11/1991 Davidowski :1 a .

395/500
364/200
395/180
364/200
370/58.1

.. 395/800

5,142,528 8/1992 Kobayashietal. 370/79
5,163,055 11/1992 Lee et a1. 371/32
5,175,817 12/1992 Adams etal. . 395/200
5,182,748 1/1993 Sakata et all 370/941
5,245,703 9/1993 Hubert 395/200
5,276,802 1/1994 Yamaguchi et al. 395/164
5,276,816 1/1994 Cavendish etal. 345/348
5,278,972 1/1994 Baker et al. 395/500
5,313,467 5/1994 Vargheses et al. . 370/941
5,347,524 9/1994 I'Anson etal. .. 371/29.1
5,430,727 7/1995 Callon 370/8513

The apparatus and methods employ protocol descriptions
written in a device-independent protocol description lan—
guage. A protocol is executed by employing a protocol
description language interpreter to interpret the protocol
description. Communication using any protocol for which
there is a protocol description may be done by means of a
general protocol. The general protocol includes a first gen—
eral protocol message which includes a protocol description
for a specific protocol. The protocol apparatus which
receives the first protocol message employs a protocol
description language interpreter to interpret the included
protocol description and thereby to execute the specific

- protocol. The protocol apparatus may also be made to adapt
to its environment by encaching protocol descriptions which
were received in an earlier first general protocol message

5,452,433 9/1995 Nihartetal. 395/500 and interpreting an encached protocol description in
5,557,798 9/1996 Skeen etal. 395/650 response to a second general protocol message which
5,574,919 11/1996 Netravah 9‘ 31- -- 395/561 includes a protocol identifier specifying the encached pro—
5,581,558 12/1996 Horney, 11 et al. 370/401 [0601 description.
5,594,721 1/1997 Pan . 370/392
5,623,666 4/1997 Pike et al. . . 707/200 .
5,659,555 8/1997 Lee et a1. 371/27.1 46 Claims, 8 Drawing Sheets

1.1 PROTOCOL "
INFORMATION 105

107(1) 0m

103(1) DATA

SOURCE/
DESTINATION

INFORMATION

1 05

PROTOCOL

APPARATUS

CONTROL INFORMATION 1119 103(2)

DATA

SOURCE/
DESTINATION

’ INFORMATION

105

ENTITY ‘
‘-—— 109(2) ——4

PROTOCOL

APPARATUS

107(2)

NOAC EX. 1016 Page 240

NOAC Ex. 1016 Page 241

O 0

US. Patent Oct. 20, 1998 Sheet 1 of8 5,826,017

FIG. 1

L01 PR°T°C°L INFORMATION IDs

107(1) 0m CONTROL INFORMATION 109 mm)

103(1)

 DATA

SOURCE/
DESTINATION

DATA

SOURCE/
DESTINATION

PROTOCOL PROTOCOL
APPARATUS APPARATUS

1 07(2)
INFORMATION INFORMATION

105 TDS

ENTITY ENTITY

‘— 109(1) —# L—— 109(2) ———‘J

FIG. 2 r 203

FROTOCOL F PROTOCOL DESCRIPTION ‘APPARATUS PROTOCOL INSTRUCTION 205(0)

L PROTOCOL INSTRUCTION 20501)J
.207 __ I ___

l PROTOCOL EXECUTION DEVICE PROTOCOL

CONTROL CONTROL
OUTPUTS INPUTS

I_____£____.?“_.-__-_I

FIG. 3

PROTOCOL PROTOCOL INSTRUCTION INTERPRE'TER MEMORY 309

“”33?“ .203 PROTOCOL PROTOCOL INSTRUCTION 3“.
- L DESCRIPTION INTERPRETER DATA J

m = 317

l ' 367 I
.209 PROTOCOL

INFORMATION ' ”A”
105 I

._—L—..I CONTROL
OUTPUTS INPUTS

215 21 4

l _ _ _ _ PROTOCOL EAECUTION DEVICE If 207

NOAC EX. 1016 Page 241

NOAC Ex. 1016 Page 242

0

5,826,017Sheet 2 of 8Oct. 20, 1998US. Patent

 ms3z:3:a:33:_:>.33_-:§§_3~32:503933:.:5323-33:3m323533.33Emlto3:3s3335::2E3:3323:2:3:322.3%:2553:3E39335c3:3:593.35353:33.3%:Emmm3:33.333:3333::$332.33:8::E322;Eta3|\E3:_3:23:3:3323332::$195;3:23:233:333353:a:“Mags(\1m:33383:332:335:22:28255/}3:3523:233.2:3$335::3:saw2...3:3353:_3:22:.3:333:.:$82:8:

3:52533.m3:_3::35:3:3.33:.:3:o.33.8:3:23%:353$33.::3::
55:53%:.N

2—58EH83
 33558335:3333238mm:=:\:a:3:33:33“:53:38::28E3:3333:3:::33:332:.3.31E.

.5528zfl.—

mmomzamfimzéé22032:8:SEE588E:5228252—I3::35333323:a.3:=<>u§oguzm=§<>d¢m=8:

Egg:Egg.33mz::50:32a:33.23:3:_.:<:-E:-:m:tE:33.:Egg5:2:-.ea:3:::33::_Egg:33:3:83.3:::35,___:~.E._:ME::M20:23:5:8:3333:3232:33:3332325::3:8:32:35:2252822.8:22:35zoamExuoz:E532;vafim.o8:.2528.E225352—
242e

g
aP6101X.ECAON

av.V65m

:35.2.ix5;
,(2!)~§

.313}?9\id.

k!)Iabfuarfxlart-kl.

NOAC Ex. 1016 Page 243

;‘
;

A

.4

.r.3

7
“x

US. Patent

C) O

Oct. 20, 1998 Sheet 3 of 8

FIG. 5

fl

503 RECV """> RBUF

NXT BOOTSTRAP

507

NXT ERRORSTATE

51 1

505

509

LOAD

RBUF —> STATE 0

NXT STATE 0

513 515

FIG. 6

go;

602

ZERO

VALID MSG ?

YES

NXT RBUFU)
s17

603

605

607

609
51 1

613 5”

NXT ERRORSTATE

5,826,017

NXT ERRORSTATE

NOAC EX. 1016 Page 243

NOAC Ex. 1016 Page 244

*

II 7* ~ US. Patent Oct. 20, 1998 Sheet 4 of8 5,826,017

FIG. 7

“ m

1

9s: A

FIC. 73

GENERAL PROTOCOL APPARATUS

L23

i: ' PROTOCOLDESCRIPTION TABLE 1303 i I I2; l I II PROTOCOL DESCRIPTION TABLE ENTRY 1305 - i
:1, ' I PROTOCOL DESCRIPTION I 1 '; ‘ I I .' 1311(n) I I I

‘ ' 1 I PROTOCOL I - -
5%» I IL_::::::::: DESCRIPTION I I I

' ' STATE ' '
I I TIP 1 l l

“:“v; I I ERIE “317 i PROTOCOL I I.. g; 1313 IINSTRDCTION
I j; ' ' IINTERPRETER' ‘
2‘3“ I I I DATA I I
. f1!“ . . E 3” ' '

’1 I I PROTOCOL I I I~ ~ DESCRIPTION i
. . PROTOCOL I . .

'; I DESCRIPTION 50”“ ‘3” 1 I IM: MEMORY STATE 1321(m) I
I ‘: ' ' 1302 : ' '

“ f1 ‘L_._.__-__._.__ __- -__ -__-__i___-__] I
3 t . [’319 I; F321 .PROTOCOL INSTRUCTION 3‘7
V -flWJP'EKMM-13_°_‘---_W—________J

 NOAC EX. 1016 Page 244

NOAC Ex. 1016 Page 245

(r1 >(1*-
xvi '

. ‘_ ,p ,, _I .

; ~ US. Patent Oct. 20, 1998 Sheet 50f8 5,826,017

3?: /‘ Receiver Buffers ‘/ FIG 8
,4 #define RBUF 0 /‘ receive buffer '/ ' 01

’ 1* #define TBUF 1 /’ transmit buffer ‘/I —
" #define VAR_ E 2 /’ variablee — receiver side ‘/
j 3'3‘1 /‘ Transmitter Buffers '/

"‘5‘ define M0 0 /‘ message m0 ‘/
' messa e m1 '

/' Abp_ rcgv_ru'n / '/.. define N1 1
., , define R_mi 3 ' Abp_ rcv_ini

(define R_ack 4 /' receive buffer - for acks '/
, . define VAR_ S 5 /‘ variables - sender side ’/

define R_ _run

define VAR_ ONT 6 /‘ variable ’cnt’ - sender side '/
define B_0 1 /‘ bytearder '/

Ildefine NR_NSGS[J32765 /' number of test messages sent ‘/BYTE Abp__rcv ini[] =I /' initialization Buf[r_ini]; recvd'In State[O] ‘/
N/ BYIEORDER, B_0,
//'2' L,ALLOC IBUF, 2,”‘5‘ LSETSIZE. TBUF, 2,/‘B‘/ LALLOC, VAR_E, 1

:‘ 305 /'11’/ I_ RECV RBUF,, I NIP L LOAD, 1R,BUF/' input becomes State[1] ’/
3,; MW L‘NXT, 1, /' execute it '/g}, /’18‘/ D, / room for the checksum; required on lsl msg '/

; R35: BYTE Ab?_rcv_run " ab receiver BufR_ run recvd'In Statel 'g R; //Io' ij,Rccv H i RRurp [1’ H /
Q} MP LCPL BYTE, TBUF, 0, 'A',U “‘5' LPUSH_ BYTE_VAR, RBUF, 1,

”‘9' H_CPLBYTE, TBUF, 1,
V 1%: /’12‘/ LSEND, TBUF,
jj /.,4./ l_ PUSH_ BYTE_VAR RBUF, 1,

/‘17’/ LPUSILBYTLVAR, VAR_E, a,
/'20'/ £0

. 807 /‘21‘/ [F 34, /‘e :: rbuf[1] ‘/
if? /Izst/ LPUSH_ BYTE 1,

e /.25./ LPUSH_ BYTE:VARVARE, o,
e /'28'/ , MINUS,

/e29t/ H_CPY_BYTE, VAR_E, 0,
E5?" /'32‘/ LACCEPT, RBUF,

/'34‘/ LNXT, 1 /' stay in same state ‘/

BYTE ngDH—‘ i /' message BufiND], receivedIn BUIIRBUF] ‘/
lM’IO

809iBYTE Msg1[]—' I /‘ message Buf[M1], receivedIn Buf[RBUF] '/
LE. ’MI'1

‘ s NOAC EX. 1016 Page 245

NOAC Ex. 1016 Page 246

4‘11 .

E 3 US. Patent Oct. 20, 1998 Sheet 6 of8 5,826,017
‘3'} FIC. 9 gm

/* sender behavior ‘/
BYTE Abp_snd_ini[] = 3 /* becomes State[0] ‘/
/‘0*/ LALLOC, VAR-S, 1, /* the byte variable 's' ‘/

33: /*3'/ LCPLBYTE, VAR_S.0,0. /. s : o ./
;; fi /'7'/ LALLOC, VAR_CNT,2, /. the word variable ’cnt' '/ 903

/'10'/ LCPY_WORD, mom, a, o, /' cnt : o ./

:2 /'14t/ LSEND, R_ini, /* send Buf R_ini := Abp_rcv_ini V?
/‘16‘/ LSEND, R_run, /‘ send BuiRJun == Abp_rcv_run '/J05

E a; {‘18‘/ LNXT, 1 /‘ begin actual behavior ‘/
‘3 2,3 3

E « BYTE Abp_snd_run[] = 3 /‘ becomes State [1] */
' 3 ': /‘0‘/ LPUSH_BYTE_VAR, VAR_S, 0,

/‘3‘/ SEND, /‘ send from bui[s] ‘/
/‘4‘/ LRECV, R_ack, /‘ recv into bui[r_ack] ‘/

3 /‘6‘/ I_PUSH_BYTE_VAR,R_ack, o, /* look at Buf[R_ack].cont[0] '/
/'9*/ I_PUSH_BYTE, 'A'.

3 /w/ E0.
/‘12'/ IF, 32, /* #12 - #13 .

43 ,, /'14*/ I_PUSH_BY1E_VAR, R_ack, 1, /* Bu1R_ack].cant[1] ./
'53 " /*17'/ l_PUSH_BYTE_VAR, VAR_S, o, /' s '/

/*2o*/ E0,
3 /*21'/ IF, 32, /’ #21 - 3221/

/'23*/ I_PUSH_BYTE, 1.

: /'25t/ LPUSH_BYTE_VAR, VAR_S, a, 907
3 /‘28‘/ MINUS,
j /'29’/ H_CPY_BYTE, VAR_S, 0, /* s = 1 - s '/

:3. /'32'/ [_PUSH_BYTE, 1, /. #32 - 13W
3 /'34'/ LPUSH_WORD_VAR,VAR_CN1,0.

A; /'37'/ PLUS.
‘ /'38‘/ H_CPY_WORD, VAR_CNT, 0, /‘ cnt = 1 + cnt '/

/‘41‘/ LPUSH_WORD_VAR,VAR_CNT, 0,
i: 23; /*44‘/ LPUSH_WORD. NR_MSGS)>8, NR_MSGS&255.

/'47'/ GE, /' cnt >= NR_MSGS */
‘3 /‘48'/ IF, 54, /' #48 - #49 '/
2% /'50'7 LPUSH_WORD, 255, 255, /"‘ -1 = exit ‘/

/‘53'/ NXT,

E E/‘54‘/ LNXT. 1 /‘ #54 - #55 stay in this state ‘/

1:

A 1* NOAC EX. 1016 Page 246

NOAC Ex. 1016 Page 247

‘2

“ma...,,,wg.1.w; mufssw”m:w.h.;‘h4v33': ~_,6?23‘
,‘ O O

. ' US. Patent Oct. 20, 1998 Sheet 7 of 8 5,826,017

FIG. 10

i « 1003
3‘ 3 3‘; tronsition(n)

1 BYTE b1, *cur_state : State[n].cont;
33315 static int Stock[SMAX+1];
7 register BYTE *prot; ~———-—‘ 1005

I" ;; register int w0, wt, 1112, i;
V :g register int *sp = &Stock[SMAX];

'3' “ prot = cur_stute; / 1006
3 while (prot) 1 f 1009
“ ”:‘ 1007/ switch (*prot++) 1

/m" rsu CONTROL mn/

case NXT:

l/ ossert(sp < &Stack[SMAX]);
‘ 1110 = POP;

5 ‘ 101,1 debugf'next ZdO, WO, 0, 0, 0);

.~ L if (1110 < o | | w0 > $qu | | 15tute[w0].cont)

return ERRORSTATE;

f3?" return 1110;
316.1" case LNXT:

. i/ W = ‘prot++;
1013 debugCnext %d0, v10, 0, 0, 0);

if (1140 < 0 I I 1110 > SMAX I I lStote[w0].cont)
return ERRORSTATE;

return w0;

.A 3 ‘1 l/deiault:
 1; 1015 debug(n Error <%d>0, *prot, 0, 0, 0);

" 1 L1 return ERRORSTATE;

NOAC EX. 1016 Page 247,7.4“:r' . .‘c:«11“..‘, vii;”'’

NOAC Ex. 1016 Page 248

O 0

g ’ - US. Patent Oct. 20, 1998 Sheet 8 of8 5,826,017
if FIC. 1 1
,5 . M

‘ 3 BYTE Bootstrapfl = l
/‘0‘/ LRECV, RBUF, /* receive message into RBUF */

is? /*2*/ LCKSUM, RBUF, /* always checksum initial msg */
3*: 1 /*4*/ IF, 10. /‘ ii nonzero goto instruction #iO ‘/
ii; /‘5*/ LPUSH_WORD, BOOTSTRAP>>8, BOOTSTRAPGLZSS,

/*9*/ NXT, /‘ stay in bootstrap state ‘/
/‘10*/ LPUSH_BYTE_VAR, RBUF, 0, /* get variable Buf[RBUF].cont[0] ‘/

: /'l3*/ LPUSH_BYTE, BYTEORDER,
. /‘15'/ NE, /‘ Bul[RBUF].cont[0] l: BYTEORDER ‘/

g /‘lfi*/ 1F, 22, /‘ it lolse goto instruction #22 '/
/‘13*/ LPUSH_WORD, ERRORSTATE>>8, ERRORSTATEHSS,

1: /‘21‘/ NXT,
;; s /‘22‘/ LLOAD. 0. RBUF, /' it checks out, define State[0] '/
, /‘25‘/ LNXT. 0 /‘ and execute it ‘/

$A » ’

it u
“v: BYTE Errorstate[] = l

/*o*/ LALLOC, mur, 1,

if; /‘3‘/ LSETSIZE, TBUF, l,
*5 /*5'/ LCPLBYTE, TBUF, 0, ERRORMSG,

3;» /*10*/ LSEND, TBUF,
/*12*/ LRECV, RBUF,

725?. /‘l4‘/ LCKSUM, RBUF,
i 3.71“; /‘15'/ IF. 22. /‘ it nonzero move to instruction #22 ‘/

5.: 3"; £33 LPUSH_WORD. ERRORSTATE>>3, ERRORSTATE&255.NXT,

1,5 /'22*/ LPUSH_BYTE,VAR,RBUF, 0,
;, /t25*/ LPUSH_BYTE, vxr,

‘g /*27‘/ E0. /. Bui[RBUF].cont[0] == vxr ./
/‘23'/ 1F. 13. /‘ ii false move to instruction #18 ‘/
/t30*/ LPUSH_WORD_VAR, RBUF, 1,

l i:

it?

‘1‘"

" ms: NOAC EX. 1016 Page 248

NOAC Ex. 1016 Page 249

t

x.

‘2;a)",“i:a
,\ 4.
,fl.

‘3waLes‘

O 0

5,826,017

1 2

APPARATUS AND METHOD FOR means for transferring the information according to the
COMMUNICATING DATA BETWEEN protocol;

ELEMENTS OF A DISTRIBUTED SYSTEM
USING A GENERAL PROTOCOL

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention pertains to communications in distributed
systems generally and specifically to protocols.

2. Description of the Prior Art
A computer protocol is a set of rules that governs the

interaction of concurrent processes in a distributed comput-
ing system. For example, if computer A, connected to a disk
drive containing files, wishes to print out one of the files on
a printer connected to computer B, it can do so only if
computer A has agreed with computer B on a protocol for
doing so. The protocol must define matters such as the
following:

How does computerA ask computer B whether the printer
is available?

How does computer B tell computer A that the printer is
or is not available?

How does computer A tell computer B that it is starting to
send data?

How does computer B tell computer A to slow down the
speed at which computer A is sending data or to stop
sending?

How does computer B tell computerA to resume sending?
How does computer A tell computer B it is done sending?
How does computer B tell computer A that it is done

printing?
A general discussion of computer protocols may be found in

Gerard J. Holzmann, Design and Validation of Computer
Protocols, Prentice Hall, Englewood Cliflfs, NJ. 1991.
Among the difficulties of implementing computer proto-

cols are those which are consequences of the fact that the
entities which execute a protocol are often dilferent. For
example, computer A and computer B of the foregoing
example may be diiferent kinds of machines. In other cases,
the entities executing the protocol may be programs written
in different programming languages. Because each of the
entities which cooperate to execute the protocol must con-
tain an implementation of at least its part of the protocol,
there will be as many different implementations of at least
parts of the protocol as there are diflferent cooperating
entities.

One of the difficulties which arises from this situation is

the need to reimplement each protocol for each kind of entity
which executes it. As the number of protocols and kinds of
entities grows, more and more implementation effort is
involved. An even more important difficulty is caused by the
fact that the implementations of the same protocol for
diflferent entities are often done by diflferent people; if the
different people have diflerent understandings of the
protocol, the implementations may not be completely com—
patible and it will be hard to determine where they are
incompatible and what the etfccts of any incompatibility will
be.

The apparatus and methods disclosed in the following
overcome these problems and others by permitting all enti—
ties which execute a protocol to execute the same descrip-
tion of the protocol.

SUMMARY OF THE INVENTION

In one aspect of the invention, the invention is a periph-
eral apparatus for communicating information usrng a pro-
tocol. The apparatus includes

10

15

20

25

30

35

45

50

55

60

65

means for transferring the information between the
peripheral apparatus and a host device;

means independent of the host device for storing a pro-
tocol description which describes the protocol and
which employs a protocol description language which
is independent of any particular implementation of the
peripheral apparatus; and

protocol description interpretation means which is inde-
pendent of the host device and which is capable of
interpreting the protocol description language for inter-
preting the protocol description as required to transfer
the information according to the protocol via the means
for transferring the information according to the pro-
tocol and to transfer the information via the means for

providing the information to the host device.
In another aspect, the invention is a method of commu-

nicating in a distributed system. The method includes the
steps of:

in a first entity of the distributed system,

receiving a first general protocol message which includes
a protocol description which describes a specific
protocol, the protocol description employing a protocol
description language which is independent of any par-
ticular implementation of the first entity; and

responding to the first general protocol message by
employing first protocol description interpretation
means capable of interpreting the protocol description
language to interpret the protocol description as
required to communicate using the specific protocol.

In still another aspect, the invention is protocol apparatus
for communicating in a distributed system, the apparatus
including:

means for receiving a first general protocol memage, the
first general protocol message including a protocol
description which describes a specific protocol and
which employs a protocol description language which
is independent of any particular implementation of the
protocol apparatus; and

means for responding to the first general protocol message
which are, capable of interpreting the protocol descrip-
tion language and which interpret the protocol descrip-
tion as required to communicate using the specific
protocol.

In a further aspect, the invention is apparatus for com-
municating in a distributed system, the apparatus including:

first protocol apparatus for communicating using a gen-
eral protocol and

second protocol apparatus for communicating using the
general protocol,

the first protocol apparatus including
means for providing a first general protocol message

which includes a protocol description which describes
a specific protocol and which employs a protocol
description language which is independent of any par-
ticular implementation of the second protocol appara-
tus; and

means for employing the specific protocol to communi—
cate with the second protocol apparatus after providing
the first general protocol message; and

the second protocol apparatus including
means for receiving the first general protocol message

from the first protocol apparatus; and

NOAC EX. 1016 Page 249

NOAC Ex. 1016 Page 250

O 0

5,826,017
3

means for responding to the first general protocol message
which are capable of interpreting the protocol descrip-
tion language and which interpret the protocol descrip-
tion as required to communicate using the specific
protocol.

The foregoing and other aspects, objects and advantages
of the invention will be apparent to one of ordinary skill in
the art who peruses the following Drawing and Detailed
Description, wherein:

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a block diagram of a typical system in which
protocols are used;

FIG. 2 is a block diagram of a first apparatus incorporat-
ing the invention;

FIG. 3 is a block diagram of a second apparatus incor—
porating the invention;

FIG. 4 is a table of instmctions in a protocol description
language;

FIG. 5 is a HOWChart of the bootstrap state;
FIG. 6 is a floWChart of the error state;

FIG. 7 is a state diagram for the alternating bit protocol;

FIG. 8 is a protocol description for the receive side of the
alternating bit protocol;

FIG. 9 is a protocol description for the send side of the
alternating bit protocol;

FIG. 10 is a fragment of the transition procedure;
FIG. 11 is a protocol description for the bootstrap state;
FIG. 12 is a protocol description for the error state; and
FIG. 13 is a block diagram of an embodiment which

encaches down-loaded protocol descriptions.
The reference numbers employed in the Drawing and the

Detailed Description have three or more digits. The two least
significant digits are a number within a figure; the remaining
digits are the figure number. Thus, the element with the
reference number “305” is first shown in FIG. 3.

DETAILED DESCRIPTION

The following Detailed Description will first provide an
overview of the techniques of the invention and will then
disclose in detail how the Alternating Bit Protocol
(described at Holzmann, supra, pp. 75—77) may be imple-
mented using the techniques of the invention.
Overview: FIGS. 1—3

FIG. 1 is a block diagram of a system 101 in which
protocols are used for communication between a first entity
109(1) and a second entity 109(2). Each entity 109 includes
a source or destination 103 for information (INFO) 105 and
a protocol apparatus 107.

As shown by the arrows, when entity 109(1) is commu-
nicating with entity 109(2), information 105 goes from
source 103(1) to protocol apparatus (PA) 107(1), which
employs a protocol as described above to transfer informa-
tion 105 to protocol apparatus 107(2). As explained above,
the connection between protocol apparatus 107(1) and pro~
tocol apparatus 107(2) carries not only information 105, but
also the control information 109 which protocol apparatus
107(1) and 107(2) require to carry out the protocol. The
information 105 and control information 109 together make
up protocol data (PDATA) 111. Protocol apparatus 107(2)
then provides the information 105 which it receives to
destination 103(2). When entity 109(2) communicates with
entity 109(1), information 105 from source 103(2) goes to
protocol apparatus 107(2), protocol apparatuses 107(1) and

10

15

20

25

30

35

40

4s

50

55

60

65

4

107(2) carry out the protocol, which this time transfers the
information from protocol apparatus 107(2) to protocol
apparatus 107(1), and protocol apparatus 107(1) provides
the information to destination 103(1).

A system of the type shown in FIG. 1 may be built in
many different fashions and may be used in many environ-
ments. For example, protocol apparatus 107(1) and 107(2)
may be connected by any kind of communications medium,
including parallel and serial buses, telecommunications
media and shared memory. Further, entities 109 may be
processes running in a single system or processes running in
difierent systems. Further, the communication may be
between difierent levels of the same system or between
difierent systems. Finally, the apparatus 107 may be imple-
mented as a process executing in a multiprocess system or
in special purpose hardware, or as some combination of
these alternatives.

Because it is the purpose of a protocol to communicate
between different entities 109 and protocol apparatus 107 is
in each case part of the entity 109, it is almost always the
case that protocol apparatus 107(1) and protocol apparatus
107(2) are implemented by diiferent individuals. That fact
has important consequences. As explained in Holzmann,
supra, it is extremely diflicult to provide a description of a
protocol which is both complete and unambiguous. When
the description is incomplete or ambiguous, diflerent indi-
viduals will implement protocol apparatus 107 which
execute ditferent versions of the protocol, and if two pro-
tocol apparatuses 107 which execute different versions of
the protocol attempt to communicate using the protocol, the
communication may fail. Worse, because the failures are the
results of different interpretations of the protocol
description, the manner of failure will be unpredictable and
therefore cannot be taken into account in the design of the
protocol. While a complete and unambiguous protocol
description can reduce the problem, it does not eliminate it:
the individuals implementing apparatus 107 can still have
different understandings of the protocol description, and
their implementations of apparatus 107 will reflect their
understandings. Again, the result is the implementation of
protocol apparatuses 107 which execute ditferent versions of
the protocol, and again, there is the risk that communications
between entities employing such apparatuses 107 will fail.

FIG. 2 illustrates a protocol apparatus 201 which solves
the foregoing problem. Protocol apparatus 201 has two main
components: protocol description 203 and protocol execu-
tion device 207. Protocol description 203 is a protocol
description which is written using protocol instructions 205
belonging to a protocol description language. The protocol
description language is independent of any particular hard-
ware or software implementation of protocol apparatus 201.
There is a single protocol description 203 for the protocol,
and every protocol apparatus 201 has a copy of part or all of
the single protocol description 203. Protocol execution
device 207 executes the protocol by executing the protocol
instructions in protocol description 203. The protocol
instructions 205 are executed by means of protocol instruc-
tion interpreter 209. Protocol instruction interpreter 209 can
interpret all of the instructions belonging to the protocol
description language. As it interprets each instruction, it
produces control outputs 213 to underlying device 211,
which actually receives information 105 and provides pro-
tocol data 111. Underlying device 211 may in turn provide
control inputs 214 to protocol language interpreter 209.
Underlying device 211 may be implemented in software, in
hardware, or in a combination. Depending on how under-
lying device 211 is implemented, control outputs 213 may

NOAC EX. 1016 Page 250

NOAC Ex. 1016 Page 251

 '431‘s;;%§W;133‘§’3’";
'43:

..5,,
rev

 WwM'

4‘at;

O

(V

5,826,017
5

include procedure calls or subroutine addresses, interprocess
communications, instmctions for a processor in underlying
device 211, or control outputs to hardware devices. In the
latter case, protocol execution device 207 may be a special-
ized microprocessor which executes instructions in the pro-
tocol description language. Again depending on how under-
lying device 211 is implemented, control inputs 214 may
include data returned by a procedure or a subroutine, data
returned by an interprocess communication, the results of
executions of instructions, or interrupts.

An implementation of protocol apparatus 201 which is
particularly advantageous is an implementation as a periph-
eral device for a source or destination 103 such as a host

computer. Such an implementation would be connected
between the medium over which protocol data 111 is to be
transferred and a bus of the host computer and would include
its own memory for storing protocol description 203 and its
own protocol execution device 207. In such an
implementation, protocol execution device 207 might be
implemented as a processor which is capable of directly
executing protocol instructions 205. Aparticularly advanta—
gous form of such a peripheral device would be one which
was implemented in a single integrated circuit.

Protocol apparatus 201 has numerous advantages over
protocol apparatus 107. First, every protocol apparatus 201
uses a copy of a single protocol description 203; “NE, there
is no possibility that different implementations of protocol
apparatuses 201 will implement diflerent versions of the
protocol. Second, protocol description 203 is written only
once, but will be used many times. It is therefore worthwhile
to expend great elforts to ensure that protocol description
203 is in fact a correct, complete and unambiguous descrip~
tion of the protocol. Third, the part of protocol apparatus 201
which may differ in the difierent implementations is protocol
execution device 207. However, protocol execution device
207 must now only be able to correctly execute the protocol
instructions 205 in protocol description 203. That is, the
problem is no longer the correct implementation of the
protocol, but rather the correct implementation of an instruc—
tion set in a single device. This problem is, however, far
better understood than the problem of implementing a
protocol in two devices, and consequently, implementations
of the protocol instruction set in different protocol appara-
tuses 201 are far more likely to be correct than implemen-
tations of the protocol itself.
Apparatus for Executing a General Protocol: FIGS. 3 and 13

Perhaps the most significant advantage of protocol appa—
ratus 201 is that it can execute any protocol for which there
is a protocol description 203 written in the protocol descrip—
tion language. Consequently, protocol apparatus 201 can
easily be modified to make a general protocol apparatus
which executes a general protocol and which can therefore
dynamically execute any protocol for which there is a
protocol description 203. The general protocol is simply the
following:

in a sending protocol apparatus, sending a general proto-
col message which includes a protocol description 203;

in a receiving general protocol apparatus, employing
protocol instruction interpreter 209 to execute the pro-
tocol description 203 contained in the general protocol
message.

FIG. 3 shows such a general protocol apparatus 301.
General protocol apparatus 301 includes protocol instruction
interpreter memory (PIIM) 309, which contains protocol
description 203 for the protocol currently being executed by
protocol apparatus 301 and protocol instruction interpreter
data (PIIDATA) 311, which is data employed by protocol

10

15

20

25

30

35

45

50

55

60

65

6

instruction interpreter 209 in executing protocol description
203. Protocol interpreter 209 has two additional compo-
nents: bootstrap component (BOOT) 305 and error compo-
nent (ERR) 307. These components make it possible for
general protocol apparatus 301 to execute the general
protocol, and thereby make it possible for any protocol
apparatus 107 which can provide a protocol description 203
to protocol apparatus 301 to use the protocol described in the
protocol description 203 to communicate between the enti-
ties 109 to which protocol apparatus 107 and protocol
apparatus 301 belong. Of course, both protocol apparatuses
involved in the communication may be general protocol
apparatuses 301.

Protocol apparatus 301 executes the general protocol as
follows: bootstrap 305 listens for a general protocol message
(indicated by arrow 313) from the other protocol apparatus.
In a preferred embodiment, the general protocol message
uses the same path between the protocol apparatuses as does
protocol data 11.1. In other embodiments, there may be a
special path for the general protocol message. The general
protocol message further contains at least the first part of
protocol description 203 for the specific protocol to be
executed. When bootstrap 305 receives the general protocol
message, it loads the message into a butfer in protocol
instruction interpreter data 311 and performs checks as
described below. If the message passes the checks, bootstrap
305 loads the general protocol message into the portion of
memory 309 reserved for protocol description 203.
Thereupon, interpreter 209 begins executing the protocol
instructions 205 in the message, beginning with the initial
instruction. If protocol description 203 is longer than the
maximum size of an general protocol message, then the first
part of protocol description 203 contains protocol instruc-
tions which, when executed, cause the rest of protocol
description 203 to be loaded.

In a preferred embodiment, the general protocol requires
that the general protocol message contain checking infor-
mation which permits error checking and protocol data
information which indicates how protocol instruction inter—
preter 209 is to interpret protocol data 1.11 and that the
receiving general protocol apparatus 301 use the checking
information and the protocol data information. In the pre—
ferred embodiment, there are two items of checking infor-
mation: a checksum for the general protocol message and a

.required first instruction. On receiving the general protocol
message, bootstrap 305 computes the general protocol mes-
sage’s checksum and compares it with the checksum in the
message; if they are different, there has been a transmission
error and bootstrap 305 waits for another general protocol
message. If bootstrap 305’s check of the required first
instruction in the general protocol message indicates that the
general protocol message is not a protocol description 203,
the error component 307 of protocol instruction interpreter
209 returns an error message (indicated by arrow 315) to the
protocol apparatus 101 which provided the general protocol
message. Thereupon, error 307 waits for a valid general
protocol message. Once the general protocol message has
been successfully received, it is executed by protocol
instruction interpreter 209, and as part of the execution, the
protocol data information in the general protocol message is
used to set parameter values in protocol instruction inter-
preter data 309.

If both protocol apparatuses 107 involved in a commu-
nication are protocol apparatuses 301, an enormous amount
of flexibility is possible. For example, if an entity 109 which
includes a protocol apparatus 301 requires that information
105 sent to it be sent according to a given protocol, the

NOAC EX. 1016 Page 251

NOAC Ex. 1016 Page 252

O (3,

5,826,017
7

apparatus 301 can respond to a general protocol which
specifies another protocol by returning an error message
which indicates that it only responds to a given specific
protocol and then sending protocol description 203 for the
given specific protocol to the entity from which it received
the general protocol message. Such a tactic might be used by
an entity 109 which requires that all data which it receives
be encrypted according to a particular scheme.

Similarly, if a communication between two entities 109
inVOIVes diflerent types of data and difierent protocols are
better for transferring data belonging to the different types,
then two protocol apparatuses 301 could carry out the
communication by dynamically changing the protocols as
required by the type of data currently being communicated.
An example here might be a data transfer which involved
both digital data representing analog signals and digital data
representing numbers or characters. The two types of data
have diiferent degrees of tolerance for transmission errors,
and the protocol used for each type of data might therefore
employ diiferent error checking and correction techniques.
Adaptive General Protocol Apparatus: FIG. 13

The flexibility of general protocol apparatus 301 comes at
a cost: each communication using a specific protocol
includes the overhead of sending protocol description 203
for the specific protocol to general protocol apparatus 301,
checking the general protocol message, and loading protocol
description 203 into protocol instruction interpreter memory
309. This overhead can be avoided by equipping general
protocol apparatus 301 with a protocol instruction interpre-
tation memory 1301 (FIG. 13) which is large enough to hold
a number of protocol descriptions 203 and modifying the
general protocol to permit use of a protocol description
identifier specifying one of the protocol descriptions in place
of a protocol description 203. For such an adaptive general
protocol apparatus, the general protocol Would be as fol-
lows:

In a sending protocol apparatus, sending a first message
which includes a protocol description identifier for a
protocol description 203;

In a receiving general protocol apparatus, responding to
the first message by:
a. determining whether the receiving general protocol

apparatus has a copy of protocol description 203
specified by the identifier;

b. if it does, executing the protocol description 203
specified by the identifier;

c. if it does not, returning an error message indicating
that it does not have a copy of the specified protocol
description 203;

in the sending protocol apparatus, responding to the error
message by sending a second message which includes
protocol description 203; and

in the receiving protocol apparatus, responding to the
second message by:
a. storing protocol description 203 in the receiving

protocol apparatus; and
b. executing the protocol description.

As may be seen from the foregoing description of the
general protocol for the adaptive general protocol apparatus,
such a general protocol apparatus would quickly adapt itself
to the environment in which it was employed. It would in
short order contain copies of the protocol descriptions 203
for all of the protocols which were frequently employed by
the entities 109 which used the adaptive general protocol
apparatus, and would consequently only very rarely need to
request a copy of the protocol description 203 for a protocol
from the sender. Put another way, an adaptive general

10

15

20

25

30

35

4o

45

50

55

6O

65

8

protocol apparatus will encache protocol descriptions 203
for frequently—used protocols in the same way that a memory
system encaches frequently-used memory blocks.

An adaptive general protocol apparatus may be imple—
mented by modifying bootstrap 303 and the contents of
protocol instruction interpreter memory 301. The modifica-
tions to the contents of protocol instruction interpreter
memory for an adaptive general protocol apparatus 1323 are
shown in FIG. 13. As before, protocol instruction interpreter
memory 1301 is divided into two parts, one containing data
311 used during execution of a protocol, and one for
protocol descriptions. Here, protocol description memory
(PDM) 1302 contains a protocol description table 1303 and
one or more protocol descriptions 1311. Protocol description
table 1303 contains a protocol description table entry 1305
for each protocol description 1311 in memory 1309. Each
entry 1305 contains at least two pieces of information: an
identifier 1307 for a protocol description 1311 and a pointer
1309 to the location in memory 1302 of protocol description
1311 specified by the identifier. There are many p0$ib1e
sources for the identifiers; for example, the identifier for a
given protocol description 1311 may be the description
1311’s checksum. In another embodiment, the source of the
original protocol descriptions from which the protocol
descriptions 1311 are copied may assign a unique identifier
to each original protocol description.

As will be explained in more detail below, the protocol
descriptions 203 employed in a preferred embodiment define
a finite state machine. Consequently, a given protocol
description 203 is divided into a set of numbered states (S)
1321. To permit location of the states, protocol description
1311 is divided into two parts: protocol description body
(PDB) 1314, which contains the instructions for the states,
and state table 1313, which relates state numbers to the
locations of the corresponding states 1321. There is an entry
1315 in state table 1313 for each state 1321 in the protocol
description body, and each entry contains the state number
(SN) 1317 and the offset (OFF) 1319 of that state from the
beginning of protocol description 1311.

The modifications required in bootstrap 305 will be
immediame apparent from FIG. 13 and the description of
the general protocol for general protocol apparatus 1323.
When a general protocol message is received which contains
a protocol description identifier for which the protocol
description 1311 is in memory 1302, bootstrap 305 simply
causes interpreter 209 to begin executing the specified
protocol description; otherwise, bootstrap 305 retains the
identifier from the general protocol memage and causes
error 307 to return an error message and wait for a message
which contains the protocol description 1311. When the
message arrives, error 307 causes bootstrap 305 to compare
the retained identifier with the identifer in the general
protocol message containing the protocol description 1311,
and if they agree, bootstrap 305 places the protocol descrip-
tion L311 in memory 1302 and makes an entry 1305 for the
new protocol description 1311 in protocol description table
1303.

Of course, many variations on the above arrangements are
possible. For example, memory 1302 is necessarily finite;
consequently, bootstrap 305 may have to remove one pro-
tocol description 1311 to make room for another. One way
of doing this would be to include size and most recent use
information in protocol description table 1303, and boot-
strap 305 could use that information to determine which
protocol descriptions 1311 should be removed. Further, the
general protocol for general protocol apparatus 1323 might
include a checksum in the general protocol message for the

NOAC EX. 1016 Page 252

NOAC Ex. 1016 Page 253

O 0

5,826,017
9

protocol description 1311 identified by the identifier. Boot-
strap 305 could use the checksum to make sure that the copy
of the protocol description 1311 in memory 1302 was the
same as the copy held by the sender. If it was not, bootstrap
305 could send an error message requesting the protocol
description and then proceed as previously described for
protocol descriptions for which there was no copy in
memory 1302.
Implementation of Protocol Apparatus 301

Aprototype implementation ofprotocol apparatus 301 has
been constructed in which protocol execution device 207 is
a computer capable of executing programs written in the
well-known “C” programming language. In the prototype
implementation, protocol instructions 205 belonging to a
protocol description language are interpreted by a protocol
instruction interpreter which is written in C and is executed
by a process running on the computer. General protocol
apparatus 301 has been tested by writing a protocol descrip-
tion 203 for the alternating bit protocol in the protocol
description language and executing the protocol by execut-
ing the protocol description 203. The following discussion
will first disclose the protocol description language, then
protocol interpreter 209, bootstrap 305, and error component
307, and finally protocol description 203 for the alternating
bit protocol.
The Protocol Description Language: FIG. 4

FIG. 4 shows the instructions in a preferred embodiment
of protocol description language 401. The instructions fall
into two clames: those which perform general stack man-
agement and expression evaluation, shown in table 403, and
those which perform operations which are particularly
related to the execution of protocols, shown in table 405.

As is apparent from table 403, protocol instruction inter-
preter 209 is a stack machine. The stack, maintained in
protocol instruction interpretation data 311, is a standard
integer size push—down stack. The PUSH__BYTE and
PUSH_WORD instructions permit data to be pushed onto
the push-down stack. The other instructions take their oper-
ands and parameters from the top of the stack and push their
results back onto the top of the stack. When a stack overflow
or underflow occurs, interpreter 209 ceases executing the
protocol, error component 307 sends an error message to the
other protocol apparatus 107, and error component 307 then
waits for an error handling message from the other protocol
apparatus 107. Of course, how the other protocol apparatus
107 responds to the error me$age is part of the protocol
described in protocol description 203. The same thing hap-
pens if an arithmetic error such as a zero divide or an integeroverflow occurs.

The functions of the instructions in table 405 are generally
clear from the table; however, certain instructions require a
more detailed explanation. Beginning with the instructions
in finite state machine control 407, instructions 421 and 423
permit protocol detestation language 401 to describe a
protocol as a finite state machine, that is, a finite set of states
with definitions of transitions between the states. Thus,
LOAD instruction 421 takes two parameters from the top of
the stack, one specifying a buffer which contains a sequence
of instructions of protocol description language 401, and one
specifying a state number. The LOAD instruction loads the
contents of the bufier into a location in protocol description
203 and associates the state number with that location. NXT

instruction 423 pops a state value from the top of the stack
and begins execution of the sequence of instructions at the
location in protocol description 203 associated with the state
value. IF instruction 425 is a conditional branch instruction:

the IF instruction pops the value at the top of the stack, and

10

15

20

30

35

40

45

50

55

60

65

10

if the value at the top of the stack is equal to 0, the IF
instruction branches to the instruction specified in the IF
instruction’s parameter; otherwise, it executes the instruc-
tion following the IF instruction.

Upper interface instructions 409 pass information 105 to
data source/destination 103 and receive information 105
from data source/destination 103, The information is passed
from and received into buffers in protocol instruction inter-
pretation data 311. Lower interface instructions 41 1 deal

with PDATA 1.11 sent and received between protocol appa-
ratuses 107. Three of these instructions are used in boot-
strapping. CKSUM 413 computes the checksum of a bufi-
er’s contents and places the result in the top of the stack,
where it can be used to determine whether a branch should
be made to error component 307. BYTEORDER defines the
order of the bytes in the words of PDATA 111 which are sent
according to the protocol. WORD_SZ defines the number
of bytes in the words of PDATA 111 which are sent accord-

ing to the protocol. Both instructions are used in the general
protocol message to override default byte orders and word
sizes, and they may be also used to change these aspects of
PDATA 111 during transmission of a protocol. Butfer man-
agement instructions 419 allocate and size buffers in I’ll-

DATA311 and permit values from the top of the stack to be
written to positions in the buifers. Most of the instructions

also have a slightly faster variant (indicated by the prefix I_)
which use constant operands specified in the instruction and
therefore do not have to pop an operand from the stack.

The following is a short example program written in
protocol description language 401. The program first defines
the byte order and word size for the protocol, loads the
contents of a buffer RBUF into protocol description 203 and
associates a state number represented as S with the location
of the loaded contents, and then begins executing the con-tents as state S:

BYTEORDER, 1, /' Most Significant Byte transmitted first ‘/
WORD_SZ, 3, /' 3 bytes per word '/
l_,LOAD, S, RBUF, /‘ assign RBUF to S "/
LNXT, S,‘ /' gcto state S'/

S is a constant value, as is RBUF, so I_LOAD and I__NXT
are used in the program instead of LOAD and NXT.

While protocol description language 401 efiectively
describes protocols, a person implementing any substantial
protocol would not want to write the protocol description
directly in language 401. To avoid this problem, the person
implementing the protocol can describe the protocol in any
formal protocol specification language that can be translated
into language 401 and then translate the description in the
formal specification language into language 401. Even a
regular programming language would do to describe the
protocol. If the protocol is specified in a formal protocol
specification language which permits validation of the pro-
tocol (see for example the PROMELA specification
language, in Holzmann, supra, p. 9113.), there is an added
advantage that the complete protocol can be validated
exhaustively before it is converted into protocol description
language 401. In this case, it will be certain that both sides
of the protocol are implemented in precise accordance with
the validated model.

Protocol Instruction Interpreter 209
In a preferred embodiment, protocol instruction inter-

preter 209 is implemented by means of a run procedure
which will be explained in more detail later. At the heart of
that procedure is the procedure transition(n). A fragment of
transistion(n) is shown in FIG. 10. transition (11) 1001

NOAC EX. 1016 Page 253

NOAC Ex. 1016 Page 254

a,
5.
‘5, 3r

.
:.l."
.

, .
a.'s
r)‘

“a

fix“.

*‘1tfl‘“??".t""‘7'".we.».
.u.

“,17‘.

if“)

5,826,017

11

executes the protocol instructions 205 in one state until a
NXT or I_NXT instruction transfers control to another
state. The procedure is invoked with a single argument: the
number of the state to which transition is to be made; when
the procedure returns, it returns the number of the next state
to which a transition is to be made. The variable cur_state

is set on entry into the procedure to point to the beginning
of the state specified by the argument. The register variable
prot contains the current byte position in the state being
executed. At 1006, prot is set to the value of cur_state, so
that execution starts at the first byte of the state. The while
loop indicated at 1007 continues to execute as long as prot
has a non-0 value, i.e., essentially until a return statement
transfers control out of transition.

The body of the while loop is a switch statement which
contains a case for each of the instructions in protocol
description language 401. On each iteration of the loop, the
variable prot is incremented by 1, so that it points to the next
byte in the state. The value of that byte determines which
case is executed. If there is no case corresponding to that
value, default case 1015 is executed, which puts interpreter
209 into the error state and thereby transfers control to error
307. Where required, a case further contains debugging code
and assertions to check whether requirements for the execu-
tion of the instruction are fulfilled. If interpreter 209 is only
used with fully tested and verified protocol descriptions 203,
the assertions and debugging code may be disabled.

Fragment 1001 shows two cases in addition to default
case 1015: those for NXT and I.NXT. With NXT 1011, the

case simply pops the value at the top of the stack (i.e., the
next state), checks whether the value is in the range of values
for states, and returns the value. With I_NXT, the value of
the next state is in the code, and not on the stack, so the case
increments prot by one, checks whether the value at that
point in the code is within the range, and returns the value.
Implementation of Bootstrap 305: FIG. 5

In a prefened embodiment, Bootstrap 305 is implemented
as a state of interpreter 209. Unlike the other states, which
are defined by the protocol description loaded in by boot—
strap 305, bootstrap 305 and error 307 are required for the
execution of the general protocol and therefore must be built
into a protocol apparatus 301 before a protocol description
203 can be loaded.

Since these two states are required for the general
protocol, they are the only ones that enforce a predefined
format on incoming messages, and that must require, the
presence of certain kinds of data to permit checlcing of the
general protocol message. As soon as these two states have
successfully received a general protocol message with pro-
tocol description 203, they hand olf control of the general
protocol apparatus to the protocol description 203.

In a preferred embodiment, bootstrap 305 is implemented
with a single call run (BOOTSTRAP). Procedure run () is
the implementation of interpreter 209 in a preferred embodi-
ment. The procedure is reproduced completely below

run (5)
{ int n - s;

while (u >- D && n <- SMAX && State{n].cont)
n I: transition(n);

return n;
}

run is a loop which invokes the procedure transition with a
state number transition then puts interpreter 209 into the
proper state of protocol description 203 or the states which
implement bootstrap 305 or error 307. The loop ceases

10

15

20

25

30

35

45

50

55

60

65

12

execution when a value which is out of range of the legal
state numbers is received. Thus, when invoked with
BOOTSTRAP, a constant indicating the bootstrap state, the
run simply puts interpreter 209 into the bootstrap state.

Most of the concepts involved in implementing an
embodiment of protocol apparatus 301 can be illustrated
using an implementation of bootstrap 305. In a protocol
apparatus 301 employing such an implementation, the code
for bootstrap 305 would always be present in protocol
instruction interpreter memory 309.

For a general understanding of bootstrap 305, the flow
chart of FIG. 5 suflices. As shown in oval 503, bootstrap
implementation 501 waits for the general protocol message
from the remote protocol apparatus 107. When the message
comes, it is loaded into a buffer in protocol instruction
interpreter data 311. Next, the message is checked. First, a
checksum is performed, to make sure the message is uncor-
rupted. If the checksum is non-zero, a transmission error has
occurred, and the machine returns to the start of the boot-
strap state (diamond 505, 507). If the checksum is zero, a
check is made if the message has the correct type (diamond
509). In a preferred embodiment, the first instruction is
required to be the definition of the BYTEORDER for the
lower interface. This byte -order definition specifies the order
in which the bytes in a word sent according to the protocol
are transmitted across the lower level interface: most or least

significant byte first. It need not match the byte-order used
in either the receiving or the sending entity. If the message
is not a valid protocol description 203, interpreter 209 enters
error 307 (511).

If the megage is a valid protocol description 203, the
contents of receive buffer is asigned to the initial state of the
newly loaded protocol, and control is transferred to that state
(box 515). A full implementation 1101 of bootstrap 305 in
protocol description language 401 is shown in FIG. 11.
Implementation of Error 307: FIG. 6

In a preférred embodiment, error component 307 is also
implemented as a state of interpreter 209. Like the bootstrap
state, this error state is part of the general protocol, not any
specific protocol. It is only meant to provide a standard
mechanism for responding to errors in the Operation of the
general protocol apparatus 301, such as stack-overflow,
memory allocation errors, arithmetic errors (e.g., divide by
zero), etc. A flowchart for the error state is given in FIG. 6.

As shown in FIG. 6, error component implementation 601
first writes a predefined error message to TBUF (box 603)
and then notifies the remote protocol apparatus 107 of an
error condition by sending the message in TBUF (oval 605).
It then awaits a response that it will receive into the default
receive buffer RBUF (oval 607). If the mesage was uncor—
rupted (diamond 609) and was a protocol decription 203
(diamond 613) control is transferred to the state that is
specified in the mesage, using the NX'I‘ command (617). In
all other cases (611,615), the error state is reentered from the
t0p (602). A full implementation 1201 of error 307 in
protocol description language 401 is shown in FIG. 12.
An Implementation of the Alternating Bit Protocol: FIGS.
7—10

FIG. 7 is a diagram of the finite state machines imple-
mented by two protocol apparatuses 107 which are commu-
nicating by means of the alternating bit protocol. This
protocol employs a single bit, which can have the value “1"
or “0”, as a message sequence number. When one of the
apparatuses 107, say the apparatus represented by finite state
machine 703, sends a message, it appends a “1” or an “0" bit
as a sequence number to the message. The receiving finite
state machine 705 sends an acknowledgment with the

NOAC EX. 1016 Page 254

NOAC Ex. 1016 Page 255

”an“

E,

m

.‘4.,a3:.

,MM.

at».

e.”tangy,“)..

“Mn“:W.r,.:,

O O

5,826,017
13

sequence number which it received to the sending finite state
machine 705; if the acknowledgment’s sequence number
matches the sequence number of the sent message, the
sending finite state machine can send another message with
the other sequence number; if not, it repeats the last sent
message.

In FIG. 7, the circles specify states and the edges specify
state transitions resulting from message exchanges. The
edge labels specify the message exchanges. Each label
consists of two characters: A indicates that the message
comes from finite state machine 703; B indicates that it
comes from machine 705. The second character specifies the
sequence number, 1 or 0 as described above. When an edge
label is underlined, it indicates that the message is being
transmitted to the other finite state machine. The double
headed arrows indicate states in which the receiver can

accept a message from the sender or the sender can fetch a
new message for output to the receiver.

In more detail, in state 707, sender 703 receives a message
A to be output to receiver 705. It appends the “0” sequence
number and outputs the message. In state 709, it waits for the
acknowledgment, indicated as the message B. If B has the
sequence number “0”, the next state is 711, where a new
message A is received for output and the “1” sequence
number is appended. In state 713, sender 703 waits for the
acknowledgment, again indicated as B; if the message has
the sequence number “1", the cycle begins again in state
707. If the acknowledgment received in state 709 has the
sequence number “1”, the next state is 715, which retrans-
mits the message A transmitted in 707 with the “0" sequence
number. If the right acknowledgment is received this time,
the next state is 711; otherwise, state 715 is reentered.
Similarly, if an A message with a sequence number “1”
receives an acknowledgment with a sequence number “0”,
sender 703 goes to state 717, where it retransmits the A1
message.

FIG. 8 shows how the portion of the alternating bit
protocol which responds to received messages is imple—
mented using protocol description language 401. The code
801 for the receive portion of the protocol has three parts: in
part 803, the bufi'ers for both the transmit and receive
portions are defined; for the receive portion, only three
buffers are required: a transmit bufier TBUF, a receive buffer
RBUF, and a variable VAR_E for the expected sequence
number.

Portion 805 is state 0 of the portion of the finite state
machine which receives messages. The protocol instructions
205 of state 0 are received in the general protocol message
and are executed when bootstrap 305 transfers control to
state 0. As required in a preferred embodiment, the first
instruction is a BYTEORDER instruction, which here speci-
fies that the first byte of the words received according to the
protocol is the most significant byte. The instructions at
bytes 2 through 10 of the general protocol message allocate
buffer space for TBUF and VAR_E. The instructions at
bytes 11 through 17 specify that the receiveris to wait for the
next message, which contains the protocol instructions 205
of state 1, place that message in RBUF, load the contents of
RBUF into the part of memory 309 reserved for protocol
description 203, and associate state 1 with the location of the
loaded contents in memory 309, and then execute state 1.
The part of portion 805 beginning at byte 18 is reserved for
the checksum which bootstrap 305 uses to check for cor-
rectness of transmission.

Portion 807 is state 1 of the portion of the finite state
machine which receives messages. In this state, the finite
state machine waits for a message (byte 0). When the

10

15

20

30

35

4o

45

50

55

60

65

14

message arrives, it is placed in RBUF. At bytes 2 through 12,
the finite state machine writes a value indicating an
acknowledgment (in this case, the character ‘A’) into the
transmittal buffer, obtains the sequence number in the last
byte of RBUF, copies the sequence number into TBUF
following the ‘A’, and sends the acknowledgment. At bytes
14 through 20, the finite state machine compares the value
of the sequence number retained in VAR_E with the
sequence number in the last byte of RBUF. If they are the
same, indicating that the received message had the right
sequence number, bytes 23 through 33 are executed;
otherwise, state 1 is again executed from the beginning, as
shown at byte 34. In bytes 23 through 31, the sequence
number saved in VAR_E is subtracted from 1 and the result

saved in VAR_E again. Then, the message is sent to its
destination and state 1 is again executed from the beginning.

FIG. 9 shows how the portion of the alternating bit
protocol which sends messages is implemented in a pre-
ferred embodiment. In the preferred embodiment, protocol
apparatus 107 in which send portion 901 is implemented is
a protocol apparatus 201 or 301 which is sending to a
protocol apparatus 301. Consequently, the send portion is
implemented in protocol description language 401 and
includes instructions which download receive portion 801 to
the receiving protocol apparatus 301.

The buifers and variables used in portion 901 are defined
in part 803 of FIG. 8. In the prototype, buffers 0 and 1 are
preset to each contain a message; as may be seen from part
809 of FIG. 8, buffer 0 (named M0) is set to the ASCII
character ‘M’ with the sequence number “0" appended to it,
while buffer 1 is set to the ASCII character ‘M’ with the

sequence number “1" appended to it. The bufier R_run
contains the code of portion 807, while the bufler R_ini
contains the code of portion 805. The buffer R_ack, finally,
is used for the acknowledgement received from receiver
801. There are two variables: VAR_S, which holds the

sequence number which is to be attached to the message, and
VAR_CNT, which is a count of the number of bytes sent by
the sender.

Returning to FIG. 9, the allocation and initialization of the
sender buffers and variables defined in 803 takes place in
section 903, which is state 0. In bytes 0—13, VAR_S and
VAR_CNT are both allocated and set to 0; in bytes 14 and
15, receiver initialization code 805, contained in the buffer
R_ini, is sent to the receiver; in bytes 16 and 17, the code
807 for state 1 of the receiver, contained in the bufier R_run,
is sent to the receiver. These lines 905 thus perform the
downloading of protocol description 203 to the receiving
protocol apparatus 301. At byte 18, finally, the I_NXI‘
instruction starts execution of state 1 907.

At bytes 0—2 of state 1 907, the current value of VAR_S
is pushed onto the stack. At byte 3, SEND takes its param-
eter from the top of the stack; thus, if VAR_S has the value
0, the message in bufier M0 is sent; if it has the value 1, the
message in bufier M1 is sent. In an embodiment for use in
an actual communications system, there would be code
preceding the SEND instruction which employed the
OBTAIN instruction to obtain a byte of data to be sent and
place the data in bufier M0 or M1, depending on the value
of VAR_S, and then employed CPY__BYTE to append “0’ ’
or “1" to the data, again depending on the value of VAR_S.

The code in bytes 4—8 receives the acknowledgment from
the receiver and pushes it onto the stack. As pointed out in
the discussion of the receiver, the acknowledgment has the
form ‘A’<sequence_number>. The top byte of the stack
consequently should contain ‘A’ and the next byte should
contain the sequence number. In bytes 9—11, the top byte is

NOAC EX. 1016 Page 255

NOAC Ex. 1016 Page 256

O 0

5,826,017
15

checked to see whether it contains ‘A’. If it does, bytes
14—31 are executed; otherwise, execution continues at byte
32. Bytes 14—31 check whether the acknowledgement has
the right sequence number; if it does, they set VAR_S to the
next sequence number. More specifically, bytes 14—20 check 5
whether the sequence number in the acknowledgment is the
same as the value of VAR_S. If it is not, execution continues
at byte 32; if it is, VAR_S is set to its new value by
subtracting its current value fi'om 1 (bytes 23—31).

The code in bytes 32—54 updates VAR_CNT and termi- 10
nates state 1 if the number of messages is greater than the
constant NR_MSGS, defined in 803 to be 32765. In bytes
32—40, 1 is added to the current value of VAR_CNT. In
bytes 41—47, VAR_CNT is pushed onto the stack1 the most
and least significant bytes of NR_MSGS is pushed onto the 15
stack, and the two values are compared. If VAR_CNT>=
NR_MSGS, bytes 50—52 put the value-1 on the stack. NXT
returns that value to run, which thereupon terminates, as
previously explained. Otherwise, byte 54 is executed, which
causes state 1 907 to again begin execution. 20
Performance of Protocol Apparatus 201 or 301

The performance of the implementation of the altemating-
bit protocol just described was compared with the perfor-
mance of an implementation in which the sender and
receiver were simply coded in the “C’ programming lan- 25
guage. The extra overhead caused by the use of protocol
description 203 and interpreter 209 instead of a “C” program
ranged fi'om 10—30%, depending on the length of the mes-
sage being transmitted (longer messages have the lower
overhead). In many applications, the extra overhead will be 30
offset by the fact that the protocol apparatus of the invention
can interpret any protocol for which there is a protocol
description 203. Further, there are many ways of reducing
the overhead. Perhaps the most promising way is to imple-
ment interpreter 209 in hardware; such hardware would be 35
capable of executing any protocol for which a protocol
description 203 existed. Other optimizations include imple-
menting interpreter 209 so that a minimum number of
procedure calls are required, optimizing protocol descrip-
tions 203 to avoid stack operations, and implementing 40
interpreter 209 as an on-the—fiy compiler, i.e., interpreter 209
operates by receiving protocol description 203 and compil-
ing protocol description 203 into the machine instructions
for the hardware which will actually implement the protocol.
If the protocol apparatus is adaptive, the compilation would 45
only have to be done before the first execution of the
protocol description after it is loaded into the protocol
apparatus.
Conclusion

The foregoing Detailed Description has disclosed to those 50
of ordinary skill in the art how protocol apparatus may be
constructed which is capable of executing any protocol for
which there is a protocol description written in a given
protocol language, how a sending protocol apparatus may
provide a protocol description to a receiving protocol appa~ 55
ratus and thereby provide for execution of any protocol by
the receiving protocol apparatus, and how a receiving pro—
tocol apparatus may be constructed which automatically
adapts to the environment in which it is employed. Advan-
tages of the techniques disclosed herein include more pre— 60
cise implementations of protocols, reduced implementation
cost, and greatly increased flexibility.

While an example protocol description language and an
example implementation of an interpreter for that protocol
description language have been disclosed herein, it will be 65
apparent to those of ordinary skill in the art that other
protocol description languages and other implementations of

16

the interpreter are possible. Moreover, other arrangements
for downloading or otherwise specifying protocol descrip—
tions may be used than those disclosed herein. That being the
case, the Detailed Description is to be understood as being
in all respects exemplary, but not restrictive, and the scope
of the invention is to be determined not from the Detailed

Description, but rather from the appended claims as inter-
preted in light of the Detailed Description and the doctrine
of equivalents.

What is claimed is:

1. A method of communicating in a distributed system
comprising the steps of:

in a first entity of the distributed system, receiving a first
general protocol message which includes a protocol
description which describes a specific protocol, the
specific protocol described by the protocol description
being initially unknown to the first entity, the protocol
description being in a protocol description language
which is independent of any particular hardware or
software implementation of the first entity; and

responding to the first general protocol message by
employing first protocol description interpretation
means to execute the protocol description included in
the first general message which enables the first entity
to communicate with a second entity of the distributed
system using the specific protocol.

2. Protocol apparatus for communicating in a distributed
system, the apparatus comprising:

in a first entity of the distributed system,
means for storing a protocol description which describes

a specific protocol, the protocol described by the pro—
tocol description being initially unknown to the first
entity and in a protocol description language which is
independent of any particular hardware or software
implementation of the protocol apparatus; and

means for executing the protocol description to imple-
ment the specific protocol and enabling the first entity
to communicate with a second entity of the distributed
system using the specific protocol.

3. Amethod for communicating data between elements of
a distributed system, comprising:

receiving in a first element of the distributed system a first
data message defining an arbitrary data communication
protocol which is initially unlmown to the first element
and is independent from any particular hardware or
software implementation of the first element;

configuring the first element to receive data formatted in
the arbitrary data communication protocol defined in
the first data message; and

receiving, in the first element, at least one additional data
message, the at least one additional data message
transmitted using the arbitrary data communication
protocol.

4. The method of communicating set forth in claim 3,
wherein the step of configuring the first element includes:

determining whether the first data message has been
correctly transmitted; and

if the first data message was not correctly transmitted,
returning to the step of receiving the first data message.

5. The method of communicating set forth in claim 3,
wherein the step of configuring the first element includes:

determining whether the first data message is a valid first
data message; and

if the first data message is not valid, sending an error
message.

NOAC Ex. 1016 Page 256

NOAC Ex. 1016 Page 257

43,317.

.r

O 0

5,826,017
17

6. The method of communicating set forth in claim 3,
wherein the step of configuring the first element includes
interpreting the arbitrary data communication protocol
according to the at least one parameter contained in the first
data message. 5

7. The method of communicating set forth in claim 6,
wherein:

the at least one parameter specifies a byte order employed
in the arbitrary data communication protocol; and

the step of interpreting the arbitrary data communication 10
protocol includes interpreting the arbitrary data com-
munication protocol according to the specified byte
order.

8. The method of communicating set forth in claim 6,
wherein: 15

the at least one parameter specifies a word size employed
in the arbitrary data communication protocol; and

the step of interpreting the arbitrary data communication
protocol includes interpreting the arbitrary data com—
munication protocol according to the specified word 20
size.

9. The method of communicating set forth in claim 3,
further comprising:

sending the first data message from a second element to
the first element; and

employing the arbitrary data communication protocol in
communications between the first and second elements.

10. The method of communicating set forth in claim 9,
further comprising responding to an error message which the
first element provides to the second element in response to
an error in the first data message.

11. The method of communicating set forth in claim 9,
wherein the step of employing the arbitrary data communi-
cation protocol includes configuring the second element to
receive data formatted in the arbitrary data communication
protocol.

12. The method of communicating set forth in claim 3,
wherein the step of configuring the first element includes
directly executing instructions contained in the first data
message and formatted in the arbitrary data communication
protocol.

13. The method of communicating set forth in claim 3,
wherein the step of configuring the first element includes
compiling the arbitrary data communication protocol to
produce instructions directly executable by means acces-
sible to the first element.

14. The method set forth in claim 3, wherein the step of
configuring the first element to receive data formatted in the
arbitrary data communication protocol includes making the
arbitrary data communication protocol included in the first
data message accessible to the first element.

15. The method set forth in claim 3, further comprising:
receiving in the first element a second data message which

defines a second arbitrary data communication proto-
col;

responding to the second data message by determining
whether the second arbitrary data communication pro-
tocol is accessible to the first element;

if the second arbitrary data communication protocol is 50
accessible, configuring the first element to interpret the
second arbitrary data communication protocol; and

if the second arbitrary data communication protocol is not
accessible, sending a first error message, and perform-
ing the step of receiving a first data message. 65

16. The method set forth in claim 15, wherein the step of
receiving the first data message includes determining

25

30

35

4o

45

50

55

18

whether the arbitrary data communication protocol included
in the first data message is equivalent to the second arbitrary
data communication protocol.

17. The method set forth in claim 16, wherein the step of
determining whether the arbitrary data communication pro-
tocol included in the first data message is equivalent to the
second arbitrary data communication protocol includes
sending a second error message if the arbitrary data com-
munication protocol is not equivalent to the second arbitrary
data communication protocol.

18. Protocol apparatus within a first element of a distrib-
uted system for communicating with other elements of the
distributed system, the protocol apparatus comprising:

means for receiving a first data message which defines an
arbitrary data communication protocol which is ini-
tially unknown to the first element and is independent
from any particular hardware or software implementa-
tion of the first element; and

means for configuring the first element to receive data
formatted in the arbitrary data communication protocol.

19. The protocol apparatus as set forth in claim 18,
wherein the means for receiving a first data message checks
the first data message to determine whether the first data
message has been correctly transmitted; and

if the first data message has not been correctly
transmitted, the means for configuring the first element
does not configure the first element to receive data
formatted in the arbitrary data communication protocol.

20. The protocol apparatus set forth in claim 18, wherein
the means for receiving a first data message includes a
checldng and indicating means for checking the first data
message and indicating whether the first data message is a
valid first data message the protocol apparatus further com-
prising error handling means for sending an error message
when the checking and indicating means indicates that the
first data message is not valid.

21. The protocol apparatus set forth in claim 18, further
comprising:

error handling means for sending an error message when
an error occurs during operation of the means for
configuring the first element to receive data formatted
in the arbitrary data communication protocol.

22. The protocol apparatus set forth in claim 18, wherein:
the first data message includes at least one parameter for

interpreting data transferred according to the arbitrary
data communication protocol; and

the means for configuring the first element interprets the
transmitted data according to the at least one parameter.

23. The protocol apparatus set forth in claim 22, wherein:
the at least one parameter specifies a byte order of the

transmitted data; and
the means for configuring the first element interprets the

transmitted data based on the specified byte order.
24. The protocol apparatus set forth in claim 22, wherein:
the at least one parameter specifies a word size of the

transmitted data; and
the means for configuring the first element interprets the

transmitted data based on the specified word size.
25. The protocol apparatus as set forth in claim 18,

wherein the means for configuring the first element inter-
prets the first data message by directly executing instructions
contained in the first data message.

26. The protocol apparatus set forth in claim 18, wherein
the means for configuring the first element interprets the first
data message by compiling the first data message to produce
instructions.

NOAC EX. 1016 Page 257

NOAC Ex. 1016 Page 258

O 0

5,826,017

19

27. The protocol apparatus set forth in claim 18, wherein:
the protocol apparatus further includes error handling

means;

the means for receiving the first data message further
receives a second data message; and

the means for configuring the first element further
includes:

means for receiving data formatted in a second arbi-
trary data communication protocol, and

means for determining whether the second arbitrary
data communication protocol is accessible;

wherein,
if the second arbitrary data communication protocol is

accessible, the configuring means interprets the second
arbitrary data communication protocol, and

if the second arbitrary data communication protocol is not
accessible, the configuring means sends a first error
message.

28. The protocol apparatus set forth in claim 27, wherein
the means for configuring the first element further makes
accessible the arbitrary data communication protocol
included in the first data message.

29. The protocol apparatus set forth in claim 27, wherein
the means for configuring the first element further deter—
mines whether the arbitrary data communication protocol
included in the first data message is the same as the second
arbitrary data communication protocol.

30. The protocol apparatus set forth in claim 18, wherein
the first data message is in a predetermined base format.

31. The protocol apparatus set forth in claim 30, wherein
the predetermined base format includes a field specifying a
word size.

32.The protocol apparatus set forth in claim 30, wherein
the predetermined base format includes a field specifying a
byte order.

33. An apparatus for communicating between computers
in a distributed system, comprising:

a first data processing apparatus of the distributed system
configured in a data communication protocol;

a second data processing apparatus of the distributed
system configured in an arbitrary data communication
protocol;

wherein the first data processing apparatus includes:
receiving means for receiving from the second data pro-

cessing apparatus a general message that defines the
arbitrary data communication protocol which is ini-
tially unknown to the first data processing apparatus
and is independent from any particular hardware or
software implementation of the first data processing
apparatus, and

configuring means for placing the first data processing
apparatus into the arbitrary data communication pro-
tocol defined by the general message, wherein the
receiving means is able to receive an additional mes-
sage in the arbitrary data communication protocol from
the second data processing apparatus.

34. The apparatus for communicating set forth in claim
33, wherein the configuring means further makes the arbi-
trary data communication protocol accessible to the first data
processing apparatus.

35. The apparatus for communicating set forth in claim
33, wherein:

the second data processing apparatus includes error han-
dling means;

the receiving means further receives a second general
message including a second arbitrary data communi-
cation protocol; and

10

15

20

25

30

35

40

45

50

S5

60

65

20

the configuring means determines whether the second
arbitrary data communication protocol is accessible,
wherein, if the configuring means determines the sec-
ond arbitrary data communication protocol is
accessible, the configuring means interprets the second
arbitrary data communication protocol, and if the con—
figuring means determines the second arbitrary data
communication protocol is not accessible, the receiving
means sends a first error message to the second data
processing apparatus.

36. The apparatus for communicating set forth in claim
35, wherein the configuring means further determines
whether the arbitrary data communication protocol is the
same as the second arbitrary data communication protocol.

37. Amethod for communicating data between a first data
processing apparatus and a second data processing
apparatus, the method comprising:

transmitting a first data message defining an arbitrary data
communication protocol, which is initially unknown to
the first data processing apparatus and is independent
from any particular hardware or software implementa-
tion of the first data processing apparatus, to the first
data processing apparatus fiom the second data pro-
cessing apparatus, at least a first portion of the first data
message being in the predetermined data communica-
tion protocol;

placing the first data processing apparatus into the arbi-
trary data communication protocol defined in the first
data message; and

transmitting at least one additional data message between
the first data processing apparatus and second data
processing apparatus, the at least one additional mes—
sage in the arbitrary data communication protocol
defined in the first data message.

38. The method for communicating data set forth in claim
37, wherein the first data processing apparatus and the
second data processing apparatus are computers.

39. The method for communicating data set forth in claim
37, wherein one of the first data processing apparatus and the
second data processing apparatus is a peripheral apparatus.

40. A method for transmitting data to a first element of a
distributed system, the method comprising:

receiving, in the first element, a first data message defin-
ing an arbitrary data communication protocol which is
initially unknown to the first element and is indepen-
dent from any particular hardware or software imple-
mentation of the first element, at least a first portion of
the first data message being in the predetermined data
communication protocol;

placing the first element into the arbitrary data commu-
nication protocol defined by the first data mc$age; and

receiving, in the first element, at least one additional data
message, the at least one additional data message in the
arbitrary data communication protocol defined in the
first data message.

41. A method for communicating between communica-
tions dew'ces, comprising:

receiving, using a general protocol, a first message at a
first communications device containing a protocol defl-
nition defining a specific protocol to be used for sub-
sequent messages;

executing the received protocol definition to implement
the specific protocol at the first communications device;
and

receiving, at the first communications device, the subse-
quent messages using the specific protocol.

NOAC EX. 1016 Page 258

NOAC Ex. 1016 Page 259

O 0

5,826,017
21

42. The method for communicating between communi-
cations devices as set forth in claim 41, wherein the first
me$age comprises a set of messages.

43. Amethod for communicating between communication
devices, comprising:

receiving, using a general protocol, a first message at a
first communications device identifying a specific pro-
tocol to be used for subsequent messages;

determining if a protocol description corresponding to the
specific protocol is available to the first communica-
tions device and if the protocol description correspond-
ing to the specific protocol is stored in the memory,
transmitting an acknowledge message, otherwise trans-
mitting an error message;

in response to the error message, receiving a second
message using the general protocol containing the
protocol description for the specific protocol;

executing the received protocol definition to implement
the specific protocol at the first communications device;
and

receiving, at the first communications device, the subse-
quent messages using the specific protocol.

44. A communications device capable of communicating
with other communications devices, comprising:

a communications circuit for routing communications
messages to and from the other communications
devices and transferring data to and from the commu-
nications device; and

a protocol apparatus that implements protocols used to
communicate with the other communications devices,
the protocol apparatus comprising:
a memory for storing at least one protocol definition,

each protocol definition defining a corresponding
protocol and being in a communications device-
independent protocol description language,

a protocol interpreter that executes the stored protocol
definition to implement the corresponding protocol,
and

a bootstrap interpreter that inputs a message received
from one of the other communications devices, the

10

15

20

30

35

22

message being in a general protocol and containing
a protocol definition defining a received protocol,
stores the received protocol definition in the
memory, and causes the protocol interpreter to
execute the received protocol definition to imple-
ment the received protocol, and enables the commu-
nications device to receive subsequent messages
from the one other communications device using the
received protocol.

45. A communications device capable of communicating
with other communications devices, comprising:

a communications circuit that processes communication
messages from the other communications devices, at
least one of the communication messages specifying a
protocol definition;

a protocol apparatus that implements a protocol used to
control communication sessions with the other com-

munications devices, comprising:
a memory for storing at least one protocol definition,

each protocol definition defining a corresponding
protocol and being in an independent protocol
description language;

a protocol instruction interpreter that executes a proto-
col definition stored in the memory; and

a bootstrap interpreter that inputs a message received
from one of the other communications devices, the
message containing a protocol definition, stores the
received protocol definition in the memory, and
causes the protocol instruction interpreter to execute
the received protocol definition.

46. A protocol for communicating between elements,
comprising:

a resident portion, the resident portion present in each
element; and

a non-resident portion that is transmittable from a first one
of the elements to the second one of the elements,
subsequent communications between the first and sec-
ond elements performed based on the non-resident
portion of the protocol.

¥¥#*¥

NOAC EX. 1016 Page 259

NOAC Ex. 1016 Page 260

Our Docket/Ref. No.: Air M Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz et al.

Serial No.: 09/609179

Filed: June 30, 2000

Group Art Unit: 2 7 5 6

Examiner:

: PROCESSING PROTOCOL

SPECIFIC INFORMATION IN

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

X Return postcard.

X The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITI‘AL IS ATTACHED

Date:Wt
Respectfully submitted,

% Fosenfeld
Attomey/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547—3378

 Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit:WLSignatu : madaeamat page 2.

PACKETS SPECIFIED BY A APR 1 7 200
PROTOCOL DESCRIPTION TGChnolo
LANGUAGE ~ W Center 2100

NOAC Ex. 1016 Page 261

Our Docket/Ref. No.: APT)01-2 , _ Patent 6‘] 79

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE fl5“

Applicant(s): Dietz et a1.

Serial No.2 09/609179

\ Filed: June 30, 2000

' -: PROCESSING PROTOCOL

Group Art Unit': 2 7 5 6

Examiner:

Commissioner for Patents

:1; Washington, DC. 20231

ff i TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

- Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

gi together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

Return postcard.|><I><|
The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,
Datezjk‘) MM 1007/

‘ Dov Rosenfeld "' ’ “ *1

Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547—3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date ofDepositzm Signature:
Dov Ro enfeld, Reg. No. 38,687

NOAC EX. 1016 Page 261

NOAC Ex. 1016 Page 262

in

mmmmmmm

 UNITED STATES PATENT AND TRADEMARK OFFICE
_. _ UNITED STATES DEPARTMENT OF COMMERCEUnited States P-tent and Trudemnxk Oflica

Addreu COMMISSIONER OF PATENTS AND TRADEMARKS
PO. Box 1450
Allendfll. Vll'Dnll 22311-1450
mu'pto gov

., ,

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ‘ ATTORNEY DOCKET NO. CONFIRMATION NO.

09/609,179 06/30/2000 Russell S. Dietz APPT-OOl-Z 2668

7590 06/04/2003 ,

DovRosenfeld

5507 College Avenue
Suite 2 DINH, KHANH Q
Oakland, CA 94618

2 l 55

1 DATE MAILED: 06/04/2003 P

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01)

NOAC EX. 1016 Page 262

NOAC Ex. 1016 Page 263

Application No. Lpplicanfls)

09/609,179 DIETZ ET AL.

Office Action Summary Examiner

Khanh Dinh

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE Q MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
It the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
Failure to reply Within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b),

Status

1)IZI Responsive to communication(s) filed on 11 Agni 2002 .

2a)l:I This action is FINAL. 2b)lXI This action is non-final.

3)l:l Since this application is In condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle. 1935 CD. 11, 453 O.G. 213.

Disposition of Claims

4)IXI Claim(s) 1-18 is/are pending in the application.

4a) Of the above claim(s) is/are withdrawn from consideration.

5)l:l Claim(s) is/are allowed.

MEI Claim(s) 1-3,13,14,17 and 18 is/are rejected.

NE Claim(s) 4-11 15 and 16 is/are objected to.

8)l:l Claim(s) are subject to restriction and/or election requirement.

Application Papers

9)I:I The specification is objected to by the Examiner.

10)l:] The drawing(s) filed on ____ is/are: a)l:l accepted or b)l:] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)l:] The proposed drawing correction filed on __ is: a)l:I approved b)[:l disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)l:] The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)l:l Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)l:I All b)|:l Some * c)I:] None of:

1.I:| Certified copies of the priority documents have been received.

2.I:| Certified copies of the priority documents have been received in Application No.

31:} Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

14)X| Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) I] The translation of the foreign language provisional application has been received.

15)|:] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.
Attachment(s)

1) IZI Notice of References Cited (PTO—892) 4) E] Interview Summary (PTO-413) Paper No(s). .
2) I] Notice of Drafisperson's Patent Drawing REVIEW (PT0‘948) 5) U Notice of Informal Patent Application (PTO-152)
3) El Information Disclosure Statement(s) (PTO-1449) Paper No(s) $45 . 5) I] Other:

US Patent and Trademark Office _
PTO-326 (Rev. 04-01) Office Action Summary Part of Paper No. 6

NOAC EX. 1016 Page 263

NOAC Ex. 1016 Page 264

m 0

r

Application/Control Number: 09/609,179 Page 1

Art Unit: 2155

DETAILED ACTION

Claims 1-18 are presented for examination.-umsWWm(“Humane..Mr. p—l

Claim Rejections - 35 USC § 112

2. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which
the applicant regards as his invention.

3. Claims 1 and 16 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to

particularly point out and distinctly claim the subject matter which applicant regards as the invention.

In claim 1 (page 124, line 7 and line 13, word 2) and claim 16 (page 127, line 9 word 7 and line 16 word

12):

The term “none or more” should be changed to “one or more”. The Examiner assumed the term “one or

more ” in this Office Action.

Correction is required.

Claim Rejections - 35 USC § 102

4. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the

rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country,
more than one year prior to the date of application for patent in the United States.

5. Claims 1-3, 13, 14, 17 and 18 are rejected under 35 U.S.C. 102(b) as being anticipated by Bruell US pat.

N0.5,680,585.

NOAC EX. 1016 Page 264

NOAC Ex. 1016 Page 265

m 0

Application/Control Number: 09/609,179 Page 2

Art Unit: 2155

As to claim 1, Bruell discloses a method of performing protocol specific operations on a packet passing through

a connection point on a computer network, the method comprising:

(a) receiving the packet (see fig.2a, abstract, col.4 lines 33-48).

(b) receiving a set ofprotocol descriptions for a plurality ofprotocols (i.e., using a wide range of data

type protocols, see col.5 lines 10-22) that conform to a layered model, a protocol description for a particular

protocol at a particular layer level including:

(i) the one or more child protocols of the particular protocol, the to packet including for any particular

child protocol of the particular protocol information at on or more locations in the packet related to the

particular child protocol (child fields, see col.4 line 49 to col.6 line 49).

(ii) the one or more locations in the packet where information is stored related to any child protocol of

the particular protocol (see col.9 line 8 to col.10 line 63).

(iii) the one more protocol specific operations (i.e., tests using packets description files) to be performed

on the packet for the particular protocol at the particular layer level (see col.9 line 8 to col. 10 line 63 and col. 14

line 37 to col.15 line 10).

(c) performing the protocol specific operations on the packet specified by the set ofprotocol descriptions

based on the base protocol of the packet and the children of the protocols used in the packet (see fig.4, col.15

line 11 to 001.16 line 42).

As to claim 2, Bruell discloses performing protocol specific operations is performed recursively for any children

of the children (see col.9 line 8 to col.10 line 63 and col.14 line 37 to col.15 line 10).

NOAC EX. 1016 Page 265

NOAC Ex. 1016 Page 266

m 0

Application/Control Number: 09/609,179 Page 3

Art Unit: 2155

As to claim 3, Bruell discloses which protocol specific operations (test platforms) are performed is step (0)

depending on the contents of the packet such that the method adapts to different protocols according to the

contents of the packet (see col.9 line 8 to 001.10 line 63 and col.14 line 37 to col.15 line 10).

As to claim 13, Burell discloses the protocol specific operations including one or more parsing and extraction

operations on the packet to extract selected portions of the packet to form a function of the selected portions for

identifying the packet as belonging to a conversational flow (decoding packets received in accordance with a

defined packet format, see col.4 line 49 to col.6 line 30 and col.14 line 37 to col.15 line 10).

As to claim 14, Bruell discloses the protocol descriptions are provided in a protocol description language (using

Packet Description Language, see col.5 line 24 to col.6 line 49).

As to claim 17, Bruell discloses the protocol specific operations further including one or more state processing

operations that are a function of the state of the flow of the packet (see fig.l, col.3 line 20 to col.4 line 33 and

col.14 line 38 to col.15 line 10).

As to claim 18, Bruell discloses the protocol specific operations including one or more state processing

operations that are a function of the state of the flow of the packet (see fig. 1 , col.3 line 20 to col.4 line 33 and

col.14 line 38 to col.15 line 10).

NOAC EX. 1016 Page 266

NOAC Ex. 1016 Page 267

(“w (’1

Application/Control Number: 09/609,179 Page 4

Art Unit: 2155

Allowable Subject Matter

6. Claims 4-11 and 15 are objected to as being dependent upon a rejected base claim, but would be

allowable if rewritten in independent form including all of the limitations of the base claim and any intervening

claims.

7. Claim 16 would be allowable if rewritten to overcome the rejection(s) under 35 U.S.C. 112, second

paragraph, set forth in this Office action and to include all of the limitations of the base claim and any

intervening claims.

8. The following is a statement of reasons for the indication of allowable subject matter:

None of the cited prior art recites or discloses a network monitor to be analyze different packets or frame

formats for performing specific operations compn'sing a combination of: storing a database in a memory, the

database generated from the set ofprotocol descriptions and including a data structure containing information

on the possible protocols and organized for locating the child protocol related information for any protocol, the

data structure contents indexed by a set of one or more indices, the database entry indexed by a particular set of

index values including an indication ofvalidity, wherein the child protocol related information includes a child

recognition pattern, wherein step (c) ofperforming the protocol specific operations includes, at any particular

protocol layer level starting from the base level, searching the packet at to the particular protocol for the child

field, the searching including indexing the data structure until a valid entry is found, and whereby the data

structure is configured for rapid searches using the index set. The invention fiirther includes the steps of:

looking up a flow~entry database comprising one or more flow-entries, at least one flow-entry for each

previously encountered conversational flow, the looking up using at least some of the selected packet portions

NOAC EX. 1016 Page 267

NOAC Ex. 1016 Page 268

(w (7

ia: Application/Control Number: 09/609,179 Page 5

Other prior art cited

9. The prior art made of record and not relied upon is considered pertinent to applicant‘s disclosure.

a. Logan et al., US pat. No.5,721,827.

b. Gupta et al., US pat. No.6,272,151.

c. Rossmann, US pat. No.6,430,409.

d. Trip et al., US pat. No.6,516,337.

e. Harvey et al., US pat. No.6,519,568.

Conclusion

10. Claims 1-3, 13, 14, 17 and 18 are rejected.

11. Claims 4-11 and 15 are objected to as being dependent upon a rejected base claim, but would be

allowable if rewritten in independent form including all of the limitations of the base claim and any intervening

claims.

12. Claim 16 would be allowable if rewritten to overcome the rej ection(s) under 35 U.S.C. 112, second

paragraph, set forth in this Office action and to include all of the limitations of the base claim and any

intervening claims.

NOAC EX. 1016 Page 268

NOAC Ex. 1016 Page 269

Application/Control Number: 09/609,179 Page 6

Art Unit: 2155

13, Any inquiry concerning this communication or earlier communications from the examiner should be

directed to Khanh Dinh whose telephone number is (703) 308-8528. The examiner can normally be reached on

Monday through Friday from 8:00 A.m. to 5:00 Pm.

If attempts to reach the examiner by telephone are unsuccessfill, the examiner's supervisor, Ayaz R.

Sheikh, can be reached on (703) 305-9648. The fax phone numbers for this group are:

After Final: (703) 746—7238

Official: (703) 746-7239

Non-Official/ Draft: (703) 746-7240

A shortened statutory periodfor reply is set to expire THREE monthsfrom the mailing date ofthis

communication. Failure to response within theperiodfor response will cause the application to become

abandoned (35 US. C . Sect. 133). Extensions oftime may be obtained under the provisions of37 CFR

1.136(A).

Any inquiry of a general nature or relating to the status of this application or proceeding should be

directed to the Group receptionist whose telephone number is (703) 305 -9600.

4:1Wit“
SUPERVISOHY PATENT EXAMINER

1' l R 2100
Khanh Dinh TECHI‘ OLUGY CENTE
Art Unit 2155

Patent Examiner

5/29/2003

NOAC EX. 1016 Page 269

NOAC Ex. 1016 Page 270

Reexamination

09/6093 79 DIETZ ET AL.

1 ‘ .

.4 . 2 Notice of References Cited Examiner Art Unit
9 . Khanh Dinh _ 2155 Page1 of1

u.s. PATENT DOCUMENTS \
Document Number Date . .

$5,680,585 101997 Email, Gregory 0. , m
-5,721,827 02-1998 Logan et al. ’ 709/217

“1.2.2v.”3‘.,3
t »

U)CCCCC
(D

0“Mi.,.
U)

11 C

 CCCCCC wmwwrow
c:9”

FOREIGN PATENT DOCUMENTS

Document Number
Country Code-Number-Kind Code

include as applicable: Author. Title Date, Publisher. Edition or Volume, Pertinent Pages)

‘A copy of this reference is not being furnished With this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign‘

US. Patent and Trademark Office .
PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 6

NOAC EX. 1016 Page 270

NOAC Ex. 1016 Page 271

Jun 13 03 03: 39p Dov/jsenf‘eld +1“5;3291-2985 P-1

INVENTEK Fax
Dov Rosenield

5507 College Avenue, Suite 2

Oakland. CA 94615, USA

Phone: (510)547-3378; Fax: (510)653-7992
dov@inventek.com

Patent Application Ser. N0.: 09/609179 Ref/Docket No: APPT-001—2

Applicant(s): Dietz, er a1. Examiner.: Dinh, Khanh Q.

Filing Date: June 30, 2000 Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

United States Patent and Trademark Office

(Examiner Dinh, Khanh (2., A1“: Unit 2155)

Fax N0.: 703—746—7239

DATE: June 13, 2003

FROM Dov Rosenfeld, Reg. No. 38687

RE: Response to Office Action

Number ofpages including cover: 19

OFFICIAL COMMUNICATION

 PLEASE URGENTLY DELIVER A COPY OF

THIS RESPONSE TO

EXAMINER DINH, KHANH 0., ART UNIT 2155

Certificate of Facsimile Transmission under 37 CPR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark Office at
telephone number 703-746-7239 addressed the Commissioner for Patents, P.O. Box 1450, Aiexandria, VA 22313-1450on.

"' v-p

Date: __—’?;_-1‘zg-.%__Q_D___ Signed:
Name: Dov Rosenfeld, Reg. No. 38687

Recelved from < +1 510 291 2985 > at 6l13103 7:41:12 PM [Eastern Dayllght Tlme]

NOAC EX. 1016 Page 271

NOAC Ex. 1016 Page 272

.Jun 13 03 03:39p DonsenFeld +1-553291-2885 P-E\

Application Number 09/609179
TRANSMITTAL

FORM
(to be used for all correspondence after initial filing)

Filing Date 30 Jun 2000

First Named inventor Dietz. Russell S.

Group Art Unit 2155

Examiner Name Dinh, Khanh Q.

ENCLOSURES check all that ap -Iy)

D Fee Transmittal Form Assignment Papers Alter Allowance Communication
(for an Application) to Group
Drawing(s)

Appeal Communication to Board

D Fee Attached of Appeals and lnterferences

Amendment/ Response

D D After Final

D D Allidavitsldeclarationls)

Appeal Communication to Group
(Appeal Notice, Bn‘ef, Reply Brief)

Proprietary information

Licensing-related Papers

 Petition Routing Slip (PTO/$8159)
and Accompanying Petition
To Convert a

Provisional Application

Power of Attorney, Revocation
Change of Correspondence
Address

Terminal Disclaimer

 Status Letter

EIEIEIEIEIU

Additional Enclosure(s)

(please identify below):

Return Postcard

Extension of Time Request

Express Abandonment Request

Small Entity Statement

Information Disclosure Statement

Certified Copy of Priority Document(s) Request of Refund

DUE]EIEIEIL—JEIEI
Ell]!

Response to Missing Parts/ Incomplete
Application DUEL—JDD

D EI Response to Missing Parts under 37CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, 0R AGENT] CORRESPONDENCE ADDRESS

Firm or Dov Rosenfeld, Reg. No. 38687 __
Individual name .4 ,

ZV
t _

ADDRESS FOR CORRESPONDENCE

Firm - Dov Rosenfeld

or 5507 College Avenue, Suite 2

individual name Oakland. CA 94618, Tel: +1-510-547-3378

CERTIFICATE OF FACSIMILE TRANSMISSION

l hereby certify that this correspondence is being facsimile transmitted with the United States Patent and Trademark Office at

Telephone number 703-746-7239 addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria. VA June 13‘ 2003
22313-1450 on this date:

"—1:- . No. 38687

Received from < +1 510 291 2935 > at M13103 1:41:12 PM [Eastern Daytlght Time] - “,6 OD

\

NOAC EX. 1016 Page 272

NOAC Ex. 1016 Page 273

J ~13 03 03:39 I) '\ r 1d +1—5:" 291—2985 p.3_ un p osten e 3-

Our RefJDocket No: APPT—001—2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Application No.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

Group An Unit: 2155

Examiner: Dinh, Khanh Q.

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the response are:

formal drawings (with separate letter);

This application has:

a small entity status. If a claim for such status has not earlier been made, consider
i this as a claim for small entity status.

X No additional fee is required.

A"?

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark

* Office at telephone number 703-746-7239 addressed the Commissioner for Patents, PO. Box 1450,
Alexandria, VA 22313-1450 on.

i Date: W Signed:
Name: Dov Rosenfeld, Reg. No. 38687

Received from < +1 510 291 2985 > at 3113103 7:41:12 PM [Eastern Dayllsht Time]

NOAC EX. 1016 Page 273

NOAC Ex. 1016 Page 274

Jun 13 03 03:39}: Doufjsenf‘eld +1-5f3291-2985 p.1. K \

INVENTEK Fax
Dov Rosenield

5507 College Avenue, Suite 2

Oakland. CA 94618, USA

Phone: (510)547-3378; Fax: (510)653-7992
dov@inventek.com

PatentApplication Ser. No.: 09/609179 Ref/Docket No: APPT-001-2

Applicant(s): Dietz, er al. Examiner.: Dinh, Khanh Q.

Filing Date: June 30, 2000 Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

United States Patent and Trademark Office

(Examiner Dinh, Khanh Q., Art Unit 2155)

Fax No.: 703—746-7239

DATE: June 13, 2003

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Response to Office Action

Number ofpages including cover: 19

OFFICIAL COMMUNICATION

 PLEASE URGENTLY DELIVER A COPY OF
THIS RESPONSE TO

EXAMINER DINH, KHANH 0., ART UNIT 2155

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark Office at
telephone number 703-746-7239 addressed the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 223 13~1450on.

’- '1

Date; -’ ?> - ltd$ £3 31’ Signed:
Name: Dov Rosenfeld, Reg. No. 38687

NOAC EX. 1016 Page 274

NOAC Ex. 1016 Page 275

Jun 13 03 03: 39p DovOsenFeld +1'5’3'291'2985 P-2

09/609179

__

—

ENCLOSURES check all that aply)

D Fee Transmittal Form Assignment Papers After Allowance Communication
(for an Application) to Group
Drawing(s)

 Application Number TRANSMITTAL

FORM
(to be used {or all correspondence after initial filing)

Appeal Communication to Board
D Fee Attached of Appeals and lnterferences

Amendment / Response

D D After Final

D D Afiidavitsldeclaration(s)

Licensing-related Papers Appeal Communication to Group
(Appeal Nofice, Brief, Reply Bn‘af)

Petition Routing Slip (PTO/$3169) Proprietary Information

El

El

Cl

C] and Accompanying Petition

D To Convert a . . Status LetterProwstonal Appllcatton

El

El

El

El

Power of Attorney, Revocation
Change of Correspondence
Address

Terminal Disclaimer

Extension of Time Request Additional Enclosure(s)

(please identify below):

Express Abandonment Request

 Information Disclosure Statement Small Entity Statement

Certified Copy of Priority Document(s)

Response to Missing Parts/ incomplete
ApplicationDUDUUEl

 CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT] CORRESPONDENCE ADDRESS

Firm or Dov Rosenfeld, Reg. No. 38687 f
Individual name ,4 ,
Signature

Request of Refund

D D Response to Missing Parts under 37

Date Vne 13, 2003
ADDRESS FOR CORRESPONDENCE

Dov Rosenield

5507 College Avenue, Suite 2
Oakland, CA 94618, Tel: +1-510-547-3378

l-"Irrn -
or

Individual name

I hereby certify that this correspondence is being facsimile transmitted with the United States Patent and Trademark Office at

22313-1450 on this date:

sen. = -- No. 38687

xx.

NOAC EX. 1016 Page 275

NOAC Ex. 1016 Page 276

Jul-1'13 03 03:39:: DovOsenFeld +1-573291—2985 p.a

Our Ref./Docl<et No: APPT—001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et 01.

Application N0.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

Group Art Unit: 2155

Examiner: Dinh, Khanh Q.

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner;

Transmitted herewith is a re5ponse to an office action for the above referenced application.

Included with the response are:

formal drawings (with separate letter);

This application has:

a small entity status. If a claim for such status has not earlier been made, consider

this as a claim for small entity status.

X No additional fee is required.

,0")/

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-746-7239 addressed the Commissioner for Patents, PO. Box 1450,
Alexandria, VA 22313-1450 on.

Date: (":2 7754543 £2 E; Signed:
Name: 0v Roscnfeld, Reg. No. 38687

NOAC EX. 1016 Page 276

NOAC Ex. 1016 Page 277

Jun 13 03 03:39P DovK senFeld +1-53291-2985 p.4

S/N 09/609179 Page 4 APPT-001-2

The fee has been calculated as shown below:

——-—-—-AFI ER AMENDMENT PREVIOUSLY PAID FOR CLAIMS PRESENT FEE

——-———-
—--—-

TOTAL ADDITIONAL FEE DUE: $ 0.00

X Applicant(s) believe(s) that no Extension of Time is required. However, this

conditional petition is being made to provide for the possibility that applicant has

inadvertently overlooked the need for a petition for an extension of time.

__ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

__ one months ($110) __ two months ($410)

__ two months ($930) __ four months ($1450)

If an additional extension of time is required, please consider this as a petition therefor.

A credit card payment form for the required fee(s) is attached.

X The Commissioner is hereby authorized to charge payment of the following fees

associated with this communication or credit any overpayment to Deposit Account
No. 50-0292 (A DUPLICATE OF THIS TRANSMITI‘AL IS ATTACHED):

X Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

X Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

. I “a /7
M;

Date Do osenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2

Oakland, CA 94618

Tel. +1-510-547-3378; Fax: +1—510—291—2985

NOAC EX. 1016 Page 277

NOAC Ex. 1016 Page 278

Jun'13 03 03:39p novOosenreid +1-513291-2985 p.5

Our Ref./Docket No: APPT—OOl-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Application No.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

Group Art Unit: 2155

Examiner: Dinh, Khanh Q.

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 223 13- 1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.

Included with the response are:

formal drawings (with separate letter);

This application has:

a small entity status. If a claim for such status has not earlier been made, consider

this as a claim for small entity status.

X No additional fee is required.

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-745-7239 addressed the Commissioner for Patents, PO. Box 1450,
Alexandria, VA 22313-1450 on.

/." v v-

Date: ’5 JggaxL O 3) Signed: . -
Name: Dov Rosenfeld, Reg. NO. 38687

NOAC EX. 1016 Page 278

NOAC Ex. 1016 Page 279

‘Jun'13 03 03:40p Dov<335en€eld +1—5:‘:>291-2985 [9.8

S/N 09/609179 Page 6 APPT-001-2

The fee has been calculated as shown below:

CLAIMS AS AMENDED

CLAIMS REMAINING HIGHEST NUMBER NO. OF EXTRA RATE ADDITIONAL
AFTER AMENDMENT PREVIOUSLY PAID FOR CLAIMS PRESENT FEE

TOTAL GLAD/IS

m. ems

X Applicant(s) believe(s) that no Extension of Time is required. However, this

conditional petition is being made to provide for the possibility that applicant has

inadvertently overlooked the need for a petition for an extension of time.

__ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(21) of:

one months ($110) __ two months ($410)

two months ($930) __ four months ($1450)

If an additional extension of time is required, please consider this as a petition therefor.

A credit card payment form for the required fee(s) is attached.

X The Commissioner is hereby authorized to charge payment of the following fees

associated with this communication or credit any overpayment to Deposit Account

No. 50-0292 (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

X Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

X Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

 ['2’ .:ZE!1.E 03
Date Dov Rose eld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2

Oakland, CA 94618

Tel. +1-510-547-3378; Fax: +1-510-29L2985

b/{ID/Cb

NOAC EX. 1016 Page 279

NOAC Ex. 1016 Page 280

111‘ Jun ‘13 03 03140P :DG‘J ‘fisenf‘E1d +1—5" ' '291'2995 P-7

,3 -. _. ‘ #7” I
Our RefJDockct No: APPT—OOI -2 » A Patent

_ L33”

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE L 4 7,03' \

Applicant(s): Dietz,et al. ’ Group Art Unit: 2155 MW
Application No.: 09/609179 Examiner: Dinh, Khanh Q.

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED BY A

PROTOCOL DESCRIPTION LANQJJAGE

RESPONSE T0 OFFICE ACTION UNDER 37 CFR 1.111

Mail Stop Non Fee Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

This is a response to the Office Action of June 4, 2003.

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark

Office at telephone number 703-746—7239 addressed the Commissioner for Patents, PO. Box 1450,
Alexandria, VA 223 [3' [450 on.

Date: _—__L_______l517w 9 3'9 Sawfl‘
Name: Dov 'oscnfeld, Reg. No. 38687

Recelved from < +1 510 291 2985 > at 6113/03 7:41:12 PM [Eastern Dayllght Tlme]

NOAC EX. 1016 Page 280

NOAC Ex. 1016 Page 281

Jun ‘13 U3 03:4UP DOV<'>jsenf-‘eld +1-51’D’ESl—2985

SIN 09/609179 Page 2 APPT—OO] -2

INTRODUCTORY REMARKS:

In response to the Office Action of June 4, 2003, kindly amend this application as follows

and kindly consider the following remarks.

Recelved from < +1 510 291 2985 > at 6I13103 7:41:12 PM [Eastern Daylight Tlme]

NOAC EX. 1016 Page 281

NOAC Ex. 1016 Page 282

Jun '13 03 03:40p Dovo-isenf-‘eld +1-593-291-2985

S/N 09/609179 Page 3 APPT—OOl-Z

AMENDMENT(S) TO THE CLAIMS:

The following listing of claims will replace all prior versions, and listings, of claims on the

application. Claims being amended are set forth in a larger font than all other claims. All

claims are set forth below with one of the following annotations.

- (Original): Claim filed with the application following the specification.

0 (Currently amended): Claim being amended in the current amendment paper.

0 (Previously amended): Claim not being currently amended, but which was amended

in a previous amendment paper.

- (Cancelled): Claim cancelled or deleted from the application.

- (Withdrawn): Claim still in the application, but in a non—elected status.

0 (Previously added): Claim added in an earlier amendment paper.

0 (New): Claim being added in the current amendment paper.

0 (Reinstated - formerly claim # __): Claim deleted in an earlier amendment paper, but

re—presented with a new claim number in current amendment.

0 (Previously reinstated): Claim deleted in an earlier amendment and reinstated in an

earlier amendment paper.

0 (Re-presented — formerly dependent claim # __): Dependent claim re—presented in

independent form in current amendment paper.

- (Previously re-presented): Dependent claim re-presented in independent form in an

earlier amendment, but not currently amended.

(Cancelled) \O

,2.’ (Currently amended) A method according to claim 41g, wherein step (c) of

performing protocol specific operations is performed recursively for any children of

\ the children.
(V . \o
\ /3./ (Currently amended) A method according to claim 1:113; wherein which protocol

specific operations are performed is step (0) depends on the contents of the packet

such that the method adapts to different protocols according to the contents of the

packet

/4{' (Currently amended) A method aesereling—te-elaim—trf-urther—eemerisinga

of performing protocol specific operations on a packet passing through a connection

point on a computer network, the method comprising:

Recelved from < +1 510 291 2985 > at on 3103 7:41 :12 PM [Eastern Dayllght Tlme] (9/3)
\D

NOAC EX. 1016 Page 282

NOAC Ex. 1016 Page 283

,JUn '13 03 03:41p DovO'osenreld +1-573—291—2995, V

S/N 09/609179 Page 4 APPT-OOl-Z

(a) receiving the packet;

(pl receiving a set of protocol descriptions for a plurality of protocols that

conform to ala ered model a rotocoldescri tion fora articular rotocol at

a particular layer level including:

li) if there is at least one child protocol of the protocol at the particular

layer level. the-one or more child protocols of the particular protocol at

the particular layer level, the packet including for any particular child

protocol of the particular protocol at the particular layer level

information at one or more locations in the packet related to the

particular child protocolI

(ii) the one or more locations in the packet where information is stored

related to any child protocol of the particular protocol, and

(iii) if there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular layer level, the

i8 one or more protocol specific operations to be performed on the

 n(WM...”we.“Wm.WMm..

packet for the particular protocol at the particular layer level; and

tcl performing the protocol specific operations on the packet specified by the

set of protocol descriptions based on the base protocol of the packet and the

children of the protocols used in the packet,

the method further comprising:

i storing a database in a memory, the database generated from the set of protocol

I descriptions and including a data structure containing information on the
, possible protocols and organized for locating the child protocol related

information for any protocol, the data structure contents indexed by a set of one

or more indices, the database entry indexed by a particular set of index values

including an indication of validity,

wherein the child protocol related information includes a child recognition pattern,

wherein step (c) of performing the protocol specific operations includes, at any

particular protocol layer level starting from the base level, searching the packet at the

particular protocol for the child field, the searching including indexing the data

structure until a valid entry is found, and

NOAC EX. 1016 Page 283

NOAC Ex. 1016 Page 284

sun '13 03 03:41p Dovicjasenf-‘eld +1—5::)291-2985

S/N 09/609179 Page 5 APPT-OOl-Z

3/

”i

y[

whereby the data structure is configured for rapid searches using the index set.
i

(Original) A method according to claimfl, wherein the protocol descriptions are provided
in a protocol description language, the method further comprising:

compiling the PDL descriptions to produce the database.

(Original) A method according to clairrifl, wherein the data structure comprises a set of
arrays, each array identified by a first index, at least one array for each protocol, each array

further indexed by a second index being the location in the packet where the child protocol

related information is stored, such that finding a valid entry in the data structure provides the

location in the packet for finding the child recognition pattern for an identified protocol.

3
(Original) A method according to claimifwherein each array is further indexed by a third

index being the size of the region in the packet where the child protocol related information is

stored, such that finding a valid entry in the data structure provides the location and the size

of the region in the packet for finding the child recognition pattern.

(Original) A method according to claim},/wherein the data structure is compressed

according to a compression scheme that takes advantage of the sparseness of valid entries in

the data structure. 5

(Original) A method according to claim/g,wherein the compression scheme combines two
or more arrays that have no conflicting common entries.

(Original) A method according to claim‘% wherein the data structure includes a set of
tables, each table identified by a first index, at least one table for each protocol, each table

further indexed by a second index being the child recognition pattern, the data structure

further including a table that for each protocol provides the location in the packet where the

child protocol related information is stored, such that finding a valid entry in the data

structure provides the location in the packet for finding the child recognition pattern for an

4

(Original) A method according to claim)0{wherein the data structure is compressed

identified protocol.

according to a compression scheme that takes advantage of the sparseness of valid entries in

‘ir

(Original) A method according to claimJ/fi wherein the compression scheme combines

the set of tables.

two or more tables that have no conflicting common entries.

NOAC EX. 1016 Page 284

NOAC Ex. 1016 Page 285

Jun '13 03 03:41P DovOsenFeld +1-573-291-2985

S/N 09/609179 Page 6 APPT—OOl—Z

\O/

A’s. (Currently amended) A method asserdmg—te—elarm—JAaHher—eempnemg—l

of erl‘ormin rotocols ecifico erations ona acket assin throu haconnection

oint on a com uter network the method corn risin :

(a) receiving the packet:

lb) receiving a set of protocol descriptions for a pluraligfi of protocols that

conform to a layered modell a protocol description for a partiCUlar protocol at

a particular layer level including:

(i) if there is at least one child protocol of the protocol at the particular

layer level, the-one or more child protocols of the particular protocol at

the particular layer levell the packet including for any particular child

protocol of the particular protocol at the particular layer level

information at one or more locations in the packet related to the

particular child protocoll

\ (ii) the one or more locations in the packet where information is stored
related to any child protocol of the particular protocolI and .

% (iii) if there is at least one protocol specific operation to be performed on
l the packet for the particular protocol at the particular layer levelI the

one or more protocol specific operations to be performed on the

packet for the particular protocol at the particular layer level; and

(c) performing the protocol specific operations on the packet specified by the

set of protocol descriptions based on the base protocol of the packet and the

children of the protocols used in the packetI

wherein the protocol specific operations include one or more parsing and extraction

operations on the packet to extract selected portions of the packet to form a function

of the selected portions for identifying the packet as belonging to a conversational

flow.

\3 \0
J47 (Currently amended) A method according to claim fig?wherein the protocol

descriptions are provided in a protocol description language.

vi (5
,16’ (Original) A method according to claim 1/4f further comprising:

Received from < +1 510 291 2985 > at 0113/03 7:41:12 PM [Eastern Daylight TIme]

NOAC EX. 1016 Page 285

i
l

i
l

i

NOAC Ex. 1016 Page 286

M~wxr

Wamnw

Jun 13 03 03=4IP DOV/:Dbsenf‘eld +1—513—291-2995\

S/N 09/609179 Page 7 APPT-OO 1—2

compiling the PDL descriptions to produce a database and store the database in a

memory, the database generated from the set of protocol descriptions and including a

data structure containing information on the possible protocols and organized for

locating the child protocol related informatiOn for any protocol, the data structure

contents indexed by a set of one or more indices, the database entry indexed by a

particular set of index values including an indication of validity,

whe in the child protocol related information includes a child recognition pattern, and

herein the step of performing the protocol specific operations includes, at any particular

protocol layer level starting from the base level, searching the packet at the particular

Wm the child field, the searching including indexing the data structure until a valid
entry is found,

4 whereby the data structure is configured for rapid searches using the index set.
\ \ O

)6? (Currently amended) A method according to claim)5 further comprising:

one flow-entry for each previously encountered conversational flow, the looking up

using at least some of the selected packet portions and determining if the packet

matches an existing-flow—entry in the flow-entry database

% looking up a flow—entry databasa comprising nem—er—mere—flew—entrieerat least

if the packet is of an existing flow, classifying the packet as belonging to the found

existing flow; and

it the packet is of a new flow, storing a new flow—entry for the new flow in the flow-

entry database, including identifying information for future packets to be identified

with the new flow-entry;

wherein for at least one protocol, the parsing and extraction operations depend on

the contents of Rene-one or more packet headers.

\V \O
M (Original) A method according to claim)3, wherein the protocol specific operations

further include one or more state processing operations that are a function of the state of the

flow of the packet.

the met od comgrising:

lt

i
Recelved from < +1 510 291 2985 > at 3113/03 7:41:12 PM [Eastern Daylight Time]

NOAC EX. 1016 Page 286

NOAC Ex. 1016 Page 287

Jun ‘13 03 03:42P DOV/jasenf-‘eld +1-5r’3—291-2985 p. 14. \~ ‘

SIN 09/609179 Page 8 APPT-OOl-2

a receivi the acket-

aset of rotocol descri tions fora luralit of rotocols that

receivi

conform a la ered model a rotocol descri tion fora articular rotocol at

a articul rla er level includin :

i I if there is at least one child rot0col of the
I er level the-one or more child rotocols of the articular rotocol at

tge garticular layer level, the Qacket including for any garticular child

rotocol at the articular

i formation at one or more locations in the acket related to the
articular child rotocol

{t}
the one or more locations in the acket where information is stored

elated to any child protocol of the Qarticular grotocol, and

fthere is at least one rotocol s ecifico eration to be ertormed on

e acket for the articular rotocol at the articular Ia er level the

one or more grotocol specific ogerations to be gerformed on the

Qacket for the garticular grotocol at the garticular layer level; and

erformin the rotocol s ecifico erations on the ackets ecified b the set of

grotocol desc igtions based on the base grotocol of the gacket and the children of the

grotocols used in the gacket,

wherein the otocol specific operations include one or more state processing

operations th tare a function of the state of therflow of the packet.

. Received from < +1 510 291 2985 > at 5/13/03 7:41:12 PM [Eastern Dayllgh! Tlme] NOAC EX. 1 0 1 6 Page 287 ‘ ‘-

NOAC Ex. 1016 Page 288

Jun ' 13 03 03:42.: Dov<josenre1d +1-5i3-291-2985

S/N 09/609179 Page 9 APPT-001-2

REMARKS

Status of the Application:

Claims [—18 are the claims of record of the application. Claims 1—3, 13, 14, 16, 17 and 18

have been rejected and claims 4—11, and 15 have been objected to as being dependent upon

a rejected base claim, but would be allowable if rewritten in independent form.

Note that the examiner did not explicitly mention claim 12. As claim 12 depends on claim

11 and claim 11 was objected to as being dependent upon a rejected base claim, but would

be allowable if rewritten in independent form, the same is assumed to apply to claim 12.

Amendment to the Claims:

Claim 1 has been cancelled. Some of the remaining claims were amended to not depend on

any cancelled claim. Furthermore, the none or more phrases in the claims was amended.

Claim Rejections -35 USC § 112 Second Paragraph (lndefiniteness)

In parawrgaph 3 of the office action, claims 1 and 16 were rejected under 35 USC 112,
second paragraph, as being indefinite. In particular the examiner asserted that the phrase
“none or more” renders the claims indefinite.

Applicants respectfully disagree that the phrase "none or more" is indefinite in this context.

The phrasing is common in computer language descriptions, and the meaning would be
clear to those in the art. Nevertheless, the recitations in the claims that include "none or

more" have been amended to indicate the definite meaning. In claim 1, for example, the

recitation of "the none or more child protocols of the particular protocol" has been

amended to "if there is at least one child protocol of the particular protocol at the particular

layer level, the one or more child protocols of the particular protocol at the particular layer
level, the packet including for any particular child protocol of the particular protocol
information at one or more locations in the packet related to the particular child protocol.

Claim Rejections -35 USC § 102

In paragraph 5 of the office action, claims 1—3. 13, 14, 17 and 18 were rejected under 35
USC 102(b) as being anticipated by Bruell (US. Patent 5,680,585).

Claim 1 has been canceled and claims 2, 3 and 14 have been amended to depend on claim

13 that is believed to be allowable.

The rejection of claims 13, 17 and 18 are believed to be erroneous.

Description of Bruell.

Bruell describes a language for describing different packet formats. A packet description
language file describes a format. A compiler translates the packet description language file

we \ZJ/d?)
Received from < +1 510 291 2985 > at 6/13"” 7:41:12 PM [Eastern Davllght Tlme] NOAC EX. 1 01 6 Page 288

NOAC Ex. 1016 Page 289

Received from < +1 510 291 2985 > at 511.1103 7:41:12 PM [Eastern Daylight Time]

Jun 13 03 03:43]: DovOosenFeld +1-57‘V281—2985~J

S/N 09/609179 Page 10 APPT—001—2

into a data structure. Application programs may both encode data into packets according to

the defined format as well as decode packets that were assembled according to the

protocol. To do this, application programs need only reference a data structure resulting
from the compiled packet description language file. In this manner, numerous data packets

formats may be defined in accordance with different data transfer media and packet

protocols.

Claim 13

Regarding claim 13, the examiner asserts that Bruell discloses protocol specific operations
that include one or more parsing and extraction operations on the packet to extract selected

portions of the packet to form a function of the selected portions for identifying the packet
as belonging to a conversational flow.

Applicants' respectfully disagree.

First, the examiner has failed to show that any protocol specific Operations disclosed in

Bruell are the protocol specific operations of step (c).

In the rejection of original claim 1 (now cancelled but incorporated into claim 13), the
examiner asserts that Bruell in col. 9 line 8 to col. 10 line 43, and in col. 14, line 37 to

col. 15, line 10 describes that the protocol description for a particular protocol at a

particular layer level includes any protocol specific operations to be performed on the
packet for the particular protocol at the particular layer level. The examiner also asserts that
"test using packet description files" in Bruell are such protocol specific operations. Col. 9
line 8 to col. 10 line 43 of Bruell describes protocols and how Bruell's language can be

used to describe how to interpret protocols, in particular, how to decode a packet based on

the protocol. Col. 14, line 37 to col. 15, line 10 of Bruell describes how the language may
be used to specify filtering. Thus, Bruell describes using the language to define a set of
protocol specific operations. However, the examiner has not shown that in Bruell the
feature the descriptions of the protocols themselves, i.e., the protocol description of the
protocol describe the protocol Specific operations to be performed.

In the rejection of original claim I (now cancelled but incorporated into claim 13),
the examiner also asserts that Bruell in FIG. 4 and in col. 15 line 11—col. 16, line 42

discloses step (c) of perfomiing the protocol specific operations on the packet specified by
the set of protocol descriptions based on the base protocol of the packet and the children of
the protocols used in the packet.

Applicants reSpectfully disagree. While the cited passage describes some protocol
specific operations, protocol specific Operations are part of what Bluell calls test
application routines. For example, Bruell states that the test application routines

"may include a send routine 410, a receive routine 420 and a tap routine 430. The
test application routines each refer to the PDL data structures 405 for carrying out
their respective functions with respect to the device under test 305."

K0513")?

NOAC EX. 1016 Page 289

NOAC Ex. 1016 Page 290

Jun 13 03 03:43}: Dovcjosenf‘eld +1-5):>—281—2985

S/N 09/609179 Page 11 APPT-OOl —2

Thus, one may argue that Bruell describes performing protocol specific operations. In

Applicants' invention, any protocol specific operations to be performed on the packet for a

particular protocol as part of step (c) are included in the protocol description for the

particular protocol at a particular layer level (See restriction (iii) of step (b) that describes

what is included in the protocol description for a particular protocol). However, in Bruell,

the protocol description of the protocol does not describe the protocol description

operations to be performed. Rather, the cited part of Bruell describes how test application

routines may be written and how such written application routines, e.g., filtering, may use

compiled protocol descriptions.

In the rejection of claim 13, the examiner asserts that "decoding packets in accordance with

a defined packet format" describes "parsing and extraction operations on the packet to

extract selected portions of the packet to form a function of the selected portions for

identifying the packet as belonging to a conversational flow" and further that this is
disclosed in col. 4 line 49 to col 6, line 30 and col. 14, line 37 to col. 15, line 10 of Bruell.

Applicants respectfully disagree.

Those in the art would understand that decoding a packet is the determining of the payload

at each layer according to the protocol. This may include parsing, may include extraction

operations, and may include extracting selected portions of the packet. However, the

examiner has failed to show that Bruell discloses the feature of the extraction being to form

a function of the selected portions for identifling the packet as belonging to a

conversational flow. Applicants invention is in order to recognize packets, e.g., that pass

through a node in a network, as belonging to a conversational flow. A conversational flow

is the set of packets of a conversation. The function of the extracted portions is used to

recognize a packet as belonging to a conversational flow. The examiner has failed to show

that Bruell discloses such forming of a function.

Thus, claim 13 is believed allowable. Action to that end is respectfully requested.

Claim 17

Regarding claim 17, the examiner asserts that Bruell discloses that the protocol specific

operations include one or more state processing operations that are a function of the state

of the flow of the packet. In particular, that Bmell's FIG. 1 and col. 3, line 20 to col. 4, line
33, and col. 14, line 38 to col. 15, line 10 describe this feature.

Claim 17 depends on claim 13. The rejection of claim 13 is believed overcome. The above

arguments with respect to claim 13 are incorporated herein by reference. Thus claim 17 is

believed allowable and action to that end is respectfully requested.

However, even if the examiner remains unconvinced by applicant's arguments for

overcoming the rejection of claim 13, Applicants still believe the examiner's arguments for

rejecting claim 17 are erroneous.

State processing that depends on the state of a conversational flow is a concept described in

the specification. A conversational flow is the set of packets of a conversation. The state of

Received from < +1 510 291 2935 > at 5113103 7:41 :12 PM (Eastern DaY'EIh‘ Tlmel NOAC EX 1 0 1 6 Pageom03)

p.17

NOAC Ex. 1016 Page 291

.-m“-mwa,w,

t\Jun 13 03 03:44P Dovlfisenf‘eld +1-533291-2985

S/N 09/609179 Page 12 APPT-001-2

a flow is described in the specification as an indication of all previous events in the flow.

State processing thus is processing that depends on the state of a conversational flow, i.e.,

on the sequence of one or more previously encountered packets of the same conversational

flow (or initial state in the case of the first packet in a conversational flow). The examiner

has failed to show that Bruell includes this feature. For example, the word "state" does not

even appear in Bruell.

The cited FIG. 1 of Bruell shows the process of constructing a packet. The cited part on

cols. 3 and 4 of Bruell describes FIG. 1 and also the use of Bruell's language to define

protocols and to process a single packet. No conversational flows or state processing are

disclosed. The cited part on cols. 14 and 15 of Bruell describes how Bruell's packet

description language (PDL) may be advantageously implemented in a system for testing

intemetwork routing devices (the device test environment 301). See FIG. 3. A user defines
One or several PDL files 302. To use the device test environment 301, a user creates a test

file 303 that specifies the number, type and optional content of packets for the device test
environment 301 to send to and receive from a device under test 305. The remainder of the

cited part of Bruell is repeated here:

The device test environment 301 follows the script created by the testfiles with reference to

the data packetformats defined in the PDLfiles. The PDLfiles determine the structure and

default content of each packet type. When a device test environment 301 reads an
instruction in a testfilefor the device under test to send a type ofpacket, it assembles the

test packet by referring to the packet assembly specification in the PDLfiles 302. For
example, if the device test environment reads a testfile instruction to send an Ethernet
header (ENET. sub. —- HDR) packet, it looksfor the ENETsub.-- HDR specification in the ~

PDLfiles and assembles the packet accordingly. Similarly, when the device test
environment reads an instruction in a testfilefor the device under test to receive a type of

packet, a test packet is providedfor the device to receive. If the packet the test environment
reads matches the packet type in the PDLfiles, then the device test environment 301

reports that the test succeeded; otherwise, it reports that itfailed.

There is no concept of a conversational flow or of the state of the flow of the packet. Bmell

discloses testing individual packets. Thus, applicants assert, the examiner has failed to

show that Bruell describes state processing that is a function of the state of the flow of the

packet.

The rejection of claim 17 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

Claim 18

Regarding claim 18, the examiner asserts that Bruell discloses that the protocol specific
Operations include one or more state processing operations that are a function of the state
of the flow of the packet. In particular, that Bruell's FIG. 1 and col. 3, line 20 to col. 4, line
33, and col. 14, line 38 to col. 15, line 10 describe this feature.

@665
Received from < +1 510 291 2985 > alts/13103 7:41:12 PM [Eastern Dayflgm “me! NOAC EX. 1 0 1 6 Page 29 1

NOAC Ex. 1016 Page 292

l
\Jun 13 03 03:45p Dov/\D’senf-‘eld +1—533-291-2985 p.19

S/N 09/609179 Page 13 APPT—OOl-Z

First, the examiner has failed to show that any protocol specific operations disclosed in

Bruell are the protocol specific operations of step (c). The arguments presented above for

this aspect of claim 13 also apply to the rejection of claim 18, as amended, and are

incorporated herein by reference. Furthermore, the examiner has failed to show that Bruell

discloses that the protocol specific operations include one or more state processing

operations that are a function of the state of the flow of the packet. The arguments

presented above for this aspect of claim 17 also apply to the rejection of claim 18 and are

incorporated herein by reference.

The rejection of claim 18 is thus believed overcome and the claims are allowable. Action to

that end is respectfully requested.

For these reasons, and in view of the above amendment, this application is now considered

to be in condition for allowance and such action is earnestly solicited.

Conclusion

The Applicants believe all of Examiner’s rejections have been overcome with respect to all

remaining claims (as amended), and that the remaining claims are allowable. Action to that

end is respecfiully requested.

If the Examiner has any questions or comments that would advance the prosecution and

allowance of this application, an email message to the undersigned at dov@inventek.com,

or a telephone call to the undersigned at +1 -5 10-547-3378 is requested.

Respectfully Submitted,

Date D Rosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2
Oakland, CA 94618

Tel. +l—510-547—3378; Fax: +1-510-291-2985
Email: dov@inventek.com

A607)

m3'"F“‘°"‘°"“9"”'“‘°' NOAC EX. 1016 Page 292

NOAC Ex. 1016 Page 293

Jun 27 03 08:09.?! DodDosent—‘eld +1-5“‘D—291-2885 p.1

INVENTEK Fax #313
Dov Rosenfeld

5507 College Avenue, Suite 2 L93- 3
Oakland, CA 94618, USA C ’30-°
Phone: (510)547-3378; Fax: (510)653-7992 wkw
dov@inventek.com

 ParentApplication Ser. No.: 09/609179 Refi/Docket No: APPT—OO1-2

Applicant(s): Dietz, er al. Examiner.: Dinh, Khanh Q.

Art Unit: 2155 Filing Date: June 30, 2000

FAX COVER PAGE

T0: Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

United States Patent and Trademark Office

(Examiner Dinh, Khanh Q., Art Unit 2155)

Fax No.: 703-746-5510

DA TE: June 27, 2003

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Supplementmy response: CLAIM 18 of Serial Number 09/609,179

Number ofpages including cover: 6

Dear Sir,

Further to our telephone conversation yesterday, here is a revised amendment for claim 18, this time
with a clean version included. I‘ve included the same remarks on the rejection of claim 18 as was in

the earlier supplemental response of 6/19/03 such that this forms a complete supplemental response.

Thank you very much,

Dov Rosenfeld

t
s

a

e/ae/oz

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark addressed the
Commissioner for Patents, PO. Box 1450, Alexandria. VA 22313-1450 on.

Date: Q [21 Z 9L. _ Signed:
Name: Dov osenfeld. Reg. No. 38687

NOAC EX. 1016 Page 293

Received from < +1 510 291 2985 > at 6I27I03 12:05:26 PM [Eastern Dayllght Tlme]

NOAC Ex. 1016 Page 294

Jun '27 03 ('18: 10a noiaosenreld +1—sQ—291—ases p.2

S/N 09/609179 (Our APPT-OOl ~2l

Applicant(s): Dietz, et al. Group Art Unit: 2155

Application No.: 09/609179 Examiner: Dinh, Khanh Q.

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

lNFORMATION 1N PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

SUPPLEMENTAL RESPONSE

Mail Stop Non Fee Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear sir,

Further to the telephone conversations between the examiner and the undersigned
regarding claim 18, here is a revised amendment to claim 18.

AMENDMENT TO CLAIM 182/

Kindly amend claim 18 to read as follows. A recitation showing the deletions and additions

follows on a separate sheet:

 \(\ . A method of performing protocol specific operations on a packet passing through a
connection point on a computer network, the method comprising:

(a) receiving the packet;

\ (b) receiving a set of protocol descriptions for a plurality of protocols that
'% conform to a layered model, a protocol description for a particular protocol at a

particular layer level including:

(i) if there is at least one child protocol of the protocol at the particular

layer level, the one or more child protocols of the particular protocol at '

the particular layer level, the packet including for any particular child

protocol of the particular protocol at the paiticular layer level
information at one or more locations in the packet related to the

particular child protocol,

NOAC EX. 1016 Page 294
Received from < +1 510 291 2985 > at BIZTIOS 12:06:26 PM [Eastern Daylight Tlme]

NOAC Ex. 1016 Page 295

Jun '27 03 08: 10a nokjosenreid +1-SQ-291—2985 p.3
SIN 09/609179 Page 2

(ii) the one or more locations in the packet where information is stored

related to any child protocol of the particular protocol, and

(iii) if there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular layer level, the

one or more protocol specific operations to be performed on the packet

for the particular protocol at the particular layer level; and

(c) performing the protocol specific operations on the packet specified by the

set of protocol descriptions based on the base protocol of the packet and the

(g { children of the protocols used in the packet,
wherein the packet belongs to a conversational flow of packets having a set of one or

A more states, and wherein the protocol specific operations include one or more state
M processing operations that are a function of the state of the conversational flow of the

packet, the state of the conversational flow of the packet being indicative of the

sequence of any previously encountered packets of the same conversational flow as the

packet.

NOAC EX. 1016 Page 295R8ceived from < +1 510 291 2985 > at 5/27/03 12:06:25 PM [Eastern Daylight Tlme]

NOAC Ex. 1016 Page 296

Jun 27 03 08: 10a Dogosenf’eld +1—5‘Q—291-2985

S/N 09/609179 Page 3

Description of amendment to claim 18:

18. (Currently amended) A method aseereling—te—eleim—J— of performing protocol

s ecific o erations on a acket assin throu h a connection oint on a com uter

network, the method comprising:

(a) receiving the packet;

(b) receiving a set of protocol descriptions for a pluraliy of protocols that

conform to a layered model, a protocol description for a particular protocol at

a particular layer level including:

(i) if there is at least one child protocol of the protocol at the particular

layer level, the-one or more child protocols of the particular protocol at

the particular layer level, the packet including for any particular child

protocol of the particular protocol at the particular layer level

information at one or more locations in the packet related to the

particular child protocol,

(ii) the one or more locations in the packet where information is stored

related to any child protocol of the particular protocol, and

{iii} if there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular layer level, the

one or more protocol specific operations to be performed on the

packet for the particular protocol at the particular layer level; and

to) performing the protocol specific operations on the packet specified by the set of

protocol descriptions based on the base protocol of the packet and the children of the

protocols used in the packet,

wherein the packet belongs to a conversational flow of packets having a set of one or

more states, and wherein the protocol specific operations include one or more state

processing operations that are a function of the state of the conversational______flow of the

packet, the state of the conversational flow of the packet being indicative of the

seguence of any previously encountered packets of the same conversational flow as

the packet.

NOAC EX. 1016 Page 296Received from < +1 510 291 2985 > at GIN/03 12:08:26 PM [Eastern Daylight Time]

NOAC Ex. 1016 Page 297

Jun '27 03 08: 10a DoQosenf-‘eld +1-5\>—291-2985

SIN 09/609179 Page 4

REMARKS ON THE REJECTION OF CLAIM 18

Regarding claim 18, the examiner asserts that Bruell discloses that the protocol specific

operations include one or more state processing operations that are a function of the state

of the flow of the packet. In particular, that Bruell's FIG. 1 and col. 3, line 20 to col. 4, line

33, and col. 14, line 38 to col. 15, line 10 describe this feature.

Applicants respectfully disagree.

State processing that depends on the state of a conversational flow is a concept described in

the specification. A conversational flow is the set of packets of a conversation. A
conversational flow has a set of one or more states. The state of a flow is described in the

specification as an indication of all previous events in the flow. State processing thus is

processing that depends on the state of a conversational flow the packet belongs to. Le, on

the seguence of any previously encountered packets of the same conversational flow as the

packet. The examiner has failed to show that Bruell includes this feature. For example, the

word "state" does not even appear in Bruell.

The cited FIG. 1 of Bruell shows the process of constructing a packet. The cited part on

cols. 3 and 4 of Bruell describes FIG. 1 and also the use of Bruell's language to define

protocols and to process a single packet. No conversational flows or state processing are

disclosed. The cited part on cols. 14 and 15 of Bruell describes how Btuell's packet

description language (PDL) may be advantageously implemented in a system for testing

internetwork routing devices (the device test environment 301). See FIG. 3. A user defines
one or several PDL files 302. To use the device test environment 301, a user creates a test

file 303 that specifies the number, type and optional content of packets for the device test
environment 30l to send to and receive from a device under test 305. The remainder of the

cited part of Bruell is repeated here:

The device test environment 301 follows the script created by the testfiles with

reference to the data packetformats defined in the PDLfiles. The PDLfiles

determine the structure and default content of each packet type. When a device test

environment 301 reads an instruction in a testfilefor the device under test to send

a type ofpacket, it assembles the test packet by referring to the packet assembly

specification in the PDLflles 302. For example, if the device test environment

reads a testfile instruction to send an Ethernet header (ENETsub.—— HDR) packet,

it looksfor the ENETsub.-- HDR specification in the PDLfiles and assembles the

packet accordingly. Similarly, when the device test environment reads an

instruction in a testfilefor the device under test to receive a type ofpacket, a test

packet is providedfor the device to receive. If the packet the test environment reads

matches the packet type in the PDLfiles, then the device test environment 301

reports that the test succeeded; otherwise. it reports that itfailed.

There is no concept of a conversational flow or of the state of the flow of the packet. Bruell

discloses testing individual packets. Thus, applicants assert, the examiner has failed to

NOAC EX. 1016 Page 297

Recelved from <+1 510 291 2985 > at ”27103 12:06:26 PM [Eastern Daylight Time]

NOAC Ex. 1016 Page 298

\ f,“ ’1

Jun 27 03 08:lla Dodosenf‘eld +1-5F5‘J‘291-2985

S/N 09/609179 Page 5

show that Bruell describes state processing that is a function of the state of the flow of the

packet.

The rejection of claim 18 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

If the Examiner has any questions or comments that would advance the prosecution and

allowance of this application, an email message to the undersigned at dov@inventek.com,

or a telephone call to the undersigned at +1—510-547—3378 is requested.

3

E
i

Respectfully Submitted,

/—

JWZ? 190;.

Date senfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2

Oakland, CA 94618

Tel. +1 -510-547-3378; Fax: +1-510—291—2985

Email: dov@inventek.com,.,....w.iMy.—-(xw.-

NOAC EX. 1016 Page 298Received from < +1 510 291 2985 > at 6127/03 12:06:26 PM [Eastern Daylight Tlme]

NOAC Ex. 1016 Page 299

r f a
K. \ f r

{714
Application No Applicant(s)

. . . 09/609,179 DlETZ ET AL.
Notice of Allowablllty Examiner Art Unit

Khanh Dinh 2155

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address--

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included
herewith (or previously mailed), a Notice of Allowance (PTOL—85) or other appropriate communication will be mailed in due course. THIS
NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative
of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1, E This communication is responsive to 6/13/2003.

2. X] The allowed claim(s) is/are 2—18.

3, E The drawings filed on 6/30/2000 are accepted by the Examiner.

4, D Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) I] All b) [I Some' c) I] None of the:

1. I] Certified copies of the priority documents have been received.

2. I] Certified copies of the priority documents have been received in Application No._

3. I] Copies of the certified copies of the priority documents have been received in this national stage application from the

lntemational Bureau (PCT Rule 17.2(a)).

* Certified copies not received:

5. E] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

(a) [:l The translation of the foreign language provisional application has been received.

6. I3 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Applicant has THREE MONTHS FROM THE “MAILING DATE" of this communication to file a reply complying with the requirements noted
below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE

7. D A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF
INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.

8. El CORRECTED DRAWINGS must be submitted.

(a) I] including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached

1) I] hereto or 2) I] to Paper No. _.

(b) I] including changes required by the proposed drawing correction filed _, which has been approved by the Examiner.

(c) I] including changes required by the attached Examiner’s Amendment / Comment or in the Office action of Paper No.

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of
each sheet.

9- D DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the
attached Examiner’s comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

11] Notice of References Cited (PTO—892) 2D Notice of Informal Patent Application (PTO-152)
3'3 Notice of Draftperson's Patent Drawing Review (PTO-948) 4|:l Interview Summary (PTO-413), Paper No.___ .
5D Information Disclosure Statements (PTO-1449), Paper No. _. 6|] Examiner's Amendment/Comment
7]: Examiner’s Comment Regarding Requirement for Deposit 8|:l Examiner's Statement of Reasons for Allowance

0f Biological Material 9|:l Other

U-S~ Pattent and Trademark Office

PTO-37 (Rev. 04-03) Notice of AllowabthOAC EX. 1016 Page 299m of Paper No.9

NOAC Ex. 1016 Page 300

C 3 (‘i ”‘>

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent And Trademark Office
Addnu'COWISSIONER FOR PATENTSPO Box 1450

AIu-ndril, vml 22313-1450mun-pro gov

NOTICE OF ALLOWANCE AND FEE(S) DUE

Dov Rosenfeld

5507 College Avenue DINH, KHANH Q
Suite 2
Oakland 0.94618 >

2155 709-230000

DATE MAILED: 07/01/2003

09/609,179 06/30/2000 Russell S. Dietz APPT-OOl-Z 2668

TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

APPLN TYPE SMALL ENTITY ISSUE FEE PUBLICATION FEE TOTAL FEE(S) DUE DATE DUE
NO $0nonproviswnal $1300 $1300 10/01/2003

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT.
PR1 zsggg :UTIQN 9N THE was5m1), THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS.
THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON
PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHINMEMSFROM THE
MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY
mCANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE REFLECTS A CREDIT

FOR ANY PREVIOUSLY PAID ISSUE FEE APPLIED IN THIS APPLICATION. THE PTOL-85B (OR AN EQUIVALENT)
MUST BE RETURNED WITHIN THIS PERIOD EVEN IF NO FEE IS DUE OR THE APPLICATION WILL BE REGARDED AS
ABANDONED.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current If the SMALL ENTITY is shown as NO:
SMALL ENTITY status: ,

Ab If the status is the same, pay the TOTAL FEE(S) DUE shown A. Pay TOTAL FEE(S) DUE shown above, ora ove.

B. If the status is changed, pay the PUBLICATION FEE (if required) B. If applicant claimed SMALL ENTITY status before, or is now
and twice the amount of the ISSUE FEE shown above and notify the claiming SMALL ENTITY status, check the box below and enclose
United States Patent and Trademark Office of the change in status, or the PUBLICATION FEE and 1/2 the ISSUE FEE shown above.

El Applicant claims SMALL ENTITY status.
See 37 CFR 1.27.

II. PART B - FEE(S) TRANSMITTAL should be completed and returned to the United States Patent and Trademark Office (USPTO) with
your ISSUE FEE and PUBLICATION FEE (if required). Even if the fee(s) have already been paid, Part B - Fee(s) Transmittal should be
Completed and returned. If you are charging the fee(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be
Completed and an extra copy of the form should be submitted.

111. All communications regarding this application must give the application number. Please direct all communications prior to issuance to
Box ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of
maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page 1 of 4

PTOL-ss (REV. 0503) Approved for use through 04/30/2004. NOAC EX. 1016 Page 300

NOAC Ex. 1016 Page 301

i

i
l
i:3'
g

i

pun—«ma

O 7“)\ I

‘ ‘ PART B - FEE(S) TRANSMITTAL"

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEECommissioner for Patents

Alexandria, Virginia 22313-1450
Eu (703)746-4000

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required . Blocks 1 through 4 should be completed where
in

mpn'ate. All further correspondence including the Patent, advance orders and notification of maintenance fees will e mailed to the current corres ondence address as
”Emma unless corrected below or directed otherwrse in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate " EE ADDRESS" for
maintenance fee notifications.

ote- es! y mar -“P WI my commons or use 09 ote: certi mate 0 mar ing can on y e us or omestic mai ings o
7590 07/01/2003 Fee(s) Transmittal. This certificate cannot be used for any otheraccompanying papers. Each additional paper, such as an assignment or

DOV Rosenfeld formal drawing, must have its own certificate of mailing or transmissmn.
5507 College Avenue Certificate of Mailing or Transmission
Suite 2 I hereb certify that this Fee_(s) Transmittal is being deposited With the

United tates Postal Service With sufficientdpostage for first class mail in anOakland, CA 94618 envelope addressed to the Box Issue Fee a dress above, or being facSimiletransmitted to the USPTO, on the date indicated below.

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

09/609,179 06/3 0/2000 Russell S. Dietz APPT-001-2 2668
TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

APPLN. TYPE SMALL ENTITY ISSUE FEE PUBLICATION FEE TOTAL FEE(S) DUE DATE DUE

NO $0nonprovisional $1300 S I 300 10/01/2003

DINH, KHANH Q 2155 709-230000

 1. Chan e of correspondence address or indication of "Fee Address" (37 2. For rintin on the atent front a e, list 1
cm 1' 63). P g p p g ()the names of up to 3 registered patent attorneys 1

Cl Change of comsgondence address (or Change of Correspondence or agents OR” alternatively, (2) the name Of aAddress forrn PTO 13/122) attached. single firm (having as a member a registered 2
CI"F Add: .,. d] ti ("F Addr ,, Ind' t' f attorney or agent) and the names of up to 2

cc 655 In ca on 01’ CC 655 ICE ion orm -

PTO/SB/47; Rev 03—02 or more recent) attached. Use on Customer .“gls‘m‘i PM“ “PM“ 9‘ “Fm If “° “3““ 3
Number is required. is listed, no name Will be pnnted.

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assiggee is identified below, no assignee data will appear on the_ patent. Inclusion of assignee data is onl appropriate when an assignment hasbeen previously submitted to the SPTO or is being submitted under separate cover. Completion of this form is NOT a substitute for fi ing an aSSignment.

(A) NAME OF ASSIGNEE (B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) 0 individual 0 corporation or other private group entity Cl government

4a. The following fee(s) are enclosed: 4b. Payment ofFee(s):

[3 Issue Fee D A check in the amount of the fee(s) is enclosed.

[3 Publication Fee 0 Payment by credit card. Form PTO-2038 is attached.
_ ~ D The Commissioner is hereby authorized by char 6 the required fee(s , or credit any overpayment, to

D Advance Order # 0f Copies—— Deposit Account Number (enc ose an extra copy of his form).

COmmissioner for Patents is requested to apply the Issue Fee and Publication Fee (if any) or to rte-apply any previously paid issue fee to the application identified above.

(Authonzed Signature) (Date)

NOTE; The Issue Fee and Publication Fee (if required) Will not be accepted from anyone

other than the apéilicant; a registered attome or a em; or the aSSignee or other party ininterest as shown y the records of the United States atent and Trademark Office.-—_——————————————.——q————

This. collection of information is re uired by 37 CFR 1.3l1. The information is required to
obtain or retain a benefit by the puiilic which is to file (and b the USPTO to process) an
application. Confidentiality is governed by 35 U.$.C. 122 and 3 CFR'I.I4. This collection is
estimated to take 12 minutes to com lete, including gathering, preparing, and submitting the

Completed application form to the SPTO. Time Wlll vary depending upon the indivrdualcase. Any comments on the amount of time you require to com etc this form and/or
Suggestions for reducing this burden, should be sent to the Chief In oimation Officer, US.
Patent and Trademark Office, US. Department of Commerce, Alexandria, Vir inia
22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADD SS.
SEND TO: Commissioner for Patents, Alexandria, Virginia 22313—1450.

Under the Paperwork Reduction Act of 1995, nmetsons are required to respond to aCOllection of information unless it displays a valid 0 control number.
TRANSMIT THIS FORM WITH FEE(S)

PTOL-85 (REV. 05-03) Approved for use through 04/30/2004. OMB 0651-0033 US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE

NOAC Ex. 1016 Page 302

O , (V

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Addnn COL/[MISSION'ER FOR PATENTSR0 Box 1450

Alum-Adm, Vii-pm 22311-1450
murpto gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

09/609,179 06/30/2000 Russell S. Dietz APPT-OOl-2 2668
EXAMINER

7590 07/01/2003

 Dov Rosenfeld DINH, KHANH Q
5507 College Avenue
suitez

Oakland, CA 94618 2155

DATE MAILED: 07/01/2003 a

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)

The patent term adjustment to date is 643 days. If the issue fee is paid on the date that is three months after the
mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half
months) after the mailing date of this notice, the term adjustment will be 643 days.

If a continued prosecution application (CPA) was filed in the above—identified application, the filing date that
determines patent term adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval

G’AIR) system. (http://pair.uspto.gov)

Any questions regarding the patent term extension or adjustment determination should be directed to the Office of

Patent Legal Administration at (703)305-1383.

!’3‘sQ
3.l
af

Page 3 of 4

l"FOL-8 V. 05 (if thr h04/30/2004.
5 (RE ”3’ ”W ““g NOAC EX. 1016 Page 302

NOAC Ex. 1016 Page 303

O (/1

UNITED STATES PATENT AND TRADEMARK OFFICE

\/‘J

UNITED STATFS DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Addie” COMMISSIONER FOR PATENTSPO. Box 1450

Alexandria, Vmfll 22313-1450
m urptu gov

09/609,179 06/30/2000 . Russell S. Dictz APPT-001-2 2668

7590 07/01/2003

Dov Rosenfeld DINH, KHANH Q

5507 College Avenue
SW

Oakland, CA 94618 2155
UNITED STATES DATE MAILED: 07/01/2003

Notice of Fee Increase on January 1, 2003

If a reply to a "Notice of Allowance and Fee(s) Due" is filed in the Office on or after January 1, 2003, then the

amount due will be higher than that set forth in the "Notice of Allowance and Fee(s) Due" since there will be an increase

in fees effective on January 1, 2003. S_e_e Mm; ofPM £1.91 Irademark Bees for fiscal i ear 2003; Final Rule, 67 Fed.

Reg. 70847, 70849 (November 27, 2002).

The current fee schedule is accessible from: [mp;[[www.u§p_tg,gov/maimhgwtgfeesfitm,

If the issue fee paid is the amount shown on the "Notice of Allowance and Fee(s) Due," but not the correct amount

in view of the fee increase, a "Notice to Pay Balance of Issue Fee" will be mailed to applicant. In order to avoid

processing delays associated with mailing of a "Notice to Pay Balance of Issue Fee," if the response to the Notice of

Allowance and Fee(s) due form is to be filed on or after January 1, 2003 (or mailed with a certificate of mailing on or

after January 1, 2003), the issue fee paid should be the fee that is required at the time the fee is paid. If the issue fee was
previously paid, and the response to the "Notice of Allowance and Fee(s) Due" includes a request to apply a

previously-paid issue fee to the issue fee now due, then the difference between the issue fee amount at the time the
response is filed and the previously paid issue fee should be paid. See Manual of Patent Examining Procedure, Section

1308.01 (Eighth Edition, August 2001).

Questions relating to issue and publication fee payments should be directed to the Customer Service Center

of the Office of Patent Publication at (703) 305-8283.

Page 4 of 4

is

l
E
E

"E

PTOla-85 (REV. 05-03) Approved for use through 04/30/2004.
NOAC EX. 1016 Page 303

NOAC Ex. 1016 Page 304

”Mm-w-,_,.

I
I

, Jul'oe 03 10:39a Dov @nFeld “Em-20985 p.l

‘ INVENTEK NEW FaxDov Hosenfeld

5507 College Avenue. Suite 2 RECEIVED
Oakland. CA 94618, USA JUL 2 3 2003
Phone: (510)547-3378; Fax: (510)653-7992 . '

dovohventemom - . Technology Center 2100

Patent Application Ser. No; 09/609179 Rafi/Docket Na: APPT-OOl-Z

Applicant(s): Dietz, et al. ' ‘ Examiner; Dinh, Khanh Q.

Filing Date: June 30, 2000

Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents
- P.O. Box 1450.

Alexandria. VA 22313-1450

United States Patent and Trademark Office

(Examiner Dinh. Khanh 0., Art Unit 2155)

Fax N0.: 723-746-7239

DA TE:. July 08. 2003

FROM.- ‘ Dov Rosenfeld, Reg. No. 38687

RE: Amendment after Allowance . 1

Number ofpage: including cover: 6

OFFICIAL COMMUNlCATION .

 PLEASE URGENTLY DELIVER A COPY OF.
THIS RESPONSE TO

EXAMINER DINH, KHANH 0., ART UNIT 2155

Cetlifieme of Psalmile Transmission under 37CH! 1.!

I hereby certify that this response is being facsimile Iransminad to the United States Patent and Trademark Office at
telephone numbe! 703-zfi7232 addressed the Commissioner for Patents. PO. Box [450, Alexandria. VA 22 .

Signed:

Name: Do 41’ Reg. 140.3868?

"cm-um - u 510 an ms » .3 mm 1:35:24 pm [5mm nayugm mm

NOAC EX. 1016 Page 304

NOAC Ex. 1016 Page 305

, -‘ ' , 985 -2. Jul on 03 10:39:: Dov Cienf‘eld Q +1 {arm- n P —

 TRANSMITTAL

. FORM

(m be used {or all ccrrespmdence alter Iritiel Ming)

 FlllngDnte 30Jun2000 , ' 5"

First Named lnvemar Dietz. Russell 5.

Examiner Name Dinh. Khanh Q.

—-Ammmm moo

ENCLOSURES check all theta -I

D Fee Transmittal Form Assignment Papers Alter Allowance Communication
(for an Application) l° G'WP

Drawing(s) Appeal Comrmnication to Board
of Appeals and Interferences

Licensing-related Papers Appeal Communication to Group
MppeelNofce, Brief, Fledy Bria!)

Proprietary lntormation

Fee Attached

Amendment} Response

D ' Alter Final

U Aflidavitsldeclarationb)

and Accompanying Petition

To Convert a Status Letter
Provisional Application

Power otAItomey. Revocation Additional Enclosure (5)
Change «Correspondence ease 'denti below:Address W I y)

Enemlon oi Time Request

Express Abandonment Request Terminal Disclaimer Return Postcard

Information Disclosure Statement Small Entity Statement

Certified Copy ol Priority Document(s)

EIEIEIDECIDED-
Request 0! Refund

Response to Missing Parts! Incomplete
Application

[JUDGE]EDDIE!
CFR 1.52 or 1.53

SIGNATURE OF APPLlOANT. ATTORNEY; OR A ENTI CORRESPONDENCE ADDRESS

' ' Dov Rosenfeld. Reg. No. 38687 — ‘
Individual name 1

we“ IIe2ill-lllllllllllllllllll
Date 25_
ADDRESS FOR CORRESPONDENCE

Firm Dov Rosentald

or 5507 College Avenue, Suite 2

Oakland. CA 94618. Tel: +1-510-547-3378

D D Response to Missing Parts under 37

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this correspondence is being facsimile transmitted with the United States Patent and Trademark Office at
Telephone number 7034457239 addressed to: Commissioner for Pa - . -'. Box 1450. Alexandria. VA .

22313-1450 on this date: A '

ow Harem.» 493;;sz
flflflllllllfllllgfilillllllEll“mm:

Received lrnrn ‘ 91 510 2” 2.35 ’ «mm 2:35:20 FilmDWI!Tine}

NOAC EX. 1016 Page 305

NOAC Ex. 1016 Page 306

7‘ 't

Jul 08 03 10:39. Dov menf‘eld +1-510-2fl885 .p.3

‘ ' Fir-W"“170gait? 1291b
. Our Rafi/Docket No: APP'F-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dictz, et al.

Application No.5 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACIGETS SPECIFIED BY A
PROTOCOL DESCRIPTION LANGUAGE

Group An Unit: 2155

Examiner: Dinh, Khanh Q.

Notice of Allowance mailed: July 1,
2003

Confirmation No; 2668

AMENDNIENT AFI‘ER ALLOWANCE UNDER 37 CFR 1.312

RECEIVED
Mail Stop Non Fee Amendment

Commissioner for Patents ' JUL 2 8 2003
P.0. BOX 1450 .

Alexandria, VA 22313-1450 . Technology Center 2100

Dear Commissioner: -
This is an amendment after allowance under 37 CFR 1.312.

Certificate of Fadmile Trlnsnission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-746-7239 addressed the Commissioner for Patents. PO. Box 1450,
Alexandria, VA 27313-1450 on.

Name. - uvRosenfeld, Reg. No 38687

i

i

i
itg

gI
i

E
A?

3‘,

ET

“Iceman-m: «1 910291 29:5 > mum 2:35:24 m[Blown Daylight 11an

NOAC EX. 1016 Page 306Wan-way‘«.

NOAC Ex. 1016 Page 307

I
, I

~.Jul 08 03 “B403 Dov (¥nfe1d +1~SlD—ag‘ 5185 p.4 ‘

S/N 09/609179 Page 2 APPT-001-2

INTRODUCTORY REMARKS:

Kindly amend this applicafion‘ as follows and kindly consider the following remarks.

x‘»wwuhflw‘dham

(

Ruchedm c n mm {as » u 7M3 2:35:2‘ PM Luann ownwas]

NOAC EX. 1016 Page 307

NOAC Ex. 1016 Page 308

, . - - ' r -Jul 08 83 10:403 Dov {Knifeld +1-510-21V1985 P-S

SIN (19/609179 Page 3 APPT-001—2

AMENDMENT TO THE TITLE

Kindly delete the title of record and substitute the following title therefor.

«PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION LANGUAGE-- .

“'0'ch from E 01 510 201 I.” > I! "I103 2:35:24 PM [Elm Dmgm Tlme]

NOAC EX. 1016 Page 308

NOAC Ex. 1016 Page 309

I. Jul DB 03 10:40a Dov (Enf‘ald '+1-510-20885 p.8

SIN 09/609159 Page4 «.6 \‘QO/ 01-2 _
REMARKS Lg/ RECEIVED
Status of the Application: JUL 2 3 2003

A Notice of Allowance was mailed on July 1. 2003. . TechnOlOQY Center 2100
' Amendment to the Title: ‘

Upon receipt of the Notice of Allowance, it was noticed that the title cited on the Notice
was wrengly written as

METHODAND APPRATUS FOR MONITIRING TRAFFIC IN A NETWORK

This is not the title of the invention as filed. A filing receipt was issued on November 7,
2000 with this wrong title. The application was filed on June 20, 2000 with the correct
title, which is:

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS

SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

Correction of the title is respectfully requested.

Applicants understand that an amendment afte'r‘allowance under 37 CFR 1.312 is not a

. right, but is discretionary. The original error was the error of the Patent Office. Applicants
respectfully request that this amendment be entered.

If the Examiner has any questions or comments that would advance the prosecution and

allowance of this application, an email message to the undersigned at dov@inventek.com.
or a telephone call to the undersigned nt +1-510-547-3378 is requested.

Respectfully Submitted, ~

63" 2/96 3> Z
osenfeld. Reg No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College AvenueSuite 2
Oakland, CA 94618 ‘

. Tel. +1-510-547-3378; Fax: +1-510-291-2985
Email: dov@inventek.com

KNINQCII'OII'H O1 510 291 m5) I! 7!!!” 1:35:14 PM [Elsi-I'll Wflme] .

NOAC EX. 1016 Page 309

NOAC Ex. 1016 Page 310

"iNVENTEK 0 Fax 0
Dov Rosenfeld

5507 College Avenue. Suite 2

Oakinnd. CA 94618, USA

Phone: (510)547~3378; Fax: (510)653-7992
dovfiinventekeom

 Patent Application Ser. Na.: 09/609179

Rafi/Docket Na: APPTflOl -2

Applicant“): Dietz. et aL Examiner; Dinh, Khanh Q.

Filing Date: June 30. 2000 An Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents
P.O. Box 1450

Alcxandria.VA 22313-1450

United States Patent and Trademark Office

(Examiner Dinh, Khanh Q.. Art Unit 2155)

Fax Na: 7034464238

DATE: July 14, 2003

FROM: Dov Roscnfeld, Reg. No. 38687

RE: Amendment after Allowance

Number ofpage: including cover: 6

\ OFFICIAL COMMUNICATION

 PLEASE URGENTLY DELIVER A COPY OF

THIS RESPONSE TO

EXAMINER DINH, KHANH Q., ART UNIT 2155

Certifiente of Fusimile Transmission under 37 CFR 1.8

I hereby certify that this response is being ruminant: transmitted to the United States Patent Inc! Trademark Office at

telephone number 7g3.14(_»zg§s ddressed the Commissioner for Patents. P.0. Box 1450. Algmdfia. VA 2231 - 450on. -"

“““hm : n mm at: > «munzasntm team outwit-nun:

NOAC EX. 1016 Page 310

NOAC Ex. 1016 Page 311

Jul 14 03 103193 Dov Rosenrela +r-oru—zar-cnua PM:i

.' ' 0 fl

OuchfJDocketNo: APPF-OOl-Z Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et at.

Application No: 091609179

Filed: June 30, 2000

Title: PROCESSlNG PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED BY A
PROTOCOL DESCRIPTION LANGUAGE

Group Art Unit: 2155

Examiner. Dinh, Khanh Q.

Notice of Allowance mailed: July 1,
2003

Confirmation No.: 2668

AMENDMENT AFTER ALLOWANCE UNDER 37 CFR 1.312

Mail Stop Non Fee Amendment
Commissioner for Patents
PD. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

This is an amendment after allowance under 37 CFR 1.312.

This amendment was previously sent July 8, 2003 to the non-after final fax number for the

Art Unit. and is now being sent to the after-final fax number per examiner request.

Cetflfiale ol' Faulmlle Transmissitm under 37 cm L!

I hereby certify that this response is being facsimile unnsmiued lo the Uniiod States Patent and Trademark
Office at telephone number 703-746-7238 addressed the Commissioner for Pawns. PO. Box 450
Alexandrie. VA 22313-1450 on.

Date:w
”RN-am «1 mm as: nrmm zmmmpuwm0W7“!

m

Elféaiéflfl mail Ream“

NOAC EX. 1016 Page 311

NOAC Ex. 1016 Page 312

“i .1 us av...»- uuv nuavliacnv -.. v...- by- __.,_, l" IJ

0 fl

SIN 09/609179 Page 2 APPT-OO 1—2

INTRODUCTORY REMARKS:

Kindly amend this application as follows and kindly consider the following remarks.

!

i

MWEO fl'oln ‘ *1 5102.1” I 17mm 1:15;“ PM MmMutt Tlmtl

E
3

NOAC EX. 1016 Page 312

NOAC Ex. 1016 Page 313

(7 (V

SIN 09/609 179 Page 3 APP‘T-OOl-Z

AMENDMENT TO THE TITLE ‘/

Kindly delete the title of record and substitute the following title therefor:

“PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION LANGUAGE—

éi ”mm Iran. 9‘ no 291 an: n; mun: 2:13;"MW BMW Wm!

g
,2

NOAC EX. 1016 Page 313

NOAC Ex. 1016 Page 314

SIN 09/609179 Page 4 APPT-OOl-Z

REMARKS

Status of the Application:

A Notice of Allowance was mailed on July 1, 2003.

Amendment to the Title:

Upon receipt of the Notice of Allowance, it was noticed that the title cited on the Notice
was wrongly written as

METHOD AND APPRATUS FOR MONITIRING TRAFFIC [N A NETWORK

This is not the title of the invention as filed. A filing receipt was issued on November 7.
2000 with this wrong title. The application was filed on June 20. 2000 with the correct
title. which is:

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS
SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

Correction of the title is respectfully requested.

Applicants understand that an amendment after allowance under 37 CPR 1.312 is not a

right, but is discretionary. The original error was the error of the Patent Office. Applicants
respectfully requeSt that this amendment be entered.

If the Examiner has any questions or comments that would advance the prosecution and

allowance of this application. an email message to the undersigned at dov®invemek.com,
or a telephone call to the undersigned at +1-510-547-3378 is requested.

Respectfully Sub 'tted,

31 H /o 5
Date , eg. No. 38687

Address for correspondence:
Dov Rosenfcld

5507 College Avenue.Suite 2
Oakland, CA 94618

Tel. +1 -5 10647—3378; Fax: +1 ~5 10-29 1 4985
Email: dov@inventek-com

“Mom «1 5102” am "mums 2:15:1sm1usum 0mm rim]

NOAC EX. 1016 Page 314

«oh.

NOAC Ex. 1016 Page 315

 Application Number‘. TRANSMi'iTAL 5

FORM
{to be used Iarefl correspondence eff'en'nluel filing)

mmw iEMMEIIIIIII
First Named invent r Dietz. Russell 8.

Examiner Name Dinh, iQtanh O.

llllllllllllllllmwwmwmwAmmw

ENCLOSURES cmall ma! ‘ . . I

Response to Missing Parts! inconplete
Application

D Fee Transmittal Form D Assignment Papers D After Allowance Communication(for an Application} to G'WP
Fee Attached Drawings) Appeal Cornmun‘mtion to Board

D D D of Appeak and interterences

Amendment I Response D Licensing-related Papers U Appeal Communication to GroupWP!!! ”150% 5110!. Hopi! B'I'B’)
Alter Final Petition Routing Slip (PTO/88169) Proprietary information

D D D and Awumpanying Petition D

D D ‘ Aflldavnsldactarationcs) D To Convert a U Status LetterProfisional Application

D Extension of Time Request D 22:;221%”. Rangoon D Addrtionei Enclosure(e)"‘5‘” (please Identily below):
Address A

D Express Abandonment Request D Terminal Disclaimer D Return Postcard

D Information Disclosure Statement E Small Entity Statement E

D Certified Copyol Priority Documenfls) C] Request of Refund D

D Response to Missing Parts under37CFFl 1.52 or 1.53

SIGNATURE OF APPLICANT. ATTORNEY. OR AGENT] CORRESPONDENCE ADDRESS

|ntfividuei name /

smm tunnel
Date Mf<
Anoness FOR connesponoe "
Firm Dov Hosenield ‘

Of 5507 College Avenue. Suite 2
lndvidual name Oakland CA 94818. Tel: +1-510-547-3378

cERTIFfOATE DF FACSlMILE TRANSMISSION

Inerehy certify the! this correspondence is being facsimile transmitted with the Unlted States Patent and Trademark Office at
Telephone number 703-746-7238 addressed to: Comissioner for Parents, , Box 1450. Alexandria. VA July 14. 2003 ..

22313-1450 on this date: 4.

fine-lllllllllllzazllllllea-omen-Illl
,/

’ MW tom < +1 510 201815 > It mun: 2:15:13 PM [Eastern Deylgn'l’tme]

NOAC EX. 1016 Page 315

NOAC Ex. 1016 Page 316

2mm-.M-____1
’5‘

(l

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trudemlrk Office
Address. COMMISSIONER FOR PATENTS

PO. Box 1450
Alexnndnl. Vll'glnll 22313-1450
www.uspta.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

09/609,179 06/30/2000 Russell 5. Dietz APPT-OOl-2 2668

Dov Rosenfeld DINH, KHANH Q

5507 College Avenue
SW

Oakland, CA 94618 2155 /DATE MAILED: 10/27/2003 /

Please find below and/or attached an Office communication concerning this application or proceeding.

NOAC EX. 1016 Page 316PTO-90C (Rev. 10/03)

NOAC Ex. 1016 Page 317

Application No. ‘Applicant(s)

DIETZ ET AL.

Art Unit

2155

\ -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address —

09/609,179 "
Response to Rule 312 Communication .Examiner

 Khanh Dinh

1. E The amendment filed on 14 July 2003 under 37 CFR 1.312 has been considered, and has been:

a) X entered.

b) [:1 entered as directed to matters of form not affecting the scope of the invention.

1

c) [:1 disapproved because the amendment was filed after the payment of the issue fee.

Any amendment filed after the date the issue fee is paid must be accompanied by a petition under 37 CFR 1.313(c)(1)

and the required fee to withdraw the application from issue.

d) [:1 disapproved. See explanation below.

e) [I entered in part. See explanation below.
HOSAINALAM

l SUPERVISOPY PATEMEXAIMNEH
i is

i

i

S

5

K . 0 I NH

lo/Zb/o3
4, (1. Qt ss

”-3- Pate l nd T d rk Offi
PTOL-ZHY: (Ram-01)ce Reponse to Rule 312 Communication Part of Paper No. 11

NOAC EX. 1016 Page 317

NOAC Ex. 1016 Page 318

Ref/Docket No: APr’T—001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

' ~ritor(s): Dietz, et al.

Assignee: Hi/fn, Inc.

Patent N0: 6,665,725 M

Issue Date: December, 16, 2003

Application No.: 09/609,179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

RES QUEST FOR CERTIFICATE OF CORRECTIONS

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313—1450

Dear Commissioner:

The above patent contains significant errors as indicated on the attached Certificate of Correction form

(submitted in duplicate).

X Such errors arose through the fault of the Patent and Trademark Office. It is requested that the

certificate be issued at no cost to the applicant. '

However, if it is determined that the error(s) arose through the fault of applicant(s), please note

that such error is of clerical error or minor nature and occurred in good faith and therefore issuance of

the certificate of Correction is respectfully requested. The Commissioner is authorized to charge

Deposit Account No. 50-0292 any required fee. A duplicate of this request is attached.
Suchilerror arose through the fault of applicant(s).(A credit card charge form for the fee15

enclosed. Such error is of clerical error or minor nature and occurred1n good faith and therefore

issuance of the certificate of Correction1s respectfully requested.

Such errors specifically:

In col. 6, line 47 change "NBTBIOS" to -—NETBIOS--.

Certificate of Mailing under 37 CFR 1.8

I heieby certify that this response is being deposited with the United States Postal Service as first class mail1n an

envelope addressed to the Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313- 1450 on.

Date: AE (5 ¢ 100% , .-- Signed:
Name: Amy Drury

NOAC EX. 1016 Page 318APR 1 2 200}

NOAC Ex. 1016 Page 319

Our Ref./Docket No: APr’T-OOl-Z Page 2

In col. 6, line 55 change "Diferent" to "Different".

In col. 16, line 27 change "FIG. 6 FIG 6" to
--FIG 6.

FIG6-—.

In col. 18, line 17 change "updatelookup" to —-update—lookup-—.

In col. 25, line 38 change "server-say" to --server——say--.

In col. 53, line 4 change ""Default"" to —-"Default" :--.

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines‘up with the beginning
of "SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 53 line 46 shift "FLAGS" to the right so its beginning lines up with the beginning of

"SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to 4-r1p--.

In col 71, 9th line from the bottom change "netbios (0x3c00," to --netbios (0x3c00)——, .

In col. 73, aprox. line 25 change "tyop" to --type--.

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" to --SYNTAX INT (8)—-.

In col. 81, approx. line 41 change "SYNTAXBITSRING(12)" to -—SYNTAX BITSTRING (12)-—.

In col. 83, approx. line 36 change "LOOKUPFILE" to --LOOKUP FILE";

In col. 93, approx. line 45 change "'vnd.m—relaudio" to --'vnd.rn-rea1audio'~—.

In col. 96, line 38, change "In" to -—in--.

The undersigned requests being contacted at (510) 547-3378 if there are any questions or clarifications,

or if there are any problems with issuance of the Certificate of Correction.

Respectfully Submitted,

 fiQr. 5 Zoo ‘1
Date ‘ Do osenfeld, Reg. No. 38687

, ‘ Agent ‘of Record.

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2,

Oakl d, CA 94618 .T l. 510 547-3378;F 2 510 291-2985 .an e () a“) NOAC EX. 1016 Page 319

NOAC Ex. 1016 Page 320

PTO/SB/44 (10-96)
ppproved for use through 6/30/99. OMB 0651 -0033

. Patent and Trademark Office: U. 8. DEPARTMENT OF COMMERCE
Under the Paperwork ReductIon Act of 1995, no persons are required to respond to a collection of information unless itdsplays a valid OMB controlnumber.

Also Form PTO-1050

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO: 6,665,725 W

DATED : December16, 2003

INVENTOR(S) : Dietz, et al.

It is certified that an error appears in the above-identified patentand that said Letters Patent
are hereby corrected as shown below:

In col. 6, line 47 change "NBTBIOS" to --NETBIOS--.

In col. 6, line 55 change "Diferent" to --Different--. '

In col. 16, line 27 change "FIG. 6 FIG 6" to
--FIG 6.

FIG6--.

In col. 18, line 17 change "updatelookup" to --update-Iookup--.

In col. 25, line 38 change l‘server-say“ to --server—-—say--.

In col. 53, line 4 change"‘"Default““ to --"Default".

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines up with the beginning of
"SYNTAX" in line 42 and with the beginning of "LENGTH“ in line 43.

In col. 53 line 46 shift "FLAGS“ to the right so its beginning lines up with the beginning of “SYNTAX“ in
line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to --r1p--.

In col 71, 9th line from the bottom change “netbios (0x3cOO," to --netbios (Ox3cOO)--.

In col. 73, aprox. line 25 change “tyop” to --type--. i

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" tor-SYNTAX INT (8)--. I;
. I

In col. 81, approx. line 41 change "SYNTAXBITSRING(12)" to --SYNTAX BITSTRINGI,‘$12)-;.

In col. 83, approx. “[1636 change "LOOKUPFILE" to --LOOKUP FILE--.

In col. 93, approx. line 45 change "'vnd.m-re|audio" to 7-'vnd.rn-realaudio‘--.

In col. 96, line 38, change "In“ to --in--.

MAILING ADDRESS OF SENDER (Atty/Agent of Record):
Dov Rosenfeld, Reg. No. 38687 ~ PATENT NO: 6 665 725
5507 College Avenue, Suite 2 No. of additional copies
Oakland, CA 94618

NOAC EX. 1016 Page 3% 1 2 2”“

NOAC Ex. 1016 Page 321

PTO/SB/44 (10-96)
Approved for use through 6/30/99. OMB 0651 -0033

. Patent and Trademark Office: US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it dsplays a valid OMB controlnumber.

Also Form PTO-1050

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO: 6,665,725 5/

DATED : December16, 2003

INVENTOR(S) : Dietz, et al.

It is certified that an error appears in the above—identified patent and that said Letters Patent

are hereby corrected as shown below:

In col. 6, line 47 change "NBTBIOS" to --NETBIOS—-.

In col. 6, line 55 change "Diferent" to --Different--.

In col. 16, line 27 change "FIG. 6 FIG 6" to
--FIG 6.

F|G6--.

In col. 18, line 17 change "updatelookup" to --update-Iool<up--.

In col. 25, line 38 change "server-say" to --server—say--.

In col. 53, line 4 change ""Default"" to --"Default"

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines up with the beginning of
"SYNTAX" in line 42 and with the beginning of "LENGTH“ in line 43.

In col. 53 line 46 shift “FLAGS“ to the right so its beginning lines up with the beginning of "SYNTAX" in
line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to --r1p--.

In col 71, 9th line from the bottom change “netbios (0x3000," to --netbios (0x3c00)-—,

In col. 73, aprox. line 25 change "tyop" to --type--.

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" toA-SYNTAX INT (8)--.

in col. 81, approx. line 41 change "SYNTAXBITSRING(12)" to --SYNTAX BITSTRING (12)--.

In col. 83, approx. line 36 change "LOOKUPFILE" to --LOOKUP FILE--.

In col. 93, approx. line 45 change "'vnd.m-relaudio" to :—'vnd.rn-realaudio'--.

In col. 96, line 38, change "In" to --in--.

MAILING ADDRESS OF SENDER (Atty/Agent of Record):

Dov Rosenfeld, Reg. No. 38687 * PATENT NO: 6 665 725
5507 College Avenue, Suite 2 No. of additional copies
Oakland, CA 94618

NOAC EX. 1016 Piféebélm

NOAC Ex. 1016 Page 322

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725 Bl Page 1 of 2
DATED : December 16, 2003

INVENTOR(S) 2 Dietz et a1.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 6

Line 47, change “NBTBIOS” to -- NETBIOS --.

Line 55, change “Diferent” to -- Different --.

Column 16

Line 27, change “FIG. 6 FIG 6” to *
-- FIG. 6.

FIG6 —-.

Column 18

Line 17, change “updatelookup” to -- update-lookup —-.

Column 25

Line 38, change “server-say” to —- server—say --.

Column 53,

Line 4, change ““Default”” to —~ “Default” : ~-.

, Line 45, shifi “DISPLAY-HINT” to the right so its beginning lines up with the

beginning of “SYNTAX” in line 42 and with the beginning of “LENGTH” in line 43.

Line 46, shifi “FLAGS” to the right so its beginning lines up with the beginning of

“SYNTAX” in line 42 and with the beginning of “LENGTH” in line 43.

Column 61 .

Aprox. line 32, change “rip” to -- rlp --.

Column 71

Line 9, from the bottom, change “netbios (0x3c00,” to -- netbios (0x3c00) —-.

Column 73 ,
Aprox. Line 25, change “tyop” to -- type --. ’

Column 79

Line 4 from the bottom, change “SYNTAXINT(8)” to -- SYNTAX INT (8) --.

NOAC EX. 1016 Page 322

NOAC Ex. 1016 Page 323

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725 B1 Page 2 of 2
DATED : December 16, 2003

INVENTOR(S) : Dietz et 211.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 81

Approx. line 41, change “SYNTA)G31TSRING(12)” to -- SYNTAX BITSTRlNG

(12) --.

Column 83

Approx. line 36, change “LOOKUPFILE” to -- LOOKUP FILE --.

Column 93

Approx. line 45, change “vnd.m-relaudio” to -- ‘vndm-realaudio’ --.

Column 96

Line 38, change “In” to -- in --.

Signed and Sealed this
_/

Twenty-ninth Day of June, 2004

m W3»

C JON W. DUDAS
‘ Acting Director ofthe United States Patent and Trademark Ofi‘ice

NOAC EX. 1016 Page 323

NOAC Ex. 1016 Page 324

Our Ref/Docket No: APPT-OOl-Z Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Patent No: 6,665,725 131

Issue Date: December, 16, 2003

Application No.: 09/609,179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

REQUEST FOR CERTIFICATE OF CORRECTIONS

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313—1450

Dear Commissioner:

The above patent contains significant errors as indicated on the attached Certificate of Correction form

(submitted in duplicate).

X Such errors arose through the fault of the Patent and Trademark Office. It is requested that the

certificate be issued at no cost to the applicant. ‘

However, if it is determined that the error(s) arose through the fault of applicant(s), please note

that such error is of clerical error or minor nature and occurred in good faith and therefore issuance of

the certificate of Correction is respectfully requested. The Commissioner is authorized to charge

Deposit Account No. 50-0292 any required fee. A duplicate of this request is attached.

Such error arose through the fault of applicant(s),/A credit card charge form for the fee is

enclosed. Such error is of clerical error or minor nature and occurred in good faith and therefore

issuance of the certificate of Correction is respectfully requested.

Such errors specifically:

In col. 6, line 47 Change "NBTBIOS" to ——NETBIOS-—.

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

envelope addressed to the Commissioner for’Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on.

Signed: ’
Name: Amy Drury

NOAC EX. 1016 Page 324
APR 12 209.4

NOAC Ex. 1016 Page 325

Our Ref/Docket No: APPT-001-2 Page 2

In col. 6, line 55 change "Diferent" to --Different--.

In col. 16, line 27 change "FIG. 6 FIG 6" to
--FIG 6.

FIG6--.

In col. 18, line 17 change "updatelookup" to --update—lookup--.

1n col. 25, line 38 change "server—say" to --server——say-—.

In col. 53, line 4 change ""Default”" to --"Default" :--.

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines 'up with the beginning
of "SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 53 line 46 shift "FLAGS" to the right so its beginning lines up with the beginning of

"SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to --rlp--.

In col 71, 9th line from the bottom change "netbios (0x3c00," to -—netbios (Ox3cOO)--, ,

In col. 73, aprox. line 25 change "tyop" to —-type-—.

In col. 79, 4th line from the bottom change "SYNTAX]NT(8)" to -—SYNTAX INT (8)-—.

In col. 81, approx. line 41 change "SYNTAXBITSRJNGUZY' to —-SYNTAX BITSTRING (12)-—.

In col. 83, approx. line 36 change "LOOKUPFEE" to --LOOKUP FILE-n

In col. 93, approx. line 45 change "'vnd.m-relaudio" to -—'vnd.rn-realaudio'——.

In col. 96, line 38, change "In" to --in--.

The undersigned requests being contacted at (510) 547-3378 if there are any questions or clarifications,

or if there are any problems with issuance of the Certificate of Correction.

Respectfully Submitted,

 Area 5, 100 “l
‘ Date ‘ Dov osenfeld, Reg. No. 38687

Agent of Record.

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2,
«T l. 510 547-3378;F 2 510 291-2985oakland’CA 94618 e () a“) NOAC EX. 1016 Page 325

NOAC Ex. 1016 Page 326

‘77;
2’

DOCKET NO.: 10354-001GEN PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re Application of:

Russell S. Dietz, Andrew A. Koppenhaver, Confirmation No.: 2668

James F. Torgerson

Application No.: 09/609,179 Group Art Unit: 2155

Patent No.: 6,665,725 Issue Date: December 16, 2003

Filing Date: June 30, 2000 Examiner: Khanh Q. Dinh

For: PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS

SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

Commissioner for Patents

Office of Patent Publications

ATTN: Certificate of Correction Branch

PO. Box 1450

Alexandria, VA 22313—1450

Dear Sir:

REQUEST FOR CERTIFICATE OF CORRECTION

PURSUANT TO 37 CFR§ 1.322 & 37 CFR § 1.323

It is respectfully requested that a Certificate of Correction be issued for the above—identified

patent. The p ent has one (1) error that is the fault of the applicant. Applicant’s error

occurred in good faith and is of a clerical or typographical nature, or minor character, and is

not believed to constitute new matter or require examination.

Enclosed herewith please find a completed Certificate of Correction form.

The fee in the amount of $100.00 is attached.

Respectfully submitted,

Date: September 4, 2013 mayrence A. Aaronson/
- Lav'vrence Aaronson

Reg. No. 38,369

Meunier Carlin & Curfman, LLC

817 W. Peachtree St., NW
Suite 500

Atlanta, GA 30308

phone: (404) 645-7713 '

fax: (404) 645-7707

NOAC Ex. 1016 Page 326

NOAC Ex. 1016 Page 327

I

‘ PTO/SB/44 (0907)
Approved for use through 08/31/2013. OMB 0651-0033

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Also Form PTO—1050

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725

APPLICATION NO.: 09/609,179

ISSUE DATE : December 16, 2008

'NVENTORIS) Russell 8. Dietz, Andrew A. Koppenhaver, James F. Torgerson

It is certified that an error appears or errors appear in the above-identified patent and that said Letters Patent

is hereby corrected as shown below: .

IN THE CLAIMS:

Column 1, lines 15 and 16, claim 14, change “searching the packet at the particular protocol" to --searching

the packet at the particular protocol leveI--.

MAILING ADDRESS OF SENDER (Please do not use customer number below):

Meunier Carlin & Curfman, LLC
817 W. Peachtree St, NW, Suite 500
Atlanta, GA 30308

This collection of information is required by 37 CFR 1.322, 1.323, and 1.324. The information is required to obtaln or retain a benefit by the public which is to file\
(and by the USPTO to process) an application. Confidentiality Is govemed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to
complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any
comments on the amount of time you require to complete this‘form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer,
U.S. Patent and Trademark Office, US. Department Of Commerce, PO Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED
FORMS To THIS ADDRESS. SEND To: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria,
VA 22313-1450. /

If you need assrstance in‘comp/eting the form, call 1-600-PTO-9199 and select option 2.

NOAC EX. 1016 Page 327

NOAC Ex. 1016 Page 328

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725 B1 Page 1 of}
APPLICATION NO. : 09/609179

DATED : December 16, 2003

INVENTOR(S) : Russell S. Dietz, Andrew A. Koppenhaver and James F. Torgerson

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE CLAIMS:

Column 1, lines 15 and 16, claim 14, change “searching the packet at the particular protocol”

to --searching the packet at the particular protocol leve1--.

Signed and Sealed this

Eighth Day of October, 2013 \

‘ : A fi/zéedflj
Teresa Stanek Rea

Deputy Director ofthe United Stare: Patent and Trademark Oflice

NOAC EX. 1016 Page 328

NOAC Ex. 1016 Page 329

Sep 24 03 05:43.: Dov senf‘eld A ' +1—510- .—2935 P-1

INVENTEK - , Fax
Dov Hosenfeid , ' ‘ ~

5507 College Airenue, Suite 2 \ 4.
Oakland, CA 94618, USA' ’

Phone: (510)547-3373; Fax: (51 mesa-7992
‘ dov@lnventalccom /

OUR REF: APPT-OO-l -2

TO: Mail Stop Issue Fee , FAX Na: (703) 746-4000
Commissioner for Patents / '
RC. Box 1450

Alexandria, VA 22313-1450

DATE.- September 24, 2003

FROM: Dov Rosenfeld, Reg. No., 38.687

RE: Issue Fee for Application No.: 09/609,179

Number ofpage: including cover: 5

' ' OFFICIAL COMMUNICATION

ISSUE FEE PAYMENT

Included herewith are:

o A trensmittal letter and copy

0 Peeks) Transmittal (form PTOL—SS)

0 Credit Card charge form for issue fee

Cufifimte of Facsimile Transmission undu' 31 cm 1.3

I hereby certify that this response is being facsimile tmnsmitled to the United States Patent and Trademark Office at telephone
number (703) 746-4000 addressed to Mail Stop Issue Fee. Commissioner for Patents. PO. Box I450. Alexandria, VA 223 134450
on. '

Name: Dev to. J‘f/V'Reg. No. 38687

Rnehed from <l“I 510 2.1 2N5 > imIzflflll PM [Em 0M9"! Tine]

Match and Return

NOAC EX. 1016 Page 329

NOAC Ex. 1016 Page 330

Sep 24 03 05:46}! Dov . senf‘eld *' ' ‘ +1-510~. -2985 P-3_-v

\,

OurReijocketNo:APPT-001~2 ‘ Patent

m THE UNITED STATES PATENT AND TRADEMARK omen

\ Applicant(s): Dietz, er a1.

Application No.: 09/609,179 .

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION
LANGUAGE

Group Art Unit: 2756

Ekarninet:

Notice of Allowance Mailed:

July, 1. 2003

Confirmation No: 2668

SQBMISSION OF ISSUE FEE

Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a completed "Issue Fee Transmittal" Form. Included with the form are:

X A credit card payment form for the issue fee and any advance order of copies;
drawing corrections (with separate letter);

formal drawings (with separate letter);

X The Commissioner is hereby authorized to charge payment of the any missing fee or

' credit any overpayment to Deposit Account No. 500292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted.

w .%__
Date _ Dov nfeld, Reg. No. 38687

Address for correspondence:
Dav Rosenfeld 4»

5507 College Avenue,Suite 2
Oakland. CA 94618

Tel. +1-510-547-3378; Fax; +l-413-638-1280

Certificate ofFacsimile Transmission under 31 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark Ollice at
telephone number (703) 746-4000 addressed to Mail Stop issue Fee, Commissioner for Parents. PO. Box 1450. Alexandria. VA 22313-1450 on. _

Date; ngomber 2d. 2m; . Signed:

Nome: Dev osenfeld, Reg. No. 38687

Ruched from <‘H 510 291 IBIS > Imhum PM [2mm DMD" The)

NOAC EX. 1016 Page 330

NOAC Ex. 1016 Page 331

Q1
S

§

Sep 24 03 05:47.» Dav flene‘eld e‘. ‘ ' +1-s1o-(W-2sas p.4

PART B - FEE(S) TRANSMITTAL

let: and send this (om, together W13! applicnble feds), to: Mall Mail Stop ISSUE FEE" Commissioner for Pate-is
Alexandria, Virginia 22313-1450

Eu (103)746-4000
N _ : 15 cm _use tnnsmmmg and 8‘ A l I mm, . on a comp and when

q: mpmle. All fume: eomspondenqe melnilin; flip Pym“. advance aides and name-um of maintenance fen WI“ mailed tn the current mes cadence m uin 'enned unless corrected below or dim am“: In Block 1, by (a) specifying a new emu-spam“ Iddtus; Ind/or (b) lndiadn; : sen-nee ' ADDRESS" fermm fee notifications.

 ' n - . ' Role: tomagingeincy- e or'-- -- mama- ..
7390 0mm“; Fee(s Tingsmiufl. This certificate cannot be used for my other

: Inytng pepen. Eat}: additional paper. such I: In Isa-iguana“ or
Dov Rosenfeld . f dnwulg, must lave its own nemflwe “mailing at mission.
5507 College Avenue - Certificate at Mailing .r Transmhsinn

5““ 2 bhfihimfifiigf‘s “m““‘9 in“?"m‘ “ ”'6‘“ E11“ "1‘" ‘5‘
in I in

Oakland, CA 94618 envelope nddtrscdxncdie 331m ‘53? £35535; granit'i’as‘i'é‘a'i';unstained mm: USPTO on the clan: indium] below.

mum-no. m . mmmm. nmwmw-

W609J79 065M000 - Russell S. Diet: APPI-OOl-Z 2668
TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC TN A NETWORK

m— mm run-mow mmmm MN0 30nmpmviiioml 51300 $1300 moi/zoos

mE—mm
Dl'Nl-i, KHAN" Q 2155 709430000

LClunfe ofenneepondenee addeess at indication of'Fee AM (37 2. For prinfina on the new! from we, list (1)
GIRLS). ' dbmofwmlxegisexedplemlmmeys 1W

DC) For I “I H (m, U ”N: m" at mu 0R. Illernluveiy. [1) the name or -Addie.“ fonn P'l' 3.112) studied.
a 'Feo Adana!" indication (or 'Fee Andrea” Indication fotm
P1088147; Rev 03-02 or non ween!) attached. Use of a Cuban“
Number is required.

ling]: firm allYin‘ u 1 member 1 usilleled : I i I isnunmeyoragent)“ Rheum: ofupw 2
registered new woman ur agents. If no name
itiiswdmonlmcwillbcpfimcd. 3

3. ASSIGNEE NAME AND RESIDENE DATA TO BE FRINTED ON THE PATENI' (prim or ape)

PLEASE NOTE: Unless In W is idmfilied below, no usignee data will appear in the pllznt. Inchlim of nip-:2 dlll is an appmpr'llc when u: assignment has
e

been minutely snlnnind to Pro or is being rub-mud wider sap-Int: m. Complellon of this [am is NOT I substiunu run in; m Isis-men:
(A) NAME OF ASSIGNEE . (B) RESIDENCE: (CITY and STATE OR COUNTRY)

Hil‘Fn, Inc . .Los Caches, CA
Pleas check the upprupinle assign meg-cry or alegoi'iee (will natbe primedon lb: Ian) D individual
4:. The following feds) Ire unload: 4!; Payment of Feds):

n lune Fee . D A cheek in the uncut ufllie (”(5) is unload.
O l'nbliuiinn Fee RhymenI by Mennl Pom: PTO-2038 i: met-ed.

' - The Conun'uliona’ “a he: nuthcrlud c the nixed feds ,orcwdlt an met-peymen'I. no
iMm“0m' ’ "row“L Emit Account Numbcrfimlzfiwim autism my this Turn)- y

Commissionu' for Palenu is nequefied loam m: lsue F: Ind Pn‘hLicniolI Fee (if-liner In manly my perviouily plld ism: ft: to the npplieliion identified show.

. WE“? ”“23“ mm“ «.0 03' a...“ gum,“9 III lcln‘lflw I or: ‘01 lit! “'0
museum"? themedeoflheUnieed mammd'l‘udenurkomae. pm!

m collection a? innit-2mm B mgm 5 5’ CH 1.3", The infatuation us mqui'fi Inchain qr main n benefit by the pn lie which is to file (and b the USr'l’O go megs) en
wgbcumn. Confidentiality ugovemed by 35 U.$.C. [22 nnd 3 CFK Lit. This eolleeuon 15
mm! Io his: [2 mixmu to com etc including gathering. preparing. And «Win; the
completed appliulion form In the SP‘l‘O. 11m: will vary depend: upon the individual(:50. Any comments on the unouxu or that: you acquire to mm :0: :hu form and/or
suggestions fur reducing lhl! bunfien should be sent at the Chief in onnww Officer. (Lg.
Parent Ind Tniktm‘k Office. U.§. Depmmenl of Commerce. Alanna-ix, Vlr 1m:
22313-1450. DOINQT SEND FEB 0R COMFLEI’ED FORMS TO THIS ADDR 8.SEND TO. Communion" for Patents. Alenndnn. Virginia 23l3-l450.

Under the ngcrwoflc Reaction Au of l995_, no mom are required Io mipmd In Icollection :7! Information unless it displeys I vehd 0 annual number.
mNSMlT THIS FORM WITH FEE(S)

P'TOL-IS (REV. 05-03) Appmvd for use through 04/303004. 0MB 0651-0033 U.S. Plan Ind Tndemuk omen: U.S. DEPAKTMENT OF COMMER

lumen pom < 01 510 291 an: > a nun: 1:43:05 PM [Eastern Damnne)

 09/00/2063ma0000006709009179
01FC:1501 02FB:6001

NOAC EX. 1016 Page 331

NOAC Ex. 1016 Page 332

J- ,-

PATENT APPLICATION FEE DETERMINATION RECORD

Effective December 29, 1999

CLAIMS AS FILED - PART I SMALL ENTITY

FOR NUMBER FILED NUMBER EXTRA

X{a —L on'llITI
RAT

BASIC FEE

TOTAL CLAIMS

INDEPENDENT CLAIMS minus 3 =HE
CLAIMS

REMAINING
AFTER

HIGHEST

NUMBER PRESENT
EXTRA RATE RATEPREVIOUSLY

PAID FOR
ADDI-

TIONAL

FEEAMENDMENT

Total

-

Independent

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM
X39:

AMENDMENTA

O :U
+ma;o

It

TOTAL

OR ADDIT. FEE

ADDIT. FEE

Column 1 Column 2 Column 3
CLAIMS HIGHEST

REMAINING NUMBER .
AFTER "PREVIOUSLY '

AMENDMENT PAID FOR

PRESENT

EXTRA RATE RATE

ADDI-

TIONAL

FEE

Total X$ 9:
Minus

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM .

IndependentAMENDMENTB
Xonto

II

/

ADDIT. FEE ADDIT. FEE

Column 1 Column 2 Column 3
HIGHEST

REMAINING NUMBER PRESENT ADDI-
AFTER PREVIOUSLY EXTRA RATE TIONAL RATE

AMENDMENT ' PAID FOR FEE

Minus

 CLAIMS

Total X$ 9: OR 18:

OR X78:

Independent

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM -

AMENDMENTC
‘X39=

EB

+130:

' It the entry in column 1 is less than the entry in column 2, write "0" in column 3‘ TOTAL TOTAL
" lithe "Highest Number Previously Paid For" INTHLS SPACE is less than 20, enter ”20." ADDIT. FEE OR ADDIT FEE
“"II the “Highest Number Previously Paid For" IN THIS SPACE is less than 3, enter “‘3." ‘

The “Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate, box in column 1.

NOAC EX. 1016 Page 332

 FORM PTO-875
(Rev 12/99)

Application or Docket Number

X78-

+260:

* If the dIfference In column 1 Is less than zero, enter “0' in column 2 TOTAL _OR TOTAL
CLAIMS AS AMENDED - PART II OTHER THAN

Column 1 Column 2 Column 3 SMALL ENTITY OR ‘ SMALL ENTITY

OTHER THAN

Column 1 Column 2 TYPE I: OR SMALL ENTITY

F

690.00

[TI [TI

ADDI-

TIO NAL

FEE

ADDI-

TIONAL

FEE

 ADDI-

TIONAL

FEE

Patent and Trademark Oflice, US. DEPARTMENT OF COMMERCE

‘U.S GPO: 2000463433290“

NOAC Ex. 1016 Page 333

' Application or Docket Number

PATENT APPLICATION FEE DETERMINATION RECORD

Effective October 1, 2000

CLAIMS AS FILED - PART I SMALL ENTITY OTHER THAN
Column 1 TYPE I:I OR SMALL ENTITY

RAT EE

BASIC FEE 355.00 OR BASIC FEE 710.00

TOTAL CLAIMS
RT 11

OR X$18=

OR xso=

OR +270:

If the dIfference In column 1 Is less than zero, enter 0 In column 2 OR TOTAL 10

CLAIMS AS AMENDED - PART II OTHER THAN

Column 2 SMALL ENTITY OR SMALL ENTITY
CLAIMS I. ~ ' m HIGHEST

ADDI- ADDI-REMAINING NUMBER

AFTER PREVIOUSLY RATE TIONAL RATE TIONAL

AMENDMENT a; ,, ' PAID FOR FEE FEE

X$ 9: OR X$18=

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

z .Lu
2
o
2
LL]
E
<

+135:

033

OR +270:

TOTAL
ADDIT. FEE

TOTAL
ADDIT. FEE

m REMAINING 2' NUMBER ADD" ADDI-

E ’ 4 AFTER PREVIOUSLY RATE TIONAL RATE TIONAL
III I. “”4 AMENDMENT ~__ PAID FOR FEE FEE
E

F "-09-

“ORII
x TOTAL TOTAL

ADDITI FEE-OR ADDIT. FEE-

CLAIMS ‘- HIGHEST

REMAINING "‘3 ~ ‘ NUMBER ADDI- ADDI—
AFTER ‘ PREVIOUSLY RATE TIONAL RATE TIONAL

AMENDMENT 9:; PAID FOR FEE FEE

X$ 9: OR X$18=

o T
I- .
2
u]
E
D
2
u]
E
<

+135:

TOTAL
ADDIT. FEE

OR +270:

' It the entry in column 1 is less than the entry in column 2, write “0" in column 3.

" It the “Highest Number Previously Paid For" IN THlS§PACE Is less than 20. enter "20." ADDIT FEE
“'II‘ the “Highest Number Previously Paid For" IN THIS SPACE is less than 3. enter “3." '

The “Highest Number Previously Paid For” (Total or Independent) is the highest number found in the appropriate box in column 1.

NOAC EX. 1016 Pa_e 333
FORM PTO-B75 Patent and Trademark Office. US DEPARTMENT OF COMMERCE
(Rev. 8/00) ,

—I9.>I—
OR

NOAC Ex. 1016 Page 334

WEST Refine Search 0 O http://westbrs:8002/bin/cgi—bin/Presear

 Set Name Qu_erx Hit Count Set Name
side by side result set

DB=USPT; PL UR=YES; 0P=ADJ

Q1 111 and L23 29 @

_IL2_3_ 114 and L22 29 Q

L2_2 113 and 120 280 m

L2_1 115 and L20 0 L2_1

@ 112 and 113 280 @

L_19 117 and L18 0 m

L1_8 110 and 11 1 1453 L18

L_17 L16 and 19 2 L11

L1_6 16 and L15 62 £6

a 14 and 15 141 LE

M 12 and 13 5 3 87 m

IQ pars$4 and compil$3 3782 L1_3_

Q2 compress$3 and L1 1 3331 Liz

L_11 index$3 same entry 12455 L1;

L_lQ client and server 16935 m

Q child$4 and protocol 8849 L2

Q chi1d$4 (4a) protocol 0 fl

Ll chi1d$4 4a protocol 0 fl

Lg layer$2 and L5 10625 g

L5 protocol same operat$4 3 1 181 Q

Q pdl or protocol definition language 1895 L4

L3_ monitor$4 same 11 31281 L_3

Q ip or internet protocol 39482 L2

Q network or internet 263481 l;

END OF SEARCH HISTORY

NOAC EX. 1016 Page 334

NOAC Ex. 1016 Page 335

wfiST Refine Search 0 O http://westbrs:8002/bin/cgi-bin/Presear

\NEST

Interrupt

Main Menu Search Form ‘ '-.: a

I _

IIkfikmfifififiT’"m"‘""’m‘ I “W”” ””‘E
[(Ln AND L23).USPT. H 291

 US Patents Full-Text Database
US Pre-Grant Publication Full-Text Database
JPO Abstracts Database

EPO Abstracts Database
Derwent World Patents Index

Database: IBM Technical Disclosure Bulletins

 C—ear

Search History

DATE: Thursday, May 29, 2003 Printable Copy Create Case

NOAC EX. 1016 Page 335

NOAC Ex. 1016 Page 336

Kecord List Display 0 http://westbrs:8002/bin/gate.exe?f=TOC©8n7e5.25&ref=24&dbname=USPT&ESNAME

WEST

I Generate Collection I

Search Results - Record(s) 1 through 29 of 29 returned.

1. Document 1]): US 6571285 B1

L24: Entry 1 of 29 File: USPT May 27, 2003

US—PAT-NO: 6571285
DOCUMENT—IDENTIFIER: US 6571285 Bl

TITLE: Providing an integrated service assurance environment for a network

Full I Tltle I Citatic-n
[1 rat-II D as :1: Image-

F: e'uqelm

Class rfieatian Reterente

Claim:

2. ‘DocumentID: US 6519568 Bl

L24: Entry 2 of 29 File: USPT Feb 11, 2003

US-PAT-NO: 6519568
DOCUMENT-IDENTIFIER: US 6519568 Bl

TITLE: System and method for electronic data delivery

Full I Title Citation Front Remain" IIIas-shitatnzun GEE l—r'lfi-fllj'ImE‘Flti
[Iran-I 025-;

3. Document ID: US 6516337 B1

L24: Entry 3 of 29 File: USPT Feb 4, 2003

US—PAT-NO: 6516337
DOCUMENT—IDENTIFIER: US 6516337 Bl

TITLE: Sending to a central indexing site meta data or signatures from objects on a
computer network

J'fl’MwWV'W'“Jflmflh“‘1‘"'1’3"“
Flen iew Class nitration

Mm,:.

4. Document 1]): US 6430409 B1

L24: Entry 4 of 29 File: USPT Aug 6, 2002

US-PAT-NO: 6430409 ’
DOCUMENT-IDENTIFIER: US 6430409 Bl

NOAC EX. 1016 Page 336

NOAC Ex. 1016 Page 337

R'CCOYd List Display 0 http://westbrsz8002/bin/gate.exe?%TOCfl8n7e5 .25&ref=24&dbname=USPT&ESNAME

TITLE: Method and architecture for an interactive two—way data communication network

Full I Title 1 Utah-uni Fruzunt TEE-fiendThai—assificatiun
[Iralul Desi:

 Sequences: I .fl.tt.:1::hmv3nt£:

 @mfi" 1

I mage

[J 5. DocumentID: US6421730B1

L24: Entry 5 of 29 File: USPT Jul 16, 2002

US—PAT—NO: 6421730
DOCUMENT-IDENTIFIER: US 6421730 Bl

TITLE: Programmable system for processing a partitioned network infrastructure

Haniem» ILIaEEm-z-afic-n1: Rafi-3n

[Iralm Deg-3

6. Document ID: US 6405037B1

L24: Entry 6 of 29 File: USPT Jun 11, 2002

US-PAT-NO: 6405037

DOCUMENT-IDENTIFIER: US 6405037 Bl

TITLE: Method and architecture for an interactive two—way data communication network

Review-I Class mastic-n Retemnce Attachment E: mDram Des:

7. Document ID: US 6401117 B1

L24: Entry 7 of 29 File: USPT Jun 4, 2002

US-PAT-NO: 6401117

DOCUMENT—IDENTIFIER: US 6401117 Bl

TITLE: Platform permitting execution of multiple network infrastructure applications

Citation

F: e u ieuu I2' I33: ificatic- n F! efe re r: [‘8 SEQUE‘FICE‘S .-’-‘-.ttac hment 5:
Draw. Base

8. Document ID: US 6393487 B2

L24: Entry 8 of 29 File: USPT May 21, 2002

US—PAT-NO: 6393487
DOCUMENT—IDENTIFIER: US 6393487 B2

TITLE: Passing a communication control block to a local device SUCh that a message‘

NOAC EX. 1016 Page 337

NOAC Ex. 1016 Page 338

 Kecord List Display 0 http://westbrs:8002/bin/gate.exe?%TOC u“ 8n7e5.25&re%24&dbname=USPT&ESNAMEN

' is processed on the device

 "gull“ [Tltlelllltatmn] ‘tht—‘I Ran-iélilhf E'Iass'rflcatlon Date ”gig-arenas
Dralnl ['vesc

Sequences Afiachnent:
 1I mage

9. Document ID: US 6334153 B1

L24: Entry 9 of 29 File: USPT Dec 25, 2001

US-PAT-NO: 6334153
DOCUMENT—IDENTIFIER: US 6334153 B1

TITLE: Passing a communication control block from host to a local device such that a
message is processed on the device

, I: lass hivratic- n #1154: hmerlt E

 D ram; D ezc Image

El 10. DocumentID: US 6304915 B1

L24: Entry 10 of 29 File: USPT Oct 16, 2001

US-PAT—NO: 6304915
DOCUMENT—IDENTIFIER: US 6304915 B1

TITLE: System, method and article of manufacture for a gateway system architecture
with system administration information accessible from a browser

E itatic n

I: lass meatio n F: eff: re n c»: .flflatf‘lmen’t 5‘

D ram: Des c

11. Document ID: US 6272151 B1

L24: Entry 11 of 29 File: USPT Aug 7, 2001

US—PAT—NO: 6272151

DOCUMENT—IDENTIFIER: US 6272151 B1

TITLE: Scalable multimedia network

[Hanan

 Ftemenu Elassinc-ahc-nl Date Eereren-ze Sequence-5:

Draw. DEED-

IZ] 12. DocumentlD: US 6247060 B1

L24: Entry 12 of 29 File: USPT Jun 12, 2001

US-PAT-NO: 6247060
DOCUMENT-IDENTIFIER: US 6247060 Bl

TITLE: Passing a communication control block from host to a local device such that a
message is processed on the device

NOAC EX. 1016 Page 338

NOAC Ex. 1016 Page 339

1wind List Display 0 http://westbrs:8002/bin/gate.exe?f—TOCI€78n7eS.25&Tefi—24&dbname=USPT&ESNAME/ A

' Full [MTiiIEW 1} Citati-z-n [Hi-Want [WEE-"urinal":FElass‘nimtic-n 1 Late i Ref-arermfl E-EEqIJEI‘IIZ'Eitl Attacfnnen’ts:
E'ralnl Des-3

I mage

[I] 13. Document ID: US 620206OB1

L24: Entry 13 of 29 File: USPT Mar 13, 2001

US-PAT-NO: 6202060
DOCUMENT—IDENTIFIER: US 6202060 B1

TITLE: Data management system

Front Firs-view Llsss‘mtaiic-n Data. } Remnants Semi-ruffl .L‘cflati'nnerdi: m
[JralIuIDEEC Image

El 14. DocumentID: US 6199076B1

L24: Entry 14 of 29 File: USPT Mar 5, 2001

US—PAT-NO: 6199076
DOCUMENT—IDENTIFIER: US 6199076 B1

TITLE: Audio program player including a dynamic program selection controller

Full 7m Citation IZlassm-zatic-r. m
Draw Desi:

15. DocumentID: US 6157955 A

L24: Entry 15 of 29 File: USPT Dec 5, 2000

US-PAT-NO: 6157955
DOCUMENT-IDENTIFIER: US 6157955 A

TITLE: Packet processing system including a policy engine having a classification
unit

Utah-3n

l mags
F: an iaI-u Class moatic- n Rafe ran we Sequence-5:

[Ira-m, Luz: c:

16. DocumentID: US 6157935A

L24: Entry 16 of 29 File: USPT Dec 5, 2000

US—PAT-NO: 6157935
DOCUMENT-IDENTIFIER: US 6157935 A

TITLE: Remote data access and management system

NOAC EX. 1016 Page 339

NOAC Ex. 1016 Page 340

1{Mord List Display 0 http://westbrs:8002/bin/gate.exe?f=TOCO 8n7eS.25&ref=24&dbname=USPT&ESNAME

 l Full I line-I Citation] ant I Review Classmaatlon 1:31;: FPffiInnujquuHfit—TIEHEEhITIE—FE—

Dram. Dem:

 Image

E] 17. Document ID: US 6150962A

L24: Entry 17 of 29 File: USPT Nov 21, 2000

US—PAT—NO: 6150962
DOCUMENT—IDENTIFIER: US 6150962 A

TITLE: Predictive data entry method for a keyboard

Fla-den.» Classification
[late { Fiat-arenas .flfiact'nTIEHtB

Dram] Dag»:

E] 18. Document ID: US 6085233 A

L24: Entry 18 of 29 File: USPT Jul 4, 2000

US—PAT—NO: 6085233

DOCUMENT-IDENTIFIER: US 6085233 A

TITLE: System and method for cellular network computing and communications

 Full Title '

Dral-u. [less
F: en ieml E1133: m-z atm- n Reference Alta-it'lment i'

 Sin:-:11Jen-“W:

19. Document ID: US 5978840A

L24: Entry 19 of 29 File: USPT Nov 2, 1999

US-PAT-NO: 5978840

DOCUMENT-IDENTIFIER: US 5978840 A

TITLE: System, method and article of manufacture for a payment gateway system
architecture for processing encrypted payment transactions utilizing a multichannel,
extensible, flexible architecture

E‘itatlun Fiemew Elassnieatl-znn Attachments:

[IraME'esc Image

E] 20. Document ID: US 5931917A

L24: Entry 20 of 29 File: USPT Aug 3 , 1999

US—PAT—NO: 5931917
DOCUMENT-IDENTIFIER: US 5931917 A

TITLE: System, method and article of manufacture for a gateway system architecture
with system administration information accessible from a browser

NOAC EX. 1016 Page 340

NOAC Ex. 1016 Page 341

”5.4-1upv.my.,w,

goGOTd List Display 0 http://westbrs: 8002/bin/gate.exe?f=TOCf—’j 8n7e5.25&re%24&dbname=USPT&ESNAME

.. F111! ”TTitmlwei 61513.9(] Flaunt—I Rania": { Elaszm-zzatiuz-nl Data [Reference
Dram! Elem

Eequencezl #flachmanfi 1

E] 21. Document ID: US 5911485A

L24: Entry 21 of 29 File: USPT Jun 15, 1999

US-PAT-NO: 5911485

DOCUMENT—IDENTIFIER: US 5911485 A

TITLE: Predictive data entry method for a keypad

F29 n IeIuI I2 lass m»: atluz- n .mtta-fl'nnent 2'II Kati-3 r:

, Image
F: Here n we I EECWEFIIZ’EE:

D ram! D >3: c:

[I] 22. Document ID: US 5864542 A

L24: Entry 22 of 29 File: USPT Jan 26, 1999

US-PAT—NO: 5864542
DOCUMENT-IDENTIFIER: US 5864542 A

TITLE: Scalable multimedia network

SEQUENCE:
C I35: meatio n Aft-3!: hment 2F; .31. ielnl

Draw Des-r

CI 23. DocumentID: US 5809415A

L24: Entry 23 of 29 File: USPT Sep 15, 1998

US—PAT-NO: 5809415
DOCUMENT—IDENTIFIER: US 5809415 A

TITLE: Method and architecture for an interactive two-way data communication network

Cristi-3n Review Illaszm»:.atwn Reterente ."-".fii.=IC‘i'llTIEFltii ml
[-raml. [res-3 Image

[J 24. Document ID: US 5799017 A

L24: Entry 24 of 29 File: USPT Aug 25, 1998

US-PAT-NO: 5799017
DOCUMENT-IDENTIFIER: US 5799017 A

TITLE: Scalable multimedia network

Review [flag-5 mastic-r. Rabat-ante Aft-51E hmentz
 -

NOAC EX. 1016 Page 341

Dial-u De; c:

NOAC Ex. 1016 Page 342

RWord List Display 0 http://westbrs:8002/bin/gate.exe?%TOCfl8n7e5.25&re%24&dbname=USPT&ESNAME

E] 25. DocumentlD: US 5740176A

L24: Entry 25 of 29 File: USPT Apr 14, 1998

US-PAT—NO: 5740176

DOCUMENT—IDENTIFIER: US 5740176 A

TITLE: Scalable multimedia network

Crtati-z- n

R an. igml

C. Isl-:5 Iflcaticu n filial: I'nnrénti:RETBIEFIIZ'E Kuhn:

 twain: Des -:

D 26. DocumentlD: US 5732216A

L24: Entry 26 of 29 File: USPT Mar 24, 1998

US-PAT-NO: 5732216
DOCUMENT-IDENTIFIER: US 5732216 A“mapmwm‘:
TITLE: Audio message exchange systemu

 “Full. I Title: ”Tar'taflt‘igr: —Fr-:Int “Flier-law Elasshicatm—Grn [rate I FleTeren-hz
w[Ira-m [lesc

Sequencesl Afiachmerfis

,4gm“;
27. DocumentID: US 5721827A

L24: Entry 27 of 29 File: USPT Feb 24, 1998

in.

~V1.

US-PAT-NO: 5721827
DOCUMENT-IDENTIFIER: US 5721827 A

TITLE: System for electrically distributing personalized information

I: flatmn

lmage
 --: <"Afithem3

F: e'u'ieml I: cazsm»:=sn.:- n Ref-a re n :9

EIraI-u D >230.

E] 28. Document ID: US 5673265 A

L24: Entry 28 of 29 File: USPT Sep 30, 1997

x.5.4.»:«Array.rat-i”WE‘K‘RWWM'Vr—‘u‘xmflikWAj-‘x‘Z
US—PAT—NO: 5673265
DOCUMENT—IDENTIFIER: US 5673265 A

TITLE: Scalable multimedia network

F: e‘u‘ielm Class ific‘atic- r. F: efe [-2 n Fe

DraI-IL Des-3. Image
NOAC EX. 1016 Page 342

NOAC Ex. 1016 Page 343

Rword List Display 0 http://westbrs:8002/bin/gate.exe?%TOC&(d‘38n7e5.25&ref=24&dbname=USPT&ESNAME

C] 29. Document ID: US 5555244A

L24: Entry 29 of 29 File: USPT Sep 10, 1996

US-PAT-NO: 5555244

DOCUMENT—IDENTIFIER: US 5555244 A

TITLE: Scalable multimedia network

F ull Tltl e

Dram! D 95-:
Fig-mew

Classification Reference 'E.eql.1ern:e-:-

I Generate Collection II Print I

II Term IIWDocuments I

‘I(23 AND 11).USPT. II :3!
(L11 AND L23).USPT.

Display Format: Change Format

Previous Page Next Page ~‘lX~A(\"f(h-‘«anH‘

NOAC EX. 1016 Page 343

NOAC Ex. 1016 Page 344

pucafion Number Information http://expowebl :8001/cgi-bin/expo/Genlnfo/anuery.pl?APPL_ID=09609179‘ AP

0 3 Day : Monday
it PALM [NTRANET $353133":M— b. .-.

Application Number Information

Application Number: 09/609179
Assi nments Examiner Number: 74865 / DINH, KHANH
Filing Date: 06/30/2000 Group A11 Unit: 2155
Effective Date: 06/30/2000 Class/Subclass: 709/236.000

Application Received: 07/03/2000 Lost Case: NO _ .

Patent Number: Interference Number: Kai-ting for 8651301156 Desc._ _ all Non Final
Issue Date: 00/00/0000 Unmatched Petition: NO _—

Date ofAbandonment: 00/00/0000 L&R Code: Secrecy Codezl

Attorney Docket Number: APPT-001-2 Third Level Review: NO Secrecy Order: NO
Status: 41 /NON FINAL ACTION MAILED Status Date: 06/04/2003

Confirmation Number: 2668 Oral Hearing: N0

Title of Invention: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK

‘ Locatlon C arge to C arge to .

2,:BarCode:5 LoEaAIIion:gflm‘“1‘1foame ‘| Employee Name U Location i
No-harge i PK2/06/C0_9____609179‘ 21C1:;06/05/2003 to Location Chai‘lrge tol S_AI—_______D,ABUDULKADAR. Name

Applnm—PetitionInfo Atty/AgentInfo ContinuityData ForeignData Inve
Info

Search Another: A lication#[:3 or Patent#E::l

PCT/Efl/EZI— orPGPUBS#i:::—

AttorneyDocket#1:::::::1

Bar Code#I::::I

a

E

g:
To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

NOAC EX. 1016 Page 344 6/16/03 11:49 AM

NOAC Ex. 1016 Page 345

. .Iicatioq Number Information http://expowebl 2800l/cgi-bin/expo/GenInfo/anuery.pl?APPL_ID=09609179

, j Da :Mona

M? PALM tmRANET ‘ 1::

Application Number Information

Apphcation Number: 09/609179 Ex er Number: 74865 / DINH KHANH \
Assignments , ,

Filing Date: 06/30/2000 Group Art Unit. 2155 ‘
Effective Date: 06/30/2000 Class/Subclass: 709/236.000

Application Received: 07/03/2000 Lost Case: NO I , ,

Patent Number: Interference Number: Matting for Response Desc.. _ all Non Final
Issue Date: 00/00/0000 Unmatched Petition: NO —‘—

Date ofAbandonment: 00/00/0000 /L&R Code: Secrecy Code. 1
Attorney Docket Number: APPT-001-2 Third Level Review: NO Secrecy Order: NO
Status: 41 INON FINAL ACTION MAILED Status Date: 06/04/2003

Confirmation Number: 2668 Oral Hearing: NO

Title of Invention: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK

I IIPAL II Locatlon I C arge to-l::IIChargeto!. Bar Code Location I Date Name Employee Name -ocation

NoC-arge No -K2-/06/C0___9609179I 21C1 06/05/2003 to Location Charge toI SAID,ABUDULKAD-9Name

Applnm_Petition Info Atty/AgentInfo _ontinuityData ForeignData lnve
Info

Search Another: A lication#[|
orPatent#i::::J-

PCT/[Zl/IZJ- orPGPUBS#l:::1-

AttorneyDocket#t::::::::1

Bar Code #i:::::

mev‘WMvaMA*“WWW"'“

:3

3? To go back use Back button on your browser toolbar. /

g Back to PALM I ASSIGNMENT | OASIS | Home page
ifs1

i3
g,
3:

‘L: l x
, °f1 6/16/03 11:49 AM

NOAC EX. 1016 Page 345

NOAC Ex. 1016 Page 346

_ It does NOT get mailed to tb

This Forni is for INTERNAL PTO USE ONLY

c applicant.

NOTICE OF FILING / CLAIM FEMS) DUE

(CALCULATION SHEET)

APPLICATION NLMBLR: ‘ 21 4&7/77

Total Fcc Calculation

Toul Numbcr

Fcc Cod: :1 Claxm‘ Extn X

Sme:7

Dulc Filing F:r: IOl‘lOl '

Tout Claim: >20 :53 :0: [cl -20 ‘ -\'

lndcpcndcni Clara: 2-3 302‘102‘ ; " N \
.‘vlull Dc; Claim l‘rr::.:ni Ill-13H":

Surzharg: ZOS'ICJ

English TQ'ZLlJHOn 1.10

TOTAL FEE CALCULATIONK

LCSS Filing Fc:s Submirtrd - 5*fig

BALANCE DUI: = s r If)

z W;
Och of Initial Palcnl E 'inauon

l Igmu 7
rORM OlPE-RAM-Ol (Rev. 12/97)

FCC Fcc - Total

Sm Emmy Lg Ennry

.____. fl ' M

#7)? . ‘52

322D

NOAC EX. 1016 Page 346

NOAC Ex. 1016 Page 347

lll

US006665725B1

(12) United States Patent (10) Patent No.: US 6,665,725 B1
Dietz et al. (45) Date of Patent: Dec. 16, 2003

(54) PROCESSING PROTOCOL SPECIFIC 5,414,704 A 5/1995 Spinney 370/60
INFORMATION IN PACKETS SPECIFIED BY
A PROTOCOL DESCRIPTION LANGUAGE

(75) Inventors; Russell S. Dietz, San Jose, CA (US);
Andrew A. Koppenhaver, Littleton,
CO (US); James F. Torgerson,
Andover, MN (US)

(73) Assignee: Hi/fn, Inc., Los Gatos, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 537 days.

(21) Appl. No.: 09/609,179

(22) Filed: Jun. 30, 2000

Related US. Application Data
(60) Provisional application No. 60/141,903, filed on Jun. 30,

1999.

(51) Int. Cl.7 .. G06F 13/00
(52) US. Cl. 709/230; 709/246; 709/228;

370/389

(58) Field of Search 709/203, 206,
709/216, 217, 222, 246, 225, 228, 2.30,

232 703/26; 370/489, 13, 17

(56) References Cited
U.S. PATENT DOCUMENTS

4,736,320 A 4/1988 Bristol 364/300
4,891,639 A 1/1990 Nakamura .. 340/8255
5,101,402 A 3/1992 Chui et al. .. 370/17
5,247,517 A 9/1993 Ross et al. .. . 370/855
5,247,693 A 9/1993 Bristol 709/203
5,315,580 A 5/1994 Phaal 370/13
5,339,268 A 8/1994 Machida . 365/49
5,351,243 A 9/1994 Kalkunte et aL 370/92
5,365,514 A 11/1994 Hershey et al. . .. 370/17
5,375,070 A 12/1994 Hershey et a]. . . 364/550
5,394,394 A 211995 ..
5,414,650 A 5/1995

(List continued on next page.)
OTHER PUBLICATIONS

“Technical Note: the Narus System,” Downloaded Apr. 29,
1999 from www.mruscom, Nams Corporation, Redwood
City California.

Primary Examiner—Hosain T. Alam
Assistant Examiner—Khanh Quang Dinh
(74) Attomey, Agent, or Firm—Dov Rosenfeld; Inventek

(57) ABSTRACI‘

A method of performing protocol specific operations on a
packet passing through a connection point on a computer
network. The packet contents conform to protocols of a
layered model wherein the protocol at a at a particular layer
level may include one or a set of child protocols defined for
that level. The method includes receiving the packet and
receiving a set of protocol descriptions for protocols may be
used in the packet. A protocol description for a particular
protocol at a particular layer level include any child pro-
tocols of the particular protocol, and for any child protocol,
where in the packet information related to the particular
child protocol may be found. A protocol description also
includes any protocol specific operations to be performed on
the packet for the particular protocol at the particular layer
level. The method include performing the protocol specific
operations on the packet specified by the set of protocol
descriptions based on the base protocol of the packet and the
children of the protocols used in the packet. A particular
embodiment includes providing the protocol descriptions in
a high-level protocol description language, and compiling to
the descriptions into a data structure. The compiling may
further include compressing the data structure into a com.
presed data structure. The protocol specific operations may
include parsing and extraction operations to extract identi-
fying information. The protocol specific operations may also
include state processing operations defined for a particular
state of a conversational flow of the packet.

17 Claim 20 Drawing Sheets

NOAC EX. 1016 Page 347

NOAC Ex. 1016 Page 348

US 6,665,725 B1

W:41

Page 2

U.S. PATENr DOCUMENTS 5,787,253 A 7/1998 McCrecry et 81. 70912275 H ' 1.1. 709 03

5,430,709 A 7/1995 Galloway 370/13 5’23?ng 323:: (2:33:10 370,345
5432776 A 7/1995 Harper 370/17 ’ . '."""
5’493 689 A 2/1996 Wadawsky at a] 709[206 5,819,028 A 10/‘1998 Manghmnalanl ct a]. 709/203
5,500,855 A 3/1996 Hershey et al. 370/17 3,3236%?! 2 $133: gen“ °‘ ‘1' “ 333%;
5,511,215 A 4/1996 Terasaka eta]. 709/246 ’83 'm 998 Sfmed81""
5,568,471 A 10/1996 Hershey et .1. .. 370/17 2 5’ A 11/19 Scwwan" ' a 709””
5,574,875 A 11/1996 Stansfield et a]. . 395/403 4338919 A 11/1 93 1‘ °’ °‘ ' 709”“5841 895 A 11/1998 Hutfmzn 382/1555,586,266 A 12/1996 Hershey cl .1. .. .709/216 7 ,
5,606,668 A 2/1997 Shwcd .. 709/216 5350335 A ”/1998 mm“ “‘1 370941
5,608,662 A 3/1997 large ct . 364/72401 54850383 A ”“998 Aud‘m“ °‘ “1' ' 370””
5,634,009 A 5/1997 Iddon et a]. 709/206 5,852,335 A “1999 “1‘“, J" °‘ “1‘ 709m
5,651,002 A 7/1997 Van Selen- et al. . 370/392 5387852" A 3’19” d" I“.Sa"° 707/10
5,680,585 A 3 10/1997 Brueu 703/26 5,893,155 A 4/1999 Chm“ 711/144
5,684,954 A 11/1997 Kaisetswenh e1 :11. . 709/203 5903754 A 5’19” Pm“ '''' 709%5,917,821 A 6/1999 Gobuyan eta]. . 370/3925,703,877 A 12/1997 Nubcret 61. . 370/395
5,721,327 A , 2,1998 Logan cl 3]. . .709/217 6,014,380 A 1r2000 Hendel et a1. . 370/392
5,732,213 A 3/1998 Gessel e161. 709/216 27312131415); g1 : 8/3001 Sup“ “3L 5370/4”
5,740,355 A 4/1998 Wannabe et al. 395/18321 4 ’ . 8/2002 9m ' '4 5’42'1
5,761,424 A 6/1998 Adams ct a]. 709/232 5515337 Bl 2/2003 TnPP °‘ “L 709902
5,764,638 A 6,1998 “Mum _____ __ 370,401 6,519,568 B1 — mom Harvey eta]. 705/1
5,781,735 A 7/1998 Southud 709/238
5,784,298 A 7/1998 Hershey at a]. 364/557 ‘ cited by examiner

NOAC EX. 1016 Page 348

NOAC Ex. 1016 Page 349

"v

US. Patent Dec. 16,2003 Sheet 1 of 20 “' US 6,665,725 B1

100 CLIENT 4fl ANALYZER

— S_ERVER.
CLIENT3

-x m,
106 121

 DATA COMMUNICATIONS

NETWORK

102

125

n»

— 118

‘\ CLIENT2 .LIEN—T:
112 104

FIG. 1

NOAC EX. 1016 Page 349

NOAC Ex. 1016 Page 350

214 215 216 217 218 219 220 221 222 223

APPLICATION $ERVER 2

NOAC EX. 1016 Page 350

5:1
{I}

"U
33pp.
(D
5pp.

£00:‘91mu

01I0Z133‘IS

IaS‘ZL‘S99‘9sn

NOAC Ex. 1016 Page 351

:“zyam’ » ‘ r ”a: .« I“ ~ *1 .I ‘? gum meuMSWXfwme~uw¢u “

PARSER gm

ANALYZE AND
RECOGNIZE

PATTERN

EXTRACT
IDENTIFYING

INFORMATION

BUILD UNIQUE
CONVERSATIO

|

|

I I LOOKUP

“FLOW" KEY l
l

l

FROM
KNOWN

I RECORDS

I (03324

NEW “FLOW

RECORD? DATABASEOF FLOWS

gl “I

l I I I I l I l I I

mama'S'fl

IA CACHE

_______ _I | U

.8
‘—‘T H

I UPDATE 322' “:2
PATTERN, PARS. I PROTOCOL "FLOW" I g

MAISON . . TIDENTIFICATION

DATABASE I RECORD I
I I

_ _ J I g

I I CLASSIFICATN I a
310 I FINALIZATION I u

PROCESSOR I a,
I INSTRUCTION I N

COMPILER DATABASE 34 c
AND I I

OPTIMIZER I I

| I

I NO |

| 330 ' c:
DATAGRAM I I m

DESCIPTIO LAYER I MORE I
LANGUAGE SELECTION I OPERATIONS I '32

I ANALYZER I fn‘
I 303 I q— N

~ I ____________YE_ _______________ | UT
USI—I

NOAC EX. 1016 Page 351

NOAC Ex. 1016 Page 352

NOAC Ex. 1016 Page 353

NOAC Ex. 1016 Page 354

NOAC Ex. 1016 Page 355

NOAC Ex. 1016 Page 356

NOAC Ex. 1016 Page 357

NOAC Ex. 1016 Page 358

NOAC Ex. 1016 Page 359

NOAC Ex. 1016 Page 360

NOAC Ex. 1016 Page 361

NOAC Ex. 1016 Page 362

NOAC Ex. 1016 Page 363

NOAC Ex. 1016 Page 364

NOAC Ex. 1016 Page 365

NOAC Ex. 1016 Page 366

NOAC Ex. 1016 Page 367

NOAC Ex. 1016 Page 368

NOAC Ex. 1016 Page 369

NOAC Ex. 1016 Page 370

NOAC Ex. 1016 Page 371

NOAC Ex. 1016 Page 372

NOAC Ex. 1016 Page 373

NOAC Ex. 1016 Page 374

NOAC Ex. 1016 Page 375

NOAC Ex. 1016 Page 376

NOAC Ex. 1016 Page 377

NOAC Ex. 1016 Page 378

NOAC Ex. 1016 Page 379

NOAC Ex. 1016 Page 380

NOAC Ex. 1016 Page 381

NOAC Ex. 1016 Page 382

NOAC Ex. 1016 Page 383

NOAC Ex. 1016 Page 384

NOAC Ex. 1016 Page 385

NOAC Ex. 1016 Page 386

NOAC Ex. 1016 Page 387

NOAC Ex. 1016 Page 388

NOAC Ex. 1016 Page 389

NOAC Ex. 1016 Page 390

NOAC Ex. 1016 Page 391

NOAC Ex. 1016 Page 392

NOAC Ex. 1016 Page 393

NOAC Ex. 1016 Page 394

NOAC Ex. 1016 Page 395

NOAC Ex. 1016 Page 396

NOAC Ex. 1016 Page 397

NOAC Ex. 1016 Page 398

NOAC Ex. 1016 Page 399

NOAC Ex. 1016 Page 400

NOAC Ex. 1016 Page 401

NOAC Ex. 1016 Page 402

NOAC Ex. 1016 Page 403

NOAC Ex. 1016 Page 404

NOAC Ex. 1016 Page 405

NOAC Ex. 1016 Page 406

NOAC Ex. 1016 Page 407

NOAC Ex. 1016 Page 408

NOAC Ex. 1016 Page 409

NOAC Ex. 1016 Page 410

NOAC Ex. 1016 Page 411

NOAC Ex. 1016 Page 412

NOAC Ex. 1016 Page 413

NOAC Ex. 1016 Page 414

NOAC Ex. 1016 Page 415

NOAC Ex. 1016 Page 416

NOAC Ex. 1016 Page 417

NOAC Ex. 1016 Page 418

NOAC Ex. 1016 Page 419

NOAC Ex. 1016 Page 420

NOAC Ex. 1016 Page 421

