NOAC Ex. 1015 Page 1

NOAC Ex. 1015 Page 2

P §

UNITED STATES PATENT AND TRADEMARK OFFICE -

of 1

I\IlﬂllllllllﬂllllllllI|lllll|I|lIlIlllllllll\|ll||l|ll|l|lllli|l|l

Bib Data Sheet

COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D.C. 20231

www.uspto.gov

CONFIRMATION NO. 9993

FILING DATE
06/30/2000

RULE

CLASS
709

SERIAL NUMBER
09/608,237

GROUP ART UNIT

2155 APPT-001-1

ATTORNEY
DOCKET NO.

IAPPLICANTS

Russell S. Dietz, San Jose, CA;
Joseph R. Maixner, Aptos, CA;
Andrew A. Koppenhaver, Littleton, CO;
William H. Bares, Germantown, TN;
Haig A. Sarkissian, San Antonio, TX;
James F. Torgerson, Andover, MN;

bt CONTINUING DATA **sssxnness

L5 FoRElGN APP WMONS hkkdkkkkhk ik kkikkkhk

IF REQUIRED FOREIGN FILING LICENSE
GRANTED ** 08/21/2000

/

THIS APPLN WS BENEFIT OF 60/141,903 06/30/1999

D yesﬂ no

35 USC 119 (a-d) conditions D yes‘g no D Met after
met Allowance

Neriﬁed and
IAcknowledged

Foreign Priority claimed

LR T

Vihitials

Examiner's Signature

STATE OR
COUNTRY
CA

SHEETS TOTAL
DRAWING | CLAIMS
18 59 4

INDEPENDENT|
CLAIMS

ADDRESS

Dov Rosenfeld

Suite 2

5507 College Avenue
Oakland ,CA 94618

TITLE

. Method and apparatus for monitoring traffic in a network

’
-~

FILING FEE |FEES: Authority has been given in Paper
RECEIVED [No. “to charge/credit DEPOSIT ACCOUNT
1622 No. for following:

(. All Fees l

U 1.16 Fees (Filing)

] 1.17 Fees (Processing Ext,
time)

of

L >0

)19 1.18 Fees (issue)
U other
U credit

JLJ_)

W20 o

NOAC Ex. 1015 Page 3

E=
o
EH
(EH
i:d
w5
=2

N1

J

h

0% -03-00

IN THE U.S. PATENT AND TRADEMARK OFFICE
Application Transmittal Sheet

Our Ref./Docket No.: _ APPT-001-1
Box Patent Application —
ASSISTANT COMMISSIONER FOR PATENTS =
Washington, D.C. 20231 =N
“eO=T |
Dear Assistant Commissioner: nweI=2_g
SaO=_
Transmitted herewith is the patent application of =0
==
20O=
INVENTOR(s)/APPLICANT(s) s =
Last Name First Name, MI Residence (City and State or Country)
Dietz Russell S. San Jose, CA
Maixner Joseph R. Aptos, CA
Koppenhaver Andrew A. Fairfax, VA

Additional inventors are being named on separately numbered sheets attached hereto.

TITLE OF THE INVENTION

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387

5507 College Avenue, Suite 2

Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992 ’

ENCLOSED APPLICATION PARTS (check all that apply)

Included are:
X 66 sheet(s) of specification, claims, and abstract
X 18 _ sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson
Information Disclosure Statement. -
Form PTO-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a
copy of each references included in PTO-1449.
Declaration and Power of Attorney
An assignment of the invention to_Apptitude, Inc.
A letter requesting recordation of the assignment.
An assignment Cover Sheet.
Additional inventors are being named on separately numbered shaets attached hereto.
Return postcard. -
This application has:
a small entity status. A verified statement:
is enclosed
was already filed.

T

The fee has been calculated as shown in the following page.

"Certificate of Mailing under 37 CFR 1.10

1 hereby certify that this application and all attachments are bein_g deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961944US in an envelope addressed to Box Patent
Application, Assistant Commissioner for Patents, Washington, D.C. 20231 ¢

Date: e 30} DO

Sign Ex./_li)lS Page 4
NameDov Rosenfeld, Reg. No. 38687

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. _ APPT-001-1

NO. OF EXTRA RATE EXTRA CLAM
TOTAL CLAIMS CLAIMS FEE

TOTAL 59 39 $18 $702.00
CLAIMS

INDEP. 4 1 $78 $ 78.00
CLAIMS

BASIC APPLICATION FEE: $ 690.00

TOTAL FEES PAYABLE: $1,470.00

METHOD OF PAYMENT
A check in the amount of is attached for application fee and presentation of claims.

A check in the amount of $ 40.00 is attached for recordation of the Assignment.

The Commissioner is hereby authorized to charge payment of the any missing filing or other fees
required for this filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

=
Pl

Respectfully Submitted,

“ Dov Rosenfeld , Reg. No. 38687

i “u ;| w)‘J.l
o
8
o

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, California, 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

CHCH e =k

NOAC Ex. 1015 Page 5

SUBMISSION DOCUMENT

Page 3
ATTORNEY DOCKET NO. _APPT-001-1

ATTORNEY DOCKET NO. APPT-001-1

Application Cover Sheet (cont.)

INVENTOR(s)/APPLICANT(s)
Last Name First Name, MI Residence (City and Either State or Foreign
Country)
Bares William H. Germantown, TN
Sarkissian Haig A. San Antonio, Texas
Torgerson James F. Andover, MN
-

NOAC Ex. 1015 Page 6

g s)

e E

i
i:3
3
=
i3

R e s o T s TR

Our Ref./Docket No: APPT-001-1 Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al. Group Art Unit: unassigned

Title: METHOD AND APPARATUS FOR Examiner: unassigned
MONITORING TRAFFIC IN A NETWORK

LETTER TO OFFICIAL DRAFTSPERSON
SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents
Washington, DC 20231
ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find 18 sheets of formal drawings to be made of record for the above
identified patent application submitted herewith.

Respectfully Submitted,
?M/‘d—: 30 A®0O %_\——/
Date Dov Rosenfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):
Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this applicatibn and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: E1417961944US in an envelope addressed to Box Patent

Application, Assistant Commissioner for Patents, Washington, D.C. 202
Date: 3 £ i o '
Ph f 3
j Name! Dov osenfeld, Reg. No. 38687

B o S R

Our Ref./Docket No.: _ APPT-001-1

qowten

e T, L

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

Inventor(s):

DIETZ, Russell S.
San Jose, CA

MAIXNER, Joseph R.
Aptos, CA

KOPPENHAVER, Andrew A.
Fairfax, VA

Mg e p v AT

LT R TR I e Y I WA
ERCH e "

2§
&

BARES, William H.
Germantown, TN

SARKISSIAN, Haig A.
San Antonio, Texas

TORGERSON, James F.
Andover, MN

FYRREF: 75

Certificate of Mailing under 37 CFR 1.10

: Thereby certify that this application and all attachments are being deposited with thc_United States Postal Service as Express Mail
% (Express Mail Label: EI417961944US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,

Washington, D.C. 20231 on.
; & C\Ex. 1015 Page 8
. Date: 20 Signed:
. L Namé: Dov Rosenfeld, Reg. No. 38687

L SR PR

P Y

10

15

20

25

30

1

METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.:
60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference.

This application is related to the following U.S. patent applications, each filed
concurrently with the present application, and each assigned to Apptitude, Inc., the

assignee of the present invention:

19
U.S. Patent Application Serial No.©Y /6 for PROCESSING PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL
DESCRIPTION LANGUAGTE, to inventors Koppenhaver, et al., filed June 30, 2000,
sEill pendpgp—

=00T=2; and incorporated herein by reference.

U.S. Patent Application Serial No. 84 /6§42 (for RE-USING INFORMATION FROM
DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK
. . still ,é’mf,xg,
MONITORING, to inventors Dietz, et al., filed June 30, 2000, Attorney-Aaent

~Referenee-Mumber-APPT-604-3, and incorporated herein by reference.

U.S. Patent Application Serial No. 0%\ /¢e®2((for ASSOCIATIVE CACHE
STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A
NETWORK MONITOR, to inyentors Sarkissian, et al., filed June 30, 2000,

S\l Pvidingy

=4, and incorporated herein by reference.

U.S. Patent Application Serial No. ©4 /66,26 Tfor STATE PROCESSOR FOR
PATTERN MATCHING IN A NETWORK MONITé)R }DEVICCJE, to inventors
s€i Penoling
Sarkissian, et al., filed June 30, 2000, A

and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time
elucidation of packets communicated within a data network, including classification
according to protocol and application program.

NOAC Ex. 1015 Page 9

S ER Y

tf..,n.‘i'.?

.
-

2=
=

10

15

20

25

30

2
BACKGROUND TO THE PRESENT INVENTION

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other internets—
an “internet” being any plurality of interconnected networks which forms a larger, single
network. With the growth of networks used as a collection of clients obtaining services
from one or more servers on the network, it is increasingly important to be able to
monitor the use of those services and to rate them accordingly. Such objective
information, for example, as which services (i.e., application programs) are being used,
who is using them, how often they have been accessed, and for how long, is very useful in
the maintenance and continued operation of these networks. It is especially important that
selected users be able to access a network remotely in order to generate reports on
network use in real time. Similarly, a need exists for a real-time network monitor that can

provide alarms notifying selected users of problems that may occur with the network or

site.

One prior art monitoring method uses log files. In this method, selected network
activities may be analyzed retrospectively by reviewing log files, which are maintained by
network servers and gateways. Log file monitors must access this data and analyze
(“mine™) its contents to determine statistics about the server or gateway. Several problems
exist with this method, however. First, log file information does not provide a map of
real-time usage; and secondly, log file mining does not supply complete information. This
method relies on logs maintained by numerous network devices and servers, which
requires that the information be subjected to refining and correlation. Also, sometimes

information is simply not available to any gateway or server in order to make a log file
entry.

One such case, for example, would be information concerning NetMeeting®
(Microsoft Corporation, Redmond, Washington) sessions in which two computers

connect directly on the network and the data is never seen by a server or a gateway.

Another disadvantage of creating log files is that the process requires data logging
features of network elements to be enabled, placing a substantial load on the device ,
which results in a subsequent decline in network performance. Additionally, log files can

grow rapidly, there is no standard means of storage for them, and they require a

NOAC Ex. 1015 Page 10

ﬂ
5_2
o
u
;.::
=
if
b
Q
S
g

10

15

20

25

30

significant amount of maintenance.

Though Netflow® (Cisco Systems, Inc., San Jose, California), RMON2, and other
network monitors are available for the real-time monitoring of networks, they lack

visibility into application content and are typically limited to providing network layer

level information.

Pattern-matching parser techniques wherein a packet is parsed and pattern filters

are applied are also known, but these too are limited in how deep into the protocol stack

they can examine packets.

Some prior art packet monitors classify packets into connection flows. The term
“connection flow” is commonly used to describe all the packets involved with a single
connection. A conversational flow, on the other hand, is the sequence of packets that are
exchanged in any direction as a result of an activity—for instance, the running of an
application on a server as requested by a client. It is desirable to be able to identify and
classify conversational flows rather than only connection flows. The reason for this is that
some conversational flows involve more than one connection, and some even involve
more than one exchange of packets between a client and server. This is particularly true
when using client/server protocols such as RPC, DCOMP, and SAP, which enable a

service to be set up or defined prior to any use of that service.

An example of such a case is the SAP (Service Advertising Protocol), a NetWare
(Novell Systems, Provo, Utah) protocol used to identify the services and addresses of
servers attached to a network. In the initial exchange, a client might send a SAP request to
a server for print service. The server would then send a SAP reply that identifies a
particular address—for example, SAP#5—as the print service on that server. Such
responses might be used to update a table in a router, for instance, known as a Server
Information Table. A client who has inadvertently seen this reply or who has access to the
table (via the router that has the Service Information Table) would know that SAP#5 for
this particular server is a print service. Therefore, in order to print data on the server, such
a client would not need to make a request for a print service, but would simply send data
to be printed specifying SAP#5. Like the previous exchange, the transmission of data to
be printed also involves an exchange between a client and a server, but requires a second

connection and is therefore independent of the initial exchange. In order to eliminate the

NOAC Ex. 1015 Page 11

‘i
:
T
£

R

e :mx*ﬂwfw

I Y

E]

[}
ers

]

®
P
43

10

15

20

25

30

4

possibility of disjointed conversational exchanges, it is desirable for a network packet
monitor to be able to “virtually concatenate”—that is, to link—the first exchange with the
second. If the clients were the same, the two packet exchanges would then be correctly

identified as being part of the same conversational flow.

Other protocols that may lead to disjointed flows, include RPC (Remote Procedure
Call); DCOM (Distributed Component Object Model), formerly called Network OLE
(Microsoft Corporation, Redmond, Washington); and CORBA (Common Object Request
Broker Architecture). RPC is a programming interface from Sun Microsystems (Palo
Alto, California) that allows one program to use the services of another program in a —
remote machine. DCOM, Microsoft’s counterpart to CORBA, defines the remote
procedure call that allows those objects—objects are self-contained software modules—to
be run remotely over the network. And CORBA, a standard from the Object Management
Group (OMG) for communicating between distributed objects, provides a way to execute
programs (objects) written in different programming languages running on different

platforms regardless of where they reside in a network.

What is needed, therefore, is a network monitor that makes it possible to
continuously analyze all user sessions on a heavily trafficked network. Such a monitor
should enable non-intrusive, remote detection, characterization, analysis, and capture of
all information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

Considering the previous SAP example again, because one features of the

invention is to correctly identify the second exchange as being associated with a print

NOAC Ex. 1015 Page 12

. ‘**"ﬁcﬂtﬁ{?»"ﬁ

o GF e

e

Wl

£ i Gt RK WY A% v T

TR o e

i3

P . Y

RENCTEVY SR

7. ke

PRI G

10

15

20

25

30

5

service on that server, such exchange would even be recognized if the clients were not the
same. What distinguishes this invention from prior art network monitors is that it has the

ability to recognize disjointed flows as belonging to the same conversational flow.

The data value in monitoring network communications has been recognized by
many inventors. Chiu, et al., describe a method for collecting information at the session
level in a computer network in United States Patent 5,101,402, titled “APPARATUS
AND METHOD FOR REAL-TIME MONITORING OF NETWORK SESSIONS AND
A LOCAL AREA NETWORK?” (the “402 patent”). The 402 patent specifies fixed
locations for particular types of packets to extract information to identify session of a
packet. For example, if a DECnet packet appears, the 402 patent looks at six specific
fields (at 6 locations) in the packet in order to identify the session of the packet. If, on the
other hand, an IP packet appears, a different set of six different locations is specified for
an IP packet. With the proliferation of protocols, clearly the specifying of all the possible
places to look to determine the session becomes more and more difficult. Likewise,
adding a new protocol or application is difficult. In the present invention, the locations
examined and the information extracted from any packet are adaptively determined from
information in the packet for the particular type of packet. There is no fixed definition of
what to look for and where to look in order to form an identifying signature. A monitor
implementation of the present invention, for example, adapts to handle differently IEEE
802.3 packet from the older Ethernet Type 2 (or Version 2) DIX (Digital-Intel-Xerox)
packet.

The 402 patent system is able to recognize up to the session layer. In the present
invention, the number of levels examined varies for any particular protocol. Furthermore,
the present invention is capable of examining up to whatever level is sufficient to
uniquely identify to a required level, even all the way to the application level (in the OSI

model).

Other prior art systems also are known. Phael describes a network activity monitor
that processes only randomly selected packets in United States Patent 5,315,580, titled
“NETWORK MONITORING DEVICE AND SYSTEM.” Nakamura teaches a network
monitoring system in United States Patent 4,891,639, titled “MONITORING SYSTEM
OF NETWORK.” Ross, et al., teach a method and apparatus for analyzing and
monitoring network activity in United States Patent 5,247,517, titled “METHOD AND

NOAC Ex. 1015 Page 13

;

Fas]
=
=
==
=
=21

P&m PR IR

JORE TNV 358 EOR RN an R S > SRR e R T R T B G m

U R RN RN R

10

15

20

25

N
{0
3

6
APPARATUS FOR ANALYSIS NETWORKS,” McCreery, et al., describe an Internet

activity monitor that decodes packet data at the Internet protocol level layer in United
States Patent 5,787,253, titled “APPARATUS AND METHOD OF ANALYZING
INTERNET ACTIVITY.” The McCreery method decodes IP-packets. It goes through the
decoding operations for each packet, and therefore uses the processing overhead for both
recognized and unrecognized flows. In a monitor implementation of the present invention,
a signature is built for every flow such that future packets of the flow are easily
recognized. When a new packet in the flow arrives, the recognition process can
commence from where it last left off, and a new signature built to recognize new packets

of the flow.

SUMMARY

In its various embodiments the present invention provides a network monitor that

can accomplish one or more of the following objects and advantages:

e Recognize and classify all packets that are exchanges between a client and

server into respective client/server applications.

e Recognize and classify at all protocol layer levels conversational flows that

pass in either direction at a point in a network.

e Determine the connection and flow progress between clients and servers

according to the individual packets exchanged over a network.

e Be used to help tune the performance of a network according to the current

mix of client/server applications requiring network resources.

e Maintain statistics relevant to the mix of client/server applications using

network resources.

¢ Report on the occurrences of specific sequences of packets used by particular

applications for client/server network conversational flows.
Other aspects of embodiments of the invention are:

¢ Properly analyzing each of the packets exchanged between a client and a
server and maintaining information relevant to the current state of each of

these conversational flows.

NOAC Ex. 1015 Page 14

3o o ety

ELEN

‘.
&
%
3
ES
-

|
|

=

ChEhh

10

15

20

25

P

7

 Providing a flexible processing system that can be tailored or adapted as new

applications enter the client/server market.

e Maintaining statistics relevant to the conversational flows in a client/sever

network as classified by an individual application.

e Reporting a specific identifier, which may be used by other network-oriented
devices to identify the series of packets with a specific application for a

specific client/server network conversational flow.

In general, the embodiments-of the present invention overcome the problems and

disadvantages of the art.

As described herein, one embodiment analyzes each of the packets passing
through any point in the network in either direction, in order to derive the actual
application used to communicate between a client and a server. Note that there could be
several simultaneous and overlapping applications executing over the network that are

independent and asynchronous.

A monitor embodiment of the invention successfully classifies each of the
individual packets as they are seen on the network. The contents of the packets are parsed
and selected parts are assembled into a signature (also called a key) that may then be used
identify further packets of the same conversational flow, for example to further analyze
the flow and ultimately to recognize the application program. Thus the key is a function
of the selected parts, and in the preferred embodiment, the function is a concatenation of
the selected parts. The preferred embodiment forms and remembers the state of any
conversational flow, which is determined by the relationship between individual packets
and the entire conversational flow over the network. By remembering the state of a flow
in this way, the embodiment determines the context of the conversational flow, including
the application program it relates to and parameters such as the time, length of the

conversational flow, data rate, etc.

The monitor is flexible to adapt to future applications developed for client/server
networks. New protocols and protocol combinations may be incorporated by compiling

files written in a high-level protocol description language.

NOAC Ex. 1015 Page 15

"o R

A ORI T AL S 1 S AN 5SS W IR 7 IR S R,

s g B T

10

15

20

25

30

8

The monitor embodiment of the present invention is preferably implemented in
application-specific integrated circuits (ASIC) or field programmable gate arrays (FPGA).
In one embodiment, the monitor comprises a parser subsystem that forms a signature from
a packet. The monitor further comprises an analyzer subsystem that receives the signature

from the parser subsystem.

A packet acquisition device such as a media access controller (MAC) or a
segmentation and reassemble module is used to provide packets to the parser subsystem

of the monitor.

In a hardware implementation, the parsing subsystem comprises two sub-parts, the
pattern analysis and recognition engine (PRE), and an extraction engine (slicer). The PRE
interprets each packet, and in particular, interprets individual fields in each packet

according to a pattern database.

The different protocols that can exist in different layers may be thought of as
nodes of one or more trees of linked nodes. The packet type is the root of a tree. Each
protocol is either a parent node or a terminal node. A parent node links a protocol to other
protocols (child protocols) that can be at higher layer levels. For example, An Ethernet
packet (the root node) may be an Ethertype packet—also called an Ethernet Type/Version
2 and a DIX (DIGITAL-Intel-Xerox packet)—or lan IEEE 802.3 packet. Continuing with
the IEEE 802.3-type packet, one of the children nodes may be the IP protocol, and one of
the children of the IP protocol may be the TCP protocol.

The pattern database includes a description of the different headers of packets and
their contents, and how these relate to the different nodes in a tree. The PRE traverses the
tree as far as it can. If a node does not include a link to a deeper level, pattern matching is
declared complete. Note that protocols can be the children of several parents. If a unique
node was generated for each of the possible parent/child trees, the pattern database might
become excessively large. Instead, child nodes are shared among multiple parents, thus

compacting the pattern database.

Finally the PRE can be used on its own when only protocol recognition is

required.

For each protocol recognized, the slicer extracts important packet elements from

the packet. These form a signature (i.e., key) for the packet. The slicer also preferably
NOAC Ex. 1015 Page 16

»xy

R R

e N . N

RS TR AR

RS XD, ARG = rie

A RN . A OO SR X, 2

P

£ 0%

PO VA ST AR L fCE

k0 R

k-
3

g
Hioree

RN

10

15

20

25

30

3
9

generates a hash for rapidly identifying a flow that may have this signature from a

database of known flows.

The flow signature of the packet, the hash and at least some of the payload are
passed to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem
includes a unified flow key buffer (UFKB) for receiving parts of packets from the parser
subsystem and for storing signatures in process, a lookup/update engine (LUE) to lookup
a database of flow records for previously encountered conversational flows to determine
whether a signature is from an existing flow, a state processor (SP) for performing state
processing, a flow insertion and deletion engine (FIDE) for inserting new flows into the
database of flows, a memory for storing the database of flows, and a cache for speeding
up access to the memory containing the flow database. The LUE, SP, and FIDE are all
coupled to the UFKB, and to the cache.

The unified flow key buffer thus contains the flow signature of the packet, the
hash and at least some of the payload for analysis in the analyzer subsystem. Many
operations can be performed to further elucidate the identity of the application program
content of the packet involved in the client/server conversational flow while a packet
signature exists in the unified flow signature buffer. In the particular hardware
embodiment of the analyzer subsystem several flows may be processed in parallel, and
multiple flow signatures from all the packets being analyzed in parallel may be held in the
one UFKB.

The first step in the packet analysis process of a packet from the parser subsystem
is to lookup the instance in the current database of known packet flow signatures. A
lookup/update engine (LUE) accomplishes this task using first the hash, and then the flow
signature. The search is carried out in the cache and if there is no flow with a matching
signature in the cache, the lookup engine attempts to retrieve the flow from the flow
database in the memory. The flow-entry for previously encountered flows preferably
includes state information, which is used in the state processor to execute any operations
defined for the state, and to determine the next state. A typical state operation may be to
search for one or more known reference strings in the payload of the packet stored in the

UFKB.

Once the lookup processing by the LUE has been completed a flag stating whether

NOAC Ex. 1015 Page 17

|
%

10

15

DS N

i 20

25

30

10

it is found or is new is set within the unified flow signature buffer structure for this packet
flow signature. For an existing flow, the flow-entry is updated by a calculator component
of the LUE that adds values to counters in the flow-entry database used to store one or
more statistical measures of the flow. The counters are used for determining network

usage metrics on the flow.

After the packet flow signature has been looked up and contents of the current
flow signature are in the database, a state processor can begin analyzing the packet
payload to further elucidate the identity of the application program component of this
packet. The exact operation of the state processor and functions performed by it will vary
depending on the current packet sequence in the stream of a conversational flow. The
state processor moves to the next logical operation stored from the previous packet seen
with this same flow signature. If any processing is required on this packet, the state
processor will execute instructions from a database of state instruction for this state until

there are either no more left or the instruction signifies processing.

In the preferred embodiment, the state processor functions are programmable to
provide for analyzing new application programs, and new sequences of packets and states

that can arise from using such application.

If during the lookup process for this particular packet flow signature, the flow is
required to be inserted into the active database, a flow insertion and deletion engine
(FIDE) is initiated. The state processor also may create new flow signatures and thus may
instruct the flow insertion and deletion engine to add a new flow to the database as a new

item.

In the preferred hardware embodiment, each of the LUE, state processor, and

FIDE operate independently from the other two engines.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed
preferred embodiments, these should not be taken to limit the present invention to any
specific embodiment because such embodiments are provided only for the purposes of
explanation. The embodiments, in turn, are explained with the aid of the following

figures.

NOAC Ex. 1015 Page 18

RO St PR r#wmwww

10

15

U o IR S 22 R L

20

Ww A e SR

4>

?

11

FIG. 1 is a functional block diagram of a network embodiment of the present
invention in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their
formats that might be exchanged in starting, as an illustrative example, a conversational
flow between a client and server on a network being monitored and analyzed. A pair of
flow signatures particular to this example and to embodiments of the present invention is
also illustrated. This represents some of the possible flow signatures that can be generated
and used in the process of analyzing packéts and of recognizing the particular server

applications that produce the discrete application packet exchanges.

FIG. 3 is a functional block diagram of a process embodiment of the present
invention that can operate as the packet monitor shown in FIG. 1. This process may be

implemented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and optimization
process, which in one embodiment may be used to generate data for monitoring packets

according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part of

the analyzer in an embodiment of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including
the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

NOAC Ex. 1015 Page 19

seapars

R R o o

|

R N

)""‘
Fi

pE

IR

10

15

20

25

12

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine
process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process embodiment of the
present invention that can operate as the packet monitor shown in FIG. 1. This process

1{

may be implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of
the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of
FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet
shown in FIGs. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used to store elements of the
pattern, parse and extraction database used by the parser subsystem in accordance to one

embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the pattern, parse and
extraction database used by the parser subsystem in accordance to another embodiment of

the invention.

NOAC Ex. 1015 Page 20

240 D1 SARINIIAPREHS T A 10 1 < W S pyh e, Sy iy o A

HH
B

x
4
:

g A PO ST TE Lo L

ot 5

R R s ™

10

15

20

25

30

@ D

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may
include signal names. In most cases, the names are sufficiently descriptive, in other cases
however the signal names are not needed to understand the operation and practice of the

invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to
herein by the general reference numeral 100. The system 100 has a computer network 102
that communicates packets (e.g., IP datagrams) between various computers, for example
between the clients 104-107 and servers 110 and 112. The network is shown
schematically as a cloud with several network nodes and links shown in the interior of the
cloud. A monitor 108 examines the packets passing in either direction past its connection
point 121 and, according to one aspect of the invention, can elucidate what application
programs are associated with each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the network interface 116 of the server 110 and the network.
The monitor can also be placed at other points in the network, such as connection point
123 between the network 102 and the interface 118 of the client 104, or some other
location, as indicated schematically by connection point 125 somewhere in network 102,
Not shown is a network packet acquisition device at the location 123 on the network for
converting the physical information on the network into packets for input into monitor

108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the
required communication, e.g., TCP/IP, etc. Any network activity—for example an
application program run by the client 104 (CLIENT 1) communicating with another
running on the server 110 (SERVER 2)—will produce an exchange of a sequence of
packets over network 102 that is characteristic of the respective programs and of the
network protocols. Such characteristics may not be completely revealing at the individual
packet level. It may require the analyzing of many packets by the monitor 108 to have
enough information needed to recognize particular application programs. The packets

may need to be parsed then analyzed in the context of various protocols, for example, the

NOAC Ex. 1015 Page 21

e i

o A RN 3 PR .

15

f
§
!
!
E
!
¢
i

&
@

14

transport through the application session layer protocols for packets of a type conforming

to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol stack.
The ISO (International Standardization Organization) has defined a general model that
provides a framework for design of communication protocol layers. This model, shown in
table form below, serves as a basic reference for understanding the functionality of

existing communication protocols.

ISO MODEL

Layer Functionality | Example

7 Application Telnet, NFS, Novell NCP, HTTP,
H.323

6 Presentation XDR

5 |Session | |RPC,NETBIOS, SNMP, etc.

4 Transport ‘ TCP, Novel SPX, UDP, etc.

3 Network IP, Novell IPX, VIP, AppleTalk, etc.
2 Data Link‘; Network Interface Card (Hardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,
ATM, T1 (Hardware Connection)

Different communication protocols employ different levels of the ISO model or
may use a layered model that is similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visible to protocols employed at other
layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

In some communication arts, the term “frame” generally refers to encapsulated
data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

NOAC Ex. 1015 Page 22

St gt + wm.a.....,._‘-,.-.mﬁ

st O e O

U 7 I A o

10

15

20

25

30

15

“packet” generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the
term “datagram” is also used. In this specification, the term “packet” is intended to
encompass packets, datagrams, frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields and headers for transmission
across a network. For example, a data packet typically includes an address destination
field, a length field, an error correcting code (ECC) field, or cyclic redundancy check
(CRC) field, as well as headers and footers to identify the beginning and end of the
packet. The terms “packet format” and “frame format,” also referred to as “cell format,”

are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.
However, not every packet carries the same information useful for recognizing all levels
of the protocol. For example, in a conversational flow associated with a particular
application, the application will cause the server to send a type-A packet, but so will
another. If, though, the particular application program always follows a type-A packet
with the sending of a type-B packet, and the other application program does not, then in
order to recognize packets of that application’s conversational flow, the monitor can be
available to recognize packets that match the type-B packet to associate with the type-A
packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be
identified as being associated with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying other packet exchanges that are
parts of conversational flows associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of a flow is an indication of all
previous events in the flow that lead to recognition of the content of all the protocol
levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a
signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

In real-world uses of the monitor 108, the number of packets on the network 102
passing by the monitor 108’s connection point can exceed a million per second.
Consequently, the monitor has very little time available to analyze and type each packet

and identify and maintain the state of the flows passing through the connection point. The

NOAC Ex. 1015 Page 23

CHH O SO o

10

15

20

25

30

16

monitor 108 therefore masks out all the unimportant parts of each packet that will not
contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application
programs according to the packets that their executions produce, is a multi-step process
within the monitor 108. At a first level, for example, several application programs will all
produce a first kind of packet. A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efficiently any packets that belong to the
same flow. In some cases, that packet type may be sufficiently unique to enable the
monitor to identify the application that generated such a packet in the conversational flow.
The signature can then be used to efficiently identify all future packets generated in traffic

related to that application.

In other cases, that first packet only starts the process of analyzing the
conversational flow, and more packets are necessary to identify the associated application
program. In such a case, a subsequent packet of a second type-—but that potentially
belongs to the same conversational flow—is recognized by using the signature. At such a
second level, then, only a few of those application programs will have conversational
flows that can produce such a second packet type. At this level in the process of
classification, all application programs that are not in the set of those that lead to such a
sequence of packet types may be excluded in the process of classifying the conversational
flow that includes these two packets. Based on the known patterns for the protocol and for
the possible applications, a signature is produced that allows recognition of any future

packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to
proceed to a third level of analysis using the second level signature. For each packet,
therefore, the monitor parses the packet and generates a signature to determine if this
signature identified a previously encountered flow, or shall be used to recognize future
packets belonging to the same conversational flow. In real time, the packet is further
analyzed in the context of the sequence of previously encountered packets (the state), and
of the possible future sequences such a past sequence may generate in conversational
flows associated with different applications. A new signature for recognizing future

packets may also be generated. This process of analysis continues until the applications

NOAC Ex. 1015 Page 24

L I AT

U2 0 g sy ™

10

15

20

25

30

3 3

17

are identified. The last generated signature may then be used to efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes
it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative
embodiments of the present invention capable of eavesdropping, once the monitor 108
has recognized the executing application programs passing through some point in the
network 102 (for example, because of execution of the applications by the client 105 or
server 110), the monitor sends a message to some general purpose processor on the
network that can input the same packets from the same location on the network, and the
processor then loads its own executable copy of the application program and uses it to
read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present
invention that can be implemented with computer hardware and/or software. The system
300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet
acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,
for example in an attempt to determine its characteristics, e.g., all the protocol information

in a multilevel model, including what server application produced the packet.

The packet acquisition device is a common interface that converts the physical
signals and then decodes them into bits, and into packets, in accordance with the
particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what
operations need to occur on packets of different types—accomplished by compiler and
optimizer 310, (2) the processing—parsing and extraction of selected portions—of
packets to generate an identifying signature—accomplished by parser subsystem 301, and

(3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific
information to parser subsystem 301 and to analyzer subsystem 303. The initialization

NOAC Ex. 1015 Page 25

o R R

o

L EEGE

10

15

20

25

30

18

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the
network. For each protocol there are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these and other fields are used in
monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304
that parses the packet and determines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction process 306 in parser subsystem
301 extracts characteristic portions (signature information) from the packet 302. Both the
pattern inforrhation for parsing and the related extraction operations, e.g., extraction
masks, are supplied from a parsing-pattern-structures and extraction-operations database

(parsing/extractions database) 308 filled by the compiler and optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and
states of all protocols that an occur at any layer, including how to interpret header
information, how to determine from the packet header information the protocols at the
next layer, and what information to extract for the purpose of identifying a flow, and
ultimately, applications and services. The layer selections database 338 describes the
particular layering handled by the monitor. That is, what protocols run on top of what
protocols at any layer level. Thus 336 and 338 combined describe how one would decode,
analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data
structures. The first is the set of parsing/extraction operations 308. The pattern structures
include parsing information and describe what will be recognized in the headers of
packets; the extraction operations are what elements of a packet are to be extracted from
the packets based on the patterns that get matched. Thus, database 308 of
parsing/extraction operations includes information describing how to determine a set of
one or more protocol dependent extraction operations from data in the packet that indicate

a protocol used in the packet.

NOAC Ex. 1015 Page 26

E
1]

. M

.
i
[

10

15

20

25

30

19

The other internal data structure that is built by compiler 310 is the set of state
patterns and processes 326. These are the different states and state transitions that occur in
different conversational flows, and the state operations that need to be performed (e.g.,
patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the
information it needs to begin proceséing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually or otherwise generated. Note
that in some embodiments the layering selections information is inherent rather than
explicitly described. For example, since a PDL file for a protocol includes the child

protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input
into a packet buffer. The pattern recognition process 304 is carried out by a pattern
analysis and recognition (PAR) engine that analyzes and recognizes patterns in the
packets. In particular, the PAR locates the next protocol field in the header and
determines the length of the header, and may perform certain other tasks for certain types
of protocol headers. An example of this is type and length comparison to distinguish an
IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also
called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures
and extraction operations database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the next protocol layer. Once a
pattern or a set of patterns has been identified, it/they will be associated with a set of none
or more extraction operations. These extraction operations (in the form of commands and
associated parameters) are passed to the extraction process 306 implemented by an
extracting and information identifying (EII) engine that extracts selected parts of the
packet, including identifying information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in sequence and then processed
in block 312 to build a unique flow signature (also called a “key”) for this flow. A flow
signature depends on the protocols used in the packet. For some protocols, the extracted
components may include source and destination addresses. For example, Ethernet frames
have end-point addresses that are useful in building a better flow signature. Thus, the

signature typically includes the client and server address pairs. The signature is used to

NOAC Ex. 1015 Page 27

s TR

(2R

R

'
g
=
b i
g
S

10

15

20

25

30

20

recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key includes. generating a
hash of the signature using a hash function. The purpose if using such a hash is
conventional—to spread flow-entries identified by the signature across a database for
efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.
7

In one embodiment, the parser passes data from the packet—a parser record—that
includes the signature (i.e., selected portions of the packet), the hash, and the packet itself
to allow for any state processing that requires further data from the packet. An improved
embodiment of the parser subsystem might generate a parser record that has some
predefined structure and that includes the signature, the hash, some flags related to some
of the fields in the parser record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further processing, e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation
of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal
data store of records of known flows that the system has already encountered, and decides
(in 316) whether or not this particular packet belongs to a known flow as indicated by the
presence of a flow-entry matching this flow in a database of known flows 324. A record

in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The
UFKB stores the data on flows in a data structure that is similar to the parser record, but
that includes a field that can be modified. In particular, one or the UFKB record fields
stores the packet sequence number, and another is filled with state information in the form

of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already
exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses
the hash in the UFKB record to lookup if there is a matching known flow. In the

particular embodiment, the database of known flows 324 is in an external memory. A

NOAC Ex. 1015 Page 28

N

T B 2 €t

10

15

20

25

30

21

cache is associated with the database 324. A lookup by the LUE for a known record is
carried out by accessing the cache using the hash, and if the entry is not already present in

the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow-
signature, state information, and extracted information from the packet for updating
flows, and one or more statistical about the flow. Each entry completely describes a flow.
Database 324 is organized into bins that contain a number, denoted N, of flow-entries
(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.
Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser
subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the
database to allow for fast lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory attached to the monitor, and
the number of bits of the hash data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a
16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a
new flow, then a protocol and state identification process 318 further determines the state
and protocol. That is, process 318 determines the protocols and where in the state
sequence for a flow for this protocol’s this packet belongs. Identification process 318 uses
the extracted information and makes reference to the database 326 of state patterns and
processes. Process 318 is then followed by any state operations that need to be executed

on this packet by a state processor 328.

If the packet is found to have{Ja matching flow-entry in the database 324 (e.g., in
the cache), then a process 320 determines, from the looked-up flow-entry, if more
classification by state processing of the flow signature is necessary. If not, a process 322
updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating

includes updating one or more statistical measures stored in the flow-entry. In our

NOAC Ex. 1015 Page 29

T et

W%&mﬂ -
r

10

15

20

25

30

22

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor
328 carries out any state operations specified for the state of the flow and updates the state
to the next state according to a set of state instructions obtained form the state pattern and

processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze
all levels of the protocol stack, ultimately classifying the flows by application (Ievel 7 in
the ISO model). It does this by proceeding from state-to-state based on predefined state
transition rules and state operations as specified in state processor instruction database
326. A state transition rule is a rule typically containing a test followed by the next-state
to proceed to if the test result is true. An operation is an operation to be performed while
the state processor is in a particular state—for example, in order to evaluate a quantity
needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a packet,
and carrying out the operation or operations may leave one in a state that causes exiting
the system prior to completing the identification, but possibly knowing more about what
state and state processes are needed to execute next, i.e., when a next packet of this flow
is encountered. As an example, a state process (set of state operations) at a particular state

may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up
using the information from previously encountered flows, the network traffic monitor 300
provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet
protocol recognition of flows. Monitor 300 can even recognize the application program
from one or more disjointed sub-flows that occur in server announcement type flows.
What may seem to prior art monitors to be some unassociated flow, may be recognized by
the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packet for this
particular flow-entry. A process 330 decides if more operations need to be performed for
this state. If so, the analyzer continues looping between block 330 and 328 applying

NOAC Ex. 1015 Page 30

iH

.
T

i
o2y

10

15

20

25

30

® €

23

additional state operations to this particular packet until all those operations are
completed—that is, there are no more operations for this packet in this state. A process
332 decides if there are further states to be analyzed for this type of flow according to the
state of the flow and the protocol, in order to fully characterize the flow. If not, the
conversational flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing by
sing the last protocol recognized by the parser as an offset into a jump table (jump
vector). The jump table finds the state processor instructions to use for that prom in the
state pattemg and processes database 326. Most instructions test something in the unified
flow key buffer, or the flow-entry in the database of known flows 324, if the entry exists.
The state processor may have to test bits, do comparisons, add, or subtract to perform the
test. For example, a common operation carried out by the state processor is searching for

one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an
end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process 322.

The flow-entry also is updated after classification finalization so that any further
packets belonging to this flow will be readily identified from their signature as belonging
to this fully analyzed conversational flow.

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically
maintains flow-entries, which in one aspect includes storing states. The monitor of FIG. 3
also generates characteristic parts of packets—the signatures—that can be used to
recognize flows. The flow-entries may be identified and accessed by their signatures.
Once a packet is identified to be from a known flow, the state of the flow is known and
this knowledge enables state transition analysis to be performed in real time for each

different protocol and application. In a complex analysis, state transitions are traversed as

NOAC Ex. 1015 Page 31

10

15

20

25

30

24

more and more packets are examined. Future packets that are part of the same
conversational flow have their state analysis continued from a previously achieved state.
When enough packets related to an application of interest have been processed, a final
recognition state is ultimately reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow. The signature for that final
state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.
Once a particular set of state transitions has been traversed for the first time and ends in a
final state, a short-cut recognition pattern—a signature—can be generated that will key on
every new incoming packet that relates to the conversational flow. Checking a signature
involves a simple operation, allowing ﬁigh packet rates to be successfully monitored on

the network.

In improved embodiments, several state analyzers are run in parallel so that a large
number of protocols and applications may be checked for. Every known protocol and
application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are
automatically generated on-the-fly, and as further packets in the conversational flow are
encountered, signatures are updated and the states of the set of state transitions for any
potential application are further traversed according to the state transition rules for the
flow. The new states for the flow—those associated with a set of state transitions for one
or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation process.
That is, part of the initialization generates the pattern structures and extraction operations
database 308 and the state instruction database 328. Such initialization can occur off-line

or from a central location.

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

NOAC Ex. 1015 Page 32

10

25

level 0). Each protocol is either a parent node or a terminal node. A parent node links a
protocol to other protocols (child protocols) that can be at higher layer levels. Thus a
protocol may have zero or more children. Ethernet packets, for example, have several
variants, each having a basic format that remains substantially the same. An Ethernet
packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet
Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE 803.2 packet.
Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP protocol,
and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,
packet) of information and includes information on the destination media access control
address (Dst MAC 1602) and the source media access control address (Src MAC 1604).
Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now shows the header information for the next level (Ievel-2) for an
Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the
packet that indicates the next layer level is a two-byte type field 1702 containing the child
recognition pattern for the next level. The remaining information 1704 is shown hatched
because it not relevant for this level. The list 1712 shows the possible children for an
Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 17B shows the structure of the header of one of the possible next levels, that of the
IP protocol. The possible children of the IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern recognition database, or PRD)
308 generated by compilation process 310, in one embodiment, is in the form of a three
dimensional structure that provides for rapidly searching packet headers for the next
protocol. FIG. 18A shows such a 3-D representation 1800 (which may be considered as
an indexed set of 2-D representations). A compressed form of the 3-D structure is

preferred.

An alternate embodiment of the data structure used in database 308 is illustrated in
FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid
searches to be performed by the pattern recognition process 304 by indexing locations in a

memory rather than performing address link computations. In this alternate embodiment,

NOAC Ex. 1015 Page 33

. ,
LI B

]
&
i
6

10

15

20

25

30

26

the PRD 308 includes two parts, a single protocol table 1850 (PT) which has an entry for
each protocol known for the monitor, and a series of Look Up Tables 1870 (LUT’s) that
are used to identify known protocols and their children. The protocol table includes the
parameters needed by the pattern analysis and recognition process 304 (implemented by
PRE 1006) to evaluate the header information in the packet that is associated with that
protocol, and parameters needed by extraction process 306 (implemented by slicer 1007)
to process the packet header. When there are children, the PT describes which bytes in the
header to evaluate to determine the child protocol. In particular, each PT entry contains

the header length, an offset to the child, a slicer command, and some flags.

The pattern matching is carried out by finding particular “child recognition codes”
in the header fields, and using these codes to index one or more of the LUT’s. Each LUT
entry has a node code that can have one of four values, indicating the protocol that has
been recognized, a code to indicate that the protocol has been partially recognized (more
LUT lookups are needed), a code to indicate that this is a terminal node, and a null node

to indicate a null entry. The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source-code information in the
form of protocol description files is shown as 402. In the particular embodiment, the high
level decoding descriptions includes a set of protocol description files 336, one for each
protocol, and a set of packet layer selections 338, which describes the particular layering

(sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract
operations 406 is generated (404), and a set of packet state instructions and operations
407 is generated (405) in the form of instructions for the state processor that implements
state processing process 328. Data files for each type of application and protocol to be
recognized by the analyzer are downloaded from the pattern, parse, and extraction
database 406 into the memory systems of the parser and extraction engines. (See the
parsing process 500 description and FIG. 5; the extraction process 600 description and
FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each
type of application and protocol to be recognized by the analyzer are also downloaded
from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

NOAC Ex. 1015 Page 34

.
oy
{]
-
{8
U
i

10

15

20

25

30

27

Note that generating the packet parse and extraction operations builds and links
the three dimensional structure (one embodiment) or the or all the lookup tables for the
PRD.

Because of the large number of possible protocol trees and subtrees, the compiler
process 400 includes optimization that compares the trees and subtrees to see which
children share common parents. When implemented in the form of the LUT’s, this
process can generate a single LUT from a plurality of LUT’s. The optimization process
further includes a compaction process that reduces the space needed to store the data of

the PRD.

As an example of compaction, consider the 3-D structure of FIG. 18 A that can be
thought of as a set of 2-D structures each representing a protocol. To enable saving space
by using only one array per protocol which may have several parents, in one embodiment,
the pattern analysis subprocess keeps a “current header” pointer. Each location (offset)
index for each protocol 2-D array in the 3-D structure is a relative location starting with
the start of header for the particular protocol. Furthermore, each of the two-dimensional
arrays is sparse. The next step of the optimization, is checking all the 2-D arrays against
all the other 2-D arrays to find out which ones can share memory. Many of these 2-D
arrays are often sparsely populated in that they each have only a small number of valid
entries. So, a process of "folding" is next used to combine two or more 2-D arrays
together into one physical 2-D array without losing the identity of any of the original 2-D
arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur between any
2-D arrays irrespective of their location in the tree as long as certain conditions are met.
Multiple arrays may be combined into a single array as long as the individual entries do
not conflict with each other. A fold number is then used to associate each element with its
original array. A similar folding process is used for the set of LUTs 1850 in the alternate
embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting
at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next
(initially the first) packet component from the packet 302. The packet components are

extracted from each packet 302 one element at a time. A check is made (504) to determine

NOAC Ex. 1015 Page 35

10

15

20

25

30

28

if the load-packet-component operation 503 succeeded, indicating that there was more in
the packet to process. If not, indicating all components have been loaded, the parser

subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched
(505) from the pattern, parse and extraction database 308 to provide a set of patterns and
processes for that node to apply to the loaded packet component. The parser subsystem
301 checks (506) to determine if the fetch pattern node operation 505 completed
successfully, indicating there was a pattern node that loaded in 505. If not, step 511
moves to the next packet component. If yes, then the node and pattern matching process
are applied in 507 to the component extracted in 503. A pattern match obtained in 507 (as
indicated by test 508) means the parser subsystem 301 has found a node in the parsing

elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test
508), the parser subsystem 301 moves (510) to the next pattern node from the pattern
database 308 and to step 505 to fetch the next node and process. Thus, there is an
“applying patterns” loop between 508 and 505. Once the parser subsystem 301 completes
all the patterns and has either matched or not, the parser subsystem 301 moves to the next

packet component (511).

Once all the packet components have been the loaded and processed from the
input packet 302, then the load packet will fail (indicated by test 504), and the parser
subsystem 301 moves to build a packet signature which is described in FIG. 6

FIG. 6 is a flow chart for extracting the information from which to build the
packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this
point parser subsystem 301 has a completed packet component and a pattern node
available in a buffer (602). Step 603 loads the packet component available from the
pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there
was indeed another packet component, the parser subsystem 301 fetches in 605 the
extraction and process elements received from the pattern node component in 602. If the
fetch was successful (test 606), indicating that there are extraction elements to apply, the
parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

NOAC Ex. 1015 Page 36

10

15

20

25

30

29

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this
component, and if not, the parser subsystem 301 moves back to 603 to load the next
packet component at hand and repeats the process. If the answer is yes, then the parser
subsystem 301 moves to the next packet component ratchet. That new packet component
is then loaded in step 603. As the parser subsystem 301 moved through the loop between
608 and 603, extra extraction processes are applied either to the same packet component if

there is more to extract, or to a different packet component if there is no more to extract.

The extraction process thus builds the signature, extracting more and more
components according to the information in the patterns and extraction database 308 for
the particular packet. Once loading the next packet component operation 603 fails (test
604), all the components have been extracted. The built signature is loaded into the
signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and
the pattern node elements are available (702). The parser subsystem 301 loads the next
pattern node element. If the load was successful (test 704) indicating there are more
nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the
hash elements that are found in the pattern node that is in the element database. In 706 the
resulting signature and the hash are packed. In 707 the parser subsystem 301 moves on to

the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left
(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and
312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the
form of a UFKB record which is similar to a parser record, but with one or more different

fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine
(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with

the parser record that includes a signature, the hash and at least parts of the ayload. In
NOAC Ex. 1015 Page 37

10

15

20

25

30

30

802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the
lookup engine 314 computes a “record bin number” from the hash for a flow-entry. A bin
herein may have one or more “buckets” each containing a flow-entry. The preferred

embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the
hash. If the cache successfully returns with a bucket from the bin number, indicating there
are more buckets in the bin, the lookup/update engine compares (807) the current
signature (the UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in the cache) is marked in step
810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the
UFKB-entry in 802 has a status of “found.” The “found” indication allows the state
processing 328 to begin processing this UFKB element. The preferred hardware
embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a
calculator for every packet analyzed. The statistical operations may include one or more
of counting the packets associated with the flow; determining statistics related to the size
of packets of the flow; compiling statistics on differences between packets in each
direction, for example using timestamps; and determining statistical relationships of
timestamps of packets in the same direction. The statistical measures are kept in the flow-
entries. Other statistical measures also may be compiled. These statistics may be used
singly or in combination by a statistical processor component to analyze many different
aspects of the flow. This may include determining network usage metrics from the
statistical measures, for example to ascertain the network’s ability to transfer information
for this application. Such analysis provides for measuring the quality of service of a
conversation, measuring how well an application is performing in the network, measuring

network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more

counters that are part of the flow-entry (in the cache) in step 812. The process exits at 813.

NOAC Ex. 1015 Page 38

10

15

20

G 3 25

30

31

In our embodiment, the counters include the total packets of the flow, the time, and a

differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In
such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The lookup/update engine thus
continues lookup up buckets of the bin until there is either a match in 808 or operation
804 is not successful (test 805), indicating that there are no more buckets in the bin and no

match was found.

If no match was found, the packet belongs to a new (not previously encountered)

flow. In 806 the system indicates that the record in the unified flow key buffer for this

_ packet is new, and in 812, any statistical updating operations are performed for this packet

by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“new” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can
match. A longer hash may be used that corresponds to a single flow-entry. In such an

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the
system are now described with reference to FIGS. 10 and 11. Note that while we are
describing a particular hardware implementation of the invention embodiment of FIG. 3,
it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be
implemented in software running on one or more general-purpose processors, or only
partly implemented in hardware. An implementation of the invention that can operate in
software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate
at over a million packets per second, while the software system of FIG. 14 may be
suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.
FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

NOAC Ex. 1015 Page 39

3
]
b
h
+
3
4
3

10

15

20

25

30

32

1000) as implemented in hardware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is
the extraction-operation database memory, in which the extraction instructions are stored.
Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3. Typically, the
system is initialized from a microprocessor (not shown) at which time these memories are
loaded through a host interface multiplexor and control register 1005 via the internal
buses 1003 and 1004. Note that the contents of 1001 and 1002 are preferably obtained by
compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory
1008 using control signals 1021 and 1023, which control an input buffer interface
controller 1022. The buffer 1008 and interface control 1022 connect to a packet
acquisition device (not shown). The buffer acquisition device generates a packet start
signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive
data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a
packet starts loading into the buffer memory 1008, pattern recognition engine (PRE) 1006
carries out the operations on the input buffer memory described in block 304 of FIG. 3.
That is, protocol types and associated headers for each protocol layer that exist in the

packet are determined.

The PRE searches database 1001 and the packet in buffer 1008 in order to
recognize the protocols the packet contains. In one implementation, the database 1001
includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.
The first lookup table is always at address zero. The Pattern Recognition Engine uses a
base packet offset from a control register to start the comparison. It loads this value into a
current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a
terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a first
stage that checks the protocol type field to determine if it is an 802.3 packet and the field

should be treated as a length. If it is not a length, the protocol is checked in a second

NOAC Ex. 1015 Page 40

10

15

20

25

30

T
<

33

stage. The first stage is the only protocol level that is not programmable. The second stage
has two full sixteen bit content addressable memories (CAMs) defined for future protocol

additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for the
extraction engine (also called a “slicer”) 1007. The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts information from the packet to build
the parser record. Thus, the operations of the extraction engine are those carried out in
blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to slicer 1007 in
the form of extraction instruction pointers which tell the extraction engine 1007 where to
a find the instructions in the extraction operations database memory (i.e., slicer instruction
database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol
identifier and a process code to the extractor. The protocol identifier is added to the flow
signature and the process code is used to fetch the first instruction from the instruction
database 1002. Instructions include an operation code and usually source and destination
offsets as well as a length. The offsets and length are in bytes. A typical operation is the
MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data
unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains a
byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.
The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the
input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction
engine 1007 performs extraction operations on data in input buffer 1008 already
processed by PRE 1006 while more (i.e., later arriving) packet information is being
simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,
the hash is loaded into parser output buffer memory 1010. Any additional payload from
NOAC Ex. 1015 Page 41

T LE

.
Ko g
e
ik
i

10

15

20

25

30

34

the packet that is required for further analysis is also included. The parser output memory
1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output buffer memory 1010, a data ready
signal 1025 is asserted by analyzer interface control. The data from the parser subsystem
1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem
that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is
initialized prior to operation, and initialization includes loading the state processing
information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer
host interface controller 1118, which in turn has access to a cache system 1115. The cache
system has bi-directional access to and from the state processor of the system 1108. State
processor 1108 is responsible for initializing the state processor instruction database

memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records
comprising packet signatures and payloads that come from the parser into the unified flow
key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB
records. A UFKB record is essentially a parser record; the UFKB holds records of packets
that are to be processed or that are in process. Furthermore, the UFKB provides for one or
more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:
the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow
insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more
finite state machines (FSM's). There is bi-directional access between each of the finite
state machines and the unified flow key buffer 1103. The UFKB record includes a field
that stores the packet sequence number, and another that is filled with state information in
the form of a program counter for the state processor 1108 that implements state

processing 328. The status flags of the UFKB for any entry includes that the LUE is done

NOAC Ex. 1015 Page 42

7

10

15

20

25

30

35

and that the LUE is transferring processing of the entry to the state processor. The LUE
done indicator is also used to indicate what the next entry is for the LUE. There also is
provided a flag to indicate that the state processor is done with the current flow and to
indicate what the next entry is for the state processor. There also is provided a flag to
indicate the state processor is transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been
processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB
record data may be processed by the flow insertion/deletion engine 1110 after being
processed by the state processor 1108 or only by the LUE. Whether or not a particular
engine has been applied to any unified flow key buffer entry is determined by status fields
set by the engines upon completion. In one embodiment, a status flag in the UFKB-entry
indicates whether an entry is new or found. In other embodiments, the LUE issues a flag
to pass the entry to the state processor for processing, and the required operations for a

new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed by all three engines.
Furthermore, some UFKB entries may need to be processed more than once by a

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem
1115 that includes a caching engine. Cache 1115 is designed to have information flowing
in and out of it from five different points within the system: the three engines, external
memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and
a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host
interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor) can

thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content
addressable memory cells (CAMs) each including an address portion and a pointer
portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.
The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The
bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom

NOAC Ex. 1015 Page 43

w
ok S
TR T

%

10

15

20

25

30

36

CAM are replaced by the flow-entry from the flow-entry database 324. This now becomes
the most recently used entry, so the contents of the bottom CAM are moved to the top
CAM and all CAM contents are shifted down. Thus, the cache is an associative cache
with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the operation
of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate that a “new”
UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read a matching
bin of up to four buckets from the cache. The cache system attempts to obtain the
matching bin. If a matching bin is not in the cache, the cache 1115 makes the request to

the UMC 1119 to bring in a matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket
and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from the
cache, a time stamp in set in the flow key of the UFKB record, a protocol identification
and state determination is made using a table that was loaded by compilation process 310
during initialization, the status for the record is set to indicate the LUE has processed the
record, and an indication is made that the UFKB-entry is ready to start state processing.
The identification and state determination generates a protocol identifier which in the
preferred embodiment is a “jump vector” for the state processor which is kept by the
UFKB for this UFKB-entry and used by the state processor to start state processing for
the particular protocol. For example, the jump vector jumps to the subroutine for

processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a
previously encountered flow, then a calculator component enters one or more statistical
measures stored in the flow-entry, including the timestamp. In addition, a time difference
from the last stored timestamp may be stored, and a packet count may be updated. The
state of the flow is obtained from the flow-entry is examined by looking at the protocol
identifier stored in the flow-entry of database 324. If that value indicates that no more
classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

NOAC Ex. 1015 Page 44

«

o

]
A

0
it S

e
o Varkrieg

10

15

20

25

30

37

vector for the state processor to a subroutine to state processing the protocol, and no more
classification is indicated in the preferred embodiment by the jump vector being zero. If
the protocol identifier indicates more processing, then an indication is made that the
UFKB-entry is ready to start state processing and the status for the record is set to indicate
the LUE has processed the record.

The state processor 1108 processes information in the cache system according to a
UFKB-entry after the LUE has completed. State processor 1108 includes a state processor
program counter SPPC that generates the address in the state processor instruction
database 1109 loaded by compiler process 310 during initialization. It contains an
Instruction Pointer (SPIP) which generates the SPID address. The instruction pointer can
be incremented or loaded from a Jump Vector Multiplexor which facilitates conditional
branching. The SPIP can be loaded from one of three sources: (1) A protocol identifier
from the UFKB, (2) an immediate jump vector form the currently decoded instruction, or

(3) a value provided by the arithmetic logic unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol
identifier, the Program Counter is initialized with the last protocol recognized by the
Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and String
Compare functions necessary to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the Instruction Decode & State
Machines, the String Reference Memory the Search Engine, an Output Data Register and
an QOutput Control Register

The Search Engine in turn contains the Target Search Register set, the Reference
Search Register set, and a Compare block which compares two operands by exclusive-or-

ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state
operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is
NOAC Ex. 1015 Page 45

10

15

20

25

30

38

new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified
flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used
to set the state processor’s instruction counter. The state processor 1108 starts the process
by using the last protocol recognized by the parser subsystem 301 as an offset into a jump
table. The jump table takes us to the instructions to use for that protocol. Most
instructions test something in the unified flow key buffer or the flow-entry if it exists. The
state processor 1108 may have to test bits, do comparisons, add or subtract to perform the

test.

The first state processor instruction is fetched in 1304 from the state processor
instruction database memory 1109. The state processor performs the one or more fetched
operations (1304). In our implementation, each single state processor instruction is very
primitive (e.g., a move, a compare, etc.), so that many such instructions need to be
performed on each unified flow key buffer entry. One aspect of the state processor is its
ability to search for one or more (up to four) reference strings in the payload part of the
UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

In 1307, a check is made to determine if there are any more instructions to be
performed for the packet. If yes, then in 1308 the system sets the state processor
instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an
immediate jump vector in the currently decoded instruction, or by a value provided by the

SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This
state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet
has resulted in a final state. That is, is the analyzer is done processing not only for this
particular packet, but for the whole flow to which the packet belongs, and the flow is fully
determined. If indeed there are no more states to process for this flow, then in 1311 the
processor finalizes the processing. Some final states may need to put a state in place that
tells the system to remove a flow—for example, if a connection disappears from a lower

level connection identifier. In that case, in 1311, a flow removal state is set and saved in

NOAC Ex. 1015 Page 46

S

10

15

20

25

30

39

the flow-entry. The flow removal state may be a NOP (no-op) instruction which means

there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP or
otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in
1310 the system saves the state processor instruction pointer in the current flow-entry in
the current flow-entry. That will be the next operation that will be performed the next
time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer 1103
and the flow-entry in the cache. Once the state processor is done, a flag is set in the
UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be
inserted or deleted from the database of flows, control is then passed on to the flow
insertion/deletion engine 1110 for that flow signature and packet entry. This is done by
the state processor setting another flag in the UFKB for this UFKB-entry indicating that
the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the
flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are
grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that
may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin
(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that
matches the hash of the UFKB, so this bin may already have been sought for the UFKB-
entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be
maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the
bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket
and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp that

NOAC Ex. 1015 Page 47

10

15

20

25

30

e

40

is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and
bucket record flow signature to the packet to verify that all the elements are in place to
complete the record. In 1211 the system marks the record bin and bucket as “in process”
and as “new” in the cache system (and hence in the external memory). In 1212, the initial
statistical measures for the flow-record are set in the cache system. This in the preferred
embodiment clears the set of counters used to maintain statistics, and may perform other
procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next
bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,
1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket,
the unified flow key buffer entry for the packet is set as “drop,” indicating that the system
cannot process the particular packet because there are no buckets left in the system. The
process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow insertion and
deletion operations are completed for this UFKB-entry. This also lets the UFKB provide
the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow key buffer entry by all of
the engines required to access and manage a particular packet and its flow signature, the
unified flow key buffer entry is marked as “completed.” That element will then be used
by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and some are maintained
in the cache 1115. The cache system 11135 is intelligent enough to access the flow
database and to understand the data structures that exists on the other side of memory
interface 1123. The lookup/update engine 1107 is able to request that the cache system
pull a particular flow or “buckets” of flows from the unified memory controller 1119 into
the cache system for further processing. The state processor 1108 can operate on
information found in the cache system once it is looked up by means of the lookup/update
engine request, and the flow insertion/deletion engine 1110 can create new entries in the
cache system if required based on information in the unified flow key buffer 1103. The
cache retrieves information as required from the memory through the memory interface

1123 and the unified memory controller 1119, and updates information as required in the

NOAC Ex. 1015 Page 48

d b TP S ¥
RS-SRS -~ 5. N

i

s otidote R W e W dqfe £ W1 AN 7 .

Gl TRy
P PRI,

Ty K ae e

0

10

15

20

25

30

gl
WK

41

memory through the memory controller 1119,

There are several interfaces to components of the system external to the module of
FIG. 11 for the particular hardware implementation. These include host bus interface
1122,which is designed as a generic interface that can operate with any kind of external
processing system such as a microprocessor or a multiplexor (MUX) system.
Consequently, one can connect the overall traffic classification system of FIGS. 11 and 12
into some other processing system to manage the classification system and to extract data

gathered by the system.

The memory interface 1123 is:designed to interface to any of a variety of memory
systems that one may want to use to store the flow-entries. One can use different types of
memory systems like regular dynamic random access memory (DRAM), synchronous
DRAM, synchronous graphic memory (SGRAM), static random access memory (SRAM),
and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface
1012—a general interface that works in tandem with the signals of the input buffer
interface control 1022. These are designed so that they can be used with any kind of
generic systems that can then feed packet information into the parser. Another generic
interface is the interface of pipes 1031 and 1033 respectively out of and into host interface
multiplexor and control registers 1005. This enables the parsing system to be managed by
an external system, for example a microprocessor or another kind of external logic, and

enables the external system to program and otherwise control the parser.

The preferred embodiment of this aspect of the invention is described in a
hardware description language (HDL) such as VHDL or Verilog. It is designed and
created in an HDL so that it may be used as a single chip system or, for instance,
integrated into another general-purpose system that is being designed for purposes related
to creating and analyzing traffic within a network. Verilog or other HDL implementation

is only one method of describing the hardware.

In accordance with one hardware impiementation, the elements shown in FIGS. 10
and 11 are implemented in a set of six field programmable logic arrays (FPGA’s). The
boundaries of these FPGA’s are as follows. The parsing subsystem of FIG. 10 is
implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts

NOAC Ex. 1015 Page 49

P
{
@

42

of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of
1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented as a single
FPGA. State processor 1108 and part of state processor instruction database memory
1109 is another FPGA. Portions of the state processor instruction database memory 1109
are maintained in external SRAM’s. The lookup/update engine 1107 and the flow
insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes the cache
system 1115, the unified memory control 1119, and the analyzer host interface and
control 1118.

Note that one can implement the system as one or more VSLI devices, rather than
as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is
anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form:a sub-unit (a “core”) of a larger single chip unit.

Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to
analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all packets passing point 121 in either
direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 301,
which determines flow signatures, and analyzer sub-system 303 that analyzes the flow
signature of each packet. A memory 324 is used to store the database of flows that are
determined and updated by monitor 300. A host computer 1504, which might be any
processor, for example, a general-purpose computer, is used to analyze the flows in
memory 324. As is conventional, host computer 1504 includes a memory, say RAM,
shown as host memory 1506. In addition, the host might contain a disk. In one
application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an optional Simple
Network Management Protocol (SNMP) implementation. Fig. 15 describes how one
would, for example, implement an RMON probe, where a network interface card is used
to send RMON information to the network. Commercial SNMP implementations also are
available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

NOAC Ex. 1015 Page 50

St

) 43
{/In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly
-

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state
analysis for packet exchanges that are commonly referred to as “server announcement”
type exchanges. Server announcement is a process used to ease communications between
a server with multiple applications that can all be simultaneously accessed from multiple
clients. Many applications use a server announcement process as a means of multiplexing
a single port or socket into many applications and services. With this type of exchange,
messages are sent on the network, in either a broadcast or multicast approach, to
announce a server and application, and all stations in the network may receive and decode
these messages. The messages enable the stations to derive the appropriate connection
point for communicating that particular application with the particular server. Using the
server announcement method, a particular application communicates using a service
channel, in the form of a TCP or UDP socket or port as in the IP protocol suite, or using a

SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out “in-stream analysis” of packet
exchanges. The “in-stream analysis” method is used either as a primary or secondary
recognition process. As a primary process, in-stream analysis assists in extracting detailed
information which will be used to further recognize both the specific application and
application component. A good example of in-stream analysis is any Web-based
application. For example, the commonly used PointCast Web information application can
be recognized using this process; during the initial connection between a PointCast server
and client, specific key tokens exist in the data exchange that will result in a signature

being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server
announcement process. In many cases in-stream analysis will augment other recognition
Processes. An example of combining in-stream analysis with server announcement can be

found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires

NOAC Ex. 1015 Page 51

&4
D

44

an initial connection to a predefined socket or port number. This method of
communication is used in a variety of transport layer protocols. It is most commonly seen

in the TCP and UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific
port or socket number. This initial request will cause the server to create a TCP or UDP
port to exchange the remainder of the data between the client and the server. The server
then replies to the request of the client using this newly created port. The original port
used by the client to connect to the server will never be used again during this data

exchange.

One example of session tracicing is TFTP (Trivial File Transfer Protocol), a
version of the TCP/IP FTP protocol that has no directory or password capability. During
the client/server exchange process of TFTP, a specific port (port number 69) is always
used to initiate the packet exchange. Thus, when the client begins the process of
communicating, a request is made to UDP port 69. Once the server receives this request, a
new port number is created on the server. The server then replies to the client using the
new port. In this example, it is clear that in order to recognize TFTP; network monitor
300 analyzes the initial request from the client and generates a signature for it. Monitor
300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from
the server with the key port information, and uses this to create a signature for monitoring

the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular
connections in the network. Connection-oriented exchanges often benefit from state
tracking to correctly identify the application. An example is the common TCP transport
protocol that provides a reliable means of sending information between a client and a
server. When a data exchange is initiated, a TCP request for synchronization message is
sent. This message contains a specific sequence number that is used to track an
acknowledgement from the server. Once the server has acknowledged the synchronization
request, data may be exchanged between the client and the server. When communication
is no longer required, the client sends a finish or complete message to the server, and the
server acknowledges this finish request with a reply containing the sequence numbers
from the request. The states of such a connection-oriented exchange relate to the various

types of connection and maintenance messages.

NOAC Ex. 1015 Page 52

b ¢

RO A AN IS

* eI

§ T
oK it v 41

¥

¥ .
:
%%
kg &
,

10

I5

20

25

¥ ¢,
B ;‘:‘

45
Server Announcement Example

The individual methods of server announcement protocols vary. However, the
basic underlying process remains similar. A typical server announcement message is sent
to one or more clients in a network. This type of announcement message has specific
content, which, in another aspect of the invention, is salvaged and maintained in the
database of flow-entries in the system. Because the announcement is sent to one or more
stations, the client involved in a future packet exchange with the server will make an
assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto, California)
of the Remote Procedure Call (RPC), a programming interface that allows one program to
use the services of another on a remote machine. A Sun-RPC example is now used to

explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must establish

a connection, for which the RPC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database
called the port Mapper. The port Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for TCP or UDP
implementations). An application or program number is a 32-bit unique identifier
assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on
a Sun-RPC server can present the mappings between a unique program number and a
specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1) making
a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined
UDP or TCP socket. Once the port Mapper process on the sun RPC server receives the

request, the specific mapping is returned in a directed reply to the client.

NOAC Ex. 1015 Page 53

10

15

20

3D

46

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2
(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request
(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This
request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and
version identifier from the request. The server also uses the fact that this
packet came in using the TCP transport and that no protocol was specified, and

thus will use the TCP protocol for its reply.

3. The server 110 sends a TCP packet to port number 111, with an RPC Bind
Lookup Reply. The reply contains the specific port number (e.g., port number
‘port’) on which future transactions will be accepted for the specific RPC
program identifier (e.g., Program ‘program’) and the protocol (UDP or TCP)

for use.

It is desired that from now on every time that port number ‘port’ is used, the
packet is associated with the application program ‘program’ until the number ‘port’ no
longer is to be associated with the program ‘program’. Network monitor 300 by creating a
flow-entry and a signature includes a mechanism for remembering the exchange so that
future packets that use the port number ‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways
that a particular program—say ‘program’—might be associated with a particular port
number, for example number ‘port’. One is by a broadcast announcement of a particular
association between an application service and a port number, called a Sun RPC
portMapper Announcement. Another, is when some server—say the same SERVER 2—
replies to some client—say CLIENT 1—requesting some portMapper assignment with a
RPC portMapper Reply. Some other client—say CLIENT 2—might inadvertently see this
request, and thus know that for this particular server, SERVER 2, port number ‘port’ is
associated with the application service ‘program’. It is desirable for the network monitor
300 to be able to associate any packets to SERVER 2 using port number ‘port’ with the

application program ‘program’.

NOAC Ex. 1015 Page 54

=

o B i A N - as pRpRT e
a - -)

e i
o 5 B VUL SA

#
2
LS

10

15

20

25

30

47

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3
for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is
communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in
FIG. 1) via the server’s interface to the network 116. Further assume that Remote
Procedure Call is used to communicate with the server 110. One path in the data flow 900
starts with a step 910 that a Remote Procedure Call bind lookup request is issued by client
106 and ends with the server state creation step 904. Such RPC bind lookup request
includes values for the ‘program,’ ‘version,’” and ‘protocol’ to use, e.g., TCP or UDP. The

process for Sun RPC analysis in the network monitor 300 includes the following aspects. :

e Process 909: Extract the ‘program,” ‘version,” and ‘protocol’ (UDP or TCP).
Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

e Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If
value is portMapper, save paired socket (i.e., dest for destination address, src
for source address). Decode ports and mapping, save ports with socket/addr
key. There may be more than one pairing per mapper packet. Form a signature
(e.g., akey). A flow-entry is created in database 324. The saving of the request

is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The
packet monitor 300 will extract a signature from the packet and recognize it from the
previously stored flow. The monitor will get the protocol port number (906) and lookup
the request (905). A new signature (i.e., a key) will be created and the creation of the
server state (904) will be stored as an entry identified by the new signature in the flow-
entry database. That signature now may be used to identify packets associated with the

SErver.

The server state creation step 904 can be reached not only from a Bind Lookup
Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an
RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol can
announce that it is able to provide a particular application service. Embodiments of the
present invention preferably can analyze when an exchange occurs between a client and a
server, and also can track those stations that have received the announcement of a service

in the network.

NOAC Ex. 1015 Page 55

b i
. Ctise . e

5 & oy g
SO E it SR o

;- N b b Lonkate el
RERE Sxd b AN A £ . e .

L N S A R (At A
Lt R B S AAR PR AL, top

i

AN

e

g
g

.
=X

10

15

20

25

30

48

The RPC Announcement portMapper announcement 902 is a broadcast. Such
causes various clients to execute a similar set of operations, for example, saving the
information obtained from the announcement. The RPC Reply portMapper step 901 could
be in reply to a portMapper request, and is also broadcast. It includes all the service

parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature
and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun
Microsystems Remote Procedure Call protocol. A method embodiment of the present
invention might generate a pair of flow signatures, “signature-1” 210 and “signature-2”
212, from information found in the packets 206 and 207 which, in the example,
correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds
to such a request sent from CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to an aspect of the invention. A
source and destination network address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the flow signature (shown as KEY1 230
in FIG. 2) will also contain these two fields, so the parser subsystem 301 will include
these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address identifies the
client 106 (shown also as 202), the label used in the drawing is “C;”. If such address

identifies the server 110 (shown also as server 204), the label used in the drawing is “S;”.
The first two fields 214 and 215 in packet 206 are “S;” and C,” because packet 206 is
provided from the server 110 and is destined for the client 106. Suppose for this example,

“S,” is an address numerically less than address “C;”. A third field “p1” 216 identifies the

particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate
port numbers that are used. The conversation direction determines where the port number
field is. The diagonal pattern in field 217 is used to identify a source-port pattern, and the
hash pattern in field 218 is used to identify the destination-port pattern. The order

indicates the client-server message direction. A sixth field denoted “i1” 219 is an element

NOAC Ex. 1015 Page 56

iy 55, T 3, A, SRR R

10

15

20

25

30

49
that is being requested by the client from the server. A seventh field denoted “s{a” 220 is

the service requested by the client from server 110. The following eighth field “QA” 221
(for question mark) indicates that the client 106 wants to know what to use to access

application “sja”. A tenth field “QP” 223 is used to indicate that the client wants the

server to indicate what protocol to use for the particular application.

Packet 206 initiates the sequence of packet exchanges, e.g., a
RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the
packets, and is transmitted to the server 110 on a well-known service connection identifier

(port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the
RPC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224—233. The destination and source addresses are
carried in fields 224 and 225, e.g., indicated “C{” and “S;”, respectively. Notice the order
is now reversed, since the client-server message direction is from the server 110 to the
client 106. The protocol “p1” is used as indicated in field 226. The request “i1” is in field
229. Values have been filled in for the application port number, e.g., in field 233 and
protocol ““p2”” in field 233.

The flow signature and flow states built up as a result of this exchange are now
described. When the packet monitor 300 sees the request packet 206 from the client, a
first flow signature 210 is built in the parser subsystem 301 according to the pattern and
extraction operations database 308. This signature 210 includes a destination and a source
address 240 and 241. One aspect of the invention is that the flow keys are built
consistently in a particular order no matter what the direction of conversation. Several
mechanisms may be used to achieve this. In the particular embodiment, the numerically
lower address is always placed before the numerically higher address. Such least to
highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume *“S1”<“C;”, the order is address “S;”
followed by client address “C;”. The next field used to build the signature is a protocol
field 242 extracted from packet 206’s field 216, and thus is the protocol “pl”. The next

field used for the signature is field 243, which contains the destination source port number

shown as a crosshatched pattern from the field 218 of the packet 206. This pattern will be
NOAC Ex. 1015 Page 57

v

ot A i e B

W S

10

15

20

25

30

50

recognized in the payload of packets to derive how this packet or sequence of packets
exists as a flow. In practice, these may be TCP port numbers, or a combination of TCP
port numbers. In the case of the Sun RPC example, the crosshatch represents a set of port
numbers of UDS for p! that will be used to recognize this flow (e.g., port 111). Port 111
indicates this is Sun RPC. Some applications, such as the Sun RPC Bind Lookups, are
directly determinable (“known”) at the parser level. So in this case, the signature KEY-1
points to a known application denoted “al” (Sun RPC Bind Lookup), and a next-state that
the state processor should proceed to for more complex recognition jobs, denoted as state

“stp” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built
by the parser. This flow signature is identical to KEY-1. Hence, when the signature enters
the analyzer subsystem 303 from the parser subsystem 301, the complete flow-entry is
obtained, and in this flow-entry indicates state “stpy”. The operations for state “stp” in the
state processor instruction database 326 instructs the state processor to build and store a
new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the
state processor also includes the destination and a source addresses 250 and 251,
respectively, for server “S;” followed by (the numerically higher address) client “C;”. A
protocol field 252 defines the protocol to be used, e.g., “p2” which is obtained from the
reply packet. A field 253 contains a recognition pattern also obtained from the reply
packet. In this case, the application is Sun RPC, and field 254 indicates this application
“a2”, A next-state field 255 defines the next state that the state processor should proceed
to for more complex recognition jobs, e.g., a state “st1”. In this particular example, this is
a final state. Thus, KEY-2 may now be used to recognize packets that are in any way
associated with the application “a¢”. Two such packets 208 and 209 are shown, one in
each direction. They use the particular application service requested in the original Bind
Lookup Request, and each will be recognized because the signature KEY-2 will be built

in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “S;” followed by client “C;”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,

NOAC Ex. 1015 Page 58

51

large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented
by request packet 208 and response packet 209. The client 106 sends packets 208 that
have a destination and source address S and Cj, in a pair of fields 260 and 261. A field

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

Some network-server application recognition jobs are so simple that only a single
state transition has to occur to be able to pinpoint the application that produced the packet.
Others require a sequence of state transitions to occur in order to match a known and

predefined climb from state-to-state.

Thus the flow signature for the recognition of application “a2” is automatically set
up by predefining what packet-exchange sequences occur for this example when a
relatively simple Sun Microsystems Remote Procedure Call bind lookup request
instruction executes. More complicated exchanges than this may generate more than two
flow signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a “final” resting state such as “st;”

in field 255 is reached. All these are used to build the final set of flow signatures for
recognizing a particular application in the future.

Embodiments of the present invention automatically generate flow signatures with
the necessary recognition patterns and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also generating state transitions to
search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Note that one in the art will understand that computer networks are used to
connect many different types of devices, including network appliances such as telephones,
“Internet” radios, pagers, and so forth. The term computer as used herein encompasses all
such devices and a computer network as used herein includes networks of such

computers.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted as

NOAC Ex. 1015 Page 59

oS iks
L,

£

| A2 ‘
AR e
52

limiting. Various alterations and modifications will no doubt become apparent to those or
3 ordinary skill in the art after having read the above disclosure. Accordingly, it is intended
R ; that the claims be interpreted as covering all alterations and modifications as fall within

L S the true spirit and scope of the present invention.

9

P e S g e
W, P

N
RY " B
b -
N :
- ¢,
R
4N ¢-
?, 2
(4
. %
SR
”'; P
. “
s
RE .
3
< 's I
s

oty o Lid o S

T) et MR PR 95
B 5 R A a5 SN
st N

» el

NOAC Ex. 1015 Page 60

L
!
F.

o 53

CLAIMS

What is claimed is:

. 1. A packet monitor for examining packets passing through a connection point on a

[computer network in real-time, the packets provided to the packet monitor via a

*g 5 packet acquisition device connected to the connection point, the packet monitor

) comprising:

X

. 3 (a) a packet-buffer memory configured to accept a packet from the packet

1 i s acquisition device;

] (b) a parsing/extraction operations memory configured to store a database of
10 parsing/extraction operations that includes information describing how to

1 determine at least one of the protocols used in a packet from data in the

' z‘ packet;

; ‘3 (© a parser subsystem coupled to the packet buffer and to the

| ‘ pattern/extraction operations memory, the parser subsystem configured to

‘ 15 examine the packet accepted by the buffer, extract selected portions of the

‘ accepted packet, and form a function of the selected portions sufficient to
;": identify that the accepted packet is part of a conversational flow-sequence;

(d) a memory storing a flow-entry database including a plurality of flow-

L entries for conversational flows encountered by the monitor;

20 (e) a lookup engine connected to the parser subsystem and to the flow-entry
database, and configured to determine using at least some of the selected
portions of the accepted packet if there is an entry in the flow-entry database

for the conversational flow sequence of the accepted packet;

NOAC Ex. 1015 Page 61

Y d S
o
¢
7
¢
10
-
- i
Ry .
;!.‘
It
o
-
i 15
A
il
;31
i
B
4
20
3
‘
2}
Ft
3]
25
¥
%
:

54

¢9) a state patterns/operations memory configured to store a set of predefined
state transition patterns and state operations such that traversing a particular
transition pattern as a result of a particular conversational flow-sequence of
packets indicates that the particular conversational flow-sequence is
associated with the operation of a particular application program, visiting
each state in a traversal including carrying out none or more predefined state

operations;

€)) a protocol/state identification mechanism coupled to the state
patterns/operations memory and to the lookup engine, the protocol/state
identification engine configured to determine the protocol and state of the

conversational flow of the packet; and

(h) a state processor coupled to the flow-entry database, the protocol/state
identification engine, and to the state patterns/operations memory, the state
processor, configured to carry out any state operations specified in the state
patterns/operations memory for the protocol and state of the flow of the

packet,

the carrying out of the state operations furthering the process of identifying which
application program is associated with the conversational flow-sequence of the
packet, the state processor progressing through a series of states and state operations
until there are no more state operations to perform for the accepted packet, in which
case the state processor updates the flow-entry, or until a final state is reached that
indicates that no more analysis of the flow is required, in which case the result of the

analysis is announced.

A packet monitor according to claim 1, wherein the flow-entry includes the state
of the flow, such that the protocol/state identification mechanism determines the
state of the packet from the flow-entry in the case that the lookup engine finds a

flow-entry for the flow of the accepted packet.

NOAC Ex. 1015 Page 62

LR, |
s
x4
£

At
-
S
-
33
R ¢
'
k-
; 5
N
: Il
‘k
w
E oM
R - 10
A ;
e -
. A
’ gt
: &
" %
% ¥
x w
s
2B
ing
3 't'.
Y 15
'
=,
R
.:“‘.‘,1'
20
X,
‘J
.&’.5‘
g
1 W
. P
B3
‘ 25

&

Soipure
- e e S o

i
ks o

7

P S QDN S

55

A packet monitor according to claim 1, wherein the parser subsystem includes a
mechanism for building a hash from the selected portions, and wherein the hash is
used by the lookup engine to search the flow-entry database, the hash designed to

spread the flow-entries across the flow-entry database.
A packet monitor according to claim 1, further comprising:

a compiler processor coupled to the parsing/extraction operations memory, the

compiler processor configured to run a compilation process that includes:

receiving commands in a high-level protocol description language that
describe the protocols that may be used in packets encountered by the

monitor, and

translating the protocol description language commands into a plurality of
parsing/extraction operations that are initialized into the parsing/extraction

operations memory.

A packet monitor according to claim 4, wherein the protocol description language
commands also describe a correspondence between a set of one or more application
programs and the state transition patterns/operations that occur as a result of
particular conversational flow-sequences associated with an application program,
wherein the compiler processor is also coupled to the state patterns/operations
memory, and wherein the compilation process further includes translating the
protocol description language commands into a plurality of state patterns and state

operations that are initialized into the state patterns/operations memory.
A packet monitor according to claim 1, further comprising:

a cache memory coupled to and between the lookup engine and the flow-entry

database providing for fast access of a set of likely-to-be-accessed flow-entries from

the flow-entry database.

A packet monitor according to claim 6, wherein the cache functions as a fully

associative, least-recently-used cache memory.

NOAC Ex. 1015 Page 63

4
¥
3
o
%
5

10

15

20

25

8.

10.

11.

56

A packet monitor according to claim 7, wherein the cache functions as a fully
associative, least-recently-used cache memory and includes content addressable

memories configured as a stack.

A packet monitor according to claim 1, wherein one or more statistical measures

about a flow are stored in each flow-entry, the packet monitor further comprising:

a calculator for updating the statistical measures in a flow-entry of the accepted

packet.

A packet monitor according to claim 9, wherein, when the application program of
a flow is determined, one or more network usage metrics related to said application
and determined from the statistical measures are presented to a user for network

performance monitoring.

A method of examining packets passing throygh a connection point on a
computer network, each packets conforming tg one or more protocols, the method

comprising:
(a) receiving a packet from a packef acquisition device;

(b) performing one or more parsjfig/extraction operations on the packet to
create a parser record comprisfng a function of selected portions of the

packet;

(c) looking up a flow-entry database comprising none or more flow-entries
for previously encounteyed conversational flows, the looking up using at
least some of the selegted packet portions and determining if the packet is of

an existing flow;

(d) if the packet ig/of an existing flow, classifying the packet as belonging to

the found existjag flow; and

(e) if the paclet is of a new flow, storing a new flow-entry for the new flow
in the flow/entry database, including identifying information for future

packets tp be identified with the new flow-entry,

NOAC Ex. 1015 Page 64

“hEe I

10

15

20

25

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

57

wherein the parsing/extraction operations depend on ghe or more of the protocols to

which the packet conforms.

A method according to claim 11, wherein each packet passing through the

connection point is examined in real time.

A method according to claim 11, wherein clasifying the packet as belonging to

the found existing flow includes updating the flpw-entry of the existing flow.

A method according to claim 13, wherein updating includes storing one or more

statistical measures stored in the flow-entry of the existing flow.

A method according to claim 14, whereiy the one or more statistical measures
include measures selected from the set corsisting of the total packet count for the

flow, the time, and a differential time froyn the last entered time to the present time.

A method according to claim 11, whgrein the function of the selected portions of
the packet forms a signature that incluges the selected packet portions and that can
identify future packers, wherein the 1gokup operation uses the signature and wherein

the identifying information stored infthe new or updated flow-entry is a signature for
identifying future packets. ?\

A method according to claim 1/, wherein at least one of the protocols of the
packet uses source and destinatign addresses, and wherein the selected portions of

the packet include the source destination addresses.

A method according to claiyn 17, wherein the function of the selected portions for

packets of the same flow is cgnsistent independent of the direction of the packets.

A method according to claim 18, wherein the source and destination addresses
are placed in an order detefmined by the order of numerical values of the addresses

in the function of selected portions.

A method accordingfto claim 19, wherein the numerically lower address is placed

before the numerically/higher address in the function of selected portions.

A method accordifig to claim 11, wherein the looking up of the flow-entry
database uses a hasli of the selected packet portions.

NOAC Ex. 1015 Page 65

Feia®

0% S gk

]

L &

N R R

4
.
]
Py
g &5
3.8
<
. -
s
»n:
% 4
7
b ¥ &
B
5y B
<8
s
s
%«
.
o
5
e
3
b
s
B o
3
)
2
14
It
s,
c
.5
33
i3 I
il
% N
SF-
Fre
. o
¥
BRI
#u‘ s
RS
2
e
-]
<o
e

22,

23.

24,

25.

26.

217.

28.

29.

58

A method according to claim 11, wherein the parsing/extraction operations are
according to a database of parsing/extraction operafions that includes information
describing how to determine a set of one or more jprotocol dependent extraction

operations from data in the packet that indicate # protocol used in the packet.

A method according to claim 11, wherein sfep (d) includes if the packet is of an
existing flow, obtaining the last encountered state of the flow and performing any
state operations specified for the state of thef flow starting from the last encountered
state of the flow; and wherein step (e) inclydes if the packet is of a new flow,

performing any state operations required for the initial state of the new flow.

A method according to claim 23, whefein the state processing of each received

packet of a flow furthers the identifyingfof the application program of the flow.

A method according to claim 23, wherein the state operations include updating
the flow-entry, including storing idenfifying information for future packets to be
identified with the flow-entry. y\

A method according to claim 25 wherein the state processing of each received

packet of a flow furthers the identifying of the application program of the flow.

A method according to claim 23, wherein the state operations include searching

the parser record for the existenge of one or more reference strings.

A method according to claind 23, wherein the state operations are carried out by a

programmable state processor pccording to a database of protocol dependent state

operations.

A packet monitor for exapnining packets passing through a connection point on a
computer network, each pagkets conforming to one or more protocols, the monitor
comprising:

(a) a packet acquigition device coupled to the connection point and

configured to regeive packets passing through the connection point;

b) an input buffer memory coupled to and configured to accept a packet

from the pack¢t acquisition device;

NOAC Ex. 1015 Page 66

10

15

20

25

30.

31.

59

(c) a parser subsystem coupled to the input buffer snemory and including a
slicer, the parsing subsystem configured to extrgct selected portions of the
accepted packet and to output a parser record ¢gontaining the selected

portions;

(d) a memory for storing a database comprfsing none or more flow-entries for
previously encountered conversational flows, each flow-entry identified by

identifying information stored in the flgw-entry;

(e) a lookup engine coupled to the output of the parser subsystem and to the
flow-entry memory and configured tp lookup whether the particular packet
whose parser record is output by th¢ parser subsystem has a matching flow-
entry, the looking up using at leasf some of the selected packet portions and

determining if the packet is‘of arf existing flow; and

63) a flow insertion engine couyfled to the flow-entry memory and to the
lookup engine and configured to create a flow-entry in the flow-entry
database, the flow-entry inclpding identifying information for future packets

to be identified with the ney flow-entry,

the lookup engine configured such that if the packet is of an existing flow, the

monitor classifies the packet as Yelonging to the found existing flow; and if the
packet is of a new flow, the floyw insertion engine stores a new flow-entry for the
new flow in the flow-entry dathbase, including identifying information for future

packets to be identified with fhe new flow-entry,

wherein the operation of th¢ parser subsystem depends on one or more of the

protocols to which the packet conforms.

A monitor according to claim 29, wherein each packet passing through the

connection point is accgpted by the packet buffer memory and examined by the
monitor in real time. |

A monitor accordif g to claim 29, wherein the lookup engine updates the flow-
entry of an existing flow in the case that the lookup is successful.

NOAC Ex. 1015 Page 67

60

32. A monitor according to claim 29, further including a mechanism for building a
hash from the selected portions, wherein the hash iy included in the input for a
particular packet to the lookup engine, and wherejn the hash is used by the lookup

engine to search the flow-entry database.

5 33. A monitor according to claim 29, further in¢luding a memory containing a
database of parsing/extraction operations, thefparsing/extraction database memory
coupled to the parser subsystem, wherein thq parsing/extraction operations are
according to one or more parsing/extraction/operations looked up from the

parsing/extraction database.

Ak 10 34. A monitor according to claim 33, wheyein the database of parsing/extraction

% g operations includes information describjng how to determine a set of one or more
ﬁ é’ protocol dependent extraction operatiops from data in the packet that indicate a

‘ ﬁ.i protocol used in the packet. ‘y\\

; ‘i 35. A monitor according to claim 29, further including a flow-key-buffer (UFKB)
., C} 15 coupled to the output of the parser subsystem and to the lookup engine and to the
;c ‘2 flow insertion engine, wherein the putput of the parser monitor is coupled to the

;i : lookup engine via the UFKB, and/wherein the flow insertion engine is coupled to
:ﬁg the lookup engine via the UFKB

36. A method according to claimy 29, further including a state processor coupled to
20 the lookup engine and to the flpw-entry-database memory, and configured to
perform any state operations gpecified for the state of the flow starting from the last
encountered state of the flow in the case that the packet is from an existing flow,
and to perform any state opgrations required for the initial state of the new flow in

the case that the packet is from an existing flow.

25 37. A method according t¢ claim 29, wherein the set of possible state operations that
the state processor is cogfigured to perform includes searching for one or more

patterns in the packet pgrtions.

NOAC Ex. 1015 Page 68

-

38.

5 39.
10
40.
41.
15
20
42,
25

61

A monitor according to claim 36, wherein the state processor is programmable,
the monitor further including a state patterns/operations memory coupled to the state
processor, the state operations memory configured to store a database of protocol

dependent state patterns/operations.

A monitor according to claim 35, further in¢luding a state processor coupled to
the UFKB and to the flow-entry-database mejnory, and configured to perform any
state operations specified for the state of the flow starting from the last encountered
state of the flow in the case that the packet if from an existing flow, and to perform
any state operations required for the initial $tate of the new flow in the case that the

packet is from an existing flow.

A monitor according to claim 36, whefein the state operations include updating
the flow-entry, including identifying infprmation for future packets to be identified
with the flow-entry. \

A packet monitor according to claifm 29, further comprising:

a compiler processor coupled to the parsing/extraction operations
memory, the compiler procgssor configured to run a compilation process that

includes:

receiving comrnands in a high-level protocol description language
that describe the protocols that may be used in packets encountered

by the monitor and any children protocols thereof, and

translating the protocol description language commands into a
plurality of parsing/extraction operations that are initialized into the

parsing/extraction operations memory.
A packet monitor accgrding to claim 38, further comprising:

a compiler processor coupled to the parsing/extraction operations
memory, the cpmpiler processor configured to run a compilation process that

includes:

NOAC Ex. 1015 Page 69

10

15

20

25

43.

45.

46.

47.

48.

62

receiving commands in a high-levgl protocol description language
that"describe a correspondence betvwfeen a set of one or more
application programs and the stateftransition patterns/operations that
occur as a result of particular c/:o ersational flow-sequences

associated with an application pfograms, and

translating the protocol des¢ription language commands into a
plurality of state patterns and ptate operations that are initialized into

the state patterns/operations
A packet monitor according to claim 29} further comprising:

a cache subsystem coupled to and between the lookup engine and the flow-entry
database memory providing for fast accgss of a set of likely-to-be-accessed flow-

entries from the flow-entry database.

A packet monitor according to claijn 43, wherein the cache subsystem is an
associative cache subsystem includi

cells (CAMS). \

one or more content addressable memory

A packet monitor according to ¢laim 44, wherein the cache subsystem is also a
least-recently-used cache memoryf such that a cache miss updates the least recently

used cache entry.

»

A packet monitor according fo claim 29, wherein each flow-entry stores one or

more statistical measures abouf the flow, the monitor further comprising

a calculator for updating af least one of the statistical measures in the flow-entry

of the accepted packet.

A packet monitor according to claim 46, wherein the one or more statistical
measures include measurep selected from the set consisting of the total packet count
for the flow, the time, and a differential time from the last entered time to the

present time.

A packet monitor acgording to claim 46, further including a statistical processor
configured to determink one or more network usage metrics related to the flow from

one or more of the statistical measures in a flow-entry.

NOAC Ex. 1015 Page 70

10

15

20

25

49.

50.

51.

52.

53.

54.

63

A monitor according to claim 29, whereinf

flow-entry-database is organized into a plurality of bins that each contain N-
number of flow-entries, and wherein said pins are accessed via a hash data value
created by a parser subsystem based on the selected packet portions, wherein N is

one or more.

A monitor according to claim 49, wherein the hash data value is used to spread a
plurality of flow-entries across the flgw-entry-database and allows fast lookup of a

flow-entry and shallower buckets.

A monitor according to claim 36/ wherein the state processor analyzes both new
and existing flows in order to classify them by application and proceeds from state-

to-state based on a set of predefingd rules.

A monitor according to claim/29, wherein the lookup engine begins processing as

soon as a parser record am've\s from the parser subsystem.

A monitor according to ' 36, wherein the lookup engine provides for flow
state entry checking to see if 4 flow key should be sent to the state processor, and

that outputs a protocol identifier for the flow.

A method of examining packets passing through a connection point on a

computer network, the method comprising:

(a) receiving a paclfet from a packet acquisition device;

(b) performing ong or more parsing/extraction operations on the packet
according to a ddtabase of parsing/extraction operations to create a parser
record comprisipg a function of selected portions of the packet, the database
of parsing/extraction operations including information on how to determine
a set of one orfmore protocol dependent extraction operations from data in

the packet thgt indicate a protocol is used in the packet;

p a flow-entry database comprising none or more flow-entries

(c) looking
for previouly encountered conversational flows, the looking up using at
least somefof the selected packet portions, and determining if the packet is of

an existing

tlow; NOAC Ex. 1015 Page 71

10

15

20

55.

56.

57.

58.

59.

64

(d)- if the packet is of an existing flow, obtai ing the last encountered state of
the flow and performing any state operatigns specified for the state of the

flow starting from the last encountered state of the flow; and

(e) if the packet is of a new flow, perfgrming any analysis required for the
initial state of the new flow and storing a new flow-entry for the new flow in
the flow-entry database, including /dentifying information for future packets
to be identified with the new flow-entry.

A method according to claim 54, whgrein one of the state operations specified for
at least one of the states includes updating the flow-entry, including identifying

information for future packets to-be identified with the flow-entry.

A method according to claim 54, wherein one of the state operations specified for
at least one of the states includes sgarching the contents of the packet for at least one

reference string. O\

A method according to claim/55, wherein one of the state operations specified for
at least one of the states includgs creating a new flow-entry for future packets to be
identified with the flow, the ngw flow-entry including identifying information for

future packets to be identified with the flow-entry.

A method according to claim 54, further comprising forming a signature from the
selected packet portions, wherein the lookup operation uses the signature and
wherein the identifying information stored in the new or updated flow-entry is a

signature for identifying guture packets.

A method accordingfto claim 54, wherein the state operations are according to a

database of protocol dgpendent state operations.

NOAC Ex. 1015 Page 72

15

20

includes receiving a packet from a packet acquisitiofi device and performing one or more
parsing/extraction operations on the packet to create a parser record comprising a
function of selected portions of the packet. The/parsing/extraction operations depend on
one or more of the protocols to which the pagket conforms. The method further includes
looking up a flow-entry database containing flow-entries for previously encountered
conversational flows. The lookup uses tfie selected packet portions and determining if
the packet is of an existing flow. If the packet is of an existing flow, the method
classifies the packet as belonging to/the found existing flow, and if the packet is of a new
flow, the method stores a new flow-entry for the new flow in the flow-entry database,
including identifying information for future packets to be identified with the new flow-
entry. For the packet of an exigting flow, the method updates the flow-entry of the
existing flow. Such updating/may include storing one or more statistical measures. Any
stage of a flow, state is maijfitained, and the method performs any state processing for an
identified state to further the process of identifying the flow. The method thus examines
each and every packet passing through the connection point in real time until the

application program asSociated with the conversational flow is determined. The method

NOAC Ex. 1015 Page 73

<,

.r:':'
gt
e

APPT-001-1

bt ot al.
(I G
. 2

| "~ 8651099

P

1/18

100

CLIENT 4

ANALYZER

116

SERVER 2

CLIENT 3

Mo

121

DATA COMMUNICATIONS
NETWORK

102

125

\

SERVER 2

20—

105
CLIENT 2 |/ CLIENT 1

e e

—h
(@]
=

- FEL ST
- € N

FIG. 1

NOAC Ex. 1015 Page 74

Y

214 (215 (216 (217(218(219(220

221,222 (223

< el
e D
148 |cy|p /%% il |sa| QAlsp OPH
......... < 206 (224 (225 226 227228 229 230231232233 | qooooooe
—e Ci| S p! % il |sh s’ pzﬂ 2
9 |
: 219\ 240 2%41 242 243 244 245 5
: e N \ \ \ { N : \ §
5 EY-1 C L G20 SRR al t v
. c202(108) " S1|C1 | P % " D u 20
+ ° 250 251 252 253 254 = =
D (220 (1 (22 ¢ s (255 =l o
g R ol a2
| KEY-2\ S1| C1 | p P(» a sty “ s, I
e “ Y, 2_{imiig}_
A
; CLIENT 3 (260 (261 (262 263 (264 265 APPLICATION SERVER 2
A - D :
n| s;| C| P2V~ datum request ﬂ
S (270 (271 272 273 (274 @75 | S
208 L
: — Ci| S| P2 ¢ datum reply u no| |
- FIG. 2

NOAC Ex. 1015 Page 75

.le 19 ;{'.u

1-100-1ddV

C ot o Cen, i i
. PRTEARNECYS A

dia dacaa ot
s M W v

e A 3‘&‘«" Do) .
——————————————————— ‘f~»
Ny
ANALYZE AND Ex_T;] ot | |) >
| | RECOGNIZE | | pEnTievinG | |BUILD UNIQUE| | | | LOOKUP I T
PATTERN |-\ FopuaTion| > {CONVERSATION > FROH DATABASE =
| |INFORMATION N "FLOW" KEY || KNOWN RECORD? ~ 1| 1| oF FLows S
(PAR) (EIl) | | |RECORDS | Q
|) | | | (DB324 | IR
| f 312 VIA CACHE)
_______ - | |
I r - —
| | | 0 UPDATE | |
PATTERN, PARSE | PROTOCOL ; g |
| | FLOW
EXTRACTION | | I IDENTIFICATION RECORD
| DATABASE | Mo
! . L) | S
‘‘‘‘‘‘ l‘ - | 00
' CLASSIFICATN| | |
310 i | STATE ! FINALIZATION [|
' PROCESSOR = I
COMPILER | ‘NSK%%%TS‘QN NO Ggy !
AND > I | ~
OPTIMIZER | | G
| 326 |
| v |
DATAGRAM| | |
LAYER | \ STATE |
PROCESSNG
| OPERATIONS |
I ANALYZER |
| 303 I

NOAC Ex. 1015 Page 76

J

ﬁétz etal. APPT-001-1

e N O T

4/18

401

402
HIGHLEVEL |/
PACKET
DECODING
ESCRIPTION
3404 405
GENERATE “PACKET
P. COMPILE STATE
Pé)F(‘?FEA”éNTD F—_DESCRIPTIONS_—’INSTRUCTIONS
OPERATIONS OPERATIONS
Q403
v
y w
oA N
A
EXTRACTION INSTRUCTION
DATABASE 408 409 DATABASE
OAmEASE] (-) o
PARGING NSTRUCTION,
NSTRUCT!
—»|SUBSYSTEM DATABASE
MEMORY MEMORY

:410

FIG. 4

NOAC Ex. 1015 Page 77

400

APPT-001-1

5/18

Q\f 501
/ INPUT PACKET /<f 502

!

f 2 503 LOAD PACKET
. _1{ GOMPONENT [¥—

ORE IN PACKET?

YES
FETCH NODE AND @

512

BUILD
Np| PACKET
KEY

504

———» PROCESS FROM
PATTERNS /L505

513

NEXT

PACKET /&
COMPONENTC 511
A

506

APPLY NODE AND)
™ PROCESS TO
507 COMPONENT

500

510\

: EXTRACT
509 S™ ELEMENTS

gLoap

FIG. 5

NOAC Ex. 1015 Page 78

APPT-001-1 @ :
6/18
1

9 601

PACKET 602
COMPONENT AND
4 PATTERN NODE
4 603 l

LOAD PACKET |

' I COMPONENT

6103

LOAD KEY
BUFFER

¥ FETCH EXTRACTION
AND PROCESS FROM)
PATTERNS 605

611

NEXT

; 606
il ORE EXTRACTION>>—NO»| PACKET | ~609
L4 ELEMENTS? COMPONENT
z" T

%* 607 1 APPLY EXTRACTION
COFoER

600

MORE TO 608

EXTRACT?

YES—

FIG. 6

NOAC Ex. 1015 Page 79

; etal. APPT-001-1

7118
701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN

708 3

NO
m OUTPUT T
—> ANALYZER

] 2ot

o b
e HASHKEY BUFFER @
& ELEMENT FROM K_§ 705
“ e S

l :
i PACK KEY & HASH
: 706 -g\

! l 700

18 ;
: 707 5—

FIG. 7

NOAC Ex. 1015 Page 80

o T
by
i

&
s

X

A3
Fib
R

P i iy

ootz etal. APPT-001-1

8/18

801

UFKB ENTRY FOR 802
PACKET

'

COMPUTE CONVERSATION
RECORD BIN FROM HASH

e 803

'

REQUEST RECORD BIN/

805

NEXT BUCKET

(A b bt B pum S BN > 2 S o

Q 809

BUCKET FROM CACHE

— 804

ORE BUCKET
IN THE BIN?

5 806

SET UFKB FOR

PACKET AS 'NEW'

COMPARE CURRENT BIN
AND BUCKET RECORD KEY

TO PACKET

/— 807

YES

«NO @ 808

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

/—810

|

SET UFKB FOR PACKET
AS 'FOUND!

A 4

UPDATE STATISTICS FOR

RECORD IN CACHE

xé FIG. 8

NOAC Ex. 1015 Page 81

RPC

REQUEST

PORTMAPPESH

X 909

EXTRACT PROGRAM EXTRACT PORT
903 W GET 'PROGRAM, GET 'PROGRAM,
'VERSION', 'PORT' AND 'VERSION' AND
‘PROTOCOL (TCP OR ‘PROTOCOL (TCP OR
UDP) UDP)
f } 908
1% ; SAVE REQUEST
CREATE SERVER STATE
&1 SAVE 'PROGRAM!,
SAVE 'PROGRAM, "VERSION' AND
904 \ "VERSION', 'PORT' AND 'PROTOCOL (TCP OR
444 'PROTOCOL (TCP OR UDP) WITH
o UDP) WITH NETWORK DESTINATION
e ADDRESS IN SERVER NETWORK ADDRESS.
i STATE DATABASE. KEY BOTH MAKE A KEY.
2 ON SERVER ADDRESS
o AND TCP OR UDP PORT.
§i‘f 907

il
L4
[O

4= ﬁ 905

906 W

B h

LOOKUP REQUEST EXTRACT

3§ PROGRAM

+ 1 /(FIND 'PROGRAM'

. 900 AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF 'PROTOCOL (TCP

SOURCE NETWORK OR UDP)".
ADDRESS.

FIG. 9

NOAC Ex. 1015 Page 82

-

§e. ool APPT-001-1

EIR™

& 1000 —y 10/18

PATTERN
RECOGNITION
DATABASE
MEMORY

EXTRACTION

OPERATIONS

DATABASE
MEMORY

100

PATTERN

RECOGNITN

ENGINE
(PRE)

re PARSER INPUT BUFFER
4 MEMORY

e R o P

R WY R TR

-
N

o

> —_

@)

A

m

—l

INPUT BUFFERY 1011
INTERFACE

CONTROL

START /

T TR RS S TR

Gy e .

FIG. 10

EXTRACTION ENGINE

(SLICER)

PARSER

OUTPUT PACKET KEY
BUFFER AND PAYLOA
MEMORY

ANALYZER DATA READY

INTERFACE
CONTROL

ANALYZER
READY

1027

NOAC Ex. 1015 Page 83

3 APPT-001-1

Pz ot . %

2 11/18

LOOKUP/
i) UPDATE
ENGINE

HOST
BUS
INTER-
FACE
(HIB)

| B
1109 (SPID)

bl PARSER [\
INTER-

Kt STATE

i PROCESSR

@ (SP) 1119 1123

B

i UNIFIED MEMORY
& MEMORY INTER-
- FLOW CONTROL FACE
8 INSERTION/ (UMC)
4 DELETION

ENGINE

NOAC Ex. 1015 Page 84

APPT-001-1

VS
® 2

12/18
i 1201
UFKB ENTRY FOR
3 PACKET WITH 1202
- STATUS 'NEW'
& 1200
A ACCESS
3 CONVERSATION | 1208
¥ RECORD BIN
g REQUEST RECORD BIN/
o BUCKET FROM CACHE |/~ 1204
g REQUEST NEXT
¥ {1 BUCKET FROM <BIN/BUCKET EMPTYZ>—1205
i 1206 CACHE
i l YES
¥
NO |INSERT KEY AND HASH |/~ 1207
= IN BUCKET, MARK 'USED
1208 WITH TIMESTAMP
YES .
COMPAF{(ED CURF{E(ID\IT BIN—1209
1210 AND BUCKET RECORD
SET UEKBS FOR
N\ T JFRBFC KEY TO PACKET
'DROP' T
MARK RECORD BIN AND
BUCKET '[N PROCESS' |/~ 1211
AND 'NEW' IN CACHE
1212_JsET INITIAL STATISTICS
FOR RECORD IN CACHE

1213
»

FIG. 12

NOAC Ex. 1015 Page 85

1 otz et al. APPT-001-1

13/18

1301

1300 — UFKB ENTRY FOR
PACKET WITH STATUS
'NEW' OR 'FOUND! 1302
SET STATE PROCESSOR
INSTRUCTION POINTER TO —1303
VALUE FOUND IN UFKB ENTRY
FETCH INSTRUCTION FROM
» STATE PROCESSOR /1304
INSTRUCTION MEMORY
PERFORM OPERATION BASED
ON THE STATE INSTRUCTION |~ 1305
SET STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS
VALUE FOUND IN PACKET?
CURRENT STATE
1308
1310
SAVE STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO
CURRENT FLOW
RECORD
SET AND SAVE FLOW REMOVAL
STATE PROCESSOR \/—1311
INSTRUCTION IN CURRENT
FLOW RECORD

»é\ﬂm

FIG. 13

NOAC Ex. 1015 Page 86

1414—

|
!
ANALYZE AND EXTRACT 11 | LOOKUP I >
RECOGNIZE |] IDENTIFYING || sy G Reyhts] KNOWN | o
PATTERN _ []INFO & PROCL || |RECORDS DATABASE| | 5
INFORMATION JSTATE (DB 1424) OF FLOWS | |, =
1 2
ﬁ TS ZZZZ. | R
! : J l
\ ! | |
Y B 2 1 @
l UPDATE !
PATTERN | ; ;
STRUCGTURES o oW 1
| |
EXTRACTION -] RECORD |
OPERATIONS | \ N
I S
(e 1 3
PARSER 1408 L Y : o0
SUBSYSEM _ _ _ _ _ _ _ b STATE |
| MACHINE
| SELECTOR > '
|
1400 ! | |
|
| YES CLASSIFICATN| |
F|G 14 | FINALIZATION |
. | ~] 14&2 - |
| STATE NG l 1434 |
| ANALYSIS | |] |
| DPERATIONS [=- 1
ANALYZER |
| SUBSYSTEM |

NOAC Ex. 1015 Page 87

o B D

. 5
RRGT o b b o AN AT .

e

121

AR

(324
) PA3ROS15R AN/:;I(_)gZEE{ DATABASE
(150 A oUo «—1—» OF
FLOWS
PACKET (MEMORY)
—>ACQUISITION > — 1504 (1506
DEVICE
| —»| HOST HOST
PROCESSORY | MEMORY | &
Ry
MONITOR >
300 @
(1510 1508
D
102 NETWORK | T
INTERFACE | | DISK
CARD &
Y DB
PACKETS T

FIG. 15

NOAC Ex. 1015 Page 88

oy

yetz et al. APPT-001-1

16/18
1602 0 - 3 Bytes
A— 1600
l B Dst MAC
offset 0 - 11 |~ DstMAC | Src MAC \/_,/ 1604
| Src MAC -]
\. J/
P)/ < 1606
1008 Dst MAC (6) =
| Dst Hash (2 1610
1612\ Src MAC (6)]
1614 Src Hash (2)
L2 Offset = 12

Wond Wt e Wisses

FIG. 16

NOAC Ex. 1015 Page 89

 zetal. APPT-001-1

-
7
4 Lt

17/18

1704

1702
. offset \

H

r
b
:
&
%’{‘
&
.?:;
;_

Type

11111174

i
b \

1708

1710

L SR T AL SR BT Sy L

1706

Type (2) 1/

[Hash [1)

D

Y— 1700

}3 Offset = 14

FIG. 17A

]
1712

IDP = 0x0600*
IP = 0x0800*
CHAOSNET = 0x0804
ARP = 0x0806
VIP = 0xOBAD*
VLOOP = 0xOBAE
VECHO = 0xOBAF
NETBIOS-3COM = 0x3CO00 -
0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5*
ATALKARP = 0x80F3
IPX = 0x8137*
SNMP = 0x814C#
IPv6 = 0x86DD*
LOOPBACK = 0x9000

Apple = 0x080007

* L3 Decoding
L5 Decoding

TR 0 5

VEAnL,

U/ TYPel) ol St/ /]

1L3to

(///1eniner/ /1] et

[FiAd O

L3+

Wiz

Protocol AeAdeY/ 71905

(IHL / 4)

Src Address

-1]

Dst Address

LIRS AR V11111111

7 AN

X

Dst Address

Dst Hash (2)

Src Address

Src Hash (2)

Protogol (1)

L4 Offket = L3 + (IHL/4)

Y~— 1750

FIG. 17B

1752

ICMP =1
IGMP =2
GGP =3
TCP =6*
EGP =8
IGRP =9
PUP =12
CHAOS =16
UDP =17*
IDP =22#
ISO-TP4 =29
DDP =37#
ISO-IP =80
VIP = 83#
EIGRP =88
OSPF =89

* L4 Decoding
L3 Re-Decoding

NOAC Ex. 1015 Page 90

APPT-001-1

18/18

PROTOCOL

HL1ON3T a13ld

FIG. 18A

2\ [T 17 111

H\\\\Dﬁ\\\\
\y s

—_>
g13i4 40

3d00 31Ad

A—1850

S
7000104d

FIG. 18B

NOAC Ex. 1015 Page 91

5

T OF DRAWING)
?ﬁ';boyﬁ..ﬂiﬁu\’ FLEp '01-1

-

i

118
100 '
CLIENT 4 /108
ANALYZER
107
116
W,
CLIENT 3 SERVER 2
" M1o0
106 121
_ DATA COMMUNICATIONS
E NETWORK -
= 102
K \ '
d 123~——;|
118
v SERVER 2 105 /)
N CLIENT 2 |/ CLIENT 1

FIG. 1

NOAC Ex. 1015 Page 92

214

215

216

BEE R ey

T

(214 215 216 217218 219 220 221,222 223
S1 [Cr| p! i1 |sh| qalsh QP” »\-F
206 (224,225 (226 207,228,229 230 231,232 233

202 (106
Cs

: CLIENT 3

4CC1

S1 | p!

i1 |sh ’ s1p pzﬂ 2

2N 240°%41 242 243 244 245
\ \ \ \ \ \ N \
a 17 &L._._ - 1 h 4
KEY-1} S1 | Cy | p ﬁ » a stp ” 20 —_—
21 ' ;)
S~
;\ 250 (251 252 253 (254 255 = 2
KEY-2] Sy Cq p2 ------- -» a? sty " r
L |) =l
' A \‘ -
(260 (261 (262 263 (264 (265 APPLICATION SERVER 2
Cq p2 o { ” I datum request " 0\+\ 5
(270 271 272 @73 (274 275 Fr ___________ .
Ci| S1 | p2 HH datum reply ” No '

NOAC Ex. 1015 Page 93

302 ANALYZE AND
| | RECOGNIZE
PACKET, PATTERN |-
INFORMATION

310

FROCTENE SO0 R T

PROTOCOL

DESCIPTIO

__________________ 300 ,
- PARSER 301 :‘r/__\i __________ | 304
— 306
EX;;%]ACT R = '
BUILD UNIQUE|, | | LOOKUP
IDENTIFYING | || Syoeecddt L = Erom l
INFORMATION! ™1™ »FLow" KEY |1 | | KNOWN RECORD? | gl”__‘Tlffc‘;V%g
(PAR) (ElD) | | |RECORDS I
% J | (DB 324 |
. 312 VIA CACHE)
fm————— — 4 |
- —
| I | ‘
] S
' | o8 UPDATE 12 |
PATTERN, PARSE | | PROTOCOL SELOW" |
08— AND I & STATE KNOWN [T |
EXTRACTION : I IDENTIFICATION RECORD
DATABASE | !
| : A |
—————— l T T T I
| CLASSIFICATN| | |
) | STATE v FINALIZATION [|
i PROCESSOR 5 (3 |
| INSTRUCTION NO— "
COMPILER DATABASE 34
AND > | \ I
OPTIMIZER I I
| 326 l
| 328 |
l (2 v |
DATAGRAM| | I
LAYER STATE
: s PROCESSNG :
' OPERATIONS
[ANALYZER |
| 303 |

¥

NOAC Ex. 1015 Page 94 -

0
SONTMYYQ 40 IN

)t]

aTd ATIVND

(11

Tk ety s 4

i PRINT OF DRAWINGD

"\ AS ORIGINALLY FiLED 07"

S 404

4/18

401

402
HIGH LEVEL
PACKET
DECODING
ESCRIPTION

405

GENERATE
PACKET
PARSE AND
EXTRACT
OPERATIONS

ENERATE
PACKET

COMPILE STATE

OPERATIONS

¢ DESCRIPTIONS ’ lNSTl}lr{l%TIONS

¥

406 RATTERN, PARS
AND

EXTRACTION
DATABASE

TR Y T

Q 403

STATE
PROCESSOR
INSTRUCTION

141!

Y

g 408 409 DATABASE
_—-/)
LOAD LOAD STATE
PARSING NSTRUCTION
SUBSYSTEM DATABASE
MEMORY MEMORY

400

:410

FIG. 4

NOAC Ex. 1015 Page 95

407

.. PRINT OF DRAWINGS

. AS ORIGINALLY FILED

e

1A

BY Tt

P W

R R

!
4,

R

SR

R

(
|
iy

i
i

-001-1

&

5/18

@\/ 501

510\

/ INPUT PACKET 502
503 LOAD PACKET |,
_{ COMPONENT [*
512
BUILD
504 ORE IN PACKET> "> PACKET
KEY
YES
T, L | @
Ll M
PATTERNS 505
513
NEXT
PACKET)
506 COMPONENTC 511
A
| YES
APPLY NODE ANDY
¢~ PROCESSTO
507 COMPONENT
NEXT 500
PATTERN
NODE

509

EXTRACT

ELEMENTS

FIG. 5

NOAC Ex. 1015 Page 96

" PRINT OF DRAWING>
" AS ORIGINALLY FILED -g01-1

4
y‘

W
wAag st e

A

Ty

TR

6/18

601

PACKET 602
COMPONENT AND
PATTERN NODE

603

y

—

LOAD PACKET <

COMPONENT

604

606

FETCH EXTRACTION
AND PROCESS FROM

PATTERNS

607 z

ORE EXTRACTION
ELEMENTS?

APPLY EXTRACTION
PROCESS TO
COMPONENT

MORE TO
EXTRACT?

608

YES

6

i,

LOAD KEY

BUFFER

611

NEXT
PACKET

609
COMPONENT\C

A

FIG. 6

\600

NOAC Ex. 1015 Page 97

4 PRINT OF DRAW ING>
: AS ORIGINALLY FILED

3

T

U OmmRRG L B

3

g

P AL

s
,

Ty

(SR

001-1

7/18
701

EY BUFFER AND 702
PATTERN NODE

y
LOAD PATTERN |,

703™_-| NODE ELEMENT

704 MORE PATTER

NODES?

YES

h 4
HASHKEY BUFFER
ELEMENTFROM | 705
PATTERN NODE

G
708 }
N JoutPuT 10
| ANALYZER
709

700

_{\ PACK KEY & HASH
706 —
A
NEXT PACKET
j_ COMPONENT
707

FIG. 7

NOAC Ex. 1015 Page 98

M 12 PRINT OF DRAWINGS

. AS ORIGINALLY FILED -001-1 .
8/18
801
UFKB ENTRY FOR 802
PACKET
800 \
: COMPUTE CONVERSATION

803
RECORD BIN FROM HASH |/

Y

REQUEST RECORD BIN/ 4
BUCKET FROM CACHE |/ 80

5 806

SET UFKB FOR
PACKET AS 'NEW'

ORE BUCKET

805 IN THE BIN?

et T

R

i

COMPARE CURRENT BIN I~ 807
AND BUCKET RECORD KEY
TO PACKET

NEXT BUCKET [=NO @ 808
Q YES
809

MARK RECORD BIN AND 810
BUCKET 'iN PROCESS' IN |/~
CACHE AND TIMESTAMP

(NS T

g2

Lol ¢

A 4

SET UFKB FOR PACKET
811 —~_ AS 'FOUND'

A

812 ™\ UPDATE STATISTICS FOR
RECORD IN CACHE

w(l) FIG. 8

NOAC Ex. 1015 Page 99

»i PRINT OF DRAWINGS T.001-1
AS ORIGINALLY FILED '

9/18

901 902

EXTRACT PROGRAM EXTRACT PORT
903 '\ GET 'PROGRAM', GET 'PROGRAM,
"VERSION', 'PORT' AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (TCP OR
= uoP) UDPY
; r) 908
= . SAVE REQUEST
CREATE SERVER STATE

SAVE 'PROGRAM',

= SAVE 'PROGRAM, 'VERSION' AND
904 W 'VERSION', "PORT' AND ‘PROTOCOL (TCP OR
'PROTOCOL (TCP OR UDP) WITH
UDP) WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY BOTH MAKE AKEY.
ON SERVER ADDRESS

AND TCP OR UDP PORT.

14

W R e

907

Y

/‘ 905 906 —\

1 e

(PSR 2 N

LOOKUP REQUEST EXTRACT
PROGRAM
/l FIND 'PROGRAM'
900 AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF ‘PROTOCOL (TCP
: “ SOURCE NETWORK OR UDP)'.
i ADDRESS.

Sy

S

FIG. 9

NOAC Ex. 1015 Page 100

r

« PRINT OF DRAWINGS .
" AS ORIGINALLY FILED

: |

1000 —y 10/18

PATTERN
RECOGNITION
DATABASE
MEMORY

EXTRACTION
OPERATIONS
DATABASE
MEMORY

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL I

(PRE)

1008

¥

Eg vy e O

L3

PACKE PARSER INPUT BUFFER
INPUT MEMORY

1012
1010

1006 PATTERN I
RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)

1007

1013

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOAD
MEMORY

7 P X

1021]
PRENST 1 INPUT BUFFER
V| INTERFACE

CONTROL
PACKET

1023 FIG. 10

INTERFACE
CONTROL

1027

NOAC Ex. 1015 Page 101

- PRINT OF DRAWING>
AS ORIGINALLY FILED

4

1100 —y

001-1

§1101 81103

PARSER
INTER-
FACE

LR

by

W

“i? i

i
W]

0
e

LOOKUP/
UPDATE
ENGINE

UNIFIED
e
FLOW
INSERTION/ (UMC)

DELETION

NOAC Ex. 1015 Page 102

MEMORY
INTER-
FACE

F e PRINT OF DRAWINGS)01-1
AS ORIGINALLY FILED

12/18

1201

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW'

1200 v
A ACCESS

CONVERSATION /1203
RECORD BIN

v

REQUEST RECORD BIN/
BUCKET FROM CACHE |/~ 1224

o

= REQUEST NEXT ‘
= {1 BUCKET FROM <HIN/BUCKET EMPTYZ>—1205
= 1206 CACHE
iy YES
= NG |INSERT KEY AND HASH [1207
= . IN BUCKET, MARK 'USED
1208 WITH TIMESTAMP
= YES OMPARE CURFENT BIN 1209
- 1210 AND BUCKET RECORD
G SET UFKE FOR
g N\ =T UPKB FC KEY TO PACKET
'DROP' T
_ MARK RECORD BIN AND
BUCKET 'IN PROCESS' |/~ 1211
% AND 'NEW' IN CACHE
g \ 4
- 1212 I SET INITIAL STATISTICS
FOR RECORD IN CACHE

s 6/1213

FIG. 12

NOAC Ex. 1015 Page 103

F ~ PRINT OF DRAWING>
. A5 ORIGINALLY i £p 0011

o~
T Es————— "
@
e o s
‘lj :

13/18

@\Iwm

1300 — UFKB ENTRY FOR
PACKET WITH STATUS
'NEW' OR 'FOUND' 1302

v

SET STATE PROCESSOR
INSTRUCTION POINTER TO 1303
VALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
> STATE PROCESSOR .
INSTRUCTION MEMORY

A 4

PERFORM OPERATION BASED
ON THE STATE INSTRUGTION [0

T T Y

SET STATE
PROCESSOR
INSTRUCTION
POINTER TO

VALUE FOUND IN
CURRENT STATE

DONE PROCESSING
STATES FOR THIS
PACKET?

ey

G e
AR b

1308
1310

i3 - SAVE STATE
: PROCESSOR
INSTRUCTION
~ POINTER IN
= CURRENT FLOW
- RECORD

DONE PROCESSING 1309

TATES FOR THIS FLO

v
SET AND SAVE FLOW REMOVAL
STATE PROCESSOR \/‘1311
INSTRUCTION IN CURRENT
FLOW RECORD

=é>\f1313

FIG. 13

NOAC Ex. 1015 Page 104

LA

140

PACKET

B oAy, e L
T A
(o m o e e
I
1404 — 1406 —) 14127\ L 1414—, 1416
ANALYZE AND EXTRACT 11 | LOOKUP
RECOGNIZE | ,| IDENTIFYING |_,| ., BUILD |, | KNOWN
PATTERN INFO & PROCL| "] "FLOW" KEY[""™ RECORDS]
INFORMATION /STATE Il [(DB 1424)
7y I
| T - -T2 .
| {
!
| |
!
PATTERN n
MORE
STRUCTURES : | CLASSIFICATION
EXTRACTION ;!
OPERATIONS ! Y
|
Los 1!
PARSER 1408 ry 1
SUBSYSEM _ _ _ _ _ _ _ b STATE
| MACHINE
| SELECTOR
|
1400 az6~
| YES
FIG. 14 el
| (,L_lﬁ 1432
! STATE
| ANALYSIS | |]
| PERATIONS
|

142

0

DATABASE
OF FLOWS

NO-» "FLOW"

1422

UPDATE

KNOWN
RECORD

+

Y

CLASSIFICATN

FINALIZATION

NO—1

Y
L1 434

ANALYZER
SUBSYSTEM

NOAC Ex. 1015 Page 105

Www-"-""-""="-"="="-"="=-"=-"=-"“=~" =~/ =~/ -/ =~ 1

"

I
!
I
1
]
!
I
I
|
!
|
|
!
|
1
|
!
1
|
|
J
|
|
|
|
[
|
l
i
!

8HVL

B

———

ATIVNIDTHO SV &

SONTAVHQ JO INTH] 7

1-100- @3TLi

©n o et gy oy 4

Gl Old

v S13aMOVd
aa : 1
9 advo
@ sIa JOV4H3LNI 201
WHOMLIN
o
— 7y L
805} 0LSL
— 121
v 00t
«© HOLINOW
y
,.:w AHOW3W | HOSS300Hd
1SOH 1 1SOH ¢ >
30IA3A
90S} J 0S| < OILISINDOY<—
(XGOWIN) 13M0vd
& SMO14 .
40 > £0E [0t r40)°1 8
- 3svavivd IZATVNY Y3SHYd
i vze p
n
E
7>
i3
4
59
z w_ T R AN R TR AR e
29
rU 1< <A} WP Y b 3

1

NOAC Ex. 1015 Page 106

o G L

———

T

. AS ORIGINALLY FILED

W

AR e)

EREA

R R

T

17/18
1702
. \ 1704
N T
NS _/

X 1706
1708\ Type (2) |/
H
1710 C ash {1) Y— 1700

\[L3 Offpet = 14

FIG. 17A

1712

IDP = 0x0600*
IP = 0x0800*
CHAOSNET = 0x0804
ARP = 0x0806
VIP = 0x0BAD*
VLOOP = 0xOBAE
VECHO = Ox0BAF
NETBIOS-3COM = 0x3C00 -
0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
L/ SNA-TH = 0x80D5*
ATALKARP = 0x80F3
IPX = 0x8137*
SNMP = 0x814C#
IPv6 = 0x86DD*
LOOPBACK = 0x8000

Apple = 0x080007
* L3 Decoding

L5 Decoding

VEAL Rl TYee) fToel st/
Lato | [////Kisnsner//// irteb/V/ Frad/offset

L3+ | 70/ Protocoll EAURTHRGHIH

(HL/4 Src Address

- 1]
Dst Address

[[1]]/ P53 8 73agia) /1111111,

1752

ICMP =1
IGMP =2
GGP =3
TCP =6*
EGP =8
IGRP =9
PUP =12

CHAOS =16
X . ey
1750 1SO-TP4 =29
Dst Address | IS?)E:IF; = gg#
Dst Hash (2) VIP = 83#
Src Address J E(I)%I;I;:’ = gg
Src Hash (2) -
* L4 Decoding
[Protadol (1) FIG. 17B | #L3ReDecoting

et = L3 + (IHL/4)

NOAC Ex. 1015 Page 107

18/18

PROTOCOL

-001-1

;- PRINT OF DRAWINGD

. AS ORIGINALLY FILED

1870
v

AL <

w%ﬁ_\\l\\\ S

5 /7 . Sounan ;
r [[[]77777 7, (o6) GEE 40 (0 0) M
[/] 7 7777 ~— 3009 3ALAE ~— S

[1] XA S 5 O
m N 10001004
Q0o

HLDN3T 134

R TR S N AT R AR

Ry REREL 4

e TR N B MR Ly il o, b NN SR SR A

s ———————————

——

{

This Form is for INTERNAL PTO USE ONLY
114308 NOT get mailed to the applicant.

NOTICE OF FILING / CLAIM FEL(S) DUE
(CALCULATION SHEET)

APPLICATION NUNMBER:

Tortal Fee Calculatioe

Taral SruTiler

Free Cods N TR T Frima \ Fa- F - Tooal
SmoLe S Eancry Lip Eane
' P
Cazle Filing Faz MWL : /7_) 2 - .
Tawl Clamz >0 251405 2 1. ? % « _/;.d%
lndegendear Qlagms >3 207 000 ,Z T - 4 7Z N
Moah Cen Claim Prazemt 104 1), :
_— — /ﬁZ -
Surzhurge MIAEY 2 -
Eaglizh Tmzlznan 11 ——
, TOTAL FEE CALCLLATION ' ' -
¢ Fersdue vpan filng e agpheries
i
' % 0,
© Teal Filing Feszs Duz = 5
4
" Less Filiag Fees Submined S

f‘B-kLANCE DUE =S W /

o —
;OﬁICc of lnitial Pateat Exarminauan

Qi

o - o bicwie 7
§ IRMOIPE.RAN-QI (Rev. 12/97)

;"_

ﬁ) NOAC Ex. 1015 Page 109

file:///c:/APPS/preexam/correspondence/4.htm

FORMALITIES LETTER UNITED STATES DEPARTMENT OF COMMERCE
P k Offi
A0 0 0 0O L0 oSSR O PATEAT AND TRADEVARKS
0C000000005353894 Washngton, D C 20231
APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER
09/608,237 06/30/2000 Russell S. Dietz APPT-001-1

Dov Rosenfeld

Suite 2

5507 Coliege Avenue
Oakland, CA 94618

Date Mailed: 08/25/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)
Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below, however,
are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and
pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition
accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

* The statutory basic filing fee is missing.
Applicant must submit $ 690 fo complete the basic filing fee and/or file a small entity statement claiming such
status (37 CFR 1.27).
* Total additional claim fee(s) for this application is $780.
m $702 for 39 total claims over 20.
m $78 for 1 independent claims over 3 .
* The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, Is required.
* To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of
$130 for a non-small entity, must be submitted with the missing items identified in this letter.
» The balance due by applicant is $ 1600.

<

A copy of this notice MUST be returned with the reply.

n_f -
Fnoyi. SLrf e , .
Customer Service Center
Initial Patent Examination Division (703) 308-1202
o PART 3 - OFFICE COPY

NOAC Ex. 1015 Page 110

8/25/00 7:29 AM

SECGD L

Our Ref./Docket No: A . -001-1 . Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE ‘“: <
— o N
=z
P E‘Aﬁp’ (cant(s): Dietz, er al 5
cani(s): > et al. ¢ Group Art Unit: 2755
NoY 06 2000 2

o [~
0V 0 6 Agplitation No.: 09/608237 § Examiner: (Unassigned)
. &
Fileg: June 30, 2000 S s

; o
A& G, METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents
Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Comimissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration;
X __ Executed Assignment with assignment cover sheet. '

X A credit card payment form in the amount of $____1772.00 is attached, being for:
X __ Statutory basic filing fee: $710

X Additional claim fee of $782

X __ Assignment recordation fee of $§ 40

X Extension Fee First Month of $ 110

X Missing Parts Surcharge $130

Applicant(s) believe(s) that no Extension of Time is required. However, this conditional
petition is being made to provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

_X__ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

X one months ($110) two months ($380)
two months ($870) four months ($1360)
If an additional extension of time is required, please consider this as a petition therefor.

rrrrr
......

0it @

‘Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

envelope addressed to the Assistant Commissioner for Patents, Washington, D-C-ﬁl on.
Date: ___MV // A ?—@‘O Signed: _ £

Name: Dov eld No.

o s bbb ssnsias i, >

Application 09/608237, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,
/Vpl/ |, 2060 %—\/
Date ov Rosenfeld, Reg. No. 38687
Address for correspondence: ‘ '

Dov Rosenfeld

5507 College Avenue, Suite 2 :
Oakland, CA 94618 f
Tel. (510) 547-3378; Fax: (510) 653-7992

NOAC Ex. 1015 Page 112

S Je e %5

®)
0§ M0
L s
/ PATENT APPLICATION

DECLWR OF ATTORNEY ATTORNEY DOCKET NO._APPT-001-1
FOR PATE CATION R

As a below named inventor, I hereby declare that:

K

%,

My residence/post office address and citizenship are as stated below next to my name;

1 believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and
was amended on (if applicable).

1 hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

1 hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35 ,
YES: NO: ;
YES: NO: I

Provisional Application
1 hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below: !

APPLICATION SERIAL NUMBER FILING DATE !
60/141,903 June 30, 1999 x

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the j
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner prov1ded by the first ;
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of ;
Federal Regulations, Section 1. 56(a) which occurred between the filing date of the prior application and the national or PCT international filing :
date of this application:

APPLICATION SERTAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the

validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA _ 95120-2736

rst Invéfifor’ sSlgnat e Date NOAC Ex. 1015 Page 113

Declaration and Power of Attorney (Continued)

Case No; «Case CaseNumber»
Pagez APFI-601~

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Court, Aptes. CA 95003

Post Office Address: _Same

Inventor’s Signature Date

Name of Third Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Inventor’s Signature Date

Name of Fifth Inventor: _Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

Name of Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave.. NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature Date

NOAC Ex. 1015 Page 114

JECLARATION AND POWER OF) JORNEY O RNEY DOCKET NO, APPT-001-1

fOR PATENT APPLICATION
A3 a below named inventor, I hereby declare that: &
! ! &
My residence/post office address and citizenship are ‘g’ated below n@‘to my name,
pelieve I am the original, first and sole inventor (if o {isted below) or an original, first and joint inventor (if plural names are

{istﬁd below) of the subject matter which is claimed and for WHICh a patent is sought on the invention entitled:
METHOD-AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

e specification of which is attached hereto unless the following box is checked:
&) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

[hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
smendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

1 hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate haviug a filing date before that of
the application on which priority is claimed:

[COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
YES: NO:
YES: NO:
Provisional Application

1 hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 Jume 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, T acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occumred between the filing date of the prior application and the national or PCT international filing

date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

L

POWER OF ATTORNEY:
As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected ith:

Dov Rosenfeld, Reg. No. 38,687

[Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378

Qakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and thaf all statements made on information and belief are believed
10 be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
e or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the

validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA = 95120-2736
Post Office Address: Same

First Inventor’s Signature Date NOAC Ex. 1015 Page 115

PE Ve
N %

AC))
i PATENT APPLICATION ™

i 0 6 200
ATTORNEY DOCKET NQ. APPT-001-1

PECLAR ATION AND POWER OF ATTORNEY :
%1 rOR PATENT APPLICATIS! - L

7 B
As a below named LS [hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;
[believe L am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
jisted below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

'METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

Y the specification of which is attached hereto unless the following box is checked:
X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT Intemnational Application Number and
was amended on (if applicable).

B [hereby state that I have reviewed an T the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I scKnowledgé the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

%% [hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
- certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of

the application on which priority is claimed:

. COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
YES: NO:
YES: NO:

Provisional Application

1. Ihereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:
g APPLICATION SERIAL NUMBER FILING DATE
) 60/141,903 June 30, 1999
PR y

§ U.S. Priority Claim

B hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed befow and, insofar as the

B subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
k- paragraph of Title 33, United States Code Section 112, [acknowledge the duty to disclose material information as defined in Title 37, Code of

Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing

%Y date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

As a named inventor, | hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
In the Patent and Trademark Office connected therewith:
Dov Rosenfeld, Reg. No. 38,687

Direct Telephone Calls To:
Dov Rosenfeld, Reg. No. 38,687
Tel: (510) 547-3378

Send Correspondence to:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed

t0 be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
Ine or imprisonment, or both, under Section 1001 of Title I8 of the United States Code and that such willful false statements may jeopardize the

validity of the application or any patent issued thereon.

%>~ Name of First Inventor: Russell S. Dietz Citizenship: USA
Residence: 6146 Ostenberg Drive, San Jose, CA _95120-2736
Post Office Address: Same
NOAC Ex. 1015 Page 116
Date

) First Inventor’s Signature

PATENT APPLICATION _
CLARATION AND POWER OF ATTURNEY ~ ATTORNEY DOCKET NO. APPT-OlJl-l‘—l
RPATENT APPLICATION : MR

:“;;s a below named inventor, | hereby declare that:

}. y residence/post office address and citizenship are as stated below next to my name; _

& , pelieve 1 am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
é listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

; METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

cification of which is attached hereto unless /the followiﬁg box is checked:
xX) was filed on _June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

pereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
dment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

e
X e SPE
:;the P

X,

S

<1
5. gmen
% foreign Application(s) and/or Claim of Foreign Priority
g

-

'»1 hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
“certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

¢l

. COUNTRY APPLICATION NUMBER - DATE FILED PRIORITY CLAIMED UNDER 35
o YES: NO:
i YES: NO:

Provisional Application
_ 1hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

Kl

APPLICATION SERJIAL NUMBER FILING DATE
60/141,903 June 30, 1999

o5

U.S. Priority Claim
- I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
. subject matter of each’of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
» Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing

date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

¢ POWER OF ATTORNEY:
As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith: .

Dov Rosenfeld, Reg. No. 38,687

CE e vt

Send Correspondence to: : : Direct Telephone Calls To:
Dov Rosenfeld: - - . Dov Rosenfeld, Reg: No. 38,687
5507 College Avenue, Suite'2:"" -~ - Tel: (519) 547-3378 T e T
Qakland, CA 94618) « B

I'hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
" to betrue; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
“ fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor’s Signature Date

NOAC Ex. 1015 Page 117

Declaration and Power of Attorney t« antinued)

Case No; «Case CaseNumber
Page 2 ’“’ﬁ‘wld,

L}
B n Ay

ADDITIONAL INVENTOR SIGNATURES: o

~

—_—

Name of Second Inventor: Joseph R. Maixner Citizenship: US

Residence: 121 Driftwood Court, Aptos, CA 95003 .

Post Office Address: Same

- 10/23/2050
/ﬂlventor’s Sign Tel / 4 Date

Name of Third Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glefnalden Drive, Germantown, TN__ 38139

Post Office Address: Same

Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA
F 2

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

Name of Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature Date

NOAC Ex. 1015 Page 118

Q O

Declaration and Power of Attorney (Continued)

Case No; «Case__CaseNumber»
Page 2 AFVOT—-0O0!~

ADDITIONAL INVENTOR SIGNATURES;

Name of Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Court, Aptos, CA__ 95003

Post Office Address: Same

Inventor’s Signature Date

Name of Third Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 9325 W. Hinsdale Place, Littleton, CO 80128

Post Office Address:
4 1 t‘“ 10 / AV / 000

Inventor’s Slgnature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA
Residence: 9005 Glenalden Drive, Germantown, TN 381

Post Office Address: Same

Inventor’s Signature Date

Name of Fifth Inventor: Haig A, Sarkissian Citizenship: USA

Residence: 8701 Mountgin Top, San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

Name of Sixth Inventor: James F. Torgerson Citizenship: USA
Residence: 227 157th Ave., NW, Andover, MN__ 55304

Post Office Address: Same

Inventor’s Signature Date

NOAC Ex. 1015 Page 119

A Y L.y
o %)
- (%) R N
o os 0@ () | O
o] PATENT APPLICATION
DECL TION AND R R OF ATTORNEY ATTORNEY DOCKET NO._APPT-001-1

FOR PA ON

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND APPARATUS FOR MONITORING C IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and
wasamendedon _______ (if applicable). .

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

1 hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
YES: ___ NO:
YES: __ NO:
Provisional Application

1 hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing

date of this application:
. APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)
; POWER OF ATTORNEY:
£ As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
A in the Patent and Trademark Office connected therewith:
E Dov Rosenfeld, Reg. No. 38,687
,- Send Correspondence to: Direct Telephone Calls To:
w Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
b 5507 College Avenue, Suite 2 Tel: (510) 547-3378
i':f Qakland, CA 94618
T hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
&‘ to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
k fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
b} validity of the application or any patent issued thercon.

Name of First Inventor: Rnssell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive. San Jose, CA 95120-2736

Post Office Address: _Same

EANIE Sk R e

CL

2 e

First Inventor’s Signature Date

NOAC Ex. 1015 Page 120

Jeclaration and Power of Attorey inued) ,
sase No; «Case__CaseNumberny - O
age 2 APPT- 001+ ' . :

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner Citizenship: USA
Residence: 121 Driftwood Court, Aptos, CA 95003

Past Office Address: Same

Inventor’s Signature Date

Name of Third Inventor: _Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

%Mé’w /o/ /0O

Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

Name of Sixth Inventor: James F. Torgerson Citizenship: USA
Residence: 227 157th Ave., NW, Andover, MN_ 55304

Post Office Address: Same

Inventor's Signature Date

NOAC Ex. 1015 Page 121

NV 06

N {?E% ‘
f 'zuuu%-C7 : O

oFIC

PATENT APPLICATION

DE TION AND@DWER OF A TTORNEY ATTORNEY-DOCKET NO; :APPT-001:1
FOR P ATION: -~ . S e

As a below named inventor, I hereby declare that:
My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and
was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
YES: NO:
YES: NO:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

e T Am A

- Direct Telephone Calls To: S
‘Diév Rosenféld, Reg. No, 38,687 -,
- Tel: (510) 547-3378 * - G

_Séhdeoﬁ;{épdpgle;ice:tﬁ“ - .
. Doy Rosenfeld® 2 & S8k - -
s TR AT L+ TR
., 307 College Averuite 2

' QOakland, CA 94618 "~

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed

to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the

validity of the application or any patent issued thereon.

b
g
L
5

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor’s Signature pate NOAC Ex. 1015 Page 122

s i

wikns

Q

Declaration and Power of Attorney (Continued)

Case No; «Case _ CaseNumber»
page2 /tPFT-60/-/

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court, Aptes, CA 95003

Post Office Address: _Same

Inventor’s Signature

Name of Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature

Name of Fourth Inventor: William H, Bares

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Inventor’s Signature

Name of Fifth Inventor: Haig A. Sarkissian

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Hara A Jackom=

Inventor’s/Signature

Name of Sixth Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Sepb 21 _Zo0o

Date /

Citizenship: USA

Date

NOAC Ex. 1015 Page 123

A
uuvuszunu-g') | /}
} . N

Q%..'
ool ‘ PATENT APPLICATION
DECL POWER OF ATTORNEY ATTORNEY DOCKET NO,_APFI-0011
FOR PATENT APPLICATION . . "

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

1 believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
xX) was filed on _June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and
was amended on (if applicable).

1 hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
YES: NO:
YES: NO:

Provisional Application
1 hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a pamed inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Sentd Correspondence to: . Direct Telephone Calls To:
Dov Resenfeld) . Dav Rosenfeld, Reg. No, 38,687
5507 College Avemie, Suits 2 Tel (510) 347-3318
Oakland, CA 94618)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Sectien 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Qstenberg Drive. San Jose, CA 95120-2736

Post Office Address: Same

First Inventor’s Signature Date
NOAC Ex. 1015 Page 124

T

Cem ey

B

&

Q 0

Declaration and Power of Attorney (Continued)
Case No; «Case__CaseNumber»

Pagez Mpr'%I'{

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Court, Aptes, CA 95003

Post Office Address: Same

Inventor’s Signature Date

Name of Third Inventor: Andrew A. Koppenhaver Citizenship: USA
Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

Name of Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: . Same

&/ A~ ‘7_/?// /60

Inventor’s Signature 4 0 Date

NOAC Ex. 1015 Page 125

4

’ _? E "(C'\ ‘ file:///c:/APPS/preexam/correspondence/3.htm
S *2
Y ™ B

“0‘ “ B by §- N

%]

72 N
Customer Service Center "y

UNITED STATES DEPARTMENT OF COMMERCE
Patent and Trademark Office
Address COMMISSIONER OF PATENT AND TRADEMARKS

FO LITIES LETTER

10 O

0C000000005353894 Washington, D C. 20231
" APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER
09/608,237 06/30/2000 ‘ Russell S. Dietz APPT-001-1

Dov Rosenfeld

Suite 2

5507 College Avenue
Oakland, CA 94618

Date Mailed: 08/25/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)
Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below, however,
are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and
pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition
accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

* The statutory basic filing fee is missing.
Applicant must submit $690fo complete the baSIC filing fee and/or file a small entity statement claiming such
status (37 CFR 1.27). 110
¢ Total additional claim fee(s) for this application is $780.
m $702 for 39 total claims over 20.
m $78 for 1independent claims over3. €O
¢ The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.
* To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of
$130 for a non-small entity, must be submitted with the missing items identified in this letter.

* The balance due by applicant is $ 1600.
20
R

T40 7z
e ~WO = i ;

316
A copy of this notice MUST be returned with the reply.

/

Initial Patent Examination Division (703) 308-1202
PART 2 - COPY TO BE RETURNED WITH RESPONSE

]
T

B
~a

[}

R RN
AR

8/25/00 7:29 AM

NOAC Ex. 1015 Page 126

&P Lamsd &

Patent - /
;2/ 3 4_/ /(0 'O

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Our Docket/Ref. No.: APPT-001-1

6'\F&

Zﬂlé(;f;}@‘ ant(s): Dietz et al.)
M2 v Group Art Unit: 2755
Seg@ No.: 09/608237 , pAr RECEIVED \

d: June 30, 2000 Exénuner:

. g ‘ APR 1 6 2001
Title: METHOD AND APPARATUS FOR | :
MONITORING TRAFFIC IN A Technology Center 2100
NETWORK
Commissioner for Patents ”

Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:
Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449,

A check for petition fees.

X Return postcard.
_X The'commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,
Date: April 9, 2001

ov Rosenfeld
. Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:

Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

1 hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: ﬂ—,[)r qj. 2060 [

. g
Signature:
Dov d, Reg. No. 38,687

NOAC Ex. 1015 Page 127

».

- O D

Our Docket/Ref. No.: APPT-001-1 Patent

Group Art Unit: 27¢°§

Filed: June 30, 2000

Examiner: RECE\V ED

Title: METHOD AND APPARATUS FOR APR 16 2001
MONITORING TRAFFIC IN A 100
NETWORK Technology Center 2

Commissioner for Patents
Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:
This Information Disclosure Statement is submitted:

_X under 37 CFR 1.97(b), or
(Within three months of filing national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever
occurs last)

under 37 CFR 1.97(c) together with either a:
___ Certification under 37 CFR 1.97(e), or
___a$180.00 fee under 37 CFR 1.17(p)
(After the CFR 1.97(b) time period, but before final action or notice of
allowance, whichever occurs first)

under 37 CFR 1.97(d) together with a:

__ Certification under 37 CFR 1.97(e), and

__ apetition under 37 CFR 1.97(d)(2)(ii}, and

___ a$130.00 petition fee set forth in 37 CFR 1.17(1)(1).

(Filed after final action or notice of allowance, whichever occurs first, but before
payment of the issue fee)

X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence 1s being deposited with the United States Postal Service as first
class mail 1n an envelope addressed to. Commussioner for Patents, Washington, D.C. 20231.

Date of Deposit: lef 5/? }@0 [

d .
S Rm " NOAC Ex. 1015 Page 128

O

S/N: 09/608237 Page 2 2 DS

X Some of the references were cited in a search report from a foreign patent office in a
counterpart foreign application. In particular, references AD, AF, AH, CI, EA, EB, EC, and ED
were cited in a search report from a foreign patent office in a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue thereirom.

As provided for by 37 CFR 1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation is
being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

Y il

Msenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: April 7, 2001

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3373

NOAC Ex. 1015 Page 129

J= .
@.Lonn§1 9 Ty < SHEET 1 OF 5.
/ r v/ 4 I
PR 12 2000 @ ATTY. DOCKET NO. SERIAL NO.
Y APPT-001-1 09/60823 L
5 & RECEIVED
% RMATION DISCLOSURE STATEMENT APPLICANT
Dietz et al. %L’ APR1 6 2001
-,
(Use several sheets if necessary) FILING DATE croup ! y Lenter 210
6/30/2000 55 2i57
U.S. PATENT DOCUMENTS
FILING DATE
*EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS |/F APPROPRIATE
INITIAL . NUMBER
1736320 Apr. 5, |[Bristol 364 |300 Oct. 8,
AA
1988 1985
AB 1891639 Jan. 2, [Nakamura 340 {825.500 {Jun. 23,
1990 1988
ac 5101402 Mar. 31, [Chui et al. 370 |17 May 24,
1992 1988
AD 5247517 Sep. 21, [Ross et al. 370 85.5 Sep. 2,
1993 1992
AE 5247693 Sep. 21, [Bristol 395 {800 Nov. 17,
1993 1992
AF 5315580 May 24, [Phaal 370 (13 Aug. 26,
\ 1994 1991
Q\ o 5339268 Aug. 16, Machida 365 |49 Nov. 24,
1994 1992
AH 5351243 Sep. 27, [Kalkunte et. al. 370 [92 Dec. 27,
1994 1991
Al 5365514 Nov. 15, [Hershey et al. 370 |17 ar. 1,
1994 1993
A 15375070 Dec. 20, Hershey at al. 364 |550 Mar. 1,
1994 1993
A 5394394 Feb. 28, [Crowther et al. 370 |60 Jun. 24,
1995 1993
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
AM T
/W—
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
"Technical Note: the Narus System," Downloaded April 29, 1999 from
MN/‘/} AR [www.narus.com, Narus Corporation, Redwood City California.
AS

EXAMINER //L /L/é//?/\ DATE CONSIDERED é’ /Z // .. t?>

*EXAMINER: nitial if citation considered, whether or not citation 1s in conformance with MPEP 609. WOA@UE%?KT@WW;*3O

and not considered Include a copy of this form with next communication to Appltcant.

Et al. FORM - 1449

)

SHEET 2 OF 5.

A4

100

Il < ATTY. DOCKET NO. SERIAL NO.
¢
) APPT-001-1 O9/6082ﬁ7ECE,VE
INFORMATION RE STATEMENT APPLICANT
Dietz et al. Jd;t,’ APR 16 2001
(Use several sheets if necessary) FILING DATE aroup! b'Cﬂ'nOiOg/y Center2
6/30/2000 15 7 |
U.S. PATENT DOCUMENTS
o FILING DATE
*‘EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | IF APPROPRIATE
INITIAL, NUMBER
54 5414650 May 9, Hekhuis 364 |715.02 Mar. 24,
1995 1993
P 5430709 Jul. 4, [Galloway 370 13 Jun. 17,
1995 1992
sC 5432776 Jul. 11, [Harper 370 17 Sep. 30,
1995 1993
\ 80 5493689 Feb. 20, Waclawsky et al. 395 {821 Mar. 1,
\\ 1996 1993
Y N BE 5500855 Mar. 19, [Hershey et al. 370 17 Jan. 26,
N\ 1996 1994
\\ oF 5568471 Oct. 22, |Hershey et al. 370 17 Sep. 6,
A\ 1996 1995
‘v\ 86 5574875 Nov. 12, |Stansfield et al. 395 [403 Mar. 12,
1996 1993
B 5586266 Dec. 17, [Hershey et al. 395 [200.11 |oct. 15,
1996 1993
8l 5606668 Feb. 25, [Shwed 395 |[200.11 |[Dec. 15,
1997 1993
.y 5608662 Mar. 4, |Large et al. 364 {724.01 {Jan. 12,
1997 1995
BK 5634009 May 27, [Iddon et al. 395 [200.11 [|oct. 27,
1997 1995
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | suB-cLASS LATION
NUMBER YES | NO
BM
—
BN
N— P —
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
i ///—/
/
EXAMINER M ‘4/7 DATE CONSIDERED)
- M) 6/2Y103
“EXAMINER: nitial if citation considered, whether or not citation is in conformance with MPEP 609. otati forman:
and not considered. Include a copy of this form with next communication to Applicant. Nﬁ‘&@ E TéTg] ‘p‘age °f3 1

Et al FORM - 1449

SHEET 3 OF 5.

00

o Q
<am g ATTY. DOCKET NO. SERIAL NO.
L, APPT-001-1 09/608
; HECEIVED
INFORMATION DISCL ATEMENT APPLICANT
Dietz et al. 4&?\‘] APR 16 2001
(Use several sheets if necessary) FILING DATE GROU y enter 2}
6/30/2000 2355 9]57
U.S. PATENT DOCUMENTS
FILING DATE
*EXAMINER DOCUMENT DATE NAME cLass | sus-cLASS | srPROPRIBTE
INITIAL NUMBER
cA 15651002 Jul. 22, {Van Seters et all. 370 392 Jul. 12,
1997 1995
cs 15684954 Nov. 4, J[Kaiserswerth et al. 395 [200.2 Mar. 20,
1997 1993
{ cc B732213 Mar. 24, (Gessel et al. 395 [200.11 Mar. 22,
1998 1996
o 5740355 Apr. 14, Watanabe et al. 395 §183.21 Jun. 4,
N\ 1998 1996
N e 761424 Jun. 2, [Adams et al. 395 [200.47 |pec. 29,
\ 1998 1995
ﬂ‘ o 9764638 lJun. 9, [Ketchum 370 [401 Sep. 14,
N 1998 1995
§‘ e P781735 lJul. 14, [Southard 395 [200.54 |Sep. 4,
1998 1997
cH 5784298 Jul. 21, [Hershey et al. 364 [557 Jul. 11,
1998 1996
ol 5787253 Jul. 28, McCreery et al. 395 [200.61 ay 28,
1998 1996
cJ 9805808 Sep. 8, |[Hansani et al. 395 [200.2 Apr. 9,
1998 1997
\ o 15812529 Sep. 22, [Czarnik et al. 370 [|245 Nov. 12,
1998 1996
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
oM I
I——
CN /
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
CR
cs
—

EXAMINER /\‘/Z/] Mi/),/,_

é'/Z(/ZOt»’Z

L

and not considered. Inciude a copy of this form with next communication to Applicant.

"EXAMINER: initiat if citation considered, whether or not citation 1s in conformance with MPEP 608. dN\(M‘DL&rXalol ”nlm mgﬁc!jl

£t alFORM - 1449

o! F><>

P!

SHEET 4 OF 5.,

(Use several sheets if necessary)

{u e
'%\ & ATTY. DOCKET NO. SERIAL NO. VED
& & APPT-001-1 09/6 El
N DISZTLADEMA;‘{I\E STAT OREC
INFORMATIO EMENT APPLICANT 1)
Dietz et al. &\1 APR 16 20

FILING DATE
6/30/2000

255 21377

U.S. PATENT DOCUMENTS

= /ﬁé]f

FILING DATE
*EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | iF BPPROPRIBTE
INITIAL NUMBER
Z{ pa 9819028 Oct. 6, Fanghirmalani et al. 395 [185.1 [apr. 16,
1998 1997
} bg 5825774 Oct. 20, [Ready et al. 370 |401 Jul. 12,
1998 1995
(e P835726 Nov. 10, |Shwed et al. 395 [200.59 |[Jun. 17,
1998 1996
oD 5838919 Nov. 17, |Schwaller et al. 395 200.54 |[Sep. 10,
. 1998 1996
§\. e [841895 Nov. 24, [Huffman 382 |155 Oct. 25,
1998 1996
\; o 7850386 Dec. 15, [Anderson et al. 370 241 Nov. 1,
Aﬁ 1998 1996
N be 19850388 Dec. 15, [Anderson et al. 370 [252 Oct. 31,
1998 1996
) oy 5862335 Jan. 19, Welch, Jr. et al. 395 [200.54 |apr. 1,
1999 1993
ol F878420 Mar. 2, de la Salle 707 |10 Oct. 29,
1999 1997
o 5893155 Apr. 6, |[Cheriton 711 144 Dec. 3,
1999 1996
\ oK 5603754 May 11, |Pearson 395 |680 ov. 14,
1999 1997
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
DM
|_on—
F OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
DR
DS
//
[Exam

DATE CONSIDERED j f 7
é / 2/t S

and not considered. Include a copy of this form with next communication to Applicant.

"EXAMINER: intial if citation considered, whether or not citation is in conformance with MPEP 609. N@A@E&pélﬂﬂgﬁ cli?\ﬁrgﬂlc133

-

)

)
£t aFORM - 1449 N Y SHEET 5 OF 5.
APR 12 o &
% QL;'" ATTY. DOCKET NO. SERIAL NO.
Q < APPT-001-1 09/6082
S BECEIVED
INFORMATION DISC STATEMENT APPLICANT
Dietz et al. :bb\{y APR 16 7001
(Use several sheets if necessary) FILING DATE arour |eChNOIOgY Center|2100
6/30/2000 9T55 i '57
U.S. PATENT DOCUMENTS
FILING DATE
“EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | IF BPPROPRIBTE
INITIAL NUMBER
15017821 Jun. 29, [Gobuyan et al. 370 392 Aug. 16,
EA
M/"t 1999 1996
IA . 5414704 May 9, Spinney 370 |60 Apr. 5,
M M 1995 1994
. M‘\j\ 6014380 Jan 11, [Hendel et al. 370 392 Jun. 30,
EC
M 2000 1997
'/\ 5511215 Apr. 23, [Terasaka et al. 395 800 Oct. 26,
. ED
M‘ Ml 1996 1993
EE
EF
EG
EH
£l
EJ
EK
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
DM B
DN |
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
DR /
b /
/

EXAMINER

M. pMedr

DATE CONSIDERED é/z (//ZO a;

—

EXAMINER inital if citation considered, whether or not citation is in conformance with MPEP 609. NM@UEthiol @rl& Bfﬂg@m134

and not considered Include a copy of this form with next communication to Appticant.

Our Docket/Ref. No.: _ APPT-001-1 Patent

Group Art Unit: 2785

Filed: June 30, 2000 Examiner:
Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A
NETWORK
RET:‘EN D
Commissioner for Patents ’ N’P‘ 92 % 'NQZ
Washington, D.C. 20231 o Cenier 210
0
{echno!

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:
This Information Disclosure Statement is submitted:

_ X _under 37 CFR 1.97(b), or
(Within three months of filing national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever
occurs last)

X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

_X (Certification under 37 C.F.R. 1.97 (e)) Each item of information contained in this
information disclosure statement was first cited in an official communication from a foreign
patent office in a counterpart foreign application not mote than three months prior to the filing of
this information disclosure statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation is
Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

[

Date of Deposit: ;0 m 208 LSignature: ?
D osenfeld, Reg. No. 38,687
- NOACEx.1015 Page 135

~

2]

S/N: 09/608237 Page 2 DS

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

ov Rosenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: A © Mar 20072
./

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

NOAC Ex. 1015 Page 136

gtalFOF.. .

SHEET 1 oF 1.

INFORMATION DISCLOSURE STATEMENT

se several sheets if necessary)

ATTY. DOCKET NO. SERIAL NO.
APPT-001-1 09/608237
APPLICANT

Dietz et al. 4}\'(§
FILING DATE GROUP
6/30/2000 ZI5E

2i57

U.S. PATENT DOCUMENTS

FILING DATE
*EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | IF APPROPRIATE
| INmAL NUMBER
MM 15,249,292 Sep. 28, 395 [650 Mar.10,1
M / 1993 992
r){ 5 5,511,213 Apr. 23, 395 [800 [May 8,
M M 1996 1992
MMJ{‘ ac 19.703,877 Dec. 30, Nuber et al. 370 [395 Nov. 22,
l 1997 1995
ap P,802,054 Sep. 1, [Bellenger 370 [351 Aug. 16,
MM M 1998 1996
AE
AF
AG y
AH ‘b ‘mﬂl
\{
Al) ce oef 2\00
AJ 1eC ’
AK
AL
AM
AN
FOREIGN PATENT DOCUK{ENTS
T PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
AD
OTHER DISCLOSUhES (Including Author, Title, Date, Pertinent Paga’as, Place of Publication, Eic.)
- AP -

EXAMINER

- oy

DATE CONSIDERED

K/Z\waeg

*EXAMINER: initial if citation considered, w.FIether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance
and not considered. Include a ¢opy of this form with next communication to ApplicanNOA CEK

x.- 1015 Page 137

P w —y —

-

United States Patent [

Chiappa

N

(T e

5,249,292
Sep. 28, 1993

(1) Patent Number:
[45) Date of Patent:

[s4] DATA PACKET SWITCH USING A PRIMARY
PROCESSING UNIT TO DESIGNATE ONE
OF A PLURALITY OF DATA STREAM
CONTROL CIRCUITS TO SELECTIVELY
HANDLE THE HEADER PROCESSING OF
INCOMING PACKETS IN ONE DATA

176}

{21]
22}

[63]

[51]

[52]

{58}

{56)

PACKET STREAM
Inventor:

J. Noel Chiappa, 708 E. Woodland

Dr., Grafton, Va. 23692

Appl. No.: 847,880
Filed: Mar. 10, 1992 °

Related U.S. Application Dats
Continuation of Ser. No. 332,530, Mar. 31, 1989, aban-

doned.

Int. CL2 e GO6F 9/28; GO6F 13/12

395/650; 395/325;

395/800; 370760, 370/61; 364/DIG. 1;
364/228; 364/229.2; 364/230.3; 364/230.4;

3647266

Field of Searchcccccee. 364/DIG. 1, DIG. 2;
340/825.52, 825.1; 370/60, 61, 80; 395/200, -

References Cited

325, 650, 800

U.S. PATENT DOCUMENTS

3,846.763 11/1974 Riikonen

4,281,315 7/1981 Bauer et al
4,312,065 1/1982 Ulug
4,456,957 6/1984 Schieltz ...
4.493,030 1/1985 Barrart et al.
4:494,230 1/1985 Turner .
4,499,576 2/1985 Fraser ...
4,601.586 7/1986 Bahretal. ...

4,630,258 12/1986 McMillen et al.
4,630.260 1271986 Toy et al.

4,777.595 10/1988 Strecker et al.

4,807,282 2/1989 Kazan et al. ...
4,851,997 7/1989 Tatara

4,858.112 8/1989 Puerzer et al

4,899,333 2/1990 Roediger-..

................ 395/275

... 364/200
..... 370794
... 364/200
.. 364/200

. 370/60
. 370/60

... 3647200
v 379/284
... 364/200
... 364/200
...... 370760

e o A]
il ki ”~y

FoH 1]
054 49035F

4,975,828 12/1990 Wishneusky et al. 195/325
4,979,100 12/1990 Makris et al. ... 395/325
. 4,991,133 2/1991 Davis et al. vrereesscrcrscenn 395/375

OTHER PUBLICATIONS

“Hyperchannel Net Is Plugged Into the Open-Systems
World,” Electronics, Oct. 1, 1987, pp. 96-97.

“Cisco Introduces High-Performance Desktop Gate-
way That Allows Remote Users to Access World—
Wide Networks”, ciscoSystems, Inc., Mar. 4, 1988.
“Company Backgrounder Mar. 1988", ciscoSystems,
Inc. Network Systems brochures.

Primary Examiner—Thomas C. Lee
Assistant Examiner—John C. Loomis
Attorney, Agent, or Firm—Fish & Richardson

[57] ABSTRACT

A high speed data packet switching circuit has a soft-
ware controlled primary processing unit, a plurality of
network interface units connected to a plurality of net-
works for receiving incoming data packet streams and
for transmitting outgoing data packet streams, a plural-
ity of high speed data stream hardware control circuits
for processing data packets in response to instructions
from the primary processing unit and circuitry for inter-
connecting the primary processing unit, the interface
units, and the data stream control circuits. The primary
processing unit receives from the network interface unit
at least a first one of the data packets of each new data
packet stream and assigns that stream to be processed
by one of the data stream control circuits without fur-
ther processing by the primary processing unit. The
apparatus and method thus perform routine, repetitive
processing steps on the further packets of the data
stream using the high speed hardware circuitry, while
the initial processing and other non-repetitive or special
processing of the data packets are performed in soft-
ware. Particular hardware is described for effecting the
high speed hardware processing of the data packets.

17 Claims, 5 Drawing Sheets

|22

D am i

e o7 T AT
e
1AATi0 JMRSE . .

7 rth vty
b
|]
ey W—
L R
ey 25 19IEE 2=

~iieea

NOAC Ex. 1015 Page 138

U.S. Patent

PATH

'\’ifdllfﬂ/f INTERCONNECT

Sep. 28, 1993 Sheet 1 of §

/IMI 0 3

IHPUT THTERCONNECT

G
5,249,292

Y

PATH

HETWORK INTERFACE

-|:

SPECIAL PURPOSE

/IMJ

CONKECTION

—

AETWORR

”

r9le

-y

HETWORK WTERFICE @
(SPECHL PURPOSE) _—>

HETHORK
ComECTion

HTERFACE ADAPTOR

{‘r [

— {/g

<y
KETWORK INTERFACE k N
(STANDARD)
* Sym

(¥n

yion

e a

HETWORK
CONKECTION

IKTERFACE ADAPTOR

|

/7 0n

rife
7

200] 154

NETORK INTERFACE
STANOARD

//l (]

A4

QUFFER

] CoNTROL ﬂ,""

=]

KETIORK
CONKECTION

/'Z:"t

FLor

4

sk

PATTERK EL

NATCHER
Vil

FLom sLocr

UTPUT BUFFER

* Cia

<y

WPyT BUFFER

26

dUTPUT BUFFER

Caztata)

WPYUT BYFFER

.

L

Costatm)

JUPUUE | SISV | S |

CEXTRAL

nr

PROCESSING

=
N

£‘L__.___

NOAC Ex. 1015 Page 139

R

iy

U.S. Patent Sep. 28, 1993 Sheet 2 of 5 5,249,292
SINGLE PACKET
;- - ~N [?0?
PACKET XFER-200 —] U
208
BYTE XFER-206 M [% __________________ Ji_
weur
58
DATA | D, G, SR S
RCVR PACKET-210 n
\ (FRONFIF0's) y.
FIG. 2
' SWGLE PACTET
Vs =N
PACKET XFER-218 — || L
WL grie 2FER- 220 B o B IR il
DATA oA X X
— - J

NOAC Ex. 1015 Page 140

]

U.S. Patent Sep. 28, 1993 Sheet 3 of 5 5,249,292

IKPUT INTERCORRECT
: BUSES, 3/ FROK
~< : !L./-m
; e o 0
‘ 1
; 250~ WPuX Koy {-- —
; i [
| #1~ | v v jlb“ }
| PATTERK |
, STRIPPINE VATohER !
| e CIRCUIT/ 757 .
: I COUNTER ———b e -

% o> AR |
| | e [|
j 7
s | WL A
g | COUNTER/ l
; - —{ TRUKCATE £RROR :
i | ‘ 264 l
: l PREPEND | —2%6 !
f | 71 A —— —i»
' ' 268+ 7 I
> ' l
| | FUFFER A i |
! b co#ro & 04 }——————— —
(0616 BUFFER

W;/;/’}//. ~274

TT-0
FIG. 4

NOAC Ex. 1015 Page 141

g k2t

D

U.S. Patent

&

FIG. 5

Sep. 28, 1993 Sheet 4 of 5 5,249,292
HOR CONPLETE CKET e
290 288 START
[PESET NENORY
28T za_zi 20 94
LATCK L iy |aeworr |,
74
» COUNTER 11 256
s AT ,
cokp -2
Vi X8
o s, ¥
ST—-299 ’ INPUT DATA
298 0 8US
A aaT
o e MICH 27 | 294
FLoP 7y -
300 i 29
a7 V7] Z .’/ !/ %4 ya
MATCH . L28 |4
252 * S
w’
¢ . 1298
w0 D 2y d
wr o w
sr S
NEKORY 00\ e s |07
P lmmﬂ ’
81256 Cagz
- 67

NOAC Ex. 1015 Page 142

et wj

g

el g v Sl % <

PR R R

' A

&

U.S. Patent Sep. 28, 1993
 PACKET ¥
/.3/4 l /'J?ﬂ
CONTROL weyr
cowrer [| dUFEeR
[
|
l /3/? :
I

CODED FRON
ARRAY ﬁ‘ -~ cPY

iﬂ
70 BUFFERS, SCRATCH
PAD, NUXI, HUX2, ALY, ete.

Sheet 5 of §
PACKET 322
COUNTER f————— ~1TFRON
: Py
i
|
}
Ji0
R L ¥
; # SCRATCH PAD ﬁ

310

SKIFT/ROTATE

h 4
27
o le—
v
PACIET 09T

FIG. 6

NOAC Ex. 1015 Page 143

5,249,292

T (i ;«,,gﬂ

oo SR <R I s T, N o xR

‘
3
€
i
H
i

ks

1

DATA PACKET SWITCH USING A PRIMARY
PROCESSING UNIT TO DESIGNATE ONE OF A
PLURALITY OF DATA STREAM CONTROL
CIRCUITS TO SELECTIVELY HANDLE THE
HEADER PROCESSING OF INCOMING PACKETS
IN ONE DATA PACKET STREAM

This is a continuation of co-pending application Ser.
No. 332,530 field on Mar. 31, 1989 now abandoned.

BACKGROUND OF THE INVENTION

The invention relates generally to data communica-
tions networks and in particular to the packet switch
used to direct the flow of data packets along data paths
in a data communications network.

In a data communications network, a data packet
switch directs data packets from one network node to
another. The throughput for a packet switch can be
measured in the number of either data packets per sec-
ond or bits per second which pass through the switch.
The former measure is important because in a typical
network traffic, the bulk of the packets are small. How-
ever, when the traffic is weighted by packet size, the
bulk of the data is carried in large data packets. In large
bulk data transfers, the second measure is thus more
important. This is a continuing dichotomy in through-
put measurement. For example. the amount of work
needed to switch packets is fairly constant, independent
of the packet size.

The average desired values for both of these mea-
sures of packet throughput are going up quickly, just as
other basic measures of computer power have been
increasing. As the volume of the data transfers in-
creases, increasingly higher throughput rates are being
demanded. The increase in the volume of data transfers
results as experience is gained in new systems, and more
and more applications, with more and more expansive
needs, are being developed. Also, quickly changing
technology has made the basic underlying data trans-
mission resource very inexpensive. Fiber optics, for
example, offers data rates in the gigabyte per second
range. Finally, many difficult problems in the organiza-
tion of large systems can be bypassed by the free con-
sumption of resources. The typical drop in cost of such
resources has always made this an attractive path for
meeting difficult system requirements.

Accordingly, the need for throughput rates substan-
tially higher than currently available in a packet switch
is presently sought. Switches more than an order of
magnitude faster than current switches would seem to
be required.

The present invention is directed to a class of packet
switch which differs substantially from the other two
classes of devices often commonly (and confusingly)

referred to as packet switches.

One class of packet switch is that commonly used in
digital telephone exchanges. This switch is intended
only 1o transfer packets among the devices in a single
station, such as a telephone exchange. The format of the
packet in these systems is chosen to make the hardware
in the switch as simple as possible; and this usually
means that the packets include fields designed for direct
use by the hardware. The capabilities of this class of
switches (for example, in such areas as congestion con-
trol) are very limited to keep the hardware simple.

The second class of packet switch is used in networks
such as X.25 networks. In some sense, these switches

5

30

40

60

&

2

are little different from the switch described above, but
there is a substantial difference. The format of the pack-
ets (that is, the protocols) handled by these switches is
much more complex. The greater complexity is neces-
sary since the protocols are designed to work in less
restricted environments and in a much larger system,
and provide a greater range of services. While the for-
mats interpreted by the first class of switches above are
chosen for easy implementation in hardware, the data
packets handled by this second class of switches are
generally intended to be interpreted by software (which
can easily and economically handle the greater com-
plexity).

In the third class of packet switch, the packet proto-
cols are intended to be used in very large data networks
having many very dissimilar links (such as a mix of very
high speed LAN’s and low speed long distance point to
point lines). Examples of such protocols are the United
States designed TCP/IP, and the International Stan-
dards Organization’s IP/CLNS protocols.

In addition, this third class of switches {called rout-
ers) often handle multiple protocols simultanecously.
Just as there are many human languages, there are many
computer protocols. While a single set of telephone
links and exchanges suffice to handle all human lan-
guages, in computer communication systems the
switches are more involved in the carrying of data, and
must understand some of the details of each protocol to
be able to correctly handle data in that protocol. The
routers often have to make fairly complex changes to
the packets as they pass through the switch.

It is this latter class of packet switch to which this
invention primarily relates. In current conventional
packet switch design, a programmed general purpose
processor examines each packet as it arrives over the
network interface and processes the packet. Packet
processing requires assignment to an outbound network
interface for transmission over the next communications
link in the data path. While attempts are being made to
build higher speed packet switches, based on this gen-
eral architecture, the attempts have not been very suc-
cessful. One approach is to use faster processors; an-
other is to make the software run faster; and a third is to
apply multiple processors to the processing task. All of
these approaches fail to meet the need for the reasons
noted below.

The approach which uses faster processors simply
keeps pace with processor dependent (future) demands
since the traffic which the packet switch will handle
will depend upon the speed of the user processors being
used to generate the traffic. Those user processors, like
the processors in the packet switches, will increase in
speed at more or less the same rate and accordingly no
overall increase in the ability of the future packet switch
over the present packet switch, relative to traffic load,
will be available. Furthermore, this approach may be
impractical as not being cost-effective for wide spread
use. For example, two high speed machines, distant
from each other, must have intermediate switches
which are all equally as powerful; deployment on a
large scale of such expensive switches is not likely to be
practicable.

The approach which increases the execution rate of
the software itself by, for example, removing excess
instructions or writing the code in assembly language,
leads to a limit beyond which an increase in execution
rate cannot be made. The gains which result are typi-
cally small (a few percent) and the engineering costs of

5,249,292

NOAC Ex. 1015 Page 144

|
£
H
-3
4
¥
¢
¢
¢
L
{
1

- A P

N Sameet e

=¥

"

3

such distortions in the software are significant in the
long term.

The use of multiple processors to avoid the “proces-
sor bottleneck™ provides some gains but again has lim-
its. Given a code path to forward a packet, it is not
plausible to split that path into more than a few stages.
Three is typical: network input; protoco! functions; and
network output. The basis for this limitation is the over-
head incurred to interface the different processors be-
yond a limited number of task divisions; that is, after a
certain point, the increase in interface overhead out-
weighs the savings obtained from the additional stage.
This is particularly true because of the need to tightly
integrate the various components, for example, conges-
tion control at the protocol level requires close coordi-
nation with the output device. Also, the interface over-
head costs are made more severe by the complication of
the interface which is required.

In general then, the multiprocessor approach is not,
as expected, the answer to substantially increasing the
throughput of the packet switching network. This has
been borne out by several attempts by technically well-
regarded groups to build packet switches using this
approach. While aggregate throughput over a large
number of interfaces can be obtained, this is, in reality,
little different than having a large number of small
switches. It has thus far proven implausible to substan-
tially speed up a single stream using this approach.

Accordingly, it is a primary object of the present
invention to increase the throughput of a data packet
switch while maintaining reasonable cost, and avoiding
a high complexity of circuitry.

Other objects of the invention are a high speed data
packet switching circuitry and method which can han-
dle large numbers of input streams, large numbers of
output destinations and lines, and large and small data
packets at high bit and packet throughput rates.

SUMMARY OF THE INVENTION

The invention relates to a method and apparatus for
effecting high speed data packet switching. The switch-
ing circuit features a software controlled primary pro-
cessing unit; a plurality of network interface units for
receiving incoming data packet streams and for trans-
mitting outgoing data packet streams from and to net-
work paths respectively; a plurality of data stream con-
trol circuits or flow blocks for processing data packets
in response to the primary processing unit; and circuitry
for interconnecting the primary processing unit and the
plurality of interface units and data stream control cir-
cuits. The primary processing unit is adapted to receive
from the network interface units, and to process, at least
a first one of the data packets of each new data packet
stream and to assign this stream to be processed by a
data stream control circuit without further intervention
or processing by the primary processing unit. It is im-
portant to note that this first packet is not necessarily a
“connection set up” packet or any other similar explicit
direction to the switch to set up a stream. Rather, as is
usual in the connectionless datagram model, this first
packet is just another user data packet.

In particular aspects of the invention, the data stream
control circuit features a pattern matching circuit, re-
sponsive to pattern setting signals from the primary
processing unit and to the incoming data packets from
the network interface units, for identifying those pack-
ets of a packet stream which will be processed by the
control circuit. The data stream control circuit further

—

0

—
wn

40

45

50

60

5,249,292

features a processing unit responsive control circuit for
controlling, in response to control signals sent by the
primary processing unit, the congestion contro} and
header modification, stripping and prepending func-
tions of the data stream control circuit. The data stream
control circuit further features a data buffer responsive
to the pattern matching circuitry and the processing
unit responsive control circuit for storing data and pro-

‘tocol elements of an incoming data packet stream and

for outputting a data packet stream to be forwarded
along a communications -path.

The network interface unit features, in one aspect of
the invention, a network interface circuit for communi-
cating with a network channel and an interface adapter
for receiving channel data from the network interface
circuit and for transmitting that channel data over the
interconnecting circuit structure to the data stream
control circuits and the primary processing unit, and for
receiving network data from the data stream control
circuits and the primary processing unit over the inter-
connecting circuit structure and for providing received
data to the associated network interface circuit for
transmission over a network channel.

In another particular aspect of the invention, the
software controlled primary processing unit features a
central processing unit, bus circuitry, a plurality of
input storage units for receiving respectively each of
the plurality of data streams from the network interface
units and each storage unit having its output connected
to the bus circuitry, elements for connecting the central
processing unit to the bus circuitry, and a plurality of
output storage units for receiving data from the central
processing unit over the bus circuitry and for providing
the data to the network interface units.

The method of the invention features the step of
scparating from a software controlled primary process-
ing unit used in a high speed data packet switching
circuit a portion of the functionality which is repeti-
tively used in connection with the processing of the
second and further packets of an input data stream and
implementing that portion of the functionality in hard-
ware clements.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the inven-
tion will be apparent from the following description
taken together with the drawings in which:

FIG. 1 is an electrical block diagram of an overall
packet switching circuitry in accordance with a particu-
lar embodiment of the invention;

FIG. 2 is a timing diagram of an input interconnect
circuitry according to a particular embodiment of the
invention;

FIG. 3 is a timing diagram of an output interconnect
circuitry in accordance with a particular embodiment of
the invention;

FIG. 4 is a detailed block diagram of the control
circuitry according to a particular embodiment of the
invention;

FIG. 5 is a detailed block diagram of the pattern
matching circuitry according to a particular embodi-
ment of the invention; and

FIG. 6 is a detailed block diagram of the control
circuitry of the flow blocks according to a particular
embodiment of the invention.

NOAC Ex. 1015 Page 145

4
:

i G W

Cdnaces nEETAT A gy

=~

5

DESCRIPTION OF A PARTICULAR
PREFERRED EMBODIMENT BACKGROUND

According to the invention, a selected portion of the
packet forwarding operation, previously performed by
the processor software, is moved from the software to
the packet switch hardware. In this manner, all of the
load on the software is removed for “normal user data
packets;” and since hardware can operate at a substan-
tially greater speed than software, substantial perfor-
mance gain can be achieved. However, any attempt to
translate into hardware all of the functions currently
performed in software would not be possible. Typical
packet switches contain tens of thousands of lines of
code, and are thus of extreme complexity. To imple-
ment all of this sofiware in hardware would require
either programmability of the hardware, thus reintro-
ducing the problem of a software system, or require an
unmanageable and uneconomic configuration of hard-
ware circuitry. Accordingly, it is necessary is to select
that amount of software which can efficiently and effec-
tively be performed in hardware and thus reduce to
hardware only a small, but effective, portion of the
software function.

If the software code of a typical packet switching
system were monitored, most of it is exercised infre-
quently. It is there to handle errors, or to handle the
control traffic which forms a small, albeit vital, share of
the packets in the system. Very little of the code, a few
percent, is used in connection with processing a “nor-
mal™ packet through the switch. And it is precisely
those “normal” packets which form a preponderance of
the packets with which the switch deals. Thus, in one
aspect, the invention herein is to select that portion of
the software which will be reproduced in hardware and
leave the remaining functionality in software where it is
more appropriate for reasons of efficiency and support.
In particular, the illustrated embodiment attempts to do
so with the minimum number of circuit elements.

One way to reduce the functionality which must be
reproduced in hardware is to not implement in hard-
ware the code which handles packets other than normal
data packets. It is feasible to produce a device which
would handle all normal user data packets entirely in
hardware. This would allow a far faster router than is
available with current means.

However, even that level of reduction can be sur-
passed, producing an even more efficient implementa-
tion (the illustrated embodiment of the invention) if a
further observation is made. In the handling of a single
data packet, several operations are necessary to forward
each packet. In accordance with the invention, it is
recognized that many of these forwarding operations
are completely repetitive when performed on individual
packets which are part of 2 common connection path,
that is, part of a data stream having a common source
and often the same destination.

Thus, most packets in the system are part of ongoing
transfers in which as many as thousands of similar pack-
ets flow through the switch. While the meaning of the
various packets at higher levels of the communications
system can be quite different, the portion of the packet
protocol which concerns the packet switch is usuaily
identical from packet to packet. Thus, judicious reten-
tion of information about a traffic stream passing
through the switch is often both necessary and useful. It
is necessary to implement some required functions such
as flow and congestion control. It is further useful to

6

prevent the repetitive computation of identical informa-
tion for packets belonging to the same traffic stream.

It is further important to recognize that although the
complexity of the functionality provided at the packet
protocol layer is increasing, it does so (a) because net-
work systems are getting larger and more mechanisms
are required to make the larger systems work correctly,
(b) because the user community is becoming more so-
phisticated, and (c) because systems are being deployed
with extra functionality. This complexity has a direct
bearing on the cost of forwarding packets, since many
added functions are performed on each packet.

5,249,292

System Description

Accordingly, the illustrated embodiment of the in-
vention operates using two important assumptions.
First, that traffic streams exist and are of sufficient dura-

. tion to be useful. Second, that the majority of the traffic

[\
o

25

30

45

60

in the network is in the streams. Both of these assump-
tions are reasonably descriptive of most data communi-
cations networks.

Referring to FIG. 1, in accordance with a particular
embodiment of the invention, a specialized hardware 10
does all the work necessary for forwarding a “normal™
packet in a previously identified packet stream from one
network interface to another. All packets which the
specialized hardware 10 cannot process are passed to a
software controlled primary processing unit 11, includ-
ing a central processing unit, CPU, 12, running software
code which is more or less similar to the current soft-
ware code run by the processors of most packet
switches. If the packet looks like it is part of a new
traffic stream, the central processing unit 12 provides
the specialized hardware 10 with the necessary data
parameters to deal with further packets from that
packet traffic stream. Accordingly, any further packets
seen from that data stream are dealt with automatically
by the specialized hardware 10.

In operation, a packet switch normally examines the
low level network header of an incoming packet at the
input network, and removes that header from the
packet. The packet is then passed to the software of the
appropriate *protocol.” The software generally checks
the packet for errors, does certain bookkeeping on the
packet, ensures that the packet is not violating flow or
access controls, generates a route for the packet, and
passes it to the output network. The output network
constructs the outgoing network header, attaches it to
the packet, and sends the packet on to the next packet
switch or other destination. At all stages in the process,
the packet switch must guard against data congestion.

Most of these functions are identical on packets of the
same stream and can therefore be separated from those
functions which vary from packet to packet in the same
packet stream. The repetitive functions can be per-
formed once in software at CPU 12, at the time the
hardware is first set up for a packet stream, that is, at the
time the first packet of the stream is being processed. At
this time, the hardware itself has very little that it is able
to do. Thereafter, the hardware will handte all succeed-
ing packets of the stream without any further interven-
tion from the central processing unit.

The illustrated specialized hardware 10 has a plural-
ity of data stream control circuits (flow blocks) 144,
145, . .. ,14p, cach flow block having a pattern matching
hardware 16, a control circuitry 18, and a data buffer 20.
An input bus 22 connects, as described below, to any of
the inbound network interfaces, and an output bus 24

NOAC Ex. 1015 Page 146

et 2

xr

o TR N

r.\,.” .

’ ®

7

can connect to any outbound network interface. There
is further associated with each input network interface a
CPU input storage buffer 26, the output of which is
directed to the CPU 12 for handling special packets,
that is, packets which are not “normal,” and a CPU
output storage buffer 32, for receiving special packets
from the CPU 12 for transmission to the network inter-
faces.

The network interface devices 30 or 400, as viewed
from the packet processing clements, (either flow
blocks 14, or CPU 12 and storage buffers 26, 32), are
pure sources or sinks of data. They are always function-
ing autonomously, and accordingly no intervention is
required on the part of the flow blocks 14 or storage
buffers 26, 32 and CPU 12 to keep these network inter-
face devices operating. The flow blocks 14 should not
interact with the network interfaces since that interac-
tion would require extra complexity in the flow block,
a cost to be paid for in each flow block, and not by the
network interface. Further, the central processor 12
should not control the network operation since that
control inevitably slows the central processor opera-
tion, as well as the network. Accordingly, each network
interface device is an autonomous unit.

In the illustrated embodiment, two classes of network
interface devices are illustrated. The network interfaces
30g, . . . ,30n, each include a network interface adapter
42, and a standard network interface circuit 40. The

-

5

20

network interfaces 3¢ connect to an input interconnect °

path 31, an output interconnect path 52, and a CPU
standard bus 41 for complete communications with all
other circuit elements of the packet switch, and receive
data from and transmit data to the associated standard
network interface circuit 40. The other class of network
interface device is the special purpose network interface
400 which connects to the input interconnect path 31,
the output interconnect path 52, the CPU standard bus
41, and also to the associated network.

In the illustrated embodiment, the packet switch is
configured so that it can be expanded as necessary to
support more traffic streams. The expansion can be
easily implemented by adding additional flow block
circuitries, and if necessary, additional network inter-
face devices. This allows an existing unit to be scaled up
as the traffic load grows.

In operation, a traffic stream is received and first
identified by the CPU 12, as it receives the first packet
of a new ftraffic stream from a CPU input buffer 26
connected to the input interconnect path 31. A free flow
block 14 is selected to handle future packets of that
traffic stream and all of the necessary information to
handle the traffic stream, including the identification of
the stream, is loaded into the pattern matching circuitry
16 and the control circuitry 18 of the selected flow
block over the CPU bus 41.

As each subsequent packet of the stream arrives at the
packet switch interface circuit, it is handled by the
network interface 30 (for ease of explanation it is gener-
ally assumed that the receiving network device will be
an interface 30) and flow block 14 without intervention
by the CPU 12. In particular, as it is received at inter-
face circuit 30, it passes through the network interface
circuitry 30 and is placed on the input interconnect path
31 so that each flow block 14, assigned to that interface,
can check the packet, in parallel, to determine if any one
of those flow blocks recognizes the packet as being
assigned to it. If a match is found, the packet is accepted
by that flow block and the data, usually modified by the

55

60

5,249,292

control circuitry 18 of the flow block, is read and stored
by the flow block. Further circuitry of control circuitry
18 will remove the packet from the data buffer 20 of the
flow block 14, with a new header prepended thereto,
when the system is ready to send the packet over the
next link of the data communications path.

Any packet which is not recognized by any of the
flow blocks is available to the CPU from the one of the
CPU input buffers 26 assigned for receiving data from
that network interface. The CPU input buffer for each
network automatically starts to copy each packet from
the input interconnect path 31 each time a packet ar-
rives, and continues to do so until one of the flow blocks
14 for that network interface accepts, or all flow blocks
assigned to that network interface reject, the packet. If
the packet was accepted by one of the assigned flow
block circuitries, the portion of the data stored in the
associated CPU input buffer 26 is discarded, and the
CPU input buffer resets to await the next packet from
that network interface. If the packet is rejected by those
flow blocks assigned to that network interface, the asso-
ciated buffer 26 passes the packet to the processor 12
which will analyze the packet and process it accord-
ingly. It is important to note that no conflict arises from
trying to put two packets into a CPU input buffer at the
same time since each network interface has its own
associated buffer 26 and a network interface 30 can
receive only one packet at a time.

The CPU 12 further has access to the set of output
buffers 32 (one buffer for each output network) over a
bus 420, through which it can send packets to the net-
work interfaces over output interconnect path 52 for
transmission along a link of the transmission chain.

Description of Detailed Elements

Network Interface

Data enters the packet switch from a network
through the network interface. As noted above, these
units are autonomous. They can be constructed either
by building the special purpose hardware 400, one for
each network, which enables a network to connect
directly with the respective interconnect paths, or by
providing the standard adapter 42, into which an exist-
ing off-the-shelf hardware network interface 40 can be
inserted. The two classes of hardware can both be ad-
vantageously used in the same embodiment.

Referring to FIG. 1, the second approach employs a
standard network interface element 40 (typically an
off-the-shelf commercially available circuitry) which
connects over lines 41a (which is usually a standard bus)
to the associated interface adapter 42. Each adapter 42
has a standard interface connection which connects to
the input interconnect path 31 for eventual connection
to an as yet unknown one of the flow blocks 14 and to
the network associated storage buffer 26. The interface
adapter also has a standard bus interface which con-
nects to CPU bus 41. The interface adapter 42 also
provides a third interface for receiving packets from the
flow blocks over the output interconnect path 52.
Adapter 42 provides those received packets, to the
associated network interface 40 for transmission over a
network path to the next network connection. The
choice of this second interface approach is convenient
and allows for modular expansion and network inter-
face card interchangeability; however, use of the
adapter 42 with a separate network interface 40 is likely
to be more expensive than a special purpose network
interface card 400.

NOAC Ex. 1015 Page 147

R S A L

I

s

E et 5 A S

Loedwe

®

The choice of which network interface approach is
adapted thus depends upon both cost and speed. The
interface adapter 42 with its various bus connections is,
most likely, the slower path unless the bus 41a is very
fast; and even then, most current network interfaces for
high speed networks cannot keep up with a network
which is running at maximum capacity. Additionally,
the use of several cards is likely to be more expensive.
Accordingly, it may be desirable to provide the special
purpose network interfaces, such as a special network
interface 400, which connect to interconnect paths 31
and 52, for high volume networks where speed is more
important; whereas the slower network interface, em-
ploying off the shelf components, can be employed
where speed is not as important or where the construc-
tion of special purpose hardware is not cost justified.

The autonomous interface network unit is, as noted
above, responsible, on the input side, only for ensuring
that all packets destined for the switch are received
from the network and are fed to the flow blocks 14 and
storage buffers 26. Congestion and control are the re-
sponsibility of the flow blocks 14 and the control de-
vices 18 therein. Similarly, the output side of the net-
work interfaces 30 needs only to read data packets sent
by the flow blocks 14 and buffers 32, and transmits them
over the selected network.

It is also possible that inexpensive and slow network
interfaces can be connected directly to the standard bus
41 and be run by the general purpose CPU 12 rather
than by the interface adapter 42. These packets would
then be sent on whichever path the processor normally
uses to send packets which it originates. This is an ac-
ceptable alternative, subject to the speed and time re-
quirements imposed upon the central processor. The
standard bus also provides the central processor unit
with full access to the standard network interfaces 40
and special network interfaces 400 through the network
adapter 42 so that any network interface can be con-
trolled by the CPU 12 when unusual functions, such as
problems with the transmission layer, fault isolation, or
other complex testing tasks must be performed.

The Interconnect Path

As noted above, each interface adapter 42 or special
network interface 400 connects to each of the flow
blocks 14 in a most general form of illustrated structure.
Depending upon the economics and speed desired, the
interconnect circuitry can take a variety of forms using
a number of techniques which are already known in the
art. One particular approach, using “brute force,” is to
use a full crossbar switch to make all possible connec-
tions between each of the network interface adapters
and each of the flow blocks, both on the input and the
output interconnect paths. As the flow blocks are as-
signed, and reassigned, between interface adapter units
and special network interfaces, the various points of the
crossbar can be opened and closed.

An alternate approach, used in digital telephone sys-
tems, is to interface all of the functional units to a high
speed, time division, multiplexed bus. This approach
requires less switch hardware but necessitates a bus
speed comparable to the maximum speed of an interface
times the number of interfaces. Such speed require-
ments may make it less economical to build such a bus
than might otherwise appear.

The input interconnect path is conceptually simple in
that flow blocks 14 are assigned to but a single network
interface at a time. The relationship is not symmetrical,

a

0

40

60

b,

10

however, The input network interface thus feeds at
most one input packet at a time to the flow blocks;
however, the input packet can be read by many differ-
ent flow blocks, all of which are assigned to that net-
work interface. The output side of the flow blocks is
slightly more complex since several flow blocks, each
connected to a different network interface at its input,
may present a packet to the same output network inter-
face simultaneously. The output interconnect must thus
have some method for choosing which, and in what
order, to send the packets. For example, it can service
the flow blocks in the same order specified by the CPU
when the processor sets up the traffic stream; or prefer-
ably, a grant passing ring configuration can be em-
ployed. It is important, however, to be sure to allocate
appropriate bandwidths to each stream so that accept-
able operation is attained. There are various concepts
for performing this function, well known to those prac-
ticed in the art, and they will not be discussed here in
any further detail,

The Flow Blocks 14

Each flow block 14 consists, as noted above, of a
pattern matching circuit, the flow block data buffer 20,
and the control device 18. The pattern matching hard-
ware, in the illustrated embodiment of the invention,
contains two variable length bit strings: a “match™ bit
string and a “mask” bit string. Those fields in the packet
which can vary among the packets of a single stream,
are set “‘on” in the “mask” string. Values in these bits
are then ignored. The values in the fields which identify
a stream, and which are always present in a packet of
the stream, are stored in the “match” bit string. Several
functions can thus be performed by the pattern match-
ing circuitry 16, in addition to merely checking the
assignment of a packet to a traffic stream. For example,
certain error checks (for valid values) can be per-
formed. Also, since a flow block 14 is assigned by the
CPU 12 to forward a traffic stream only if a route for
the traffic stream exists, and if the traffic stream is au-
thorized by the access control software in the CPU 12,
a match by the circuitry 16 immediately implies that the
packet is allowed by the access control to pass through
the switch, and that a route for the packet exists.

The data buffer 20 of a flow block can be imple-
mented in a variety of ways. The simplest approach, is
to have associated with each flow block a separate
memory array having head and tail registers to allow
reading and writing. Two disadvantages to this ap-
proach are that it requires additional hardware and the
buffer memory is split up into many small memory
banks rather than employing a single large memory
bank for the entire packet switch,

Nevertheless, the use of a large memory bank, from
which each flow block buffer memory is allocated,
results in a complex storage management problem. It is
necessary in such’a memory structure to maintain a list
of unused blocks, a mapping of the used blocks, etc. In
addition, the flow control mechanism must be more
complex, particularly if there is less total buffering than
the sum of the maximum storages of all of the data
streams. It must therefore deal with a global resource
shortage of buffer memory in the switch. This problem
can thus remove a primary advantage of having a large
memory bank. In addition, with separate memory
banks, each bank need only be able to support two
simultaneous accesses: a read and a write. With a single

5,249,292

NOAC Ex. 1015 Page 148

rmzﬁwn PO 4 T VY.

| P

11
large bank, all of the network interface accesses must be
handled simultaneously.

A number of practical operating problems exist with
the circuitry illustrated in FIG. 1. Thus, if there are
more identified traffic streams than there are flow
blocks, or if a single packet stream is to be routed over
multiple paths by the network protocol, appropriate
hardware must be available to deal with the various
circumstances. In particular, if there are more identified
traffic streams than there are flow blocks 14, it is impor-
tant to avoid “thrashing” as the streams compete for the
flow blocks. If the protocol has adequate flow and con-
gestion control mechanisms, these can be used to inhibit
the excess streams. Also, the flow blocks should be
packaged and interfaced to the rest of the system so that
additional flow blocks can be installed as load patterns
change or as switches experience higher usage rates
than they are able to handle.

Further, the software can maintain a record of the
streams including the time when each flow block was
last used, so that periodic scans can be made by the
software to find flow blocks which are associated with
streams that are no longer active and list those flow
blocks as ready for reuse. Further, the software can
maintain a record of the stream parameters so that if a
previously terminated stream should restart, it would
not be necessary to recompute everything. Preferably,
the CPU stores this information in its local memory.

It may also be desirable to avoid assigning a stream to
a flow block until 2 minimum number of packets relat-
ing to a stream have been counted. In this instance the
CPU 12 can maintain the necessary information regard-
ing the stream (and pass the packets of the stream on to
the next network node) and dedicate a flow block to
that stream only after the length of the stream has been
assessed.

There are also instances when a single packet is for-
warded over multiple paths. The situation can thus exist
when packets of the same data stream are received over
two different network interfaces and/or where a single
packet stream must be divided and forwarded to two or
more output networks. The first problem can be han-
dled simply by allocating one flow block to each inter-
face. The second problem is somewhat harder to han-
dle; however, in most protocols, there is a sequence
field in each packet wherein it is possible to assign two
different flow blocks to the stream in which the se-
quence field was masked out except for, for example,
the lowest bit. In one flow block the bit would have to
match to “zero” and in the other flow block to “one.”
Thereafter, each flow block can be assigned to a differ-
ent output stream, the split being roughly into two divi-
sions. More complex and controlled splitting requires
more sophisticated mechanisms to effect proper queu-
ing and sequencing on the output.

The Flow Block Circuitry

In the description of this particular embodiment, the
width of the various buses, the number of identical
interface units or flow blocks, the length of a counter,
etc., are subject to the particular switching system envi-
ronment and capacity. Accordingly, while specific
numbers are suggested from time to time, the values
“N", “n", “P", etc. are variable and may be equal to
each other or not as the particular embodiment requires.

Referring to FIG. 1, the flow block control device
circuitry 18 effects bookkeeping functions at the proto-
col level and flow and congestion control. One func-

40

55

60

5,249,292

12
tional unit 192 of each control circuitry 18 strips the
input header from a packet before it enters the flow
block data buffer 20 and another functional unit 195 of
the control circuitry prepends the output header to the
data packet before it exits the flow block data buffer.

In addition, each protocol tends to have certain book-
keeping functions which must be performed on each
packet of the stream; however, these functions tend to
be slightly different for each protocol. The design of the
illustrated control device provides flexibility for han-
dling the different protocols, including in particular the
capability of computing the checksum (and signaling an
error should one occur), and updating the “hop™ count.
The control circuitry 18 also needs to be flexible
enough to handle the different protocols in a very short
time. Accordingly, the design preferably allows for
additional circuitry to be added to the protocol function
circuitry 19a and 195. The additional circuitry can also
be implemented in the state machine controller for the
flow block.

The flow block control circuitry also acts as a flow
contro] agent. Thus, if packets are entering the flow
block at too fast a rate, an error is caused. The specific
hardware configuration depends on the protocol archi-
tecture and the policy implemented therein. One effec-
tive mechanism uses the error alarm signal to show that
the flow block buffer is filled past a selected level. The
control circuitry also needs to set a so-called “discard™
level. This is necessary to protect the congestion con-
trol mechanism of the switch from being overloaded by
a single, out of control, data stream. Such a mechanism
would cause a selectable percentage of the incoming
packets of a stream to be ignored completely rather
than passed, over bus 41, to the congestion control
mechanism of the CPU 12, which it could overload.

The Interconnect Path Operation

In the illustrated embodiment of the invention, the
presently preferred embodiment of the interconnect
paths 31 and 52 uses the simple, brute force, approach;
that is, a full cross bar is provided for each interconnect
path by assigning a separate bus to each network inter-
face adapter 30, to which each of flow blocks 14 and
buffers 26 is connected. Each bus has a full set of con-
trol lines for, and in addition to, the data lines of the bus.
The illustrated interconnect circuitry thus consists of a
set of, for example, “N" identical buses. The intercon-
nect further can include some general signal lines such
as, for example, a system reset line. The full cross bar is
also large enough to support the maximum complement
of interface circuitries simultaneously, each interface
being able to proceed at full speed with no buffering.

Considering in particular the input interconnect 31,
there are R buses, “R” being equal to the sum of the
number of special network interface units 400 and inter-
face adapter 42. Each interface data bus is “M” bits
wide, and is driven only by the associated network
adapter 30 or interface 400. In addition to the data from
each network interface 30, each bus also has a plurality
of control signals for controlling the transfer of the
incoming packets from the network to the flow blocks
14 and buffers 26. The control signals allow a flow
block 14 to indicate to the associated CPU input buffer
26 (and CPU 12) whether the packet has been accepted.

Referring to FIG. 2, the control signal functions can
be performed with two lines, both driven by the net-
work interface or adapter and “listened” to by all of the
flow blocks assigned to that network (including the

NOAC Ex. 1015 Page 149

T i vk g

e

_— g

R L P S

TN IR 14y

s rh R e SN

AR g

-

R vty et <

5,249,292

13

corresponding CPU input buffer 26 assigned to that
network). One line 200 indicates when a packet is being
transferred and is active for the duration of the packet
transfer. A non-active period 202 has a minimum time
duration so that the next active period (and the next
packet) is spaced in time from the previous active per-
iod. The beginning of the inactive period indicates the
end of the packet. A second line 206 is a “word trans-
fer” line and each active transition 208 on that line
signals that a new word (a byte in the illustrated em-
bodiment) of data has been placed on the bus by the
network interface.

There is further a common control line 210 which can
be driven by any of the flow blacks 14 and listened to by
the CPU input buffer 26 for that network. When going
active, it signals to the CPU that the current packet has
been accepted by a flow block and the packet may thus
be ignored by the CPU 12. The timing must be carefully
controlled, especially if faults are to be detected. For
example, if the packet length in the protocol header is to
be verified, it is necessary to wait until the entire packet
has been received before accepting the packet. How-
ever, by that time, the next packet is starting. This prob-
lem also arises when verifying header check sums for
packets with no data. The timing can be resolved by
having the accept line driven at a time during the man-
datory non-active period of the packet line, that is, after
the packet has completely arrived and before the next
packet begins.

Referring to FIG. 3, the output interconnect 52 has a
slightly more complex data bus. The bus is “P” bits
wide and is driven by a sequentially varying one of the
flow blocks 14 and buffers 32 (the “driving circuits”)
assigned to the connected network interface. The out-
put of the driving circuit is read by the associated net-
work interface 30 or 400. Preferably, the driving cir-
cuits are arranged as, and include the circuitry to form,
a grant-passing ring. In addition, there are other control
lines which are used to control the transfer of the packet
from the drive circuit having the grant. These other
lines 218, 220 are substantially the same as those control
lines 200, 206 of the input interconnect bus. After a
packet has been transferred to a network interface, the
“grant” advances to the next driving circuit. If the iden-
tified driving circuit has a packet waiting at the time the
grant line becomes active (typically the rising edge), it
begins a transfer. Otherwise, the grant is passed to the
next driving circuit which repeats the process.

Flow Block Details

As noted above, the flow blocks 14 has several major
functional units. The stages, in the illustrated embodi-
ment, are connected asynchronously since the through-
put of the stages is not constant and some stages have
buffering between them. Referring to F1G. 4, the circuit
structure of flow block 14, considered in more detail,
has an input multiplexor 250 which selects the current
input bus and passes the data to both the pattern
matcher 16 and the rest of the flow block. The pattern
matcher, as noted above, examines the header of the
incoming packet. If it matches the pattern to be handled
by this flow block, the match is indicated by a signal
over a line 252 to the control device logic 18.

Simultaneously, data from the input bus flows
through a stripping circuit 254 which includes a counter
and which discards the first “n” bytes of data (the
header) allowing the remainder of the packet to pass
through unmodified. The packet then passes to the

—
o

—
w

40

50

60

o
(v

14

control logic 18 where the higher level protocol func-
tions such as check sum computation and hop count
modification occur. The control logic 18, pattern
matcher 16, and stripping circuit 254 have all been pre-
viously loaded with other necessary data from CPU 12
over bus 41. The input to the control device has a small
amount of buffering to allow the control device to take
more than one cycle when processing certain bytes in
the data stream. The packet passing through this stage
of processing may be modified; for example, this stage
may abort further processing of the packet if an error is
found, as described in more detail below. The packet
then passes to a counter/truncate circuitry 260 which
contains a counter loaded by the control logic over
circuitry 262. The counter serves two functions: any
unused trailer in the packet is discarded, and, if the
packet is truncated, an error flag is raised over a line
264. The next stage of processing, a circuitry 266, pre-
pends “'n” bytes of data, the new output header, loaded
from the CPU 12 in a similar manner to stripping circuit
254, to the packet as it passes therethrough. It also con-
tains some buffering on the input to allow the new
packet header to be inserted. In those instances where
the new packet is substantially larger than the old one,
the buffering is a necessity. The packet next passes to
the output data buffer 20 which consists of a dual port
(one read-only and one write-only) memory, along with
a control logic 268 to keep track of the packets in the
buffer. The buffer 20 is organized in a ring structure and
a hardware queue of “t” buffer pointer/size pairs keeps
track of the utilization of the buffer. Additional control
circuitry within the buffer keeps track of the current
start and end of the “free space”. The packet then passes
to an output multiplexor 274 which has output bus con-
trol logic and a set of drivers, one for each output bus in
the output interconnect 52. When the flow block re-
ceives the “grant,” for the appropriate output network
interface 30, as described above, packets which are in
the output buffer are read out and passed along the bus.
Throughout the flow block, there are, in addition, data
paths 276 which allow the CPU 12, over bus 41, to load
memories, etc. in order to maintain proper operation of
the flow block.

Referring to FIG. 5, the pattern matcher 16 has two
small memories 60, 62 each “a” bits wide and “b” bytes
long. In the illustrated embodiment, 8 X256 bit RAM’s
are employed. One memory 62 contains the “masked"
bits and the other memory 60 contains the *“match” bits.
More precisely, for those header positions for which a
bit is “on” in the mask memory, the packet can have any
value in the header whereas, if a bit is “off” in the mask
memory, those corresponding bits in the packet header
must match the CPU predetermined values stored in the
match memory. .

The pattern matcher can operate with varying quan-
tities of data in the memories 60, 62, and if all the mask
“off” bits in the header match the “match” memory bits,
the header is a “match”, as indicated over line 252, and
the flow black continues to read the packet. In the
illustrated embodiment, an “n" bit counter 280 is reset
over a line 282 when the packet begins arriving and
counts up “one” for each byte received from the bus.
The output of the counter over lines 284 is used as an
index into the two memories and is directed, also, to an
“n” bit comparator 286. Comparator 286 compares the
output of counter 280 with the output of an *n" bit latch
288 which holds the current header size count. When

NOAC Ex. 1015 Page 150

'-w.a.w., e

*

15

the count reaches the header count, a header complete
signal is generated over a line 290,

The comparison of the input header to the match
word is effected byte-by-byte, using an eight bit com-
parator 294 and a series of eight identical two-to-one
multiplexors 296. The output of the match memory is
one input of the identical two-to-one multiplexors 296
with the “n” bits (typically eight bits) from the data bus
292 as the other input. In each multiplexor, the select
input is driven by the corresponding output bit over
fines 292 of the mask memory; 50 that if a mask bit is
“of ™, the data bus bit is selected. Otherwise, the match
bit is selected. The “n” selected bits are then fed into the
“n” bit (illustrated as eight bits) comparator 294 which,
as noted above, receives the original match data word
as the other input.

The output of the comparator is fed to a flip flop 298
which is set by a signal over a line 299 when the packet
begins to be read. If any byte of the header fails to have
a complete match (of the selected bits), the output of the
comparator goes low and clears (resets) the flip flop. If
the flip flop is still set when the counter 280 has also
reached a match (the end of the header), the packet
header is accepted and the logical “AND” circuit 300
provides the match indication signal over line 252,

In addition, the pattern matcher further contains data
pads, not shown, which allow the CPU 12 to load
(through bus 41) the match and mask memories 60, 62,
the length latch 288, and other data as well.

Referring now to FIG. 6, the data stream control unit
18 (and stripping circuitry 254) has an arithmetic logic
unit (ALU) 310, special purpose logic which will be
described hereinafter, and a control table stored in a
memory 312. The ALU and the control store act like a
general purpose microcode engine, but one which has
been specialized to create a very minimal, high speed
processor for packet headers. The functions to be per-
formed, as described above, are very limited.

The illustrated circuitry allows the processing of the
headers in the transmission time of a complete packet
having no data, thus allowing the flow block to operate
at full network bandwidth with minimum sized packets.
In addition, the control device keeps its required cycle
time as high as possible (that is, operates as slow as
possible) to keep its costs down. ,

In the illustrated typical circuitry, the control table
312 is the heart of the control device. It consists of an
array of words, which are horizontal microcode, used
to directly control the ALU and gates of the control
circuit as is well known in the art. While some fields of
the control word will perform standard operations,
such as selecting which ALU operation is to be per-
formed on each cycle, other fields will control the spe-
cial logic associated with packet forwarding.

The illustrated control circuitry further includes a
control counter 314 which is set at the start of each
packet. The counter selects one of the control words in
the control array (the output of the control word con-
trolling the logic elements of the control device). While
processing a packet, this counter is incremented at the
cycle speed of the control device, essentially asynchro-
nous to the rest of the system, thereby stepping through
the control table at a fixed rate. The input data packet
flows through an input FIFO buffer 320, the output of
which is controlled by a bit in the control table 312, If
the bit is “on,” a byte is read out of the input buffer, This
function, which is thus not performed automatically
when data is read from the buffer, allows data to be

—
o

—
N

40

45

50

60

65

5,249,292

16

passed through under control of the local processor,
and allows certain bytes of the packet to be operated on
by more than one control word without the necessity of
storing the byte in an intermediate location. A second
counter 322, cleared at the start of each packet, counts
the current data byte and provides that count for use by
the rest of the control device 18.

Another bit of the control word from array 312, ef-
fectively disables the control device, thereby allowing
the rest of the packet to pass through to the next stage
of processing. This bit is set in the last control word of
the process sequence, that is, once processing of the
header has been completed. Another field of the control
word controls the logic which cancels the packet if
certain conditions are true. This field is thus used to
cancel processing of the packet when fatal errors are
detected. : .

The control circuitry also includes several scratch
pad registers 330. These registers allow accumulation of
results etc., and provide constants for use by the ALU
310. The scratch pad registers 330 can be loaded by the
CPU 12 during that process by which the CPU selects
a flow block to receive a data packet stream.

The apparatus further has a multiplexor 340 to allow
selection from the variety of data sources available as
inputs to the ALU. The results of the ALU processing
can be sent to a number of circuitries. In particular,
inputs to the multiplexor 340 come from either the input
data buffer 320, count register 322, or the scratch pad
registers 330. Data may be written from the ALU 310,
through a shift/rotate register 311, to either the scratch
pad registers, or output from the control unit through
an output multiplexor 342, Further, a pass around path
343 allows the result of an ALU calculation to be sent to
a register while a data byte is sent to the output. Other
data paths not shown are available which allow the
CPU 12 to load the control table, the scratch pad regis-
ters 330, the counters 314, 322, etc. when a flow block
is selected to receive a data packet stream.

As noted above, the illustrated embodiment provides
for a flexible flow block configuration which, when
loaded from CPU 12 with protocol setting data signals,
enables the flow block to handle a particular one of a
plurality of packet stream protocols. In an alternative
embodiment of the invention, each flow block can have
implemented therein, in hardware, the necessary cir-
cuitry to enable it to handle one (or more) particular
protocols. Accordingly therefore, different hardware
modules would be needed for different protocols; how-
ever, some speed advantage can be obtained by reduc-
ing the flexibility of the hardware controlled flow
block.

In addition, further circuit efficiency can be obtained,
without loss of flexibility, if those flow blocks which
can be assigned to a particular interface share the same
ALU circuitry (FIG. 6). Recalling that ALU 310 oper-
ates to process an incoming data packet, and, since only
one data packet can be received from a network at a
time, all of the flow blocks assigned to a particular
network interface can then share the same ALU since
only one of the assigned flow blocks will be active for
receiving a data packet at any particular instant. This
savings in circuitry can, for example, be advantageously
implemented when a plurality of flow blocks are pro-
vided on the same card module. In that configuration,
all flow blocks of a card module which share an ALU
should be used in connection with the same selected
network interface, and in particular, as noted above, the

NOAC Ex. 1015 Page 151

. &

5,249,292
17 T 18
card module may be implemented fully in hardware memory with an output of the match bit memory
with different flow blocks of the card module being for determining the validity of an incoming data
used for different protocols. stream packet.
Additions, subtractions, deletions and other modifica- 4. The packet switching circuit of claim 2 wherein
tions to the illustrated embodiment of the invention will 5 said pattern matching circuit comprises
be apparent to those practiced in the art and are within a match memory
the scope of the following claims. a mask memory,
What is claimed is: a comparator circuitry, and
1. A high speed data packet switching circuit com- means for inputting, to the comparator circuitry, data
prising: 10 bits from the match memory and corresponding
a software controlled primary processing units, data bits from an input packet, said corresponding
a plurality of network interface units for receiving data bits being selected in accordance with the bit
incoming data packet streams and for transmitting values in the mask memory, for determining the
outgoing data packet streams, each of said data acceptability of an input packet.
packet streams having a selected protocol and allof 15 5. The packet switching circuit of claim 4, wherein
the data packets in a said stream having the identi- said pattern matching circuit further comprises
cal protocol, means for determining the end of an input header for
a plurality of data stream control circuits for concur- an input packet,
rently receiving at least a portion of a header of the to the comparator circuit for determining whether all
data packets and selectively processing the re- 20 of the matched bits in the input header are valid,
. ceived packets only wherein each said data stream and
control circuit processes the data packets of one means for providing an acceptance signal in response
data stream having one of said selected protocol in to a valid output of the comparator responsive
response to previously generated electrical signals means and the header determining means.

from the primary processing unit based upon 25 6. The high speed data packet switching circuit of
header identification information in the at least first claim 2 wherein the processing unit responsive control
data packet of the new data packet stream for des- circuit comprises

ignating and initializing one of said data stream a table array storage for storing horizontal micro-

control circuits to process a remainder of the data code,

packets of the new data packet stream, 30 a control counter for selecting words of the table
means for interconnecting said primary processing array storage,

unit, said plurality of interface units and said plural- an arithmetic logic unit, and

ity of data stream control circuits, means for controlling operation of the processing unit
said primary processing unit receiving from said net- responsive control circuit using horizontal micro-

work interface units, and for processing, at least a 35 code output of the table array memory.

first one of the data packets of a new data packet 7. The packet switching circuit of claim 1 wherein

stream and having means for generating said elec- said data stream control circuit comprises

trical signals means in each said designated and an input multiplexor for selecting a data packet

initialized data stream control circuit for receiving stream source from among the interconnecting

and processing only those data packets which in- 40 means accessible to the control circuit;

clude said header identification information upon a pattern matching circuit responsive to pattern set-

which said designated and initializing is based. ting signals from the primary processing unit and to
2. The packet switching circuit of claim 1 further incoming data packets from the input multiplexor

wherein each data stream control circuit comprises for identifying those data packets which will be

a pattern machining circuit responsive to pattern 45 processed by the control circuit.

setting signals from the primary processing unit a header stripping circuitry for removing the header

and to incoming data packets from said network from each data packet from the input multiplexor.

interface units for identifying and receiving a control logic, responsive to the pattern matching

packet stream which will be processed by said circuit and to the stripping circuitry, for passing

control circuit, 50 the data packet, without the header, for further
a processing unit responsive control circuit for con- processing by the control circuit,

4 trolling, in response to control signals sent by the a counter/truncator circuit for determining whether
3 primary processing unit, a congestion control the data packet from the control logic is truncated
1 means, and a header stripping and prepending func- and for providing an error signal in the event the
¥ tions means for the data stream control circuit, and 55 packet is truncated, :

. a data buffer responsive to said pattern matching a prepend circuitry for adding a new header to the
circuit and the processing unit responsive control data packet from the counter/truncator circuit,
circuit for receiving and storing data and protocol an output data buffer for buffering the data packet

2 elements for an incoming data packet stream and from the prepend circuitry and responsive to a

: for outputting a data packet stream to a said net- €0 buffer contrpl logic, for maintaining accurate status
work interface unit to be forwarded to a next net- data regarding the contents of the buffer, and for
work node. outputting a next data packet for transmission over

] 3. The packet switching circuit of claim 2 wherein a network, anq

said pattern matching circuit comprises an output demultiplexor connected to the output data
a mask bit memory, 65 buffer for transmitting data from the output data
a match bit memory, and buffer over the output interconnecting path.
means for comparing data bits of incoming data pack- 8. The packet switching circuit of claim 1 further

ets, not masked by a data word from the mask bit ~ wherein said network interface unit comprises

R e

NOAC Ex. 1015 Page 152

-

A O T

5,249,292

19

a network interface circuit for communicating with a
network channel in accordance with a said selected
protocol and delivering data from the channel in a
predetermined format, and

an interface adapter for receiving data from the chan-
nel through the network interface circuit in said
predetermined format and for transmitting that
data from the channel over the interconnecting
means to said data stream control circuits and said
primary processing unit, for receiving data, to be
sent over a network channel, over said intercon-
necting means from the data stream control circuit
and the primary processing unit and for delivering
data received from said interconnecting means to
said network interface circuit for transmission over
a said network channel.

9. The packet switching circuit of claim 8 wherein

said network interface unit further comprises
a single network special purpose hardware interface
circuit having
means for communicating with a network channel,
means for transmitting received network data over
the interconnecting means to said data stream con-
trol circuits and said primary processing unit,
means for receiving network data packets from the
data stream control circuits and the primary
processing unit, and

means for processing the received data packets for
transmission over a network channel.

10. The packet switching circuit of claim 1 wherein
said software controlled primary processing unit further
includes

a central processing unit,

a bus means;

a plurality of input storage units for selectively re-
ceiving ones of said plurality of data streams from
the network interface units and each storage unit
having its output connected to said bus means,

means for connecting the central processing unit to
said bus means,

a plurality of output storage units for selectively re-
ceiving data from said central processing unit over
said bus means, and for providing said data to said
network interface units, and

means for controlling the input of data to said input
and output storage units.

11. The packet switching circuit of claim 1 wherein

said interconnecting means comprises

an input bus for interconnecting the outputs of said
network interface units, the inputs of said data
stream control circuits, and the primary processing
unit, and

an output bus for interconnecting the outputs of said
data stream control circuits, the inputs to said net-
work interface units, and the primary processing
unit.

12. The packet switching circuit of claim 11 wherein
said interconnecting means further comprises a central
processing unit bus interconnecting said data stream
control circuits, said network interface units, and a
central processing unit of said primary processing unit.

13. The packet switching circuit of claim 12 wherein
said input and output bus means each comprises data
lines and control lines.

14. A high speed data packet switching method for
switching data packet stream among communication
paths comprising the steps of

—

0

15

20

45

w

0

55

60

65

20

receiving each packet stream from one of a plurality

of networks,

processing at least a first packet of each received data

packet stream using a software controlled, primary
processing unit,

designating that performance of routine, repetitive

header processing of the further packets of one of
said received packet steams, said processing includ-
ing packet forwarding processing to effect routing
of said packet,

receiving and examining by each said high speed

hardware circuitry at least 2 portion of each packet
of each said received data packet stream, determin-
ing based on said examination of said at least a
portion of each packet by each of said high speed
hardware circuitry, which said high speed hard-
ware circuitry has been designated to process each
further packet of each received data packet stream,
receiving in said designated high speed hardware
circuitry said each further packet.

15. The high speed data packet switching method of
claim 4 further comprising the step of

controlling at leat the initialization of a said high

speed hardware circuitry assigned to process a
packet stream from the software controlled, pri-
mary processing unit.

16. A high speed data packet switching method com-
prising the steps of

receiving incoming packet streams from network

interface units;

processing ones of the received data packets in re-

sponse to a software controlled primary processing
unit using a plurality of hardware data stream con-
trol circuits,

interconnecting the primary processsing unit, the

interface units, and the data stream control circuits
for communications therebetween,

processing at least a first one of the data packets from

the receiving step for each new data packet stream
in the primary processing unit,

identifying, using the primary processing unit, one of

the data stream control circuits for processing the
incoming data packet stream,

determining by each said data stream control circuit

the one data stream control circuit which will pro-
cess each packet of that portion of said incoming
data packet stream which is not processed by said
primary processing unit,

processing that portion of a said data packet stream

which is not processed by said primary processing
unit by said identified data stream control circuit,
and

outputting the results of the data stream control cir-

cuit processing and the primary processing unit
processing to form an output data stream for trans-
mission along a communications path.

17. A high speed data packet switching circuit for
receiving data packet streams from a plurality of input
communication paths and for transmitting data packet
streams to a plurality of output communication paths,
said circuit comprising

a plurality of network interface units for receiving the

incoming data packet streams and for transmitting
outgoing data packet streams,

a software controlled primary processing unit, having

a bus means,
a central processing unit,

NOAC Ex. 1015 Page 153

r&*"w@-m'«w s

: 3,249,292

21

a plurality of input storage units for receiving re-
spectively each of said plurality of data streams
from the network interface units and each input
storage unit having its output connected to said
bus means,

means for connecting the central processing unit to
said bus means, and

a plurality of output storage units for receiving
data from said central processing unit over said
bus means, and for providing said data to said
network interface units,

a plurality of data stream control circuits for ma-
nipulating data packet stream in response to the
primary processing unit,

said data stream control circuits comprising

a pattern matching circuit responsive to pattern
setting signals from the central processing unit
and to incoming streams of data packets from
said network interface units for identifying a data
packet to be processed by said control circuit,

means for transferring identified data packets to
said control circuit,

15

25

30

35

40

45

50

55

65

22

a processor responsive control circuit for control-
ling, in response to control signals sent by the
primary processing unit, means for congestion
control, and means for header stripping and pre-
pending functions for the data stream control
circuit, and

a data buffer responsive to said pattern matching
circuit and the processor responsive control cir-
cuit for storing an incoming data packet stream
from said control circuit and for outputting a
stored data packet stream to be forwarded to a
network interface unit,

means for interconnecting said primary processing

unit, said plurality of network interface units and

- said plurality of data stream control circuits, and
said primary processing unit receiving from said net-

work interface units at least a first one of the data
packets of each new data packet stream and having
means for designating those data packets of the
stream which are not processing by the primary
processing unit to be processed by a said data
stream control circuit without further processing
by said primary processing unit.
- - * » »

NOAC Ex. 1015 Page 154

United States Patent [

Correa

.
R L

I

111 Patent Number: 5,511,213
451 Date of Patent: Apr. 23, 1996

[54]

f76]

(21]
{22]

{51]
{521

{58]

{56]

ASSOCIATIVE MEMORY PROCESSOR
ARCHITECTURE FOR THE EFFICIENT
EXECUTION OF PARSING ALGORITHMS
FOR NATURAL LANGUAGE PROCESSING
AND PATTERN RECOGNITION

Inventor: Nelson Correa, Carrera 62 No 57-11
Apt. 402, Santa Fe de Bogota, D.C.,
Colombia

Appl. No.: 880,711
Filed: May 8, 1992

Int. CLS® GO6F 15/38
LA T & P— 395/800; 395/700; 364/253;
364/274.8; 364/DIG. 1
Field of Searchcvvevvcecisicenrccenne 395/300, 700;
364/253, 274.8, DIG. 1

References Cited
U.S. PATENT DOCUMENTS

4,686,623 8/1987 Wallacececvomerreeemssnnrrerencns 395700
4,914,590 4/1990 Loatman 364/419.08

4,994,966 2/1991 Hutchins ... 364/419.08
5,105,353 4/1992 Charles et al.covccevemrecnnneene 395/700
5,239,298 8/1993 Wei 341/51
5,239,663 8/1993 Faudemay et al. .ccccoeeennsenene. 395/800

Primary Examiner—Alyssa H, Bowler

Assistant Examiner—John Harrity
Attorney, Agent, or Firm—Beveridge, DeGrandi, Weilacher
& Young

(57} ABSTRACT

An associative memory processor architecture is disclosed
for the fast and efficient execution of parsing algorithms for
natural language processing and pattern recognition appli-
cations. The architecture consists of an associative memory
unit for the storage of parsing state representations, a ran-
dom access- memory unit for the storage of the grammatical
rules and other tables according to which the parsing is done,
a finite state parsing control unit which embodies the chosen
parsing algorithm, and a communications unit for commu-
nication with a host processor or external interface. The use
of associative memory for the storage of parsing state
representations allows the architecture to reduce the algo-
rithmic time complexity of parsing algorithms both with
respect to grammar size and input string length, when
compared to standard software implementations on general
purpose computers. The disclosed architecture provides for
a fast and compact computer peripheral or system, particu-
larly when physically realized in one or a small number of
integrated circuit chips, and thus contributes to the technical
feasibility of real time applications in speech recognition,
machine translation, and syntactic pattern recognition.

7 Claims, 5 Drawing Sheets

12 1;)
1 : :
| T '
! J ! ©|ASSOCIATIVE |~
; X) ; MEMORY
H]
i 4 s4 i
E { & PARSING CONTROL/ RANDOM J !
1 [communicATIONS UNIT s ;
L JUNIT : i
]
! s5 S5 c i
| i s3 i
' |
! i
‘ !

[

)
S2

NOAC Ex. 1015 Page 155

5,511,213

Sheet 1 of 5§

Apr. 23, 1996

-
=*]
L]
3]
A
v}
=

AHOW3IW

—— i —— -

SNOILLYDINNWWOD

LINN

3ALLYIDOSSY

e e e ———— o — - —— — — - —— — ——> G- o i A — ——— — — —————— 0. — = — e ol W - — " S > ——

t
J
|
! ¢S
! (
_
! AHOWIW
! SS300V 1INN
- WOONVY "ON.LNOD ONISHVd
| 2 ¢
“ 7
m. (S

S

ol

al

et e - —— e e

NOAC Ex. 1015 Page 156

: e &

U.S. Patent Apr. 23, 1996 Sheet 2 of 5 5,511,213
DATA BUS OPCODE MATCHFLAG
%\.-28 szg l«so
21~—{DATA_REG CONTROL '
27
t >
22~{MASK_REG =
CAM CELL ARRAY —l- —L !-L
20/\" ‘— — o o)
> — —— —a
ot !
Eam— e i
‘YH'gH .
23 24 25 6
Fie. 2 MRl MR2 MR3 PRIORITY

INITIALIZE COMMUNICATIONS UNIT

'

LOAD GRAMMAR
AND PARSING TABLE

!

RECOGNIZER

E F lG 6 POSTPROCJESSING
| !

1 ‘ EXTRACT PARSE INFORMATION

NOAC Ex. 1015 Page 157

r‘wﬂ_ﬁw [RUPEBEp——

"“w’ SR

‘ &

U.S. Patent

W MN -

Apr. 23, 1996

FI6. 3

NUVBER

Sheet 3 of 5

RULE
I—+8$
§—~NP P

NP — "JOHN"
VP — "THIWKS"

“JOHN THINKS §"

'
0

1]
23

FIG. 5

RULE NUMBER
DOT POSITION

(

FIEP

7

J

LHS

FRST WORD RDEX \
LAST WORD INDEX

FIG. 7A

CAME

<0,0,0,0, z: sl 0>

\ SYVBOL AFTER DO
LEFY HAND SYMBOL

FIG. 78

cam

<nr 0' n' 01 Z, S, 1>

dluloyogs,w, n>

5,511,213

SAD| PB }——__- STATE PROCESSHD BIT

NOAC Ex. 1015 Page 158

U.S. Patent

Apr. 23, 1996 Sheet 4 of 5§
FIG. 4
00— 17
S
ngn
NIL
S
e
w
NIL
P
“JOHN"
NIL
NIL
w
"THINKS"
NiL
NIL
P-OFFSET = YYYY) -
47 0
S 1
| 2
w 3
w1 4
N-OFFSET ITYY) -
- NiL 0
“JOHN" 0
"THINKS" 0
"$" 0
z 0
S 0
P 0
w 0

S
)

L¢

i

5,511,213

(RULE O

>RULE 1

e RULE 2

~ RULE 3

~ P-TABLE

> N-TABLE

NOAC Ex. 1015 Page 159

e @

U.S. Patent Apr. 23, 1996 Sheet 5 of 5 5,511,213
Fl6. 7C
“'JOHN THINKS §”
GVt maus ACTION
<0,0,0,0, Z S, 1>] 7 o8"§" PREICT
<,0,1,0, S, NP, 1> | S—oNPUP PREDIGT

<0,0, 2,0,NP, “JOHN", 1> NP ----- «“JOHN" EXANENE

<0,1,2,1, W, NL, 1> NP - "JOHN"e COMPLETE

<111 S, WP, 1> S——NP e UP PREDICT

<1, 1,3, 0, UP,"THIKS", 1> UP - « "THINKS" EXANENE

<1,2,8,1,\P, ML, 1> UP -----"THINKS"es COMPLETE

<0,2,1,2, §, N, 1> S —-- NP UPe GOMPLETE

<0,2,0,1, 1, "$ 1> | T-—Se"§" EXAIMINE

<,3,0,2, 1, M, 1> L-—-8"" RCEEPT

NOAC Ex. 1015 Page 160

Fua{;nuﬂy -

-

5,511,213

1

ASSOCIATIVE MEMORY PROCESSOR
ARCHITECTURE FOR THE EFFICIENT
EXECUTION OF PARSING ALGORITHMS
FOR NATURAL LANGUAGE PROCESSING
AND PATTERN RECOGNITION

BACKGROUND OF THE INVENTION

The present invention relates broadly to computer hard-
ware architectures using parallel processing techniques and
very large scale integration (VLSI) microelectronic imple-
mentations of them. More particularly, the invention relates
to an integrated associative memory processor architecture
for the fast and efficient execution of parsing algorithms
used in parsing intensive and real time natural language
processing and pattern recognition applications, including
speech recognition, machine translation, and natural lan-
guage interfaces to information systems. Parsing is a tech-
nique for the analysis of speech, text, and other patterns,
widely used as a key process in contemporary natural
language processing systems and in syntactic pattern recog-
pition for the identification of sentence structure and ulti-
mately the semantic content of sentences.

Parsing is done with respect to a fixed set of rules that
describe the grammatical structure of a language. Such a set
of rules is called a grammar for the language. In a standard
parsing model, the parser accepts a string of words from its
input and verifies that the string can be generated by the
grammar for the language, according to its mles. In such
casc the string is said to be recognized and is called a
sentence of the language. There exist many forms of gram-
mar that have been used for the description of natural
languages and patterns, each with its own gencrative capac-
ity and level of descriptive adequacy for the grammatical
description given languages. A hierarchy of grammars has
been proposed by N. Chomsky, “On Certain Formal Prop-
erties of Grammar,” Information and Control, Vol. 2, 1959,
p- 137-167, and some of the formalisms that have been or
are currently in use for the description of natural language
are transformational grammar, two-level grammar, unifica-
tion grammar, generalized attribute grammar, and aug-
mented transition network grammar. Nonetheless, the for-
malism most widely used is that of context-free grammars;
the formalisms just cited, and others, are in some sense
augmentations of or based on context-free grammars.

Likewise, many parsing methods have been reported in
the literature for the parsing of natural languages and
syntactic pattem recognition. For context-free grammars
there are three basic parsing methods, as may be inspected
in “The Theory of Parsing, Translation and Compiling,” Vol.
1, A. V. Aho and I. D. Ullman, 1972. The universal parsing
methods, represented by the Cocke-Kasami-Younger algo-
rithm and Earley’s algorithm, do not impose any restriction
on the properties of the analysis grammar and attempt to
produce all derivations of the input string. The two other
methods, known as top-down or bottom-up, attempt as their
names indicate to construct derivations for the input string
from the start symbol of the grammar towards the input
words, or from the input words towards the start symbol of
the grammar. The parsing state representations used by the
parsing methods include, in general, a triple consisting of the
first and last word positions in the input string covered by the
parsing state, and a parsing item which may be a grammati-
cal category symbol or a “dotted” grammatical rule, that
shows how much of the item has been recognized in the
segment of the input string marked by the first and last word
positions.

40

45

60

65

2

In contrast to the parsing of some artificial languages,
such as programming languages for computers, the chief
problems encountered in parsing natural languages are due
to the size of the grammatical descriptions required, the size
of the vocabularies of said languages and several sorts of
ambiguity such as part of speech, phrase structure, or
meaning found in most sentences. The handling of ambigu-
ity in the description of natural language is by far one of the
most severe problems encountered and requires the adoption
of underlying grammatical formalisms such as general con-
text-free grammars and the adoption of universal parsing
methods for processing.

Even the most efficient universal parsing methods known
for context-free grammars (Cocke-Kasami-Younger and
Earley's algorithms) are too inefficient for use on general
purpose computers due to the amount of time and computer
resources they take in ana.[yzmg an input string, imposing
serious limitations on the size of the grammatical descrip-
tions allowed and the types of sentences that may be
handled. The universal parsing methods produce a number
of parsing state representations which is in the worst case
proportional to the size of the grammatical description of the
language and proportional to the square of the number of
input words in the string being analyzed. The set of parsing
states actually generated in typical applications is, however,
a sparse subset of the potential set. Other universal parsing
methods used in some systems, including chart parsers,
augmented transition network parsers, and top-down or
bottom-up backtracking or parallel parsers encounter prob-
lems similar to or worse than the standard parsing methods
already cited. Since parsing algorithms in current art are
typically executed on general purpose computers with a yon
Neumann architecture, the number of steps required for the
execution of these algorithms while analyzing an input
sentence can be as high as proportional to the cube of the
size of the grammatical description of the language and
proportional to the cube of the number of words in the input
string.

The existing von Neumann computer architecture is con-
stituted by a random access memory device (RAM) which
may be accessed by location for the storage of program and
data, a central processing unit (CPU) for fetching, decoding
and execution of instructions from the RAM, and a com-
munications bus between the CPU and RAM, comprising
address, control, and dam lines. Due to its architecture, the
yon Neumann type computer is restricted to serial operation,
executing one instruction on onc data item at a time, the
communications bus often acting as a “bottleneck” on the
speed of the serial operation.

With a clever choice of data structure for the representa-
tion of sets of parsing states on a von Neumann computer,
such as the use of an array of boolean quantities used to mark
the presence or absence of a given item from the set of
parsing states, it is possible to reduce the number of steps
required to perform basic operations on a set of parsing
states to a time that is proportional only to the logarithm of
the number of states in the set, and therefore to reduce the
total time required for the execution parsing algorithms on
the von Neumann computer. However, the number of pars-
ing states that may be generated by universal parsing algo-
rithms is dependent on grammar size and input string length
and can be quite high. For the type of grammars and inputs
envisioned in language and pattern recognition applications,
this number can be of the order of two to the power of thirty,
or several thousands of millions of parsing items. This
amount of memory space is beyond the capabilities of
current computers and, where available, it would be ineffi-

NOAC Ex. 1015 Page 161

-

5,511,213

3

ciently used. The speedup technique suggested is well
known and illustrates the tradeoff of processing memory
space for reduction of execution time. Universal parsing
algorithms, furthermore, require multiple patterns of access
to their parsing state representations. This defeats the: pur-
pose of special data structures as above, unless additional
memory space is traded off for a fast execution time,

In the technical article “Paralle]l Parsing Algorithms and
VLSI Implementations for Syntactic Pattern Recognition,”
Y. T. Chiang and K. S. Fu, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 6, No. 3, 1984, p.
302-314, a parallel processing architecture consisting of a
triangular-shaped VLSI systolic array is devised for the
execution of a variant of the universal parsing algorithm due
to Earley. In the Chiang-Fu architecture, the systolic array
has a number of rows and a number of columns equal to the
number of symbols in the string to be analyzed. Each
processing cell of the systolic array is assigned to compute
one matrix element of the representation matrix computed
by the algorithm. Each cell is a complex VLSI circuit that
includes a control and data paths to implement the operators
used in the parsing algorithm, and storage cells for the
storage of cell data corresponding to matrix elements. The
architecture has a regnlar communication geometry, with
each cell communicating information only to its upper and
right-hand side neighbors. In order to achieve its processing
efficiency requirements, allowing as many processing cells
of the array as possible to operate in parallel, the Chiang-Fu
architecture must use a weakened form of Earley’s algo-
rithm, Furthermore, in order to meet the VLSI design
requirement that each processor perform a constant time
operation, the architecture restricts the grammar to be free of
null productions, i.e., those whose fight-hand sides have
exactly zero symbols.

In addition to the two disadvantages of the Chiang-Fu
architecture noted above, its main disadvantage, however, is
the complexity of each cell in the processing array and the
required size of the array. The cell design uses complex
special purpose hardware devices such as programmable
logic arrays, shift registers, arithmetic units, and memories.
This approach yields the fastest execution speed for each
cell, but due to its complexity and the highly irregular
pattern of interconnections between the cell’s components
the design is not the best suited for VLSI implementation.
Since the systolic array has a number of rows and a number
of columns equal to the number of symbols in the string to
be analyzed, the number of cells in the array is proportional
to the square of the number of symbols in the string.

Associative processing is a technique of parallel compu-
tation that secks to remove some problems of the von
Neumann computer by decentralizing the computing
resources and allowing the execution of one operation on
multiple data items at a time. An associative memory
processor has distributed computation resources in its
memory, such that the same operation may be executed
simultaneously on multiple data items, in situ, The opera-
tions that may be executed in the memory are fairly simple,
usually restricted to comparison of a stored data word
against a given search pattem. The distributed computation
approach eliminates two major obstacles to computation
speed in the von Neumann computer, namely the ability to
operate only on one data item at a time, and the need to move
the data to be processed to and from memory. Since asso-
ciative memory is essentially 8 memory device, it is the best
suited type of circuit for large scale VLSI implementation.
Associative processing is currently used in some special
purpose computations such as address translation in current

50

60

65

4

computer systems, and is especially well suited for symbolic
applications such as string searching, data and knowledge
base applications, and artificial intelligence computers. In
contrast to addressing by location in a random access
memory, associative processing is particularly effective
when the sets of data elements to be processed are sparse
relative to the set of potential values of their properties, and
when the data elements are associated with several types of
access patterns or keys.

An associative memory processor architecture for parsing
algorithms, as has been proposed by N. Correa, “An Asso-
ciative Memory Architecture for General Context-free Lan-
guage Recognition,” Manuscript, 1990, stores sets of pars-
ing state representations in an associative memory,
permitting inspection of the membership of or the search for
a given parsing state in a time which is small and constant,
independent of the number of state representations generated
by the algorithm. Additionally, the parsing method chosen is
implemented in a finite state parsing control unit, instead of
being programmed an executed by instruction sequences in
the central processing unit of a general purpose computer or
microprocessor. This allows for a maximally parallel sched-
uling of the microoperations required by the algorithm, and
eliminates the need for instruction fetching and decoding in
the general purpose computer. Furthermore, since the asso-
ciative memory need be dimensioned only for the number of
parsing states that may actually be generated by the parsing
algorithms, and since the finite state control unit contains
only the states and hardware required for the execution of
the algorithm, said machine may be fabricated and pro-
grammed more compactly and economically with integrated
circuit technology.

It is apparent from the above that prior art approaches to
the execution of universal parsing algorithms are neither fast
enough nor compact enough for the technical and economic
feasibility of complex symbolic applications requiring a
parsing step, such as real-time voice recognition and under-
standing, real-time text and voice-to-voice machine transla-
tion, massive document processing, and other pattern rec-
ognition applications. The general purpose von Neumann
computer and other previous proposals for the parallel
exccution of those algorithms are not fast enough and not
compact enough. The associative processing architecture for
the execution of universal parsing algorithms herein dis-
closed has the potential to offer significant speed improve-
ments in the execution of universal parsing algorithms and
is furthermore more compact and better suited for large scale
'VLSI implementation.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a new and improved parallel processor architecture that
executes parsing algorithms faster than the prior art
approaches.

It is a further object of the present invention to provide a
new and improved parallel processor architecture which is
dedicated exclusively to the execution of parsing algorithms
and is physically more compact, smaller, and better suited
for large scale VLSI implementation than the prior art
approaches.

It is still a further object of the present invention to show
a particular embodiment of a universal parsing algorithm in
said architecture and the method by which this is achieved.

In accordance with the above objects, the present inven-
tion is addressed to an associative memory processor archi-

NOAC Ex. 1015 Page 162

'

5,511,213

5

tecture consisting of an associative memory unit for the
storage of parsing state representations, a random access
memory unit for the storage of the grammatical rules and
other parsing data and tables according to which the parsing
is done, a finite state parsing control unit which embodies
the chosen parsing algorithm, and a communications unit for
communication with a host processor or external interface.

The associative memory unit (CAM) is used for the
storage of parsing state representations, dynamically com-
puted by the parsing algorithm according to the input string
and grammar. Each parsing state representation consists of
a tuple of a first word index to a position in the input string,
a last word index to a position in the input string, a parsing
item, a left-hand side symbol field., a next symbol field, a
state-not-processed field, and optional fields to store other
information related to the parsing process, such as context
and lookahead symbols, attributes of the parsing state, and
information for parse tree extraction. Bach parsing state
representation is storm in one logical CAM word, which
permits fast and easy inspection of the parsing states already
generated by the algorithm. The parsing item in the third
field of a parsing state representation may be a grammar
symbol or a dotted rule, consisting of a rule number and an
index to a position on the right hand side of the rule.

The random access memory unit (RAM) is used for the
storage of the grammatical rules according to which the
parsing is done. This memory unit is also used to store other
parsing data and tables used by the parsing algorithm, as
detailed below; alternatively, a second random access
memory unit may be used for the storage of such informa-
tion. Each grammatical rule consists of one left-hand side
symbol and a right-hand side of zero or more symbols. Each
grammatical rule is stored in one logical RAM record, with
one RAM word allocated to store each of the rule’s symbols.
In this manner, it is possible to retrieve the j-th symbol of the
p-th grammatical rule from the j-th word of the p-th record
in the RAM. The RAM may be accessed by the communi-
cations unit for the purpose of allowing the host processor
writing into the RAM the grammatical rules according to
which the parsing is done. Alternatively, the RAM may be
a read-only memory, which permanently stores a predefined
set of grammatical rules and tables.

The finite state parsing control unit (PCU) is connected to
the CAM and the RAM and is a finite state machine that
embodies the chosen parsing algorithm. The PCU accesses
the CAM for the purposes of initializing it, inserting initial
or seed parsing states for the parsing process, and requesting
parsing states marked unprocessed for processing. When an
unprocessed parsing state is retrieved from the CAM, the
PCU may access the RAM and may request input symbols
from the communications unit for the purpose of generating
new parsing states to be added to the CAM, as unprocessed.
Each access to the RAM allows the inspection of the
grammatical rules, if any, that may be applicable for pro-
cessing of the current parsing state. The input symbols
requested form the communications unit allow verification
that the next input symbol is compatible with the current
parsing state. When the PCU has generated the number of
parsing state sets required by the input string and all parsing
states in the CAM axe marked processed—i.e., there are no
unprocessed states—the PCU performs a test on the contents
of the CAM to decide acceptance of the input string, may
optionally execute some post-processing operations, as
detailed below, signals the communications unit that the
parsing of the current input string is complete, and termi-
nates execution. The exact order and the precise nature of the
operations performed by the parsing control unit, generically

—

5

65

6

described above, depend on the particular parsing algorithm
embodied in the finite state parsing control unit.

The communications unit (CU) is connected to the CAM,
RAM, and PCU and is used for communication with a host
processor or external interface. The communications umnit
may be as simple as an interface to a given computer
interconnection bus, or as complex as a system that imple-
ments a computer communications protocol. The commu-
nications unit accesses the RAM for the purpose of allowing
the host processor writing into the RAM the grammatical
rules according to which the parsing is done. Alternatively,
the RAM may be a read-only memory, which permanently
stores a predefined set of grammatical rules, in which case
the CU need not have access to the RAM. The CU also
accesses the finite state control unit for the purposes of
initializing it and supplying to it input symbols from the
input string to be analyzed. The CU also accesses the CAM
at the end of a parsing process for the purpose of reading out
and sending to the host processor the parsing state repre-
sentations and any other information that may be relevant to
further processing of the input string. An optional additional
function of the communications unit is its ability to issue
commands and data to the RAM, CAM and PCU for the
purpose of testing their functionality and correctness of
operation.

Preferably, the associative memory unit is formed on a
single integrated circuit chip, and the random access
memory unit, finite state parsing control unit, and a com-
munications unit are formed together or programmed on a
separate integrated circuit controller chip. Alternatively, all
system components may be integrated on a single chip, with
optional provision for external expansion of the RAM or
CAM memories. In either case, the operation of the finite
state parsing control unit may allow for the execution of
parse extraction algorithms and useless parsing state mark-
ing and elimination algorithms, to simplify further process-
ing of the parsing result by the host processor.

BRIEF DESCRIPTION OF THE DRAWINGS

In the detailed description of the preferred embodiment of
the invention presented below, reference is made to draw-
ings as presently detailed. The drawings are not necessarily
to scale, emphasis being placed instead upon illustrating the
principles of construction and operation of the invention.

FIG. 1 is a complete schematic illustration of the asso-
ciative memory processing system for parsing,algorithms,
object of the present invention.

FIG. 2 shows the general organization of the associative
memory unit assumed by the preferred embodiment.

FIG. 3 is a small example context-free grammar and
shows a sample input string with annotated string positions.

FIG. 4 is a schematic illustration of the RAM memory
map comresponding to the example grammar in FIG. 3

FIG. 5 is a schematic illustration of the parsing state
encodings to be stored in the associative memory, for the
preferred embodiment where the processor embodies Ear-
ley’s algorithm.

FIG. 6 is a flow chart of the steps followed by the system
during loading of a grammar, parsing, and extraction of the
parse information.

FIGS. 7.a— are a schematic illustration of a series of
CAM memory maps of the associative processing system at
different times during parsing an input string, according to
the example grammar in FIG. 3.

NOAC Ex. 1015 Page 163

rwm‘m« R

0
'

5,511,213

7

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 illustrates an embodiment of the present invention
suitable for the execution of a wide family of parsing
algorithms. Referring to the same figure, the system includes
an associative memory unit 1 and a communications and
parsing control unit 5. The communications and parsing
control unit includes a random access memory unit 2, a finite
state parsing control unit 3, a communications unit 4, a first
data bus 10, a second data bus 11, and other signals further
detailed below.

Associative memory unit 1 is connected by the internal
data bus 10 and by control fines S1 and S2 to the parsing
control unit The associative memory unit (CAM) is used for
the storage of parsing state representations and its word
width is commensurate with the number of bits required for
the representation of parsing states. The parsing state rep-
resentations produced by the parsing contro! unit may be
transferred, i.c., written, to the associative memory through
the internal data bus 10. Likewise, parsing states stored in
the associative memory may be transferred in the opposite
direction, i.e., read, to the parsing control unit by means of
the same intemnal data bus 10. To provide for fast data
transfers between the associative memory and the parsing
control unit, in one bus cycle, the width of the first data bus
10 is equal to the width of one CAM word. Control line S1
from the parsing control unit to the associative memory is
the operation select code for the operation requested of the
associative memory. Control line S2 from the associative
mémory to the parsing control unit is a match flag produced
by the associative memory after a match operation. Because
an associative memory is used for the storage of parsing
state representations, operations such as the insertion of a
new parsing state into the CAM may be performed in
constant time, independent of the number of parsing states
already generated, and the performance degradation result-
ing from the use of random access memory in avon Neu-
mann computer for the storage of the same representations
is mitigated. Also, becanse an associative memory is used,
multiple access patterns are permitted into the parsing state
representations, without the overhead of additional data
structures. These multiple access patterns play a role in the
implementation of some optimizations of the parsing algo-
rithm to be embedded in the finite state parsing control unit.

The general organization of the associative memory unit
assumed by the preferred embodiment is shown in FIG. 2.
This device has one array 20 of content addressable memory
cells, one data register 21, one mask register 22, three
general purpose match registers 23, 24, and 25, a priority
encoder 26 for multiple response resolution, and an internal
control section 27 for control of CAM operations. The
device has an associative method of word selection for read
and write operations, in which word selection is achieved by
the use of one of the match registers 23, 24, or 25, and the
priority encoder 26. The memory receives data and control
signals from the outside through data and control buses 28
and 29, and produces one match signal MATCHFLAG 30
after the execution of match operations. The set of opera-
tions provided by the associative memory unit is further
detailed below in the description of the parsing control unit.

Random access memory unit 2 in FIG. 1 is connected to
the parsing control unit and other system components by a
second internal data bus 11 and by address and control lines
S3 from the PCU. Physically, the RAM is organized as a
linear array of words, divided into logical records of several
words. The number of bits per RAM word must be selected

0

w

35

65

8

according to the number of terminal and non-terminal sym-
bols in the grammar; for example, with a word width of ten
bits a total of 1024 different symbols may be encoded. We
let PLEN be the number of words in one logical RAM record
and require that it be at least one more than the number of
symbols in the longest grammatical rule to be represented.
The grammatical rules are ordered by their left-hand side
symbol and numbered from zero to some positive integer
PMAX, so that the number of RAM words required to store
the grammatical rules is PLEN times PMAX,

The rules of FIG. 3 constitute a simple grammar with four
non-terminal symbols Z, S, NP, and VP, and three terminal
symbols “$”, “John”, and “thinks™; Z is the start symbol of
the grammar, and “$” is the “end-of-input-string” marker.
Each grammatical rule is stored in one logical RAM record,
as shown in FIG. 4, with one RAM word used to store each
of the rule’s symbols. In this preferred embodiment, the
logical records have a fixed number of words, such that the
j-th symbol of the p-th grammatical rule may be retrieved
from the RAM word at address p times PLEN plus j. The
symbol NIL, not in the vocabulary of the grammar, is used
to mark the end of each rule’s right-hand side. The RAM
may be accessed by the communications unit through the
second internat data bus 11 for the purpose of allowing the
host processor to write into the RAM the grammatical rules
according to which the parsing is done. Alternatively, the
RAM may be a mad-only memory, which permanently
stores a predefined set of grammatical rules.

In this embodiment, the random access memory unit
contains additional space for the storage of two parsing
tables, P-TABLE and N-TABLE. P-TABLE relates the non-
terminal symbols of the grammar to the number of the record
of the fast production in their list of altemnatives in the RAM.
This information is used by the parsing algorithm and is
stored at an offset P_OFFSET from the first word of the
RAM, beyond the end of the space used to store the
grammatical rules. N-TABLE is a table of all the symbols in
the grammar and the special symbol NIL that indicates for
each one whether it may derive the empty string after one or
more derivation steps (i.e., whether it may be nulled). This
table is storm at an offset N_OFFSET from the fast word of
the RAM, beyond the end of the space used to store the
P-TABLE. These tables are also shown in FIG. 4.

The parsing control unit 3 in FIG. 1 is connected to the
associative memory unit and to the random access memory
unit as already described. The parsing control unit is also
connected by the second internal data bus 11 and by control
lines S4, S5, and S6 to the communications unit. The second
internal data bus 11 is used to transfer commands and input
symbols to the parsing control unit, and to read status
information from the same. Control line S4 is the SYM-
BOL_REQUEST line from the PCU to the communications
unit, while S5 is the SYMBOL_READY line in the converse
direction. Control line S6 is the END_OF_PARSE line from
the PCU to the communications unit. Because the parsing
control unit is a finite state machine that embodies the
chosen parsing algorithm, it is optimized both with regard to
speed and size. In this preferred embodiment, the parsing
control unit is designed to execute a version of Earley’s
algorithm, “An Efficient Context-free Parsing Algorithm,”
Communications of the Association for Computing Machin-
ery, Vol. 13, No. 2, p. 94-102, known in the art, and includes
some optimizations of the original algorithm, suggested by
S: Graham et al., “An Improved Context-free Recognizer,”
A CM Transactions on Programming Languages and Sys-
tems, Vol. 2, No. 3, 1980, p. 415-462. According to Earley’s
algorithm, in the preferred embodiment the parsing control

NOAC Ex. 1015 Page 164

-

)

5,511,213

9

unit has a main procedure that initializes the machine, writes
an initial parsing state into the associative memory unit, and
then reads unprocessed states from the CAM and processes
them according to one of three actions; PREDICT, COM-
PLETE, and EXAMINE, to be detailed below. The embodi-
ment is most general, allowing arbitrary context-free gram-
mar rules, including grammar rules with zero right-hand side
symbols. In this version, the algorithm uses a number k of
“Jookahead” symbols equal to zero. Modification of this
feature of the algorithm is within the state of current an and
may be made by those skilled in the art.

The parsing state representations stored in the associative
memory unit are bit patterns arranged into seven fields
named “first-word-index”, “last-word-index”, “rule-num-
ber”, “dot-position”, “left-hand-side” symbol, “symbol-af-
ter-dot”, and “processed-bit”, as shown in FIG. 5. The data
in the fifth and sixth fields, “left-hand-side” symbol and
“gymbol-after-dot”, respectively, are redundant, since they
may be obtained from the grammar rules stored in the
random access memory knowing the “rule-number” and
“dot-position” values. However, the operation of retrieving
the symbol on the right side of the dot is essential to the three
actions of the algorithm, particularly the COMPLETER, and
hence the “symbol-after-dot” field is included in the parsing
state representations to facilitate and speed up the execution
of this operation. Similarly, the inclusion of the fifth field,
“left-hand-side™ symbol, allows the implementation of an
important optimization to the COMPLETER step. A com-
plete behavioral description of the parsing control unit,
corresponding to Earley’s algorithm with the noted optimi-
zations, appears below in TABLE 1, pans A through G. The
first data bus 10 of FIG. 1 is referred to as CAM_BUS in the
descriptive code, and the second data bus 11 of the same
figure is referred to as D_BUS in the same code. The
behavioral description assumes the purely associative
memory of FIG. 2, with one data and one mask register, and
with three match registers MR1, MR2, and MR3, which may
be used for word selection in the CAM operations. The
behavioral description of the CAM operation codes assumed
by the parsing control unit is given in TABLE 2, below.

The communications unit is connected to the associative
memory unit, the random access memory unit, and the
parsing control unit through the second internal dam bus 11.
The CU accesses, through said second internal data bus 11,
the finite state parsing control unit for the purposes of
initializing it and supplying to it input symbols of the input
string to be analyzed. The unit also accesses the CAM at the
end of a parsing process for the purpose of reading out and
sending to the host processor the parsing state representa-
tions and any other information that may be relevant to
further processing of the input string. In this embodiment,
the communications unit implements a communications
protocol for computer peripherals that may be supported by
small computers and workstations. This allows the use of the
associative processor object of the present invention as an
internal or external peripheral device for a wide variety of
computers.

The operation of the associative parsing machine, accord-
ing to the behavioral description of its components given in
TABLE 1 and TABLE 2 below, with the grammar of FIG. 3
and for the input string “John thinks $” will now be
described with reference to FIG. 6 and FIGS. 7A to 7C.

When the associative parsing machine starts its operation
in response to a command from the host processor or
external interface, it requires that the parsing grammar, the
productions table (P-TABLE), and the nullable symbols
table (N-TABLE) have already been loaded into the random

10

—

5

~N

5

0

LW

35

55

60

10
access memory. Thus, for the grammar of FIG. 3, the RAM
configuration is that shown in FIG. 4. FIG. 6 is a flow chart
that shows the general operation of the system, including
loading of the analysis grammar, invocation of the main
recognizer procedure, execution of optional post-processing
actions, and extraction of the parse information.

The parsing control unit of the machine uses an associa-
tive memory with one data register DATA_REG, one mask
register MASK_REG, and three match registers MR1, MR2,
and MR3. MR1 is used as a general “match” register, MR2
as a temporary “match” register, and MR3 as a “free words”
register. The parsing control unit contains three registers
CURRENT_SET, INPUT_SYMBOLS, and NEXT_SYM-
BOL which are used to store the number of the current
parsing state set being processed (last-word-index), the
mumber of symbols from the input string already seen, and
the next input symbol from the input string. A one bit fiag
EXIST_SYMBOL is use to indicate that the NEXT SYM-
BOL register currently contains the next input symbol from
the input string. The parsing control unit also has a data
register DR used for storing parsing state representations
and a STATUS register'with “accept” and “error” fields, into
which the result of recognition of the input string is depos-
ited, in the “accept” field of the register. An END_OF-
_PARSE one bit flag is used to signal the communications
unit the end of the parsing process for the input string.

The descriptive code corresponding to the top level of the
parsing control unit (RECOGNIZER) is shown in TABLE 1,
part A. The code contains steps to initialize the recognizer,
write an initial parsing state representation into the CAM,
dynamically compute the set of all parsing state represen-
tations, and test for acceptance of the input string, depending
on the set of parsing states computed. The intialization steps
of the recognizer in the code of INITIALIZE_RECOG-
NIZER, shown in TABLE 1, part B, reset the CURRENT-
_SET and other registers of the machine, reset the STATUS
accept and END_OF PARSE flags, clear the associative
memory, and according to the operation CLEARCAM, in
TABLE 1, part G, set the “free words” register MR3 of the
CAM, indicating that initially all CAM words are free.
Immediately thereafter the parsing control unit assembles
and writes into the CAM an initial parsing state represen-
tation that corresponds to the application of the production
for the initial symbol of the grammar in a top-down deri-
vation, This is shown in the code of WRITE_INITIAL-
_STATE, also in TABLE 1, part B. This initial parsing state
corresponds to the zero-th production of the grammar in
FIG. 3 and has first and last word indices equal to zero, rule
number equal to zero, dot position equal to zero, left-hand-
side symbol equal to the numeric code of Z, symbol-after-
dot equal to numeric code of S, and processed-bit mark in
zero. The contents of the CAM after insertion of this parsing
state are shown in FIG. 7A.

The principal part of the RECOGNIZE-R code consists of
an iteration cycle in which the CAM is searched for unproc-
essed parsing states in the current state set and, if any are
found, these are processed, one at a time, according to one
of three actions: PREDICT, COMPLETE, and EXAMINE,
depending to the type of the symbol found in the *“symbol-
after-dot” field of the unprocessed parsing state. PREDICT
is applied when the symbol after the dot is a non-terminal
symbol, COMPLETE when there is no symbol (i.e., NIL)
after the dot, and EXAMINE when the symbol is a terminal
symbol. The processing of each state includes toggling its
processed-bit mark to one (i.e., marking it as processed). The
descriptive cade for the three actions PREDICT, COM-
PLETE, and EXAMINE is shown in TABLE 1, part C. The

NOAC Ex. 1015 Page 165

vig o R

2

5,511,213

11

descriptive code for the search of unprocessed parsing states
from the current state set appears in the code of
MATCH_UNPROCESSED_STATES in TABLE 1, part F.

The first parsing state to be processed by the machine is
the initial state inserted into the CAM, as part of the
initialization steps of the RECOGNIZER code. This parsing
state is first read from the CAM into register DR of the
parsing control unit, and then processed according to the
PREDICT operation, since the symbol S found in the
“symbol-after-dot” field is a non-terminal symbol. The PRE-
DICT operation first searches the CAM to verify if the
“symbol-after-dot” in the state (S in this case) has not
already been predicted during processing of the current
parsing state set, and then marks the state processed by
toggling its “processed-bit” field to one and rewriting it into
the CAM. If the symbol has been predicted during process-
ing of the current parsing state set no further action is done
by the PREDICT operation. Otherwise, the operation seeks
grammar rules with the “symbol-after-dot” on the left-hand
side and for each one generates a new parsing state repre-
sentation, to be added to the CAM as unprocessed. The new
states arc added into the CAM by the operation
ADD_STATE, shown in TABLE 1, part D. According to this
operation, a new parsing state representation is not added
into the CAM if it is already found there, ignoring its
“processed-bit”. The ADD_STATE operation may also add
some additional states into the CAM, if some symbols after
the dot in the original state to be added are nullable. Since
in the grammar of FIG. 3 there is only one rule for the
symbol § of the initial parsing state representation, and there
are no nullable symbols, there is only one new parsing state
added into the CAM by the PREDICT operation, and the
CAM contents after execution of this operation are the two
parsing states shown in FIG. 7B.

After one more iteration in the RECOGNIZER code, in
which the production for the NP non-terminal symbol is
predicted, the associative processor is ready to apply the
EXAMINE operation to the first symbol “John” of the input
string. Symbols from the input string are obtained from the
communications unit by the GET_INPUT_SYMBOL opera-
tion of TABLE 1, part E. If the symbol is not already in the
NEXT_SYMBOL register, the operation raises the SYM-
BOL_REQUEST signal to the communmnications unit and
waits until the unit responds with the SYMBOL_READY
signal in the converse direction, at which time the symbol
must be present on the data bus 11 (D_BUS) of FIG. 1 and
is loaded into the NEXT SYMBOL register.

The parsing control unit continues operating as made
explicit in its behavioral description of TABLE 1, parts A
through G, until no parsing states axe found unprocessed in
the current parsing state set and the value of the CURRENT-
_SET register is greater than the value in the INPUT_SYM-
BOLS register. This condition signals the end of the
dynamic computation of parsing state representations for the
input string read. For the input string “John thinks $”,
assurned as input to the associative parsing machine, the
parsing state representations computed, and hence the con-
tents of the CAM at the end of the iterations of the
RECOGNIZER, are shown in FIG. 7C. The last two steps of
the of the parsing control unit, as shown in the RECOG-
NIZER code of TABLE 1, part A, are a test for acceptance
of the input string, by searching the CAM for presence of a
particular parsing state representation, and to signal the end
of the parsing process, by setting the END_OF_PARSE flag
to one. The details of the test for acceptance appear in
TABLE 1, part F.

Throughout TABLE 1, the interaction between the opera-
tion of the parsing control unit and the associative memory

w

5

65

12
unit is done through the operations of TABLE 1, part G.
These operations assume the basic operation codes of
TABLE 2 for the associative memory unit, and are macro
codes that utilize those primitive operations of the associa-
tive memory.

Two optimizations of Barley’s original algorithm appear
in the steps CHECK_IF ALREADY PREDICTED and
CHECK_IF_ALREADY_COMPLETED of the PREDICT
and COMPLETE operations in TABLE 1, part C. The two
steps, shown in TABLE 1, part F, help to avoid lengthy
computations in which a non-terminal symbol already pre-
dicted during computation of the current parsing state set is
tried to be predicted again, or a non-terminal symbol already
completed from a given parsing state set is tried to be
completed again. A third optimization of the algorithm
appears in the operation ADD_STATE of TABLE 1, part D.
This operation handles in an efficient way what would
otherwise be a series of predict and complete operations on
mullable symbols, using the precomputed information on
nullable symbols from the N-TABLE.

In addition to the execution of the selected parsing
algorithm, the finite state parsing control unit may optionally
execute some post-processing operations, such as parse
extraction algorithms and useless parsing state marking and
elimination algorithms, to simplify further processing of the
parsing result by the host processor.

The chief advantage of the associative memory parsing
processor over a traditional von Neumann computer is that
it reduces the theoretical and practical time complexity of
universal parsing algorithms both with respect to grammar
size and input string length, in a compact manner. The
hardware implementation of the parsing algorithm to be
used also contributes significantly to speed of operation.
Additionally, when attached to the central processing unit of
a standard computer, the associative processor acts as a
dedicated parallel processor that frees general computing
resources of the host computer for other user tasks. An
advantage of the associative memory processor over other
parallel architectures for the execution of parallel parsing
algorithms, such as the systolic array architecture of Chiang
and Fu, is that the paralle] processing element in the asso-
ciative processor is its associative memory, which is better
suited for large scale VLSI implementation, due to its
regularity of layout and interconnection patterns and its wide
range of applications. For the purposes of illustration, but
not of limitation, in the following TABLE 1, parts A through
G, an example behavioral description of the associative
processor in accordance with the invention is given. It
should be noted by those skilled in the art that the descrip-
tion admits man), different structural realizations and that,
therefore, in the interest of generality, none such is given.

TABLE 1
A
Behavioral Description of Parsing Control Unit (PCU):
RECOGNIZER
RECOGNIZER:

/* Data register fields DR: <f, i, p, j, lhs, sad, pb>
CAM MR1: General match register
CAM MR2: Temporary match register
CAM MR3: Frec words register

*
INITIALIZE_RECOGNIZER,

WRITE_INTTIAL_STATE;

repeat .
MATCH_UNPROCESSED_STATES;

NOAC Ex. 1015 Page 166

—

o

- o

5,511,213
13 14
TABLE 1-continued TABLE 1
path pmC

Bebavioral Description of Parsing Control Unit (PCU):
RECOGNIZER

5 Behavioral Description of PCU: PREDICT, COMPLETE,
EXAMINE

while MATCHED__STATES do begin

READCAM MR1;

switch CLASSIFY(DR.sad) begin
NON_TERMINAL: PREDICT;
NIL: COMPLETE;
TERMINAL: EXAMINE,;
default ERROR(0);

endswitch; :

MATCH__UNPROCESSED__STATES;

endwhile;

CURRENT_SET := CURRENT_SET + 1;
EXIST_SYMBOL :=0;
until CURRENT__SET > INPUT_SYMBOLS;
TEST__ACCEPTANCE;
END_OF._ PARSE =];
END.

TABLE 1

pat B
Behavioral Description of PCU: Initialization routines

INPUT_SYMBOLS =0;
EXIST_SYMBOL =0,
SYMBOL_REQUEST := 0;
END__OF_PARSE =0,
STATUS.accept = 0;
STATUS .error{0] = 0;
CLEARCAM;

END.

WRITE_INITIAL_ STATE:
DRf:=0;
DRj =0,
DRp:=0;
DRj:=0;
-DR.Ibs := RULE] 0, 0);
DRuad :=RULE[0, 1};
DRpb = 0;
ADD__STATE;

PREDICT:
CHECK_IF_ALREADY_ PREDICTED;
MARK__STATE_PROCESSED;
10 if not{ MATCHED_ STATES) begin
FIRST_P := P__TABLE[DR sad};
LAST_P = P_TABLE| DR.sad + 1;
DRf := CURRENT_SET;
DRi = CURRENT_SET;
DR =0;
DR.hs := DR sad;
repeat
DR p := FIRST_P;
DR.sad .= RULE[FIRST__P, 1};
DRpb := (DR.sad = NIL);
ADD__STATE;
FIRST_P =FIRST_P+1,
20 until FIRST._P = LAST._P;
endif;

END.

COMPLETE;
CHECK_IF._ALREADY_COMPLETED;
MARK__STATE _PROCESSED;

25 ifnot{ MATCHED__STATES) begin
DRi =DRSf;
DR.szd := DRhs;
MATCHCAM MR1,DR, < 1,0,1,1,1, 0, 1>;
while MATCHED_ STATES do begin
READCAM MR1;
10 DRi = CURRENT_SET;
DRj:=DRj+1,
DR.sad := RULE[DR.p, DR + 1};
DRpb :=0;
ADD_STATE;
SELECTNEXTCAM MRI,
endwhile;
endif;
END.
EXAMINE:
MARK_STATE_ PROCESSED;
GET_INPUT_SYMBOL;
if DRusad = NEXT__SYMBOL begin
DRi = CURRENT_SET + I;
DRj =DRj+1;
DRusad := RULE[DRp, DRj + 1};
DRpb :=0;
ADD__STATE;

15

50

NOAC Ex. 1015 Page 167

® O

5,511,213
15 16

TABLE 1
part D

Behavioral Description of PCU: ADD__STATE

ADD_ STATE:
WRITESETCAM MR3, DR, <0,0,0,0,0, 0, 1>;
if not(MATCHED__STATES) begin

NULLABLE := N_TABLE[DR.sad];

if NULLABLE begia
DRj=DRj+1
DR.sad := RULE[DR.p, DR + 1];
WRITESETCAM MR3, DR, <0, 0,0, 0, 0, 0, 1>;

endif;

until not(NULLABLE) OR MATCHED__STATES;
endif,
END.

TABLE 1

part E
Behavioral Description of PCU: GET_INPUT__SYMBOL, CLASSIIFY

GET_INPUT_SYMBOL:
if not(EXIST_SYMBOL) begin

SYMBOL_REQUEST = 1;
wait on SYMBOL_READY;
NEXT_SYMBOL := D_BUS,
SYMBOL_REQUEST =0,
EXIST_SYMBOL := I;
INPUT_SYMBOLS := INPUT_SYMBOLS + I;

endif;
END.
CLASSIFY(SYMBOL):
f* Assomes an n-bit encoding of ‘SYMBOL' as follows
Start symbol (ZETA): 2 (n-1)
Other non-terminals: 2°(@m-1),..,27n-1
Terminals: L..,2(@m1)-1
End-of-string (NIL): 0
*/
NT = SYMBOL| n-1};
ZERO = not(OR{ SYMBOL| n-2], . . ., SYMBOL[0})):
if (NT AND ZERO) begin retern(ZETA) endif;
if (NT AND not ZERO)) begin return(NON_TERMINAL) endif;
if (nat NT) AND not{ ZERO)) begin return(TERMINAL) endif;
if (not(NT) AND ZERO) begin return(NIL) endif;
END.
45
TABLE 1-continued
. TABLE 1
b part F
/ patF
; Behavioral Description of PCU: Other Macros
Behavioral Description of PCU: Other Macros 50
END.
MATCH_UNPROCESSED__STATES: TEST_ ACCEPTANCE:
DR.i = CURRENT__SET; DRf:=0;
DRpb =0; DRI = INPUT_SYMBOLS;
MATCHCAM MR], DR, < 1,0, 1, L, 1, 1, 0>; DRp :=0;
END. 55 DRj =2
MARK_STATE_PROCESSED: MATCHCAM MR2, DR, < 0,0,0,0, 1, 1, 1>;
DRpb :=1; STATUS.accept := MATCHED_ STATES;
WRITECAM MR1, DR; END.
CHECK_IF_ALREADY__PREDICTED:
DRpb:=1; 60
MATCHCAM MR2, DR, <1,0,1, 1, 1, 0, 0>; TABLE 1
END.
CHECK_ IF_ ALREADY COMPLETED: part G
DRpb = |;
MATCHCAM MR2, DR, <0,0,1, 1,0, 0, 0>; Behavioral Description of PCU: CAM Macros
END.
ERROR(i): 65 These macros are expanded into primitive CAM operation codes,

; STATUS.exrorf i] == 1: with the following usage of the three match registers: MR1 =

{ : NOAC Ex. 1015 Page 168

>

5,511,213
17 18
TABLE 1-continued TABLE 1-continued
pant G pat G

Behavioral Descrption of PCU: CAM Macros

5 Behavioral Description of PCU: CAM Macros

match register, MR2 = teroporary match register, MR3 =

MOVEREG REG, (REG AND not(MR3));

free words register. MATCHED__STATES := MATCHFLAG;
CLEARCAM: END.
CLEAR; WRITESETCAM REG, DATA, MASK:
SETREG MR3; 10 CAM_BUS = MASK;
END. LOADMASK;
READCAM REG: CAM_BUS = DATA;
READ REG; MATCH MR2;
DR := CAM_BUS; MOVEREG MR2, (MR2 AND not(MR3));
END. MATCHED__STATES := MATCHFLAG:;
WRITECAM REG, DATA: 15 if not(MATCHFLAG) begin
CAM_BUS = DATA; WRITE REG;
WRITE REG; SELECTNEXT REG,
END. endif;,
SELECTNEXTCAM REG: END.
SELECTNEXT REG;
MATCHED_ STATES := MATCHFLAG; 20
END. -
MATCHCAM REG, DATA, MASK: Also, for the purposes of illustration, but not of limitation,
CAM_BUS = MASK; in the following TABLE 2, a behavioral description of the
LOADMASK;
CAM_BUS = DATA; CAM operation codes assumed by the parsing control unit is
MATCH REG; given.
TABLE 2
- Behavioral Description of CAM Operation Codes
2 3
" CAM registers: DATA_REG, MASK_REG, MR1, MR2, MR3
CAM width: WCAM (bits per word)
CAM height: HCAM (oumber of words)
CAM| i] is the i-th CAM word, fori=1, ..., HCAM
*
CLEAR:
DATA_REG = 0;
MASK_REG := 0; /* MASK register: “0” don't mask; “1" mask *
MR1{ i] =0; I* MATCH register 1, fori = 1, . . ., HCAM */
MR2[i] =0; * MATCH register 2, fori= 1, , . ., HCAM */
MR3[i] =0, /* MATCH register 3, fori = 1, . . ., HCAM *
END.
READ REG: /* REG = MR1, MR2, or MR3 */
DATA_REG = CAM| PRIORITY{ REG]};
CAM_BUS = DATA_ REG;
END.
WRITE REG: * REG = MR1, MR2, or MR3 */
DATA_REG = CAM_BUS;
CAM][PRIORITY[REG]] = DATA_REG;
END. .
. SELECTNEXT REG: * REG = MR1, MR2, or MR3 */
; REG = SELECT_ NEXT(REG); /* resets LSB of REG set to “1™ *
;i MATCHFLAG = OR(REG] 1], . . ., REG{ HCAM));
: END.
LOADMASK:
R MASK_REG := CAM_RUS;
M END.
’ SETREG REG: * REG = MR1, MR2, or MR3 *
REG[i] = 1; M"fori=1,..., HCAM *
END.
RESETREG REG: /* REG = MR1, MR2, or MR3 */
REG]{ i] :=0; M~ fori=1,..., HCAM *
END.
MOVEREG REG, expression: /* REG = MR1, MR2, or MR3 */
/% expression: register, Bool *
REG] i} := expression| i}; Mfori=1,..., HCAM *
MATCHFLAG := OR(REG] 1], . . ., REG[HCAM]);
END.
MATCH REG: /* REG = MR1, MR2, or MR3 *
DATA_REG := CAM_BUS;
SEARCH_PATTERN = DATA_REG * MASK__REG;
MLINE] i) = MATCH(CAM] i}, SEARCH_PATTERN);
MATCHFLAG := OR(MLINE[1}, . . ., MLINE[HCAM]);
REG{ i] :== MLINE] iJ; f*fori=1,....HCAM *

sk o cmm——— Y

NOAC Ex. 1015 Page 169

4 e g b on

5,511,213

19

TABLE 2-continued

20

Behavioral Description of CAM Operation Codes

END.

While this inventon has been shown particularly and
described with reference to a preferred embodiment, it shall
be understood by those skilled in the an that numerous
modifications may be made in form and details of the
architecture, in the choice of the parsing algorithm to be
vsed, and in the particular embodiment of said algorithm,
that are within the scope and spirit of the inventive contri-
bution, as defined by the appended claims. For example, the
associative memory unit has been shown with a particular
organization and set of operation codes it can execute, but
this does not preclude the use of other associative memory
means that can implement the required operations. Likewise,
different arrangements in the number and nature of the
control signals used to interconnect the system components
are possible. Variations and optimizations in the choice of
the parsing algorithm are possible, which may affect the time
and space complexity of the device. Some of the optimiza-
tions referred to may require minor changes to the architec-
ture of the preferred embodiment, such as the inclusion of
additiona] tables for the parsing process. One such optimi-
zation worth noting is the inclusion of a table or other means
in the random access memory to store the relation FIRSTk
between non-terminal and terminal symbols, to avoid use-
less predictions.

Finally, the behavioral description of the parsing control
unit shown in Table 1, comresponding to the particular
parsing algorithm chosen, or any other alternative one,
admits of many distinct physical realizations, such as may be
obtained by marmal transformation of the specification into
structural, logical, electrical, and geometrical levels of
description, or as the same descriptions may be obtained by
means of automated synthesis tools for silicon compilation.

What is claimed is:

1. An associative memory processing system for execut-
ing parsing algorithms and real time context-free language
processing and pattern recognition of an input symbol string,
said system comprising:

an associative memory unit logically arranged as an array

of words for storing parsing state representations, each
associative memory word being compared, in paraliel
with all other words, to an input search pattem corre-
sponding to a parsing state representation;

25

w

5

45

a random access memory unit for storing parsing data
including context-free language grammatica! rules
according to which parsing is done for the context-free
language of the input symbol string;

a parsing control unit, connected to said associative
memory unit and said random access memory unit, for
accessing said associative memory unit to store and
retrieve parsing state representations according to an
input symbol string said parsing control unit being a
finite state machine that executes a parsing algorithm,
corresponding to the context-free language of the input
symbol string, for syntactically recognizing the input
symbol string; and

a communications unit for providing communication
between said associative memory processing system
and an external device.

2. An associative memory processing system as claimed
in claim 1 wherein said parsing control unit executes parsing
algorithms for natural language processing and pattern rec-
ognition applications.

3. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of integrated circuit semiconductor
chips. :

4. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of associative memory chips, and said
random access memory unit and said parsing control unit are
formed on a separate integrated circuit semiconductor chip.

5. An associative memory processing system as claimed
in claim 1 wherein all system components are formed on a
single integrated circuit semiconductor chip.

6. An associative memory processing system as claimed
in claim 1, wherein said parsing control unit accesses said
associative memory unit in an amount of time that is
constant and independent of an amount of parsing data
stored in said associative memory unit.

7. An associative memory processing system as claimed
in claim 1, wherein said parsing control unit performs
post-processing actions.

L I A

NOAC Ex. 1015 Page 170

o
—

United States Patent g
Nuber et al.

0 KD L R A

R

5,703,877
*Dec. 30, 1997

US005703877A
11y Patent Number:
453 Date of Patent:

[54]

751

73]

{*1

[21]
[22]

[51]
[52]

[58]

[56]

ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED
DATA STREAM

Inventors: Ray Nuber, La Jolla; Paul Moroney,
Olivenhain; G. Kent Walker,
Escondido, all of Calif.

Assignee: General Instrument Corporation of
Delaware, Chicago, IIl.

Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.

5.517,250.
Appl. No.: 562,611

Filed: Nov. 22, 1995

Int. CLE o, H0AJ 3/06; HOAN 7/12
U.S. CL .. 370395; 370/510; 370/514;
375/366; 348/423; 348/462; 348/466; 348/467

Field of Search ..o mereccevceene. 3707389, 395,
370/503, 509, 510, 514, 516; 375/362,

365, 366, 368, 371; 348/423, 461, 462,

464, 466, 467

References Cited
U.S. PATENT DOCUMENTS
5365272 1171994 SirdCS2 .ceccecerseserserensssrescer. I48/461

5376969 12/1994 Zdepskiwecmcnereensicoronns - 3487466
5461342 1171995 Logston et dl. 370253
5517250 5/1996 Hoogeaboom et al. ..., .. 348/467
5537409 7/1996 Moriyama et al.ccoreneeee. 370/471

Primary Examiner—Alpus H. Hsu
Attorney, Agent, or Firm—Banmry R. Lipsitz

{571 ABSTRACT

Audio data is processed from a packetized data stream
camrying digital tclevision information in a succession of
fixed length transport packets. Some of the packets contain
a presentation time stamp (PTS) indicative of a time for
commencing the output of associated audio data. After the
audio data stream has been acquired, the detected audio
packets are monitored to locate subsequent PTS’s for adjust-
ing the timing at which audio data is output, thereby
providing proper Lip synchronization with associated video.
Errors in the audio data are processed in a manner which
attempts to maintain synchronization of the audio data
stream while masking the errors. In the event that the
synchronization condition cannot be maintained, for
example in the presence of errars over more than one audio
frame, the audio data stream is reacquired while the audio
output is conccaled. An error condition is signaled to the
audio decoder by altering the audio synchronization word
associated with the audio frame in which the error has
occurred.

.

25 Claims, 4 Drawing Sheets

~ 100
COMMAND:FORCE 1DLE

EVENT:AUDIO PTS AND DATA
RECENVED

ERROR: PTS, SYNC, OV, ADP,
ENC, RS, AUD, PTRS FULL

ERROR:SYNC, ENC,
RS, AUD, PTRS
FulL

ERROR:SYNC, ENC, RS,
AUD, PTRS FULL

ERROR:PCR DIS?

ERROR: PTS, SYNC, OV, ADP, ENC, RS, AUD, PTRS FULL

NOAC Ex. 1015 Page 171

14 14 =
10 14 ye n
12 12 12 S
\ S(/ S;/ /_ S(N ;?
ELEMENTARY
8 ! AUDO FRAME [[{1 AUDIO FRAME Y| AUDIO FRAME (STREAM =
QlL C Cy : a
| |
i |
! 16 I
18 : 20 / E -
N C . 5
PES
H&%SER PES PAYLOAD PACKET f
/‘71F\;\ 8
| ///// \\\\\\ 3
| 7 / ~
| P ,/ / \ \\ \\\
! ’/’ P / \\ ~ =
| Pl ’ / \ ~o
: 24 e R / \ 24 N \\\\\ @
- 7 I S~
| ’/// ,// / \\ \\\\ 24 &
:/4/’/’ ‘26 27 /l \ / \\\ \\\~ / -
" ' TRANSPORT 2
AV IO|A|VIO|A|V]O]|A]|Y AVOASPACKUS =
1 " L 1
I/ \\\\\\28 ‘K24 / \24
] ~
¢ 30 32 . ,
s ~ -~ 22 "
KRl PAYLOAD ~ FIG. 1 B
s
N ~ 4 24 o
188 BYTES(MPEG) 3

NOAC Ex. 1015 Page 172

URIRPIRO GO .o 5t S S BN 5 LB A sk, L

~ v o
-
DECODER |2 n
MP -
VIDEO CONTROL DATA o
88 4
ﬂ _PDDR._+ CONTRQ.‘ 48 s 52 3
TRaNsPoRT [o T VIDEO _ [BUFFER] VIDEO | SEC oeR VIDEO OUT
PRt DATA” PARSING| Aupi0 Ul {3
40 ol | BUFFER}-AUDI0_ _riibio
' I T %50 —|DECODER —AUDIO OUT &
ADDR. + CONTROL #
PCR | 54 w
AUDIO CONTROL DATA o
DECODER FIG. 2 &
TIME .
eLoeK PROGRAM CLOCK
N6 ”
N g
[°
RESET N
[ttt e et et bl
I
| |
PCR ! LOOP PROGRAM
0 FLTER VCo COUNTER ROGRA
62 ‘64 “66 68 wm
- 3
46 ‘ FIG. 3 o
~3

NOAC Ex. 1015 Page 173

—

= .
TRANSPORT 10 FIG. 4 -
PACKETS PID ;9
© = DETECT -
40 74 g
/ -

1 72 MODIFIED SYNC AUDIO DATA TO
AUDIO PKTS WORD INSERTER BUFFER
= DEMUX \ A

76 . F Q

_[ERROR _[sYnc worD o ‘
DETECT INVERTER £
CONTROL VIDEO g
PKTS PKTS L SYNG B

L/
/ PCR : 2
SYNC WORD LIP SYNC & BUFFER g
v DETECT »{COMPENSATOR e,
o
" SYNC N \82

AUDIO SAMPLE | g6 . -

& BT RATE I CONTROL @
CALCULATOR T
{ } ADDRESS &
T0 =
WP <88 3
|

NOAC Ex. 1015 Page 174

- @ \3

U.S. Patent Dec. 30, 1997 Sheet 4 of 4 5,703,877
100
COMMAND:FORCE IDLE - N
102 N

COMMAND:ACQUIRE - «

INTERRUPT:DPTS REQ l

DELTA PTS WAIT
104

EVENT:INPUT PROCESSOR WRITES DPTS-ACQ ERROR:SYNC,
ENC, RS, AUD,

PTRS FULL
PCR ACQUIRE
106

. ERROR:SYNC, ENC,
EVENT:AUDIO PCR RECEIVED RS, AUD, PTRS

108 FULL

PTS ACQUIRE

ERROR:SYNC, ENC, RS,
AUD, PTRS FULL

EVENT:AUDIO PTS AND DATA
RECEIVED

10 @ ERROR:PCR DISt
ERROR: PTS, SYNC, OV, ADP,

; EVENT:STC=PTS+DPTS l ENC, RS, AUD, PTRS FULL

ot
—

ERROR: PTS, SYNC, OV, ADP, ENC, RS, AUD, PTRS FULL

FIG. 5

NOAC Ex. 1015 Page 175

O

5,703,877

1

ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED
DATA STREAM

BACKGROUND OF THE INVENTION

The present invention relates to a method and apparatus
for acquiring audio data from a packetized data stream and
recovery from errors contained in such data.

Various standards have emerged for the transport of
digital data, such as digital television data. Examples of such
standards include the Moving Pictures Experts Group
(MPEG) standards and the DigiCipher® II standard propri-
ctary to General Instrument Corporation of Chicago, IIL,
U.S.A., the assignee of the present invention. The DigiCi-
pher® II standard extends the MPEG-2 systems and video
standards, which are widely known and recognized as trans-
port and video compression specifications specified by the
International Standards Organization (ISO) in Document
serics ISO 13818. The MPEG-2 specification’s systcms
“layer” provides a transmission medium independent coding
technique to build bitstreams containing one or more MPEG
programs. The MPEG coding technique uses a formal gram-
mar (“syntax™) and a set of semantic rules for the construc-
tion of bitstreams. The syntax and semantic rules include
provisions for demultiplexing, clock recovery, elementary
stream synchronization and error handling,

The MPEG transport stream is specificaily designed for
use with media that can generate data errors. Many
programs, cach comprised of onc or more clementary
streams, may be combined into a transport stream. Examples
of services that can be provided using the MPEG format are
television services broadcast over terrestrial, cable television
and satellite networks as well as interactive telephony-based
services. The primary mode of information carriage in
MPEG broadcast applications will be the MPEG-2 transport
stream. The syntax and semantics of the MPEG-2 transport
strcam are defined in International Organisation for
Standardisation, ISO/IEC 13818-1, International Standard,
1994 entitled “Generic Coding of Moving Pictures and
Associated Audio: Systerns,” recommendation H.222, incor-
porated herein by reference.

Multiplexing according to the MPEG-2 standard is
accomplished by segmenting and packaging clementary
streams such as compressed digital video and audio into
packetized elementary stream (PES) packets which are then
segmented and packaged into packets. As noted
above, each MPEG transport packet is fixed at 188 bytes in
length. The first byte is a synchronization byte having a
specific eight-bit pattern, e.g., 01000111. The sync byte
indicates the beginning of each transport packet.

Following the sync byte is a three-byte field which
includes a one-bit traasport packet error indicator, a one-bit
payload unit start indicator, 2 omc-bit transport priority
indicator, a 13-bit packet identifier (PID), a two-bit transport
scrambling control, a two-bit adaptation field control., and a
four-bit continuity counter. The remaining 184 bytes of the
packet may carry the data to be communicated. An optional
adaptation field may follow the prefix for camying both
MPEQG related and private infarmation of relevance to a
given transpart stream or the elementary stream carried
within a given transport packet. Provisions for clock
recovery, such as a program clock reference (PCR), and
bitstream splicing information are typical of the information
carried in the adaptation ficld. By placing such information
in an adaptation field, it becomes cncapsulated with its

65

2
associated data to facilitate remultiplexing and netwark
routing operations. When an adaptation field is used. the
payload is correspondingly shorter in length.

The PCR is a sample of the system time clock (STC) for
the associatcd program at the time the PCR bytes are
received at the decoder. The decoder uses the PCR values to
synchronize a decoder system time clock (STC) with the
encoder’s system time clock. The lower nine bits of a 42-bit
STC provide a modulo-300 counter that is incremented at a
27 MHz clock rate. At each modulo-300 rollover, the count
in the upper 33 bits is incremented, such that the upper bits
of the STC represent time in units of a 90 kHz clock period.
This enables presentation time stamps (PTS) and decode
time stamps (DTS) to be used to dictate the proper time for
the decoder to decode access units and to present presenta-
tion units with the accuracy of one 90 kHz clock period.
Since each program or service carried by the data stream
may have its own PCR, the programs can be multiplexed
asynchronously.

Synchronization of audio, video and data presentation
within a program is accomplished using a time stamp
approach. Presentation time stamps (PTSs) and/or decode
time stamps (DTSs)are inserted into the transport stream for
the separate video and audio packets. The PTS and DTS
information is used by the decoder to determine when to
decode and display a picture and when to play an audio
segment. The PTS and DTS values are relative to the same
system time clock sampled to generate the PCRs.

All MPEG video and audio data must be formatted into a
packetized eclementary stream (PES) formed from a succes-
sion of PES packets. Each PES packet includes a PES header
followed by a payload. The PES packets are then divided
into the payloads of successive fixed length transport pack-
ets,

PES packets are of variable and relatively long length.
Various optional ficlds, such as the presentation time stamps
and decode time stamps may be included in the PES beader.
When the transport packets are formed from the PES. the
PES headers immediately follow the transport packet head-
ers. A single PES packet may span many transport packets
and the subsections of the PES packet must appear in
consccutive transport packets of the same PID value. It
should be appreciated, however, that these transport packets
may be freely muitiplexed with other transport packets
having different PIDs and carrying data from different
clementary streams within the cobstraints of the MPEG-2
Systems specification.

Video programs are carried by placing coded MPEG
video streams into PES packets which are then divided into
transport packets for insertion into a transport stream. Each
video PES packet contains one or more coded video
pictures, referred to as video “access units.” A PTS and/or a
DTS value may be placed into the PES packet header that
cncapsulates the associated access units. The DTS indicates
when the decoder should decode the access unit into a
presentation unit. The PTS is used to actuate the decoder to
present the associated presentation unit.

Audio programs are provided in accordance with the
MPEG Systems specification using the same specification of
the PES packet layer. PTS values may be included in those
PES packets that contain the first byte of an audio access unit
(sync frame). The first byte of an audio access unit is part of
an audio sync word. An audio frame is defined as the data
between two consecutive audio sync words, including the
preceding sync word and not including the succeeding sync
word.

NOAC Ex. 1015 Page 176

A0 5 QAN RN e S NN CHRITE o1 = ORI

BT

X £ i)
> vt TGnth Aa

O

5,703,877

3

In DigiCipher® 11, audio transport packets include one or
both of an adaptation ficld and payload field. The adaptation
field may be used to transport the PCR values. The payload
field transparts the audio PES, consisting of PES headers
and PES data, PES headers are used to transport the audio
PTS values. Audio PES data consists of andio frames as
specified, e.g., by the Dolby® AC-3 or Musicam audio
syntax specifications. The AC-3 specifications are set forth
in a document entitled Digital Audio Compression (AC-3),
ATSC Standard, Doc. A/52, United States Advanced Tele-
vision Systems Committee. The Musicam specification can
be found in the document entitled “Coding of Moving
Pictures and Associated Audio for Digital Starage Media at
UptoAbout 1.5 MBIT/s,” Part 3 Audio, 11172-3 (MPEG-1)
published by ISO. Each syntax specifies an audio sync frame
as audio sync word, followed by audio information includ-
ing audio sample rate, bit rate and/ar frame size. followed by
audio data.

In order to recoastruct a television signal from the video
and audio information carried in an MPEG/DigiCipher® I
transport stream, a decoder is required to process the video
packets for output to a video decompression processor
(VDP) and the audio packets for output to an audio decom-
pression processar (ADP). In order to properly process the
audio data, the decoder is required to synchronize to the
audio data packet stream. In particular, this is required to
enable audio data to be buffered for continuous output to the
ADP and to cnable the andio syntax to be read for audio rate
information necessary to delay the audio output to achieve
proper lip synchronization with respect to the video of the
same program.

Several events can result in error conditions with respect
to the audio processing. These include loss of audio trans-
port packets due to transmission channel errors. Emrors will
also result from the receipt of audio packets which are not
properly decrypted or are still encrypted. A decoder must be
able to handle such errors without significantly degrading
the quality of the audio ontput.

The decoder must also be able to handle changes in the
audio sample rate and audio bit rate. The audio sample rate
for a given audio clementary stream will rarcly change. The
audio bit rate, however, can often chanmge at program
boundaries, and at the start and end of commercials. It is
difficult to maintain synchronization to the audio strcam
through such rate changes, since the size of the audio sync
frames is dependent on the audio sample rate and bit rate.
Handling undetected errors in the audio stream, particularly
in systems where error detection is weak, complicates the
tracking of the audio stream through rate changes, When a
received bitstream indicates that an audio rate has changed,
the ratc may or may not have actually changed. If the
decoder responds to an indication from the bitstream that the
audio rate has changed when the indication is in error and
the rate has not changed, a loss of audio synchronization will
likely occur. This can result in an audio signal degradation
that is noticeable to an end user.

To support an audio sample rate change, the audio clock
rates utilized by the decoder must be changed. This process
can take significant time, again degrading the quality of the
andio ontput signal. Still further, such a sample rate change
will require the audio buffers to be cleared to establish a
different sample-rate-dependent lip sync delay. Thus, it may
not be advantageous to trust a signal in the reccived bit-
stream indicating that the andio sample rate has changed.

With respect to bit rate changes, the relative frequency of
such changes compared to undetected errars in the bit rate

35

65

4

information will be dominated by whether the receiver has
adequate error detection. Thus, it would be advantageous to
provide a decoder having two modes of operation. In a
robust error detection environment such as for satellite
communications or cable media, where emror detection is
robust, a scamless mode of operation can be provided by
trusting a bit rate change indication provided by the data. In
a less robust errar detection environment, indications of bit
rate changes can be ignored, at the expense of requiring
resynchronization of the audio in the event that the bit rate
has actually changed.

It would be further advantageous to provide an audio
decoder in which synchronization to the audio bitstream is
maintained when the audio data contains errors. Such a
decoder should conceal the audio for those sync frames in
which an error has occurred, to minimize the aural impact of
audio data errors.

It would be still further advantageous to provide a decoder
in which the timing at which audio data is output from the
decoder’s audio buffer is adjusted on an ongoing basis. The
intent of such adjustments would be to insure correct pre-
sentation time for audio elementary streams.

The present invention provides methods and apparatus for
decoding digital audio data from & packetized transpost
stream having the aforementioned and other advantages.

SUMMARY OF THE INVENTION

In accordance with the present invention, a method is
provided for processing digital audio data from a packetized
data stream camrying television information in a succession
of fixed length transport packets. Each of the packets
includes a packet identifier (PID). Some of the packets
contain a program clock reference (PCR) value for synchro-
nizing a decoder system time clock (STC). Some of the
packets contain a presentation time stamp (PTS) indicative
of a time for commencing the output of associated data for
use in reconstructing a television signal. In accordance with
the method, the PID’s for the packets carried in the data
stream are monitored to identify andio packsts associated
with the desired program. The andio packets are examined
to locate the occumrence of at least one audio synchroniza-
tion ward therein far use in achieving a synchronization
condition. The audio packets arc monitored after the syn-
chronization condition has been achieved to locate an audio
PTS. After the PTS is located, the detected audio packets are
searched to locate the next audio synchronization word.
Audio data following the next audio synchronization word is
stored in a buffer. The stored audio data is output from the
buffer when the decoder system time clock reaches a speci-
fied time derived from the PTS. The detected audio packets
are continually monitored to focate subsequent audio PTS’s
for adjusting the timing at which the stored audio data is
output from the buffer on an ongoing basis.

A PTS pointer can be provided to maintain a current PTS
value and an address of the buffer identifying where the sync
word of an audio frame referred to by the current PTS is
stored. In order to provide the timing adjustment. the PTS
value in the PTS pointer is replaced with a new PTS value
after data stored at the address specified by the PTS pointer
has been output from the buffer. The address specified by the
PTS pointer is then replaced with a new address correspond-
ing to the sync word of an audio frame referred to by the new
PTS value. The output of data from the buffer is suspended
when the new buffer address is reached during the presen-
tation process. The output of data from the buffer is recom-
menced when the decoder’s system time clock reaches a
specified time derived from the new PTS value.

NOAC Ex. 1015 Page 177

R T

Srta

‘ @

—~—

O

5,703,877

5

In an illustrated embodiment, the output of data from the
buffer is recommenced when the decoder’s system time

clock reaches the time indicated by the sum of the new PTS -

value and an offset value. The offset value provides proper
lip synchronization by accounting for any decoder video
signal processing delay. In this manner, after the audio and
video data has been decoded, the audio dats can be presented
synchronously with the video data so that, for example, the
movement of a person’s lips in the video picture will be
sufficiently synchronous to the sound reproduced.

The method of the present invention can comprise the
further step of commencing a reacquisition of the audio
synchronization condition if the decoder’s system time clock
is beyond the specified time derived from the new PTS value
before the output of data from the buffer is recommenced.
Thus, if a PTS designates that an audio frame should be
presented at a time which has already passed, reacquisition
of the audio data will automatically commence to carrect the
timing error, thus minimizing the duration of the resultant
audio artifact.

In the illustrated embodiment, two consecutive audio
synchronization words define an audio frame therebetween,
including the preceding sync word, but not including the
succeeding sync word. The occurrence of errors may be
detected in the andio packets. Upon detecting a first audio
packet of a current audio frame containing an error, the write
pointer for the buffer is advanced by the maximum number
of bytes (N) contained in one of the fixed length transport
packets. At the same time, the curent audio frame is
designated as being in eror. The subsequent audio packets
of the current audio frame are monitored for the next audio
synchronization word after the emror has been detected. If the
synchronization ward is not recelved at the expected point in
the audio elementary stream, subsequent data is not stored in
the buffer until the sync word is located. Storage of audio
data into the buffer is resumed with the next sync word if the
next audio synchronization ward is located within N bytes
after the commencement of the search therefor. If the next
andio synchronization word is not located within N bytes
after the commencement of the search therefor, a reacqui-
sition of the synchronization condition is commenced. These
steps will insure the buffer is maintained at the correct
fullness when as many as one transport packet is lost per
audio sync frame, even with the sync frame size changes
such as with a sample rate of 44.1 ksps, and will resynchro-
nize the audio when too many audio transport packets are
lost.

Whencver the audio data from which the television audio
is being reconstructed is in error, it is preferable to conceal
the error in the television audio. In the illustrated
embodiment, a current audio frame is designated as being in
error by altering the audio synchronization word for that
frame. For example, every other bit of the audio synchro-
nization word can be inverted. The error in the television
audio for the corresponding audio frame may then be
concealed in response to an altered synchronization word
during the decoding and presentation process. This method
allows the buffering and error detection process to signal the
decoding and presentation process when errors occur via the
data itself, without the need for additional interprocess
signals.

The audio data can include information indicative of an
audio sample rate and audio bit rate, at least one of which is
variable. In such a situation, it is advantageous to maintain
synchronization within the audio clementary stream during
a rate change indicated by the audio data. This can be
accomplished by ignoring an audio sample rate change

10

25

30

40

50

55

65

6

indicated by the audio data on the assumption that the
sample rate has not actually changed, and concealing the
audio frame containing the data indicative of an audio
sample rate change while attempting to maintain the syn-
chronization condition. This strategy will properly respond
to an event in which the audio sample rate change or bit rate
change indication is the result of an error in the indication
itself, as opposed to an actual rate change.

Similarly, audio data can be processed in accordance with
a new rate indicated by the audio data in the absence of an
error indication pertaining to the audio frame containing the
new rate, while attempting to maintain the synchronization
condition. The audio data is processed without changing the
rate if an crror indication pertains to the audio frame
containing the new rate. At the same time, the audio frame
to which the error condition pertains is conocaled while the
decoder atternpts to maintain the synchronization condition.
If the synchronization condition cannot be maintained. a
reacquisition of the symchromization condition is
commenced, as desired when the sample rate actually
changes.

Apparatus in accordance with the present invention
acquires audio information carried by a packetized data
stream. The apparatus also handles emrors contained in the
audio infarmation. Means are provided for identifying audio
packets in the data stream. An audio elementary stream is
recovered from the detected audio packets for storage in a
buffer. An audio presentation time stamp (PTS) is located in
the detected audio packets. Means responsive to the PTS are
provided for commencing the output of audio data from the
buffer at a specified time. Means are provided for monitoring
the detected andio packets after the output of audio data
from the buffer has commenced, in order to locate subse-
quent audio PTS’s for use in governing the output of audio
data from the buffer to insure audio is presented synchronous
to any other elementary streams of the same program and to
maintain correct buffer fullness.

The apparatus can further comprisc means for maintain-
ing a PTS pointer with a current PTS value and an address
of the buffer identifying where a portion of audio data
referred to by the cumrent PT'S is stored. Means are provided
for replacing the PTS value in the PTS pointer with a new
current PTS value after data stored at the address set forth in
the PTS pointer has been output from the buffer. The address
in the PTS pointer is then replaced with a new address
carresponding to a portion of audio data referred to by the
new current PTS value. Means responsive to the PTS pointer
are provided for suspending the output of data from the
buffer when the new address is reached. Means are provided
for recommencing the output of data from the buffer at a
time derived from the new current PTS value. In the event
that the new current PTS value is outside a predetermined
range, means provided in the apparatus conceal the audio
signal and reestablish synchronization.

In an illustrated embodiment, the audio transport packets
have a fixed length of M bytes. The transport packets carry
a succession of audio frames each contained wholly or
partially in said packets. The audio frames each begin with
an audio synchronization word. Means are provided for
detecting the occurrence of errors in the audio packets. A
write pointer for the buffer is advanced by the maximum
number of audio frame bytes per audio transport packet (N)
and a current audio frame is designated as being in error
upon detecting an error in an audio packet of the current
audio frame. Means are provided for monitoring the detected
andio packets of the current audio frame for the next audio
synchronization word afier the error has been detected. If the

NOAC Ex. 1015 Page 178

Ltelg 2
e

&

‘ O

O

5,703,877

7

synchronization word is not received where expected within
the audio elementary stream, subsequent audio data is not
buffered until the next audio synchronization word is
received. This process compensates for too many audio
bytes having been buffered when the emored audio packet
was detected. Such an event will occur cach time the lost
packet does not camry the maximum number of possible
audio data bytes. Means are provided for resuming the
storage of audio data in the buffer if the next audio syn-
chronization word is located within N bytes after the com-
mencement of the search therefor. If the next audio syn-
chronization word is not located within said N bytes after the
commencement of the search therefor, the audio timing will
be reacquired. In this maunner, the size of the sync frames
buffered will be maintained including for those frames that
are marked as being in error, unless the next sync word is not
located where expected in the audio elementary stream to
recover from the error before buffering any of the pext
successive frame. This algorithm allows the decode and
presentation processes to rely on buffercd audio frames
being the correct size in bytes, even when data errors result
in the loss of an unknown amount of audio data.

Means can also be provided for concealing errar in an
audio signal reproduced from data output from the buffer
when the data output from the buffer is in error. Means are
further provided for altering the audio synchronization word
associated with a cumrent audio frame, to signal the decode
and presentation process that a particular frame is in error.
The concealing means are responsive to altered synchroni-
zation words for concealing audio associated with the cor-
responding audio frame.

Decoder apparatus in accordance with the invention
acquires audio information camried by a packetized data
stream and handles errars therein. Meaps are provided for
identifying audio packets in the data stream. The successive
andio frames are extracted from the audio transport packets.
Each audio frame is carried by onc or more of the packets,
and the start of each audio frame is identified by an audio
synchronization ward. Means responsive to the synchroni-
zation words obtain a synchronization condition enabling
the recovery of audio data from the detected audio packets
for storage in a buffer. Means are provided for detecting the
presence of exrors in the audio data. Means responsive to the
error detecting means control the flow of data through the
buffer when an error is present, to attempt to maintain the
synchronization condition while masking the crror. Means
are provided for reestablishing the audio timing if the
controlling means cannot maintain the synchronization con-
dition.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic illustration showing how audio
transport packets are formed from an clementary stream of
audio data;

FIG. 2 is a block diagram of decoder apparatus that can
be used in accordance with the present invention;

FIG. 3 is a mare detailed block diagram of the decoder
system time clock (STC) illustrated in FIG. 2;

FIG. 4 is a more detailed block diagram of the demulti-
plexing and data parsing circuit of FIG. 2; and

FIG. § is a state diagram illustrating the processing of
andio data in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION
FIG. 1 is a disgrammatic illustration showing how one or
more digital programs can be multiplexed into a stream of

20

25

40

55

60

65

8
transport packets. Multiplexing is accomplished by seg-
menting clementary streams such as coded video and audio
into PES packets and then segmenting these into transport
packets. The figure is illustrative only, since a PES packet,
such as PES packet 16 illustrated, will commonly translate
into other than the six transport packets 24 illustrated.

In the example of FIG. 1, an clementary stream generally
designated 10 contains audio data provided in audio frames
14 delineated by synchronization words 12, Similar elemen-
tary streams will be provided for video data and other data
to be transported.

The first step in forming a transport packet stream is to
reconfigure the clementary stream for each type of data into
a corresponding packetized clementary stream (PES)
formed from successive PES packets, such as packet 16
illustrated. Each PES packet contains a PES header 18
followed by a PES payload 20. The payload comprises the
data to be commurnicated. The PES header 18 will contain
information useful in processing the payload data, such as
the presentation time stamp (PTS).

‘The header and payload data from each PES packet arc
encapsulated into transport packets 24, each containing a
transport header 30 and payload data 32. The payload data
of the transport packet 24 will contain 2 portion of the
payload data 20 and/or PES header 18 from PES packet 16.
In an MPEG implementation, the transport header 30 will
contain the packet identifier (PID) which identifies the
transport packet, such as an audio transport packet 24, a
video transport packet 26, or other data packet 28, In FIG.
1, only the derivation of the audio transport packets 24 is
shown. In order to derive video packets 26 and other packets
28, comresponding clementary streams (not shown) are pro-
vided which are processed into PES packets and transport
packets in essentially the same manner illustrated in FIG. 1
with respect to the formation of the andio transport packets

Each MPEG transport packet contains 188 bytes of data,
formed from the four-byte transport header 30 and payload
data 32, which can be up to 184 bytes. In the MPEG
implementation, an adaptation field of, e.g., eight bytes may
be provided between the transport header 30 and payload 32.
The variable length adaptation field can contain, for
example, the program clock reference (PCR) used for syn-
chronization of the decoder system time clock (STC).

The plurality of audio transport packets 24, video trans-
port packets 26 and other packets 28 is multiplexed as
illustrated in FIG. 1 to form a transport strcam 22 that is
communicated over the communication channel from the
encoder to the decoder. The purpose of the decoder is to
demuitiplex the different types of transport packets from the
transport strcam, based on the PID's of the individual
packets, and to then process each of the audio, video and
other components for use in reconstructing a television
signal.

FIG. 2 is a block diagram of a decoder for recovering the
video and audio data. The transport stream 22 is input to a
demultiplexer and data parsing subsystem 44 via terminal
40. The demultiplexing and data parsing subsystem com-
municates with a decoder microprocessar 42 via a data bus
88. Subsystem 44 recovers the video and audio transport
packets from the transport packet stream and parses the
PCR, PTS and other necessary data therefrom for use by
other decoder components. For example, PCR’s are recov-
ered from adaptation fields of transport packets for use in
synchronizing a decoder system time clock (STC) 46 to the
system time clock of the encoder. Presentation time stamps
for the video and audio data streams are recovered from the

NOAC Ex. 1015 Page 179

¥
£

-]

I L L LRI

RN T3

o B C L

ny

| O

5,703,877

9

respective PES packet headers and communicated as video
ot audio control data to the video decoder 52 and andio
decoder 54, respectively.

The decoder time clock 46 is illustrated in greater detail
in FIG. 3. An important function of the dcooder is the
reconstruction of the clock associated with a particular
program. This clock is used to reconstruct, for example, the
proper horizontal scan rate for the video. The proper pre-
sentation rate of audio and video presentation units must
also be assured. These are the audio sample rate and the
video frame rate. Synchronization of the audio to the video,
referred to as “lip sync”, is also required.

In order to generate a synchronized program clock, the
decoder system time clock (STC) 46 receives the PCR's via
terminal 60. Before the commencement of the transport
stream decoding, 2 PCR value is used to presct a counter 68
for the decoder system time clock. As the clock runs, the
value of this counter is fed back to a subtracter 62. The local
feedback value is then compared with subsequent PCR’s in
the transport stream as they arrive at terminal 60. When a
PCR arrives, it represents the carrect STC value for the
program. The difference between the PCR value and the
STC value, as output from subtracter 62, is filtered by aloop
filter 64 and used to drive the instantancous frequency of a
voltage controlled oscillator 66 to cither decrease or increase
the STC frequency as necessary. The STC has both a 90 kHz
and 27 MHz component, and the loop filter 64 converts this
to units in the 27 Mhz domain. The output of the VCO 66
is a 27 MHz oscillator signal which is used as the program
clock frequency output from the decoder system time clock.
Those skilled in the art will recognize that the decoder time
clock 46 fllustrated in FIG. 3 is implemented using well
known phase locked loop (PLL) techniques.

Before beginning audio synchronization, the decoder of
FIG. 2, and particularly subsystemn 44, will remain idle until
it is configured by decoder microprocessor 42. The configu-
ration consists of identifying the type of audio data stream
to be processed (c.g., Dolby AC-3 or Musicam audio),
identifying the PID of packets from which the audio PCR
values are to be extracted, and identifying the PID for andio
packets,

During the idle state, subsystem 44 will instruct audio
decoder 54 to conceal the audio output. Concealment can be
accomplished by zeroing all of the audio samples. Subse-
quent digital signal processing will result in a smooth aural
transition from no sound to sound, and back to no sound.
The concealment of the audio output will be terminated
when the synchronization process reaches a tracking state.
Decoder microprocessor 42 configures the audio format as
AC-3 or Musicam, depending on whether audio decoder 54
is an AC-3 or Musicam decoder. Microprocessor 42 deter-
mines the audio PID and audio PCR PID from program map
information provided in the transport stream. The program
map information is essentially a directory of PID’s, and is
identified via its own PID.

Once the demultiplexer and data parsing subsystem 44 is
commanded to enter a Frame Sync statc via an acquire
command, it will begin scarching for two consecutive audio
sync words and will supply the decoder microprocessor 42
with the audio sampling rate and audio bit rate indicated
within the audio clementary stream. To locate the sync
words, subsystem 44 will reccive transport packets on the
audio PID and extract the PES data, searching for the
occurrence of the audio sync word, which is a
predetermined, fixed word. Far example, the AC-3 audio
sync word is 0000 1011 0111 0111 (16 bits) while the
Musicam sync word is 1111 1111 1111 (12 bits).

40

45

50

55

60

65

10

The number of bits between the first bit of two consecu-
tive audio sync words is referred to as the frame size. The
frame size depends on whether the audio stream is AC-3 or
Musicam and has a different value for cach combination of
audio sample and bit rate. In a preferred embodiment.
subsystem 44 is required to synchronize to AC-3 and Musi-
cam sample rates of 44.1 ksps and 48 ksps. The AC-3 audio
syntax conveys the audio sample rate and audio frame size
while the Musicam audio syntax conveys the audio sample
rate and audio bit rate. Both AC-3 and Musicam specify one
sync frame size for each bit rate when the sample rate is 48
ksps. However, AC-3 and Musicam specify two sync frame
sizes for each bit rate when the sample rate is 44.1 ksps, a
fact which complicates synchronization, especially through
packet loss. When the sample rate is 44.1 ksps. the correct
sync frame size between the two possibilities is indicated by
the least significant bit of the AC-3 frame size codc or by a
Musicam padding bit.

Once two consecutive andio sync words have been
received with the comrect number of bytes in between, as
specified by the sync frame size, subsystem 44 will store the
audio sample ratc and audio bit rate implied by the audio
syntax for access by the decoder microprocessor 42, inter-
rupting the microprocessar to indicate that subsystem 44 is
waiting for the microprocessor to supply it with an audio
PTS cormrection factor. The correction factor is necessary in
order to know when to output audio data to the audio
decoder 54 during initial acquisition and during tracking for
proper lip synchronization. The value is denoted as dPTS.
The lip sync value used for tracking is slightly less than that
used for initial acquisition to allow for time errors which will
exist between any two PTS values, namely that which is
used for acquisition and those which are used for tracking,

Decoder microprocessor 42 scts the comrection factors
such that audio and video-will exit the decoder with the
same time relationship as it entered the encoder, thus achiev-
ing lip synchronization. These correction factors are deter-
mined based on andio sample rate and video frame rate (e.g.,
60 Hz or 50 Hz). These dependencies exist because the audio
decompression processing time required by audio decoder
54 potentially depends on audio sample and bit rate while
the video decompression implemented by video decoder 52
potentially depends on video frame rate and deiay mode. In
a preferred implementation, the PTS correction factors con-
sist of 11 bits, representing the number of 90 kHz clock
periods by which audio data is to be delayed before output
to the audio decoder 54. With 11 bit values, the delay can be
as high as 22.7 milliseconds.

Once the demultiplexing and data parsing subsystem 44
requests the decoder microprocessor 42 to supply the cor-
rection factors, it will monitor reception of consecutive sync
words at the expected positions within the andlo elementary
stream. If an emror condition occurs during this time, sub-
system 44 will transition to searching far two consecutive
audio sync wards with the correct number of data bytes in
between. Otherwise, subsystem 44 remains in State dPTS-
wait until the decoder microprocessor services the interrupt
from subsystem 44 by writing dPTS,,, to subsystem 44.

Once subsystem 44 is provided with the PTS correction
factors, it checks whether a transport packet has been
received on the audio PCR PID containing a2 PCR value,
carried in the adaptation field of the packet. Until this has
occurred, reception of consecutive sync words will contipue
[State=PCR Acquire]. If an error condition occurs during
this time, subsystem 44 will transition to searching for two
consecutive audio sync words [State=Frame Sync].
Otherwise, it will remain in State=PCR Acquire untl it
receives a2 PCR value on the audio PCR PID.

NOAC Ex. 1015 Page 180

W'Wbszw,sf“vm.; N 2

' O

O

5,703,877

11

After a PCR has been acquired, subsystem 44 will begin
searching for a PTS [State=PTS Acquire], which is carried
in the PES header of the audio transport packets. Until this
has occurred, subsystem 44 will monitor the reception of
consecutive sync words. If an error condition occurs during
this time, it will transition to an error handling algorithm
[State=Error Handling}. Otherwise, it will remain in the PTS
acquire state until it receives a PTS value on the audio PID.

When subsystem 44 reccives an audio PTS value, it will
begin searching for reception of the next audio syac word,
This is important since the PTS defines the time at which to
output the data which begins with the next audio frame.
Since audio frames are not aligned with the audio PES, the
number of bytes which will be received between the PTS
and the next avdio sync word varies with time. If an error
condition accurs before reception of the next audio sync
ward, subsystem 44 returns to searching for andio frame
synchronization [State=Frame Sync]. It should be appreci-
ated that since audio sync frames and PES headers are not
aligned, it is possible for a PES header, and the PTS which
it may contain, to be received between the 12 or 16 bits
which form an audio sync word. In this case, the sync word
to which the PTS refers is not the sync ward which is split
by the PES header, but rather the following sync word.

When subsystem 44 reccives the next sync word, it has
acquired PTS. At this point, it will store the received PTS
and the PES data (starting with the sync word which first
followed the PTS) into an audio buffer 50, together with the
buffer address at which it writes the sync word. This stored
PTS/buffer address pair will allow subsystem 44 to begin
outputting audio PES data to the audio decoder 54 at the
correct time, starting with the audio sync ward. In a pre-
ferred embodiment, the buffer 50 is implemented in a
portion of dynamic random access memory (DRAM)
alrcady provided in the decoder.

Once subsystem 44 begins buffering audio data, a number
of parameters must be tracked which will allow it to handle
particular error conditions, such as Joss of an andio transport
packet to transmission emrors. These parameters can be
tracked using audio pointers including a PTS pointer, a
DRAM offsct address pointer, and a valid flag pointer
discussed in greater detail below.

After PTS is acquired, subsystem 44 begins waiting to
synchronize to PTS [State=PTS Sync]. In this state, the
demultiplexer and data parsing subsystem 44 continues to
receive audio packets via terminal 40, writes their PES data
into buffer 50, and maintains the error pointers. When this
state is entered, subsystem 44 compares its audio STC to the
cortrect output start time, which is the PTS value in the PTS
pointer plus the acquisition PTS correction factor (dPTS,,,)).
If subsystem 44 discovers that the correct time has passed,
ie.. PCR>PTSHPTS,,,,, one or more of the threc values is
incorrect and subsystem 44 will flag decoder microprocessor
42_ At this point, the state will revert to State=Frame Sync,
and subsystem 44 will return to searching for two consecu-
tive audio sync words. Otherwise, until PCR=PTS+PTS,_,
subsystem 44 will continue to receive audio packets, write
their PES data into the buffer 50, maintain the error pointers,
and monitor the reception of consecutive sync words.

When PCR=PTS+PTS, . subsystem 44 has synchro-
nized to PTS and will begin tracking the audio stream
[State=Track]. At this time, subsystem 44 will begin trans-
ferring the contents of the audio buffer to the audio decoder
54 upon the audio decoder requesting audio data, starting
with the sync word located at the buffer address pointed to
by the PTS pointer. In the tracking state, subsystem 44 will

20

35

55

60

65

12

continue to receive audio packets, write their PES data into
the buffer 50, maintain the crror pointers, and monitor
reception of consecutive sync words. If an emror condition
occurs during this time, subsystem 44 will transition to exror
processing. Otherwise, it will remain in State=Track untif an
€erTor occurs or microprocessor 42 commands it to return to
the idle state.

As subsystem 44 outputs the sync word of each sync
frame to the audio decoder 54 as part of the “audio” referred
to in FIG. 2, it will signal the error stams of each audio sync
frame to the audio decoder using the sync word. The sync
word of audio sync frames in which subsystem 44 knows of
no errors will be output as specified by the Dolby AC-3 or
Musicam specification, as appropriate. The sync word of
audio sync frames in which subsystem 44 knows of errors
will be altered relative to the correct sync words. As an
example, and in the preferred embodiment, every other bit of
the sync word of sync frames to which an error pointer
points will be inverted, starting with the most significant bit
of the sync word. Thus, the altered AC-3 sync word will be
1010 0001 1101 1101 while the altered Musicam sync word
will be 0101 0101 0101. Only the bits of the sync word will
be altered. The audio decoder 54 will conceal the audio
errors in the sync frame which it receives in which the sync
ward has been altered in this manner. However, the audio
decoder will continue to maintain synchronization with the
audio bitstream Synchronization will be maintained assum-
ing the audio bit rate did not change, and knowing that two
sync frame sizes arc possible when the audio sample rate is
44.1 ksps.

In accordance with the preferred embodiment, audio
decoder 54 will maintain synchronization through sample
and bit rate changes if this feature is enabled by the decoder
microprocessor 42. If the microprocessor disables sample
rate changes, audio decoder 54 will conceal the audio errors
in each sync frame received with a sample rate that does not
match the sample rate of the sync frame on which the audio
decoder last acquired, and will assume that the sample rate
did not change in order to maintain synchronization. The
audio decoder is required to process through bit rate
changes. If an error in the bit rate information is indicated,
¢.g., through the use of a cyclic redundancy code (CRC) as
well known in the art, audio decoder 54 will assume that the
bit rate of the corresponding sync frame is the same bit rate
as the previous sync frame in order to maintain synchroni-
zation. If the decoder microprocessor 42 has enabled rate
changes, the audio decoder 54 will assume that the rates
indicated in the sync frame are correct, will process the sync
frame, and use the appropriate sync frame size in maintain-
ing synchronization with the audio bitstream.

Demultiplexer and data parsing subsystem 44 will also aid
microprocessor 42 in checking that audio data continues to
be output at the comrect time by resynchronizing with the
PTS for some PTS values received. To accomplish this,
when a PTS value is received it will be stored in the PTS
pointer, along with the audio offset address at which the next
sync word is written in audio buffer 50, if the PTS pointer
is not alrcady occupied, In doing this, subsystem 44 will
ensure that the next sync word is received at the correct
location in the audio PES bitstream. Otherwise, the PTS
value will not be stored and subsystem 44 will defer resyn-
chronization until the next successful PTS/DRAM offset
address pair is obtained. Subsystem 44 will store the PTS/
DRAM offset address pair in the PTS pointer until it begins
to output the associated audio sync frame. Once it begins
outputting audio data to the audio decoder 54, subsystem 44
will continue to service the audio decoder’s requests for

NOAC Ex. 1015 Page 181

o

ety iy 2 2R MNDN T 0

' O

5,703,877

13

audio data, outputting cach audio sync frame in sequence.
This will continue until the sync frame pointed to by the PTS
pointer is reached. When this occurs, subsystem 44 will stop
outputting data to the audio decoder 54 until PCR=PTS+
dPTS,,zcr This will detect audio timing errors which may
have occurred since the last resynchronization by this
method.

If PCR>PTSH+APTS,,, when subsystem 44 completes
output of the previous sync frame, the audio decoder 54 is
processing too slow or an undetected exror has occurred in
aPCR or PTS value. After this error condition, subsystem 44
will flag microprocessar 42, stop the output to the audio
decoder 54, clear audio buffer 50 and the pointers, and return
to scarching for two consccutive sync words scparated by
the correct number of audio data bytes. If the audio decoder
54 is not requesting data when the buffer read pointer cquals
the address pointed to by the PTS pointer, an audio process-
ing error has occummed and subsystem 44 will maintain
synchronization with the audio stream, clear its audio buffer
and pointers, and return to scarching for two consecutive
audio sync words [State=Frame Sync].

In order to handle errors, subsystem 44 seis a unique errar
flag for each error condition, which is reset when micropro-
cessor 42 reads the flag. Each emror condition which inter-
rupts microprocessor 42 will be maskable under control of
the microprocessor. Table 1 lists the various error conditions
related to audio synchronization and the response by sub-
system 44. In this table, “Name” is a name assigned to each
error condition as referenced in the state diagram of FIG. §.
“Definition” defines the conditions indicating that the cor-
responding error has occurred. “INT™ is an interrupt desig-
nation which, if “yes”, indicates that subsystem 44 will
interrupt microprocessor 42 when this exror occurs. “Check
State” and “Next State™ designate the states in which the
error will be detected (checked) and the audio processor will

20

14

enter, respectively, with the symbol “>” that the designated
error will be detected when the audio processing state of
subsystern 44 is higher than the designated state. The audio
processing state hicrarchy, from lowest to highest, is:

1. Idle

2. Frame Sync

3.dPTS,,

4. PCR,.,

5. P18,

6. PTS Sync

7. Track
The symbol “Z” preceding a state indicates that the error
will be detected when the audio processing state of sub-
system 44 is equal to or higher than the designated state. The
designated state(s) indicate(s) that the error will be detected
in this state or that the audio processing of subsystem 44 will
proceed to this state after the associated actions are carried
out. The designation “same” indicates that the audio pro-
cessing of subsystemn 44 will stay in the same state after the
associated actions are carried out.

The heading “Buiffer Action” indicates whether the audio
buffer is to be flushed by setting its read and write pointers
to be equal to the base address of the audio buffer. The
designation *“none” indicates no change from normal audio
buffer management.

The hecading ‘Pointer Action” indicates by the term
“reset” that the PTS pointer, error pointers or both will be
retumed to the state specified as if subsystem 44 had been
reset. The designation “none™ indicates no change from
normal pointer management. The designation “see other
actions” indicates that other actions under the “Other
Actions” heading may indicate a pointer to be set or reset.
The “Other Actions™ heading states any additional actions
required of the subsystem 44 as a result of the error.

NOAC Ex. 1015 Page 182

£ A, R T I ‘;, »»‘-w.{;" b N anibin

R T S

5?;?;‘?“‘) . » = “,
TABLE 1 .
SUMMARY OF ERRORS, EXCEPTIONS, AND ACTIONS.
Check Next Buffer Pointer
Numc Definition Int State State Action Action Other Actions
pta_err PCR > PTS + dPTS,,, yes pa_sync frame._sync flush reset nooe
pta_err PCR>FI’s+dPrS yes track frame__sync flush reset Stop output 10 Audio Decoder (ADP).
syne_etr Ioput p:ocenorlom:ymwuh input audio yes >idls frame _sync flush resect Stop output to ADP.
frames
ov_emr Audic Buffer overflows yes Rpte_sync frame__sync flush reaet Toput p intaing synchronization with the audio "u:
bitstream. Stop output to ADP.
under_err Audio Buffer underflows a0 track SENC Done none Input p intains synchronization with the sudio
bitstream. Stop output to ADP.
fa_err Ioput processor reaches Audio PBS data yes >fame_sync same Done none Continue processing as if the audio sample rats had mot changed.
which indicates the sudio sanmple rate has
changed since the current PID was acquired
fh_etr Input processor reccives Audio PES data yes >frame_sync same none nope If bit rate changes are ensbled, input p o will i
which indicates the audio bit rate hes changed pwcelmg,numudmthebnnhmﬁctchmgedmdunng!hc
relative (o the last audio syne frame reached npp:opnmuyncfnmeuummumu-yu:hmnmmulfbn
rate changes ere not enabled, mput will
proceum;nm;mcbnnumdmmdbythehtuﬂm:ymhme
received. n
pts_miss Sync word not found dus to loss of audio data no ®pts_acquire sume none none None but other error conditions may also apply in this cuse k]
afler & PTS is received S
per_dist Toput p bes & port packet on o pta_sync Ppis acquire fiush p Input p stops storing PTS values in the PTS pointer untif A
the Audio PCR PID with the ne after reception of the next Audio PCR value. ‘3
discontinuity._indicator bit of its 2
adaptation_field set
per_dis2 Input processor receives & transport packet oo mo rwck sune nooe pis:reset Input processor stops storing PTS vahues in the PTS pointer until
the Audio PCR PID with the errormone after reception or the next Audio PCR value.
discontinuity_indicator bit of its
adaptation_ field set
aud_errla Audio data of one transport packet of the Seo >idle same or none pts:none Mainisin Andio Buffer fullness by advancing the FIFO write
cwrrent input sync frame is lost due to exrors other frame__sync; erTorisee pointer by 184 bytes (MPEG), use an error pointer (o mark the
actions ses other other cunm:yn:ﬁ-ameummvt,lndconnnmpmceumgwuhom
actions sctions 8 ting an upt. If it is possible that mors than one sudio
-yncwﬂwulonwuhthummm;mdnmp-ckn nxch as
when supporting Musicam Layer II at leas than 64 kbps or AC-3 at
leas than 48 kbps, return to the Frame Sync state and generate wn [
interrupt. If the next audio sync word is not received when =)

expecied, begin & byte-by-byte scarch for the sudio syne word

during the reception of subsequent audio date. Once the sync

byte search is started, stop storing audio date in the buffer until ()
the sync word in found. Do not store the first byte examined ’
during the scarch. Resume storing audio data when the sync byte

is found, starting with the sync word itsclf If the sync word is not

found during the first 184 bytes scarched, retumn to the Frame

Sync state! and generate an interrupt

NOAC Ex. 1015 Page 183

TABLE 1-continued

SUMMARY OF ERRORS, EXCEPTIONS, AND ACTIONS.

Check Next Buffer Pointer
Namo Definition Int State State Action Action Other Actions
aud_earlb Audio data of one transport packet of the yes >idle frame__sync flush pts:reset noue
current input sync frame is Jost due to emrors emor-none
after sud_erria has occurred during the ssme
input syne frame .
sud_erm2 Audio dats of mom than one transport packet yes >idle frame_sync flush pts:resct Use an emor pointer to mark the current sync frame w5 in error.
of the current input sync frame is Jost duc to erTonKe :
etrors other
actions
ptra_full Audio data of ons transport packet is lost yes &pts_sync frame__sync flush reset Input processor maintains synchronization with the audio
while Error Mode is Unprotected bitstream. Stop output o ADP.
To implement the above error processing for MPEG or DigiCipher I impl i the Input Pro can mantain an sudio frame byte count by: Q
letun;leolmmuv-lmuotholynchmenzembytcsuuch:yncwmdumewad.
dm:m:nnngﬂnwumauuchmcwedudmbymunm«lmﬂnhﬂnnuﬁa(n?m,
decrementing the counter by 184 bytes when a single audio transport packet is lost to comp for the ad ofﬂ)emompommbylu
mememmglhecounmbymamunofhmmhmmmbymwﬂmmhcmbnmﬂmabovadecxmmunedmn valuo (indicating the lost port packet
sibly contained the next audio word and accounting for the ibility that the sudio hmu“l and the frame size has changed from the larger the smaller v:
rmggmhmmnnegm above i mmvﬂuewhnhwm gt K‘p"thsbnw packet p hq'mnmedmnm Nl:;:mludnsyncwo:élf)' W
beginning the byte-by-byte sync word search when the counter is zero. 2
S
»
oo
~3
~]
s
= -]

NOAC Ex. 1015 Page 184

CE e h e b Tglngle e
——

O

3,703,877

19

As indicated above, the demultiplexing and data parsing
subsystem 44 of FIG. 2 maintains several pointers to support
audio processing. The PTS pointer is a sct of parameters
related to a PTS value, specifically a PTS value, a DRAM
offset address, and a validity flag. In the illustrated embodi-
ment. the PTS value comprises the 17 least significant bits
of the PTS value received from the audio PES header. This
value is associated with the audio sync frame pointed to by
the pointer’s DRAM offset address field. The use of 17 bits
allows this field to specify a 1.456 second time window
((2"-1/90 kHz), which exceeds the maximum audio time
span which the audio buffer 50 is sized to store.

The DRAM offset address maintained by the PTS pointer
is a 13-bit offset address, relative to the audio buffer base
address, into the DRAM at which the first byte of the andio
sync frame associated with the pointer’s PTS value is stored.
The 13 bits allows the pointer to address an audio buffer as
large as 8192 bytes.

The PTS pointer validity flag is a one-bit flag indicating
whether or not this PTS pointer contains a valid PTS value
and DRAM offset address. Since MPEG does not require
PTS values to be transported more often than every 700
milliseconds, subsystem 44 may find itself not having a valid
PTS value for some intervals of time.

After the decoder is reset, the valid flag of the PTS pointer
is set to invalid. When a new PTS value is received, if the
valid flag is set, the newly received PTS value is ignored. If
the valid flag is not set, the newly received PTS value is
stored into the PTS pointer but its valid flag is not yet set to
valid. After a new PTS value is stared into the PTS pointer,
the processing of audio data is continucd and cach andio data
byte is counted. If the next audio sync frame is received and
placed into the buffer correctly. the DRAM offset address
(which corresponds to the buffer address into which the first
byte of the sync word of this sync frame is stored) is stored
into the pointer’s DRAM offset address field. Then, the
pointer's valid flag is set to valid. The next audio sync frame
is received and placed into the buffer correctly when no data
is lost for any reason between reception of the PTS value and
reccption of a subsequent sync word before too many audio
bytes (i.c.. the number of audio bytes per sync frame) are
buffered. If the next audio, sync frame is not received ar
placed into the buffer correctly, the valid flag is not set to
valid.

After the PTS pointer is used to detect any audio timing
errors which may have occurred since the last resynchroni-
zation, the valid flag is sct to invalid to allow subsequent
PTS pointers to be captured and used. This occurs whether
the PTS pointer is in the PTS sync or tracking state.

The error pointers are parameters related to an audio sync
frame cumently in the buffer and known to contain efroxs.
The error pointers comprise a DRAM offset address and a
validity flag. The DRAM offset address is a 13-bit offset
address, relative to the audio buffer base address. into the
DRAM at which the first byte of the audio sync frame
known to contain errors is stored. Thirtecn bits allows the
pointer to address an andio buffer as large as 8192 bytes. The
validity flag is a onc-bit flag indicating whether or not this
error pointer contains a valid DRAM offsct address. When
receiving data from a refatively emor free medium, sub-
system 44 will find itself not having any valid exror pointers
for some intervals of time.

Subsystem 44 is required to maintain a total of two emar
pointers and one esror mode flag. After reset, the validity flag
is set to invalid and the eror mode is set to “protected.”
When a sync word is placed into the andio buffer, if the valid

-
“

2

25

20

flag of one or more error pointers is not set, the buffer
address of the sync ward is recorded into the DRAM offset
address of one of the invalid errar pointers. At the same time,
the error mode is sct to protected. If the validity flag of both
error pointers is set when a sync word is placed into the
buffer, the cror mode is set to unprotected but the DRAM
offset address of the sync word is not recorded.

When audio data is placed into the buffer and any error is
discovered in the audio data, such as due to the loss of an
audio transport packet or the reception of audio data which
has not been properly decrypted, subsystem 44 will revert to
the PTS acquire state if the error mode is unprotected.
Otherwise, the validity bit of the error pointer which con-
tains the DRAM offset address of the sync word which starts
the sync frame currently being received is set. In the rare
event that an error is discovered in the data for an audio sync
frame during the same clock cycle that the sync word for the
sync frame is removed from the buffer, the sync word will
be corrupted as indicated above to specify that the sync
frame is known to contain an audio error. At the same time,
the validity bit is cleared such that it does not remain set after
the sync frame has been output. This avoids the need to reset
subsystem 44 in order to render the pointer uscful again.

‘When audio data is being removed from the audio buffer,
the sync word is comrupted if the DRAM offset address of
any exror pointer matches that of the data currently being
removed from the buffer. At the same time, the validity bit
is set to invalid.

The decoder of FIG. 2 also illustrates a video buffer 58
and video decoder 52. These process the video data at the
same time the audio data is being processed as described
above. The ultimate goal is to have the video and audio data
output together at the proper time so that the television
signal can be reconstructed with proper lip synchronization.

FIG. 4 is a block diagram illustrating the demnltiplexing
and data parsing subsystem 44 of FIG. 2 in greater detail.
After the transport packets are input via terminal 40, the PID
of each packet is detected by circuit 70. The detection of the
PIDs enables demultiplexer 72 to output audio packets,

“ video packets and any other types of packets carried in the

45

60

65

data stream, such as packets carrying control data, on

scparate lines.

The audio packets output from demultiplexer 72 are input
to the various circuits necessary to implement the audio
processing as described above. Circuit 74 modifies the sync
word of each audio frame known to contain emrars. The
modified sync words are obtained using a sync word inverter
78, which inverts every other bit in the sync words output
from a sync word, PCR and PTS detection circuit 80, in the
event that the audio frame to which the syne word corre-
sponds contains an error. Brror detection is provided by error
detection circuit 76.

The sync word, PCR and PTS detection circuit 80 also
outputs the sync word for each audio frame to an audio
sample and bit rate calculator 86. This circuit determines the
audio sample and bit rate of the audio data and passes this
information to decoder microprocessor 42 via data bus 88.

The PCR and PTS are output from circuit 80 to a lip sync
and output timing compensator 82. Circuit 82 also receives
the dPTS values from microprocessor 42, and adds the
appropriate values to the PTS in order to provide the
necessary delay for proper lip synchronization. Compensa-
tor 82 also determines if the delayed presentation time is
outsidc of the acceptable range with respect to the PCR, in
which case an error has occurred and resynchronization will
be required.

NOAC Ex. 1015 Page 185

R

PR

T AT PO

| O

@

5,703,877

21

Buffer control 84 provides the control and address infor-
mation to the audio output buffer 58. The buffer control 84
is signaled by error detection circuit 76 whencver an error
occurs that requires the temporary suspension of the writing
of data to the buffer. The buffer control 84 also receives the
delay values from lip sync and output timing compensator
82 in order to control the proper timing of data output from
the buffer.

FIG. § is a state diagram illustrating the processing of
audio data and response to errors as set forth in Table 1. The
idle state is represented by box 100. Acquisition of the andio
data occurs during the frame sync state 102. The dPTS-wait
state is indicated by box 104. Boxes 106, 108 and 110
represent the PCR ., PTS,, ., and PTS sync states, respec-
tively. Once audio synchronization has occurred, the signal
is tracked as indicated by the tracking state of box 112. The
outputs of cach of boxes 104, 106, 108, 110 and 112 indicate
the error conditions that cause a return to the frame syn-
chronization state 102. The error PCR DIS1 during the PTS
sync state 110 will cause a return to the PTS acquire state,
as indicated in the state diagram of FIG. 5.

It should now be appreciated that the present invention
provides methods and apparatus for acquiring and process-
ing errors in audio data communicated via a transport packet
scheme. Transport packet errors are handled while main-
taining andio synchronization. During such emror conditions,
the associated audio errors are concealed. Corrupted data in
an audio frame is signaled by altering the sync pattern
associated with the audio frame. PTS"s are used to check the
timing of processing and to correct audio timing efrors.

Although the invention has been described in connection
with various specific embodiments, it should be appreciated
and understood that numerous adaptations and modifications
may be made thercto, without departing from the spirit and
scope of the invention as set forth in the claims.

We claim:

1. A method for processing digital audio data from a
packetized data stream carrying digital television informa-
tion in & succession of fixed length transpost packets, cach
of said packets including a packet identifier (PID), some of

5

10

25

30

35

said packets containing a program clock reference (PCR)

value for synchronizing a decoder system time clock (STC),
and some of said packets containing a presentation time
stamp (PTS) indicative of a time for commencing the output
of associated data for use in reconstructing a television
signal, said method comprising the steps of:

monitoring the PID’s for the packets carried in said data

stream to detect audio packets, some of said audio
packets carrying an audio PTS;

storing audio data from the detected audio packets in a

buffer for subsequent output;
monitoring the detected audio packets to locate audio
PTS’s;

comparing a time derived from said STC with a time
derived from the located audio PTS’s to determine
whether said audio packets are too carly to decode, too
late to decode, or ready to be decoded; and

adjusting the time at which said stored audio data is output

from said buffer on an ongoing basis in response to said
comparing step.

2. A method in accordance with claim 1 wherein a PTS
pointer is provided to maintain a current PTS value and an
address of said buffer identifying where a portion of audio
data referred to by said current PTS is stared, said timing
adjustment being provided by the further steps of:

replacing said PTS value in said PTS pointer with a new

current PTS value after data stored at said address has
been output from said buffer;

45

22
replacing said address in said PTS pointer with a new
address corresponding to a portion of audio data
referred to by said new current PTS value;
suspending the output of data from said buffer when said
new address is reached; and
recommencing the output of data from said buffer when
said decoder system time clock reaches a presentation
time derived from said new current PTS value.

3. A method in accordance with claim 2 wherein said
presentation time is determined from the sum of said new
current PTS value and an offset value that provides proper
lip synchronization by accounting for a video signal pro-
cessing delay.

4. A method in accardance with claim 1 wherein the time
at which the audio data is output from said buffer is
dependent on an offset value added to said PTS for providing
proper lip synchronization by accounting for a video signal
processing delay.

5. A method in accordance with claim 1 comprising the
further steps of:

examining the detected audio packets to locate the occur-

rence of at least one audio synchronization word
therein for use in achieving a synchronization condition
prior to locating said audio PTS’s;

commencing a reacquisition of said synchronization con-

dition if said comparing step determines that said audio
packets are too late to decode.
6. A method in accordance with claim 5 wherein two
consecutive audio synchronization words with a correct
number of audio data bytes in between define an audio
frame, said audio frame including only one of said two
consecutive audio synchronization words, said method com-
prising the further steps of:
detecting the occurrence of errors in said audio packets;
upon detecting a first audio packet of a current audio
frame containing an error, advancing a write pointer for
said buffer by the maximum number of payload bytes
(X) contained in one of said fixed length transport
packets and designating said current audio frame as
being in emror;
monitoring the detected andio packets of said cumrent
audio frame for the next audio synchronization word
after said error has been detected, and if said synchro-
nization word is not received where expected in the
audio stream, discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said buffer;

rcsuming the starage of audio data in said buffer upon
detection of said next audio synchronization word if
said next audio synchronization ward is located within
N bytes after the commencement of the search therefor;
and

if said next audio synchronization word is not located

within said N bytes after the commencement of the
search therefor, commencing a reacquisition of said
synchronization condition.

7. A method in accordance with claim 6 comprising the
further step of concealing television audio errors whenever
the audio data from which said television audio is being

¢a reconstructed is in ezTor.

65

8. A method in accordance with claim 7 wherein:

a current audio frame is designated as being in error by
altering the audio synchronization ward for that frame;
and

said concealing step is responsive to an altered synchro-
nization word for concealing audio associated with the
corresponding audio frame.

NOAC Ex. 1015 Page 186

A g

e .

g

A e

PYPTRery ! RV
_—

‘
Lo

5,703,877

23

9. A method for processing digital audio data from a
packetized data stream carrying digital television informa-
tion in a succession of transport packets having a fixed
length of N bytes, cach of said packets including a packet
identifier (PID). some of said packets containing a program
clock reference (PCR) value for synchronizing a decoder
system time clock, and some of said packets containing a
presentation time stamp (PTS) indicative of a time for
commencing the output of associated data for use in recon-
structing a television signal, said method comprising the
steps of:

mounitoring the PID’s for the packets carried in said data
stream to detect audio packets;

examining the detected audio packets to locate the occur-
rence of audio synchronization words for use in achiev-
ing a synchronization condition, cach two consecutive
audio synchronization words defining an audio frame
therebetween;

monitoring the detected audio packets after said synchro-
nization condition has been achieved to locate an andio
PTS;

searching the detected audio packets after locating said
audio PTS to locate the next audio synchronization
word;

storing audio data following said next audio synchroni-
zation word in a buffer;

detecting the occurrence of errors in said audio packets;

upon detecting a first audio packet of a cumrent audio
frame containing an error, advancing a write pointer for
said buffer by N bytes and designating said current
audio frame as being in error;

monitoring the detected audio packets of said current
audio frame for the next audio synchronization word
after said error has been detected, and if said synchro-
pization word is not received where expected in the
audio stream, discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said buffer;

resuming the storage of audio data in said buffer upon
detection of said next audio synchronization word if
said next audio synchronization word is located within
N bytes after the commencement of the search therefor;
and

if said next audio synchronization word is not located
within said N bytes after the commencement of the
search therefor, commencing a reacquisition of said
synchronization condition.

10. A method in accordance with claim 9 comprising the
further step of concealing television audio errors whenever
the audio data from which said television audio is being
reconstructed is in error.

11. A method in accordance with claim 14 whercin:

a current audio frame is designated as being in error by
altering the audio synchronization word for that frame;
and

said concealing step is responsive to an altered synchro-
nization word for concealing audio associated with the
corresponding audio frame.

12. A method in accordance with claim 9 wherein said
audio data Includes information indicative of an audio
sample rate and audio bit rate, at least one of said audio
sample rate and audio bit rate being variable, said method
comprising the further step of attempting to maintain syn-
chronization of said audio packets during a rate change
indicated by said audio data by:

5

15

30

35

45

50

65

24
ignoring a rate change indicated by said audio data on the
assumption that the rate has not actually changed;
concealing the audio frame containing the data indicative
of an audio sample rate change while attempting to
maintain said synchronization condition; and
commencing a reacquisition of said synchronization con-
dition if said condition cannot be maintained.

13. A method in accordance with claim 9 wherein said
audio data includes information indicative of an audio
sample rate and andio bit rate, at least one of said audio
sample rate and audio bit rate being variable, said method
comprising the further step of attempting to maintain syn-
chronization of said audio packets during a rate change
indicated by said audio data by:

processing said andio data in accordance with a new rate

indicated by said audio data in the absence of an error
indication pertaining to the audio frame containing the
new rate, while attempting to maintain said synchro-
nization condition;

processing said andio data without changing the rate if an

error indication pertains to the audio frame containing
the new rate, while concealing the audio frame to which
said error condition pertains and attempting to maintain
said synchronization condition; and

commencing a reacquisition of said synchronization con-

dition if said condition cannot bc maintained.

14. Apparatus for acquiring audio information carried by
a packetized data stream and processing emrors therein,
comprising:

means for detecting audio transport packets in said data

stream;

means for recovering audio data from said detected audio

transport packets for storage in a buffer;
means for locating an audio presentation Gme stamp
(PTS) in said detected audio transport packets;

means responsive to said PTS for commencing the output
of audio data from said buffer at a specified time;

means for monitaring the detected audio transport packets
after the output of audio data from said buffer has
commenced, to locate subsequent audio PTS’s;

means for comparing a time derived from a decoder
system time clock (STC) to a time derived from the
subsequent audio PTS’s to determine whether audio
data stored in said buffer is too carly to decodc, too late
to decode, or ready to be decoded; and

means responsive to said comparing means for adjusting

the time at which said stored audio data is output from
said buffer.

15. Apparatus in accordance with claim 14 further com-
prising:

means for maintaining a PTS pointer with a current PTS

value and an address of said buffer identifying where a
portion of audio data refarred to by said current PTS is
stored;

means for replacing said PTS value in said PTS pointer

with a new current PTS value after data stored at said
address has been output from said buffer, and for
replacing said address in said PTS pointer with a new
address corresponding to a portion of andio data
referred to by said new current PTS value;

means responsive to said PTS pointer for suspending the

output of data from said buffer when said new address
is reached; and

means for recommencing the output of data from said

buffer at a ime derived from said new cumrent PTS
value.

NOAC Ex. 1015 Page 187

WL it

‘v gt Ty

7
153
§]

s .

A

o O

5,703,877

25

16. Apparatus in accardance with claim 15 further com-
prising:

means for concealing error in an audio signal reproduced

from data output from said buffer and reestablishing the
detection of said audio transport packets if the time
derived from said new current PTS value is outside a
predetermined range.

17. Apparatus in accordance with claim 14 whercin said
audio transport packets cach contain 2 fixed number N of
payload bytes, said packets being arranged into successive
audio frames commencing with an audio synchronization
word, said apparatus further comprising:

means for detecting the occurrence of errors in said audio

packets;

means for advancing a write pointer for said buffer by N

bytes and designating a current audio frame as being in
error upod detecting an error in an audio transport
packet of said current audio frame;

means for monitoring the detected audio transport packets

of said cumrent audio frame for the next audio synchro-
nization word after said eror has been detected, and if
said synchronization word is not received where
expected in the audio stream, discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said buffer;

means for resuming the storage of audio data in said

buffer upon detection of said next audio synchroniza-
tion word if said next audio synchronization word is
located within said fixed number N of bytes after the
commencement of the search therefor; and

means for reestablishing the detection of said andio

transport packets if said next andio synchronization
word is not located within said fixed number N of bytes
after the commencement of the search therefor.

18. Apparatus in accordance with claim 17 further com-
Prising:

means for concealing error in an audio signal reproduced

from data output from said buffer when the data output
from said buffer is in error.

19. Apparatus in accordance with claim 18 further com-
prising:

means for altering the audio synchronization word asso-

ciated with a current andio frame to designate that
frame as being in error;

wherein said concealing means are responsive to altered

synchronization words far concealing errors in audio
associated with the corresponding audio frame.

20. Apparatus for acquiring audio information carried by
a packetized data stream and processing errors therein,
comprising:

means for detecting audio transport packets in said data

stream, said packets being arranged into successive
audio frames commencing with an audio synchroniza-
tion word;

means responsive to said synchronization words for

obtaining a synchronization condition cnabling the
recovery of audio data from said detected audio trans-
part packets for storage in a buffer;

means for detecting the presence of errors in said audio

data;

means responsive to said error detecting means far con-

trolling the flow of data through said buffer when an
error is present, to attempt to maintain said synchroni-
zation condition while masking said error; and

26

means for reestablishing the detection of said audio
transport packets if said controlling means cannot
maintain said synchronization condition.
21. Apparatus in accardance with claim 20 wherein said
5 audio transport packets each contain a fixed number N of
payload bytes, and said means responsive to said error
detecting means comprise:
means for advancing a write pointer for said buffer by said
fixed number N of bytes and designating a current
10 audio frame as being in emror upon the detection of an
ervar in an audio transpart packet thereof;
means for monitoring the detected audio transpart packets
of said current audio frame for the next audio synchro-
nization word after said error has been detected, and if
13 said symchronization word is not reccived where
expected in the audio stream, discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said buffer; and
2 means for resuming the storage of audio data in said
buffer upon detection of said next audio synchroniza-
tion word if said next audio synchronization word is
located within said fixed number N of bytes after the
commencement of the scarch therefar.
25 22 Apparatus in accordance with claim 20 further com-
prising:
means for concealing error in an audio signal reproduced
from data output from said buffer when the data output
from said buffer is in emror.
30 23, Apparatus in accordance with claim 22 further com-
prising:
means for altering the audio synchronization word asso-
ciated with an andio frame containing a data emor to
designate that frame as being in emar;

wherein said concealing means are responsive to aitered

synchronization words for concealing errors in audio
associated with the corresponding audio frame.

24. A method for managing errors in data received in
4o bursts from a packetized data stream carrying digital infor-
mation in a succession of fixed length transpart packets, at
least some of said packets containing a presentation time
stamp (PTS) indicative of a time for commencing the fixed
rate presentation of presentation units from a buffer into
which they are temporarily stored upon receipt. said method
comprising the steps of:

monitoring received packets to locate associated PTS's.

said received packets carrying presentation units to be
presented;
sg synchronizing the presentation of said presentation units
from said buffer to a system time clock (STC) associ-
ated with the packetized data stream using timing
information derived from the PTS’s located in said
monitocing step; and
ss identifying discontinuity errors resulting from a loss of
onc ar more transmitted packets between successive
ones of the received packets and, if a discontinuity of
no more than one packet is identified, advancing a write
pointer of said buffer by a suitable number of bits to
60 compensate for the discontinuity, while maintaining the
synchronization of said presentation with respect to
said STC.
25. A method in accordance with claim 24 wherein said
transport packets each contain a fixed number N of payload
65 bytes, said method comprising the further steps of:
advancing said write pointer by said fixed number N of
bytes upon the detection of a discontinuity error;

33

45

NOAC Ex. 1015 Page 188

- O

5,703,877

27

continuing sald monitoring step after said discontinuity
error has been detected in order to search for a syn-
chronization word, and if said synchronization word is
not located where expected, discarding subsequent
presentation units while scarching for said synchroni-
zation word rather than storing said subsequent pre-
sentation units in said buffer; and

5

28
resuming the storage of presentation units in said buffer
upon the detection of said synchronization word if said
synchronization word is located within said fixed num-
ber N of bytes after the commencement of the search
therefor.

NOAC Ex. 1015 Page 189

e

United States Patent [19]
Bellenger

e

5,802,054
Sep. 1, 1998

r11) Patent Number:
4s] Date of Patent:

[54) ATOMIC NETWORK SWITCH WITH
INTEGRATED CIRCUIT SWITCH NODES

{751 Inventor: Donald M. Bellenger, Los Altos Hills,
Calif,

[73] Assignee: 3Com Corporation, Santa Clara, Calif.

21] Appl No.: 698,745

[22] Filed: Ang. 16, 1996
[51] Int. CLS HO4L 12/66
(521 US.CL 370/481
(58] Field of Search ...oereemscecrircomn 3701351, 400,
3707401, 402, 407, 408, 422
561 References Cited
U.S. PATENT DOCUMENTS
4947390 8/1990 Shoehy e ccsccrsssseccisssone - J70/401
5047917 91991 Athas etal. .cwmcemcreers eecerener G200
5,066,931 1171992 RidIE corermemmroermscossscmmemscrenes 3T0/401
5321,695 61994 Faulk, Jr. cevren remmmsssessasssnnees 3T0/40]

5,390,173 21995 SPIDEY et al comemrmmscmmonns 3700401
SATISAT 121995 SUZIYAMIA svosemerseresmemsssrrmnes 370401
5610905 3/1997 Murthy et ab. wemeerscomesermnns 3704401
5657314 81997 McCIre et al. coeeeereoocemms 370401

OTHER PUBLICATIONS

ATOMIC: A Low-Cost, Very High-Speed, Local Commn-
nication Architecture, Danny Cohen, Gregory Finn, Robert
Felderman, Annette DeSchon, USC/Information Sciences
Institute, 1993 International Conference on Parallel Process-

ing.

The Use of Message-Based Multicomputer Components to
Construct Gigabit Networks, by D. Cohen, G. Finn, R.
Felderman and A. DeSchon, University of Southern Cali-
fornia/Information Sciences Institute.

ATOMIC: A High-Speed Local Communication Architec-
ture, by R. Felderman, A. DeSchon, D. Cohen, G. Finn,
US(/Information Sciences Institute, Journal of High Speed
Netwarks 1 (1994) pp. 1-28, IOS Press.

ATOMIC: A Local Communication Network Created
Through Repeated Application of Multicomputing Compo-
pents, by D. Cohen, G. Finn, R. Felderman, A. DeSchon.

An Integration of Network Communication and Workstation
Architecture, by Gregory G. Finn, USC/Information Sci-
ences Institute, Published Oct. 1991, ACM Computer Com-
munication Review.

(List continued on next page.)

Primary Examiner—Ajit Patel
Artorney, Agent, or Firm—Mak A. Haynes; Kent R
Richardson; Wilson, Sonsini, Goodrich & Rosati

(57 ABSTRACT

An atomic type switch mesh is combined with standard local
area network links, such as high speed Ethernct, and a
bridge-like protocol to provide a high performance scalable
network switch. The network switch comprises a plurality of
switch nodes, a first set of communication links which are
coupled between switch nodes internal to the petwork
switch, and a second set of communication links which
comprise network links from switch nodes on the barder of
the network switch to systems external to the netwark
switch, The respective switch nodes include a set of parts
(having mare than two members) which are connected to
respective commnnication links in either the first or sccond
set of communication links. Bach port in the set comprises
a medium access control (MAC) logic unit for a connec-
tionless network protocol, preferably high speed Ethernet.
The switch nodes also include a route table memory which
has a set of accessible memory locations that store switch
route data specifying routes through the plurality of switch
nodes within the bonndaries of the network switch. Flow
detect logic is coupled with the set of parts on the switch
node, which monitors frames received by the set of ports and
generates an identifying tag for use in accessing the route
‘table memory. Finally, the switch node includes node route
logic which is coupled with the flow detect logic, the route
table memory and the set of parts. The node route logic
monitars frames received by the set of ports to route a
received frame for transmission out a port in the set of ports.

56 Claims, 6 Drawing Sheets

NOAC Ex. 1015 Page 190

:

O

5,802,054
Page 2

OTHER PUBLICATIONS

ATOMIC: A Low-Cost, Very—High-Speed LAN, by D.
Cohen, G. Finn, R. Felderman, A. DeSchon.

The Design of the Caltech Mosaic C Multicomputer, C.
Seitz, N. Boden, J. Seizovic, and W. Su, Computer Science
256-80, California Institute of Technology.

802.3z Higher Spoed Task Force Objectives (Gigabit Eth-
ernet), Apr., 1996.

Netstation Architecture Multi-~Gigabit Workstation Network
Fabric, G. Finn, P. Mockapetris, USC/Information Sciences
Institute.

A Zero—Pass End—to-End Checksum Mechanism for IPv6',
G. Fimn, S. Hotz, C. Rogers, USC/Information Sciences
Institute, Dec., 1995.

Network Backplane, G. Finn, USC/Information Sciences
Institute, Apr., 1994.

NOAC Ex. 1015 Page 191

0

j ‘ U.S. Patent Sep.1,1998 Sheet 10f 6 5,802,054

12
END
STATION
1141 I—‘ 12-2
END
’ég@*‘/ STATION
10 112 —12:3
END
ATOMIC MESH i1 | STATION
NETWORK SWITCH
114
r 124
115 END
STATION

12-5

END
110 i STATION
END
STATION
11-8 END — 12-6
7 STATION
12-9 END
D STATION
STATION
L 127
L. 128

FIG. 1

NOAC Ex. 1015 Page 192

O

U.S. Patent Sep. 1, 1998 Sheet 2 of 6 5,802,054
121 122 123
PHY PHY PHY
105—| 102 110 v 111
134 FLOW 103 FLOW FLOW l— 11 2 124
PHY »| SWITCH » SWITCH »| SWITCH PHY
| 141 —108 | 12 13 <
104 RAM RAM RAM
. : 142
1214| FLOW FLOW 141-| FLow |™113 329
PHY $| SWITCH > SWITCH ————>| SWITCH [4—»{ pHY
| 24 22 140| 23 |
133 RAM RAM RAM
A 4 A A 4
120‘1 FLOW FLOW FLow | 114
PHY 3| SWITCH » SWITCH »| SWITCH [—b pml-\ v
| 33 !
132 + >2 126
" | RAM RAN RAM
A 4 h r
"9‘] FLOW FLOW Flow |~ 11°
PHY Je—# SwiTCH »| switcH SWITCH —»{ pHy
‘ 41 42 43 !
T RAMI 117 RAMY 116 RAM 1
y A y
PHY PHY PHY
L 130 129 128
151
ROUTER
L 150

NOAC Ex. 1015 Page 193

& O O

v U.S. Patent Sep. 1, 1998 Sheet 3 of 6 5,802,054
i) f200 7 2011
A | FLOW SWITCHNODE -~ 2011 270-1
i | 1c | swmen |2 TO OTHER
o | PORT1 |= CHIP
k I 270-2 [204
I FLOW 201-2 205
| DETECT -)
| LOGIC > i‘gf;gl g Pc:::zHTY 2 ‘_L’
. | (N FLOWS)
; ! |
; : § 2%22 :
: 212
gil | [e |
| (ROUTE ° |
1 TABLE —210 202X |
: I MGHT) 201X | 203X —270-X
; : cPu | S oAy g |AJoomer
f;s | (NODE PORT X | S CHIP
% ROUTE
: : LOGIC) : 260-X
;z{ I ~ > l
: (» ARBWER |— 211 |
b I |
e i |
Lommm - | R - FIG. 3
; %206
RDRAM 207
: 220 221
‘ SWITCH FRAME
ROUTE BUFFER(S)
TABLE
/ o
250
[Tac]T ROUTEHDR | BLKUNBLK | AGE..]
L 251 L 252 L 253 L 254
NOAC Ex. 1015 Page 194

U.S. Patent Sep. 1, 1998 Sheet 4 of 6 5,802,054

300

FRAME
RECEIVED ON PORT N

YES

FIG. 4

ROUTE HEADER?

GENERATE TAG FROM
FLOW DETECT

ADD ROUTE HEADER
‘ [~ 306 i [302
DECREMENT HEADER,
TRANSI!I';ggTDEFAULT TRANSMIT ON PORT ID IN
HEADER

NOAC Ex. 1015 Page 195

5,802,054

Sheet 5 of 6

Sep. 1, 1998

~N=
=
L
=
A
4
-

10S 1
73S MOTd HSYH_ |«
. < NMOTd HSVH |«
9 'Old e
< 8 MOTd HSYH [«
oLy €05~ e—] LMOVIHSYH [¢—
SSI¥aay 318v1 3LNON < 9 MO4 HSYH
Ly D § MO4 HSVH
¥3avaH - ¥ MOTd HSYH _ |e
wu_m%_ 2 £ MOTd HSVH__|e
SSIW/LIH A||_. < Z MOV HSYH _ |e
gLp < L MOTHSVH e
' — 005
NV
Ly — Q3A130TY
HOLVHINZO HSVH r ,
vy | — — ' m w — m
NN Eiv— gy by — oLy —
[d03] wnswoawo | / m | wsavadai | osW | 3omwnos | 1saa | d0S | - oot
AN
g0y | 10% -] oo sov— poy g0y - Zop- Loy

NOAC Ex. 1015 Page 196

oo

S
~ £

30 4 . . B <3
T DA S DI

»»»

U.S. Patent

Sep. 1, 1998 Sheet 6 of 6

700

FRAME
RECEIVED IN ROUTER

L r 701

GENERATE ROUTE
HEADERS FOR FLOWS
SWITCHES

r 702

SEND MSG TO FLOW
SWITCHES TO UPDATE
ROUTE TABLES AND
BLOCK MATCHING
PACKETS

X — 703

FORWARD PACKET TO
DESTINATION

— 704

SEND MSG TO FLOW
SWITCHES TO UNBLOCK

FIG. 7

O

5,802,054

NOAC Ex. 1015 Page 197

o, e

a

S,

5,802,054

1

ATOMIC NETWORK SWITCH WITH
INTEGRATED CIRCUIT SWITCH NODES

BACKGROUND OF THE INVENTION

1. Ficld of the Invention

The present invention relates to the field of network
intermediate devices, and more particularly to high-
performance switches for routing data in computer net-
works.

2. Description of Related Art

Network intermediate systems for interconnecting net-
works include various classes of devices, including bridges,
routers and switches. Systems for the interconnection of
munltiple networks encounter a variety of problems, includ-
ing the diversity of network protocols executed in the
networks to be interconnected, the high bandwidth required
in order to handle the convergence of data from the inter-
connected networks at one place, and the complexity of the
systems being designed to handle these problems. As the
bandwidth of local arca network protocols increases, with
the development of so-called asynchronous transfer mode
(“ATM™), 100 megabit per second Bthemet standards, and
proposals for gigabit per sccond Ethernet standards, the
problems encountered at network intermediate systems are
being muitiplied.

One technique which has been the subject of significant
research for increasing the throughput of networks is known
as the so-called atomic LAN. The atomic LAN is described
for example in Cohen, et al., “ATOMIC: A Low-Cost, Very
High-Speed, Local Communication Architecture”, 1993
International Conference on Parallel Processing. There is a
significant amoant of published information about the
stomic LAN technology. Felderman, et al. “ATOMIC: A
High-Speed Local Communication Architecture”™, Journal
of High Speed Networks, Vol. 1, 1994, pp. 1-28; Coben, ct
al., “ATOMIC: A Local Communication Netwark Created
Through Repeated Application of Multicomputing
Components”, DARPA Coatract No. DABT63-91-C-001,
Oct. 1, 1992; Coben et al., “The Use of Message-Based
Multicomputer Components to Construct Gigabyte Net-
warks™; DARPA Contract No. DABT63-91-C-001, pub-
lished Jun. 1, 1592; Finn, “An Integration of Network
Communications with Workstation Architecture”, ACM, A
Computer Communication Review, October 1991; Cohen et
al., “ATOMIC: Low-cost, Very-High-Speed LAN”, DARPA
Contract No. DABT63-91-C-001 (publication date
unknown, downloaded from Internet on or about May 10,
1996).

The atomic LAN is built by repeating simple four port
switch integrated circuits in the end stations, based on the
well known Mosaic architecture created at the Califomia
Institate of Technology. These integrated circuits at the end
stations are interconnected in a mesh arrangement to pro-
duce a large pool of bandwidth that can cross many ports.
The links that intesconnect the switches run at 500 megabits
per second. Frames are routed among the end stations of the
petwork using a differential source route code adapted for
the mesh. One or more end stations in the mesh act “address
consultants” to map the mesh and calculate source route
codes. All of the links arc sclf timed, and depead on
acknowledged signal protocols to coordinate flow across the
links to prevent congestion. The routing method for navi-
gating through the mesh, known as “worm hole” routing is
designed to reduce the buffering requirements at each node.

The atomic LAN has not achieved commercial applica-
tion to a significant degree, with an exception possibly in

10

15

20

30

3s

30

55

60

2

connection with a supercomputer known as Paragon from
Intel Corparation of Santa Clara, Calif. Basically it has been
only a rescarch demonstration project. Critical limitations of
the design include the fact that it is based on grossly
non-standard elements which make commercial use imprac-
tical. For example, there is no way to interface the switch
chips taught according to the atomic LAN project with
standard workstations. Bach workstation needs a special
interface chip to become part of the mesh in order to
participate in the LAN. Nonetheless, the ATOMIC LAN
project has demonstrated a high throughput and readily
extendable architecture for communicating data.

Typical switches and routers in the prior art are based on
an architecture requiring a “backplane™ having electrical
characteristics that are superior to any of the incoming links
to be switched. For example, 3Com Corporation of Santa
Clara, Calif., produces a product known as NetBuilder2,
having a core bus backplane defined which runs at 800
megabits per second. This backplane moves traffic among
various local arca network external parts.

There are several problems with the backplane approach
typical of prior art intermediate systems. First, the backplane
must be defined fast enough to handle the largest load that
might occur in the intermediate system. Furtharmore, the
customer must pay for worst case backplane design, regard-
less of the customer’s actual need for the warst case system.
Second, the backplane itself is just another commnnication
link. This communication link must be completely sup-
ported as a backplane for the network intermediate system,
involving intricate and expensive design. The lower vol-
umes for specialized backplanc link further increases the
cost of metwork intermediate systems based on the back-
plane architecture.

In light of the cver increasing complexity and bandwidth
requirements of network intermediate systems in commer-
cial settings, it is desirable to apply the atomic LAN prin-
ciples in practical, casy to implement, and extendable net-
work intermediate systems.

SUMMARY OF THE INVENTION

According to the present invention, the fine scalability of
an atomic type LAN mesh, is combined with standard local
area netwark links, such as high speed Ethernet, and a
standard routing protocol to provide a high performance
scalable network switch. The need for the special purpose
backplane bus is removed according to this architecture,
while providing scalability, high performance, and simplic-
ity of design.

Accordingly, the present invention can be characterized as
a network switch that comprises a plurality of switch nodes
arranged in a mesh, a first set of internal communication
links which are coupled between switch aodes internal to the
network switch, and a second set of external communication
links which comprise network links from switch nodes on
the border of the network switch to systems external to the
network switch. The respective switch nodes include a set of
parts (having more than two members) which are connected
to respective communication links in onc of the first or
second sets of communication links. The ports in the set of
ports include respective medium access control (MAC) units
for transmission and reception of data frames according to a
network protocol, preferably a connectionless protocol like
high speed Ethernet, and are connectable to a port on another
network switch node inside the mesh across an internal
communication link, or to a network communication
medinm outside the mesh which constitutes, or is coupled
with, an external communication link.

NOAC Ex. 1015 Page 198

|

5,802,054

3

The switch nodes also include resources to execute a
routing process for frames inside the mesh. These resources
include a route table memory which has a set of accessible
memory locations that store switch route data specifying
routes through the plurality of switch nodes inside the mesh
of the network switch for specific flows of data frames, or for
data frames having specific destination addresses. Flow
detect logic is coupled with the set of ports on the switch
node, which monitors frames received by the set of parts and
generates an identifying tag for use in accessing the route
table memory. Example tags consist of a destination address
at one of the data link layer or the network layer, a portion
of the destination address, or hash values based on one or
mare fields in control segments of the frame. The tags
preferably act as flow signatures to associate a frame with a
sequence of frames traversing the switch. For example,
when a large file is transferred, a sequence of frames is
generated which constitutes a flow of data to a single
destination, and frames in the sequence have a single iden-
tifying tag. Finally, the switch node includes node route
logic which is coupled with the flow detect logic, the route
table memory and the set of ports. The node route logic
monitors frames received by the set of ports to route a
received frame for transmission out a port in the set of ports.

The node route logic determines whether the received
frame includes a switch route ficld that indicates a port in the
set of parts to which the frame should be directed for
transmission. If the received frame incindes a switch route
field, that field is updated according to a source route type
protocol, and the frame is forwarded with the updated switch
route field out the indicated post. If the received frame does
not include a switch route field, such as would normally be
the case for a frame entering the network switch at & switch
node on the border of the network switch, then the identi-
fying tag generated by the flow detect logic is used to access
the route table memory. Switch route data is retrieved from
the route table memory, if an entry exists for the identifying
tag of the current frame, This data is used to generate a
switch route field for the frame, and to direct the frame out
2 port indicated by the data,

The node route logic on the respective switch node also
includes logic that forwards a reccived frame for transmis-
sion on a defanit port in the set of ports, when the route table
memory does not include switch route data for the identi-
fying tag. The default port is coupled to a route leading to a
processor in the system at which switch routc data is
generated, such as a multi-protocol network router either
internal or external to the network switch. Thus, the node
route logic further includes logic toreceive switch route data
from a remote system for a particular identifying tag. This
switch route data is stored in the route table memory in
association with the particular identifying tag. When & new
entry is made in a switch route table, frames having the
particular identifying tag arc blocked, with or without
buffering, until notification is reccived that it is clear to
forward frames having the particular identifying tag. This
blocking technique allows the remote system to which a
frame was directed for routing, to forward the frame to its
destination, prior to other frames in the same flow scquence
being routed to that destination. This preserves the order of
transmission of frames in a particular flow. The node route
logic begins forwarding frames according to the switch route
data stored in the route table memory for a particular tag
sfter it receives notification from the remote system that it is
clear to forward frames.

The term frame is used herein, unless stated otherwise, in
a generic sense as a unit of data transferred according to a

15

35

45

60

4
network protocol, intending to include data units called
frames, packets, cells, strings, or other pames which may
have more specific meaning in other contexts.

In the preferred system, all the ports on the switch node
execute a single local area network protocol. Preferably this
protocol is an Ethernet protocol like the carrier sense,
multiple access with collision detection CSMA/CD protocol
of the widely used Ethernet standard and variants of it. Mare
preferably, the protocol is specified for operation at 100
megabits per second or higher, more preferably at the
emerging one gigabit per second Ethernet standard protocol
For example, half duplex and full duplex “Gigabit™ Ethernet
(TEEE802.32) or 100 Megabit Bthernet (802.3u) are used in
prefeaed embodiments.

Flow control between the nodes is handled according to
the standard LAN protocol of the ports, such as the Ethernet
protocol. Thus, management of the frame flow through the
switch is conducted on a frame by frame basis with the
format of the frame inside the switch essentially unaltered
from the format cntering or exiting the switch, with well
understood and easily implemented technology.

According to another aspect of the present invention, the
flow detect logic on the respective switch nodes comprises
logic which computes a plurality of hash values in response
to respective sets of control ficlds in a received frame. The
respective sets of control ficlds comelate with different
network frame formats which might be encountered in the
network, Logic is also included which determines a partica-
lar network frame format for a received frame, and selects
one of the plurality of hash values as the identifying tag in
respouse to the particular network frame format that has
been detected. The hash values preferably comprise cydic
redundancy codes which are generated with hardware CRC
generators. In this manner, the identifying tag for an incom-
ing frame is generated very quickly, allowing for cut throngh
of frames in a switch node 5o that a transmission of a frame
on an outgoing port can begin before the complete frame has
been received at the incoming port.

The present inveation can also be characterized as indi-
vidual switch nodes for use in a netwoark switch in the
configuration described above. In another aspect, the net-
work switch node comprises an integrated circuit on which
thcplm:lnyofpms the flow control logic, and the flow
detect logic are incorporated, and interconnected by an
cmbeddedhigh speed bus. A system including any two or
mare of such integrated circuits cambined together to form
a mesh, provide a network switch. According to another
aspect of the invention, the posts on the integrated circuits
are coupled with standard jack connectors, or other standard
connector interfaces, allowing users of switch circuits
including a plurality of integrated circuits to connect them
together using cables in any desired configuration. Thus, a
very flexible switch architecture is provided which can be
configured for individual installations very easily.

Abigh performance network switch is provided according
to the present invention based on a switch node made with
aninlcgmedcircunhnwnga'ormureLANpons A frame
is routed amongst the nodes in the switch without moving
across any intermediatc non-LAN bus (excluding the
memory {nterface in cach of the nodes used for the frame
buffers). A route decision is made in cach node based on a
switch route header attached to the LAN frame, or on the
Ethernet address contained within the frame, or directed to
a default route if no route is stored in the route table and the
Ethernet address is unknown. The flow control amongst the
podes in the switch is handled based on standard LAN

NOAC Ex. 1015 Page 199

PR 3 AP
.

s

| O

5,802,054

5

contro] signals. In the preferred system, the standard LAN
interface amongst the nodes is 100 megabit per second or
higher Ethernet, and mare preferably the emerging 1 gigabit
per second Ethernet protocol.

Other aspects and advantages of the present invention can
be seen upon review of the drawings, the detailed descrip-
tion and the claims which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram of a network including an
atomic netwark switch according to the present invention,
interconnecting a plurality of standard Ethernet links.

FIG. 2 is a block diagram of a network switch based on
a mesh of switch nodes accarding to the present invention.

FIG. 3 is a block diagram of a switch node according to
the present invention.

FIG. 4 is a flow chart illustrating the process executed by
the node route logic in the switch node of FIG. 3.

FIG, § is a diagram illustrating the process of generating
identifying tags based on cyclic redundancy code hash
generatars for the flow detect logic of the system of FIG. 3.

FIG. 6 is a simplified block diagram of the flow detect
logic for multiple parallel fiows for use in the system of FIG.
3.

FIG. 7 is a flow chart illustrating the process exccuted in
arouter or other network route processor far frames received
from the network switch, which do not have entries in the
route tables of the network switch.

DETAILED DESCRIPTION

A detailed description of embodiments of the present
invention is provided with reference to FIGS. 1 through 7,
where FIG. 1 illustrates the context in which the present
invention is utilized. In FIG. 1, an atomic network switch 10
acoording to the present invention is connected by standard
Ethernet links 11-1 through 11-9 to a plurality of end stations
12-1 through 12-9. The number of end stations and Ethernet
links shown in FIG. 1 is arbitrary. A larger or smaller number
of links could be conneccied to a single atomic switch 10
according to the present invention, as described in detail
below. Furthermore, the connections 11-1 through 11-9 from
the atomic switch to the respective end stations are all
standard netwock connections, preferably CSMA/CD pro-
tocol links, such as the standard full duplex fast Ethemet
(IEEE802.3u) specified for 100 megabits per second cach
way, or the emerging standard full duplex, 1 gigahit per
second Ethernet protocol. In the preferred system, all links
11-1 through 11-9 operate according to the same network
protocol. However, alternative systems accommodate mul-
tiple network protocols on the external ports of switch 10.

The end stations 12-1 through 12-9 may be personal
computers, high performance workstations, multimedia
appliances, printers, network intermediate systems coopled
to further networks, or other data processing devices as
understood in the art.

According to one embodiment of the present invention
one of the end stations, such as end station 12-1 includes
resources to manage the configuration of the atomic network
switch 10, such as initializing route tables, maintaining the
route tables, and providing other functions. Thus, end station
12-1 may include resources to act as a multi-protocol router,
such as the NetBuilder2 manufactured by 3Com Corporation
of Santa Clara, Calif.

FIG. 2 illustrates the internal architecture of the atomic
network switch 10 shown in FIG. 1. The atomic network

55

60

6

switch 10 is comprised of a plurality of switch nodes
arranged in rows and columns in FIG. 2. The switch nodes
are labeled in the drawing by column and row numbers.
Thus, the switch node in the upper left hand corner is node
1-1. The switch node at row 1, column 2 is node 1-2, and so
on throughout the mesh. In a preferred embodiment, each
switch node includes an integrated circuit, such as integrated
circuit 10S in node 1-1, coupled to a memory chip, such as
chip 106 in node 1-1. Bach of the nodes includes four ports.
Thus, node 1-1 includes part 181, poet 102, port 103, and
port 104,

The boundary of the netwark switch in FIG. 2 comprises
the nodes 101 and 102 of node 1-1, port 110 of node 1-2, port
111 of node 1-3, 112 of node 1-3, port 113 of node 2-3, port
114 of node 3-3, port 115 of node 4-3, port 116 of node 4-3,
port 117 of node 4-2, part 118 of node 4-1, port 119 of node
4-1, part 120 of pode 3-1, and port 121 of node 2-1. Each of
the ports 110-121, 101 and 102 on the boundary of the
switch is connected to through a physical layer device,
121-134 to respective physical communication media, such
as fiberoptic cables, twisted pair cables, wireless links, such
as radio frequency or infrared channels, or other media
specified according to standard local area network physical
Layer specifications. The connection between switch nodes,
such as the connection 140 between port 141 on node 2-3
and port 142 on node 2-2, consist of medium independent
interface connections which are defined for connection
between MAC logic on a port, and medium dependent
components for a port. However, these medium independent
connections are connected from MAC logic to MAC logic
directly. Preferably all the links between the ports in the
network switch exccuts the same network protocol as the
ports on the boundary of the switch. However, alternative
systems suppost multiple protocol types at the bonndary.

Management of the configuration of the network switch is
accomplished in a router 150 which is connected across link
151 to the physical layer device 134 on the network switch.

The memary chips, such as chip 106 at node 1-1, in the
netwark switch are used to store route tables, and as frame
buffers used in routing of frames amongst the nodes of the
switch.

In operation, the netwark switch receives and transmits
standard LAN frames on physical interfaces 121-134.
Preferably, the LAN interconnections comprise CSMA/CD
LANs, such as 100 Mcgabit Ethernet (IEFE8023 u), or 1
gigabit Ethernet. When a standard frame enters the switch at
onc physical interface, it is directed out of the switch
through another physical interface as indicated by the
address data carried by the frame itself. The individual nodes
in the switch include a switch routing feature. Each indi-
vidual node selects a port on which to trapsmit a received
frame based upon the contents of the header of the incoming
frame.

There are two internal modes for routing frames inside the
switch. In the base mode, cach node routes frames using a
switch route header attached to the beginning of the regular
LAN frame. The switch route header in one example con-
sists of a series of bytes, cach byte specifying one or more
hops of the route. The top two bits in one byte specify a
direction, in the next bits specify the distance. As a frame
moves through cach node, the header is updated until it
reaches the target. Before a frame leaves the mesh, all the
switch route bytes are stripped, and the frame has the same
format as it had when it eatered the mesh or, if required, a
format adapted to the network protocol of the exit port.

The nodes of the switch, at Ieast nodes on the boundary
of the switch, also have a look up mode. When a frame

NOAC Ex. 1015 Page 200

O

O

5,802,054

7

enters the switch, with no source route header, the Ethemnet
addresses, or other fields of the control header of the frame
are utilized access the route table. In preferred systems, a
CRC-like checksum generator is run over the header of the
frame, or over selected fields in the header. At the end of the
header, the checksum, or the low order bits of the checksum,
are used as a hash code to access a route table stored in the
memory associated with the node. Other look up techniques
could be utilized for accessing the route table in the memory.
For example, the destination address of the incoming frame
could be used directly as an address in the table.

If there is an entry in the route table corresponding to the
header of the frame, then the switch route data from the table
is used to create a switch route header. The header is
attached to the frame, and the frame is transmitted at the
appropriate poct. If no entry is found in the route table, then
the frame is routed to a default address, such as the address
of a multiprotocol router associated with the switch. The
multiprotocol router at the default address also performs
management functions such as reporting status, initializing
the network, broadcast functions, and managing node route
tahles. Routing the frame to a default address alternatively
involves attachment of a switch route header to direct the
frame to the default address, or simply farwarding the frame
at a default port in the local node, such that the next node in
the mesh to receive the frame also looks it up in its own roate
table to determine whether the frame is recognized. Bither
way, the frame reaches the default address and is handled
appropxiately.

Flow control of the frames in the mesh, and at the
boundary of the mesh, is based on the netwark protocol of
the links, such as Ethemet. Thercfore, in the preferred
Ethernet example, if a port is not available in a target node
due to a busy link, a collision on the link, or lack of memory
space at the target node, the frame will be refused with a jam
signal or a busy signal on the link. The sending node buffers
the frame, and retrics the transmission later, according to the
backoff and retry rules of the protocol or other flow control
techniques of the protocol.

The standard higher-speed Ethemet protocols include
both half duplex and full duplex embodiments. The 100
Megabit per second Ethernet, defined by IEEE8023u,
clanse 31 “MAC Control,” dcfines a frame-based flow
control scheme for the full duplex embodiment. Flow con-
trol slows down the aggregate rate of packets that a particu-
lar port is sending. The method used revalves around control
frames distinguished by a unique multicast address and a
length/type field in the packet. When a MAC post controller
detects that it has received a contro] frame, the opcode in the
control frame is sensed, and transmission of packets is
controlled based on the opcode. In existing specifications, a
single opcode PAUSE is defined. Thus, in response to the
PAUSE opcode, transmission of packets is cither enabled or
disabled depending on the current state in a Xon/Xoff type
mechanism. Thus, this full duplex mode docs not depend on
the shared media, collision detect techniques of the classic
CSMA/CD protocols.

All the proposed standards in the Ethernet family basi-
cally use the standard 802.3/Ethernet frame format, con-
formed to the 802.2 logical link contral layer interface, and
the 802 functional requirement docament with the possible
exception of Hamming distance. Also, the minimum and
maximum frame size as specified by the current 8023
standard and by the half or full duplex operational modes is
different in the higher rate standards. Thus, the half and full
duplex embodiments of the 100 Megabit per second and
Gigabit per second Fthernet standards are often referred to

10

30

50

55

60

65

8

as CSMA/CD protocols, even though they may not fit
completely within the classic CSMA/CD definition.

FIG. 3 is a simplified block diagram of a single node in
the network switch according to the present invention. The
node consists of an integrated circuit 200 comprising ports
201-1,201-2, . .. 201-X. Each port includes the frame buffer
and port management logic normally associated with stan-
dard bridges. Also, coupled to cach of the ports, is a medium
access control MAC unit 202-1, 202-2, . ..202-X. The MAC
units 202-1 to 202-X are coupled to medium independent
interfaces MII 203-1, 203-2, . . . 203-X.

In the embodiment of FIG. 3, cach of the medium
independent interfaces is connected to a connector jack
260-1, 260-2, 260-X. The connector jacks comprise a stan-
dard connector to which a cable 270-1, 270-2, 270-X is
casily connected by the user. The cable may comprise a
coaxial cable for medium independent interfaces based on
serial data, or ribbon cables for wider data buses. A variety
of mechanical jack configurations can be used as kmown in
the art. For example, coaxial stubs can be mounted on
printed circuit boards adjacent cach post of the integrated
circuits. A short coaxial cable is then connected from stub-
to-stub in order to arrange the plurality of integrated circuit
chips in a mesh that suits the particular installation. Also,
standard ribbon connectar jacks can be surface mounted on
printed wiring boards adjacent to the integrated circuit. The
ribbon cables are connected into the ribbon connector jacks
in order to establish the inter-connection.

In alternatives, each of the switches is mounted on a
daughter board, with jacks designed to be connected to a
mother board in which the data is routed according to the
needs of the particular application. In alternative systems,
the jacks 260-1 through 260-X are not included, and the
medinm independent interfaces axre routed in the printed
wiring board in a hard-wired configuration, designed for a
particular installation.

Medium independent interfaces allow for communication
by means of the jacks 260-1 to 260-X and cables 270-1 to
210-X, or otherwise, directly with other MAC units on other
switch integrated circuits, or to physical layer devices for
connection to actual communication media. For cxample,
the MII 203-1 in FIG. 2 is connected directly to a port on
another node in the switch. The MIX 203-2 in FIG. 2 is
connected to a physical layer device 204 for port 2 throngh
jack 271. The physical layer device 204 is connected to a
physical transmission medium 285 for the LAN being
utilized. The MII 203-X in FIG. 2 is coupled directly to
another chip within the switch mesh.

According to one cmbodiment of the present invention,
integrated circuit 208 includes a memary interface 206 for
connection directly to an external memory, such as a Ram-
bus dynamic random access memory RDRAM 207. The
RDRAM 207 is utilized to store the switch route table 220,
and for frame buffers 221 utilized during the routing of
frames through the node.

The intcrnal architecture of the integrated circuit 200 can
take on a varicty of formats. In one preferred embodiment,
the internal architecture is based on a standard bus archi-
tecture specified for operation at 1 Gigabit per second, or
higher. In one example, a 64 bit-wide bus 21¢ operating at
100 Megahertz is used, providing 6.4 Gigabits per sccond as
a theoretical maximum. Even higher data rates are achiev-
able with faster clocks. The integrated circuit of FIG. 3
includes bus 210 which is connected to a memory arbiter
unit 211. Arbiter unit 211 connects the bus 210 to a CPU
processor 212 across line 213. The processor 212 is utilized

NOAC Ex. 1015 Page 201

GR A

e -

- ﬁa“'.‘-"‘,

LHE Y

| 0

5,802,054

9

to execute the route logic for the node. Each of the switch
ports 201-1 to 201-X is coupled to the bus 210, and thereby
through the arbiter 211 to the CPU 212 and the memory
interface 206. Also, flow detect logic 215 is coupled to the
bus 210 for the purpose of monitaring the frame received in
the node to detect flows, and to generate identifying tags for
the purpose of accessing the switch route table in the
RDRAM 207. The arbiter 211 provides for arbitration
amongst the ports, the flow detect logic, the memory, and the
CPU for access to the bus, and other management necessary
to accomplish the high speed transfer data from the ports to
the frame buffers and back out the port.

A representative location 258 of the switch route table is
shown. The location 250 includes a field 251 far the iden-
tifying tag, a field 252 for the route header, a field 253 for
a block-unblock control bit, and a field 254 or fields for
information used in the management of the route table, such
as the age of the entry. The tag field 251 may be associated
with a location by one or more of using the tag or a portion
of the tag in the address, by storing all or part of the actual
tag data in the addressed location, or by using other memory
tag techniques.

The route header in the prefered embodiment consists of
a secquence of route bytes. The first field in a route byte
includes information identifying a direction, which comre-
sponds to a particular port on the node, and a second field in
the byte includes a count indicating the number of steps
through the switch from node to node which should be
execated in the direction indicated by the first field. For
example, an eight bit route byte in a switch having nodes
with four ports, includes a two bit direction ficld, and a six
bit count field, specifying up to 63 hops in one of four
directions. A sequence of route bytes is used to specify a
route through the switch. Thus, the switch route header uses
source routing techniques within the switch for the purposes
of managing flow frames through the switch. The source
route approach may, for example, in a 4 port node include a
field for hops to right, hops to the Ieft, hops up and hops
down. The first ficld may carry information indicating left 4
hops, followed by a field indicating down 2 hops, followed
by a field indicating left one hop to exit the switch. Thus, a
frame would be transmitted out the left and in the right port
of 3 nodes, in the right and out the down port of 1 node, in
the top and out the down of 1 node, and in the top and out
the left of the last node on the boundary of the switch. A
standard Bthernet frame format takes over for transmission
through the network outside the switches. As the size of the
mesh grows, and the bandwidth handled by the mesh
increases, mare sophisticated routing techniques are avail-
able because of the fiexible technology utilized. For larger
switches, more than one route exists for frames entering one
node and leaving on another node. Thas, the switch can be
confignred to minimize the mumber of frames which are
blocked in passage through the switch, while maintaining
optimum utilization of the bandwidth available through the
switch.

The block-unblock field 253 is used during the updating
of the switch route table by the host CPU 212 to block
routing of frames corresponding to new entries, until it is
assured that the first frame in the flow to which the entry
comresponds, arrives at its destination before the node begins
forwarding following frames in the flow to the destination
using the route header, in order to preserve the arder of
transmission of the frames. The age ficld 254 is used also by
the CPU 212 for the purpose of managing the contents of the
route table. Thus, entries which have not been utilized for a
certain amount of time are deleted, or used according to

20

25

30

40

43

50

55

60

65

10

least-recentiy-used techniques for the purposes of finding
locations for new entries. Other contral fields (not shown)
include a ficld for storing a count of the number of packets
forwarded by the node using this route, a drop/keep field to
indicate packets that will be dropped during overflow
conditions, a priority “high/low” ficld for quality of service
algorithms, and additional ficlds reserved for future use, to
be defined according to a particular embodiment.

The frame buffer 221 is preferably large enough to hold
several frames of the standard AN format, Thus, a standard
Ethernet frame may comprise 1500 bytes. Preferably, the
frame buffer 221 is large enough to hold at least onc frame
for cach of the ports on the flow switch.

The flow switch 200 includes more than 2 ports, and
preferably 4 or mare ports. All the ports are cither connected
through the media independent interfaces 203-1 through
203-X directly to other chips in the mesh, or to physical
layer devices for connection to external communication
media,

The router or other management node for the switch may
commnunicate with each of the nodes 200 using well-known
management protocols, such as SNMP (simple network
management protocal), enhancements of SNMP, or the like.
Thus, the RDRAM 207 associated with each node also
stores statistics and control data used by the management
process in controlling the switch node.

Although in FIG. 3, the RDRAM 207 is shown off the
chip 200, alternative embodiments incorporate memory into
the switch integrated circuit 200, for more integrated design,
smaller footprint for the switch, and other classic purposes
for higher integration designs.

The CPU 212 executes the node route logic for the node.
A simplified flow chart of the node route process executed
by CPU 211 is shown in FIG. 4.

The process begins with the receipt of the frame on a
particular post (step 300). The CPU first determines whether
the frame carries a route header (step 381). This process is
executed in parallel with the transferring of the frame being
received to the frame buffer of the node. If the frame carrics
a route header, then the CPU updates the header by decre-
menting the hop count, or otherwise npdating the informa-
tion to account for a traversed leg of the route accarding to
the particular switch route technique wutilized. The CPU
transmits the frame (with updated header) on the port
identified by the header (step 302). If at step 301, no switch
route header was detected, the flow detect logic is accessed
to determine a tag for the frame (step 303). The tag is
utilized by the CPU to access entries in the route table (step
304). If a match is found in the route table, then a route
header is generated for the frame (step 305). Then, the
header is updated (if required), and the frame is transmitted
on the port identified by the data in the table (step 302).
at step 304, no match was found in the route table, then the
frame is transmitted on a default port (step 386). An alter-
pative technique to transmitting the frame on a default port,
is to add a default route header to the frame, and transmit the
frame according to the information in the default route
header. In this manner, subsequent nodes in the switch will
not be required to perform the look-up operation for the
purposes of routing the frame. However, it may be desirable
to have each node look up the frame in its own route table,
in order to insure that if any node already bas data useful in
forwarding the frame, then that frame will be forwarded
apperopriately without requiring processing resources of the
management process at the default address.

FIG. 5 illustrates the tcchnique executed by the flow
detect logic in generating an identifying tag for the frame

NOAC Ex. 1015 Page 202

| 0

s

,

5,802,054

11

being reccived. FIG. § includes the format of a standard
FEtherpet (802.3) style frame 400. The frame includes a start
of frame deliminator SOF in ficld 401. A destination address
is carried in field 402. A source address is carried in field
403, and miscellaneous control information is camied in
additional fields 404. A network layer header, such as an
Internet protocol header in this example, is found in field
405, Other style petwork layer headers could be used
depending on the particular frame format. The data field of
variable length is found at section 406 of the frame. The end
of the frame includes 8 CRC-type checksum field 407 and an
end-of-frame deliminator 408. The flow detect Jogic uns a
CRC-type hash algorithm over selected fields in the control
header of the frame to generate a pscudo-random tag. Thus,
the ficld 410, the ficld 411, the field 412, and the field 413
are selected for input into 2 CRC hash generator 414, The tag
generated by the hash generator 414 is supplicd on line 415
for use in accessing the route table 416. The route table
cither supplies aroute header on line 417, or indicates a miss
on line 418. In this way, the route management software
executed by the CPU can make the appropriate decisions.

The embodiment of FIG. 5 sclects a particular set of ficlds
within the frame for the purpose of generating the psendo-
mandom tag. The particular set of fields is selected to
correspond to one standard frame format encountered in the
network. However, a varcety of frame formats may be
transmitted within a single Ethernet style of network,
although in this example, a CRC-type hash generator is
utilized, relying on typical CRC-type algarithms, referred to
as polynomial arithmetic, modulo IL This type of arithmetic
is also referred to as “binary arithmetic with no carty” er
serial shift exclusive-OR feedback. However, a varicty of
pscudo-random number generation techniques can be
utilized, other than CRC-like algorithms. The two primary
aspects needed for a suitable pseudo-random hash code are
width and chaos, where width is the number of bits in the
hash code, which is critical to prevent errors caused by the
occurrence of packets which are unrelated but nonctheless
result in the same hash being generated, and chaos is based
on the ability to produce a number in the hash register that
is umrelated to previous values.

Also, according to the present invention, the parsing of
the frames incoming for the purposes of producing an
address to the look-up table can take other es. This
parsingmnbcxdmedtoascircuitidcntiﬁaﬁon,bewwit
is intended to generate a number that is unique to the
particular path of the incoming frame.

"The circuit identification method depends on verifying a
match on specific fields of numbers in the incoming frame.
There are two common table look-up methods, referred to as
binary scarch and hash coding. The key characteristic of
binary search is that the time to locate an entry is propor-
tional to the log base 2 of the number of entries in the table.
This look-up time is indcpendent of the number of bits in the
comparison, and the time to locate a number is relatively
precisely known.

A second, mare preferred, method of look-up is based on
bash coding. In this technique, a subset of address field or
other control ficlds of the frame are used as a short address
to look into the circait table. If the circuit table contains a
match to the rest of the address field, then the circuit has
been found. If the table contains a null value, then the
address is known not to exist in the table. The hash method
has scveral disadvantages. It requires a mostly empty table
to be efficient. The time to find a circuit cannot be guaran-
teed. The distribution of duplicates may not be uniform,
depending on the details of which ficlds are selected for the
initial address generation.

20

25

50

35

65

12

The address degeneracy problem of the hash coding
technique is reduced by processing the initial address frag-
ment through a polynomial shift register. This translates the
initial address to a uniformly-distributed random number A
typical example of random number generation is the CRC
algorithm mentioned above. In a preferred hashing
technique, the hardware on the flow switch includes at least
a template register, pscudo-random number generation logic
and a pscudo-random result register. The template register is
loaded to specify bytes of a subject frame to be included in
the hash code. The template specifies all protocol-dependent
fields for a particular L The ficlds are not distin-
guished beyond whether they are included in the hash or not.
As the frame is processed, cach byte of the initial header is
cither included in the hash function or it is ignored, based on
the template. A hash function is generated based on the
incoming packet and the template. The psendo-random
number generator is seeded by the inputhash bits selected by
the template. The change of a single bit in the ioput stream
should canse a completely unrelated random number to be
generated. Most common algorithms for generating pseudo-
random numbers are linear-congruential, and polynomial
shift methods known in the art. Of course, other pseudo-
random nurber gencration techniques are available.

A first ficld of the pseudo-random number is used as an
address for the Jook-up table. The number of bits in this field
depends on the dimensions of the look-up table. For
example, if the circuit table has 64,000 possihle entrics, and
the bash number is cight bytes long, the first two bytes are
used as an address. The other six bytes are stored as a key
in the hash table. f the key in the hash table matches the key
in the hash code, then the circuit is identified. The additional
bytes in the table for the addressed entry specify the route to
be applied. The length of the psendo-random hash code is
critical, to account for the probability that two unrelated
frames will result in the same hash number being generated.
The required length depends on the size of the routing tables,
and the rate of turnover of routes.

The problem with a pure hash code circuit identification
technique is that there is a chance of randomly misronting a
packet. The problem arises when you are generating random
numbers out of a luger set. There is a chance that two
different input patterns will produce the same hash code.
Typically, a hash code will be loaded into a table with a
known route. Then a second, different, packet will appear
that reduces to the same hash code as the onc already in the
table. The second packet will be falsely identified as having
a known route, and will be sent to the wrong address. The
exact mechanism of this emror can be understood by the
well-known statistics of the “birthday problem.” The “birth-
day problem” answers the question, “What is the probability
that two people in a group will have the same birthday?” It
turns ont that the number of people in a group required for
there to be a likelihood of two people having the same
birthday is quite small. For cxample, there is a 50% chance
that two people out of a group of 23 will have the same
birthday.

The probability of a switching error depends on the
number of circuits active. For example, if there are no
circuits active, then there is no chance that an invalid circuit
will be confused with another circuit, since there are no valid
circuits. As each circuit is added to the table, it decreases the
remaining available space for other numbers by approxi-
mately (13, where “bits” is the number of bits in the hash
code. ¥ the hash code is 32 bits long, then each entry into
the circuit table will reduce the remaining code space by
(%)%, which is equal to 2.32x107*°. The cumulative prob-

NOAC Ex. 1015 Page 203

":- ‘v
¥ 4

i
e

b ‘
v gt e e fum 07
o o .

s
€3
£
’:gf
i
2
‘L
74 4
£
21
£
:

3
i
-
04
e

" e

L
s

I
Lo Tl kN

T

St GARL: “had -t
RN o st

i

R T

- ¢

O

5,802,054

13

ability of not making an error in the circuit table is equal to
the product of the individual entry errors up to the size of the
table. This is (1)%(1%4°%)*(125°)%(1-32%) . . . *(1-02%3),
where n is the number of entries in the table. In the case of
a 32-bit hash code, and an 8,000-entry circuit table, the
probability of making an ezror in the table would be about
0.7%. With a 64,000-entry circuit table, the probability of an
errar would be about 39%.

Using a 32-bit hash code and some typical-sized circuit
tables indicates that the conventional wisdom is correct.
That is, there will be routing crrors if only a 32-bit hash code
is used. However, if the number of bits in the hash code is
increased and probebility is recalculated for typical-sized
circuit tables, we find that the probability of emror quickly
approaches zero for hash codes just slightly longer than 32
bits. For example, an 8,000-entry table with a 40-bit hash
code will reduce the error rate to 0.003%. A 48-bit hash code
will reduce the error to 0.000012%. These calculations show
that a pure hash code look-up table can be used if the length
of the hash code is longer than 32 bits for typical-size tables.

As a further example, consider the case of a 64-bit hash
code. Assuming an 8,000-cntry table, the probability of
making an error is 2*107*% Even if the table is completely
replaced with new entries every 24 hours, it would take over
one billion years for an errar to occur. Using a 64-bit hash
code with a 64,000-entry table would give a probability of
exror of 1071°. Assuming the table turned over every day, it
would take about 28 million years for an emrar to occur. An
exror might occur sooner, but the rate would be negligible.

—

s

20

In all cases, there is no realistic chance of making an error »

based on this routing technique within the lifetime of typical
networking equipment.

In a prefared embodiment, filtering mechanisms are
implemented on the flow switch integrated circuit, and
multiple filters operate in parallel. The circuit fook-up table
is implemented with external memory much larger than the
oumber of circuits expected to be simultancously active.
This means that the bash pointer generated either points to
a valid key or a miss is assumed. There is no lincar search
for matching key. When a circuit is not found in the table,
the packet is routed to a defanlt address. Normally, this
default address directs the packet to a stored program router.
The router will then parse the packet using standard
methods, and then commanicate with the flow switch circuit
to update the circuit table with the comect entry. All subse-
quent packets are directly routed by the switch element
without further assistance from the router.

Example template organizations for the bridging
embodiment, the IP routing embodiment, and the IPX rout-
ing embodiment are set forth below.

Example for bridging:

Basic cthernet packet: P

DestinstionAddress:

SourceAddrees: bytes 7-12 Used

Packet Type: bytes 13-14 wre ignored (802.3 length)
Date bytes: 15 upio 0 are ignored

CRC: Last4 byws are ignored

The template register is 8 bytes long. Bach bit specifies

14
Example far IP:
Preamble 64 bits are discarded
Destination bytes 1-6 optional
Source bytes 7-12 opts
Packet typs bytes 13-14 Ignore (8023 length)
byte 15: IP byte 1 = version length = opth
byte 16: IP byte 2 = service type = Ignore
17-18: P34 = length = Ignore
19-22: P58 = Ignore
3 P9 =TTL = optiopal
2% P 10 = Prow = optional
25-26 IP 11-12 = Hdr chksum =
27-30 IP 13-16 = Source IP adiress = Used
31-34 IP 17-20 = Destination IP sddress = Used
35~ P 21- =

Assume that optional ficlds are included in the pscudo-
random hash code.

The template would then be: FF-F2-03-03 FC-00-00-00

The selectar is: Bytes 13-15<080045, Hierarchy=2

Example for IPX in an Ethernet frame:

Preamble 64 bits aro discarded
Destinetion bytes 1-6 Optional
Soumce bytes 7-12 Optional
Typo bytes 13-14 Optional (Selector = 8137)
PX
15-16 1-2 Checksum Ignore
17-18 34 Length Ignore
19 5 Hop count
20 6 Type Optional (Selectar = 2 or 4)
21-24 7-10 Dest Net Use
25-30 11-16 Dest Host Use
31-32 17-18 Dest Socket Ignore
33-36 18-22 Src Net Use
37-42 23-28 Src Host Use
493 29— Ignore
Template (with optional fields): FP-PC-IF-FC FF-C0-00-00
Selector: Byios 13-14 = 8137, Hierarchy = 2

The cxamples shown are representative, and may not

404:0:::_mpondtowlntwouldacunllybz',mqm'reclfornny

45

particular application. There are many protocol pattem pos-
sibilities. Some combinations may not be resolvable with the

hierarchy described in these three examples.

In the embodiment in which there are a number of filters
operating in parallel, the flow detect logic includes the
template register discussed above, a second register loaded
with a template for detecting the specific protocol type
I by the template register. This feeds combina-
tional logic that provides a boolean function, returning a true
or false condition based on a string compare of a section of

50 the frame to determine the protocol. A third register is loaded

with a hierarchy number, which is used to arbitrate among
similar protocols, which might simultancously appear to be
true based on the second protocol detect register. A fourth
register is optional, and contains 2 memory start address

ss which triggers the operation of the filter.

The maltiple instantiations of the filters operate in paral-
lel. The filters can be reprogrammed on the fly to support the
exact types of traffic encountered. Furthermore, the filters
may operate in a pipeline mode along a series of switching

60 nodes. Bach protocol returns its hicrarchy number when that

filter detects the protocol pattern contained in the template.
For example, bridging protocol may be defined as true for

one byte of the header. The first bit carresponds to byte Iof pierarchy 1 for all frames, If no stronger filter fires, such as

the DestinationAddress.
The template for bridging is FF-F0-60-00 00-00-00-00
The selector is: Always TRUE. Hierarchy=1 (default to
bridging)

an IP or IPX filter, then the bridging filter will be selected as

¢s the default.

Thus, the flow detect logic in a preferred system executes
a plurality of hash flow analyses in paralle] as illustrated by

NOAC Ex. 1015 Page 204

)
E
&

Yy

.

g

5,802,054

15

FIG. 6. Thus in FIG. 6, a received frame is supplied on line
500 in parallel to hash flow logic 1 through hash flow logic
N, each flow corresponding to a particular frame format.
Also, the received frame is supplied to a hash flow “select”
501 which is used for selecting one of the N flows. The
output of flows 1 through N are supplied through multi-
plexer 502 in FIG. 6, which is controlled by the output of the
select flow 501. The output of the select flow 501 causes
sclection of a single flow on line 503, which is used for
accessing the route table by the CPU.

Thus a preferred embodiment of the present invention
uses a routing technique base on flow signatures. Individual
frames of data move from one of the Ethernet ports to a
shared buffer memory at the node. As the data is being
moved from the input port to the buffer, a serics of hash
codes is computed for varions sections of the input data
stream. Which bits are or are not included in each hash
calculation is determined by a stared vectar in a vector
register corresponding to that calculation. For example, in
the most common case of an IP packet, the hash function
starts at the 96th bit to find the “0800" code following the
link-layer souxce address, it then includes the “45™ code, 32
bits of IP source, 32 bits of IP destination, skips to protocol
ID 8 bits, and then at byte 20 takes the source part 16 bits
and the destination port 16 bits. The result is a 64 bit random
pumber identifying this particular IP flow.

The hash code is loocked up in or used to access a local
memory. If the code is found, it means that this flow type has
been analyzed previously, and the node will know to apply
the sams youting as applied to the rest of the flow. If there
is no entry corresponding to this hash code, it means that the
flow has not been seen lately, and the node will route the
frame to a defanlt destination. A least recently used
algorithm, or other cache replacement scheme, is used to age
flow eatries out of the local tables.

In practice, many filters operatc simultancously. For
example, filters may be defined for basic bridging, TP
routing, sub-variants, Apple Talk, and so on. The actaal limit
to the number of filters will be determined by the available
space on the ASIC. The logic of the filters is basically the
same for all the filters. The actual function of cach filter is
dcfined by a vector register specifying which bits are
detected.

A second feature is the use of multi-level filters. In the
common case simultancously supparting bridging, IP, and
IPX; about ten filters operate in parallel. An additional level
of coding is used to select which of the other filters is to be
used as the relevant hash code. This sccond level filter would
detect whether the flow was IP or IPX for example.

In the case where the flow is not recognized, it is passed
to the default route. As the packet passes along the defanit
route, additional nodes may examine the packet and detect
its fow type based on different filters or on a different st of
flow signatures (hash table eatries) stared. This method of
cascading filters and tables allows for the total size and
spced of the mesh to be expanded by adding nodes.
Ultimately, if a packet can not be routed by any of the nodes
along the default route, the packet will amrive at the final
defanit router, typically a NetBuilder2. The default router
will analyze the packet using standard parsing methods to
determine its comrect destination. A flow signature will be
installed in an appropriate node, or nodes, of the mesh so
that subsequent flows of the same signature can be routed
autonomously without further intervention.

A flow cffectively defines a “circuit” or a *‘connection™;
however, in standard Ethernet design, packets arc treated

10

S5

60

16
individuaily without any regard to a connection. Typically a
router will analyze every single packet as if it had never secn
it before, even though the router might have just processed
thousands of identical packets. This is obviously a huge
waste of routing resources. The automation of this flow
analysis with multiple levels of parallel and cascaded hash-
ing algorithms combined with a defaulk router is belicved to
be a significant improvement over existing routing methods.

Flow based switching is also critical to ensuring quality of
service guarantees for different classes of traffic.

FIG. 7 is a flow chart illustrating the process executed in
the router or other management node, whenever a frame is
received which does not have a switch route header. Thus,
the process of FIG. 7 begins at step 700 where a frame is
received in the router, such as the router 150 in FIG. 2. The
router applies the multiprotocol routing techniques to deter-
mine the destination of the frame. Based on the destination,
and other information about the flows within the switch,
switch route headers are generated for nodes in the switch
(step 701). Thus, a different route header is generated for
cach node in the switch mesh, and correlated with the tag
which would be generated according to the received frame
at each node. Next, a message is sent to the nodes in the
switch to update the route tables with the new route headers,
and to block frames which match the tag of the frame being
routed (block 762).

After step 702, the frame is forwarded from the router to
its destination (step 703). After the frame has been for-
warded to its destination, the router sends a message (o all
of the nodes in the switch to unblock frames which have a
matching tag (step 704). This blocking and unblocking
protocol is used to preserve the order in which frames are
transmitted through the switch, by making sure that the first
frame of a single flow arrives at its destination ahead of
following frames.

Logic in the nodes for the purpose of accomplishing the
blocking and unblocking operation take a variety of formats.
In one example, the entry at each location in the route table
includes a ficld which indicates whether the flow is blocked
or not. When an eatry is first made in the route table, the
blocking field is set. Only after a special instruction is
received to unblock the location, is the blocking field
cleared, and use of the location allowed at the switch node.

Accordingly, in the preferred system the atomic netwaork
switch according to the present invention is based on
repeated use of a simple 4-poct switch integrated circuit. The
integrated circuits are interconnected to create a mesh with
a large pool of bandwidth across many ports. The links that
interconnect the integrated circuits run according to a LAN
protocol, at preferably 100 megabits per second or higher,
such as a gigabit per second. Individual ports act as autono-
mous routers between the boundaries of the switch accord-
ing to the switch roate protocol which is layered on top of
the standard frame format. The overall bandwidth of the
switch can be arbitrarily increased by adding more atomic
nodes to the switch. Using a well-understood and simple
interface based on standard Bthemet LAN protocols, vastly
simplifies the implementation of each node in the switch,
because cach is able to rely on well understood MAC logic
units and port structures, rather than proprietary complex
systems of prior atomic LANS. Furthermore, any node of
any switch can be connected to a physical layer device that
connects to an Ethernet medium, or can be disconnected
from the Ethernet medium and connected to another node
switch to rcadily expand and change the topology of the
switch. The finc granularity and scalability of the mesh

NOAC Ex. 1015 Page 205

i OIREE 3 + R ey x‘m% W—- s
.

s ,»E,.xwfm .
————

17
architecture, combined with the ability to optimize the
topology of the switch for a particular environment allow
implememtation of a high bandwxdth, low cost network
switch.

A high bandwidth and very fiexible betwork switch is
achievable according to the present invention with a simple,
scalable, low-cost architecture.

The foregoing description of a preferred embodiment of
the invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive ar to limit
the invention to the precisc forms disclosed. Obviously,
many modifications and variations will be apparent to prac-
titioners skilled in this art. It is intended that the scope of the
invention be defined by the following claims 19(1 their

1. For a network swnch including a mesh of intercon-
nected network switch nodes, a network switch node com-
prising:

a sct of ports having more than two members, and the
ports in the set incinding respective medium access
control units for transmission and reception of data
frames according to a network protocol, the ports in the
set of ports being connectable to a port on another

network switch node inside the mesh, or to a network <

communication medium outside the mesh; and

node route logic, coupled with the set of ports, which
monitors frames received by the set of ports to route a
received frame for transmission according to the net-
work protocol to a sclected post in the set of ports,
including logic to select the selected port according to
rules for navigating through the mesh inside to the
network switch, and whercin the node route logic
forwards the reccived frame for transmission to a
defanit location of a mnltiprotocol router resource
associated with the switch when the node route logic
cannot otherwise determine a route for the received
frame.

2. The network switch node of claim 1, wherein the
network protoool comprises a connectionless protocol.

3. The network switch node of claim 1, wherein the
network protocol comprises an Ethernet protocol.

4. The network switch node of claim 1, wherein the
network protocol comprises an Ethernet, full daplex peoto-
coL

5. The network switch node of claim 1, wherein ports in
the set of ports include medium independent interfaces for
the network protocol.

6. The network switch node of claim 1, further including:

route table memory, coupled with the node route logic,

having a sct of accessible locations for storing switch
route data;

flow detect logic, coupled with the set of ports, which

monitors frames reccived by the set of parts and
generates an identifying tag for use in accessing the
route table memory;

wherein the node route logic includes logic which deter-

mines whether the received frame includes a switch
route ficld indicating a port in the set of ports, and if the
received frame includes a switch route ficld, updates
the switch route field, and forwards the received frame
with the updated switch route ficld to the port indicated
by the switch route ficld, and if the received frame does
not include a switch route field, accesses the route table

. memory using the identifying tag generated in the flow
detect logic to retrieve switch route data indicating a

5,802,054

H)

18
port in the set of ports, adds a switch route ficld to the
received frame, and forwards the received frame with
_the switch route field to the part indicated by the switch
“route data.
7. The network switch node of claim 6, whercin the
default location includes a default port and wherein the node

. route logic forwards the reccived frame for transmission on

10

13

25

0

35

]

65

the defanlt port in the set of ports when the switch route table
does not include switch route data far the identifying tag.

8. The network switch node of claim 7, wherein the
default port is coupled to a route to a multi-protocol,
network route processor at which switch route data is
generated.

9. The network switch node of claim 6, including logic to
receive switch route data from a rcmote system for a
particular identifying tag, to store the switch route data in the
route table memory in association with the particular iden-
tifying tag, and to block frames having the particular iden-
tifying tag until notification is received that it is clear to
forward frames having the particular identifying tag, and
after notification is received that it is clear to forward frames
having the particular identifying tag, forward frames having
the particular tag according to the switch route data.

10. The network switch node of claim 6, wherein the

- defanlt location includes a defanlt port and wherein the node

route logic farwards the received frame for transmission on
the default port in the set of ports when the route table
memory does not include switch route data for the identi-
fying tag; and forther incinding:
logic to receive switch route data from a remote system
for a particular identifying tag, to store the switch route
data in the route table memary in associstion with the
particular identifying tag, and to block frames having
the particular identifying tag until notification is
received that it Is clear to forward frames having the
particular identifying tag, and after notification is
received that it is clear to farward frames having the
particular identifying tag, forward frames having the
particular tag according to the switch roate data.
1L The network switch node of claim 10, wherein the
defanlt port is coupled to a route to a multi-protocol,
netwark route processor at which switch route data is
generated.
12. The netwark switch node of claim 6, wherein the flow
detect logic comprises:
logic which computes a plurality of hash vahes in
response to respective sets of control fields in a
received frame, where the respective sets of control
fields correlate with respective network frame formats;
and
logic which determines a particular network frame format
for a received frame, and selects one of the plurality of
hash values as the identifying tag in response to the
particular network frame format.
13. The network swiich node of claim 12, wherein the
hash values comprise pseudo-random codes.
14. The network switch node of claim 6, wherein the flow
detect logic compxises:
logic which computes a hash valoe in response to a set of
control fields in a received frame, where the set of
control ficlds correlates with a network frame format,
and applics the hash value as the identifying tag.
15. The network switch node of claim 14, wherein the
hash valne comprises a pscudo-random code.
16. The network switch node of claim 1, wherein the
network protocol comprises an Ethernet protocol, specified
for operation at 100 Megabits per second.

NOAC Ex. 1015 Page 206

-— 5

1 "
2

5,802,054

19

17. The network switch node of claim 16, whercin the
Ethernet protocol comprises a full duplex protocol.

18. The network switch node of claim 1, wherein said set
of ports and said node route logic comprise elements of a
single integrated circuit.

19. The network switch node of claim 18, wherein parts
in the set of ports include medium indcpendent interfaces for
the network protocol, and the network protocol comprises an
Ethernet protocol, specified for operation at 100 Megabits
per second or higher.

20. The network switch node of claim 19, wherein the
Ethernet protocol comprises a full duplex protocol.

21. The network switch node of claim 1, wherein ports of
the set of ports include medium independent interfaces for
the network protocol, the medium independent interfaces
defining a particular bus configuration, and further including
connectors coupled to the medium independent interfaces
adapted to receive cables configured according to the par-
ticular bus configuration.

22 An integrated circuit, comprising:

a set of ports for access to respective communication
media, the set of ports having maore than two members,
and the ports in the set incinding respective medium
access control Jogic for a network protocol;

a memory interface for conmection to a route table
memory having a set of accessible locations for storing
switch route data;

flow detect logic, coupled with the set of ports, which
monitors frames received by the set of ports and
generates an identifying tsg for use in accessing the
route table memory; and

node route logic, conpled with the flow detect logic, the
memory interface and the sct of ports, which monitars
frames received by the set of ports to route a received

frame for transmission to a poct in the set of parts, the 35

node route logic determining whether the received
frame includes a switch route field indicating a port in
the set of ports, and if the received frame includes a
switch route field, updates the switch route field, and
forwards the received frame with the updated switch
route field to the port indicated by the switch route
field, and if the reccived frame does not incinde a
switch route field, accesses the route table memory
generated in the flow detect logic to rericve switch
route data indicating a port in the set of ports, adds a
switch route field to the received frame, and forwards
the received frame with the switch route field to the port
indicated by the switch Toute data and if the route table
memory does not include switch route data for the
identifying tag, then forwards the received frame to a
default location of a muoltiprotocol router resource
associated with the switch.

23, The integrated circuit of claim 22, wherein the net-
wark protocol comprises a connectionless protocol.

24. The integrated circuit of claim 22, wherein the pet-
work protocol comprises an Ethemnet protocoL

25, The integrated circuit of claim 24, whercin the Eth-
ernct protocol comprises a full doplex protocal.

26. The integrated circuit of claim 22, whercin ports in the
set of ports include medium independeat interfaces for the
network protocol.

ﬂ.ﬂcmwgawddmﬂtofdahnn,whu‘dnthcdd’mlt
location includes a default port and wherein the node route
logic forwards the received frame for transmission on the
default port in the sct of ports when the switch route table
does not include switch route data for the identifying tag.

20
28. The integrated circuit of claim 27, including logic to
receive switch route data from a remote system for a
particular identifying tag, to store the switch route data in the
route table memary in association with the particular iden-

5 tifying tag, and to block frames having the particular iden-

tifying tag until notification is reccived that it is clear to
forward frames having the particular identifying tag, and
after notification is received that it is clear to forward frames
having the particular identifying tag, forward frames having

10 the particular identifying tag according to the switch route

data.

29, The integrated circuit of claim 22, wherein the default
location includes a defanlt port and wherein the node route
logic forwards the received frame for transmission on the

15 default port in the set of ports when the route table memary

does not include switch route data for the identifying tag;
and further including:
logic to receive switch route data from a remote system
for a particular identifying tag, to store the switch route
data in the route table memory in association with the
particular identifying tag, and to block frames having
the particular identifying tag until notification is
received that it is clear to forward frames having the
particular identifying tag, and after notification is
received that it is clear to forward frames having the
particular identifying tag, forward frames having the
particalar identifying tag accarding to the switch route
data.
30. The integrated circuit of claim 22, wherein the flow

30 dctect logic comprises:

fogic which computcs a plurality of hash values in
response to respective scts of control fields in a
received frame, where the respective sets of control
fields carrelate with respective network frame formats;
and
logic which determines a particular network frame format
for a received frame, and sclects one of the plurality of
hash values a5 the identifying tag in response to the
particular network frame format.
31 The integrated circuit of claim 38, wherein the hash
valnes comprise pseudo-random codes.
32. The integrated circuit of claim 22, wherein the flow
detect logic comprises:

4s logic which computes a hash valne in response to set of

control fields in a received frame, where the set of
control fields correlates with a network frame format,
and applics the hash value as the identifying tag.

33, The integrated circuit of claim 32, wherein the hash
value comprises a pscudo-random code.

34. The integrated circuit of claim 22, including an
embedded bus interconnecting the set of ports, the flow
detect logic, the node route logic and the memory interface.

35. The integrated circuit of claim 22, wherein the net-

ss work protocol comprises an Ethernet protocol, specified for

operation at 100 Megabits per second or higher.

36. The integrated circuit of claim 3§, wherein the Eth-
ernct protocol comprises a full duplex protocol.

37. The integrated circuit of claim 35, including a

go bi-directional, cmbedded bus interconnecting the set of

ports, the flow detect logic, the node route logic and the
memory interface, the embedded bus specified for operation
at 1 Gigabit per second or higher.

38. The integrated circuit of claim 22, including the route

65 tabie memory on the integrated circuit.

39. A network switch, comprising:
a plurality of switch nodes;

NOAC Ex. 1015 Page 207

>

5,802,054

D
21

a first sct of communication links, communication links in
the first set coupled between switch nodes in the
plurality of switch nodes internal to the network switch;

a second set of communication links, communication
links in the second set comprising network links exter-
nal to the network switch;

the respective switch nodes in the plurality of switch
nodes including
a set of ports connected to respective communication

links in either the first set of communication links or
the second set of communication links, the set of
ports having more than two members, and the ports
in the set including respective medinm access control
logic for a network protocol;

route table memory having a set of accessible locations 15

for storing switch route data which specify routes
through the plurality of switch nodes;

flow detect logic, coupled with the sct of ports, which
monitors frames received by the set of ports and
generates an identifying tag for use in sccessing the
route table memory; and

node route logic, coupled with the flow detect logic, the
routc table memory and the set of ports, which
monitors frames received by the set of ports to route
a received frame for transmission to a port in the set
of ports, the node route logic determining whether
the received frame includes a switch route field
indicating a port in the set of ports, and if the
received frame includes a switch route field, updates
the switch route ficld, and forwards the received
frame with the updated switch route field to the port
indicated by the switch route field, and If the
received frame does not include a switch route field,
accesses the route table memory using the identify-
ing tag gencrated in the flow detect logic to retreve
switch route data indicating a port in the set of ports,
adds a switch route field to the received frame, and
forwards the received frame with the switch route
field to the port indicated by the switch route data,
and if the routc table memory docs not include
switch route data comesponding to the identifying
tag, then forwarding the received frame to a defanit
location of a mmltiprotocol router resource associ-
ated with the switch.

40. The network switch of claim 39, whercin the network
;x'otocolfa-ponsmﬂ:csctofpmsonmerespechvcsmmh
a connectionless protocol.

41.Thenetworkmtdmfdnm39 wherein the network
protocol for ports in the set of ports on the respective switch
nodes comprises an Ethernet protocol

42. The network switch of claim 41, wherein the Ethernet
protocol comprises a full duplex protocol

43. The network switch of claim 39, wherein ports in the
sct of ports on the respective switch nodes include medium
independent interfaces for the netwark protocol.

44. The network switch of claim 39, wherein the defauit
location includes a defanit part and wherein the node route
logic on the respective switch nodes forwards the received
frame for transmission on the default part in the set of parts
when the switch route table does not include switch route
data for the identifying tag

45, Tbcnctwotkmritdl ofclannM wherein the defauit
ponxscwplndtoamntctolmuln-pmtoeol network route
processor at which switch route data is generated.

46. The network switch of claim 39, including logic on the
Tespective switch nodes to receive switch route data from a
remote system for a particalar identifying tag, to store the

22

switch route data in the route table memory in association

with the particular identifying tag, and to block frames

baving the particular identifying tag until notification is

received that it is clear to forward frames having the
s particular identifying tag, and after notification is received
that it is clear to forward frames having the particular
identifying tag, forward frames having the particular iden-
tifying tag according to the switch route data.

47. The network switch of claim 39, wherein the node
route logic on the respective switch nodes forwards the
received frame for ransmission on a default part in the set
of ports when the route table memory does not include
switch ronte data for the identifying tag; and further includ-
ng:

logic on the respective switch nodes to receive switch

roate data from a remote system for a particular iden-
ﬁfyingtag,tostorcﬂxcswitchmutcdatainﬂ:croutc
table memory in association with the particular identi-
fying tag, and to block frames havmg the parumlar
identifying tag until notification is received that it is
clear to forward frames Invmg the particular ldenh.t‘y
ing tag, and after notification is reccived that it is clear
to forward frames having the particolar identifying tag,
forward frames having the particular identifying tag
acoording to the switch route data.

25 48 The network switch of claim 47, wherein the default

port is coupled to a route to a multi-protocol, network route

processor at which switch route data is generated.

49. The netwark switch of claim 39, wherein the flow
detect logic on the respective switch nodes comprises:

logic which computes a plurality of hash values in

response to respective sets of controf fields in a
received frame, where the respective sets of control
ficlds carrelate with respective network frame formats;
and

logic which determines a particular network frame format

for areceived frame, and selects one of the plorality of
hash values as the identifying tag in response to the
particalar network frame format.

50. The network switch of claim 49, wherein the hash
40 values comprise pscudo-random codes.

51 The netwark switch of daim 39, wherein the flow
detect logic on the respective switch nodes comprises:

logic which computes a hash value in response to set of

control fields in a received frame, where the set of
control ficlds correlates with a nctwark frame format,
and applics the hash value as the ideatifying tag

52. The netwark switch of claim 51, wherein thchash
value comprises a pseudo-random code.

53. The network switch of claim 39, wherein the network
protocol for parts in the set of parts on the respective switch
nodesoommscsanEthm;xotoooL specified for opera-
tion at 100 Megabits per second or higher.

54. The network switch of claim 53, wherein the Ethernet
protocol comprises a fall duplex protocol

55. The network switch of claim 39, wherein the MAC
logic for ports in the sct of ports on the respective switch
nodes exccutes the same network protocol for all ports in the
set of ports.

56. The network switch of claim 39, wherein ports in the
set of ports on the respective switch nodes include medium
independent interfaces for the netwark protocol, the medinm
indepcndent interfaces defining & particular bus
configuration, and further include connectors coupled to the
medinm independent interfaces adapted to receive cables
65 configured accarding to the particular bus configuration.

10

30

35

43

55

* ok % A »

NOAC Ex. 1015 Page 208

ocket/Ref. No.: APPT-00. i Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

5 fial No.: 09/608237 Group Art Unit: 2755

b Filed: June 30, 2000 , Examiner:

Title: METHOD AND APPARATUS FOR - RECEW ED
MONITORING TRAFFIC IN A i~

| NETWORK APR 2 2

__yechnology Cente! 2100

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449,

Py

A check for petition fees.

Return postcard.

e b |

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

- i%ov Rosenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: 20 MaJ‘ 20607

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: 2© /Vyla} 20602 Signamre:%/
. Dov Rosenfeld, Reg. No. 38,687

NOAC Ex. 1015 Page 209

W’:.-

N

O

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Addrers COMMISSIONER FOR PATENTS

P.O Box 1450

Alexandna, Virgina 22313-1450

www uspto gov

iATTORNEY DOCKET NO] CONFIRMATION Nr]

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR
09/608,237 06/30/2000 Russell S. Dictz APPT-001-] 9993
7590 06/25/2003
Dov Rosenfeld L EXAMINER |
Suite 2
5507 College Avenue MEKY, MOUSTAFA M

Oakland, CA 94618

L ART UNIT | PAPER NUMBER |
2157 E
DATE MAILED: 06/25/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01)

NOAC Ex. 1015 Page 210

() Y

— AN Application No. - Applicant(s) 7/" =
) 09/608,237 DIETZ ETAL.
Office Action Summary Examiner AU
Moustafa M Meky 2157

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR 1.136(a) in no event, however, may a reply be timely filed
after SIX {(6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- I NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S C. § 133)
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status
1)XI Responsive to communication(s) filed on 18 April 2002 .
2a)[_] This action is FINAL. 2b)X] This action is non-final.

3)[] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
Disposition of Claims

4)X Claim(s) 1-59 is/are pending in the application.
4a) Of the above claim(s) is/are withdrawn from consideration.
5)X Claim(s) 1-10 is/are allowed.
6)X] Claim(s) 11-59 is/are rejected.
7)J Claim(s) ___is/are objected to.

8)[] Claim(s)
Application Papers

are subject to restriction and/or election requirement.

9)[] The specification is objected to by the Examiner.

10)[_] The drawing(s) filed on
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

is: a)[_] approved b)[_] disapproved by the Examiner.

is/are: a)[] accepted or b)[_] objected to by the Examiner.

11)[] The proposed drawing correction filed on

If approved, corrected drawings are required in reply to this Office action.
12)J The oath or declaration is objected to by the Examiner.
Priority under 35 U.S.C. §§ 119 and 120
13)] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)(JAIl b)J Some * c)[] None of:
1.[] Certified copies of the priority documents have been received.
2.1 Certified copies of the priority documents have been received in Application No.

3.0 Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

14)X] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) [[] The translation of the foreign language provisional application has been received.
15)] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

1) IX] Notice of References Cited (PT0O-892) 4) D Interview Summary (PTO-413) Paper No(s).
2) [] Notice of Draftsperson’s Patent Drawing Review (PTO-948) 5)[L] Notice of Informal Patent Application (PTO-152)
3) IZ Information Disclosure Statement(s) (PTO-1449) Paper No(s) 4.5 . 6) D Other:
NOACEx10M5 Pace 211
U.S Patent and Trademark Office FUITAR HRe BT RS gt
PTO-326 (Rev. 04-01) Office Action Summary Part of Paper No. 6

O O

Application/Control Number: 09/608,237 : Page 2

Art Unit: 2157

1. Claims 1-59 are presenting for examination.

2. Claims 1-10 are allowed over the prior art of record.

2.1. The prior art of record taken singularly or in combination does not teach or suggest a
packet monitor having a state patterns/operations memory configured to store a set of predefined
state transition patters and state operations such that traversing a particular transition pattern as a
result of a particular conversational flow-sequence of packets indicates that the particular
conversational flow-sequence is associated with the operation of a particular application program
and a state processor configured to carry out any state operations in the state patterns/operations
memory for the protocol and state of the flow of the packet (claim 1).

3. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in a patent granted on an application for patent by another filed in the
United States before the invention thereof by the applicant for patent, or on an international application by
another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371© of this title before
the invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act
of 1999 (AIPA) do not apply to the examination of this application as the application being
examined was not (1) filed on or after November 29, 2000, or (2) voluntarily published under 35
U.S.C. 122(b). Therefore, this application is examined under 35 U.S.C. 102(e) prior to the

amendment by the AIPA (pre-AIPA 35 U.S.C. 102(e)).

NOAC Ex. 1015 Page 212

e

O &

Application/Control Number: 09/608,237 Page 3

Art Unit: 2157

4. Claims 11-59 are rejected under 35 U.S.C. 102(e) as being anticipated by Muller et al.
(US Pat. No. 6,483,804).

5. As to claims 11-12, Muller shows in Fig 1A, a method of examining packets through a
connection point (the point connects the network to the NIC of the circuit 100).

Muller discloses the following steps:

* receiving a packet from a packet acquisition device (NIC), see col 6, lines 26-29, lines 54-60,
col 8, lines 33-35;

* performing one or more parsing/extraction operations to create a record comprising a function
of selected portions of the packet, see col 7, lines 31-44, col 8, lines 50-67, col 9, lines 1-5;

* looking up a flow-entry database 110 to determine if the packet is of an existing flow, see col 9,
lines 18-24, col 11, lines 32-45 ;

* if the packet is of an existing flow, classifying the packet as belonging to the found existing
flow, see col 11, lines 46-52; and

* if the packet is of a new flow, storing a new flow-entry in the flow-entry database 110, see col
11, lines 46-52.

6. As to claims 13-15, Muller teaches updating the flow-entry of the existing flow including
measures selected from the set consisting of the total packet count, see col 7, lines 36-45, col 8,
lines 50-54, lines 64-66.

7. As to claim 16, Muller shows that the function of the selected portions of the packet

forms a signature (flow key), see col 8, lines 64-67, col 9, lines 1-5, col 11, lines 35-37.

NOAC Ex. 1015 Page 213

Application/Control Number: 09/608,237 | Page 4

Art Unit: 2157

8. As to claims 17-20, Muller shows at least one of the protocols uses source and destination
addresses, see col 7, lines 31-40.

9. As to claim 21, Muller shows the, looking up of the flow-entry database 110 uses a hash
of the selected packet portions, see col é, lines 18-22.

10. Asto claim 22, Muller shows determining a set of one or more protocol from data in the
packet, see col 10, lines 63-67, col 11, lines 27-30.

11. Asto claim 23, Muller shows obtaining the last encountered state of the existing flow and
performing any state operations required for a new flow, see col 9, lines 15-28.

12. Asto claim 24, Muller shows identifying of the application program of the flow, see col
8, lines 60-61, col 12, lines 45-47.

13. Asto claim 25, Muller shows storing identifying information for future packets, see col 9,
lines 26-28.

14. As to claim 26, Muller shows identifying the application program of the flow, see col 8,
lines 60-61, col 12, lines 45-47.

15. Asto claim 27, Muller shows searching the parser record for the existence of one or more
reference strings, see col 9, lines 32-36.

16. As to claim 28, Muller shows the state operations are carried by state processor , see col
9, lines 42-47, col 10, lines 61-63

17. Asto claim 29-59, the claims are similar in scope to claims 11-28, and they are rejected

under the same rationale.

NOAC Ex. 1015 Page 214

W.,_Mw. e e

Application/Control Number: 09/608,237 Page 5

Art Unit: 2157

Therefore, it can be seen from paragraphs 5-17 that Muller anticipates claims 11-59.

18. The prior art made of record and not relied upon is considered pertinent to applicant's
disclosure.

19. Any inquiry concerning this communication or earlier communications from the examiner
should be directed to Moustafa M. Meky whose telephone number is (703) 305—9697. The
examiner can normally be reached on week days from 8:30 am to 4:30 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's
supervisor, Ario Etienne, can be reached on (703) 308-7562. The fax phone number for
this Group is (703) 308-9052. '

Any inquiry of a general nature or relating to the status of this application or proceeding
should be directed to the Group receptionist whose telephone number is (703) 305-
9600. The fax number for the After-Final cor}espondence/amendment is (703) 746-
7238. The fax number for official correspondence/amendment is (703) 746-7239. The
fax number for Non-official draft correspondence/amendment is (703) 746-7240.
MMM

June 22, 2003

~

NOAC Ex. 1015 Page 215

Application/Control No. Applicant(s)/Patent Under
Reexamination
Notice of References Cited 0SIo08. 227 DIETZ ETAL
Examiner Art Unit
Moustafa M Meky 2157 Page 1 of 1
U.S. PATENT DOCUMENTS
* c°un§%?d?.iﬁmﬁmﬁé Code Mlv[l):(tsYY Name Classification
A | US-6,483,804 11-2002 | Muller et al. 370/ 230
B | US-6,570,875 05-2003 | Hegde 37g 3&7
c |Us-6452915 09-2002 | Jorgensen 370/338
D | US-6,466,985 10-2002 | Goyal et al. T9)238
E | US-6,453,360 09-2002 | Muller et al. 7109 / 250
F | US-6,243,667 06-2001 | Kerretal. ~703 / 27
G | US-6.118,760 00-2000 | Zaumen et al. 379/2129
H | US-
| | us-
J | US
K | US-
L | US-
M | US-
FOREIGN PATENT DOCUMENTS ‘
* c°um5%‘§ér2.§'$n'§‘éﬂgﬁé Code MMD-$$YY Country Name Classification
N
o I
- 4///””’7
Q //
R //
s ,/////’
J |
NON-PATENT DOCUMENTS
* Include as applicable: Author, Title Date, Publist}er, Edition or Volume, Pertinent Pages)
U 4////’/’_,____
Y /
w
1 N
/ ,
X .
] :

A Copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
ates in MM-YYYY format are publication dates. Classifications may be US or foreign.

USS. Patent and Trademark O
0-892 (Re: gtzoof)e - Notice of References Cited 1015 P Pirtlofd?aper No. 6
age

NOAC Ex.

RN R A E

a2y United States Patent (10) Patent No.: US 6,483,804 B1
Muller et al. 5) Date of Patent: Nov. 19, 2002
(54) METHOD AND APPARATUS FOR DYNAMIC EP 0573 739 12/1993
PACKET BATCHING WITH A HIGH EP 0 853 411 7/1998
PERFORMANCE NETWORK INTERFACE EP 0 865 180 9/1998
WO WO 95/14269 5/1995
: . WO WO 97/28505 8/1997
(75) Ioventors: Shimon Muller, Sunnyvale, CA (US); WO WO 99/00737 111950
Denton E. Gentry, Jr., Fremont, CA WO W099/00945 1/1999
(Us) WO W099/00948 1/1999
/00949 1/199
(73) Assignee: Sun Microsystems, Inc., Santa Clara, wo WO % /1999
CA (US) OTHER PUBLICATIONS

Toong Shoon Chan, et al., “Parallel Architecture Support fot
High-Speed Protocol Processing,” Feb. 1, 1997, Micropro-
cessors And Microsystems, vol. 20, No. 6, pp. 325-339.

(List contimued on next page.)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/260,324 Primary Examiner—Wellington Chin
(22) Filed: Mar. 1, 1999 Assistant Examiner—William Schultz
? (74) Attorney, Agent, or Firm—Park, Vaughan & Fleming
(51) Int.CL’ HO4) 1/16 LLP
52) US.ClL .eeas 370/230; 370/235; 709/225; ABSTRA
2 " o 709/22/2258 S cT
(58) Fleld of Search ... 370/230, 231, A system and method are provided for identifying related

3707235, 392, 389, 225, 226, 241, 401, packets in a communication flow for the purpose of collec-
428, 427, 473, 474, 394, 252, 466, 409; tively processing them through a protocol stack comprising

7097225, 226, 235, 241, 228 one or more protocols under which the packets were trans-
mitted. A packet received at a network interface is parsed to

(56) References Cited e A
U.S. PATENT DOCUMENTS flow key is generated to identify a communication flow that. =7

includes the packet, and is stored in a database of flow keys.
5414704 A 5/1995 Spioney 370/60 ‘When the packet is placed in a queue to be transferred to a
5583940 A 12/1996 Vidascuetal. 380/49 host computer, the flow key and/or its flow number (e.g., its
g’gﬁig; : 1;5 iggg g"““’::lh et al. 32?%8973 index into the database) is stored in a separate queuc. Near

A user et al. ; : :

5758089 A 5/1998 Genlry et al. «.oonr 395/200.64 to the time at wl:uch the packet is transferred to the host

computer, a dynamic packet batching module searches for a
5778180 A 7/1998 Geatry ct al. 395/200.42 . h ;O
5718414 A 7/1998 Winter of al. o..ooooonn, N5 packet that is related to the packet being transferred (i.c., is
5’787:255 A 7/1998 Pardanctal. 395/200,63 in the same flow) but which will be transferred later in time.
5:793,954 A 8/1998 Baker et al. ... 395/200.8 If a related packet is located, the host computer is alerted
5,870,394 A 2/1999 Oprea 3701392 and, as a result, delays processing the transferred packet
5920,705 A * 7/1999 Lyon ct al. .. 370/409 until the related packet is also reccived. By collectively

6,157,955 A * 12/2000 Narad et al. 7097228 processing the related packets, processor time is more effi-
FOREIGN PATENT DOCUMENTS ciently utilized.
EP 0 447 725 9/1991 ... GO6F/15/16 27 Claims, 49 Drawing Sheets
I NETWORK NTERFACE FECENE CRRCUT 100 | o

g
]
i

,__.....__
H

wes Ameg-mx

NOAC Ex. 1015 Page 217

US 6,483,804 B1
Page 2

OTHER PUBLICATIONS

Peter Newman, et al., “IP Switching and Gigabit Routers,”
IEEE Communications Magazine, vol. 335, No. 1, Jan.
1997, pp. 64-69.

Francois Le Faucheur, “IETF Multiprotocol Label Switch-
ing (MPLS) Architecture,” IEEE International Conference,
Jun. 22, 1998, pp. 6-15.

F. Hallsall, “Data Communications, Computer Networks
and Open Systems,” Electronic Systems Engineering Series,
pp- 451452,

R. Cole, et al., “IP Over ATM: A Framework Document,”
IETF Online, Apr. 1996, pp. 1-31.

Sally Floyd & Van Jacobson, Random Early Detection
Gateways for Congestion Avoidance, Aug., 1993, IEEE/
ACM Transactions on Networking.

US. patent application Ser. No. 08/893,862, cntitled
“Mechanism for Reducing Interrupt Overhead in Device
Drivers,” filed Jul. 11, 1997, inventor Denton Gentry.
Pending U.S. patent application Ser. No. 09/259,445,
cntitled “Method and Apparatus for Distributing Network
Processing on a Multiprocessor Computer,” by Shimon
Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3481-JTF).

Pending U.S. patent application Ser. No. 09/260,367,
cntitled “Method and Apparatus for Suppressing Interrupts
in a High-Speed Network Environment,” by Denton Gentry,
filed Mar. 1, 1999 (Attorney Docket SUN-P3482-JTF).
Pending U.S. patent application Ser. No. 09/259,736entitled
“Method and Apparatus for Modulating Interrupts in a
Network Interface,” by Denton Gentry et al., filed Mar. 1,
1999 (Attorncy Docket SUN-P3483-JTF).

Pending U.S. patent application Ser. No. 09/259,765,
cntitled “A High Performance Network Interface,” by Shi-
mon Muller et al, filed Mar. 1, 1999 (Attorney Docket
SUN-P3485-JTF).

Pending US. patent application Ser. No. 09/260,618,
entitled “Method and Apparatus for Classifying Network
Traffic in a High Performance Network INterface,” by
Shimon Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3486-JTF).

Pending US. patent application Ser. No. 09/259,932,
cntitled “Method and Apparatus for Managing a Network
Flow in a High Performance Network Interface,” by Shimon
Muller et al, filed Mar. 1, 1999 (Attorney Docket
SUN-P3487-JTF).

Pending US. patent application Ser. No. 09/258,952,
entitled “Method and Apparatus for Early Random Discard
of Packets,” by Shimon Muller et al., filed Mar. 1, 1999
(Attorncy Docket SUN-P3490-JTF).

Pending U.S. patemt application Ser. No. 09.260,333,
cntitled “Method and Apparatus for Data Re—Assembly with
a High Performance Network Interface,” by Shimon Muller
et al, filed Mar 1, 1999 (Attorncy Docket
SUN-P3507-JTF).

Pending US. patent application Ser. No. 09/258,955,
entitled “Dynamic Parsing in a High Performance Network
Interface,” by Denton Gentry, filed Mar. 1, 1999 (Attorney
Docket SUN-P3715-JTF).

Pending US. patent application Ser. No. 09/259,936,
entifled “Method and Apparatus for Indicating an Interrupt
in a Network Interface,” by Denton Gentry et al., filed Mar.
1, 1999 (Attorney Docket SUN-P3814-JTF).

* cited by examiner

NOAC Ex. 1015 Page 218

e ST

H
oI
5 |
T
c
o
M
P
u
T AL DMA ENGINE
E 120
Rl
t
s |
Y !
s |
T |
E |
M
I
i
|
i
1
]
}
|
I
;
|
1
|

1
]
i
1
i
E
DYNAMIC i
PACKET |
< BATCHING FLOW FLOW DATABASE |
MODULE DATABASE MANAGER 108 !
122 110 ;
|
|
| 2,
;)
. =
i et
y : p
!)
CONTROL LOAD h
QUEUE DISTRIBUTOR HEADER PARSER :’ §
118 112 108 !
i
|
A : Céj
‘ 2
i N -8
- -
y
o %
PACKET INPUT PORT , &
N QUEUE |« PROCESSING S j CR’ v
MODULE
18 \[_r.,.
! 104 | K
y y i 1
CHECKSUM ; g
GENERATOR | -
114 E 7
: &
W
FIG. 1A &
=
B~
=
iy

NOAC Ex. 1015 Page 219

U.S. Patent

START
130

Nov. 19, 2002

RECEIVE PACKET AT IPP
MODULE FROM NETWORK
132

Sheet 2 of 49

END
150

NOTIFY HOST COMPUTER
OF PACKET TRANSFER
148

PARSE PACKET:
GENERATE FLOW KEY,
RETRIEVE HEADER INFO
134

A

N

STORE PACKET IN HOST
MEMORY
146

STORE/UPDATE FLOW IN
FLOW DATABASE; ASSIGN
OPERATION CODE
136

A

SEARCH FOR RELATED
PACKET(S)
144

ASSIGN PROCESSOR

NUMBER FOR MULTI-

PROCESSOR SYSTEM
138

PACKET
READY TO BE
TRANSFERRED?
142

US 6,483,804 B1

NO

POPULATE PACKET AND
CONTROL QUEUES
140

FIG. 1B

NOAC Ex. 1015 Page 220

U.S. Patent Nov.19,2002 Sheet 3 of 49 US 6,483,804 B1

LAYER ONE HEADER
210

LAYER TWO HEADER
212

HEADER PORTION
204

LAYER THREE HEADER
214

LAYER FOUR HEADER
216

DATA PORTION
202

{ TRAILER 206 |

e o . m ——— —— . —— ——— ——— —— . —= i — s — —

PACKET 200

FIG. 2

NOAC Ex. 1015 Page 221

U.S. Patent

FLOW
DATABASE
MANAGER

Nov. 19, 2002 Sheet 4 of 49

HEADER PARSER 106

US 6,483,804 B1

e —— . ——————— e —————————— —

l'l'—_'

HEADER MEMORY
302

INSTRUCTION MEMORY
306

PARSER
304

FIG. 3

NOAC Ex. 1015 Page 222

IPP
MODULE

U.S. Patent Nov. 19, 2002 Sheet 5 of 49 US 6,483,804 B1

START
400

COPY PACKET HEADER
402

ETHERNET

ETHERNET OR
802.3 HEADER?
408

OTHER/UNKNOWN @
A

VERIFY
LLC SNAP
ENCAPSULATION?
410

NO
2O

IPv4 OR IPvG
HEADER?
412

FIG. 4A

NOAC Ex. 1015 Page 223

U.S. Patent Nov. 19, 2002

@

Sheet 6 of 49 US 6,483,804 B1
N\
c 1
()
VERIFY E»Q
IPv6? A
418

- YES

|

PROCESS IPv4 HEADER
416

PROCESS IPv6 HEADER
420

L

|

NO (:
YES
L 4

PROCESS TCP HEADER

424

GENERATE FLOW KEY

426

GENERATE CONTROL INDICATOR

428

432

==

Q SET NO_ASSIST FLAG FOR
A »,

PACKET
430

FIG. 4B

NOAC Ex. 1015 Page 224

U.S. Patent Nov.19,2002 Sheet 7 of 49

FLOW ACTIVITY
INDICATOR 524

FLOW
SEQUENCE #
522

ASSOCIATED PORTION 504

FLOW VALIDITY
INDICATOR 520

FLow *
0
1
j
506

FLOW DATABASE 110
FIG. 5

TCP
DESTINATION
PORT 516

PORT 514

IP DESTINATION | TCP SOURCE

ADDRESS 512
ASSOCIATIVE PORTION 502

IP SOURCE
ADDRESS 510

US 6,483,804 B1

NOAC Ex. 1015 Page 225

U.S. Patent Nov. 19, 2002

RECEIVE SEARCH
REQUEST
602

S PAC
FLAGGED FOR NO

NO

Sheet 8 of 49 US 6,483,804 B1

SEARCH FLOW DATABASE

ASSISTANCE?
604

ATTEMPT
TO ESTABLISH
CONNECTION?
614

606

MATCH FLOW
KEY IN DATABASE?
608

|

RETRIEVE FLOW # AND
FLOW DATA
610

YES

DOES PACKET
CONTAIN DATA?
612

FIG. 6A

NOAC Ex. 1015 Page 226

U.S. Patent Nov. 19, 2002

Sheet 9 of 49

FLOW NO TEAR DOWN FLOW;
SEQUENCE __,| seLEcT OPCODE 2FOR
NUMBERS MATCH? PACKET
616 628
TEAR DOWN FLOW;
MORE DATA SELECT OPCODE 3 FOR
TO FOLLOW? N v
620
626
UPDATE FLOW SEQUENCE
NUMBER & ACTIVITY
INDICATOR: SET FLOW
VALIDITY INDICATOR
622
Y
SELECT OPCODE 4 FOR
PACKET G
624

FIG. 6B

NOAC Ex. 1015 Page 227

US 6,483,804 B1

U.S. Patent Nov. 19, 2002

Sheet 10 of 49

VES REPLACE FLOW:
MORE DATA SET FLOW SEQUENCE #:
TO FOLLOW? SET ACTIVITY INDICATOR:
630 SET FLOW VALIDITY
634
TEAR DOWN FLOW;
SELp oW FLOW. SELECT OPCODE 7 FOR
PACKET
PACKET o
632
€ >
TEAR DOWN FLOW.
SELECT OPCODE 0 FOR SELECT OPCODE 1 FOR
PACKET
oK PACKET
640

UPDATE AS REQUIRED:
FLOW SEQUENCE #,

VALIDITY INDICATOR
642

ACTIVITY INDICATOR; (-

FLAGS OKAY?
638

FIG. 6C

NOAC Ex. 1015 Page 228

US 6,483,804 B1

U.S. Patent Nov. 19, 2002 Sheet 11 of 49 US 6,483,804 B1

NO FLOW YES
DATABASE FULL? _—
646 ;
RETRIEVE LOWEST FLOW # RETRIEVE FLOW # OF
HAVING AN INVALID FLOW LEAST RECENTLY ACTIVE
INDICATOR FLOW
648 650
DOES PACKET NO
CONTAIN DATA?
652
“MORE DATA NO

TO FOLLOW?
654

FIG. 6D

NOAC Ex. 1015 Page 229

U.S. Patent Nov.19,2002 Sheet 12 of 49 US 6,483,804 B1

NO YES

FLOW
DATABASE FULL?
658

|

l

ADD FLOW: REPLACE FLOW:

SET FLOW SEQUENCE #; SET FLOW SEQUENCE #;
SET ACTIMITY INDICATOR; SET ACTIVITY INDICATOR,;
SET FLOW VALIDITY SET FLOW VALIDITY
660 664
SELECT OPCODE 6 FOR SELECT OPCODE 7 FOR
PACKET PACKET
662 666

SELECT OPCODE 5 FOR ﬂD

PACKET
668 670

FIG. 6E

NOAC Ex. 1015 Page 230

U.S. Patent Nov.19,2002 Sheet 13 of 49 US 6,483,804 B1

START
700

3 [

RECEIVE AND PARSE PROCESS PACKET
PACKET
o 718

|
1

LOAD DISTRIBUTOR ALERT SELECTED
RECEIVES FLOW KEY PROCESSOR
704 716

PACKET INFORMATION
HASH FLOW KEY STORED FOR PROCESSING
706 BY SELECTED PROCESSOR
714
PERFORM MODULUS
OPERATION ON HASH ALERT HOST COMPUTER
VALUE 712
708
STORE PACKET AND
——» PROCESSOR NUMBER
710
FIG.7

NOAC Ex. 1015 Page 231

U.S. Patent Nov. 19, 2002 Sheet 14 of 49 US 6,483,804 B1
PACKET QUEUE 116 PACKET
#
ENTRY 800'\ PACKET PORTION 802 l
READ el e 1 o0
POINTER ; FILLER 802a
810 CHECKSUM PACKET DIAGNOSTIC AND STATUS
VALUE LENGTH INFORMATION
804 806 808
WRITE e 1
POINTER
812
255
FiG. 8

NOAC Ex. 1015 Page 232

U.S. Patent Nov. 19, 2002 Sheet 15 of 49 US 6,483,804 Bl
CONTROL QUEUE 118 PACKET
#
ENTRY 800 CPU# NO_ OoP, PAYLOAD PAYLOAD OTHER l
902 ASSIST CODE OFFSET SIZE STATUS 0
904 906 908 910 912

gy ! | ! | | 1
POINTER i I [I |
914 I | | | I
| I | [I
| I | I |
| | | I |
I | | I I

I I I I I .
WRITE | | l | !
POINTER | |] | [
916 I [I | I
| | I | |
| [| | [
I I I I I
| | [I |
I | I [|
I I I I I
| | I I |
I I | | I
| | I | f
| ! ! ! |
I		
I I		
I I		
} I | | [
I | I [I

| I | | I 2%

FIG. 9
NOAC Ex. 1015 Page 233

US 6,483,804 B1

Sheet 16 of 49

Nov. 19, 2002

U.S. Patent

e
|
oL _ |
3n3ND \
1310vd /]
|
|
! pLOL
| HIOVNVI ONIY
| NOIL31dWOD
|
|
5
i [Eplor
_ i 3HOVO |
! | 4oL dINOS3d |
!
| o | NOLLTIINOD |
gl | » 37avl e
2n3no ||V oswnr
JOHINOO T
_ Z004
_ HIOVNVIA VNG AT 7Y TR
_ 8001 [
> N _
! | 3HOWD
: FiavL LN | HoLdios3a !
| |33
[
_ 800} ZLoL
zz1 ! 378Vl HIDOYNVI
IT1NCON i . N ¥3av3aH ONIY 3344
ONIHOLVE
13M0vd .__J\ v
OINVNAQ i JrauL
| ATgnassy |
_ 34 MO
“
ozt anNIWVWG 0T

TOWrFE OO0OZE0oDhHwWwo

NOAC Ex. 1015 Page 234

U.S. Patent Nov. 19, 2002 Sheet 17 of 49 US 6,483,804 B1

PACKET
FLOW RE-ASSEMBLY TABLE 1004 #
VALIDITY FLOW RE-AGSEMBLY l
INDICATOR NEXT Q%ERESS BUFFER INDEX 0
1106 1102
l I
| |
I l
I !
l I
I I
| I
l |
| |
| l 63
| I
HEADER TABLE 1006
VALIDITY HEADER BUFFER
INDICATOR NEXT m':RESS INDEX
1116 1112
MTU TABLE 1008
VALIDITY NEXT ADDRESS MTU BUFFER INDEX
INDICATOR
1124 122
1126
JUMBO TABLE 1010
VALIDITY JUMBO BUFFER
INDICATOR NEXT ngRESS INDEX
1136 1132

FIG. 11

NOAC Ex. 1015 Page 235

FREE BUFFER ARRAY 1210

Juaed 'S

FREE DESCRIPTOR 1202
ARRAY INDEX
FREE DESCRIPTOR FIELD 1212 BUFFER IDENTIFIER FIELD 1214
RING
1200
. L |
: N |
/
! AN | ?
! \\ I -<
// \\ | E
/ \\] (24
/ \ 8
! \ | D
/ \
! \\ l
// \
/ AN I W
! \ | =
/ \ 2
/ \ | -
/ AN >
/ N |
! \ s'
/ \ | &
/ \)
! \ |
/ AN
// \\ ‘ |
\ A
RING INDEX BUFFER IDENTIFIER ,."’
1204 1206 %
~~~~~~~~~~~~~~~~~~ . -
__________________________________ N
.................. =
>
-]
FIG. 12A 3
S
=
[y

NOAC Ex. 1015 Page 236



DESCRIPTOR sﬁ%ﬁsjés DATA OFFSET | DATABUFFER | DATASIZE
TYPE 1238 e 1234 INDEX 1232 1230
HEADER HEADER BUFFER | HEADER SIZE NEXT BUFFER
OFFSET 1246 INDEX 1244 1242 INDEX 1240
[AYER THREE | PROCESSOR FLOW
HEADER OFFSET | IDENTIFIER S"l'gﬁﬁﬁ',f; %’;EDRQE‘QQ' NUMBER
1258 1256 1250
OWNERSHIP | PACKET
OTHER 1266 INDICATOR LENGTH S:fgé‘?;’e"g
1264 1262

COMPLETION DESCRIPTOR 1222

Juajeq ‘SN

2007 ‘61 "AON

COMPLETION
DESCRIPTOR RING
1220

6V 30 61 19948

14 $08€8t°9 SN

NOAC Ex. 1015 Page 237



U.S. Patent Nov. 19, 2002 Sheet 20 of 49 US 6,483,804 B1

START
1300

A

PACKET STORED IN DATA

QUEUE
1302
OPERATION
CODE 57
A 1318
READ PACKET ENTRY
FROM CONTROL QUEUE
1304

OPERATION
CODE 4?
1316

FETCH FLOW NUMBER
1306

OPERATION
CODE 27
1312

OPERATION
CODE 1?
1310

FIG. 13

NOAC Ex. 1015 Page 238



¢ G

U.S. Patent

HEADER

YES

Nov. 19, 2002

NO

Sheet 21 of 49

US 6,483,804 B1

PREPARE HEADER BUFFER

BUFFER VALID?
14V

1402

COPY PACKET INTO
HEADER BUFFER
1404

A

WRITE COMPLETION
DESCRIPTOR
1406

HEADER
BUFFER FULL?
1408

NO

UPDATE HEADER BUFFER
> TABLE

INVALIDATE HEADER
BUFFER
1410

1412

" Enp

FIG. 14

1498

NOAC Ex. 1015 Page 239



U.S. Patent Nov. 19, 2002 Sheet 22 of 49 US 6,483,804 B1
NO
HEADER
BUFFER VALID? .| PREPARE H1Es/£ER BUFFER
1500
COPY PACKET INTO
> HEADER BUFFER
1504
WRITE COMPLETION YES FLOW
DESCRIPTOR » RE-ASSEMBLY
1508 BUFFER VALID?
1506
Y
INVALIDATE FLOW RE- WRITE COMPLETION
ASSEMBLY BUFFER DESCRIPTOR
1510 1512
Y
NO
HEAIN UPDATE HEADER BUFFER
BUFFER FULL? > TABLE
1514 1518
!
INVALIDATE HEADER e
BUFFER > e
1516
NOAC Ex. 1015 Page 240




U.S. Patent Nov. 19, 2002

Sheet 23 of 49

US 6,483,804 B1

FLOW YES WRITE COMPLETION
RE-ASSEMBLY DESCRIPTOR
BUFFER VALID? 1602
1600
NO
INVALIDATE FLOW RE-
ASSEMBLY BUFFER
1604

SMALL PACKET?
1606

JUMBO PACKET?
1608

FIG. 16A

NOAC Ex. 1015 Page 241



U.S. Patent Nov. 19, 2002

~

HEADER NO

Sheet 24 of 49 US 6,483,804 B1

PREPARE HEADER BUFFER

BUFFER VALID?
16V

YES

1612

A

COPY PACKET INTO
HEADER BUFFER
1614

WRITE COMPLETION
DESCRIPTOR
1616

NO

HEADER

BUFFER FULL?
1618

INVALIDATE HEADER

UPDATE HEADER BUFFER
TABLE
1622

L~ Enp

BUFFER
1620

FIG. 16B

1699

NOAC Ex. 1015 Page 242



U.S. Patent Nov. 19, 2002

MTU NO

BUFFER VALID?

Sheet 25 of 49

US 6,483,804 B1

16V

YES

PREPARE MTU BUFFER
1632

Y

COPY PACKET INTO MTU
BUFFER
1634

WRITE COMPLETION
DESCRIPTOR
1636

NO

MTU
BUFFER FULL?

1638

INVALIDATE MTU BUFFER

UPDATE MTU BUFFER
TABLE
1642

" END

1640

FIG. 16C

g 1699

NOAC Ex. 1015 Page 243



U.S. Patent Nov.19,2002  Sheet 26 of 49 US 6,483,804 B1

NO

JUMBO
BUFFER VALID?
1650

PREPARE JUMBO BUFFER
1652

YES

SPLIT JUMBO
BUFFERS?
1654

PACKET YES TRANSFER FIRST PART OF
TOO LARGE FOR PACKET INTO CURRENT
ONE BUFFER? JUMBO BUFFER
1656 1662
A
TRANSFER PACKET INTO TRANSFER REMAINDER OF
JUMBO BUFFER PACKET INTO SECOND
1658 JUMBO BUFFER
1664
A A
WRITE COMPLETION WRITE COMPLETION
DESCRIPTOR DESCRIPTOR
1660 1666
A 4
INVALIDATE JUMBO END
BUFFER » 1699
1668

FIG. 16D

NOAC Ex. 1015 Page 244




PR T AR - B

e i

T -

U.S. Patent

Nov. 19, 2002

(o)
W

HEADER NO

Sheet 27 of 49

».

BUFFER VALID?
1670/

PREPARE HEADER BUFFER
1672

YES

A
TRANSFER PACKET
HEADER INTO HEADER
BUFFER
1674

PACKET YES

TOO LARGE FOR

ONE BUFFER?
1676

TRANSFER PACKET DATA
INTO JUMBO BUFFER
1678

WRITE COMPLETION
DESCRIPTOR
1680

TRANSFER FIRST PART OF

.| PACKET DATA INTO JUMBO

BUFFER
1682

A

TRANSFER REMAINDER OF
PACKET DATA INTO
SECOND JUMBO BUFFER
1684

A

WRITE COMPLETION
DESCRIPTOR
1686

FIG. 16E

'
@

NOAC Ex. 1015 Page 245

US 6,483,804 Bl




U.S. Patent Nov. 19, 2002

YES

G

Sheet 28 of 49 US 6,483,804 B1

INVALIDATE JUMBO
BUFFER
1688

HEADER
BUFFER FULL?
1690

NO

A

INVALIDATE HEADER
BUFFER
1692

UPDATE HEADER BUFFER
TABLE
1694

END
1699

FIG. 16F

NOAC Ex. 1015 Page 246



U.S. Patent

Nov. 19, 2002

Sheet 29 of 49

US 6,483,804 B1

NO
HEADER
BUREER VAL ID? PREPARE HWEAESER BUFFER
17V
YES
TRANSFER PACKET
HEADER INTO HEADER
BUFFER
1704
RE-ASSEMBLY NO PREPARE FLOW RE-
BUFFER VALID? »|  ASSEMBLY BUFFER
1706 1708
TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY
BUFFER
1710
A
WRITE COMPLETION
DESCRIPTOR
1712
A
INVALIDATE FLOW RE-
D2 )« ASSEMBLY BUFFER
1714

NOAC Ex. 1015 Page 247



U.S. Patent

TCP
PAYLOAD TOO
LARGE FOR
BUFFER?
1716

NO

Nov. 19, 2002

Sheet 30 of 49

YES

TRANSFER PAYLOAD INTO
FLOW RE-ASSEMBLY
BUFFER
1718

WRITE COMPLETION
DESCRIPTOR .
1720

TRANSFER FIRST PORTION
OF PAYLOAD INTO FLOW
RE-ASSEMBLY BUFFER
1722

A

TRANSFER SECOND
PORTION OF PAYLOAD
INTO SECOND BUFFER

1724

WRITE COMPLETION
DESCRIPTOR
1726

INVALIDATE ENTRY IN
FLOW RE-ASSEMBLY
BUFFER TABLE
1728

D2

FIG. 17B

NOAC Ex. 1015 Page 248

US 6,483,804 B1




U.S. Patent Nov. 19, 2002

YES

A

HEADER
BUFFER FULL?
1730

INVALIDATE HEADER
BUFFER
1732

Sheet 31 of 49 US 6,483,804 B1

NO

UPDATE HEADER BUFFER
TABLE
1734

FIG. 17C

NOAC Ex. 1015 Page 249



U.S. Patent Nov. 19, 2002 Sheet 32 of 49 US 6,483,804 B1

NO
HEADER PREPARE HEADER BUFFER

BUFFER VALID?

YES

y
TRANSFER PACKET
HEADER INTO HEADER
BUFFER
1804

FLOW
RE-ASSEMBLY
BUFFER VALID?
1806

YES

BUFFER?
1808

NO

FIG. 18A

NOAC Ex. 1015 Page 250



R

U.S. Patent

Nov. 19, 2002 Sheet 33 of 49 US 6,483,804 Bl

PREPARE FLOW RE-
ASSEMBLY BUFFER
1810

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY
BUFFER
1812

WRITE COMPLETION
DESCRIPTOR
1814

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE
1816

@

FIG. 18B

NOAC Ex. 1015 Page 251



U.S. Patent Nov.19,2002  Sheet 34 of 49 US 6,483,804 B1

—

EZ\

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY
BUFFER
1820

A

WRITE COMPLETION
DESCRIPTOR
1822

FLOW NO
RE-ASSEMBLY
BUFFER FULL?

1824

YES

N N

e ASSEMBLY BUFFER UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE
TABLE bl
1826

FIG. 18C

NOAC Ex. 1015 Page 252




U.S. Patent

Nov. 19, 2002

©

TRANSFER FIRST PORTION
OF PACKET PAYLOAD INTO
RE-ASSEMBLY BUFFER
1830

y

TRANSFER REMAINING
PACKET PAYLOAD INTO
SECOND BUFFER
1832

WRITE COMPLETION
DESCRIPTOR
1834

\

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE
1836

@

YES

A

HEADER
BUFFER FULL?
1838

INVALIDATE HEADER
BUFFER TABLE
1840

Sheet 35 of 49

NO

US 6,483,804 B1

y

UPDATE HEADER BUFFER

1842

END
1899

FIG. 18D

NOAC Ex. 1015 Page 253



U.S. Patent

SMALL PACKET?
1900

Nov. 19, 2002

NO

Sheet 36 of 49

PREPARE MTU BUFFER
1906

%\1\902
NO

" /TU
BUFFER VALID?

US 6,483,804 B1

JUMBO PACKET?

<

\1904

YES

WRITE COMPLETION
DESCRIPTOR
1810

\

MTU
BUFFER FULL?
1912

INVALIDATE MTU BUFFER
1914

NO

TRANSFER PACKET INTO
MTU BUFFER
1908

UPDATE MTU BUFFER
TABLE
1916

FIG. 19A

NOAC Ex. 1015 Page 254



U.S. Patent

Nov. 19, 2002

HEADER NO

Sheet 37 of 49

»

BUFFER VALID?
1 920/

YES

PREPARE HEADER BUFFER
1922

TRANSFER PACKET INTO
HEADER BUFFER
1924

A

WRITE COMPLETION
DESCRIPTOR
1926

NO

HEADER

BUFFER FULL?
1928

INVALIDATE HEADER

UPDATE HEADER BUFFER
TABLE
1932

" Enp

BUFFER
1930

1999

US 6,483,804 B1

b

FIG. 19B

NOAC Ex. 1015 Page 255



U.S. Patent

JUMBO
BUFFER VALID?
1940

NO

Nov. 19, 2002 Sheet 38 of 49 US 6,483,804 B1

PREPARE JUMBO BUFFER

1942

SPLIT JUMBO
PACKETS?
1944

PACKET

YES TRANSFER FIRST PORTION

TOO LARGE FOR OF PACKET INTO CURRENT
ONE BUFFER? - JUMBO BUFFER
1946 1952
N
TRANSFER PACKET INTO TRANSFER REMAINDER OF
JUMBO BUFFER PACKET INTO SECOND
1948 JUMBO BUFFER
. 1954
\ 4 Y
WRITE COMPLETION WRITE COMPLETION
DESCRIPTOR DESCRIPTOR
1950 1956
|
A
INVALIDATE JUMBO END
BUFFER » 1999
1958

FIG. 19C

NOAC Ex. 1015 Page 256



o

(L

PRCE

“d

U.S. Patent Nov. 19, 2002

HEADER NO

Sheet 39 of 49

PREPARE HEADER BUFFER

»

BUFFER VALID?
196/

YES

1962

\ 4
TRANSFER PACKET
HEADER INTO HEADER
BUFFER
1964

PACKET YES

TOO LARGE FOR

US 6,483,804 B1

TRANSFER FIRST PORTION
OF PACKET DATA INTO

ONE BUFFER?
1966

TRANSFER PACKET DATA
INTO JUMBO BUFFER
1968

A

WRITE COMPLETION
DESCRIPTOR
1970

CURRENT JUMBO BUFFER
1972

TRANSFER REMAINDER OF
PACKET DATA INTO
SECOND JUMBO BUFFER
1974

h

WRITE COMPLETION
DESCRIPTOR
1976

Fa )

FIG. 19D

NOAC Ex. 1015 Page 257



U.S. Patent Nov. 19, 2002

YES

A

Sheet 40 of 49 US 6,483,804 B1

INVALIDATE JUMBO
BUFFER
1978

HEADER
BUFFER FULL?
1980

NO

INVALIDATE HEADER
BUFFER
1982

UPDATE HEADER BUFFER
TABLE
1984

END
1999

FIG. 19E

NOAC Ex. 1015 Page 258



U.S. Patent Nov. 19, 2002

HEADER NO

Sheet 41 of 49

BUFFER VALID?
ZOV

YES

PREPARE HEADER BUFFER
2002

A
TRANSFER PACKET
HEADER INTO HEADER
BUFFER
2004

FLOW YES

RE-ASSEMBLY

BUFFER VALID?
2006

WRITE COMPLETION
DESCRIPTOR
2008

A

PREPARE FLOW RE-
ASSEMBLY BUFFER
2010

G1

FIG. 20A

NOAC Ex. 1015 Page 259

US 6,483,804 B1




U.S. Patent Nov.19,2002  Sheet 42 of 49 US 6,483,804 B1

(o

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY
BUFFER
2012

A

WRITE COMPLETION
DESCRIPTOR
2014

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE
2016

HEADER NO UPDATE HEADER BUFFER
BUFFER FULL? TABLE
2018 2022

INVALIDATE HEADER ﬂn
BUFFER 2089
2020

FIG. 20B

NOAC Ex. 1015 Page 260




CONTROLLER 2104

. (o
DYNAMIC PACKET BATCHING MODULE 122 Eﬂ
ENTRY ENTRY# ;?
2108 VALIDITY ! o
N A FLOW NUMBER o ®
2110 2108 ' =
-
| v
READ POINTER | ' 2
i !
2112 ' =
| i ik
: 2
| Ny
| ; S
t [ ]
| MEMORY 2102 e
| |
| ' &
WRITE POINTER 2
B — l ' Lo
2114 | ! &
l -]
“
| . Y
' o
| |
I 255
{
!
!
—————————————————————————————————————————————————————————————————————————————————— m
=
=
")
=
FIG. 21 £
=
=
j—

NOAC Ex. 1015 Page 261




U.S. Patent

Nov. 19, 2002 Sheet 44 of 49 US 6,483,804 B1

START
2200

TRANSFER
PACKET TO HOST?
2202

INVALIDATE PACKET
ENTRY IN MEMORY
2204

INCREMENT READ !
POINTER
2206

Y

SEARCH MEMORY FOR
RELATED PACKET
2208

ALERT HOST COMPUTER
2210

END SEARCH
2212

FIG. 22A

NOAC Ex. 1015 Page 262



U.S. Patent Nov. 19, 2002 Sheet 45 of 49 US 6,483,804 B1

START
2220

CREATE NEW
ENTRY?
2222

YES

MEMORY FULL?
2224

GENERATE NEXT ENTRY
2226

A

INCREMENT WRITE
POINTER
2228

END
2230

FIG. 22B

NOAC Ex. 1015 Page 263




U.S. Patent Nov. 19, 2002 Sheet 46 of 49 US 6,483,804 B1

INSTRUCTION CONTENT 2306
INSTR. | INSTR. (EXTRACTION MASK, COMPARE VALUE, OPERATOR,
NO. NAME SUCCESS OFFSET, SUCCESS INSTRUCTION, FAILURE OFFSET,
2302 2304 FAILURE INSTRUCTION, OUTPUT OPERATION, OPERATION ARGUMENT,
OPERATION ENABLER, SHIFT, OUTPUT MASK)
0 WAIT OxFFFF, 0x0000, NP, 6, VLAN, 0, WAIT, CLR_REG, Ox3FF, 1, 0, 0x0000
1 VLAN OxFFFF, 0x8100, EQ, 1, CF), 0, 802.3, IM_CTL, 0x00A, 3, 0, OxFFFF
2 CFl 0x1000, 0x1000, EQ, 0, DONE, 1, 802.3, NONE, 0x000, 0, 0, 0x0000
3 802.3 OxFFFF, 0xD600, LT, 1, LLC_1, 0, IPV4_1, NONE, 0x000, 0, 0, 0x0000
4 LLC_1 OxFFFF, OXAAAA, EQ, 1, LLC_2, 0, DONE, NONE, 0x000, 0, 0, 0x0000
5 LLC_2 0xFF00, 0x0300, EQ, 2, IPV4_1, 0, DONE, NONE, 0x000, 0, 0, 0xC000
6 1PV 1 OxFFFF, 0x0800, EQ, 1, IPV4_2, 0, IPV6_1, LD_SAP, 0x100, 3, 0, OXFFFF
7 IPv4_2 OxFF00, 0x4500, EQ, 3, IPV4_3, 0, DONE, LD_SUM, 0x00A, 1, 0, 0x0000
8 IPV4_3 Ox3FFF, 6xoooo, EQ, 1, IPV4_4, 0, DONE, LD_LEN, Ox03E, 1, 0, OXFFFF
9 IPV4_4 Ox00FF, 0x0006, EQ, 7, TCP_1, 0, DONE, LD_FID, 0x182, 1, 0, OxFFFF
10 IPVE_1 OxFFFF, 0x86DD, EQ, 1, IPV6_2, 0, DONE, LD_SUM, 0x015, 1, 0x0000
1 IPV6_2 0xFO000, 0x6000, EQ, 0, IPV6_3, 0, DONE, IM_R1, 0x114, 1, 0, OXFFFF
12 1PV6_3 0x0000, 0x0000, EQ, 3, IPV6_4, 0, DONE, LD_FID, 0x484, 1, 0, OxFFFF
13 iPV6_4 OxFF00, 00600, EQ, 18, TCP_1, 0, DONE, LD_LEN, 0x03F, 1, OxFFFF
14 TCP_1 0x0000, 0x0000, EQ, 0, TCP_2, 4, TCP_2, LD_SEQ, 0x081, 3, 0, OxFFFF
15 TCP_2 0x0000, 0x0000, EQ, 0, TCP_3, 0, TCP_3, ST_FLAG, 0x145, 3, 0, 0x002F
16 TCP_3 0x0000, 0x0000, EQ, 0, TCP_4, 0, TCP_4, LD_R1, 0x205, 3, 0xB, OxF000
17 TCP_4 0x0000, 0x0000, EQ, 0, WAIT, 0, WAIT, LD_HDR, 0xOFF, 3, 0, OxFFFF
18 DONE 0x0000, 0x0000, EQ, 0, WAIT, 0, WAIT, IM_CTL, 0x001, 3, 0x0000
PROGRAM 2300
FIG. 23

NOAC Ex. 1015 Page 264




—
=]
S vz 9Old
«<
o
0
A
-]
z q0vT
= HOLVYOIGNI
Did4vyl
0LbZ a ol ay zl ay 8 Ol v a0
o H3LNNOD
2 * | | | |
1
= _ i | _ I
~ | 1 ) \ |
-
)
%)
@
=
77
W. — sove vove zove  —
& SHOMLIN OML NOIO3Y INO NOID3Y o¥3zZ NOIOTY H31NdWOD
RS Woud 1SOHOL
—(
V. -
S
F4
~— 00¥2
m L0LOLOLO 10000000 00000000 3N3NO0
13INOVd
M 1544 K \_  pe \_ e
a HOLVYDIONI HOLYDIONI " HOLYDIONI
X ALligva0Yd ALllgvaoud ALNigvaoyd
@

NOAC Ex. 1015 Page 265




-

U.S. Patent

Nov. 19, 2002

START
2500

A

Sheet 48 of 49

IDENTIFY PACKET QUEUE
REGIONS OR THRESHOLDS
2502

A

CONFIGURE PROBABILITY
INDICATOR(S)
2504

SELECT CRITERIA FOR
NON-DISCARDABLE
PACKETS, IF ANY
2506

INITIALIZE COUNTER
2508

Y

RECEIVE PACKET FROM
NETWORK
2510

IS
PACKET

DISCARDABLE?
2512

FIG. 25A

US 6,483,804 B1

NOAC Ex. 1015 Page 266



U.S. Patent Nov.19,2002  Sheet 49 of 49 US 6,483,804 B1

-

g

—

DETERMINE ACTIVE
REGION
2514

Y

COMPARE COUNTER AND
PROBABILITY INDICATOR
2516

A

INCREMENT COUNTER
2518

()

NO YES
DISCARD
PACKET?
2520
A
STORE PACKET DISCARD PACKET
2522 2524

END

FIG. 25B

NOAC Ex. 1015 Page 267




US 6,483,804 Bl

1
METHOD AND APPARATUS FOR DYNAMIC

PACKET BATCHING WITH A HIGH
PERFORMANCE NETWORK INTERFACE

TABLE OF CONTENTS

BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE FIGURES
DETAILED DESCRIPTION
Introduction
One Embodiment of a High Performance Network Inter-
face Circuit
An Illustrative Packet
One Embodiment of a Header Parser
Dynamic Header Parsing Instructions in One Embodi-
ment of the Invention
One Embodiment of a Flow Database
One Embodiment of a Flow Database Manager
Onc Embodiment of a Load Distributor
One Embodiment of a Packet Queue
One Embodiment of a Control Queue
Onc Embodiment of a DMA Engine
Methods of Transferring a Packet Into a Memory Buffer
by a DMA Engine
A Method of Transferring a Packet
Code 0
A Method of Transferring a Packet
Code 1
A Mecthod of Transferring a Packet
Code 2
A Method of Transferring a Packet
Code 3
A Method of Transferring a Packet
Code 4
A Method of Transferring a Packet
Code 5
A Method of Transferring a Packet with Operation
Code 6 or 7
One Embodiment of a Dynamic Packet Batching Module
Early Random Packet Discard in One Embodiment of the
Invention
CLAIMS

with Operation
with Operation
with Operation
with Operation
with Operation

with Operation

BACKGROUND

This invention relates to the fields of computer systems
and computer networks. In particular, the present invention
relates 1o a Network Interface Circuit (NIC) for processing
communication packets exchanged between a computer
network and a host computer system.

The interface between a computer and a network is often
a bottleneck for communications passing betwecn the com-
puter and the network. While computer performance (c.g.,
processor speed) has increased exponentially over the years
and computer network transmission speeds have undergone
similar increases, inefficiencies in the way network interface
circuits handle communications have become more and
more evident. With each incremental increase in computer or
network speed, it becomes ever more apparent that the
interface between the computer and the network cannot keep
pace. Thesc inefficicncics involve scveral basic problems in
the way communications between a network and a computer
are handled.

10

15

30

45

50

55

65

2

Today’s most popular forms of networks tend to be
packet-based. These types of networks, including the Inter-
net and many local area networks, transmit information in
the form of packets. Each packet is separately created and
transmitted by an originating endstation and is separately
reccived and processed by a destination endstation. In
addition, cach packet may, in a bus topology network for
example, be received and processed by numerous stations
located between the originating and destination endstations.

One basic problem with packet networks is that each
packet must be processed through multiple protocols or
protocol levels (known collectively as a “protocol stack™) on
both the origination and destination endstations. When data
transmitted between stations is longer than a certain minimal
length, the data is divided into multiple portions, and cach
portion is carried by a separate packet. The amount of data
that a packet can camry is gencrally limited by the network
that conveys the packet and is often cxpressed as a maxi-
mum transfer unit (MTU). The original aggregation of data
is sometimes known as a “datagram,” and each packet
carrying, part of a single datagramis processed very simi-
larly to the other packets of the datagram.

Communication packets are gencrally processed as fol-
lows. In the origination endstation, each separate data por-
tion of a datagram is processed through a protocol stack.
During this processing multiple protocol headers (e.g., TCP,
IP, Ethernet) are added to the data portion to form a packet
that can be transmitted across the network. The packet is
received by a network interface circuit, which transfers the
packet to the destination endstation or a host computer that
serves the destination endstation. In the destination
endstation, the packet is processed through the protocol
stack in the opposite direction as in the origination endsta-
tion. During this processing the protocol headers are
removed in the opposite order in which they were applied.
The data portion is thus recovered and can be made available
to a user, an application program, efc.

Several related packets (c.g., packets carrying data frrm
one datagram) thus undergo substantially the same process
in a serial manoer (i.c., one packet at a time). The more data
that must be transmitted, the more packets must be sent, with
each one being separately handled and processed through
the protocol stack in each direction. Naturally, the more
packets that must be processed, the greater the demand
placed upon an endstation’s processor. The number of
packets that must be processed is affected by factors other
than just the amount of data being sent in a datagram. For
cxample, as the amount of data that can be encapsulated in
a packet increases, fewer packets need to be sent. As stated
above, however, a packet may have a maximum ailowable
size, depending on the type of network in use (e.g., the
maximum transfer unit for standard Ethernet traffic is
approximately 1,500 bytes). The speed of the network also
affects the number of packets that a NIC may handle in a
given period of time. For ecxample, a gigabit Ethernet
network operating at peak capacity may require a NIC to
reccive approximately 1.48 million packets per second.
Thus, the number of packets to be processed through a
protocol stack may place a significant burden upon a com-
puter’s processor. The situation is exacerbated by the need to
process each packet separately even though each one will be
processed in a substantially similar manner.

A related problem to the disjoint processing of packets is
the manner in which data is moved between “uscr space”
(c.g., an application program’s data storage) and “system
space” (e.g., system memory) during data transmission and
receipt. Presently, data is simply copied from onc arca of

NOAC Ex. 1015 Page 268



US 6,483,804 B1

3

memory assigned to a user or application program into
another arca of memory dedicated to the processor’s use.
Because each portion of a datagram that is transmitted in a
packet may be copied separately (e.g., one byte at a time),
there is a nontrivial amount of processor time required and
frequent transfers can consume a large amount of the
memory bus’ bandwidth. Illustratively, each byte of data in
a packet received from the network may be read from the
system space and written to the user space in a separate copy
operation, and vice versa for data transmitted over the
network. Although system space generally provides a pro-
tected memory area (e.g., protected from manipulation by
user programs), the copy operation does nothing of value
when seen from the point of view of a network interface
circuit. Instead, it risks over-burdening the host processor
and retarding its ability to rapidly accept additional network
traffic from the NIC. Copying each packet’s data separately
can therefore be very inefficient, particularly in a high-speed
network environment.

In addition to the inefficient transfer of data (c.g., one

H

10

15

packet’s data at a time), the processing of headers from 20

packets received from a network is also inefficient. Each
packet carrying part of a single datagram generally has the
same protocol headers (¢.g., Ethernet, IP and TCP), although
there may be some variation in the values within the packets’
headers for a particular protocol. Each packet, however, is
individually processed through the same protocol stack, thus
requiring multiple repetitions of identical operations for
related packets. Successively processing unrelated packets
through different protocol stacks will likely be much less
cfficient than progressively processing a number of related
packets through one protocol stack at a time.

Another basic problem concerning the interaction
between present network mterface circuits and host com-
puter systems is that the combination often fails to capitalize
on the increased processor resources that are available in
multi-processor computer systems. In other words, present
attempts to distribute the processing of network packets
(c.g., through a protocol stack) among a number of protocols
in an efficient manner are generally ineffective. In particular,
the performance of present NICs does not come close to the
cxpected or desired linear performance gains one may
expect to realize from the availability of multiple processors.
In some multi-processor systems, little improvement in the
processing of network traffic is realized from the use of more
than 46 processors, for example.

In addition, the rate at which packets are transferred from
a network interface circuit to a host computer or other
communication device may fail to keep pace with the rate of
packet amrival at the network interface. One element or
another of the host computer (c.g., a memory bus, a
processor) may be over-burdened or otherwisc unable to
accept packets with sufficient alacrity. In this event one or
more packets may be dropped or discarded. Dropping pack-
ets may cause a network entity to re-transmit some traffic
and, if too many packets are dropped, a network connection
may requirc re-initialization. Further, dropping one packet
or type of packet instead of another may make a significant
difference in overall network traffic. If, for example, a
control packet is dropped, the corresponding network con-
pection may be severely affected and may do little to
alleviate the packet saturation of the network interface
circuit because of the typically small size of a control packet.
Therefore, unless the dropping of packets is performed in a
manner that distributes the effect among many network
connections or that makes allowance for certain types of
packets, network traffic may be degraded more than neces-

sary.

25 on¢ embodiment of the mvention flaw keys

s

40

45

S0

55

4

Thus, present NICs fail to provide adequate performance
to interconnect today’s high-end computer systems and
high-speed networks. In addition, a network interface circuit
that cannot make allowance for an over-burdened host
computer may degrade the computer’s performance.

SUMMARY

In one embodiment of the invention a system and method
are provided for identifying a packet within a particular
communication flow through a communication device such
as a network interface. In particular, the commugication flow
may ioclude a first packet transferred from the network
interface to a host computer. Based on an identifier of the
flow, another packet in the same flow may be identified to
the host computer. To increase the efficiency of handling
network traffic, the flow packets may then be collectively
processed through a protocol stack on a host computer.

In this embodiment, a high performance network interface
of a host computer receives a packet from a network.
Information within a header mmon of the packet 1s
assembled to gencrate a
cation ﬂow, connection or c1rcu1t that mcludes the packet.

the packet. In
m one or
w_datab:

destination cnti t are exchangi

more communication flows are sto
ich 1s_ind flow number and which ma
mana; ule. If the
database docs not already include the flow key 'OF the
received packet, then the received packet’s communication
flcwimay be a new flow at the network interface. In this case
the Tlow is registered in the database by storing its flow key
and, possibly, other information conceming the flow. Thus,
a packet’s fiow ma 1dentihe 1S THow Key and/or its

flow number.—

The packet is stored in a packet memory (e.g., a que
o R ERSSIo 1o T TRt S e e e packet’s flow
number 15 stored in a How_memory of a dynamic packet

mo en the packet is transferred or is about
to be transferred, the flow memory is searched to determine
whether another packet stored in the packet memory is part
of the same communication flow (e.g., has the same flow
number or flow key).

In this embodiment, if another packet has the same flow
number then the host computer is alerted by storing an
indicator in a host memory, such as a descriptor. In another
embodiment of the invention, if no other packet is found
with the same flow number then a different indicator is
stored in a host memory. A different indicator may be stored,
for example, if the packet is determined to be the last packet
of its communication flow. Depending on the indicator that
is stored, the host computer may delay processing the packet
to await another packet having the same flow number.

The dynamic packet batching module also includes a
controller in a present embodiment of the invention. The
controller attempts to populate the flow memory with infor-
mation associated with or derived from packets: stored in the

packet memory. Illustratively, each entry in the flow

60 wmmmwﬂmm
and an 1ndicator of whether entry may

65

be mvalidated when its packet is transferred to the host
computer, at which time it may be replaced with another
entry.

In one embodiment of the invention,

ol ckets that
conform to one or more of a set of pre-sclected protocols are

cligible for dynamic packet batching. In this embodiment, a

NS

NOAC Ex. 1015 Page 269



US 6,483,804 B1

5
header_parser module may be configured to determine
whether a received packet is Tormatied ig accordance with
onc of the protocols. If compatible with_the pre-sclected
}m-L packet may also receive the bencfit
of other processing efficiencics, such as re-assembling data

from multiple packets in one flow or distributing the pro-

cessing of packets among_processors in_a mulli-processor
system.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A is a block diagram depicting a network interface
circnit (NIC) for receiving a packet from a nctwork in
accordance with an embodiment of the present invention.

FIG. 1B is a flow chart demonstrating one method of
operating the NIC of FIG. 1A to transfer a packet received
from a network to a host computer in accordance with an
embodiment of the invention.

FIG. 2 is a diagram of a packet transmitted over a network
and received at a network interface circuit in one embodi-
ment of the invention.

FIG. 3 is a block diagram depicting a header parser of a
network interface circuit for parsing a packet in accordance
with an embodiment of the invention.

FIGS. 4A—4B comprise a flow chart demonstrating onc
method of parsing a packet received from a network at a
network interface circuit in accordance with an embodiment
of the present invention.

FIG. 5 is a block diagram depicting a network interface
circuit flow database in accordance with an embodiment of
the invention.

FIGS. 6A—6E comprisc a flowchart illustrating onc
method of managing a network interface circuit flow data-
base in accordance with an embodiment of the invention.

FIG. 7 1s a flow chart demonstrating one method of
distributing the processing of network packets among mul-
tiple processors on a host computer in accordance with an
embodiment of the invention.

FIG. 8 is a diagram of a packet queue for a network
interface circuit in accordance with an embodiment of the
invention.

FIG. 9 is a diagram of a control queue for a network
interface circuit in accordance with an embodiment of the
invention.

FIG. 10 is a block diagram of a DMA engine for trans-
ferring a packet reccived from a network to a host computer
in accordance with an embodiment of the invention.

FIG. 11 includes diagrams of data structures for managing
the storage of network packets in host memory buffers in
accordance with an embodiment of the invention.

FIGS. 12A-12B are diagrams of a free descriptor, a
completion descriptor and a free buffer amray in accordance
with an embodiment of the invention.

FIGS. 13-20 are flow charts demonstrating methods of
transferring a packet received from a network to a buffer in
a host computer memory in accordance with an embodiment
of the invention.

FIG. 21 is a diagram of a dypnamic packet batching
module in accordance with an embodiment of the invention.

FIGS. 22A-22B comprise a flow chart demonstrating one
method of dynamically searching a memory containing
information concerning packets awaiting transfer to a host
computer in order to locate a packet in the same communi-
cation flow as a packet being transferred, in accordance with
an embodiment of the invention.

6

FIG. 23 depicls one set of dynamic ibstructions for
parsing a packet in accordance with an embodiment of the
invention.

FIG. 24 depicts a system for randomly discarding a packet

5 from a network interface in accordance with an embodiment
of the invention.

FIGS. 25A-25B comprise a flow chart demonstrating one
method of discarding a packet from a network interface in
accordance with an embodiment of the invention.

DETAILED DESCRIPTION

The following description is presented 1o enable any
person skilled in the art to make and use the invention, and
is provided in the context of particular applications of the
invention and their requirements. Various modifications to
the disclosed embodiments will be readily apparent to those
skilled in the art and the general principles defined herein
may be applied to other embodiments and applications
without departing from the spirit and scope of the present
invention. Thus, the present invention is not intended to be
limited 1o the embodiments shown, but is 1o be accorded the
widest scope consistent with the principles and features
disclosed herein.

In particular, embodiments of the invention are described
below in the form of a network interface circuit (NIC)
recciving communicatiol packets Tormatied 10 accordance
%ﬁﬂt@%ﬂ%mwme

afernet, One 1 the art will recognize, however, that

the present invention is not limited to communication pro-
tocols compatible with the Internet and may be readily
adapted for use with other protocols_and in communication
devices 1 than a )

The program environment in which a present embodiment
35 of the invention is executed illustratively incorporates a

general-purpose computer or a special purpose device such

a hand-held computer. Details of such devices (e.g.,

processor, memory, data storage, input/output ports and

display) are well known and are omitted for the sake of
40 clarity.

It should also be understood that the techniques of the
present invention might be implemented using a varicty of
technologics. For example, the methods described herein
may be implemented in software running on a program-

45 mable microprocessor, or implemented in hardware utilizing
cither a combination of microprocessors or other specially
designed application specific integrated circuits, program-
mable logic devices, or various combinations thereof. In
particular, the methods described herein may be imple-

s0 mented by a serics of computer-exccutable instructions
residing on a storage medium such as a carrier wave, disk
drive, or other computer-readable mediuvm.

Introduction

In one embodiment of the present invention, a network

s5 interface circuit (NIC) is configured to_receive afid process

_system and a petwork such as the Internet. In particular, the
NIC is configured to reccive and mamulatfpacmtﬁ-
matted in accordance with a protocol stack {e.g., a combi-

60 nation of comniunication protocols) supported by a network
coupled fo the NIC.

A protocol stack may be described with reference to the
seven-layer ISO-OSI (International Standards
Organization—Open Systems Interconnection) model

65 framework. Thus, one illustrative protocol stack includes the
Transport Control Protocol (TCP) at layer four, Intcrnet
Protocol (IP) at layer three and Ethernet at layer two. For

10

25

30

@

NIC>

]

NOAC Ex. 1015 Page 270

. pCqstes”

(/{ﬂt/i'tg*

AL 7

Avis



- 7

) ’ purposes of discussion, the term “Ethernet” may be used

herein to refer collectively to the standardized IEEE

(Lostitute of Electrical and Electronics Engineers) 802.3

i specification as well as version two of the non-standardized
form of the protocol. Where different forms of the protocol
need to be distinguished, the standard form may be identified
by including the “802.3” designation.

Other embodiments of the invention are configured to
work with communications adbering to other protocols, both
known (c.g., AppleTalk, IPX (InﬁEﬁ?‘o’rk’Tackel
Exchange), etc.) and unknown ai the present time. One
skilled in the art will recognize that the methods provided by
this invention are easily adaptable for new communication
protocols.

In addition, the processing of packets described below
may be performed on communication devices other than a
NIC. For example, a modem, switch, router or other com-
munication port or device (e.g., serial, parallel, USB, SCS1)
may be similarly configured and operated.

In embodiments of the invention described below, a NIC
receives a packet from a network on behalf of a Bost
computer system or other communication device. The NIC

Cﬂ analyzes the packet (c.g., by retricving certain ficlds from

ne or morc of its protocol headers) and takes action to
B 3 iicrease the efficiency with which the packet is transferred
o F orfirovided to its desfination cnfity. Equipment and methods
discussed below for increasing the efficiency of processing
or transferring packets received from a network may also be
used for packets moving in the reverse direction (i.c., from
the NIC to the network).

One techniqu ay be applied to incoming network
traffic involves, inipg or parsing one or more headers of
an incomti 6., headers for the layer two, three and

~ four protocols) in order to identify the packet’s source and
destination entities and possibly retrieve certain other infor-
mation. Using identifiers of the communicating entities as.a
key, data_fro iple_packets may be aggregated or
A re-assembled. Typically, a datagram sent to one destination
“" entity from one source enfity is _transmitted via multiple
packets. Aggregating data from multiple related packets
‘{52, backets carrying dafa from ihe same daiagram) thus
allows a data, to_be :mbled _and collectively
Ws datagram may then be
Pprovi ¢ destination entity i -
ner. For cxample, rather than providing data from one packet
at a time (and omc bytc at a time) in separatc “copy”
operations, a “page-flip” operation may be performed. In 2
page-flip, an entire memory page of data may be provided to
the destination entity, possibly in exchange for an empty or
unused page.

In another technique, mmw%c
placed in a queue to await transfer to a host computer. e
awaiting transfer, multiple related packets may be identified
to the host computer. After being transferred, they may be
processed as a group by a host processor rather than being
processed serially (e.g., one at a time).

Yet another technique involves submitting a number of
related packets to a single processor of a multi-processor
host computer system. By distributing packets conveyed
between different pairs of source and destination entities
among different processors, the processing of packets
through their respective protocol stacks can be distributed
while still maintaining packets in their correct order.

The techniques discussed above for increasing the effi-
ciency with which packets arc processed may involve a
combination of hardware and software modules located on
a network interface and/or a bost computer system. In one

g Y

BB QW

<5

“erdigto;

20

25

30

35 module (not shown in FIG. 1A). The MAC module performs

40

45

50

55

US 6,483,804 B1

8

particular embodiment, a parsing module on a host comput-
er’s NIC parses header portions of packets. Iliustratively, the
parsing module comprises a microsequencer operating
according to a set of replaceable instructions stored as
micro-code. Using information extracted from the packets,
multiple packets Trom one source entity to one destination
‘eniity mzy b¢ identificd. A hardware re-assembly module on
the NIC may then gather the data from the mulfiple packels.
Another hardware module on the NIC is eoﬁﬁgurcd to
recognize related packets awaiting transfer to the host com- k
puter so that they may be processed through an appropriate
protocol stack collectively, rather than serially. The
re-assembled data and the packet’s headers may then be
provided to the host computer so that appropriate software
(c.g., a device driver for the NIC) may process the headers
and deliver the data to the destination entity.

Where the host computer includes gnultiple processors, a
load distributor (which may also be implemented in hard-
ware on the NIC) may select a processor to process the
headers of the multiple packets through a profocol stack.

In another cmBEgimcnt of the invention, a system is
provided for randomly discarding a packet from a NIC when
the NIC is saturated or nearly saturated with packets await-
ing transfer to a host computer.

Onc Embodiment of a High Performance Network Interface
Circuit

FIG. 1A depicts NIC 100 configured in accordance with
an illustrative embodiment of the invention. A brief descrip-
tion of the operation and interaction of the various modules
of NIC 100 in this embodiment follows. Descriptions incor-
porating much greater detail are provided in subsequent
sections.

A communication packet may be received at NIC 100
i network TUZ by 2 medium_access control (MAC) —

acg ks s
e

low-level processing of the “the

acket from k, performing some error checking,
detecting packet fragments, detecting over-sized packets,
removing the layer one preamble, etc.

Input Port Processing (IPP) module 104 then receives the
packet. The TPP module stores the entirc packet in packet
quenc 116, as received from the MAC module or network,
and a portion of the packet 1s copied into beader parser 106.
In one embodiment of the invention IPP module 104 may act
as a coordinator of sorts to prepare the packet for transfer to
a host computer system. In such a role, IPP modute 104 may
receive information concerning a packet from various mod-
ules of NIC 100 and dispatch such information to other
modules.

Header parser 106 parses a header portion of the packet to
retrieve vanious preces of information that will be used to

/16 (g )&)

) pe svorect /-

- e
- w:’wut :
-fr - Py

i bece
2> S0
N pobet-= prof

: iob :
FOB Yokp ope
@/’

identify related packets (¢.g., multiple_packel e
samie source entily for onc desfination entity) and that will
“affect subsequent processing of the packets. In the illustrated
émbodiment, header parser 106 communicates with_flow
database manager (FDBM) 108, which manages flow data-
base (FDB) 110. In particular, header parser 106 submits a

uery to FDBM 108 to determine whe i u-
nication flow (described below) exists between_the source
enfity that sent a packet and the destination entity. The
destination entity may comprisc an application program, a
communication module, or some other element of a bost
computer system that 1s to receive the packet.

—Tnathe ilustrated embodiment of the invention, a commu-

nication flow comprises one or more datagram packets Trom
ong_source Clily 10-01¢_destination cntiti A flow may be
identified by a flow key assembled from source and desti-

Sl ]

NOAC Ex. 1015 Page 271




F et i

”

9

nation identifiers retrieved from the er parser
7106. Tn one embodiment of the invention a flow key com-

prises address and/or port information for the source and

US 6,483,804 B1

10
Access) enging 120 and transfer tp a_host comp_utew

sponding entry f et is made in control queue 118

destination entities from the packet’s layer three (c.g., IP)
and/or layer e.g. tocol headers.

For purposes of the illustrated embodiment of the
invention, a communication flow is similar to a TCP end-
to-end connection but is generally shorter in duration. In
particular, in this embodiment the duration of a flow may be
limited to the time needed to receive all of the packets
associated with a single datagram passed from the source

ntity to the destination entity.

Thus, for purposes of fiow management, header parsc:

106 passes the packet’s flow key to flow database manager
w 108. The header parser may also provide the flow database

managcr with other information concerming the packet that
was reirieved from the packet (e.g., length of the packet).

Flow database manager 108 searches FDB 110 in
d Trom header parser 106.

ing each valxdiénmm:mlc&hdn flow involving a destination

enfity served by NIC 100. Thus, FDBM 108 updates jates FDB
110 as necessary, depending upon the information received
from header parser 106. In addition, in this embodiment of
the invention FDBM 108 associates an operation or action
: code with the Teceived packet. An operation code may be
. W used to identify whether a packet is part of a new or existing
. ( V‘( % ow, whether the packei includes data or just control
s F

ormanon, the amount of data within the packet, whether
" other data in a datagram sent from the source entity to the

the packet data can be re-assembled with related data (e.g.,

. ’ destination entity), ctc. FDBM 108 may use information
retncved from the packet and prov1dcd by header parser 106
. to_selec! O] odc The packet’s opera-

tion code is then passcd back to thc header parser, along with
an index of the packet’s How withm FDB 110.

In one embodiment of the invention the combination of
S header parser 106, FDBM 108 and FDB 110, or a subset of
A these modules, may be known as a traffic classifier due to
their role in classifying or identifying network traffic
received at NIC 100.

In the illustrated embodiment, header parser 106 also

passes the packet’s flow key to load dismgutof EEL !E i host

3 mpul multiple i -

Mr 112 may determine which processor an incoming packet

, 1is to be routed to ior processing through the appropriate

protocol stack. For example, load distributor 112 may ensure

that related packets are routed to_a_ single processor, By

,:pW‘/ sending all packets in one communication flow or end-te-

. “end connection to a single processor, the correct ordering of

packets can be cnfofced. Load distributor 112 may be

~omiticd il one alternative embodiment of the invention. In

another alternative embodiment, header parser 106 may also

communicate directly with other modules of NIC 100
besides the load distributor and flow database manager.

Thus, after header parser 106 parses a packet 08
alters or updates FDB 110 and load distributor 112 identifies

0€ a processor_in the host computer_system to process the

acket. Alter these actions, the heade!
&t'—énmﬁmz%ﬁ:n this
b)  —infommomrmray tocde the packet’s ow ke X of
mrpﬁmmmﬁmmafﬁf&ir of

a processor in The host computer system, and various other
dafa concerning the packet (e.g., its length, a length of a
pacEcl"Ecaaer)

Now e packet may be stored in packet que
f( Ppackets Tor manipulation by DMA (Direct Memory
\ (9

&

and in io et ay_also be
passed to dynamic packet batching module 122. Control
ucuc 118 contai ed control information for €ach

acket In packet gueue 116,
acket batching module 122 draws upon information
concerning packets in packet quene 0 batch

(i:e-, collechive) processing of headers from mulfiple related
pﬂs. In one embodiment of the invention packet batch-
ing module 122 alerts the host computer to the availability
of headers from related packets so that they may be pro-
cessed together.

Although the processing of a packet’s protocol headers is
performed by a processor on a host computer system in one
embodiment of the invention, in another embodiment the
protocol headers may be processed by a processor located on
NIC 100. In the former embodiment, software on the host
computer (e.g., a device driver for NIC 100) can reap the
advantages of additional memory and a replaceable or
upgradeable processor (¢.g., the memory may be supple-
mented and the processor may be replaced by a faster
model).

During the storage of a packet in packet queue 116,
checksum generator 114 may perform a checksum opera-
tion. The checksum may be added to the packet queue as a
trailer to the packet. Illustratively, checksum generator 114
generates a checksum from a portion of the packet received
from network 102. In one embodiment of the invention, a
checksum is generated from the TCP portion of a packet
(e.g., the TCP header and data). If a packet is not formatted
according to TCP, a checksum may be generated on another
portion of the packet and the result may be adjusted in later
processing as neccssary. For example, if the checksum
calculated by checksum generator 114 was not calculated on
the correct portion of the packet, the checksum may be
adjusted to capture the correct portion. This adjustment may
be made by software operating on a host computer system
(c.g-, a device driver). Checksum generator 114 may be
omitted or merged into another module of NIC 100 in an
alternative embodiment of the invention.

m?x-fge__mmpn_wmuhsmw
the flow information managed by flow database manager
108, the host computer system served by NIC 100 in the
illustrated embodiment is able to process network traffic
very efficiently. For example, data portions of related pack-
s may Be rc-assembled by DMA engine 120 to form
aggregations thaf can be moﬁm—mmm
Hy asscmbling the dafa into buffers the size of a memory
page, the data can be more efficiently transferred to a
destiation entity through “page-flipping,” in which an
entire memory page filled by DMA engine 120 is provided
at once. One page-flip can thus take the place of multiple
copy operations. Meanwhile, the header portions of the
re-assembled packets may similarly be processed as a group
through their appropriate protocol stack.

As already described, in another embodiment of the
invention the processing of network traffic through appro-
priate protocol stacks may be efficiently distributed in a
multi-processor host computer system. In this embodiment,
load distributor 112 assigns or distrbutes related
(e.g., packets 1n the same communication flow) to the same

processor. In particular, packets having the same source and
cstination addicsses 1n heir layer three protocol (e.g., IP)

65 headers and/or the same source and destination ports in their

Tayer four protocol (c.g., TCP) headers may be sent ta_a

single processor.

NOAC Ex. 1015 Page 272

B o
g P Lo~



jeo
@

,ae

ol

P

Il"

vfi&

US 6,483,804 B1

11
In the NIC illustrated in FIG. 1A, the processing enhance-
ments discussed above (¢.g., re-assembling data, batch pro-
cessing packet headers, distributing protocol stack

processiig) are possihl for packels feotvedfromr motwork
102 that are formatted according {0 one or morc pre- ted
protocol stacks. In this embodiment of the invention net-
work 102 is the Internet and NIC 100 is therefore configured
to process packets using one of several protocol stacks
compatible with the Internet. Packets nol configired accord-
ing to the pre-selected protocols are also processed, but may
pot receive the benefits of the full suite of processing
efficiencies provided to packets meeting the pre-selected
protocols.

For example, packets not matching one of the pre-selected
protocol stacks may be distributed for processing in a
multi-processor system on the basis of the packets’ layer two
(c.g., medium access control) source and destination
addresses rather than their layer three or layer four
addresses. Using layer two identifiers provides less granu-
larity to the load distribution procedure, thus possibly dis-
tributing the processing of packets less evenly than if layer
three/four identifiers were used.

FIG. 1B depicts one method of using NIC 100 of FIG. 1A
to receive one packet from network 102 and transfer it to a
host computer. State 130 is a start state, possibly character-
ized by the initialization or resetting of NIC 100.

In state 132, a packet is received by NIC 100 from
network 102. As "Affcady described, {c_packet may be
formatted according to a variety of communication proto-
cols. The packet may be recéived and initially mantpulated
by 2 MAC module before being passed to an PP module.

In state 134, a _%%an of the packet is copied and passed
to header parser 106. Headcr parser 106 then parses the
packet 1o exiraci values from one or more of its headers

or 1ts data. A flow key is generated from some of the
reirieved information to identify_the communication flow
that includes the packet. The degree or extent to which the
packet is parsed may depend ipon its protocols, in that the
header parser may be configured to parsc headers of different
rotocols fo different depths. In particular, header parser r 106
may be optimized (c.g., its operating instructions
configured) for a specific set of protocols or protocol stacks.
If the packet conforms to on¢ or more of the specified
protocols it may be parsed more fully than a packet that does
not adhere to any of the protocols.

In state 136, information ¢xiracted from the packet’s

headers is forwarded to flo base manager 108 and/or

load distributor 112. The FDBM uses the information to set

5

10

15

20

25

30

35

40

45

12

In state 140,msmskkﬂisﬁ>LcﬂzMM1& As
the contents of the packet are placed into the packet queue,
checksum generator 114 may compute a checksum. The
checksum generator may be informed by IPP module 104 as
to which portion of the packet to compute the checksum on.
The computed checksum is added to the packet queue as a
trailer to the packet. In one embodiment of the invention, the
packet is stored in the packet queue at substantially the same
time that a copy of a header portion of the packet is provided
to header parser 106.

Also in state 140, control information for the packct is

stored in control queue 118 and information concerning the

wﬂm@%ﬂ
fo dynamic packet batching module 122,
~—Ii state 142, NIC 100 determines whether the packet is
ready to be transferred to host computer memory. Until it is
ready to be transferred, the illustrated procedure waits.
When the packet is ready to be transferred (e.g., the
packet is at the head of the packet queue or the host
computer receives the packet ahead of this packet in the
packet queue), in state 144 dynamic packet batching module
122 determines whether a related packet will soon be
transferred. If so, then when the present packet is transferred
to host memory the host computer is alerted that a related
packet will soon follow. The host computer may then
process the packets (e.g., through their protocol stack) as a

group.

In state 146, the packet is transferred (c.g., via a direct
memory access Gperation) to host computer meinory. And,
in state 148, the host computer is notified that the packet was
transferred. The illustrated procedure then ends at state 150.

ed in the art of computer systems and networking
will recognize that the procedure described above is just one
method of employing the modules of NIC 100 to receive a
single packet from a fetwork and transfer it fo a host
E?Agglgc_r_gsx_m. Other snitable methods are also contem-
plated within the scope of the invention.
An Illustrative Packet

FIG. 2 is a diagram of an illustrative packet received by
NIC 100 from network 102. Packet 200 comprises data
portion 202 and header portion 204, and may also contain
trailer portion 206. Depending upon the network environ-
ment traversed by packet 200, its maximum size (c.g., its
maximum transfer unit or MTU) may be limited.

In the illustrated cmbodiment, data portion 202 comgnscs

data being provided to a destination or feceiving entity
within a computer system (e.g., user, application program,

_p a flow in flow database 110 if one does not already exist
or this comrnunication ﬂ_gw_lf an entry already exists for
e packet’s flow, it may be updated to reflect the receipt of

50

operating system) or a communication subsystem of the
computer. Header portion 204 comprises one or more hiead-

crs prefixed to the data portion by the source or originating
cotity or a computer system comprising the source entity,

i new ftowrpacket. Further, FDBM 108 generates an opera-
tion_code to_ summarize one Or IO C erisics or

conditions of the packet. The operation code may be used by
6ther modules of NIC 100 to dle the packet 1In an
appropniafc manner, as described in subsequent sections.

The operation code is returned to the header parser, along
with an index (e.g., a flow pumber) of the packet’s flow in
fe fowdambase ——————

© 10 T

"In State I38, load distributor 112 assigns a_processor
mumbser to the packet, 1t the host computer includes multiple
processors, and refurns the processor oumber io the header
processor. Iusirafively, the processor number identifies

which processor is fo conduct the packet throngh its protogol
Stack on the host computer, State 138 may be omitted in an
“dltcrnative cmbodiment of the invention, particularly if the

host computer consists of only a single processor.

55

Each header normally corresponds to a different comm
cation protocol.

In a typical network environment, such as the Internet,
individual headers within header portion 204 arc attached
(e.g., prepended) as the packet is processed through different
layers of a protocol stack (e.g., a set of protocols for
communicating between entities) on the transmitting com-
puter system. For example, FIG. 2 depicts protocol headers

60 210,212, 214 and 216, corresponding to layers one through

four, respectively, of a suitable protocol stack. Each protocol
header contains information to be used by the receiving
computer system as the packet is received and processed
through the protocol stack. Ultimately, each protocol header

65 is removed and data portion 202 is retrieved.

As described in other sections, in one embodiment of the
invention a system and method are provided for parsing
e,

NOAC Ex. 1015 Page 273



US 6,483,804 B1

13

Backct 200 to retrieve_various bits of information. In this
eémbodiment, packet 200 is parsed in order to identify the
beginning of data portion 202 and to retrieve one or more
values for fields within header portion 204. Illustratively,
however, layer one protocol header or preamble 210 corre-
sponds to a hardware-level specification related to the cod-
ing of individual bits. Layer one protocols arc generally only
necded for the physical process of sending or receiving the
packet across a conductor. Thus, in this embodiment of the
invention layer one preamble 210 is stripped from packet
200 shortly after being received by NIC 100 and is therefore
not parsed.

The extent to which header portion 204 is parsed may
depend upon how many, if any, of the protocols represented
in the header portion match a set of pre-selected protocols.

For example, the parsing procedure may he abbreviated or
aborted once it is ined that one of the packet’s headers

cm_ﬁwmd protocol.

particular, in one embodiment of the invention NIC 100
is configured primarily for Internet traffic. Thus, in this
embodiment packet 200 is extensively parsed only sthen the
layer two protocol is Ethernet (either traditional Ethemet or
802.3 Ethernet, with or without tagging for virtual Local
Arca Networks), the ¢ protocol is IP (Internet
ool 3 5 eyer. ot w5 TP (lransport
Control Protocol). Packets adheri rotocols may
be parsed to some (c.g., lesser) extent. NIC 100 may,
however, beconfigured to support and parse y any
_@“ﬂ%mlﬂwdcn Tilustratively, the protocol
headers that are parsed, and the extent to which they are
parsed, arc determined by the configuration of a set of
instructions for operating header parser 106.

As described above, the protocols corresponding to head-
ers 212, 214 and 216 depend upon the network environment
in which a packet is sent. The protocols also depend upon the
communicating entities. For example, a packet received by
a network interface may be a control packet exchanged
between the medium access controllers for the source and
destination computer systems. In this case, the packet would
be likely to include minimal or no data, and may not include
layer three protocol header 214 or layer four protocol header
216. Control packets are typically used for various purposes
rclated to the management of individual connections.

Another communication flow or connection could involve
two application programs. In this case, a packet may include
headers 212, 214 and 216, as shown in FIG. 2, and may also
include additional headers rclated to higher layers of a
protocol stack (e.g., session, presentation and application
layers in the ISO-OSI model). In addition, some applications
may include headers or header-like information within data
portion 202. For example, for a Network File System (NFS)
application, data portion 202 may include NES headers
related to individual NFS datagrams. A datagram may be
defined as a collection of data sent from one entity to
another, and may comprise data transmitted in multiple
packets. In other words, the amount of data constituting a
datagram may be greater than the amount of data that can be
included in one packet.

One skilled in the art will appreciate that the methods for
parsing a packet that are described in the following section
arc readily adaptable for packets formatted in accordance
with virtually any communication protocol.

One Embodiment of a Header Parser

FIG. 3 depicts header parscr 106 of FIG. 1A in accordance
with a present embodiment of the invention. Illustratively,
header parser 106 compriscs header memory 302 and parser
304, and parser 304 comprises instruction memory 306.

5 stored in hecade

14

Although depicted as distinct modules in FIG. 3, in an
alternative embodiment of the invention header memory 302

and instruction memory 306 are contiguous.
In the illustrated embodiment, parser 304 parses a header
P according 10 instructions
stored jp instruction ry 306. The instructions are
dcsigged for the parsing of patticular protocols or a particu-
ar protocol stack, as discussed above. In one embodiment of

the invention, instruction memory 306 is modifiable (e.g.,

10 the memory is implemented as RAM, EPROM, EEPROM or

the like), so that new or modified parsing instructions may
be downloaded or otherwise installed. Instructions for pars-
ing a packet are further discussed in the following section.

In FIG. 3, a header portion of a packet stored in IPP

15 module 104 (shown in FIG. 1A) is copied into header

memory 302. Illustratively, a specific number of bytes (e.g.,
114) at the beginning of the packet are copied. In an
alternative embodiment of the invention, the portion of a
packet that is copied may be of a different size. The

20 particular amount of a packet copied into header memory

302 should be enough to capture onec or more protocol
headers, or at least enough information (e.g., whether
included in a header or data portion of the packet) to retricve
the information described below. The header portion stored

25 1in header memory 302 may not include the layer one header,

which may be removed prior to or in conjunction with the
packet being processed by IPP module 104.

After a header portion of the packet is stored in header
memory 302, parser 3U4 parscs ibe header portion according

30 To The instructions stored 1n instruction memory 306. In the

“presently described embodiment, instructions for operating

parser 304 apply the forma tep
the contents of hea ieve

specific information. In particular, specifications of commu-

35 hication protocols are well known and widely available.

Thus, a protocol header may be traversed byte by byte or

some_other fashion by referring to the protocol specifica-
tions. In a present embodiment of the invention the parsing
A ——

algorithm is dynamic, with information retrieved from one

40 field of a header ofien altering the manner in which another

part is parsed.

For example, it is known that the Type field of a packet
adhering to the traditional, form of Ethernet (¢.g., version
two) begins at the thirteenth byte of the (layer two) header.

45 By comparison, the Type field of a packet following the

IEEE 802.3 version of Ethernet begins at the twenty-first
byte of the header. The Type field is in yet other locations if
the packet forms part of a Virtual Local Area Network
(VLAN) communication (which illustratively involves tag-

50 ging or encapsulating an Ethernet header). Thus, in a present

embodiment of the invention, the values in certain fields are
retricved and tested in order to ensure that the information
needed from a header is drawn from the correct portion of
the header. Details concerning the form of a VLLAN packet

55 may be found in specifications for the IEEE 802.3p and EEE

8023q forms of the Ethernet protocol.

The operation of header parser 106 also depends upon
other differences between protocols, such as whether the
packet uses version four or version six of the Intemet

60 Protocol, etc. Specifications for versions four and six of 1P

may be located in IETF (Internct Engincering Task Force)
RFCs (Request for Comment) 791 and 2460, respectively.

The more protocols that are “known” by parser 304, the
more protocols a packet may be tested for, and the more

65 complicated the parsing of a packet’s header portion may

become. One skilled in the art will appreciate that the
protocols that may be parsed by parser 304 are limited only

NOAC Ex. 1015 Page 274



“
A

e

2y e ¢

US 6,483,804 B1

15

by the instructions according to which it operates. Thus, by
augmenting or replacing the parsing instructions stored in
instruction memory 306, virtually all known protocols may
be handled by header parser 106 and virtually apy informa-
tion may be retrieved from a packet’s headers.

If, of course, a packet header does not conform to an
cxpected or suspected protocol, the parsing operation may
be terminated. In this case, the packet may not be suitable for
one more of the efficiency enhancements offered by NIC 100
(c.g., data re-assembly, packet batching, load distribution).

Ilustratively, the information retrieved from a packet’s
headers is used by other portions of NIC 100 when process-
ing that packet. For example, as a result of the packet parsin
performed by parser 304 a flow key is generated to identify
_the communication flow or communication connection that
comgnses the packet. Illustratively, the flow key 1s
assembled tenating one or more addresses corre-
sponding to ope or more of the communicating entities. In
a present embodiment, a flow key is formed from a combi-
nation of the source and ation addicsses diawn from

e IP header and the source and destination poits taken Irom

e TCP header. Other indicia of the comimunicating entities
ay be used, such as the Ethernct source and destination
addresses (drawn from the layer two header), NFS file
handles or source and destination identifiers for other apphi-
cation datagrams drawn from the data portion of the packet.

One skilled in the art will appreciate that the communi-
cating entities may be identified with greater resolution by
using indicia drawn from the higher layers of the protocol

stack associated with a packet. Thus, a combination of IP 30

and TCP indicia may identify the entities with greater
particularity than layer two information.

Besides a flow key, parser 304 also gencrates a control or
status indicator to summarize additional information con-
cerning the packet. In one embodiment of the invention a
control indicator includes a sequence number (e.g., TCP
sequence number drawn from a TCP header) to ensure the
correct ordering of packets when re-assembling their data.
The control indicator may also reveal whether certain flags
in the packet’s headers are set or cleared, whether the packet
contains any data, and, if the packet contains data, whether
the data exceeds a certain size. Other data are also suitable
for inclusion in the control indicator, limited only by the
information that is available in the portion of the packet
parsed by parser 304.

In one embodiment of the invention, header parser 106
provides the flow key and all or a porfion of l%c confrol
indicalor to flow databasc manager 108. din a
following section, FDBM 108 manages a database or other
data structure containin&informauon relevant 10 communi-
cation flows passing through NIC 100.

In other embodiments of the invention, parser 304 pro-
duces additional information derived from the header of a
packet for use by other modules of NIC 100. For example,
header parser 106 may report the offset, from the beginning
of the packet or from some other point, of the data or
payload portion of a packet received from a network. As
described above, the data portion of a packet typically
follows the header portion and may be followed by a trailer
portion. Other data that header parser 106 may report
include the location in the packet at which a checksum
operation should begin, the location in the packet at which
the layer three and/or layer four headers begin, diagnostic
data, payload information, ctc. The term “payload” is often
used to refer to the data portion of a packet. In particular, in
one embodiment of the invention header parser 106 provides
a payload offset and payload size to control queue 118.

16

¥1n appropriate circumstances, header parser 106 may also

report (e.g., to IPP module 104 and/or control queue 118)

that the packet is not formatted in accordance with the

protocols that parser 304 is configured to manipulate. This

5 report may take the form of a signal (c.g., the No__Assist
signal described below), alert, flag or other indicator. The
signal may be raised or issued whenever the packet is found
to refiect a protocol other than the pre-selected protocols that
are compatible with the processing enhancements described

10 above (c.g., data re-assembly, batch processing of packet
headers, load distribution). For example, in one embodiment
of the invention parser 304 may be configured to parse and
efficiently process packets using TCP at layer four, IP at
layer three and Ethernet at layer two. In this embodiment, an

15 IPX (Internetwork Packet Exchange) packet would not be
considered compatible and IPX packets therefore would not
be gathered for data re-assembly and batch processing.

At the conclusion of parsing in one embodiment of the
invention, the various pieces of information described above

20 are disseminated to appropriate modules of NIC 100, g 3
this (and a= deseribed in 2 following section), flow databese

anager etermines whether an_active flow is associ-

ated with the flow key derived from the packet and sets an

operation code to be used inﬂxhan!mnt.mssing._l_n

25 addition, IPP_modulc 104 transmits the packet to packet

qucue 116. IPP module 104 may also receive some of the

‘g‘rhga‘_ng_uxlnc!rd.bLMdcr parser 106, and pass it to

(ar_xg_g_r_godulc of NIC 100.

In the embodiment of the invention depicted in FIG. 3, an
entire header portion of a received packet to be parsed is
copied and then parsed in one evolution, after which the
header parser turns its attention to another packet. However,
in an alternative embodiment muitiple copy and/or parsing
operations may be performed on a single packet. In
35 particular, an initial header portion of the packet may be

copied into and parsed by header parser 106 in a first

evolution, after which another header portion may be copied

into header parser 106 and parscd in a second evolution. A

header portion in one evolution may partially or completely
40 overlap the header portion of another evolution. In this

manner, extensive headers may be parsed even if header
memory 302 is of limited size. Similarly, it may require
more than one operation to load a full set of instructions for
parsing a packet into instruction memory 306. Nlustratively,
45 a first portion of the ipstructions may be loaded and
exccuted, after which other instructions are loaded.

With reference now to FIGS. 4A—4B, a flow chart is
presented to illustrate one method by which a header parser
may parse a header portion of a packet received at a network

so interface circuit from a network. In this implementation, the
header parser is configured. or optimized, for parsing Pack-"
ets confo to a set of pre-se r protocol
stacks). For packets meeting thesc criteria, various informa-
tion is retrieved from the header portion to assist in the

55 mjfw_ﬂwiww packets (c.2.,
pWMmagm). Other
el catures of the network interface circuit may also
be enabled.

The information generated by the header parser includes,

60 in particular, a low key with which to identify the commu-
nication flow or communication corncciion that comprises
“ggc received };ackct. In one embodiment of the invention,
data from packets having the same flow key may be iden-
tified and re-assembled to form a datagram. In addition,

65 headers of packets having the same flow key may be
processed collectively through their protocol stack (e.g.,
rather than serially).

NOAC Ex. 1015 Page 275



£ 17
3 - In another embodiment of the invention, information
retrieved by the header parser is also used to distribute the
processing of network traffic received from a network. For
example, multiple packets having the same flow key may be
submitted to a single processor of a multi-processor host
computer system.

In the method illustrated in FIGS. 4A-4B, the sct of

pre-selected protocols corresponds to communication pro-
tocols frequently transmitted via the Internet. In particular,
the set of protocols that may be extensively parsed in this
method include the following. At layer two: Ethernet
(traditional version), 802.3 Ethernet, Ethernet VLAN
$ (Virtual Local Area Network) and 802.3 Ethernet VLAN. At
p layer three: IPv4 (with no options) and IPv6 (with no
x optiops). Finally, at layer four, only TCP protocol headers
(with or without options) are parsed in the illustrated
-3 method. Header parsers in alternative embodiments of the
invention parse packets formatted through other protocol
stacks. In particular, a NIC may be configured in accordance
with the most common protocol stacks in use on a given
network, which may or may not include the protocols
1 compatible with the header parser method illustrated in
o FIGS. 4A-4B.
3 As described below, a received packet that does not
- correspond to the protocols parsed by a given method may
be flagged and the parsing algorithm terminated for that
packet. Because the protocols under which a packet has been
formatted can only be determined, in the present method, by
examining ccrtain header field values, the determination that
a packet does not conform to the selected set of protocols
may be made at virtually any time during the procedure.
Thus, the illustrated parsing method has as one goal the
identification of packets not meeting the formatting criteria
for re-assembly of data.

Various protocol header fields appearing in headers for the
selected protocols are discussed below. Communication
protocols that may be compatible with an embodiment of the
present invention (e.g., protocols that may be parsed by a
header parser) are well known to persons skilled in the art
and are described with great particularity in a number of
references. They therefore need not be visited in minute
detail herein. In addition, the illustrated method of parsing a
header portion of a packet for the selected protocols is
merely one method of gathering the information described
below. Other parsing procedures capable of doing so are
equally suitable.

In a present embodiment of the invention, the illustrated
procedure is implemented as a combination of hardware and
software. For example, updateable micro-code instructions
for performing the procedure may be exccuted by a microse-
quencer. Altcrnatively, such instructions may be fixed (e.g.,
stored in read-only memory) or may be executed by a
Processor or Microprocessor.

In FIGS. 4A-4B, state 400 is a start state during which a
packet is received by NIC 100 (shown in FIG. 1A) and initial
L processing is performed. NIC 100 is coupled to the Internet
. for purposes of this procedure. Initial processing may
include basic error checking and the removal of the layer one
preamble. After initial processing, the packet is held by IPP
module 104 (also shown in FIG. 1A). In one embodiment of

the invention, statc 400 comprises a logical loop in which
the header parser remains in an idle or wait state until a
packet is received.

In state 402, a peader portion of the packet is copied into
memory (c.g., header memory 302 of FIG. 3). In a present
mmmmm number of

bytes at the beginning (c.g., 114 bytes) of the packet are

S ey

15

20

25

as

40

45

50

55

60

3 US 6,483,804 B1

18

copied. Packet portions of differcnt sizes are copied in
alternative embodiments of the invention, the sizes of which
are guided by the goal of copying enough of the packet to
capture and/or identify the necessary header information.
Ilustratively, the full packet is retained by IPP module 104
while the following parsing operations are performed,
although the packet may, alternatively, be stored in packet
queue 116 prior to the completion of parsing.

Also in state 402, a pointer to be used in parsing the
packet may be initialized. Because the layer one preamble
was removed, the header portion copied to memory should
begin with the layer two protocol header. Ilustratively,
therefore, the pointer is initially set to point to the twelfth
byte of the layer two protocol header and the two-byte value
at the pointer position is read. As one skilled in the art will
recognize, these two bytes may be part of a number of
different fields, depending upon which protocol constitutes
layer two of the packet’s protocol stack. For example, these
two bytes may comprise the Type field of a traditional
Ethemnet header, the Length field of an 802.3 Ethernet header
or the TPID (Tag Protocol IDentifier) field of a VLAN-
tagged header.

In state 404, a first examination is made of the layer two
header to determine if it comprises a VI.AN-tagged layer
two protocol header. Illustratively, this determination
depends upon whether the two bytes at the pointer position
store the hexadecimal value 8100. If so, the pointer is
probably located at the TPID ficld of a VL.AN-tagged
header. If not a VLAN header, the procedure proceeds to
state 408.

If, however, the layer two header is a VLAN-tagged
header, in state 406 the CFI (Canonical Format Indicator) bit
is examined. If the CFI bit is sct (e.g., equal to one), the
illustrated procedure jumps to state 430, after which it exits.
In this embodiment of the invention the CFI bit, when set,
indicates that the format of the packet is not compatible with
(i.c., does not comply with) the pre-selected protocols (e.g.,
the layer two protocol is not Ethernet or 802.3 Ethernet). If
the CFI bit is clear (e.g., cqual to zcro), the pointer is
incremented (e.g., by four bytes) to position it at the next
field that must be examined.

In statc 408, the layer two header is further tested.
Although it is now known whether this is or is not a
VLAN-tagged header, depending upon whether state 408
was reached through state 406 or directly from statc 404,
respectively, the header may reflect either the traditional
Ethernet format or the 802.3 Ethernet format. At the begin-
ning of state 408, the pointer is cither at the twelfth or
sixteenth byte of the header, either of which may correspond
to a Length field or a Type field. In particular, if the two-byte
value at the position identified by the pointer is less than
0600 (hexadecimal), then the packet corresponds to 802.3
Ethemnet and the pointer is understood to identify a Length
field. Otherwise, the packet is a traditional (e.g., version
two) Ethernet packet and the pointer identifies a Type field.

If the layer two protocol is 802.3 Ethernet, the procedure
continues at state 410. If the layer two protocol is traditional
Ethernet, the Type field is tesled for the hexadecimal values
of 0800 and 08DD. If the tested field has one of these values,
then it has also been determined that the packet’s layer three
protocol is the Internet Protocol. In this case the illustrated
procedure continues at state 412. Lastly, if the field is a Type
field having a value other than 0800 or 86 DD (hexadecimal),
then the packet’s layer three protocol does not match the
pre-selected protocols according to which the header parser
was configured. Therefore, the procedure continues at state
430 and then ends.

NOAC Ex. 1015 Page 276



US 6,483,804 B1

19

In one embodiment of the invention the packet is exam-
ined in state 408 to determine if it is a jumbo Ethernet frame.
This determination would likely be made prior to deciding
whether the layer two header conforms to Ethernet or 802.3
Ethernet. Illustratively, the jumbo frame determination may
be made based on the size of the packet, which may be
reported by IPP module 104 or a MAC module. If the packet
is a jumbo frame, the procedure may continue at state 410;
otherwise, it may resume at state 412.

In state 410, the procedure verifies that the layer two
protocol is 802.3 Ethernet with LLC SNAP encapsulation. In
particular, the pointer is advanced (c.g., by two bytes) and
the six-byte value following the Length ficld in the layer two
header is retrieved and examined. If the header is an 802.3
Ethernet header, the field is the LLC_SNAP field and
should have a valuc of AAAA03000000 (hexadecimal). The
original specification for an ILI.C SNAP header may be
found in the specification for IEEE 802.2. If the value in the
packet’s LI.C_ SNAP ficld matches the expected value the
pointer is incremented another six bytes, the two-byte 802.3
Ethemet Type field is read and the procedure continues at
state 412. If the values do not match, then the packet does
not conform to the specified protocols and the procedure
enters state 430 and then ends.

In state 412, the pointer is advanced (e.g., another two
bytes) to locate the beginning of the layer three protocol
header. This pointer position may be saved for later use in
quickly identifying the beginning of this header. The packet
is now konown to conform to an accepted layer two protocol
(c.g., traditional Ethernet, Ethernet with VLLAN tagging, or
802.3 Ethernet with LLC SNAP) and is now checked to
ensure that the packet’s layer three protocol is IP. As
discussed above, in the iflustrated embodiment only packets
conforming to the IP protocol are extensively processed by
the header parser.

Dlustratively, if the value of the Type field in the layer two
header (retricved in state 402 or state 410) is 0800
(hexadecimal), the layer three protocol is expected to be IP,
version four. If the value is 86 DD (hexadecimal), the layer
three protocol is expected to be IP, version six. Thus, the
Type field is tested in state 412 and the procedure contioues
at state 414 or statc 418, depending upon whether the
hexadecimal value is 0800 or 86DD, respectively.

In state 414, the layer three header’s conformity with
version four of IP is verificd. In onc embodiment of the
invention the Version field of the layer three header is tested
to ensure that it contains the hexadecimal value 4, corre-
sponding to version four of IP. If in state 414 the layer three
header is confirmed to be IP version four, the procedure
continues at state 416; otherwise, the procedure proceeds to
state 430 and then ends at state 432.

In state 416, various picces of information from the IP
heade; ved. This information may include the IHL (IP
“Header Length), Total Length, Protocol and/or Fragment

Offset fields. The IP source address and the IP destination

10

20

25

30

35

40

45

50

20

In state 418, the layer three header’s conformity with
version six of IP is verified by testing the Version field for
the hexadecimal value 6. If the Version field does not contain
this value, the illustrated procedure proceeds to state 430.

In state 420, the values of the Payload Length (e.g., the
size of the TCP segment) and Next Header field are saved,
plus the IP source and destination addresses. Source and
destination addresses are each sixtcen bytes long in version
six of IP.

In state 422 of the illustrated procedure, it is determined
whether the IP header (either version four or version six)
indicates that the layer four header is TCP. Illustratively, the
Protocol field of a version four IP header is tested while the
Next Header ficld of a version six header is tested. In either
case, the value should be 6 (hexadecimal). The pointer is
then incremented as necessary (e.g., twenty bytes for IP
version four, forty bytes for IP version six) to reach the
beginning of the TCP header. If it is determined in state 422
that the layer four header is not TCP, the procedure advances
to state 430 and ends at end state 432.

In one embodiment of the invention, other fields of a
version four IP header may be tested in state 422 to ensure
that the packet meets the criteria for enhanced processing by
NIC 100. For example, an IHL field value other than 5
(hexadecimal) indicates that IP options are set for this
packet, in which case the parsing operation is aborted. A
fragmentation ficld valuc other than zero indicates that the TP
segment of the packet is a fragment, in which case parsing
is also aborted. In either case, the procedure jumps to state
430 and then ends at end state 432.

In state 424, the packet’s TCP header is parsed and
various data are collected from it. In particular, the TCP
source port and destination port values are saved. The TCP
sequence number, which is used to cnsure the correct
re-assembly of data from multiple packets, is also saved.
Further, the values of several components of the Flags
field-—iltustratively, the URG (urgent), PSH (push), RST
(reset), SYN (synch) and FIN (finish) bits—are saved. As
will be seen in a later section, in one embodiment of the
invention these flags signal various actions to be performed
or statuses to be considered in the handling of the packet.

Other signals or statuses may be generated in state 424 to
reflect information retrieved from the TCP header. For
example, the point from which a checksum operation is to
begin may be saved (illustratively, the beginning of the TCP
header); the ending point of a checksum operation may also
be saved (illustratively, the end of the data portion of the
packet). An offset to the data portion of the packet may be
identified by multiplying the value of the Header Length
field of the TCP header by four. The size of the data portion
may then be calculated by subtracting the offset to the data
portion from the size of the entire TCP segment.

In state 426, a flow key is assembled by concatenating the

addresses may also be stored. d destination

address values are each four bytes long in version four of IP.
ese addresses are used, as described above, to generate a
. flow key that identifies the communication ﬂo;vgmaﬁ
_hjs packet was sent. The Total Length nield stores the size
of the IP segment of this packet, which illustratively com-
prises the IP header, the TCP header and the packet’s data
portion. The TCP scgment size of the packet (e.g., the size
of the TCP header plus the size of the data portion of the
packet) may be calculated by subtracting twenty bytes (the
size of the IP version four header) from the Total Length
value. After state 416, the illustrated procedure advances to
state 422.

55

60

65

IP source and desti and
destination,ports. As already described, the flow key may be
used to identify a communication flow or communication

connection, and may be used by other modules of NIC 100
0 process network traffic more efficiently. Although the
sizes of the source and destination addresses differ between
IP versions four and six (e.g., four bytes each versus sixicen
bytes each, respectively), in the presently described embodi-
ment of the invention all flow keys are of uniform size. In
particular, in this embodiment they are thirty-six bytes long,
including the two-byte TCP source port and two-byte TCP
destination port. Flow keys generated from IP, version four,
packet headers are padded as necessary (e.g., with twenty-
four clear bytes) to fill the flow key’s allocated space.

NOAC Ex. 1015 Page 277



US 6,483,804 B1

21

In state 428, a control or status Indicator is assembled to
provide various information to one or more modules of NIC
100. In one embodiment of the invention a control indicator
includes the packet’s TCP sequence number, a flag or
identifier (c.g., one or more bits) indicating whether the
packet contains data (¢.g., whether the TCP payload size is
greater than zero), a flag indicating whether the data portion
of the packet exceeds a pre-determined size, and a flag
indicating whether certain entries in the TCP Flags field arc
equivalent to pre-determined values. The latter flag may, for
example, be used to inform another module of NIC 100 that
components of the Flags field do or do not have a particular
configuration. After state 428, the illustrated procedure ends
with state 432.

State 430 may be entered at several different points of the
illustrated procedure. This state is entered, for example,
when it is determined that a header portion that is being
parsed by a header parser does not conform to the pre-
selected protocol stacks identified above. As a result, much
of the information described above is not retrieved. A
practical consequence of the inability to retrieve this infor-
mation is that it then cannot be provided to other modules of
NIC 100 and the enbanced processing described above and
in following sections may not be performed for this packet.
In particular, and as discussed previously, in a present
embodiment of the invention one or more enhanced opera-
tions may be performed on parsed packets to increase the
cfficiency with which they are processed. ITlustrative opera-
tions that may be applied include the re-assembly of data
from related packets (c.g., packets containing data from a
single datagram), batch processing of packet headers
through a protocol stack, load distribution or load sharing of
protocol stack processing, cfficient transfer of packet data to
a destination entity, etc.

In the illustrated procedure, in state 430 a flag or signal
(illustratively termed No__Assist) is set or cleared to indicate
that the packet presently held by IPP module 104 (e.g.,
which was just processed by the header parser) does not
conform to any of the pre-selected protocol stacks. This flag
or signal may be relicd upon by another module of NIC 100
when deciding whether to perform one of the enhanced
operations.

Another flag or signal may be set or cleared in state 430
to initialize 2 checksum parameter indicating that a check-
sum operation, if performed, should start at the beginning of
the packet (¢.g., with no offset into the packet). Illustratively,
incompatible packets cannot be parsed to determine a more
appropriate point from which to begin the checksum opera-
tion. After state 430, the procedure ends with end state 432.

20

25

45

?ftg_wsmga_mcmmm.dmmnmdismm
infOrmation generated from the packet to one or_more 50

modulcs of NIC 100. For cxample. in onc embodimentofthe.

mvention the How key 1s provided to flow database manager
108, Toad distributor 112 and one or hoth of control queue
118 and packet quene, 116. [lustratively, the control indica-
for is provided to flow database manager 108 THis and other
cﬁmmm@%m—sm payload
offset and the No__Assist signal may be returned to IPP
module 104 and provided to control queue 118. Yet addi-
tional control and/or diagnostic information, such as offsets
to the layer three and/or layer four headers, may be provided
to IPP module 104, packet queue 116 and/or control queue
118. Checksum information (e.g., a starting point and either
an ending point or other means of identifying a portion of the
packet from which to compute a checksum) may be pro-
vided to checksum generator 114.

As discussed in a following section, although a received
packet is parsed on NIC 100 (e.g., by header parser 106 ), the

60

65

22

packets are still processed (e.g., through their respective
protocol stacks) on the host computer system in the illus-
trated embodiment of the invention. However, after parsing
a packet in an alternative embodiment of the invention, NIC
100 also performs one or more subsequent processing steps.
For example, NIC 100 may include one or more protocol
processors for processing one or more of the packet’s
protocol headers.

Dynamic Header Parsing Instructions in One Embodiment
of the Invention

In one embodiment of the present invention, header parser
106 parses a packet received from a network according to a
dynamic sequence of instructions. The instructions may be
stored in the header parser’s iostruction memory (e.g.,
RAM, SRAM, DRAM, flash) that is re-programmable or
that can otherwise be updated with new or additional
instructions. In one embodiment of the invention software
operating on a host computer (e.g., a device driver) may
download a set of parsing instructions for storage in the
header parser memory.

The number and format of instructions stored in a header
parser’s instruction memory may be tailored to one or more
specific protocols or protocol stacks. An instruction set
configured for one collection of protocols, or a program
constructed from that instruction set, may therefore be
updated or replaced by a different instruction set or program.
For packets received at the network interface that are for-
matted in accordance with the selected protocols (e.g.,
“compatible” packets), as determined by analyzing or pars-
ing the packets, various enhancements in the handling of
network traffic become possible as described in the follow-
ing sections. In particular, packets from one datagram that
are configured according to a selected protocol may be
re-assembled for efficient transfer in a host computer. In
addition, header portions of such packets may be processed
collectively rather than serially. And, the processing of
packets from different datagrams by a multi-processor host
computer may be shared or distributed among the proces-
sors. Therefore, one objective of a dynamic header parsing
operation is to identify a protocol according to which a
received packet has been formatted or determine whether 2
packet header conforms to a particular protocol

FIG. 23, discussed in detail shortly, presents an illustrative
series of instructions for parsing the layer two, three and four
beaders of a packet to determine if they are Ethernet, IP and
TCP, respectively. The illustrated instructions comprisc one
possible program or microcode for performing a parsing
operation. As one skilled in the art will recognize, after a
particular set of parsing instructions is loaded into a parser
memory, a pumber of different programs may be assembled.
FIG. 23 thus presents merely one of 2 number of programs
that may be gencrated from the stored instructions. The
instructions presented in FIG. 23 may be performed or
executed by & microsequencer, a processor, a microproces-
sor or other similar module located within a network inter-
face circuit.

In particular, other instruction sets and other programs
may be derived for different communication protocols, and
may be expanded to other layers of a protocol stack. For
example, a set of instructions could be generated for parsing
NFS (Network File System) packets. Illustratively, these
instructions would be configured to parse layer five and six
headers to determine if they are Remote Procedure Call
(RPC) and External Data Representation (XDR), respec-
tively. Other instructions could be configured to parse a
portion of the packet’s data (which may be considered layer
seven). An NFS header may be considered a part of a
packet’s layer six protocol header or part of the packet’s
data.

NOAC Ex. 1015 Page 278



US 6,483,804 Bl

23

One type of instruction executed by a microsequencer
may be designed to locate a particular ficld of a packet (e.g.,
at a specific offset within the packet) and compare the value
stored at that offset to a value associated with that field in a
particular communication protocol. For example, one
instruction may require the microsequencer to examine a
value in a packet beader at an offset that would correspond
to a Type ficld of an Ethemet header. By comparing the
value actually stored in the packet with the value expected
for the protocol, the microsequencer can determine if the
packet appears to conform to the Ethernet protocol.
Ilustratively, the next instruction applied in the parsing
program depends upon whether the previous comparison
was successful. Thus, the particular instructions applied by
the microsequencer, and the sequence in which applied,
depend upon which protocols are represented by the pack-
et’s headers.

The microsequencer may test one or more field values
within each header included in a packet. The more ficlds that
are tested and that are found to comport with the format of
a known protocol, the greater the certainty that the packet
conforms to that protocol. As one skilled in the art will
appreciate, one communication protocol may be quite dif-
ferent than another protocol, thus requiring examination of
different parts of packet headers for different protocols.
Illustratively, the parsing of one packet may end in the event
of an emror or because it was determined that the packet
being parsed does or does not conform to the protocol(s) the
instructions are designed for.

Each instruction in FIG. 23 may be identificd by a number
and/or a name. A particular instmiction may perform a
variety of tasks other than comparing a header ficld to an
expected value. An instruction may, for example, call
another instruction to examine another portion of a packet
header, initialize, load or configure a register or other data
structure, prepare for the arrival and parsing of another
packet, etc. In particular, a register or other storage structure
may be configured in anticipation of an operation that is
performed in the network interface after the packet is parsed.
For example, a program instruction in FIG. 23 may identify
an output operation that may or may not be performed,
depending upon the success or failure of the comparison of
a value extracted from a packet with an expected value. An
output operation may store a value in a register, configure a
register (e.g., load an argument or operator) for a post-
parsing opceration, clear a register to await a new packet, etc.

A pointer may be employed to identify an offsct into a
packet being parsed. In one embodiment, sach a pointer is
initially located at the beginning of the layer two protocol
header. In another embodiment, however, the pointer is
situated at a specific location within a particular header (e.g.,
immediately following the layer two destination and/or
source addresses) when parsing commences. lustratively,
the pointer is incremented through the packet as the parsing
procedure executes. In ome alternative embodiment,
however, offsets to arcas of interest in the packet may be
computed from one or more known or computed locations.

In the parsing program depicted in FIG. 23, a header is
navigated (e.g., the pointer is advanced) in increments of
two bytes (e.g., sixtcen-bit words). In addition, where a
particular ficld of a header is compared to a known or
expected value, up to two bytes are extracted at a time from
the field. Further, when a value or header field is copied for
storage in a register or other data structure, the amount of
data that may be copied in one operation may be expressed
in multiples of two-byte units or in other units altogether
(¢.g., individual bytes). This unit of measurement (e.g., two

10

25

40

50

55

60

24

bytes) may be increased or decreased in an alternative
embodiment of the invention. Altering the unit of measure-
ment may alter the precision with which a header can be
parsed or a header value can be extracted.

In the embodiment of the invention illustrated in FIG. 23,
a set of instructions loaded into the header parser’s instruc-
tion memory comprises a number of possible operations to
be performed while testing a packet for compatibility with
selected protocols. Program 2300 is gencrated from the
instruction set. Program 2300 is thus merely one possible
program, microcode or sequence of instructions that can be
formed from the available instruction set.

In this embodiment, the loaded instruction set enables the
following sixteen operations that may be performed on a
packet that is being parsed. Specific implementations of
these operations in program 2300 are discussed in additional
detail below. These instructions will be understood to be
illustrative in nature and do not limit the composition of
instruction sets in other embodiments of the invention. In
addition, any subset of these operations may be employed in
a particular parsing program or microcode. Further, multiple
instructions may employ the same operation and have dif-
ferent effects.

A CLR_REG operation allows the selective initialization
of registers or other data structures uscd in program 2300
and, possibly, data structures used in functions performed
after a packet is parsed. Initialization may comprise storing
the value zero. A number of illustrative registers that may be
initialized by a CLR_REG operation are identificd in the
remaining operations.

A LD_FID operation copies a variable amount of data
from a particular offsct within the packet into a register
configured to store a packet’s flow key or other flow
identifier. This register may be termed a FLOWID register.
The effect of an I.D_ FID operation is cumulative. In other
words, each time it is invoked for one packet the generated
data is appended to the flow key data stored previously.

A LD_SEQ operation copies a variable amount of data
from a particular offset within the packet into a register
configured to store a packet’s sequence mumber (e.g., a TCP
sequence mumber). This register may be assigned the label
SEQNO. This operation is also cumulative—the second and
subsequent invocations of this operation for the packet cause
the identified data to be appended to data stored previously.

A LD__CTL operation loads a valie from a specified
offset in the packet into a CONTROL register. The CON-
TROL register may comprise a control indicator discussed in
a previous section for identifying whether a packet is
suitable for data re-assembly, packet batching, load distri-
bution or other enhanced functions of NIC 100. In particular,
a control indicator may indicate whether a No__Assist flag
should be raised for the packet, whether the packet includes
any data, whether the amount of packet data is larger than a
predetermined threshold, etc. Thus, the value loaded into a
CONTROL register in a LD__CTL operation may affect the
post-parsing handling of the packet.

A LD_SAP operation loads a value into the CONTROL
register from a variable offset within the packet. The loaded
value may comprise the packet’s ethertype. In one option
that may be associated with a LD__SAP operation, the offset
of the packet’s layer three header may also be stored in the
CONTROL register or elsewhere. As one skilled in the art
will recognize, a packet’s layer three header may immedi-
ately follow its layer two cthertype ficld if the packet
conforms to the Ethernct and IP protocols.

A LD_R1 operation may be used to load a value into a
temporary register {(¢.g., named R1) from a variable offset

NOAC Ex. 1015 Page 279



US 6,483,804 Bl

25

within the packet. A temporary register may be used for a
variety of tasks, such as accumulating values to determine
the length of a header or other portion of the packet. A
LD_R1 operation may also cause a value from another
variable offset to be stored in a second temporary register
(c-g., named R2). The values stored in the R1 and/or R2
registers during the parsing of a packet may or may not be
cumulative.

A LD_13 operation may load a value from the packet
into a register configured to store the location of the packet’s
layer three header. This register may be named L30OFFSET.
In one optional method of invoking this operation, it may be
used to load a fixed value into the L3OFFSET register. As
another option, the LD_13 operation may add a value
stored in a temporary register (e.g., R1) to the value being
stored in the L30FFSET register.

A LD__SUM operation stores the starting point within the
packet from which a checksum should be calculated. The
register in which this value is stored may be named a
CSUMSTART register. In one alternative invocation of this
operation, a fixed or predetermined value is stored in the
register. As another option, the LD_ SUM operation may
add a value stored in a temporary register (c.g., R1) to the
value being stored in the CSUMSTART register.

A 1D_HDR operation loads a value into a register
configured to store the location within the packet at which
the header portion may be split. The value that is stored may,
for example, be used during the transfer of the packet to the
host computer to store a data portion of the packet in a
scparate location than the header portion. The loaded value
may thus identify the beginning of the packet data or the
beginning of a particular header. In one invocation of a
LD_HDR operation, the stored value may be computed
from a present position of a parsing pointer described above.
In another invocation, a fixed or predetermined value may be
store. As yet another alternative, a value stored in a tempo-
rary register (e.g., R1) and/or a constant may be added to the
loaded value.

A LD_LEN operation stores the length of the packet’s
payload into a register (e.g., a PAYLOADLEN register).

An IM__FID operation appends or adds a fixed or prede-
termined value to the cxisting contents of the FLOWID
register described above.

An IM__SEQ operation appends or adds a fixed or pre-
determined value to the contents of the SEQNO register
described above.

An IM__SAP operation loads or stores a fixed or prede-
termined value in the CSUMSTART register described
above.

An IM__R1 operation may add or load a predetermined
value in one or more temporary registers (c.g., R1, R2).

An IM__CTL operation loads or stores a fixed or prede-
termined value in the CONTROL register described above.

A ST_FLAG operation loads a value from a specified
offset in the packet into a FLAGS register. The loaded value
may comprise one or more ficlds or flags from a packet
header.

One skilled in the art will recognize that the labels
assigned to the operations and registers described above and
clsewhere in this section are merely illustrative in nature and
in no way limit the operations and parsing instructions that
may be employed in other embodiments of the invention.

Instructions in program 2300 comprisc instruction num-
ber field 2302, which contains a number of an instruction
within the program, and instruction name ficld 2304, which
contains a name of an instruction. In an alternative embodi-
ment of the invention imstruction number and instruction
name ficlds may be merged or onc of them may be omitted.

15

20

25

30

as

40

45

50

55

60

26

Instruction content field 2306 includes multiple portions
for exccuting an instruction. An “extraction mask” portion
of an instruction is a two-byte mask in hexadecimal notation.
An extraction mask identifies a portion of a packet header to
be copied or extracted, starting from the current packet offset
(c-g., the current position of the parsing pointer).
Illustratively, each bit in the packet’s header that corre-
sponds to a one in the hexadecimal value is copied for
comparison to a comparison or test value. For example, a
value of OxFFO0 in the extraction mask portion of an
instruction sigmifics that the entire first byte at the current
packet offset is to be copied and that the contents of the
second byte are irrelevant. Similarly, an extraction mask of
Ox3FFF signifies that all but the two most significant bits of
the first byte are to be copied. A two-byte value is con-
structed from the extracted contents, using whatever was
copied from the packet. Illustratively, the remainder of the
value is padded with zeros. One skilled in the art will
appreciate that the format of an extraction mask (or an
output mask, described below) may be adjusted as necessary
to reflect little endian or big endian representation.

Onc or more instructions in a parsing program may not
requirc any data extracted from the packet at the pointer
location to be able to perform its output operation. These
instructions may have an extraction mask value of 0x0000 to
indicate that although a two-byte value is still retrieved from
the pointer position, every bit of the value is masked off.
Such an extraction mask thus yiclds a definite value of zero.
This type of instruction may be used when, for example, an
output operation meeds to be performed before another
substantive portion of hcader data is extracted with an
extraction mask other than 0x0000.

A “compare value” portion of an instruction is a two-byte
hexadecimal value with which the extracted packet contents
are to be compared. The compare value may be a value
known to be stored in a particular field of a specific protocol
header. The compare value may comprise a value that the
extracted portion of the header should match or have a
specified relationship to in order for the packet to be
considered compatible with the pre-selected protocols.

An “operator” portion of an instruction identifies an
operator signifying how the extracted and compare values
are to be compared. Illustratively, EQ significs that they are
tested for cquality, NE signifies that they are tested for
inequality, LT significs that the extracted value must be less
than the compare vatue for the comparison to succeed, GE
signifies that the cxtracted valuec must be greater than or
cqual to the compare value, ctc. An instruction that awaits
arrival of a new packet to be parsed may employ an
operation of NP. Other operators for other functions may be
added and the cxisting operators may be assigned other
monikers.

A “success offset” portion of an instruction indicates the
number of two-byte units that the pointer is to advance if the
comparison between the extracted and test values succeeds.
A “success instruction” portion of an instruction identifies
the next instruction in program 2300 to execute if the
comparison is successful.

Similarly, “failure offset” and “failure instruction” por-
tions indicate the number of two-byte units to advance the
pointer and the next instruction to execute, respectively, if
the comparison fails. Although offsets are expressed in units
of two bytes (e.g., sixteen-bit words) in this embodiment of
the invention, in an alternative embodiment of the invention
they may be smaller or larger units. Further, as mentioned
above an instruction may be identified by number or name.

Not all of the instructions in a program arc necessarily
used for cach packet that is parsed. For example, a program

NOAC Ex. 1015 Page 280



US 6,483,804 B1

27

may include instructions to test for more than one type or
version of a protocol at a particular layer. In particular,
program 2300 tests for cither version four or six of the IP
protocol at layer three. The instructions that are actually
executed for a given packet will thus depend upon the format
of the packet. Once a packet has been parsed as much as
possible with a given program or it has been determined that
the packet does or does not conform to a selected protocol,
the parsing may cease or an instruction for halting the
parsing procedure may be exccuted. Illustratively, a next
instruction portion of an instruction (e.g., “success instruc-
tion” or “failure instruction”) with the value “DONE” indi-
cates the completion of parsing of a packet. A DONE, or
similar, instruction may be a dummy instruction. In other
words, “DONE” may simply signify that parsing to be
terminated for the present packet. Or, like instruction eigh-
teen of program 2300, a DONE instruction may take some
action to await a new packet (e.g., by initializing a register).

The remaining portions of instruction content field 2306
are used to specify and complete an output or other data
storage operation. In particular, in this embodiment an
“output operation” portion of an instruction corresponds to
the operations included in the loaded instruction set. Thus,
for program 2300, the output operation portion of an instruc-
tion identifies one of the sixteen operations described above.
The output operations employed in program 2300 are further
described below in conjunction with individual instructions.

An “opcration argument” portion of an instruction com-
prises one or more arguments or ficlds to be stored, loaded
or otherwise used in conjunction with the instruction’s
output operation. Illustratively, the operation argument por-
tion takes the form of a multi-bit hexadecimal value. For
program 2300, operation arguments are eleven bits in size.
An argument or portion of an argument may have various
meanings, depending upon the output operation. For
example, an operation argument may comprise one Or more
numerical values to be stored in a register or to be used to
locate or delimit a portion of a header. Or, an argument bit
may comprisc a flag to signal an action or status. In
particular, one argument bit may specify that a particular
register is to be reset; a set of argument bits may comprise
an offset into a packet header to a value to be stored in a
register, etc. Illustratively, the offset specified by an opera-
tion argument is applied to the location of the parsing pointer
position before the pointer is advanced as specified by the
applicable success offset or failure offset. The operation
arguments used in program 2300 are cxplained in further
detail below.

An “operation ecnabler” portion of an instruction content
field specifies whether or when an ipstruction’s output
operation is to be performed. In particular, in the illustrated
embodiment of the invention an instruction’s output opera-
tion may or may not be performned, depending on the result
of the comparison between a value extracted from a header
and the compare value. For example, an output enabler may
be set to a first value (e.g., zero) if the output operation 1s
never to be performed. 1t may take different values if it is to
be performed only when the comparison does or docs not
satisfy the operator (c.g., omc or two, respectively). An
operation enabler may take yet another value (e.g., three) if
it is always to be performed.

A “shift” portion of an instruction comprises a value
indicating how an output value is to be shifted. A shift may
be necessary because different protocols sometime require
values to be formatted differently. In addition, a value
indicating a length or location of a header or header field
may requirc shifting in order to reflect the appropriate

28

magnitude represented by the value. For example, because

program 2300 is designed to usc two-byte units, a value may

need to be shifted if it is to reflect other units (e.g., bytes).

A shift value in a present embodiment indicates the number
s of positions (c.g., bits) to right-shift an output value. In
another embodiment of the invention a shift value may
represent a different shift type or direction.

Finally, an “output mask” specifics how a value being
stored in a register or other data structure is to be formatted.
As stated above, an output operation may require an
extracted, computed or assembled value to be stored. Similar
to the extraction mask, the output mask is a two-byte
hexadecimal value. For every position in the output mask
that contains a one, in this embodiment of the invention the
corresponding bit in the two-byte value identified by the
output operation and/or operation argument is to be stored.
For example, a value of OxFFFF indicates that the specified
two-byte value is to be stored as is. llustratively, for every
position in the output mask that contains a zero, a zero is
stored. Thus, a value of OxFO00 indicates that the most
significant four bits of the first byte are to be stored, but the
rest of the stored value is irrelevant, and may be padded with
zeros.

An output operation of “NONE” may be used to indicate
that there is no output operation to be performed or stored,
in which case other instruction portions pertaining to output
may be ignored or may comprise specified values (e.g., all
zeros). In the program depicted in FIG. 23, however, a
CLR_REG output operation, which allows the selective
re-initialization of registers, may be used with an operation
argument of zero to effectively perform no output. In
particular, an operation argument of zero for the CLR__REG
operation indicates that no registers are to be resct. In an
alternative embodiment of the invention the operation
enabler portion of an instruction could be set to a value (e.g,,
zero) indicating that the output operation is never to be
performed.

The format and sequence of instructions in FIG. 23 will
be understood to represent just onc method of parsing a
packet _t c ether it conforms o -ﬁ.cflar
40_communication protocol. In particular, the jnstructions arc
designed to cxamine one or more portions of one or more
packet headers for comparison fo known or expected values
and to configure or 1oad 4 register of other siorags location
as_jiecessary. one skilled m the art will appreciate,
instructions for parsing a packet may take any of a number
of forms and be performed in a varicty of sequences without
exceeding the scope of the invention.

With reference now to FIG. 23, instructions in program
2300 may be described in detail. Prior to execution of the
program depicted in FIG. 23, a parsing pointer is situated at
the beginning of a packet’s layer two header. The position of
the parsing pointer may be stored in a register for casy
reference and update during the parsing procedure. In
partieular, the position of the parsing pointer as an offset
(e.g., from the beginning of the layer two header) may be
used in computing the position of a particular position
within a header.

Program 2300 begins with a WAIT instruction (e.g.,
instruction zero) that waits for a new packet (c.g., indicated
by operator NP) and, when one is received, sets a parsing
pointer to the twelfth byte of the layer two header. This offset
to the twelfth byte is indicated by the success offsct portion
of the instruction. Until a packet is received, the WAIT
instruction loops on itsclf. In addition, a CLR_REG opera-
tion is conducted, but the operation enabler setting indicates
that it is only conducted when the comparison succeeds
(e-g., when a new packet is received).

10

15

20

25

30

35

45

50

55

NOAC Ex. 1015 Page 281



US 6,483,804 Bl

29

The specified CLR__REG operation operates according to
the WAIT instruction’s operation argument (i.c., 0x3FF). In
this embodiment, each bit of the argument corresponds to a
register or other data structure. The registers initialized in
this operation may include the following: ADDR (e.g., to
store the parsing pointer’s address or location), FLOWID
(c.g., to store the packet’s flow key), SEQNO (e.g., to store
a TCP sequence number), SAP (c.g., the packet’s ethertype)
and PAYLOADLEN (c.g., payload length). The following
registers configured to store certain offsets may also be reset:
FLOWOFF (c.g., offset within FLOWID register), SEQOFF
(c.g., offset within SEQNO register), L3OFFSET (e.g.,
offset of the packet’s layer threc header), HDRSPLIT (e.g.,
location to split packet) and CSUMSTART (e.g., starting
location for computing a checksum). Also, one or more
status or control indicators (e.g., CONTROL or FLAGS
register) for reporting the status of one or more flags of a
packet header may be reset. In addition, one or more
temporary registers (e.g., R1, R2) or other data structures
may also be initialized. These registers are merely illustra-
tive of the data structures that may be employed in one
embodiment of the invention. Other data structures may be
employed in other embodiments for the same or different
output operations.

Temporary registers such as R1 and/or R2 may be used in
program 2300 to track various headers and header ficlds.
One skilled in the art will recognize the number of possible
combinations of communication protocols and the effect of
those various combinations on the structure and format of a
packet’s headers. More information may need to be exam-
ined or gathered from a packet conforming to one protocol
or sct of protocols than from a packet conforming to another
protocol or set of protocols. For example, if extension
headers are used with an Internet Protocol header, values
from those extension headers and/or their lengths may need
to be stored, which values are not needed if extension
headers are not used. When calculating a particular offset,
such as an offset to the beginning of a packet’s data portion
for example, multiple registers may need to be maintained
and their values combined or added. In this example, one
register or temporary register may track the size or format of
an extension header, while another register tracks the base IP
header.

Instruction VLAN (c.g., instruction onec) examines the
two-byte ficld at the parsing pointer position (possibly a
Type, Length or TPID field) for a value indicating a VLAN-
tagged header (c.g., 8100 in hexadecimal). If the header is
VLAN-tagged, the pointer is incremented a couple of bytes
(e.g., onc two-byte unit) and execution continnes with
instruction CFI; otherwise, execution continues with instruc-
tion 802.3. In either event, the instruction’s operation
enabler indicates that an IM__CTL operation is always to be
performed.

As described above, an IM__CTL operation causes a
control register or other data structure to be populated with
one or more flags to report the status or condition of a
packet. As described in the previous section, a control
indicator may indicate whether a packet is suitable for
enhanced processing (e.g., whether a No_Assist signal
should be generated for the packet), whether a packet
includes any data and, if so, whether the size of the data
portion excecds a specified threshold. The operation arpu-
ment 0x00 A for instruction VLAN comprises the value to
be stored in the control register, with individual bits of the
argument corresponding to particular flags. Illustratively,
flags associated with the conditions just described may be
st to one, or true, in this IM_ CTL operation.

10

20

30

35

40

45

50

60

30

Instruction CFI (e.g., instruction two) examines the CFI
bit or flag in a layer two header. If the CFI bit is set, then the
packet is not suitable for the processing enhancements
described in other sections and the parsing procedure ends
by calling instruction DONE (c.g., instruction eighteen). If
the CFI bit is not set, then the pointer is incremented another
couple of bytes and execution continues with instruction
802.3. As explained above, a null output operation (e.g.,
“NONE”) indicates that no output operation is performed. In
addition, the output enabler value (e.g., zero) further ensures
that no output operation is performed.

In instruction 802.3 (c.g., instruction three), a Type or
Length ficld (depending on the location of the pointer and
format of the packet) is examined to determine if the
packet’s layer two format is traditional Ethernet or 802.3
Ethernet. If the value in the header field appears to indicate
802.3 Ethemnet (c.g., contains a hexadecimal value less than
0600), the pointer is incremented two bytes (to what should
be an LLC SNAP ficld) and cxecution continues with
instruction LL.C__1. Otherwise, the layer two protocol may
be considered traditional Ethernet and execution continues
with instruction IPV4 __1. Instruction 802.3 in this embodi-
ment of the invention does not include an output operation.

In instructions LLC_1 and LLC_2 (c.g., instructions
four and five), a suspected layer two LLC SNAP ficld is
cxamined to ensure that the packet conforms to the 802.3
Ethemet protocol. In instruction LLC_1, a first part of the
field is tested and, if successful, the pointer is incremented
two bytes and a sccond part is tested in instruction LI.C_ 2.
If instruction ILI.C_2 succeeds, the parsing pointer is
advanced four bytes to reach what should be a Type field and
execution continues with instruction IPV4 _1. If either test
fails, however, the parsing procedure exits. In the illustrated
embodiment of the invention, no output operation is per-
formed while testing the LI.C SNAP field.

In instruction IPV4_1 (e.g., instruction six), the parsing
pointer should be at an Ethemnet Type field. This field is
cxamined to determine if the layer three protocol appears to
correspond to version four of the Internet Protocol. If this
test is successful (e.g., the Type field contains a hexadecimal
value of 0800), the pointer is advanced two bytes to the
beginning of the layer three header and execution of pro-
gram 2300 continues with instruction IPV4_ 2. If the test is
unsuccessful, then execution continues with instruction
IPV6__1. Regardless of the test results, the operation enabler
value (c.g., three) indicates that the specified LD_SAP
output operation is always performed.

As described previously, in a LD__SAP operation a pack-
e’s cthertype (or Service Access Point) is stored in a
register. Part of the operation argument of 0x100, in par-
ticular the right-most six bits (e.g., zero) constitute an offset
to a two-byte value comprising the ethertype. The offsct in
this example is zero because, in the present context, the
parsing pointer is already at the Type field that contains the
cthertype. In the presently described embodiment, the
remainder of the operation argument constitutes a flag
specifying that the starting position of the layer three header
(c.g., an offset from the beginning of the packet) is also to
be saved (e.g., in the L3OFFSET register). In particular, the
beginning of the layer three header is known to be located
immediately after the two-byte Type field.

Instruction IPV4_2 (e.g., instruction seven) tests a sus-
pected layer three version field to ensure that the layer three
protocol is version four of IP. In particular, a specification for
version four of IP specifies that the first four bits of the layer
three header contain a value of Ox4. If the test fails, the
parsing procedure ends with instruction DONE. If the test

NOAC Ex. 1015 Page 282



US 6,483,804 Bl

31
succeeds, the pointer advances six bytes and instruction
IPV4_3 is called.

The specified LD_SUM operation, which is only per-
formed if the comparison in instruction IPV4 __2 succeeds,
indicates that an offset to the beginning of a point from
which a checksum may be calculated should be stored. In
particular, in the presently described embodiment of the
invention a checksum should be calculated from the begin-
ning of the TCP header (assuming that the layer four header
is TCP). The value of the operation argument (c.g., 0x00A)
indicates that the checksum is located twenty bytes (e.g., ten
two-byte increments) from the current pointer. Thus, a value
of twenty bytes is added to the parsing pointer position and
the result is stored in a register or other data structure (e.g.,
the CSUMSTART register).

Instruction IPV4__3 (e.g., instruction eight) is designed to
determine whether the packet’s IP header indicates IP frag-
mentation. If the value extracted from the header in accor-
dance with the extraction mask does not equal the compari-
son value, then the packet indicates fragmentation. If
fragmentation is detected, the packet is considered unsuit-
able for the processing enhancements described in other
sections and the procedure exits (¢.g., through instruction
DONE). Otherwise, the pointer is incremented two bytes
and instruction IPV4_4 is called after performing a
LD_LEN operation.

In accordance with the LD__LEN operation, the length of
the IP segment is saved. The illustrated operation argument
(c.g., 0x03E) compriscs an offset to the Total Length field
where this value is located. In particular, the least-significant
six bits constitute the offsct. Because the pointer has alrecady
been advanced past this field, the operation argument com-
prises a negative value. One skilled in the art will recognize
that this binary value (¢.g., 111110) may be used to represent
the decimal value of negative two. Thus, the present offset
of the pointer, minus four bytes (e.g., two two-byte units), is
saved in a register or other data structure (e.g., the PAY-
LOADLEN register). Any other suitable method of repre-
senting a negative offset may be used. Or, the IP segment
length may be saved while the pointer is at a location
preceding the Total Length field (e.g., during a previous
instruction).

In iostruction IPV4_ 4 (¢.g., instruction nine), a one-byte
Protocol ficld is examined to determine whether the layer
four protocol appears to be TCP. If so, the pointer is
advanced fourteen bytes and execution continues with
instruction TCP__1; otherwise the procedure ends.

The specified LD_FID operation, which is only per-
formed when the comparison in instruction IPV4_4
succeeds, involves retrieving the packet’s flow key and
storing it in a register or other location (e.g., the FLOWID
register). One skilled in the art will appreciate that in order
for the comparison in instruction IPV4__4 to be successful,
the packet’s layer three and four headers must conform to IP
(version four) and TCP, respectively. If so, then the entire
flow key (e.g., IP source and destination addresses plus TCP
source and destination port numbers) is stored contiguously
in the packet’s header portion. In particular, the flow key
comprises the last portion of the IP header and the initial
portion of the TCP header and may be extracted in one
operation. The operation argument (e.g., 0x182) thus com-
prises two values needed to locate and delimit the flow key.
Illustratively, the right-most six bits of the argument (c.g.,
0x02) identify an offset from the pointer position, in two-
byte units, to the beginning of the flow key. The other five
bits of the argument (¢.g., 0x06) identify the size of the flow
key, in two-byte units, to be stored.

15

20

25

35

40

45

50

55

65

32

In instruction IPV6__1 (e.g., instruction ten), which fol-
lows the failure of the comparison performed by instruction
IPV4_1, the parsing pointer should be at a layer two Type
field. If this test is successful (e.g., the Type field holds a
hexadecimal value of 86DD), instruction IPV6_2 is
executed after a LD_SUM operation is performed and the
pointer is incremented two bytes to the beginning of the
layer three protocol. If the test is unsuccessful, the procedure
exits.

The indicated LD__SUM operation in instruction IPV6__1
is similar to the operation conducted in instruction IPV4_2
but utilizes a different argument. Again, the checksum is to
be calculated from the beginning of the TCP header
(assuming the layer four header is TCP). The specified
operation argument (e.g., 0x015) thus comprises an offset to
the beginning of the TCP header—twenty-one two-byte
steps ahead. The indicated offset is added to the present
pointer position and saved in a register or other data struc-
ture (¢.g., the CSUMSTART register).

Instruction IPV6 _2 (e.g., instruction eleven) tests a
suspected layer three version ficld to further ensure that the
layer three protocol is version six of IP. If the comparison
fails, the parsing procedure ends with the invocation of
instruction DONE. If it succeeds, instruction IPV6_3 is
called. Operation IM__R1, which is performed only when
the comparison succeeds in this embodiment, saves the
length of the IP header from a Payload Length ficld. As one
skilled in the art will appreciate, the Total Length field (c.g.,
IP segment size) of an IP, version four, header includes the
size of the version four header. However, the Payload
Length ficld (c.g., [P segment size) of an IP, version six,
header does not include the size of the version six header.
Thus, the size of the version six header, which is identified
by the right-most eight bits of the output argument (c.g.,
0x14, indicating twenty two-byte units) is saved.
Illustratively, the remainder of the argument identifies the
data structure in which to store the header length (e.g.,
temporary register R1). Because of the variation in size of
layer three headers between protocols, in one embodiment
of the invention the header size is indicated in different units
to allow greater precision. In particular, in one embodiment
of the invention the size of the header is specified in bytes
in instruction [IPV6__2, in which case the output argument
could be 0x128.

Instruction IPV6_3 (e.g., instruction twelve) in this
embodiment does not examine a header value. In this
embodiment, the combination of an extraction mask of
0x0000 with a comparison value of 0x0000 indicates that an
output operation is desired before the next examination of a
portion of a beader. After the LD_FID operation is
performed, the parsing pointer is advanced six bytes to a
Next Header field of the version six IP header. Because the
extraction mask and comparison values are both 0x0000, the
comparison should never fail and the failure branch of
instruction should never be invoked.

As described previously, a LD_ FID operation stores a
flow key in an appropriate register or other data structure
(c.g., the FLOWID register). Illustratively, the operation
argument of 0x484 comprises two values for identifying and
delimiting the flow key. In particular, the right-most six bits
(c.g., 0x04) indicates that the flow key portion is located at
an offset of eight bytes (e.g., four two-byte increments) from
the current pointer position. The remainder of the operation
argument (¢.g., 0x12) indicates that thirty-six bytes (¢.g., the
decimal equivalent of 0x12 two-byte units) are to be copied
from the computed offset. In the illustrated embodiment of
the invention the entire flow key is copied intact, including

NOAC Ex. 1015 Page 283



US 6,483,804 Bl

33

the layer three source and destination addresses and layer
four source and destination ports.

In instruction IPV6_4 (c.g., instruction thirteen), a sus-
pected Next Header field is examined to determine whether
the layer four protocol of the packet’s protocol stack appears
to be TCP. If so, the procedure advances thirty-six bytes
(e.g., cightcen two-byte units) and instruction TCP_1 is
called; otherwise the procedure exits (¢.g., through instruc-
tion DONE). Operation LD_ LEN is performed if the value
in the Next Header field is 0x06. As described above, this
operation stores the IP segment size. Once again the argu-
ment (e.g., 0x03F) comprises a negative offset, in this case
negative one. This offset indicates that the desired Payload
Length field is located two bytes before the pointer’s present
position. Thus, the negative offset is added to the present
pointer offset and the result saved in an appropriate register
or other data structure (e.g., the PAYLOADILEN register).

In instructions TCP_1, TCP_2, TCP_3 and TCP_4
(c.g., instructions fourteen through seventeen), no header
values—other than certain flags specified in the instruction’s
output operations—are examined, but various data from the
packet’s TCP header are saved. In the illustrated
embodiment, the data that is saved includes a TCP sequence
number, a TCP header length and one or more flags. For each
instruction, the specified operation is performed and the next
instruction is called. As described above, a comparison
between the comparison value of 0x0000 and a oull extrac-
tion value, as used in each of these instructions, will never
fail. After instruction TCP__4, the parsing procedure returns
to instruction WAIT to await a new packet.

For operation LD__SEQ in instruction TCP__1, the opera-
tion argument (c.g., 0x081) comprises two values to identify
and extract a TCP sequence number. The right-most six bits
(e.g., 0x01) indicate that the sequence number is located two
bytes from the pointer’s current position. The rest of the
argument (c.g., 0x2) indicates the number of two-byte units
that must be copied from that position in order to capture the
sequence number. Illustratively, the sequence number is
stored in the SEQNO register.

For operation ST_FLAG in instruction TCP_2, the
operation argument (c.g., 0x145) is used to configure a
register (¢.g., the FLAGS register) with flags to be used in
a post-parsing task. The right-most six bits (c.g., 0x05)
constitute an offset, in two-byte units, to a two-byte portion
of the TCP header that contains flags that may affect whether
the packet is suitable for post-parsing enhancements
described in other sections. For example, URG, PSH, RST,
SYN and FIN flags may be located at the offset position and
be uscd to configure the register. The output mask (e.g.,
0x002F) indicates that only particular portions (e.g., bits) of
the TCP header’s Flags ficld are stored.

Operation LD__R1 of instruction TCP__3 is similar to the
operation conducted in instruction IPV6__2. Here, an opera-
tion argument of 0x205 includes a value (c.g., the least-
significant six bits) identifying an offset of five two-byte
units from the current pointer position. That location should
include a Header Length field to be stored in a data structure
identified by the remainder of the argument (e.g., temporary
register R1). The output mask (e.g., 0xF000) indicates that
only the first four bits are saved (e.g., the Header Length
field is only four bits in size).

As one skilled In the art may recogmize, the value
extracted from the Header Length field may need to be
adjusted in order to reflect the use of two-byte wnits (c.g.,
sixteen bit words) in the illustrated embodiment. Therefore,
in accordance with the shift portion of instruction TCP_ 3,
the value extracted from the ficld and configured by the

20

25

35

45

55

65

34

output mask (e.g., 0xF000) is shifted to the right eleven
positions when stored in order to simplify calculations.

Operation LD__HDR of instruction TCP_4 causes the
loading of an offset to the first byte of packet data following
the TCP header. As described in a later section, packets that
are compatible with a pre-selected protocol stack may be
scparated at some point into header and data portions.
Saving an offset to the data portion now makes it casier to
split the packet later. Illustratively, the right-most seven bits
of the 0xOFF operation argument comprise a first clement of
the offset to the data. One skilled in the art will recognize the
bit pattern (e.g., 1111111) as equating to negative one. Thus,
an offset value equal to the current parsing pointer (e.g., the
value in the ADDR register) minus two bytes—which
locates the beginning of the TCP header—is saved. The
remainder of the argument signifies that the value of a
temporary data structure (e.g., temporary register R1) is to
be added to this offset. In this particular context, the value
saved in the previous instruction (e.g., the length of the TCP
header) is added. These two values combine to form an
offset to the beginning of the packet data, which is stored in
an appropriate register or other data structure (e.g., the
HDRSPLIT register).

Finally, and as mentioned above, instruction DONE (e.g.,
instruction eighteen) indicates the end of parsing of a packet
when it is determined that the packet does not conform to
one or more of the protocols associated with the illustrated
instructions. This may be considered a “clean-up” instruc-
tion. In particular, output operation LD_ CTL, with an
operation argument of 0x001 indicates that a No__Assist flag
is to be set (c.g., to onc) in the control register described
above in conjunction with instruction VLAN. The
No__Assist flag, as described clsewhere, may be used to
inform other modules of the network interface that the
present packet, is unsuitable for one or more processing
enhancements described elsewhere.

It will be recognized by onc skilled in the art that the
illustrated program or microcode merely provides one
method of parsing a packet. Other programs, comprising the
same instructions in a different sequence or different instruc-
tions altogether, with similar or dissimilar formats, may be
cmployed to examine and store portions of headers and to
configure registers and other data structures.

The efficiency gains to be realized from the application of
the enhanced processing described in following sections
more than offset the time required to parse a packet with the
illustrated program. Further, even though a beader parser
parses a packet on a NIC in a current embodiment of the
invention, the packet may still need to be processed through
its protocol stack (e.g., to remove the protocol headers) by
a processor on a host computer. Doing so avoids burdening
the communication device (e.g., network interface) with
such a task.

One Embodiment of a Flow Database

FIG. 5 depicts flow database (FDB) 110 according to onc
embodiment of the invention. Nlustratively FDB 110 is
implemented as a CAM (Content Addressable Memory)
using a re-writeable memory component (e.g., RAM,
SRAM, DRAM). In this embodiment, FDB 110¢ compriscs
associative portion 502 and associated portion 504, and may
be indexed by flow number 506.

The scope of the invention does not lLimit the form or
structure of flow database 110. In altcrnative embodiments
of the invention virtually any form of data structure may be
cmployed (c.g., database, table, queue, list, array), cither
monolithic or segmented, and may be implemented in hard-
ware or software. The illustrated form of FDB 110 is merely

NOAC Ex. 1015 Page 284



S
E:f ‘

d‘xks

e —

US 6,483,804 B1

35

one manner of maintaining useful information concerning
communication flows through NIC 100. As one skilled in the
art will recognize, the structure of a CAM allows highly
efficient and fast associative searching.

In the illustrated embodiment of the invention, the infor-
mation stored in FDB 110 and the operation of flow database
manager (FDBM) 108 (described below) permit functions
such as data re-assembly, batch processing of packet
headers, and other enhancements. These functions are dis-
cussed in detail in other sections but may be briefly
described as follows.

One form of data re-assembly involves the re-assembly or
combination of data from multiple related packets (e.g.,
packets from a single communication flow or a single
datagram). One method for the batch processing of packet
headers entails processing frotoco) iple
related packets through a protocol stack collectively rather
thwangu_c__na_gkct at a time. Another illustrafive Tuniction of

C 100 involves the distribution or sharing of such proto-
col stack processing (and/or other functions) among proces-
sors in a multi-processor host computer system. Yet another
possible function of NIC 100 is to enable the transfer of
re-assembled data to a destination entity (e.g., an application
program) in an efficient aggregation (¢.g., a memory page),
thereby avoiding piccemecal and highly inefficient transfers
of one packet’s data at a time. Thus, in this embodiment of
the invention, one purpose of FDB 110 and FDBM 108 is to
generate information for the use of NIC 100 and/or a host
computer system in enabling, disabling or performing one or
more of these functions.

Associative portion 502 of FDB 110 in FIG. 5 stores the
flow key of each valid flow destined for an entity served by
NIC 100. Thus, in one embodiment of the invention asso-
ciative portion 502 includes IP source address 510, IP
destination address 512, TCP source port 514 and TCP
destination port 516. As described in a previous section these
ficlds may be extracted from a packet and provided to
FDBM 108 by header parser 106.

Although cach destination entity served by NIC 100 may
participate in multiple communication flows or end-to-end
TCP connectiops, only one flow at a time will exist between
a particular source entity and a particular destination entity.
Therefore, cach flow key in associative portion 502 that
corresponds to a valid flow should be unique from ail other
valid flows. In alternative embodiments of the invention,
associative portion 502 is composed of different fields,
reflecting alternative flow key forms, which may be deter-
mined by the protocols parsed by the header parser and the
information used to identify communication flows.

Associated portion 504 in the illustrated embodiment
comprises flow validity indicator 520, flow sequence num-
ber 522 and flow activity indicator 524. These fields provide
information concerning the flow identified by the flow key
stored in the corresponding eniry in associative portion 502.
The fields of associated portion 504 may be retrieved and/or
updated by FDBM 108 as described in the following section.

Flow validity indicator 520 in this embodiment indicates
whether the associated flow is valid or invalid. Illustratively,
the flow validity indicator is set to indicate a valid flow when
the first packet of data in a flow is reccived, and may be reset
to reassert a flow’s validity every time a portion of a flow’s
datagram (c.g., a packet) is correctly reccived.

Flow validity indicator 520 may be marked invalid after
the last packet of data in a flow is reccived. The flow validity
indicator may also be sct to indicate an invalid flow when-
ever a flow is to be tom down (e.g., terminated or aborted)
for some reason other than the receipt of a final data packet.

20

25

35

40

55

65

36

For example, a packet may be received out of order from
other packets of a datagram, a control packet indicating that
a data transfer or flow is being aborted may be received, an
attempt may be made to re-establish or re-synchronize a
flow (in which case the original flow is terminated), etc. In
one embodiment of the invention flow validity indicator 520
is a single bit, flag or value.

Flow sequence number 522 in the illustrated embodiment
compriscs a sequence number of the next portion of data that
is expected in the associated flow. Because the datagram
being sent in a flow is typically received via multiple
packets, the flow sequence number provides a mechanism to
ensure that the packets are received in the correct order. For
example, in one embodiment of the invention NIC 100
re-assembles data from multiple packets of a datagram. To
perform this re-assembly in the most efficient manner, the
packets need to be received in order. Thus, flow sequence
number 522 stores an identifier to identify the next packet or
portion of data that should be received.

In one embodiment of the invention, flow sequence num-
ber 522 corresponds to the TCP sequence number field
found in TCP protocol headers. As one skilled in the art will
recognize, a packet’s TCP sequence number identifies the
position of the packet’s data rclative to other data being sent
in a datagram. For packets and flows involving protocols
other than TCP, an alternative method of verifying or
ensuring the receipt of data in the correct order may be
cmployed.

Flow activity indicator 524 in the illustrated embodiment
reflects the recency of activity of a flow or, in other words,
the age of a flow. In this embodiment of the invention flow
activity indicator 524 is associated with a counter, such as a
flow activity counter (not depicted in FIG. 5). The flow
activity counter is updated (e.g., incremented) cach time a
packet is received as part of a flow that is already stored in
flow database 110. The updated counter value is then stored
in the flow activity indicator ficld of the packet’s flow. The
flow activity counter may also be incremented each time a
first packet of a new flow that is being added to the database
is received. In an alternative embodiment, a flow activity
couater is only updated for packets containing data (e.g., it
is not updated for control packets). In yet another alternative
embodiment, multiple counters are used for updating flow
activity indicators of differcnt flows.

Because it can not always be determined when a com-
munication flow has ended (e.g., the final packet may have
been lost), the flow activity indicator may be used to identify
flows that are obsolete or that should be torn down for some
other reason. For example, if flow database 110 appears to
be fully populated (e.g., flow validity indicator 520 is set for
cach flow number) when the first packet of a new flow is
received, the flow having the lowest flow activity indicator
may be replaced by the new flow.

In the illustrated embodiment of the invention, the size of
fields in FDB 110 may differ from one entry to another. For
example, IP source and destination addresses are four bytes
large in version four of the protocol, but are sixteen bytes
large in version six. In one alternative embodiment of the
invention, entries for a particular field may be uniform in
size, with smaller entries being padded as necessary.

In another alternative embodiment of the invention, fields
within FDB 110 may be merged. In particular, a flow’s flow
key may be stored as a single entity or field instead of being
stored as a number of scparate fields as shown in FIG. 5.
Similarly, flow validity indicator 520, flow sequence number
522 and flow activity indicator 524 are depicted as scparate
entrics in FIG. 5. However, in an alternative embodiment of

NOAC Ex. 1015 Page 285



US 6,483,804 Bl

37

the invention one or more of these entries may be combined.
In particular, in onc alternative embodiment flow validity
indicator 520 and flow activity indicator 524 comprisc a
single entry having a first value (¢.g., zero) when the entry’s
associated flow is invalid. As long as the flow is valid,
however, the combined entry is incremented as packets are
received, and is reset to the first value upon termination of
the flow.

In one embodiment of the invention FDB 110 contains a
maximum of sixty-four entries, indexed by flow number
506, thus allowing the database to track sixty-four valid
flows at a time. In alternative embodiments of the invention,
more or fewer entries may be permitted, depending upon the
size of memory allocated for flow database 110. In addition
to flow number 506, a flow may be identifiable by its flow
key (stored in associative portion 502).

In the illustrated embodiment of the invention, flow
database 110 is empty (e.g., all fields are filled with zeros)
when NIC 100 is initialized. When the first packet of a flow
is received header parser 106 parses a header portion of the
packet. As described in a previous section, the header parser
assembles a flow key to identify the flow and extracts other
information concerning the packet and/or the flow. The flow
key, and other information, is passed to flow databasc
manager 108. FDBM 108 then scarches FDB 110 for an
active flow associated with the flow key. Because the
database is empty, there is no maitch.

In this example, the flow key is therefore stored (e.g., as
flow number zero) by copying the IP source address, IP
destination address, TCP source port and TCP destination
port into the corresponding fields. Flow validity indicator
520 is then set to indicate a valid flow, flow sequence
number 522 is derived from the TCP sequence number
(illustratively provided by the header parser), and flow
activity indicator 524 is set to an initial value (c.g., one),
which may be derived from a counter. One method of
generating an appropriate flow sequence number, which may
be used to verify that the next portion of data received for the
flow is received in order, is to add the TCP sequence number
and the size of the packet’s data. Depending upon the
configuration of the packet (c.g., whether the SYN bit in a
Flags ficld of the packet’s TCP header is set), however, the
sum may nced to be adjusted (e.g., by adding onc) to
correctly identify the next expected portion of data.

As described above, one method of generating an appro-
priate initial value for a flow activity indicator is to copy a
counter value that is incremented for each packet received as
part of a flow. For example, for the first packet received after
NIC 100 is initialized, a flow activity counter may be
incremented to the value of one. This value may then be
stored in flow activity indicator 524 for the associated flow.
The next packet received as part of the same (or a new) flow
causes the counter to be incremented to two, which value is
stored in the flow activity indicator for the associated flow.
In this example, no two flows should have the same flow
activity indicator except at initialization, when they may all
equal zero or some other predetermined value.

Upon receipt and parsing of a later packet received at NIC
100, the flow databasc is searched for a valid flow matching
that packet’s flow key. Illustratively, only the flow keys of
active flows (e.g., those flows for which flow validity
indicator 520 is set) arc scarched. Alternatively, all flow keys
(c.g., all entries in associative portion 502) may be searched
but a match is only reported if its flow validity indicator
indicates a valid flow. With a CAM such as FDB 110 in FIG.
5, flow keys and flow validity indicators may be searched in
parallel.

[y

5

25

40

45

55

60

65

38

If a later packet contains the next portion of data for a
previous flow (e.g., flow number zero), that flow is updated
appropriately. In one embodiment of the invention this
entails updating flow sequence mumber 522 and increment-
ing flow activity indicator 524 to reflect its recent activity.
Flow validity indicator 520 may also be set to indicate the
validity of the flow, although it should already indicate that
the flow is valid.

As new flows are identified, they are added to FDB 110
in a similar manner to the first flow. When a flow is
@x%-;ﬂqmmmmmm FDB 110is
invalidated. In one embodiment of the invention, flow

_;’?ﬁdﬁr_ﬂwliﬂlﬁmhmd{agﬁ set to zero) for

e terminated flow. In another embodiment, one or more

e terminated flow are cleared or set to an arbitrary
or predetermined value. Becanse of the bursty nature of
network packet traffic, all or most of the data from a
datagram is generally received in a short amount of time.
Thus, cach valid flow in FDB 110 normally only needs to be
maintained for a short period of time, and its entry can then
be used to store a different flow.

Due to the limited amount of memory available for flow
database 110 in one embodiment of the invention, the size of
cach ficld may be limited. In this embodiment, sixteen bytes
are allocated for IP source address 510 and sixicen bytes are
allocated for IP destination address 512. For IP addresses
shorter than sixteen bytes in length, the extra space may be
padded with zeros. Further, TCP source port 514 and TCP
destination port 516 arc each allocated two bytes. Also in
this embodiment, flow validity indicator 520 comprises one
bit, flow sequence number 522 is allocated four bytes and
flow activity indicator 524 is also allocated four bytes.

As onc skilled in the art will recognize from the embodi-
ments described above, a flow is similar, but not identical, to
an end-to-end TCP connection. A TCP connection may exist
for a relatively extended period of time, sufficient to transfer
multiple datagrams from a source cntity to a destination
entity. A flow, however, may exist only for one datagram.
Thus, during one end-to-end TCP connection, multiple flows
may be set up and torn down (e.g., once for cach datagram).
As described above, a flow may be set up (¢.g., added to
FDB 110 and marked valid) when NIC 100 detects the first
portion of data in a datagram and may be torn down (e.g.,
marked invalid in FDB 110) when the last portion of data is
received. Ilustratively, cach flow set up during a single
end-to-end TCP connection will have the same flow key
because the layer three and layer four address and port
identifiers used to form the flow key will remain the same.

In the illustrated embodiment, the size of flow database
110 (e.g., the number of flow entries) determines the maxi-
mum number of flows that may be interleaved (e.g., simul-
taneously active) at one time while enabling the functions of
data re-assembly and batch processing of protocol headers.
In other words, in the embodiment depicted in FIG. 5, NIC
100 can set up sixty-four flows and receive packets from up
to sixty-four different datagrams (i.e., sixty-four flows may
be active) without tearing down a flow. f a maximum
number of flows throngh NIC 100 were known, flow data-
base 110 could be limited to the corresponding number of
entries.

The flow database may be kept small because a flow only
lasts for one datagram in the presently described embodi-
ment and, because of the bursty nature of packet traffic, a
datagram’s packets arc generally received in a short period
of time. The short duration of a flow compensates for a
limited number of cntries in the flow database. In one
embodiment of the invention, if FDB 110 is filled with active

NOAC Ex. 1015 Page 286



G

o)

)

US 6,483,804 B1

39

flows and a new flow is commenced (i.e., a first portion of
data in a new datagram), the oldest (e.g., the least recently
active) flow is replaced by the new one.

In an alternative embodiment of the invention, fiows may
be kept active for any number of datagrams (or other
measure of network traffic) or for a specified length or range
of time. For example, when one datagram ends its flow in
FDB 110 may be kept “open” (i.c., not torn down) if the
database is not full (c.g., the flow’s entry is not needed for
a different fiow). This scheme may further enhance the
cfficient operation of NIC 100 if another datagram having
the same flow key is received. In particular, the overhead
involved in setting up another flow is avoided and more data
re-assembly and packet batching (as described below) may
be performed. Advantageously, a flow may be kept open in
flow database 110 until the end-to-end TCP connection that
encompasses the flow ends.

One Embodiment of a Flow Database Manager

FIGS. 6A—6E depict one method of operating a flow
database manager (FDBM), such as flow database manager
108 of FIG. 1A, for managing flow database (FDB) 110.
lustratively, FDBM 108 stores and updates flow informa-
tion stored in‘How database 110 and gencrates an gpcmhon

_code for a packet received by NIC 100. FDBM 108 also tcars
down a flow (e.g., replaces, removes or otherwise invali-
dates an entry in FDB 110) when the flow is terminated or
aborted.

In one embodiment of the invention a packet’s operation
code reflects the packet’s compatibility with predetermined
criteria for performing one or more functions of NIC 100
(e.g., data re-assembly, batch processing of packet headers,
load distribution). In other words, depending upon a pack-
et’s operation code, other modules of NIC 100 may or may
not perform one of these functions, as described in following
sections.

In another embodiment of the invention, an operation
code indicates a packet status. For example, an operation
code may indicate that a packet: contains no data, is a control
packet, contains more than a specified amount of data, is the
first packet of a new flow, is the last packet of an existing
flow, is out of order, contains a certain flag (e.g., in a
protocol header) that does not have an expected value (thus
possibly indicating an exceptional circumstance), etc.

The operatien—of flow database manages108-depends
;gggm__mm%lgﬂmmﬂﬂimd

afa drawn from flow databasc . After FDBM 108
“processes {he packet information and/of data, conlrol infor-
Wpackctﬂnemﬁon code) is stored in control
qucue 118 and FDR 110 may be ajtered (¢.g,-a new flow

may be entered or e 1] m down).
With reference now to FIGS. 6 A—6E, state 600 is a start
state io which FDBM 108 awaits information drawn from a
packet received by NIC 100 from network 102. In state 602,
‘Beader parser 106 or another module of NIC 100 notifics
w&mbv providing the packet’s flow
__j_and.snme control information. Receipt of this data may
be interpreted as a request to search FDB 110 tg determine
whether a flow having this flow key already exists.
I one embodiment of the invention the control informa-
tion passed to FDBM 108 includes a sequence number (e.g.,
a TCP sequence number) drawn from a packet header. The
control information may also indicate the status of certain
flags in the packet’s headers, whether the packet includes
data and, if so, whether the amount of data exceeds a certain
size. In this embodiment, FDBM 108 also receives a
No__Assist signal for a packet if the header parser deter-
mines that the packet is not formatted according to one of the

[

5

20

25

30

35

40

50

60

65

40

pre-selected protocol stacks (i.e., the packet is not
“compatible”), as discussed in a previous section.
IHustratively, the No__Assist signal indicates that one or
more functions of NIC 100 (e.g., data re-assembly, batch
processing, load-balancing) may not be provided for the
packet.

In state 604, FDBM 108 dctermines whether a No__ Assist
signal was asserted for the packet. If so, the procedure
procecds to statc 668 (FIG. 6E). Othcrwisc, FDBM 108
searches FDB 110 for the packet’s flow key in state 606. In
one embodiment of the invention only valid flow entries in
the flow database are searched. As discussed above, a flow’s
validity may be reflected by a validity indicator such as flow
validity indicator 520 (shown in FIG. 5). If, in state 608, it
is determined that the packet’s flow key was not found in the
database, or that a match was found but the associated flow
is not valid, the procedure advances to state 646 (FIG. 6D).

If a valid match is found in the flow database, in state 610
the Hlow number {e.g., the How database index for the
E@T—%MMM—MM and flow
information stored in FDB 110 is read. Hiustratively, this
information~ineludes—flow—validity indicator 520, flow
scquence number 522 and flow activity indicator 524
(shown in FIG. 5).

In statc 612, FDBM 108 determines from information
received from header parser 106 whether the packet contains
TCP payload data. If not, the illustrated procedure proceeds
to state 638 (FIG. 6C); otherwisc the procedure continues to
state 614.

In state 614, the flow database manager determines
whether the packet constitutes an attempt to reset a com-
munication connection or flow. Illustratively, this may be
determined by examining the state of a SYN bit in one of the
packet’s protocol headers (e.g., a TCP header). In one
cmbodiment of the invention the value of one or more
control or flag bits (such as the SYN bit) are provided to the
FDBM by the header parser. As one skilled in the art will
recognize, onc TCP entity may attempt to reset a commu-
nication flow or connection with another entity (e.g.,
because of a problem on one of the entity’s host computers)
and send a first portion of data along with the re-connection
request. This is the situation the flow database manager
attempts to discern in state 614. If the packet is part of an
attempt to re-connect or reset a flow or connection, the
procedure continues at state 630 (FIG. 6C).

In state 616, flow database manager 108 compares a
sequence number (c.g., a TCP sequence number) extracted
from a packet header with a sequence number (c.g., flow
sequence number 522 of FIG. 5) of the next expected portion
of data for this flow. As discussed in a previous section, these
sequence numbers should correlate if the packet contains the
flow’s next portion of data. If the sequence numbers do not
match, the procedure continues at state 628.

In state 618, FDBM 108 determines whether certain flags
extracted from one or more of the packet’s protocol headers
match expected values. For example, in one embodiment of
the invention the URG, PSH, RST and FIN flags from the
packet’s TCP header arc expected to be clear (i.e., equal to
zero). If any of these flags are set (e.g., equal to onc) an
exceptional condition may exist, thus making it possible that
one or more of the functions (c.g., data re-assembly, batch
processing, load distribution) offered by NIC 100 should not
be performed for this packet. As long as the flags are clear,
the procedure continues at state 620; otherwise the proce-
durc continues at state 626.

In state 620, the flow databasc manager determines
whether more data is expected during this flow. As discussed

NOAC Ex. 1015 Page 287



P

US 6,483,804 Bl

a1

above, a flow may be limited in duration to a single
datagram. Therefore, in state 620 the FDBM determines if
this packet appears to be the final portion of data for this
flow’s datagram. Iilustratively, this determination is made on
the basis of the amount of data included with the present
packet. As one skilled in the art will appreciate, a datagram
comprising more data than can be carried in one packet is
sent via multiple packets. The typical manner of dissemi-
nating a datagram among multiple packets is to put as much
data as possible into each packet. Thus, cach packet except
the last is usually equal or nearly equal in size to the
maximum transfer unit (MTU) allowed for the network over
which the packets are sent. The last packet will hold the
remainder, usually causing it to be smaller than the MTU.

Therefore, one manner of identifying the final portion of
data in a flow’s datagram is to examine the size of each
packet and compare it to a figure (¢.g., MTU) that a packet
is expected to exceed except when camrying the last data
portion. It was described above that control information is
received by FDBM 108 from header parser 106. An indi-
cation of the size of the data carried by a packet may be
included in this information. In particular, header parser 106
in one embodiment of the invention is configured to com-
pare the size of each packet’s data portion to a pre-selected
value. In one embodiment of the invention this value is
programmable. This value is set, in the illustrated embodi-
ment of the invention, to the maximum amount of data a
packet can carry without exceeding MTU. In one alternative
embodiment, the value is set to an amount somewhat less
than the maximum amount of data that can be carried.

Thus, in state 620, flow database manager 108 determines
whether the received packet appears to carry the final
portion of data for the flow’s datagram. If not, the procedure
continues to state 626.

In state 622, jt has been ascertained that the packet is

compatible with pre-selected protocols and js suitable for
_-one or mor ns-offered by NIC 100. In particular, the

packet has been formatted appropriately for one or more of
the functions discussed above. FDBM 108 has detcrmmed
that the reccived packet is part of an cxisl
compatible wi c pre-selected protocol.;gd M&e
nmm flow (but not the final portion).
cr, packet is not part of an attempt to re-set a
flow/connection, and important flags have their expected
values. Thus, flow database 110 can be updated as follows.
W&g}iﬁq%w activity indicator 524 of
FIG. 5) for this flow i1s modific ﬁt_o'rw;mﬁﬂow
activity. In one embodiment of the invention flow activity
indicator 524 is implemented as a counter, or is associated
with a counter, that is incremented each time data is received

10

20

25

35

40

50

for a flow. In another embodiment of the invention, 3n

activity indicator or counter is updated every time a packet
ha aflowke gav, d ow (¢.g., whether or not

the packet includes da;
ustrated embodiment, aﬂcr a flow activity indi-

cator or ooumer is incremented it is examined to determine
if it “rolled over” to zero (i.c., whether it was incremented
past its maximum value). If so, the counter and/or the flow
activity indicators for each entry in flow database 110 are sct
to zero and the current flow’s activity indicator is once again
incremented. Thus, in one embodiment of the invention the
rolling over of a flow activity counter or indicator causcs the
re-initialization of the flow activity mechanism for flow
database 110. Thereafter, the counter is incremented and the
flow activity indicators are again updatcd as described
previously. One skilled in the art will recognize that there are
many other suitable methods that may be applied in an

55

60

65

2

embodiment of the present invention to indicate that one
flow was active more recently than another was.

Also in state 622, flow sequence number 522 is updated.
Illustratively, the new flow sequence number is determined
by adding the size of the newly received data to the existing
flow sequence number. Depending upon the configuration of
the packet (e.g., values in its headers), this sum may need to
be adjusted. For example, this sum may indicate simply the
total amount of data received thus far for the flow’s data-
gram. Therefore, a value may need to be added (e.g., one
byte) in order to indicate a sequence mumber of the next byte
of data for the datagram. As one skilled in the ant will
recognize, other suitable methods of ensuring that data is
received in order may be used in place of the scheme
described here.

Finally, in state 622 in one embodiment of the invention,
flow validity indicator 520 is set or reset to indicate the
flow’s validity

Then, in state 624, an ration code is associated with
the packet. In the illus ﬁl—e%eembodiment of the invention,

Speration codes comprise codes generated by flow database
mm this
cmbodiment, an opération code 5 thiec bifs in size, thus
allowing for eight operation codes. Operation codes may
have a variety of other forms and ranges in alternative
embodiments. For the illustrated embodiment of the
invention, TABLE 1 describes cach operation code in terms
of the criteria that lead to each code’s sclection and the
ramifications of that selection. For purposes of TABLE 1,
sctting up a flow comprises inserting a flow into flow
database 110. Tearing down a flow comprises removing or
invalidating a flow in flow database 110. The re-assembly of
data is discussed in a following section describing DMA
engine 120.

In the illustrated embodiment of the invention, operation
code 4 is sclected in state 624 for packets in the present
context of the procedure (¢.g., compatible packets carrying
the pext, but not last, data portion of a flow). Thus, the
existing flow is not torn down and there is no need to set up
a new flow. As described above, a compatible packet in this
embodiment is a packet conforming to one or more of the
pre-sclected protocols. By changing or augmenting the
pre-selected protocols, virtually any packet may be compat-
ible in an alternative embodiment of the invention.

Returning now to FIGS. 6A-6E, after statc 624 the
illustrated procedure ends at state 670.

In state 626 (rcached from state 618 or state 620),
operation code 3 is selected for the packet. Ilustratively,
operation code 3 indicates that the packet is compatible and
matches a valid flow (e.g., the packet’s flow key matches the
flow key of a valid flow in FDB 110). Operation code 3 may
also signify that the packet contains data, does not constitute
an attempt to re-synchronize or reset a communication
flow/connection and the packet’s sequence number matches
the expected sequence number (from flow database 110).
But, either an important flag (¢.g., one of the TCP flags
URG, PSH, RST or FIN) is set (determined in state 618) or
the packet’s data is less than the threshold value described
above (in state 620), thus indicating that no more data is
likely to follow this packet in this flow. Therefore, the
existing flow is tom down but no new flow is created.
Ilustratively, the flow may be torn down by clearing the
flow’s validity indicator (¢.g., setting it to zero). After state
626, the illustrated procedure ends at state 670.

In state 628 (reached from state 616), operation code 2 is
selected for the packet. In the present context, operation
code 2 may indicate that the packet is compatible, matches

NOAC Ex. 1015 Page 288



US 6,483,804 B1

43

avalid flow (e.g., the packet’s flow key matches the flow key
of a valid flow in FDB 110), contains data and does not
constitute an attempt to re-synchronize or reset a commu-
nication flow/connection. However, the sequence number
extracted from the packet (in state 616) does not match the
cxpected sequence number from flow database 110. This
may occur, for example, when a packet is received out of
order. Thus, the existing flow is torn down but no new flow
is established. Illustratively, the flow may be torn down by
clearing the flow’s validity indicator (c.g., setting it to zero).
After state 628, the illustrated procedure ends at state 670.

State 630 is entered from state 614 when it is determined
that the received packet constitutes an attempt to reset a
communication flow or connection (¢.g., the TCP SYN bit is
set). In state 630, flow database manager 108 determines
wbether more data is expected to follow. As explained in
conjunction with state 620, this determination may be made
on the basis of control information received by the flow
database manager from the header parser. If more data is
cxpected (c.g., the amount of data in the packet equals or
cxceeds a threshold value), the procedure continues at state
634.

In state 632, operation code 2 is selected for the packet.
Operation code 2 was also sclected in state 628 in a different
context. In the present context, operation code 2 may
indicate that the packet is compatible, matches a valid flow
and contains data. Operation code 2 may also signify in this
context that the packet constitutes an attempt to
re-synchronize or reset a communication flow or connection,
but that no more data is cxpected once the flow/connection
is reset. Therefore, the existing flow is tom down and no new
flow is established. Illustratively, the flow may be torn down
by clearing the flow’s validity indicator (e.g., setting it to
zero). After state 632, the illustrated procedure ends at state
670.

In state 634, flow database manager 108 responds to an
attempt to reset or re-synchronize a communication flow/
connection whereby additional data is expected. Thus, the
cxisting flow is tom down and replaced as follows. The
cxisting flow may be identified by the flow mumber retrieved
in state 610 or by the packet’s flow key. The flow’s sequence
number (c.g., flow sequence number 522 in FIG. 5) is set to
the next expected value. Ilustratively, this value depends
upon the sequence mumber (c.g., TCP sequence number)
retrieved from the packet (¢.g., by header parser 106) and the
amount of data included in the packet. In one embodiment
of the invention these two values are added to determine a
new flow sequence mumber. As discussed previously, this
sum may need to be adjusted (e.g., by adding one). Also in
state 634, the flow activity indicator is updated (e.g.,
incremented). As explained in conjunction with state 622, if
the flow activity indicator rolls over, the activity indicators
for all flows in the database are set to zero and the present
flow is again incremented. Finally, the flow validity indica-
tor is set to indicate that the flow is valid.

In state 636, operation code 7 is selected for the packet.
In the present context, operation code 7 indicates that the
packet is compatible, matches a valid flow and contains data.
Operation code 7 may further signify, in this context, that the
packet constitutes an attempt to re-synchronize or reset a
communication flow/connection and that additional data is
cxpected once the flow/connection is reset. In effect,
therefore, the existing flow is tom down and a new one (with
the same flow key) is stored in its place. After state 636, the
illustrated procedure ends at end state 670.

State 638 is entered after state 612 when it is determined
that the received packet contains no data. This often indi-

20

30

35

40

45

55

60

65

44

cates that the packet is a control packet. In state 638, flow
database manager 108 determines whether one or more flags
extracted from the packet by the header parser match
expected or desired values. For example, in onec embodiment
of the invention the TCP flags URG, PSH, RST and FIN
must be clear in order for DMA engine 120 to re-assemble
data from multiple related packets (c.g., packets having an
identical flow key). As discussed above, the TCP SYN bit
may also be examined. In the present context (e.g., a packet
with no data), the SYN bit is also expected to be clear (e.g.,
to store a value of zero). If the flags (and SYN bit) have their
expected values the procedure continues at state 642. If,
however, any of these flags are set, an exceptional condition
may exist, thus making it possible that one or more functions
offered by NIC 100 (c.g., data rc-assembly, batch
processing, load distribution) are unsuitable for this packet,
in which case the procedure proceeds to statc 640.

In state 640, operation code 1 is selected for the packet.
Ilustratively, operation code 1 indicates that the packet is
compatible and matches a valid flow, but does not contain
any data and ope or more important flags or bits in the
packet’s header(s) arc set. Thus, the existing flow is tom
down and no new flow is established. Iltustratively, the flow
may be torn down by clearing the flow’s validity indicator
(c.g., setting it to zero). After state 640, the illustrated
procedure cnds at end state 670.

In state 642, the flow’s activity indicator is updated (e.g.,
incremented) even though the packet contains no data. As
described above in conjunction with state 622, if the activity
indicator rolls over, in a present embodiment of the inven-
tion all flow activity indicators in the database are set to zero
and the current flow is again incremented. The flow’s
validity indicator may also be reset, as well as the flow’s
sequence mumber.

In state 644, operation code 0 is selected for the packet.
Iltustratively, operation code 0 indicates that the packet is
compatible, matches a valid flow, and that the packet does
not contain any data. The packet may, for example, be a
control packet. Operation code 0 further indicates that none
of the flags checked by header parser 106 and described
above (e.g., URG, PSH, RST and FIN) arc sct. Thus, the
existing flow is not tom down and no new flow is estab-
lished. After state 644, the illustrated procedure ends at end
state 670.

State 646 is cntered from state 608 if the packet’s flow key
does not match any of the flow keys of valid flows in the
flow database. In state 646, FDBM 108 detcrmines whether
flow database 110 is full and may save some indication of
whether the database is full. In one embodiment of the
invention the flow database is considered full when the
validity indicator (e.g., flow validity indicator 520 of FIG. 5)
is set for every flow number (c.g., for every flow in the
database). If the database is full, the procedure continues at
state 650, otherwise it continucs at state 648.

In state 648, the lowest flow number of an invalid flow
(c.g., a flow for which the associated flow validity indicator
is equal to zero) is determined. Illustratively, this flow
number is where a new flow will be stored if the received
packet warrants the creation of a new flow. After state 648,
the procedure continues at state 652.

In state 650, the flow number of the least recently active
flow is determined. As discussed above, in the illustrated
embodiment of the invention a flow’s activity indicator (¢.g.,
flow activity indicator 524 of FIG. 5) is updated (c.g.,
incremented) cach time data is received for a flow.
Therefore, in this embodiment the least recently active flow
can be identified as the flow having the least recently

NOAC Ex. 1015 Page 289



US 6,483,804 Bl

45

updated (¢.g., lowest) flow activity indicator. [llustratively, if

multiple flows have flow activity indicators set to a common
value (e.g., zero), one flow number may be chosen from
them at random or by some other criteria. After state 650, the
procedure continues at state 652.

In state 652, flow database manager 108 determines
whether the packet contains data. Illustratively, the control
information provided to FDBM 108 by the header parser
indicates whether the packet has data. If the packet does not
include data (e.g., the packet is a control packet), the
illustrated procedure continues at state 668.

In state 654, flow database manager 108 determines
whether the data received with the present packet appears to
contain the final portion of data for the associated datagram/
flow. As described in conjunction with state 620, this deter-
mination may be made on the basis of the amount of data
included with the packet. If the amount of data is less than
a threshold value (a programmable value in the illustrated
embodiment), then no more data is expected and this is
likely to be the only data for this flow. In this case the
procedure continues at state 668. If, however, the data meets
or exceeds the threshold value, in which case more data may
be expected, the procedure proceeds to state 656.

In state 656, the values of certain flags are examined.
These flags may include, for example, the URG, PSH, RST,
FIN bits of a TCP header. If any of the examined flags do not
have their expected or desired values (¢.g., if any of the flags
are set), an exceptional condition may exist making one or
more of the functions of NIC 100 (c.g., data re-assembly,
batch processing, load distribution) unsnitable for this
packet. In this case the procedure continues at state 668;
otherwise the procedure proceeds to state 658.

In state 658, the flow database manager retricves the
information stored in state 646 concerning whether fiow
database 110 is full. If the database is full, the procedure
continues at state 664; otherwise the procedure contimues at
state 660.

In state 660, a new flow is added to flow database 110 for
the present packet. llustratively, the new flow is stored at the
flow number identified or retrieved in state 648. The addition
of a new flow may involve setting a sequence number (¢.g.,
flow sequence oumber 522 from FIG. 5). Flow sequence
number 522 may be generated by adding a sequence number
(c-g., TCP sequence number) retrieved from the packet and
the amount of data included in the packet. As discussed
above, this sum may need to be adjusted (e.g., by adding
one).

Sjoring a new flow may also include initializing an
activity Indicator (c.g., flow activity indicator 524 of FIG. 5).
In one embodiment of the invention this initialization
involves storing a value retricved from a counter that is
incremented each time data is received for a flow.

IMustratively, if the counter or a flow activit fcator is
incremented m e value, the counter
and all flow actxvny indicators are cleared or reset. Also in

state 660, a validity indicator (e.g., flow validity indicator
520 of FIG. 5) is set to indicate that the flow is valid. Finally,
the packet’s flow key is also stored in the flow database, in
the entry corresponding to the assigned flow number.
In state 662, operation code 6 is sclected for the packct
Hlustratively, operation code 6 indicates fhat-the_packet is
tible, tch any valid flows and contains the
have their expected or necessary values, additional data is
expected in the flow and the flow database is not full. Thus,
operation code 6 indicates that there is no existing flow to
tear down and that a new flow has been stored in the flow
database. After state 662, the illustrated procedure ends at

state 670.

20

3s

40

45

50

60

46

In state 664, an existing entry in the flow database is
replaced so that a new flow, initiated by the present packet,
can be stored. Thercfore, the flow number of the least
recently active flow, identified in state 650, is retrieved. This
flow may be replaced as follows. The sequence number of
the existing flow (e.g., flow sequence number 522 of FIG. 5)
is replaced with a value derived by combining a sequence
number extracted from the packet (e.g., TCP scquence
number) with the size of the data portion of the packet. This
sum may nced to be adjusted (e.g., by adding one). Then the
cexisting flow’s activity indicator (¢.g., flow activity indicator
524) is replaced. For example, the value of a flow activity
counter may be copied into the flow activity indicator, as
discussed above. The flow’s validity indicator (e.g., flow
validity indicator 520 of FIG. 5) is then set to indicate that
the flow is valid. Finally, the flow key of the new flow is
stored.

In state 666, operation code 7 is selected for the packet.
Operation code 7 was also selected in state 636. In the
present context, operation code 7 may indicate that the
packet is compatible, did not match the flow key of any valid
flows and contains the first portion of data for a new flow.
Further, the packet’s flags have compatible values and
additional data is expected in the flow. Lastly, however, in
this context operation code 7 indicates that the flow database
is full, so an existing cntry was torn down and the new one
stored in its place. After state 666, the illustrated procedure
cnds at end state 670.

In state 668, operation code 5 is sclected for the packet.
State 668 is entered from various states and operation code
5 thus represents a variety of possible conditions or situa-
tions. For example, operation code 5 may be selected when
a No__Assist signal is detected (in state 604) for a packet. As
discussed above, the No__Assist signal may indicate that the
corresponding packet is not compatible with a set of pre-
selected protocols. In this embodiment of the invention,
incompatible packets are ineligible for one or more of the
various functions of NIC 100 (c.g., data re-assembly, batch
processing, load distribution).

State 668 may also be entered, and operation code 5
sclected, from state 652, in which case the code may indicate
that the received packet does not match any valid flow keys
and, further, contains no data (c.g., it may be a control
packet).

State 668 may also be cntered from statc 654. In this
context operation code 5 may indicate that the packet does
not match any valid flow keys. It may further indicate that
the packet contains data, but that the size of the data portion
is less than the threshold discussed in conjunction with state
654. In this context, it appears that the packet’s data is
complete (¢.g., comprises all of the data for a datagram),
meaning that there is no other data to re-assemble with this
packet’s data and therefore there is no reason to make a new
cntry in the database for this one-packet flow.

Finally, state 668 may also be entercd from state 656. In
this context, operation code 5 may indicate that the packet
does not match any valid flow keys, contains data, and more
data is expected, but at least one flag in one or more of the
packet’s protocol headers docs not have its expected value.
For example, in one embodiment of the invention the TCP
flags URG, PSH, RST and FIN are expected to be clear. If
any of these flags are set an exceptional condition may exist,
thus making it possible that one of the functions offered by
NIC 100 is unsuitable for this packet.

As TABLE 1 refiects, there is no flow to tear down and no
new flow is established when operation code 5 is sclected.
Following state 668, the illustrated procedure ends at state
670.

NOAC Ex. 1015 Page 290



US 6,483,804 B1

47
One skilled in the art will appreciate that the proccdure
illustrated in FIGS. 6A—6E and discussed above 1is but onc
suitable procedure for maintaining and updating a fiow
database and for determining a packet’s suitability for

certain processing functions. In particular, different opera- s

tion codes may be utilized or may be implemented in a
different manner, a goal being to produce information for
later processing of the packet through NIC 100.

Although operation codes are assigned for all packets by
a flow database manager in the illustrated procedure, in an
altcrnative procedure an operation code assigned by the
FDBM may be replaced or changed by another module of
NIC 100. This may be done to cnsure a particular method of
treating ccrtain types of packets. For example, in one
embodiment of the invention IPP module 104 assigns a
predetermined operation code (c.g., operation code 2 of
TABLE 1) to jumbo packets (e.g., packets greater in size
than MTU) so that DMA engine 120 will not re-assemble
them. In particular, the IPP module may independently
determine that the packet is a jumbo packet (e.g., from
information provided by a MAC module) and thercfore
assign the predetermined code. Illustratively, header parser
106 and FDBM 168 perform their normal functions for a
jumbo packet and IPP module 104 receives a first operation
code assigned by the FDBM. However, the IPP module
replaces that code before storing the jumbo packet and
information concerning the packet. In onc alternative
embodiment header parser 106 and/or flow database man-
ager 108 may be configured to recognize a particular type of
packet (c.g., jumbo) and assign a predetermined operation
code.

The operation codes applied in the embodiment of the
invention illustrated in FIGS. 6A-6E are presented and
cxplained in the following TABLE 1. TABLE 1 includes
illustrative criteria used to select each operation code and
illustrative results or effects of each code.

TABLE 1

Op.
Code Criterda for Selection Result of Operation Code

0 Compatible control packet with
clear flags; a flow was previously
cstablished for this flow key.

Do not set up a new flow;
Do not tear down existing
flow;
Do not re-asscmble data
(packet contains no data).
1 Compatible control packet with at Do not set up a new flow;
least onc fiag or SYN bit set; a Tear down existing flow;
flow was previously established Do no ble data
(packet contains no data).
Do not set up a new flow;
Tear down cxisting flow;
Do not re-assemble packet
data

2 Compatible packet whose sequence
nomber does not match sequence
number in flow database, or SYN
bit is set (indicating attenmpt to re-
establish a connection) but there is
no more data to come; a flow was
previously established.

—Or —
Jumbo packet.

3 A compatible packet carrying a
final portion of flow data, or a flag
is sct (but packet is in sequence,
unlike operation code 2); a flow
was previously established.

4 Receipt of next compatible packet
in sequence; a flow was previously
established.

Do not set up a new flow;
Tear down existing flow;
Re-assemble datz with
previous packets.

Do not set up a new flow;
Do not tear down existing
flow;

Re-assemble data with

other packets.

5 Packet cannot be re-asscmbled Do not sct up a flow;
because: incompatible, a fiag is sct, There is no flow to tear
packet contains no data or there is dowm;
no more data to come. No flow Do not re-assemble.
was previously established.

48

TABLE 1-continued

Op.
Code Criteria for Selection

Result of Operstion Code
6 Fimt compatible packet of a new  Set up a new flow;
fiow; no flow was previously There is no fow to tear
established. dowm;
Re-assemble data with
packets to follow.
10 7 Fimt compatible packet of £ new  Replace existing flow;
flow, but fiow databesc is full; no Re-assembic data with

flow was previously established.  packets to follow.

—Or—
Compatible packet, SYN bit is sct
and additional data will follow; a
15 flow was previously established.
One Embodiment of a Load Distributor
In one embodiment of the invention, load distributor 112
- cnables the processing of packets throngh thelr protocol

mem

Ilustratively, load distributor 112 generates an identifier

(c.g., a processor number) oL a r to which a packet
= N

~“The multiple processors may be Jocated
within-a-hest-eompiter system that is served by NIC 100. In
one altemnative embodiment, one or more processors for
manipulating packets through a protocol stack are located on
NIC 100.

Without an effective method of sharing or distributing the
processing burden, one processor could become overloaded
if it were required to process all or most network traffic
received at NIC 100, particularly in a high-speed network
environment. The resulting delay in processing network
traffic could deteriorate operations on the host computer
system as well as other computer systems commumicating
with the host system via the network.

As one skilled in the art will appreciate, simply distrib-
uting packets among processors in a set of processors (e.g.,
such as in a round-robin scheme) may not be an cfficient
plan. Such a plan could easily result in packets being
processed out of order. For example, if two packets from one
communication flow or connection that are received at a
network interface in the correct order were submitted to two
different processors, the second packet may be processed
before the first. This could occur, for example, if the
processor that received the first packet could not immedi-
ately process the packet because it was busy with another
task. When packets are processed out of order a recovery
scheme must generally be initiated, thus introducing even
more inefficiency and more delay.

Therefore, in a present embodiment of the invention

pon their HO entitics. escribed above, a header
paiscr may generaic a flow key from layer three (e.g., IF)

55 and layer four (e.g., TCP) source and destination identifiers
retrieved from a packet’s headers. The flow key may be used
%’MWMI

Elongs, Thus, in this embodiment of the invention all

ackets having an identical flow key are submitted to a

siiigle pr r. As fong as the packets are received in order

y NIC 100, they should be provided to the host computer

and processed in order by their assigned processor.

Inuskativclyglﬂlﬁplip ets sent from one source entity
to one destination entity will have the same flo ven
65 1 the pack € pa parate datagrams, as lo eir

fayer three and layer four identifiers remain the same. As
discussed above, separate iows are sct up and torn down for

25

30

50

60

NOAC Ex. 1015 Page 291



US 6,483,804 B1

49

each datagram within one TCP end-to-end connection.
Therefore, just as all packets within one flow are sent to one
processor, all packets within a TCP end-to-end connection
will also be sent to the same processor. This helps ensure the
correct ordering of packets for the entire connection, even
between datagrams.

Depending upon the network environment in which NIC
100 operates (c.g., the protocols supported by network 102),
the flow key may be too large to use as an identifier of a
processor. In one embodiment of the invention described
above, for example, a flow key measures 288 bits.
Meanwhile, the number of processors participating in the
load-balancing scheme may be much smaller. For example,
in the embodiment of the invention described below in
conjunction with FIG. 7, a maximum of sixty-four proces-
sors is supported. Thus, in this embodiment only a six-bit
number is needed to identify the selected processor. The
larger flow key may therefore be mapped or hashed into a
smaller range of values.

FIG. 7 depicts one method of generating an identifier
(e.g., a processor number) to specify a processor to process
a packet received by NIC 100, based on the packet’s flow
key. In this embodiment of the inveation, network 102 is the
Internet and a received packet is formatted according to a
compatible protocol stack (e.g., Ethernet at layer two, IP at
layer three and TCP at layer four).

State 700 is a start state. In state 702 a packet is received
by NIC 100 and a header portion of the packet is parsed by
header parser 186 (a method of parsing a packet is described
in a previous section). In state 704, load distributor 112
receives the packet’s flow key that was generated by header
parser 106.

Because a packet’s flow key is 288 bits wide in this

embodiment, in'STate 706 a has) 10f 1S performed to
gencmte\a_yalus that is Tin magnitude—The hash

operation may, for example, comprise a thirty-two bit CRC
(cyclic redundancy check) function such as ATM
(Asynchronous Transfer Mode) Adaptation Layer 5 (AALS).
AALS gencrates thirty-two bit sumbers that are fairly evenly
distributed among the 232 possible values. Another suitable
method of hashing is the standard Ethemet CRC-32 func-
tion. Other hash functions that are capable of generating
relatively small numbers from relatively large flow keys,
where the mumbers generated are well distributed among a
range of values, are also suitable.

V- thetcsulting bash value, in state 708 2 moduls
operation is performed over fhe TMMbET Of ProCesSSOrs dvat
able for distributin, haring the processing. Illustratively,
software executing on the host computer (e.g., a device
driver for NIC 100) programs or stores the number of
processors such that it may be read or retrieved by load
distributor 112 (e.g., in a register). The number of processors
available for load balancing may be all or a subset of the
number of processors installed on the host computer system.
In the illustrated embodiment, the number of processors
available in a host computer system is programmable, with
a maximum vahie of sixty-four. The result of the modulus
operation in this embodiment, therefore, is the number of the
processor (e.g., from zero to sixty-three) to which the packet
is to be submitted for processing. In this embodiment of the
invention, load distributor 112 is implemented in hardware,
thus allowing rapid exccution of the hashing and modulus
functions. In an alternative embodiment of the invention,
virtually any number of processors may be accommodated.

In state 710, the number of the processor that will process
the packet through its protocol stack is stored in the host
computer’s memory. Hlustratively, state 710 is performed in

10

15

20

25

30

35

45

50

55

65

50

parallel with the storage of the packet in a host memory
buffer. As described in a following section, in one embodi-
ment of the invention a descriptor ring in the host comput-
er’s memory is constructed to hold the processor number
and possibly other information concerning the packet (e.g.,
a pointer to the packet, its size, its TCP checksum).

A descriptor ring in this embodiment is a data structure
comprising a number of entries, or “descriptors,” for storing
information to be used by a network interface circuit’s host
computer system. In the illustrated embodiment, a descriptor
temporarily stores packet information after the packet has
been received by NIC 100, but before the packet is pro-
cessed by the host computer system. The information stored
in a descriptor may be used, for example, by the device
driver for NIC 100 or for processing the packet through its
protocol stack.

In state 712, an interrupt or other alert is issued to the host
computer to inform it that a new packet has been delivered
from NIC 100. In an embodiment of the invention in which
NIC 100 is coupled to the host computer by a PCI
(Peripheral Component Interconnect) bus, the INTA signal
may be asserted across the bus. A PCI controller in the host
receives the signal and the host operating system is alerted
(c.g., via an interrupt).

In state 714, software operating on the host computer
(e.g., a device driver for NIC 100) is invoked (e.g., by the
host computer’s operating system interrupt handler) to act
upon a newly received packet. The software gathers infor-
mation from one or more descriptors in the descriptor ring
and places information needed to complete the processing of
each new packet into a queuc for the specified processor
(i-e., according to the processor number stored in the pack-
ct’s descriptor). Illustratively, each descriptor corresponds to
a separate packet. The information stored in the processor
queue for each packet may include a pointer o a buffer
containing the packet, the packet’s TCP checksum, offsets of
one or more protocol headers, etc. In addition, each proces-
sor participating in the load distribution scheme may have an
associated queue for processing network packets. In an
alternative embodiment of the invention, multiple queucs
may be used (c.g., for multiple priority levels or for different
protocol stacks).

Illustratively, one processor on the host computer system
is configured to receive all alerts and/or interrupts associated
with the receipt of network packets from NIC 100 and to
alert the appropriate software routine or device driver. This
initial processing may, alternatively, be distributed among
multiple processors. In addition, in one embodiment of the
invention a portion of the retrieval and manipulation of
descriptor contents is performed as part of the handling of
the interrupt that is generated when a new packet is stored
in the descriptor ring. The processor selected to process the
packet will perform the remainder of the retrieval/
manipulation procedure.

In state 716, the processor designated to process a new
packet is alerted or woken. In an embodiment of the inven-
tion operating on a Solaris™ workstation, individual pro-
cesses executed by the processor are configured as
“threads.” A thread is a process running in a normal mode
(e.g., not at an interrupt level) so as to have minimal impact
on other processes exccuting on the workstation. A normal
mode process may, however, execute at a high priority.
Alternatively, a thread may run at a relatively low interrupt
level.

A thread responsible for processing an incoming packet
may block itself when it has no packets to process, and
awaken when it has work to do. A “condition variable” may

NOAC Ex. 1015 Page 292



US 6,483,804 B1

51

be used to indicate whether the thread has a packet to
process. [llustratively, the condition variable is set to a first
value when the thread is to process a packet (¢.g., when a
packet is received for processing by the processor) and is set
to a second value when there are no more packets to process.
In the illustrated embodiment of the invention, one condition
variable may be associated with each processor’s queuc.

In an alternative embodiment, the indicated processor is
alerted in state 716 by a “cross-processor call.” A cross-
processor call is one way of communicating among proces-
sors whereby one processor is interrupted remotely by
another processor. Other methods by which one processor
alerts, or dispatches a process to, another processor may be
used in place of threads and cross-processor calls.

In state 718, a thread or other process on the selected
processor begins processing the packet that was stored in the
processor’s quene. Methods of processing a packet through
its protocol stack are well known to those skilled in the art
and need not be described in detail. The illustrated procedure
then ends with end state 720.

In one alternative embodiment of the invention, a high-
speed network interface is configured to receive and process
ATM (Asynchronous Transfer Mode) traffic. In this
embodiment, a load distributor is implemented as a sct of
instructions {e.g., as software) rather than as a hardware
module. As one skilled in the art is aware, ATM traffic 1s
connection-oriented and may be identified by a virtual
connection identifier (VCI), which corresponds to a virtual
circuit established between the packet’s source and destina-
tion entities. Each packet that is part of a virtual circuit
includes the VCI in its header.

Advantageously, a VCI is relatively small in size (c.g.,
sixteen bits). In this altemative embodiment, therefore, a
packet’s VCI may be used in place of a flow key for the
purpose of distributing or sharing the burden of processing
packets through their protocol stacks. Illustratively, traffic
from different VCIs is sent to different processors, but, to
ensure correct ordering of packets, all packets having the
same VCI are sent to the same processor. When an ATM
packet is received at a network interface, the VCI is retrieved
from its header and provided to the load distributor. The
modulus of the VCI over the mumber of processors that are
available for load distribution is then computed. Similar to
the illustrated embodiment, the packet and its associated
processor number are then provided to the host computer.

As described above, load distribution in a present embodi-
ment of the invention is performed on the basis of a packet’s
layer three and/or layer four source and destination entity
identifiers. In an alternative embodiment of the invention,
however, load distribution may be performed on the basis of
layer two addresses. In this alternative embodiment, packets
having the same Ethernet source and destination addresses,
for example, are sent to a single processor.

As one of skill in the art will recognize, however, this may
result in a processor receiving many more packets than it
would if layer three and/or layer four identifiers were used.
For example, if a large amount of traffic is received through
a router situated mear (in a logical sense) to the host
computer, the source Ethernet address for all of the traffic
may be the router’s address cven though the traffic is from
a multitude of different end users and/or computers. In
contrast, if the host computer is on the same Ethernet
scgment as all of the end users/computers, the layer two
source addresses will show greater variety and allow more
cffective load sharing.

Other methods of distributing the processing of packets
received from a network may differ from the embodiment

10

15

25

35

45

50

55

60

65

52

illustrated in FIG. 7 without exceeding the scope of the
invention. In particular, one skilled in the art will appreciate
that many alternative procedures for assigning a flow’s
packets to a processor and delivering those packets to the
processor may be employed.

One Embodiment of a Packet Queue

As described above, packet queue 116 stores packets

received from IPP modul&ﬁiljlo_rtg their te-assembly by

enginc 120 and their transfer to_the host computer
system. FIG. 8 depicts packet queue 116 according to one
embodiment of the invention.

In the illustrated embodiment, packet queue 116 is imple-
mented as a FIFO (First-In First-Out) queue containing up to
256 cntries. Bach packet queue entry in this embodiment
stores one packet plus various information concerning the
packet. For cxample, entry 800 includes packet portion 802
plus a packet status portion. Because packets of various sizes
are stored in packet queue 116, packet portion 802 may
include filler 8022 to supplement the packet so that the
packet portion ends at an appropriate boundary (e.g., byte,
word, double word).

Filler 8022 may comprise random data or data having a
specified pattern. Filler 802 a may be distinguished from the
stored packet by the pattem of the filler data or by a tag field.

Illustratively, packet status information includes TCP
checksum value 864 and packet length 806 (c.g., length of
the packet stored in packet portion 802). Storing the packet
length may allow the packet to be easily identified and
retrieved from packet portion 802. Packet status information
may aiso include diagnostic/status information 808.
Diagnostic/status information 808 may include a flag indi-
cating that the packet is bad (¢.g., incomplete, received with
an crror), an indicator that a checksum was or was not
computed for the packet, an indicator that the checksum has
a certain value, an offset to the portion of the packet on
which the checksum was computed, etc. Other flags or
indicators may also be included for diagnostics, filtering, or
other purposes. In one embodiment of the invention, the
packet’s flow key (described above and used to identify the
flow comprising the packet) and/or flow number (¢.g., the
corresponding index of the packet’s flow in flow databasc
110) are included in diagnostic/status information 808. In
another embodiment, a tag field to identify or delimit filler
8024 is included in diagnostic/status information 808.

In one alternative embodiment of the invention, any or all
of the packet status information described above is stored in
control queue 118 rather than packet queue 116.

In the illustrated embodiment of the invention packet
queue 116 is implemented in hardware (¢.g., as random
access memory). In this embodiment, checksum value 804 is
sixteen bits in size and may be stored by checksum generator
114. Packet length 806 is fourteen bits large and may be
stored by header parser 106. Finally, portions of diagnostic/
status information 808 may be stored by one or more of IPP
module 104, header parser 106, flow database manager 108,
load distributor 112 and checksum generator 114.

Packet queue 116 in FIG. 8 is indexed with two pointers.
Read pointer 810 identifies the next entry to be read from the
queue, while write pointer 812 identifies the entry in which
the next received packet and related information is to be
stored. As cxplained in a subsequent section, the packet
stored in packet portion 802 of an entry is extracted from
packet queue 116 when its data is to be-reassembled by
DMA engine 120 and/or transferred to the host computer
system.

One Embodiment of a Control Queue

In one embodiment of the invention, contr: uc 118

stores control and status information concerning a packet

———TTT

NOAC Ex. 1015 Page 293



US 6,483,804 Bl

53
received by NIC 100. In this embodiment, control queue 118

retains information used to cnable the batch processing of |

protocol headers and/or the re-assembly of data from mul-
tiple related packets. Control queue 118 may also store
information to be used by the host computer or a series of
instructions operating on a host computer (e.g., a device
driver for NIC 100). The information stored in control queue
118 may supplement or duplicate information stored in
packet queue 116.

FIG. 9 depicts control queue 118 in one embodiment of
the invention. The illustrated control queve contains one
entry for each packet stored in packet queue 116 (c.g., up to
256 entries). In one embodiment of the invention each entry
in control queue 118 corresponds to the entry (e.g., packet)
in packet queue 116 having the same number. FIG. 9 depicts
cntry 900 having various fields, such as CPU number 902,
No__Assist signal 904, operation code 906, payload offset
908, payload size 910 and other status information 912. An
entry may also include other status or control information
(not shown in FIG. 9). Entries in control queue 118 in
alternative embodiments of the invention may comprise
different information.

CPU (or processor) number 902, discussed in a previous
section, indicates which one of multiple processors on the
host computer system should process the packet’s protocol
headers. Illustratively, CPU number 902 is six bits in size.
No__Assist signal 904, also described in a preceding scction,
indicates whether the packet is compatible with (e.g., is
formatted according to) any of a set of pre-selected protocols
that may be parsed by header parser 106. No__Assist signal
904 may comprise a single flag (e.g. one bit). In one
embodiment of the invention the state or value of No__Assist
signal 904 may be used by flow databasc manager 108 to
determine whether a packet’s data is re-assembleable and/or
whether its headers may be processed with those of related
packets. In particular, the FDBM may use the No__Assist
signal in determining which operation code to assign to the
packet.

Operation code 906 provides information to DMA engine
120 to assist in the re-assembly of the packet’s data. As
described in a previous section, an operation code may
indicate whether a packet includes data or whether a pack-
ct’s data is suitable for re-assembly. Illustratively, operation
code 906 is three bits in size. Payload offset 908 and payload
size 910 correspond to the offset and size of the packet’s
TCP payload (¢.g., TCP data), respectively. These fields may
be seven and fourteen bits large, respectively.

In the illustrated embodiment, other status information
912 includes diagnostic and/or status information concern-
ing the packet. Status information 912 may include a starting
position for a checksum calculation (which may be seven
bits in size), an offset of the layer three (e.g., IP) protocol
header (which may also be seven bits in size), etc. Status
information 912 may also include an indicator as to whether
the size of the packet exceeds a first threshold (¢.g., whether
the packet is greater than 1522 bytes) or falls under a second
threshold (¢.g., whether the packet is 256 bytes or less). This
information may be uscful in re-assembling packet data.
Illustratively, these indicators comprise single-bit flags.

ln one alternative embodiment of the invention, siatus
information 912 includes a packet’s flow key and/of flow
number (c.g., the ipdex of the packet’s flowinflow-datibase
110). The flow key or flow number may, for example, be
iised for debugging or other diagnostic purposes. In one
cmbodiment of the invention, the packet’s flow number may

be stored in status information 912 so that multiple packets;
in a single flow may be identificd. Such related packet mayi‘g-is discussed in detail in a following section.
then be collectively transferred to and/or processed by a host ‘-\

computer.

54

. FIG. 9 depicts a read pointer and a write pointer for
indexing control quene 118. Read pointer 914 indicates an
indicates the entry in which to store information concerning

the next packet stored in packet quene 116.

In an alternative embodiment of the invention, a second
read pointer (not shown in FIG. 9) may be used for indexing
control queue 118. As described in a later section, when a
packet is to be transferred to the host computer, information

10 drawn from entries in the control queue is searched to
determine whether a related packet (¢.g., a packet in the
same flow as the packet to be transferred) is also going to be
transferred. If so, the host computer is alerted so that
protocol headers from the related packets may be processed

15 collectively. In this alternative embodiment of the invention,
related packets are identified by matching their flow num-
bers (or flow keys) in status information 912. The second
read pointer may be used to look ahead in the control queue
for packets with matching flow numbers.

20 In onc embodiment of the invention CPU number 902
may be stored in the control queue by load distributor 112
and No__Assist signal 904 may be stored by header parser
106. Operation code 906 may be stored by flow databasc
manager 108, and payload offset 908 and payload size 910

25 may be stored by header parser 106. Portions of other status
information may be written by the preceding modules and/or
others, such as IPP module 104 and checksum generator 114.
In one particular embodiment of the invention, however,
many of these items of information are stored by IPP module

30 104 or some other module acting in somewhat of a coordi-
nator role.

One Embodiment of 2 DMA Engine

FIG. 10 is a block diagram of DMA (Direct Memory
Access) enging in one embodiment of the invention.

35 One purpose of DMA engine 120 in this embodiment is to

/ entry to be read by DMA engine 120. Write pointer 916
5

_transfer packets from ueue 116 into buffers in host
%ﬂgﬂmnory- Because related packets (e.g., packets

Jt_sgggaﬂgf_ue_mwlm-bﬂdmﬁﬁed_mmr_ﬂow

melﬂw

40 transferred together (c.g., in the same buffer). By using one

%mm%a can be provided-o-an

application program or other destination in a highly effici¢nt

mramrer. For €xample, atter hc host computer receives the

data, a page-flip operation may be performed to transfer the

45 data to an application’s memory space rather than perform-
ing numerous copy operations. -

With reference back to FIGS. 1A-B, a packet that is to be

transferred into host memory by DMA engine 120 is stored

in packet queue 116 after being received from network 102.

50 Header parser 106 parses a header portion of the packet and

generates a flow key, and flow database manager 108 assigns

an operation code to the packet. In addition, the communi-

cation flow that includes the packet is registered in flow

database 110. The packet’s flow may be identified by its flow

55 key or flow number (e.g., the index of the flow in flow

database 110). Finally, information concerning the packet

(c.g., operation code, a packet size indicator, flow number)

is stored in control queue 118 and, possibly, other portions

or modules of NIC 100, and the packet is transferred to the

60 host computer by DMA engine 120. During the transfer

process, the DMA engine may draw upon information stored

in the control queue to copy the packet into an appropriate

buffer, as described below. Dynamic packet batching module
122 may also usc information stored in the control queue,

With reference now to FIG. 10, onc embodiment of a
, DMA engine is presented. In this embodiment, DMA man-

NOAC Ex. 1015 Page 294

p



US 6,483,804 B1

55

ager 1002 manages the transfer of a packet, from packet
queue 116, into onc or more buffers in host computer
memory. Free ring manager 1012 identifies or receives
cmpty buffers from host memory and completion ring man-
ager 1014 releases the buffers to the host computer, as
described below. The free ring manager and completion ring
managers may be controlled with logic contained in DMA
manager 1002. In the illustrated embodiment, flow
re-assembly table 1004, header table 1006, MTU table 1008
and jumbo table 1010 store information concerning buffers
used to store different types of packets (as described below).
Information stored in one of these tables may include a
reference to, or some other means of identifying, a buffer. In
FIG. 10, DMA engine 120 is partially or fuily implemented
in hardware.

Empty buffers into which packets may be stored are
identified via a free descriptor ring that is maintained in host
memory. As one skilled in the art is aware, a descriptor ring
is a data structure that is logically arranged as a circular
queue. A descriptor ring contains descriptors for storing
information (c.g., data, flag, pointer, address). In one
embodiment of the invention, cach descriptor stores its
index within the free descriptor ring and an identifier (¢.g.,
memory address, pointer) of a free buffer that may be used
to storc packets. In this embodiment a buffer is identified in
a descriptor by its address in memory, although other means
of identifying a memory buffer arc also suitable. In one
embodiment of the invention a descriptor index is thirteen
bits large, allowing for a maximum of 8,192 descriptors in
the ring, and a buffer address is sixty-four bits in size.

In the embodiment of FIG. 10, software that exccutes on
a host computer, such as a device driver for NIC 100,
maintains a free buffer array or other data structure (¢.g., list,
table) for storing references to (¢.g., addresses of) the buffers
identified in free descriptors. As descriptors are retrieved
from the ring their buffer identifiers are placed in the array.
Thus, when a buffer is needed for the storage of a packet, it
may be identified by its index (¢.g., cell, element) in the free
buffer array. Then, when the buffer is no longer needed, it
may be relcased to the host computer by placing its array
index or reference in a completion descriptor. A packet
stored in the buffer can then be retrieved by accessing the
buffer identificd in the specified element of the array. Thus,
in this embodiment of the invention the size of a descriptor
index (e.g., thirteen bits) may not limit the number of buffers
that may be assigned by free ring manager 1012. In
particular, virtually any pumber of buffers or descriptors
could be managed by the softwarc. For example, in one
alternative embodiment of the invention buffer identifiers
may be stored in onc or morc linked lists after being
retrieved from descriptors in a free descriptor ring. When the
buffer is released to the host computer, a reference to the
head of the buffer’s linked list may be provided. The list
could then be navigated to locate the particular buffer (e.g.,
by its address).

As one skilled in the art will appreciate, the inclusion of
a limited number of descriptors in the free descriptor ring
(c.g., 8,192 in this embodiment) means that they may be
re-used in a round-robin fashion. In the presently described
embodiment, a descriptor is just needed long enough to
retrieve its buffer identifier (e.g., address) and place it in the
free buffer amray, after which it may be re-used relatively
quickly. In other cmbodiments of the invention free descrip-
tor rings having different numbers of free descriptors may be
used, thus allowing some control over the rate at which free
descriptors must be re-uscd.

In one alternative embodiment of the invention, instead of
using a separate data structure to identify a buffer for storing

20

25

30

40

55

65

56
a packet, a buffer may be identified within DMA engine 120
by the index of the free descriptor within the free descriptor
ring that referenced the buffer. One drawback to this scheme
when the ring contains a limited number of descriptors,
however, is that a particular buffer’s descriptor may need to
be re-uscd before its buffer has been released to the host
computer. Thus, cither a method of avoiding or skipping the
re-usc of such a descriptor must be implemented or the
buffer referenced by the descriptor must be released before
the descriptor is needed again. Or, in another alternative, a
free descriptor ring may be of such a large size that a lengthy
or even virtually infinite period of time may pass from the
time a free descriptor is first used until it needs to be re-used.

Thus, in the illustrated embodiment of the invention free
ring manager 1012 retrieves a descriptor from the free
descriptor ring, stores its buffer identifier (e.g., memory
address) in a free buffer array, and provides the array index
and/or buffer identifier to flow re-assembly table 1004,
header table 1006, MTU table 1008 or jumbo table 1010.

Frce ring manager 1012 attempts to ensure that a bufferis
always available for a packet. Thus, in one embodiment of
the invention free ring manager 1012 includes descriptor
cache 1012a configured to store a number of descriptors
(c-g., up to cight) at a time. Whenever there arc less than a
threshold number of entries in the cache (c.g., five), addi-
tional descriptors may be retrieved from the free descriptor
ring. Advantageously, the descriptors are of such a size (¢.g.,
sixteen bytes) that some multiple (¢.g., four) of them can be
cfficiently retricved in a sixty-four byte cache line transfer
from the host computer.

Returning now to the illustrated embodiment of the
invention, each buffer in host memory is one memory page
in size. However, buffers and the packets stored in the
buffers may be divided into multiple categorics based on
packet size and whether a packet’s data is being
re-assembled. Re-assembly refers to the accumulation of
data from multiple packets of a single flow into one buffer
for cfficient transfer from kernel space to user or application
space within host memory. In particular, re-assembleable
packets may be defined as packets that conform to a pre-
sclected protocol (c.g., a protocol that is parseable by header
parser 106). By filling a memory page with data for one
destination, page-flipping may be performed to provide a
page in kernel space to the application or uscr space. A
packet’s category (e.g., whether re-assembleable or non-re-
asscmbleable) may be determined from information
retrieved from the control queuc or flow database manager.
In particular, and as described previously, an operation code
may be used to determine whether a packet contains a
re-assembleable portion of data.

In the iltustrated embodiment of the invention, data por-
tions of related, re-assembleable, packets are placed into a
first category of buffers—which may be termed re-assembly
buffers. A second category of buffers, which may be called
header buffers, stores the headers of those packets whose
data portions are being re-assembled and may also store
small packets (e.g-, those less than or equal to 256 bytes in
size). A third category of buffers, MTU buffers, stores
non-re-assembleable packets that are larger than 256 bytes,
but no larger than MTU size (e.g., 1522 bytes). Finally, a
fourth category of buffers, jumbo buffers, stores jumbo
packets (c.g., large packets that are greater than 1522 bytes
in sizc) that are not being re-assembled. Illustratively, a
jumbo packet may be stored intact (¢.g., its headers and data
portions kept together in one buffer) or its headers may be
stored in a header buffer while its data portion is stored in an
appropriate (¢.g., jumbo) non-re-assembly buffer.

NOAC Ex. 1015 Page 295



US 6,483,804 Bl

57

In one alternative embodiment of the invention, no dis-
tinction is made between MTU and jumbo packets. Thus, in
this alternative embodiment, just three types of buffers are
used: re-assembly and beader buffers, as described above,
plus non-re-assembly buffers. Miustratively, all non-small
packets (e.g., larger than 256 bytes) that are not
re-assembled are placed in a non-re-assembly buffer.

In another alternative embodiment, jumbo packets may be
re-assembled in jumbo buffers. In particular, in this embodi-
ment data portions of packets smaller than a predetermined
size (¢.g., MTU) are re-assembled in normal re-assembly
buffers while data portions of jumbo packets (e.g., packets
greater in size than MTU) arc re-assembled in jumbo
buffers. Re-assembly of jumbo packets may be particularly
effective for a communication flow that comprises jumbo
frames of a size such that multiple frames can fit in onc
buffer. Header portions of both types of packets may be
stored in one type of header buffer or, alternatively, different
header buffers may be used for the headers of the different
types of re-assembleable packets.

In yet another alternative embodiment of the invention
buffers may be of varying sizes and may be identified in
different descriptor rings or other data structures. For
cxample, a first descriptor ring or other mechanism may be
used to identify buffers of a first size for storing large or
jumbo packets. A second ring may store descriptors refer-
encing buffers for MTU-sized packets, and another ring may
contain descriptors for identifying page-sized buffers (c.g.,
for data re-assembly).

A buffer used to store portions of more than one type of
packet—such as a header buffer used to store headers and
small packets, or a non-re-assembly buffer uscd to store
MTU and jumbo packets—may be termed a “hybrid” buffer.

Illustratively, each time a packet or a portion of a packet
is stored in a buffer, completion ring manager 1014 popu-
lates a descriptor in a completion descriptor ring with
information concerning the packet. Included in the informa-
tion stored in a completion descriptor in this embodiment is
a number or reference identifying the free buffer array cell
or clement in which an identifier (¢.g., memory address) of
a buffer in which a portion of the packet is stored. The
information may also include an offset into the buffer (c.g.,
to the beginning of the packet portion), the identity of
another free buffer array eniry that stores a buffer identifier
for a buffer containing another portion of the packet, a size
of the packet, ctc. A packet may be stored in multiple buffers,
for example, if the packet data and header are stored
separately (e.g., the packet’s data is being re-assembled in a
re-assembly buffer while the packet’s header is placed in a
header buffer). In addition, data portions of a jumbo packet
or a re-assembly packet may span two or more buffers,
depending on the size of the data portion.

A distinction should be kept in mind between a buffer
identifier (e.g., the memory address of a buffer) and the entry
in the free buffer array in which the buffer identifier is stored.
In particular, it has been described above that when a
memory buffer is relcased to a host computer it is identified
to the host computer by its position within a frec buffer array
(or other suitable data structure) rather than by its buffer
identifier. The host computer retrieves the buffer identifier
from the specified array element and accesses the specified
buffer to locate a packet stored in the buffer. As one skilled
in the art will appreciate, identifying memory buffers in
completion descriptors by the buffers’ .posi!ions in a free
buffer array can be more ciﬁcicnt_ than 1d‘entifying them by
their memory addresscs. In particular, in FIG. 10 buffer
identifiers are sixty-four bits in size while an index in a frec

25

30

as

40

45

50

55

65

58

buffer array or similar data structure will likely be far
smaller. Using array positions thus saves space compared to
using buffer identifiers. Nonetheless, buffer identifiers may
be used to directly identify buffers in an alternative embodi-
ment of the invention, rather than filtering access to them
through a free buffer array. However, completion descriptors
would have to be corespondingly larger in order to accom-
modate them.

A completion descriptor may also include one or more
flags indicating the type or size of a packet, whether the
packet data should be re-assembled, whether the packet is
the last of a datagram, whether the host computer should
delay processing the packet to await a related packet, etc. As
described in a following section, in one embodiment of the
invention dynamic packet batching module 122 determines,
at the time a packet is transferred to the host computer,
whether a related packet will be sent shortly. If so, the bost
computer may be advised to delay processing the transferred
packet and await the related packet in order to allow more
efficient processing.

A packet’s completion descriptor may be marked appro-
priately when the buffer identified by its buffer identifier is
to be released to the host computer. For example, a flag may
be set in the descriptor to indicate that the packet’s buffer is
being released from DMA engine 120 to the host computer
or software operating on the host computer (c.g., a driver
associated with NIC 100). In one embodiment of the
invention, completion ring manager 1014 includes comple-
tion descriptor cache 1014a. Completion descriptor cache
10144 may store one or more completion descriptors for
collective transfer from DMA engine 120 to the host com-
puter.

Thus, empty buffers are retrieved from a free ring and
used buffers are released to the host computer through a
completion ring. One reason that a separate ring is employed
to relcase used buffers to the host computer is that buffers
may not be released in the order in which they were taken.
In onec embodiment of the invention, a buffer (especially a
flow re-assembly buffer) may not be released until it is full.
Alternatively, a buffer may be released at virually any time,
such as when the end of a communication flow is detected.
Free descriptors and completion descriptors are further
described below in conjunction with FIG. 12.

Another reason that separate rings are used for free and
completion descriptors is that the number of completion
descriptors that are required in an embodiment of the
invention may exceed the mumber of free descriptors pro-
vided in a free descriptor ring. For cxample, a buffer
provided by a free descriptor may be used to store multiple
headers and/or small packets. Each time a header or small
packet is stored in the header buffer, however, a scparate
completion descriptor is gencrated. In an embodiment of the
invention in which a header buffer is eight kilobytes in size,
a header buffer may store up o thirty-two small packets. For
each packet stored in the header buffer, another completion
descriptor is generated.

FIG. 11 includes diagrams of illustrative embodiments of
flow re-assembly table 1004, header table 1006, MTU table
1008 and jumbo table 1010. Onc altemative embodiment of
the invention includes a non-re-assembly table in place of
MTU table 1008 and jumbo table 1010, corresponding to a
single type of non-re-assembly buffer for both MTU and
jumbo packets. Jumbo table 1010 may also be omitted in
another alternative cmbodiment of the invention in which
jumbo buffers are retrieved or identified only when needed.
Because a jumbo buffer is used only once in this alternative
embodiment, there is no need to maintain a table to track its
use.

NOAC Ex. 1015 Page 296



US 6,483,804 Bl

59

Flow re-assembly table 1004 in the illustrated embodi-
ment stores information concerning the re-assembly of pack-
ets in one or more communication flows. For cach flow that
is active through DMA engine 120, scparate flow
re-assembly buffers may be used to store the flow’s data.
More than one buffer may be used for a particular flow, but
cach flow has one entry in flow re-assembly table 1004 with
which to track the use of a buffer. As described in a previous
section, one embodiment of the invention supports the
interleaving of up to sixty-four flows. Thus, flow
re-assembly buffer table 1004 in this embodiment maintains
up to sixty-four entrics. A flow’s entry in the flow
re-assembly table may match its flow number (e.g., the index
of the flow’s flow key in flow database 110) or, in an
alternative embodiment, an entry may be used for any flow.

In FIG. 11, an entry in flow re-assembly table 1004
includes flow re-assembly buffer index 1102, next address
1104 and validity indicator 1106. Flow re-assembly buffer
index 1102 comprises the index, or position, within a free
buffer array or other data structure for storing buffer iden-
tifiers identified in free descriptors, of a buffer for storing
data from the associated flow. Illustratively, this value is
written into each completion descriptor associated with a
packet whose data portion is stored in the buffer. This value
may be used by software operating on the host computer to
access the buffer and process the data. Next address 1104
identifies the location within the buffer (c.g., a memory
address) at which to store the next portion of data.
Illustratively, this field is updated each time data is added to
the buffer. Validity indicator 1106 indicates whether the
entry is valid. Ilustratively, each entry is sct to a valid state
(c.g., stores a first value) when a first portion of data is stored
in the flow’s re-assembly buffer and is invalidated (e.g.,
stores a second value) when the buffer is full. When an entry
is invalidated, the buffer may be released or returned to the
host computer (e.g., because it is full).

Header table 1006 in the illustrated embodiment stores
information concerning one or more header buffers in which
packet headers and small packets are stored. In the illus-
trated embodiment of the invention, only one header buffer
is active at a time. That is, beaders and small packets are
stored in one buffer until it is released, at which time a new
buffer is used. In this embodiment, header table 1006
includes header buffer index 1112, next address 1114 and
validity indicator 1116. Similar to flow re-assembly table
1004, header buffer index 1112 identifies the cell or element
in the free buffer array that contains a buffer identifier for a
header buffer. Next address 1114 identifies the location
within the header buffer at which to store the next header or
small packet. This identifier, which may be a counter, may
be updated cach time a header or small packet is stored in the
header buffer. Validity indicator 1116 indicates whether the
header buffer table and/or the header buffer is valid. This
indicator may be sct to valid when a first packet or header
is stored in a header buffer and may be invalidated when it
is released to the host computer.

MTU table 1008 stores information concerning one or
more MTU buffers for storing MTU packets (e.g., packets
larger than 256 bytes but less than 1523 byles) that are not
being re-assembled. MTU buffer index 1122 identifies the
free buffer array element that contains a buffer identifier
(c.g-, address) of a buffer for storing MTU packets. Next
address 1124 identifies the location in the current MTU
buffer at which to storc the next packet. Validity indicator
1126 indicates the validity of the table entry. The validity
indicator may be sct to a valid state when a first packet is
stored in the MTU buffer and an invalid state when the buffer
is 1o be released to the host computer.

20

30

35

40

55

60

65

60

Jumbo table 1010 stores information concerming one or
more jumbo buffers for storing jumbo packets (e.g., packets
larger than 1522 bytes) that are not being re-assembled.
Jumbo buffer index 1132 identifies the clement within the
free buffer array that stores a buffer identifier corresponding
to a jumbo buffer. Next address 1134 identifies the location
in the jumbo buffer at which to store the next packet. Validity
indicator 1136 indicates the validity of the table entry.
Illustratively, the validity indicator is set to a valid state
when a first packet is stored in the jumbo buffer and is set
to an invalid state when the buffer is to be released to the
host computer.

In the embodiment of the invention depicted in FIG. 11,
a packet larger than a specified size (e.g., 256 bytes) is not
re-assembled if it is incompatiblc with the pre-selected
protocols for NIC 100 (e.g., TCP, IP, Ethernet) or if the
packet is too large (e.g., greater than 1522 bytes). Although
two types of buffers (e.g.,, MTU and jumbo) are used for
non-re-asscmbleable packets in this embodiment, in an
alternative embodiment of the invention any number may be
uscd, including one. Packets less than the specified size are
generally not re-assembled. Instead, as described above,
they are stored intact in a header buffer.

In the embodiment of the invention depicted in FIG. 11,
next address ficlds may store a memory address, offset,
pointer, counter or other means of identifying a position
within a buffer. Advantageously, the next address ficld of a
table or table entry is initially set to the address of the buffer
assigned to store packets of the type associated with the table
(and, for re-assembly table 1004, the particular flow). As the
buffer is populated, the address is updated to identify the
location in the buffer at which to store the next packet or
portion of a packet.

Ilustratively, cach validity indicator stores a first value
(e.g., onc) to indicate validity, and a second value (c.g., zero)
to indicate invalidity. In the illustrated embodiment of the
invention, cach index field is thirteen bits, cach address field
is sixty-four bits and the validity indicators are each one bit
in size.

Tables 1004, 1006, 1008 and 1010 may take other forms
and remain within the scope of the invention as contem-
plated. For example, these data structures may take the form
of arrays, lists, databases, etc., and may be implemented in
hardware or software. In the illustrated embodiment of the
invention, header table 1006, MTU table 1008 and jumbo
table 1010 each contain only one entry at a time. Thus, only
onc header buffer, MTU buffer and jumbo buffer arc active
(e.g., valid) at a time in this embodiment. In an alternative
embodiment of the invention, multiple header buffers, MTU
buffers and/or jumbo buffers may be used (e.g., valid) at
once.

In one embodiment of the invention, certain categories of
buffers (e.g., header, non-re-assembly) may store a pre-
determined number of packets or packet portions. For
example, where the memory page size of a host computer
processor is eight kilobytes, a header buffer may store a
maximum of thirty-two entries, each of which is 256 bytes.
Illustratively, even when one packet or header is less than
256 bytes, the next entry in the buffer is stored at the next
256-byte boundary. A counter may be associated with the
buffer and decremented (or incremented) cach time a new
entry is stored in the buffer. After thirty-two entries have
been made, the buffer may be released.

In one embodiment of the invention, buffers other than
header buffers may be divided into fixed-size regions. For
cxample, in an cight-kilobyte MTU buffer, cach MTU
packet may be allocated two kilobytes. Any space remaining

NOAC Ex. 1015 Page 297



US 6,483,804 B1

61

in a packet’s arca after the packet is stored may be left
unused or may be padded.

In one alternative embodiment of the invention, entries in
a header buffer and/or non-re-assembly buffer (e.g., MTU,
jumbo) are aligned for more cfficient transfer. In particular,
two bytes of padding (e.g., random bytes) are stored at the
beginning of each entry in such a buffer. Because a packet’s
layer two Ethernet header is fourteen bytes long, by adding
two pad bytes each packet’s layer three protocol header
(c.g., IP) will be aligned with a sixteen-byte boundary.
Sixtecn-byte alignment, as onc skilled in the art will
appreciate, allows cfficient copying of packet contents (such
as the layer three header). The addition of two bytes may,
however, decrease the size of the maximum packet that may
be stored in a header buffer (e.g., to 254 bytes).

As explained above, counters and/or padding may also be
used with non-re-assembly buffers. Some non-re-
assembleable packets (e.g., jumbo packets) may, however,
be split into separate header and data portions, with each
portion being stored in a separate buffer—similar to the
re-assembly of flow packets. In one embodiment of the
invention padding is only used with header portions of split
packets. Thus, when a non-re-assembled (c.g., jumbo)
packet is split, padding may be applied to the header/small
buffer in which the packet’s header portion is stored but not
to the non-re-assembly buffer in which the packet’s data
portion is stored. When, however, a non-re-assembly packet
is stored with its header and data together in a non-re-
assembly buffer, then padding may be applied to that buffer.

In another altemative embodiment of the invention, a
second level of padding may be added to cach entry in a
buffer that stores non-re are larger
than 256 bytes (¢.g., MTU packets and jumbo packets that
are not split). In this alternative embodiment, a cache line of
storage (c.g., sixty-four bytes for a Solaris™ workstation) is
skipped in the buffer before storing cach packet. The extra
padding area may be used by software that processes the
packets and/or their completion descriptors. The software
may use the extra padding area for routing or as temporary
storage for information needed in a sccondary or later phase
of processing.

For example, before actually processing the packet, the
software may store some data that promotes cfficient multi-
tasking in the padding arca. The information is then avail-
able when the packet is finally extracted from the buffer. In
particular, in one embodiment of the invention a network
interface may gencrate one or more data values to identify
multicast or alternate addresses that correspond to a layer
two address of a packet reccived from a network. The
multicast or alternate addresses may be stored in a network
interface memory by software operating on a host computer
(e.g., a device driver). By storing the data value(s) in the
padding, enhanced routing functions can be performed when
the host computer processes the packet.

Reserving sixty-four bytes at the beginning of a buffer
also allows header information to be modified or prepended
if necessary. For example, a regular Ethernet header of a
packet may, because of routing requirements, need to be
replaced with a much larger FDDI (Fiber Distributed Data
Interface) header. One skilled in the art will recognize the
size disparity between these headers. Advantageously, the
rescrved padding arca may be used for the FDDI header
rather than allocating another block of memory.

In a prescnt embodiment of the invention DMA engine
120 may determine which category a pa'ckct belongs in, and
which type of buffer to store the packet in, by examining the
packet’s operation code. As described in a previous section,

20

25

30

35

40

50

55

65

62

an operation code may be stored in control queue 118 for
each packet stored in packet queue 116. Thus, when DMA
engine 120 detects a packet in packet queue 116, it may fetch
the corresponding information in the control queue and act
appropriately.

An operation code may indicate whether a packet is
compatible with the protocols pre-selected for NIC 100. In
an illustrative embodiment of the invention, only compatible
packets are cligible for data re-assembly and/or other
cnhanced operations offered by NIC 100 (¢.g., packet batch-
ing or load distribution). An operation code may also reflect
the size of a packet (c.g., less than or greater than a
predetermined size), whether a packet contains data or is a
control packet, and whether a packet initiates, continues or
ends a flow. In this embodiment of the invention, cight
different operation codes are used. In alternative embodi-
ments of the invention more or less than eight codes may be
used. TABLE 1 lists operation codes that may be used in one
embodiment of the invention.

FIGS. 12A-12B illustrate descriptors from a free descrip-
tor ring and a completion descriptor ring in onc embodiment
of the invention. FIG. 12A also depicts a free buffer array for
storing buffer identifiers retrieved from free descriptors.

Free descriptor ring 1200 is maintained in host memory
and is populated with descriptors such as free descriptor
1202. Hlustratively, free descriptor 1202 comprises ring
index 1204, the index of descriptor 1202 in free ring 1200,
and buffer identifier 1206. A buffer identifier in this embodi-
ment is 2 memory address, but may, alternatively, comprise
a pointer or any other suitable means of identifying a buffer
in host memory.

In the illustrated embodiment, free buffer array 1210 is
constructed by software operating on a host computer (¢.g.,
a device driver). An entry in free buffer array 1210 in this
embodiment includes array index field 1212, which may be
used to identify the entry, and buffer identifier field 1214.
Each entry’s buffer identifier ficld thus stores a buffer
identifier retrieved from a free descriptor in free descriptor
ring 1200.

In one embodiment of the invention, free ring manager
1012 of DMA engine 120 retrieves descriptor 1202 from the
ring and stores buffer identifier 1206 in free buffer amray
1210. The free ring manager also passes the buffer identifier
to flow re-assembly table 1004, header table 1006, MTU
table 1008 or jumbo table 1010 as needed. In another
embodiment the free ring manager extracts descriptors from
the free descriptor ring and stores them in a descriptor cache
until a buffer is needed, at which time the buffer’s buffer
identifier is stored in the frec buffer array. In yet another
embodiment, a descriptor may be used (e.g., the buffer that
it references may be uvsed to store a packet) while still in the
cache.

In one embodiment of the invention descriptor 1202 is
sixieen bytes in length. In this embodiment, ring index 1204
is thirteen bits in size, buffer identifier 1206 (and buffer
identifier field 1214 in free buffer array 1210) is sixty-four
bits, and the remaining space may store other information or
may not be used. The size of array index field 1212 depends
upon the dimensions of array 1210; in one embodiment the
field is thirteen bits in size.

Completion descriptor ring 1220 is also maintained in
host memory. Descriptors in completion ring 1220 are
written or configured when a packet is transferred to the host
computer by DMA engine 120. The information written to a
descriptor, such as descriptor 1222, is used by software
operating on the host computer (e.g., a driver associated with
NIC 100) to process the packet. llustratively, an ownership

NOAC Ex. 1015 Page 298



US 6,483,804 B1

63

indicator (described below) in the descriptor indicates
whether DMA engine 120 has finished using the descriptor.
For example, this field may be set to a particular value (c.g.,
zero) when the DMA engine finishes using the descriptor
and a different value (e.g., one) when it is available for use
by the DMA engine. However, in another embodiment of the
invention, DMA engine 120 issues an interrupt to the host
computer when it releascs a completion descriptor. Yet
another means of alerting the host computer may be
employed in an alternative embodiment. Descriptor 1222, in
one embodiment of the invention, is thirty-two bytes in
length.

In the illustrated embodiment of the invention, informa-
tion stored in descriptor 1222 concerns a transferred packet
and/or the buffer it was stored in, and includes the following
fields. Data size 1230 reports the amount of data in the
packet (e.g., in bytes). The data size ficld may contain a zero
if there is no data portion in the packet or no data buffer (c.g.,
flow re-assembly buffer, non-re-assembly buffer, jumbo
buffer, MTU buffer) was used. Data buffer index 1232 is the
index, within free buffer array 1210, of the buffer identifier
for the flow re-assembly buffer, non-re-assembly buffer,
jurnbo buffer or MTU buffer in which the packet’s data was
stored. When the descriptor corresponds to a small packet
fully stored in a header buffer, this field may store a zero or
remain unused. Data offsct 1234 is the offsct of the packet’s
data within the flow rc-assembly buffer, non-re-assembly
buffer, jumbo buffer or MTU buffer (e.g., the location of the
first byte of data within the data buffer).

In FIG. 12B, flags field 1236 includes one or more flags
concerning a buffer or packet. For example, if a header
buffer or data is being released (e.g., because it is full), a
release header or release data flag, respectively, is set. A
release flow flag may be used to indicate whether a flow has,
at least temporarily, ended. In other words, if a release flow
flag is set (e.g., stores a value of onc), this indicates that there
are po other packets waiting in the packet queue that are in
the same flow as the packet associated with descriptor 1222.
Otherwise, if this flag is not set (e.g., stores a value of zero),
software operating on the host computer may queue this
packet to await one or more additional flow packets so that
they may be processed collectively. A split flag may be
included in flags field 1236 to identify whether a packet’s
contents (e.g., data) spans multiple buffers. Hlustratively, if
the split flag is set, there will be an entry in next data buffer
index 1240, described below.

Descriptor type 1238, in the presently described embodi-
ment of the invention, may take any of three values. A first
value (e.g., one) indicates that DMA engine 120 is releasing
a flow buffer for a flow that is stale (e.g., no packet has been
received in the flow for some period of time). A second value
(e-g., two) may indicate that a non-re-assembleable packet
was stored in a buffer. A third value (e.g., three) may be used
to indicate that a flow packet (e.g., a packet that is part of a
flow through NIC 100) was stored in a buffer.

Next buffer index 1240 stores an index, in free buffer
array 1210, of an entry containing a buffer identifier corre-
sponding to a buffer storing a subsequent portion of a packet
if the entire packet, or its data, could not fit into the first
assigned buffer. The offset in the next buffer may be assumed
to be zero. Header size 1242 reports the length of the header
(e.g., in bytes). The header size may be set to zero if the
header buffer was not used for this packet (e.g., the packet
is not being re-assembled and is not a small packet). Header
buffer index 1244 is the index, in free buffer array 1210, of
the buffer identificr for the header buffer used to store this
packet’s header. Header offset 1246 is the offset of the

20

25

30

35

40

45

55

65

64

packet’s header within the buffer (e.g., header buffer) in
which the header was stored. The header offset may take the
form of a number of bytes into the buffer at which the header
can be found. Alternatively, the offset may be an index value,
reporting the index position of the header. For example, in
onc cmbodiment of the invention mentioned above, entrics
in a header buffer are stored in 256-byte units. Thus, cach
entry begins at a 256-byte boundary regardless of the actual
size of the entrics. The 256-byte entries may be numbered or
indexed within the buffer.

In the illustrated embodiment, flow number 1250 is the
packet’s flow number (¢.g., the index in flow database 110
of the packet’s flow key). Flow number 1250 may be used
to identify packets in the same flow. Operation code 1252 is
a code generated by flow database manager 108, as
described in a previous section, and used by DMA engine
120 to process the packet and transfer it into an appropriate
buffer. Methods of transferring a packet depending upon its
operation code are described in detail in the following
section. No__Assist signal 1254, also described in a previous
section, may be set or raised when the packet is not
compatible with the protocols pre-selected for NIC 100. One
result of incompatibility is that beader parser 106 may not
extensively parse the packet, in which case the packet will
not receive the subsequent benefits. Processor identifier
1256, which may be gencrated by load distributor 112,
identifies a host computer system processor for processing
the packet. As described in a previous section, load distribu-
tor 112 attempts to share or distribute the Ioad of processing
network packets among multiple processors by having all
packets within one flow processed by the same processor.
Layer three beader offset 1258 reports an offset within the
packet of the first byte of the packet’s layer three protocol
(e.g., IP) header. With this value, software operating on the
host computer may easily strip off one or more headers or
header portions.

Checksum value 1260 is a checksum computed for this
packet by checksum generator 114. Packet length 1262 is the
length (c.g., in bytes) of the entire packet.

Ownership indicator 1264 is used in the presently
described embodiment of the invention to indicate whether
NIC 100 or software operating on the host computer “owns”
completion descriptor 1222. In particular, a first value (e.g.,
zero) is placed in the ownership indicator field when NIC
100 (c.g., DMA enginc 120) has completed configuring the
descriptor. Illustratively, this first value is understood to
indicate that the software may now process the descriptor.
When finished processing the descriptor, the software may
store a second value (¢.g., one) in the ownership indicator to
indicate that NIC 100 may now usc the descriptor for
another packet.

One skilled in the art will recognize that there are numer-
ous methods that may be used to inform host software that
a descriptor has been used by, or returned to, DMA engine
126. In one embodiment of the invention, for example, one
or more registers, pointers or other data structures are
maintained to indicate which completion descriptors in a
completion descriptor ring have or have not been used. In
particular, a head register may be used to identify a first of
a series of descriptors that are owned by host software, while
a tail register identifies the last descriptor in the series. DMA
engine 120 may update these registers as it configures and
releascs descriptors. Thus, by examining these registers the
host software and the DMA engine can determine how many
descriptors have or have not been used.

Finally, other information, flags and indicators may be
stored in other field 1266. Other information that may be

NOAC Ex. 1015 Page 299



US 6,483,804 Bl

65

stored in one embodiment of the invention includes the
length and/or offset of a TCP payload, flags indicating a
small packet (e.g., less than 257 bytes) or a jumbo packet
(e.g., more than 1522 bytes), a flag indicating a bad packet
(e.g., CRC error), a checksum starting position, ctc.

In alternative embodiments of the invention only infor-
mation and flags needed by the host computer (¢.g., driver
softwarc) are included in descriptor 1222. Thus, in one
alternative embodiment one or more fields other than the
following may be omitted: data size 1230, data buffer index
1232, data offset 1234, a split flag, next data buffer index
1240, header size 1242, header buffer index 1244, header
offset 1246 and ownership indicator 1264.

In addition, a completion descriptor may be organized in
virtually any form; the order of the ficlds of descriptor 1222
in FIG. 12 is mercly onc possible configuration. It is
advantageous, however, to locate ownership indicator 1264
towards the end of a completion descriptor since this indi-
cator may be used to inform host softwarc when the DMA
engine has finished populating the descriptor. If the owner-
ship indicator were placed in the beginning of the descriptor,
the software may read it and attempt to use the descriptor
before the DMA enginc has finished writing to it.

One skilled in the art will recognize that other systems and
methods than those described in this section may be imple-
mented to identify storage arcas in which to place packets
being transferred from a nctwork to a host computer without
cxceeding the scope of the invention.

“Methods of Transferring a Packet into a Memory Buffer by
a DMA Engine

FIGS. 13-20 are flow charts describing procedures for
transferring a packet into a host memory buffer. In these
procedures, a packet’s operation code helps determine
which buffer or buffers the packet is stored in. An illustrative
selection of operation codes that may be used in this
procedure are listed and explained in TABLE 1.

The illustrated embodiments of the invention employ four
categories of host memory buffers, the sizes of which are
programmable. The buffer sizes are programmable in order
to accommodate various host platforms, but are pro-
grammed to be one memory page in size in present embodi-
ments in order to eshance the efficiency of handling and
processing network traffic. For example, the embodiments
discussed in this section arc directed to the use of a host
computer system employing a SPARC™ processor, and so
cach buffer is cight kilobytes in size. These embodiments are
casily adjusted, however, for host computer systems
employing memory pages having other dimensions.

One type of bulffer is for re-assembling data from a fiow,
another type is for headers of packets being re-assembled
and for small packets (e.g., thosc less than or equal to 256
bytes in size) that are not re-assembled. A third type of buffer
stores packets up to MTU size (e.g., 1522 bytes) that are not
re-assembled, and a fourth type stores jumbo packets that are
greater than MTU size and which are not re-assembled.
These buffers are called flow re-assembly, header, MTU and
jumbo buffers, respectively.

The procedures described in this section make use of free
descriptors and completion descriptors as depicted in FIG.
12. In particular, in these procedures free descriptors
retrieved from a free descriptor ring store buffer identifiers
(c.g., memory addresses, pointers) for identifying buffers in
which to store a portion of a packet. A used buffer may be
returned to a host computer by identifying the location
within a free buffer array or other data structure used to store
the buffer’s buffer identifier. One skilled in the art will
recognize that these procedures may be readily adapted to

20

25

30

35

40

45

50

55

60

65

66

work with alternative methods of obtaining and returning
buffers for storing packets.

FIG. 13 is a top-level view of the logic controlling DMA
engine 120 in this cmbodiment of the invention. State 1300
is a start state.

In state 1302, a packet is stored in packet queue 116 and
associated information is stored in control queue 118. One
embodiment of a packet queuc is depicted in FIG. 8 and onc
embodiment of a control queue is depicted in FIG. 9. DMA
enginc 120 may detect the existence of a packet in packet
queue 116 by comparing the queue’s read and write pointers.
As long as they do not reference the same entry, then it is
understood that a packet is stored in the queue. Alternatively,
DMA engine 120 may cxamine control queuc 118 to deter-
mine whether an entry exists there, which would indicate
that a packet is stored in packet queue 116. As long as the
control queue’s read aod write pointers do not reference the
same cntry, then an cntry is stored in the control queue and
a packet must be stored in the packet queue.

In state 1304, the packet’s associated entry in the control
queuc is read. Iustratively, the control queue entry includes
the packet’s operation code, the status of the packet’s
No__Assist signal (c.g., indicating whether or not the packet
is compatible with a pre-selected protocol), one or more
indicators conceming the size of the packet (and/or its data
portion), etc.

In state 1306, DMA cngine 120 retricves the packet’s flow
number. As described previously, a packet’s flow number is
the index of the packet’s flow in flow database 110. A
packet’s flow number may, as described in a following
section, be provided to and used by dynamic packet batching
module 122 to enable the collective processiog of headers
from related packets. In one embodiment of the invention, a
packet’s flow number may be provided to any of a number
of NIC modules (¢.g., IPP module 104, packet batching
module 122, DMA engine 120, control queue 118) after
being generated by flow database manager 108. The fow
number may also be stored in a separate data structure (e.g.,
a register) until necded by dynamic packet batching module
122 and/or DMA engine 120. In one embodiment of the
invention DMA engine 120 retricves a packet’s flow number
from dynamic packet batching module 122. In an alternative
embodiment of the invention, the flow pumber may be
retrieved from a different location or module.

Then, in states 1308-1318, DMA cngine 120 determines
the appropriate manner of processing the packet by exam-
ining the packet’s operation code. The operation code may,
for example, indicate which buffer the engine should transfer
the packet into and whether a flow is to be set up or tom
down in flow re-assembly buffer table 1004.

The illustrated procedure continues at state 1400 (FIG.
14) if the operation code is 0, state 1500 (FIG. 15) for
operation code 1, state 1600 (FIG. 16) for operation code 2,
state 1700 (FIG. 17) for operation code 3, state 1800 (FIG.
18) for operation code 4, state 1900 (FIG. 19) for operation
code 5 and state 2000 (FIG. 20) for operation codes 6 and
7.

A Mcthod of Transferring a Packet with Operation Code 0

FIG. 14 depicts an illustrative procedure in which DMA
cngine 120 transfers a packet associated with operation code
0 to a host memory buffer. As reflected in TABLE 1,
operation code O indicates in this embodiment that the
packet is compatible with the protocols that may be parsed
by NIC 100. As explained above, compatible packets arc
eligible for re-assembly, such that data from multiple pack-
ets of one flow may be stored in one buffer that can then be
cfficiently provided (c.g., via a page-flip) to a user or

NOAC Ex. 1015 Page 300



US 6,483,804 B1

67

program’s memory space. Packets having operation code 0,
however, are small and contain no flow data for re-assembly.
They are thus likely to be control packets. Therefore, no new
flow is set up, no existing flow is torn down and the entire
packet may be placed in a header buffer.

In state 1400, DMA engine 120 (¢.g., DMA manager
1002) determines whether there is a valid (e.g., active)
header buffer. Ilustratively, this determination is made by
examining validity indicator 1116 of header buffer table
1006, which manages the active header buffer. If the validity
indicator is set (e.g., equal to one), then there is a header
buffer ready to receive this packet and the procedure con-
tinues at state 1404.

Otherwise, in state 1402 a header buffer is prepared or
initialized for storing small packets (¢.g., packets less than
257 bytes in size) and headers of re-assembled packets (and,
possibly, headers of other packets—such as jumbo packets).
In the illustrated embodiment, this initialization process
involves obtaining a free ring descriptor and retrieving its
buffer identifier (c.g., its reference to an available host
memory buffer). The buffer identifier may then be stored in
a data structure such as free buffer array 1210 (shown in
FIG. 12A). As described above, in one embodiment of the
invention free ring manager 1012 maintains a cache of
descriptors referencing empty buffers. Thus, a descriptor
may be retrieved from this cache and its buffer allocated to
header buffer table 1006. If the cache is empty, new descrip-
tors may be retrieved from a free descriptor ring in host
memory to replenish the cache.

‘When a new buffer identifier is retrieved from the cache
or from the frec descriptor ring, the buffer identifier’s
position in the free buffer array is placed in header buffer
index 1112 of header buffer table 1006. Further, an initial
storage location in the buffer identifier (e.g., its starting
address) is stored in next address ficld 1114 and validity
indicator 1116 is set to a valid state.

In state 1404, the packet is copied or transferred (¢.g., via
a DMA opceration) into the header buffer at the address or
location specified in the next address field of header buffer
table 1006. As described above, in one embodiment of the
invention pad bytes are inserted before the packet in order to
align the begioning of the packet’s layer three (c.g., IP)
header with a sixteen-byte boundary. In addition, a beader
buffer may be logically partitioned into cells of predeter-
mined size (c.g., 256 bytes), in which case the packet or
padding may begin at a cell boundary.

In state 1406, a completion descriptor is written or con-
figured to provide information to the host computer (e.g., a
software driver) for processing the packet. In particular, the
header buffer index (e.g. the index within the free buffer
array of the buffer identifier that references the header
buffer) and the packet’s offset in the header buffer are placed
in the descriptor. Illustratively, the offset may identify the
location of the cell in which the header is stored, or it may
identify the first byte of the packet. The size of the packet is
also stored in the descriptor, illustratively within a header
size field. A data size ficld within the descriptor is set to zero
to indicate that the entire packet was placed iu the header
buffer (e.g., there was no data portion to store in a scparate
data buffer). A rclcase header flag is set in the descriptor if
the header buffer is full. However, the header buffer may not
be tested to see if it is full until a later state of this procedure.
In such an embodiment of the invention, the release header
flag may be set (or cleared) at that time.

As described in a later section, in one embodiment of the
invention a rclease flow flag may also be set, depending
upon dynamic packet batching module 122. For example, if

15

20

25

35

40

50

65

68

the packet batching module determines that another packet
in the same flow will scon be transferred to the host
computer, the release flow flag will be cleared (e.g., a zero
will be stored). This indicates that the host computer should
await the next flow packet before processing this one. Then,
by collectively processing multiple packets from a single
flow, the packets can be processed more cfficiently while
requiring less processor time.

In the descriptor type field, a value is stored to indicate
that a flow packet was transferred to host memory. Also, a
predetermined value (e.g., zero) is stored in the ownership
indicator field to indicate that DMA engine 120 is done using
the descriptor and/or is releasing a packet to the host
computer. lllustratively, the host computer will detect the
change in the ownership indicator (e.g., from one to zero)
and use the stored information to process the packet. In one
altemative embodiment of the invention, DMA engine 120
issues an interrupt or other signal to alert the host computer
that a descriptor is being released. In another alternative
embodiment, the host computer polls the NIC to determine
when a packet has been received and/or transferred. In yet
another altermative embodiment, the descriptor type field is
used to inform the host computer that the DMA engine is
releasing a descriptor. In this alternative embodiment, when
a pon-zero value is placed in the descriptor type field the
host computer may understand that the DMA engine is
releasing the descriptor.

In a2 present embodiment of the invention, the ownership
indicator field is not changed until DMA engine 120 is
finished with any other processing involving this packet or
is finished making all entries in the descriptor. For example,
as described below a header buffer or other buffer may be
found to be full at some time after state 1406. By delaying
the setting of the ownership indicator, a release header flag
can be set before the descriptor is reclaimed by the host
computer, thus avoiding the use of another descriptor.

In state 1408, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer are po larger than 256 bytes, up to thirty-two entrics
may be stored in a beader buffer. Thus, a counter may be
used to keep track of entrics placed in each new header
buffer and the buffer can be considered full when thirty-two
entries are stored. Other methods of determining whether a
buffer is full are also suitable. For cxample, after a packet is
stored in the header buffer a new next address ficld may be
calculated and the difference between the new next address
field and the initial address of the buffer may be compared
to the size of the buffer (e.g., cight kilobytes). If less than a
predetermined number of bytes (e.g., 256) are waused, the
buffer may be considered full.

If the buffer is full, in state 1410 the header buffer is
invalidated to ensure that it is not used again. [lustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer via a descriptor. In this embodiment of the inven-
ton a release header flag in the descriptor is set. If the
descriptor that was written in state 1406 was already
released (c.g., its ownership indicator field changed),
another descriptor may be used in this state. If another
descriptor is used simply to report a full header buffer, the
descriptor’s header size and data size fields may be set to
zero to indicate that no new packet was transferred with this
descriptor.

If the header buffer is not full, then in state 1412 the next
address field of header buffer table 1006 is updated to
indicate the address at which to storc the next header or

NOAC Ex. 1015 Page 301



B

US 6,483,804 Bl

69

small packet. The processing associated with a packet hav-
ing operation code 0 then ends with end state 1499. In one
embodiment of the invention, the ownership indicator field
of a descriptor that is written in state 1406 is not changed,
or an interrupt is not issued, until end state 1499. Delaying
the potification of the host computer allows the descriptor to
be updated or modified for as long as possible before turning
it over to the host.

A Method of Transferring a Packet with Operation Code 1

FIG. 15 depicts an illustrative procedure in which DMA
engine 120 transfers a packet associated with operation code
1 to a host memory buffer. As reflected in TABLE 1, in this
embodiment operation code 1 indicates that the packet is
compatible with the protocols that may be parsed by NIC
100. A packet baving operation code 1, however, may be a
control packet having a particular flag set. No new flow is set
up, but a flow should already exist and is to be torn down;
there is no data to re-assemble and the entire packet may be
stored in a header buffer.

In state 1500, DMA engine 120 (c.g., DMA manager
1002) determines whether there is a valid (c.g., active)
header buffer. Ilustratively, this determination is made by
cxamining validity indicator 1116 of header buffer table
1006, which manages the active beader buffer. If the validity
indicator is sct, then there is a header buffer ready to receive
this packet and the procedure continues at state 1504.

Otherwise, in state 1502 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

‘When a new descriptor is obtained from the cache or from
the free descriptor ring, its buffer identifier (e.g., pointer,
address, index) is stored in free buffer array 1210 and its
initial storage location (c.g., address or cell location) is
stored in next address ficld 1114 of header buffer table 1006.
The index or position of the buffer identifier within the free
buffer array is stored in header buffer index 1112. Finally,
validity indicator 1116 is set to a valid state.

In state 1504 the packet is copied into the header buffer at
the address or location specified in the next address field of
header buffer table 1006. As described above, in onc
embodiment of the invention pad bytes arc inserted before
the packet in order to align the beginning of the packet’s
layer three (c.g., IP) header with a sixteen-byte boundary.
And, the packet (with or without padding) may be placed
into a pre-defined area or cell of the buffer.

In the illustrated embodiment, operation code 1 indicates
that the packet’s existing flow is to be torn down. Thus, in
state 1506 it is determined whether a flow re-assembly buffer
is valid (e.g., active) for this flow by examining the flow’s
validity indicator in flow re-assembly buffer table 1004. If,
for example, the indicator is valid, then there is an active
buffer storing data from one or more packets in this flow.
Illustratively, the flow is torn down by invalidating the flow
re-assembly buffer and releasing it to the host computer. If
there is no valid flow re-assembly buffer for this flow, the
illustrated procedure continues at state 1512. Otherwise, the
procedure proceeds to state 1508.

In state 1508, a completion descriptor is configured to
release the flow’s re-assembly buffer and to provide infor-
mation to the host computer for processing the current
packet. In particular, the header buffer index and the offsct
of the first byte of the packet (or location of the packet’s cell)

15

20

25

30

35

45

50

55

60

65

70

within the header buffer are placed in the descriptor. The
index within the free buffer array of the entry containing the
re-assembly buffer’s buffer identifter is stored in a data index
ficld of the descriptor. The size of the packet is stored in a
header size field and a data size field is set to zero to indicate
that no scparate buffer was used for storing this packet’s
data. A release header flag is set in the descriptor if the
header buffer is full and a releasc data flag is set to indicate
that no more data will be placed in this flow’s present
re-assembly buffer (e.g., it is being released). In addition, a
release flow flag is set to indicate that DMA engine 120 is
tearing down the packet’s flow. The header buffer may not
be tested to see if it is full until a later state of this procedure.
In such an embodiment of the invention, the release header
flag may be set at that time.

In state 1510, the flow’s entry in flow re-assembly buffer
table 1004 is invalidated. After state 1510, the procedure
continues at state 1514.

In state 1512, a completion descriptor is configured with
information somewhat different than that of state 1508. In
particular, the beader buffer index, the offsct to this packet
within the header buffer and the packet size are placed
within the same descriptor fields as above. The data size field
is set to zero, as above, but no data index needs to be stored
and no release data flag is sct (e.g., because there is no flow
re-assembly buffer to release). A release header flag is still
set in the descriptor if the header buffer is full and a release
flow flag is again set to indicate that DMA engine 120 is
tearing down the packet’s flow. Also, the descriptor type
field is changed to a value indicating that DMA engine 120
transferred a flow packet into host memory.

In state 1514, it is determined whether the header buffer
is now full. In this embodiment of the invention, where cach
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter is used to keep
track of entries placed into each new header buffer. The
buffer is considered full when thirty-two cntries are stored.

If the buffer is full, in state 1516 the hcader buffer is
invalidated. Illustratively, this involves sctting the header
buffer table’s validity indicator to invalid and communicat-
ing this status to the host computer via the descriptor
configured in state 1508 or state 1512. In this embodiment
of the invention a release header flag in the descriptor is set
to indicate that the header buffer is full.

If the header buffer is not full, then in state 1518 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or
small packet.

The processing associated with a packet having operation
code 1 then ends with end state 1599. In this end state, the
descriptor used for this packet is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero), issuing an interrupt, or some other
mechanism.

One skilled in the art will appreciate that in an alternative
cmbodiment of the invention a change in the descriptor type
field to any value other than the value (c.g., zero) it had when
DMA engine 120 was using it, may constitute a surrender of
“ownership” of the descriptor to the host computer or
software operating on the host computer. The host computer
will detect the change in the descriptor type field and
subsequently use the stored information to process the
packet.

A Method of Transferring Packet with Operation Code 2

FIGS. 16A-16F illustrate a procedure in which DMA
engine 120 transfers a packet associated with operation code
2 to a host memory buffer. As reflected in TABLE 1,

NOAC Ex. 1015 Page 302



US 6,483,804 B1

71

operation code 2 may indicate that the packet is compatible
with the protocols that may be parsed by NIC 100, but that
it is out of sequence with another packet in the same flow.
It may also indicate an attcmpt to re-establish a flow, but that
no more data is likely to be received after this packet. For
operation code 2, no new flow is set up and any existing flow
with the packet’s flow number is to be torn down. The
packet’s data is not to be re-assembled with data from other
packets in the same flow.

Because an cxisting flow is to be tom down (e.g., the
flow’s re-assembly buffer is to be invalidated and released to
the host computer), in state 1600 it is determined whether a
flow re-assembly buffer is valid (e.g., active) for the flow
having the flow number that was read in state 1306. This
determination may be made by cxamining the validity
indicator in the flow’s entry in flow re-assembly buffer table
1004. Illustratively, if the indicator is valid then there is an
active buffer storing data from one or more packets in the
flow. If there is a valid flow re-assembly buffer for this flow,
the illustrated procedure continues at state 1602. Otherwise,
the procedure proceeds to state 1606.

In state 1602, a completion descriptor is written or con-
figured to release the cxisting flow re-assembly buffer. In
particular, the flow re-assembly buffer’s index (c.g., the
location within the free buffer array that contaias the buffer
identificr corresponding to the flow re-assembly buffer) is
written to the descriptor. In this embodiment of the
invention, no offset needs to be stored in the descriptor’s
data offset field and the data size field may be sct to zero
because no new data was stored in the re-assembly buffer.
Similarly, the header buffer is not yet being released, there-
fore the header index and header offset ficlds of the descrip-
tor nced not be used and a zero may be stored in the header
size field.

Mlustratively, the descriptor’s reclease header flag is
cleared (e.g., a zero is stored in the flag) because the header
buffer is not to be released. The release data flag is set (e.g.,
a one is stored in the flag), however, because no more data
will be placed in the released flow re-assembly buffer.
Further, a relcase flow flag in the descriptor is also set, to
indicatc that the flow associated with the released flow
re-assembly buffer is being tom down.

The descriptor type field may be changed to a value
indicating that DMA engine 120 is releasing a stalc flow
buffer (¢.g., 2 flow re-assembly buffer that has not been used
for some time). Finally, the descriptor is turned over to the
host computer by changing its ownership indicator field or
by issuing an interrupt or using some other mechanism. In
one embodiment of the invention, however, the descriptor is
not released to the host computer until end state 1699.

Then, in state 1604, the flow re-assembly buffer is invali-
dated by modifying validity indicator 1106 in the flow’s
entry in flow re-assembly buffer table 1004 appropriately.

In state 1606, it is determined whether the present packet
is a small packet (c.g., less than or equal to 256 bytes in
size), suitable for storage in a header buffer. If so, the
illustrated procedure proceeds to state 1610. Information
stored in packet queue 116 and/or control queue 118 may be
used to make this determination.

In state 1608, it is determined whether the present packet
is a jumbo packet (c.g., greater than 1522 bytes in size), such
that it should be stored in a jumbo buffer. If so, the illustrated
procedure proceeds to state 1650. If pot, the procedure
continues at state 1630.

In statc 1610 (reached from statc 1606), it has been
determined that the prescnt packet is a small packet suitable
for storage in a header buffer. Therefore, DMA engine 120

20

25

35

40

50

55

60

72

(e.g-, DMA manager 1002) determines whether there is a
valid (c.g., active) header buffer. Illustratively, this determi-
pation is made by examining validity indicator 1116 of
header buffer table 1006, which manages the active header
buffer. If the validity indicator is set, then there should be a
header buffer ready to receive this packet and the procedure
continues at state 1614. ‘

Otherwise, in state 1612 a new header buffer is prepared
or injtialized for storing small packets and headers of
re-assembled packets. This initialization process may
involve obtaining a free ring descriptor from a cache main-
tained by free ring manager 1012 and retrieving its reference
to an empty buffer. If the cache is empty, new descriptors
may be retrieved from the free descriptor ring in host
memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer amray. The buffer’s initial address or some other
indicator of the first storage location in the buffer is placed
in next address ficld 1114 of header buffer table 1006. The
buffer identifier’s position or index within the free buffer
array is stored in header buffer index 1112, and validity
indicator 1116 is set to a valid state.

In state 1614 the packet is copied or transferred (c.g., via
a DMA operation) into the header buffer at the address or
location specified in the next address field of header buffer
table 1006. As described above, in one embodiment of the
invention pad bytes arc inserted before the header in order
to align the beginning of the packet’s layer three protocol
(c.g., IP) header with a sixteen-byte boundary. In addition,
the packet may be positioned within a cell of predetermined
size (¢.g., 256 bytes) within the header buffer.

In state 1616, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter (e.g., a software driver) for processing the packet. In
particular, the header buffer index (e.g. the position within
the free buffer array of the header buffer’s buffer identifier)
and the packet’s offset within the header buffer are placed in
the descriptor. Ilustratively, this offset may serve to identify
the first byte of the packet, the first pad byte before the
packet or the beginning of the packet’s cell within the buffer.
The size of the packet is also stored in the descriptor in a
header size ficld. A data size field within the descriptor may
be sct to zero to indicate that the entire packet was placed in
the header buffer (e.g., no separate data portion was stored).
A release header flag is set in the descriptor if the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be sct (or cleared) at that time. A release data flag is cleared
(e.g., sct to a value of zero), because there is no separate data
portion being conveyed to the host computer.

Also, the descriptor type ficld is changed to a value
indicating that DMA cngine 120 transferred a non-re-
assembleable packet into host memory. And, a predeter-
mined value (c.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In one embodiment of the
invention the ownership indicator field is not changed until
end state 1699 below. In one altcrnative embodiment of the
invention, DMA engine 120 issues an interrupt or other
signal to alert the host computer that a descriptor is being
released.

In state 1618, it is determined whether the header buffer
is full. In this embodiment of the invention, where each

NOAC Ex. 1015 Page 303



US 6,483,804 B1

73

buffer is cight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used
to keep track of entries placed into cach new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1620 the header buffer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header buffer table’s validity indi-
cator to an invalid state and communicating this status to the
host computer. In this embodiment of the invention, a
release header flag in the descriptor is sct. The illustrated
procedure then ends with end state 1699.

If the header buffer is not full, then in state 1622 the next
address field of header buffer table 1006 is updated to
indicate the address or cell boundary at which to store the
next header or small packet. The illustrated procedure then
cnds with end state 1699.

In state 1630 (rcached from state 1608), it has been
determined that the packet is not a small packet or a jumbo
packet. The packet may, therefore, be stored in a non-re-
assembly buffer (e.g., 20 MTU buffer) used to store packets
that are up to MTU in size (e.g., 1522 bytes). Thus, in state
1630 DMA engine 120 determines whether a valid (e.g.,
active) MTU buffer exists. Hiustratively, this determination
is made by examining validity indicator 1126 of MTU buffer
table 1008, which manages an active MTU buffer. If the
validity indicator is sct, then there is an MTU buffer ready
to reccive this packet and the procedure continues at state
1634.

Otherwise, in state 1632 2 new MTU buffer is prepared or
initialized for storing non-re-assembleable packets up to
1522 bytes in size. Ilustratively, this initialization process
involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer (c.g., a buffer identifier). If the
cache is empty, new descriptors may be retrieved from the
free descriptor ring in host memory to replenish the cache.

‘When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (c.g., pointer,
address, index) contained in the descriptor is stored in the
frec buffer array. The buffer’s initial address or some other
indication of the first storage location in the buffer is placed
in next address ficld 1124 of MTU buffer table 1008. Further,
the position of the buffer identifier within the free buffer
array is stored in MTU buffer index 1122 and validity
indicator 1126 is set to a valid state.

In state 1634 the packet is copied or transferred (e.g., via
a DMA operation) into the MTU buffer at the address or
location specified in the next address field. As described
above, in one embodiment of the invention pad bytes may be
inserted before the header in order to align the beginning of
the packet’s layer three protocol (e.g., IP) header with a
sixteen-byte boundary. In another embodiment of the inven-
tion packets may be aligned in an MTU buffer in cells of
predefined size (e.g., two kilobytes), similar to entries in a
header buffer.

In state 1636, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter (e.g., a software driver) for processing the packet. In
particular, the MTU buffer index (c.g. the frec buffer array
clement that contains the buffer identifier for the MTU
buffer) and offsct (c.g., the offset of the first byte of this
packet within the MTU buffer) are placed in the descriptor
in data index and data offset fields, respectively. The size of
the packet is also stored in the descriptor, illustratively
within a data size field. A header size field within the
descriptor is sct to zero to indicate that the entire packet was

20

30

35

40

45

50

65

74

placed in the MTU buffer (c.g., no separate header portion
was stored in a header buffer). A release data flag is set in the
descriptor if the MTU buffer is full. However, the MTU
buffer may not be tested to sec if it is full until a later state
of this procedure. In such an embodiment of the invention,
the release data flag may be set (or cleared) at that time. A
releasc header flag is cleared (e.g., set to zero), because there
is no separate header portion being conveyed to the host
computer.

Further, the descriptor type ficld is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. Also, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In a present embodiment of the
invention the ownership field is not set until end state 1699
below. In one altermative embodiment of the invention,
DMA engine 120 issues an interrupt or other signal to alert
the host computer that a descriptor is being released, or
communicates this event to the host computer through the
descriptor type field.

In state 1638, it is determined whether the MTU buffer is
full. In this embodiment of the invention, where cach buffer
is eight kilobytes in size and entries in the MTU buffer are
allotted two kilobytes, a counter may be used to keep track
of entries placed into each new header buffer. The buffer
may be considered full when a predetermined number of
entries (¢.g., four) are stored. In an alternative embodiment
of the invention DMA engine 120 determines how much
storage space within the buffer has yet to be used. If no space
remains, or if less than a predetermined amount of space is
still available, the buffer may be considered full

If the MTU buffer is full, in state 1640 it is invalidated to
ensure that it is pot used again. Nlustratively, this involves
setting the MTU buffer table’s validity indicator to invalid
and communicating this status to the host computer. In this
embodiment of the invention, a release data flag in the
descriptor is set. The illustrated procedure then ends with
cnd state 1699.

If the MTU buffer is not full, then in state 1642 the next
address field of MTU buffer table 1008 is updated to indicate
the address or location (¢.g., cell boundary) at which to store
the pext packet. The illustrated procedure then ends with end
state 1699.

In statc 1650 (reached from state 1608), it has been
determined that the packet is a jumbo packet (¢.g., that it is
greater than 1522 bytes in size). In this embodiment of the
invention jumbo packets are stored in jumbo buffers and, if
splitting of jumbo packets is enabled (e.g., as determined in
state 1654 below), headers of jumbo packets are stored in a
header buffer. DMA engine 120 determines whether a valid
(e.g., active) jumbo buffer exists. Hlustratively, this deter-
mination is made by examining validity indicator 1136 of
jumbo buffer table 1010, which manages the active jumbo
buffer. If the validity indicator is set, then there is a jumbo
buffer ready to receive this packet and the procedure con-
tinues at state 1654. As explained above, a jumbo buffer
table may not be used in an embodiment of the invention in
which a jumbo buffer is used only once (e.g., to store just
one, or just part of one, jumbo packet).

Otherwise, in state 1652 a new jumbo buffer is prepared
or initialized for storing a non-re-assembleable packet that is
larger than 1522 bytes. This initialization process may
involve obtaining a free ring descriptor from a cache main-
tained by free ring manager 1012 and retrieving its reference
to an empty buffer (c.g., a buffer identifier). If the cache is

NOAC Ex. 1015 Page 304



US 6,483,804 B1

75

empty, new descriptors may be retrieved from the free
descriptor ring in host memory to replenish the cache.

‘When a new descriptor is obtained from the cache or from
the free descriptor ring, its buffer identifier (e.g., pointer,
address, index) is stored in a free buffer array (or other data
structure). The buffer’s initial address or other indication of
the first storage location in the buffer is placed in next
address ficld 1134 of jumbo buffer table 1010. Also, the
location of the buffer identifier within the free buffer array
is stored in jumbo buffer index 1132 and validity indicator
1136 is set to a valid state.

Then, in state 1654 DMA engine 120 determines whether
splitting of jumbo buffers is enabled. If enabled, the header
of a jumbo packet is stored in a header buffer while the
packet’s data is stored in one or more jumbo buffers. If not
enabled, the entire packet will be stored in one or more
jumbo buffers. Mlustratively, splitting of jumbo packets is
enabled or disabled according to the configuration of a
programmable indicator (e.g., flag, bit, register) that may be
set by software operating on the host computer (c.g., a
device driver). If splitting is enabled, the illustrated proce-
dure continues at state 1670. Otherwise, the procedure
continues with state 1656.

In state 1656, DMA enginc 120 determines whether the
packet will fit into one jumbo buffer. For example, in an
embodiment of the invention using eight kilobyte pages, if
the packet is larger than cight kilobytes a second jumbo
buffer will be necded to store the additional contents. If the
packet is too large, the illustrated procedure continues at
state 1662.

In statc 1658, the packet is copied or transferred (e.g., via
a DMA operation) into the current jumbo buffer, at the
location specified in the next address field 1134 of jumbo
buffer table 1010. When the packet is transferred intact like
this, padding may be added to align a header portion of the
packet with a sixteen-byte boundary. One skilled in the art
will appreciate that the next address field may not need to be
updated to account for this new packet because the jumbo
buffer will be released. In other words, in one embodiment
of the invention a jumbo buffer may be used just once (e.g.,
to store one packet or a portion of one packet).

In state 1660, a completion descriptor is written or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
jumbo buffer index (¢.g., the position within the free buffer
array of the buffer identifier for the jumbo buffer) and the
offset of the packet within the jumbo buffer are placed in the
descriptor. Hlustratively, these values are stored in data
index and data offset fields, respectively. The size of the
packet (e.g., the packet length) may be stored in a data size
field.

A header size field is cleared (c.g., a zero is stored) to
indicate that the header buffer was not used (c.g., the header
was not stored separately from the packet’s data). Because
there is no separate packet header, header index and header
offset fields are not used or are set to zero (e.g., the values
stored in their fields do not matter). A release header flag is
cleared and a release data flag is set to indicate that no more
data will be placed in this jumbo buffer (e.g., because it is
being released).

Also, the descriptor type field is changed to a value
indicating that DMA cngine 120 transferred a non-re-
assembleable packet into host memory. And, a predeter-
mined value (¢.g., zero) is stored in the descriptor’s own-
ership indicator ficld to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In an alternative cmbodiment,

10

15

20

25

30

3s

40

45

55

60

65

76

the descriptor may be released by issuing an interrupt or
other alert. In yet another embodiment, changing the
descriptor type ficld (e.g., to a non-zero value) may signal
the release of the descriptor. In one embodiment of the
invention the ownership indicator is not set until end state
1699 below. After state 1660, the illustrated procedure
resumes at state 1668.

In state 1662, a first portion of the packet is stored in the
present (e.g., valid) jumbo buffer, at the location identified in
the buffer’s next address ficld 1134. Then, because the full
packet will not fit into this buffer, in state 1664 a new jumbo
buffer is prepared and the remainder of the packet is stored
in that buffer.

In state 1666, a completion descriptor is written or con-
figured. The contents are similar to those described in state
1660 but this descriptor must reflect that two jumbo buffers
were used to store the packet.

Thus, the jumbo buffer index (e.g., the index, within the
free buffer array, of the buffer identifier that identifies the
header buffer) and the offset of the packet within the first
jumbo buffer are placed in the descriptor, as above. The size
of the packet (c.g., the packet length) is stored in a data size
field.

A header size ficld is cleared (c.g., 2 zero is stored) to
indicate that the header buffer was not used (e.g., the header
was not stored separately from the packet’s data). Because
there is no scparate packet header, header index and header
offsct fields are not used (¢.g., the values stored in their fields
do not matter).

A release header flag is cleared and a release data flag is
set to indicate that no more data will be placed in these
jumbo buffers (e.g., because they are being released).
Further, a split packet flag is set to reflect the use of a second
jumbo buffer, and the index (within the free buffer array) of
the buffer identifier for the second buffer is stored in a next
index field.

Further, the descriptor type ficld is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. Finally, a predeter-
mined value (c.g., zero) is stored in the descriptor’s own-
ership indicator ficld, or some other mechanism is
employed, to indicate that DMA engine 120 is releasing a
packet to the host computer and turning over ownership of
the descriptor. In one embodiment of the invention, the
descriptor is not released to the host computer until end state
1699 below.

In state 1668, the jumbo buffer entry or entries in jumbo
buffer table 1010 are invalidated (c.g., validity indicator
1136 is set to invalid) to ensure that they arc not used again.
In the procedure described above a jumbo packet was stored
in, at most, two jumbo buffers. In an alternative embodiment
of the invention a jumbo buffer may be stored across any
number of buffers. The descriptor(s) configured to report the
transfer of such a packet is/are constructed accordingly, as
will be obvious to one skilled in the art.

After state 1668, the illustrated procedure ends with end
state 1699.

In state 1670 (reached from state 1654), it has been
determined that the present jumbo packet will be split to
store the packet header in a header buffer and the packet data
in one or more jumbo buffers. Therefore, DMA cngine 120
(c-g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buffer. llustratively, this determi-
nation is made by examining validity indicator 1116 of
header buffer table 1006, which manages the active header
buffer. If the validity indicator is set, then there is a header
buffer ready to receive this packet and the procedure con-
tinues at state 1674.

NOAC Ex. 1015 Page 305



US 6,483,804 Bl

77

Otherwise, in state 1672 a new header buffer is prepared
or initialized for storing small packets and headers of other
packets. Ilustratively, this initialization process involves
obtaining a free ring descriptor from a cache maintained by
free ring manager 1012 and retrieving its reference to an
empty buffer. If the cache is empty, new descriptors may be
retricved from the free descriptor ring in host memory to
replenish the cache.

‘When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (c.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial address or some other
indication of the first storage location or cell in the buffer is
placed in next address field 1114 of header buffer table 1006.
Also, the index of the buffer identifier within the free buffer
array is stored in header buffer index 1112 and validity
indicator 1116 is set to a valid state.

In state 1674 the packet’s header is copied or transferred
(c.g., via a DMA operation) into the header buffer at the
address or location specified in the next address field of
header buffer table 1006. As described above, in one
embodiment of the invention pad bytes are inscrted before
the header in order to align the beginning of the packet’s
layer threc protocol (e.g., IP) header with a sixteen-byte
boundary. In addition, the packet’s header may be positioned
within a cell of predetermined size (e.g., 256 bytes) within
the buffer.

In state 1676, DMA cngine 120 determines whether the
packet’s data (¢.g., the TCP payload) will fit into one jumbo
buffer. If the packet is too large, the illustrated procedure
continucs at state 1682.

In state 1678, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the current jumbo buffer, at
the location specified in the next address field 1134 of jumbo
buffer table 1010. One skilled in the art will appreciate that
the next address field may not need to be updated to account
for this new packet because the jumbo buffer will be
released. In other words, in one embodiment of the invention
a jumbo buffer may be used just once (e.g., to store one
packet or a portion of onc packet).

In state 1680, a completion descriptor is written or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
header buffer index (c.g. the index of the header buffer’s
buffer identifier within the free buffer array) and offsct of the
packet’s header within the buffer are placed in the descriptor
in header index and header offset ficlds, respectively.
Hiustratively, this offset may serve to identify the first byte
of the header, the first pad byte before the header or the
location of the cell in which the header is stored. The jumbo
buffer index (e.g., the position or index within the free buffer
array of the buffer identifier that identifies the jumbo buffer)
and the offset of the first byte of the packet’s data within the
jumbo buffer are placed in data index and data offset fields,
respectively. Header size and data size fields are used to
store the size of the packet’s header (e.g., the offset of the
payload within the packet) and data (e.g., payload size),
respectively.

A rclease header flag is set in the descriptor if the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. A releasc data flag is also set,
because no more data will be placed in the jumbo buffer
(c.g., it is being released to the host computer).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable

15

20

25

30

45

50

60

65

78

packet into host memory. Also, a predetermined value (e.g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120 is relcasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not changed until end state 1699 below. In an alternative
embodiment, the descriptor may be released by issuing an
interrupt or other alert. In yet another alternative
embodiment, changing the descriptor type value may signal
the release of the descriptor.

Aftcr state 1680, the illustrated procedure proceeds to
state 1688.

In state 1682, a first portion of the packet’s data is stored
in the present (e.g., valid) jumbo buffer, at the location
identified in the buffer’s next address ficld 1134.

Because all of the packet’s data will not fit into this buffer,
in state 1684 a new jumbo buffer is prepared and the
remainder of the packet is stored in that buffer.

In state 1686, a completion descriptor is written or con-
figured. The contents are similar to those described in states
1680 but this descriptor must reflect that two jumbo buffers
were used to store the packet. The header buffer index (e.g.
the index of the frec buffer array clement containing the
header buffer’s buffer identifier) and offset (¢.g., the location
of this packet’s header within the header buffer) are placed
in the descriptor in header index and header offset ficlds,
respectively. The jumbo buffer index (e.g., the index, within
the free buffer array, of the buffer identifier that references
the jumbo buffer) and the offset of the first byte of the
packet’s data within the jumbo buffer are placed in data
index and data offset fields, respectively. Header size and
data size ficlds are used to store the size of the packet’s
header (c.g., as measured by the offset of the packet’s
payload from the start of the packet) and data (e.g., payload
size), respectively.

A relcase header flag is set in the descriptor if the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the relcase header flag may
be set (or cleared) at that time. A release data flag is also set,
because no more data will be placed in the jumbo buffer
(c.g., it is being released to the host computer). Further, a
split packet flag is set to indicate that a second jumbo buffer
was uscd, and the location (within the free buffer array or
other data structure) of the second buffer’s buffer identifier
is stored in a next index field

The descriptor type ficld is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(c.g., zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and tuming over ownership of the
descriptor. In one embodiment of the inveantion the owner-
ship indicator is not changed until end state 1699 below.

In state 1688, the jumbo buffer’s entry in jumbo buffer
table 1010 is invalidated (e.g., validity indicator 1136 is set
to invalid) to ensure that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buffers. In an alternative embodiment of the invention
a jumbo packet may be stored across any mimber of buffers.
The descriptor that is configured to report the transfer of
such a packet is constructed accordingly, as will be obvious
to one skilled in the art.

In state 1690, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used

NOAC Ex. 1015 Page 306



US 6,483,804 Bl

79

to keep track of entries placed into each new header buffer.
The buffer may be considered full when thirty-two entries
are stored.

If the buffer is full, in state 1692 the header buffer is
invalidated to ensure that it is not used again. Iilustratively,
this involves setting the header buffer table’s validity indi-
cator o invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
header flag in the descriptor is set. The illustrated procedure
then ends with end state 1699.

If the header buffer is not full, then in state 1694 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or
small packet. The illustrated procedure then ends with end
state 1699.

In end state 1699, a descriptor may be turned over to the
host computer by changing a value in the descriptor’s
descriptor type field (e.g., from one to zero), as described
above. [llustratively, the host computer (or software operat-
ing on the host computer) detects the change and under-
stands that DMA engine 120 is returning ownership of the
descriptor to the host computer.

A Mecthod of Transferring a Packet with Operation Code 3

FIGS. 17A-17C illustrate onc procedure in which DMA
engine 120 transfers a packet associated with operation code
3 to a host memory buffer. As reflected in TABLE 1,
operation code 3 may indicate that the packet is compatible
with a protocol that can be parsed by NIC 100 and that it
carries a final portion of data for its flow. No new flow is set
up, but a flow should already exist and is to be torn down.
The packet’s data is to be re-assembled with data from
previous flow packets. Because the packet is to be
re-assembled, the packet’s header should be stored in a
header buffer and its data in the fiow’s re-assembly buffer.
The flow’s active re-assembly buffer may be identified by
the flow’s entry in flow re-assembly buffer table 1004.

In state 1700, DMA engine 120 (e.g., DMA manager
1002) determines whether there is a valid (c.g., active)
header buffer. Itlustratively, this determination is made by
examining validity indicator 1116 of header buffer table
1006, which manages the active header buffer. If the validity
indicator is set (e.g., equal to one), then it is assumed that
there is a header buffer ready to receive this packet and the
procedure contimues at state 1704.

Otherwise, in state 1702 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. This initialization process may
involve obtaining a frec ring descriptor from a cache main-
tained by frce ring manager 1012 and retricving its buffer
identifier (c.g., a reference to an available memory buffer).
If the cache is empty, new descriptors may be retricved from
the free descriptor ring in host memory to replenish the
cache.

Hlustratively, when a new descriptor is obtained from the
cache or from the free descriptor ring, the buffer identifier
(e.g., pointer, address, index) contained in the descriptor is
stored in a free buffer array. The buffer’s initial address or
some other indication of the first storage location or cell in
the buffer is placed in next address ficld 1114 of header
buffer table 1006. Further, the index of the buffer identifier
within the free buffer array is stored in header buffer index
1112 and validity indicator 1116 is set to a valid state.

In state 1704 the packet’s header is copied or transferred
into the header buffer at the address or location specified in
the next address ficld of header buffer table 1006. As
described above, in one embodiment of the invention pad
bytes may be inserted before the beader in order to align the

10

15

20

25

30

35

50

55

6!

<n

80
beginning of the packet’s layer three protocol (e.g., IP)
header with a sixteen-byte boundary. In addition, the header
may be positioned within a cell of predetermined size (e.g.,
256 bytes) within the header buffer.

In the illustrated embodiment, operation code 3 indicates
that an existing flow is io be tom down (e.g., the flow
rc-assembly buffer is to be invalidated and released to the
host computer). Thus, in state 1706 it is determined whether
a flow rc-asscmbly buffer is valid (e.g., active) for this flow
by examining the validity indicator in the flow’s entry in
flow re-assembly buffer table 1004. Hiustratively, if the
indicator is valid then there should be an active buffer
storing data from one or more packets in this flow. If there
is a valid flow re-assembly buffer for this flow, the illustrated
procedure continues at state 1712. Otherwise, the procedure
proceeds to state 1708.

In statc 1708, a new flow re-assembly buffer is prepared
to store this packet’s data. Illustratively, a frec ring descrip-
tor is obtained from a cache maintained by free ring manager
1012 and its reference to an empty buffer is retrieved. If the
cache is empty, new descriptors may be retrieved from the
free descriptor ring in host memory to replenish the cache.

‘When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (c.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial address or other indication
of its first storage location is placed in next address ficld
1104 of the flow’s entry in flow re-assembly buffer table
1004. The flow’s entry in the re-assembly buffer table may
be recognized by its flow number. The location within the
free buffer array of the buffer identifier is stored in
re-assembly buffer index 1102, and validity indicator 1106 is
set to a valid state.

In state 1710, the packet’s data is copied or transferred
(cg., via a DMA operation) into the address or location
specified in the next address field of the flow’s entry in flow
re-assembly buffer table 1004.

In state 1712, a completion descriptor is written or con-
figured to release the flow’s re-assembly buffer and to
provide information 