
NOAC Ex. 1015 Page 1

 

   
 
                            

 
                   

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 17, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS
OF:

APPLICATION NUMBER: 09/608,237

FILING DATE: June 30, 2000

PATENT NUMBER: 6,651,099

ISSUE DATE: November 18, 2003

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

P. R. GRANT

I if Ii Certifying Officer

  
PART ({ ) OF (39 PART(S)

 

 
               

  
               

 



NOAC Ex. 1015 Page 2

  
  

 
 

  
 

 
  
 

 

  

   
  

 

-(w

SCANNEDLM }V}; i

:7 APPLICATIQN NO. X g 1

5 09/608237 ,g- z } 2
(D i3 ’ i E L
1% .

1.13.” S res , ' . .» -. , , y " 1 . 1
g > I :1 ’ . . . _ . .11.: P,”3 Q l. 2004 . '3 ( > .f .

Matt-"3d 3am:- appa‘ir‘atué For Infinity:I'I‘iII2: tra ffiI: 1r Weir . i . i z'
m . , < . . « 3 .1 0 '§ S '

i .’ ,

~ f , . ‘, J . . :1 ,-' I . .

' —0RIGINAI_ - 3 a 3
I c—Ass suectAss ii ‘ .

(I i .

I I , '
i , .V 1 .‘

‘I ‘V' . 3"; :

i I i". t
I , I i -. ,

‘I i \ "‘I , ' .

.g 1* I
;, TERMINAL 5'3
I . DISCLAIMER i j

3 1D The term of this patent 3 '
‘ subsequent to , - ' - _ , ‘. .

. has been disclaimed. ;. - ' , ,

3 ‘ D The term ofthis patentshaii 3 ‘ - ’ ,
not extend beyond the expiration date . ~ M.
of U.S Patent. No. . . . ‘ .~_ ~ 1

. 3 7_ MOUSTAFAM. MEKY ‘.
' PWB‘AMINEH 3 3 i

'7//3 , 3
(Primary Examlner) 3 _ _ ' . . . 2% I

D The terminal months of
this patent have been disclaimed.
 

(Legal inst ents Examiner)

WARNING.

The Information disclosed hereln may be restricted. Unauthorized disclosure may be prohibited by the Unlted States Code TItle 35, Sections 122 181 and 368
Possession outside the U.S. Patent a. Trademark OfficeIs restricted to authorized employees and contractors only.

335‘ 5534361 . _ FILED WITH |:| DISK (OFF) [:1 FiCHE [j CD-FtOM
- (Attached In packet on right Inside flap)

 
E?):0(CI Im "11 In 2: I!rm

 
 



NOAC Ex. 1015 Page 3

Xi'KZE-HWTFT‘

:"‘3

 

ofl

UNITED STATES PATENT AND TRADEMARK OFFICE
COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICEWAsHINGTDN, D.C. 2023i
www.uspto.gc~

lllllllllllllllIlllllllllllllllllllllllllllllllllllllllllllllll - CONFIRMATION NO, 9993
Bib Data Sheet   

 
 

 
 

 
  

 
 
 

 

FILING DATE ATTORNE’T ‘ 
 

 

 
 
 

 

  
  
  

  
 

 
 

 
SERIAL NUMBER 06/30/2000 GROUP ART UNIT DOCKET NO.

09/608,237 2755
RULE APPT-001-1 

[APPLICANTS

Russell 8. Dietz, San Jose, CA;

Joseph R. Maixner. Aptos, CA;
Andrew A. Koppenhaver. Littleton, CO;
William H. Bares, Germantown, TN;

Haig A. Sarkissian, San Antonio, TX;
James F. Torgerson, Andover, MN;

 

 

 
 
 

 
* CONTINUING DATA *************************

THIS APPLN C I S BENEFIT OF 60/141,903 06/30/1999

7w , MW
i». FOREIGN APP wRONS *iiitiiiiiiiiflifitii
 

 

  
  

Foreign Priority claimed D yes no

‘5 USC 119 (a-d) conditions D yesg no G Met after

met Allowance I a 1‘ Examiner‘s Signature I rials

 
 
 

STATE OR SHEETS

COUNTRY DRAWING

 
 

 

D All Fees

D 1.16 Fees ( Filing)

D 1 17 Fees ( Processing Ext. of
time) 

 
  

FILING FEE FEES: Authority has been given in Paper
RECEIVED No. 'to charge/credit DEPOSIT ACCOUNT

for following:
 

  
  

/
ID 1.18 Fees ( Issue)

In Other 5 I
['3 Credit I

 

   

NOAC EX. 1015 Page 3



NOAC Ex. 1015 Page 4

07 33/00 ,fiz

 

/L_L IN THE US. PATENT AND TRADEMARK OFFICE
:12?“ ' Application Transmittal Sheet

gar; 3
5%,. G Our Ref/Docket No.: APPT—OOl-l
0g '_
—~«;="—- m . .

gg‘ Box Patent Application r;
E'0 ASSISTANT COMMISSIONER FOR PATENTS ‘2'—
/:';'_ P! . CM:
1?‘=- o ' Washington, DC. 20231 ngo

“nag? »
Dear Assistant Commissioner: "lags

5435.53
Transmitted herewith is the patent application of Osage)

NO‘E
ROE

INVENTOR(s)/APPLICANT(s) "‘ 5

Last Name First Name, MI Residence (Cig and State or Country)

Dietz Russell S. San Jose, CA

Maixner Joseph R. Aptos, CA

Koppenhaver Andrew A. Fairfax, VA

Additional inventors are being named on separately numbened sheets attached hereto.
 

TITLE OF THE INVENTION 

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S) 
Dov Rosenfeld, Reg. No. 38,387

5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 6537992 '

 

£164::
"=1:
§:§in";
F5.

ENCLOSED APPLICATION PARTS (check all that apply)

w Included are:
3; X 66 sheet(s) of specification, claims, and abstract

2: X 18 sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson
Information Disclosure Statement. (
Form PTO-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a

copy of each references included in PTO-1449.

Declaration and Power of Attorney
An assignment of the invention to Apptitude, Inc.

A letter requesting recordation of the assignment.
An assignment Cover Sheet.*lxllllll

 Additional inventors are being named on separately numbered slacts attached hereto.
Return postcard. I

This application has:
a small entity status. A verified statement:

is enclosed

was already filed.

The fee has been calculated as shown in the following page.

 
 

  

  
 

 
 

‘Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express MailLabel: EI417961944US In an envelope addressed to Box Patent

_—,_’——-——-

Application, Assistant Commissioner for Patents, Washington, DC. 20231 0 E 1 01 5 P 4
Date: W 30 Sign . X. age

Name. ov Rosenfeld, Reg. No. 38687  



NOAC Ex. 1015 Page 5

SUBMISSION DOCUMENT

ATTORNEY DOCKET NO. APP'F-OOI-l

NO OF EXTRA RATE EXTRA CLAIM
TOTAL CLAIMS (35mm FEE

BASIC APPLICATION FEB: 35 690.00

TOTAL FEES PAYABLE: $1,470.00

Page 2

  
 
 
 

 

 
 

METHOD OF PAYMENT

A check1n the amount of____is attached for application fee and presentation of claims.

A checkin the amount of S 4000 is attached for recordation of the Assignment.

The Commissioneris hereby authorized to charge payment of the any missing filing or other fees

required for this filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

”2-:-
:.—: :

Respectfully Submitted,

   ?&L&o—©

Date Dov osenfeld , Reg. No. 38687'59]!1523'.'".1111.
Correspondence Address:

Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992 .

fl{£211£12le(1353:

NOAC EX. 1015 Page 5



NOAC Ex. 1015 Page 6

r-«1yaw

#1:?x',‘

8332’}!{FF}.if.“‘12:}!11331111U.“
I“

.53....

 
xiiiiCIIiu.(

5:7:
'12::

SUBMISSION DOCUMENT
ATTORNEY DOCKET NO. APPT-OOl-l

Page 3

ATTORNEY DOCKET NO. APPT-OO 1 -1

Application Cover Sheet (cont)

INVENTOR(s)/APPLICANT(S)

Last Name First Name, MI

Bares William H.

Sarkissian Haig A.

Torgerson James F.

Residence (City and Either State or Foreign

Country)

Germantown, TN

San Antonio, Texas

Andover, MN

NOAC EX. 1015 Page 6



NOAC Ex. 1015 Page 7

Our Ref/Docket No: APPT—OOl-l Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

  
 

Applicant(s): Dietz, et al.

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC 1N A NETWORK

Group Art Unit: unassigned

Examiner: unassigned
 
 

LETTER TO OFFICIAL DRAFTSPERSON

SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find _1_8 sheets of formal drawings to be made of record for the above

identified patent application submitted herewith.

Respectfully Submitted,

Date Dov Rosenfeld, Reg. No. 38687 .

Address for correspondence and attorney for applicant(s):

Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2

Oakland; CA 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

 
“a“:

2.53::

“ :3

aL:en,”var.WIN)?”A“'"I?"

  
Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label:Wm an envelope addressed to BOX Patent
Application,

I
‘ . ssistant Commissioner for Patents, Washington, DC 202

‘ Si '

a . - Name: ov osenféld, Reg. No. 3 87

  
  

   
  

 



NOAC Ex. 1015 Page 8

‘”Wmvw3.12m
Our Ref/Docket No.: APPT-OO l -l

«inf:'~‘,

”—351“:1x7,1(i
METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

Inventor(s):

DIETZ, Russell S.

San Jose, CA

MAlXNER, Joseph R.

Aptos, CA 
KOPPENHAVER, Andrew A.

Fairfax, VA2%we

BARES, William H.

Gerrnantown, TN

SARKISSIAN, Haig A.

San Antonio, Texas

TORGERSON, James F.

Andover, MN,~*mmwvmfmswmvmmv IIIIIIIIIII15”IIIII"

 
  
  

 

 

 

é

, \

5. Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the-United States Postal Service as Express Mail
if (Express Mail Label: EI417961944US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,

. Washington, DC. 20231 on.i   

 
 

ZgAC\gx 1015 Page 8Signed:

N : DOV Rosenfeld, Reg. No. 38687



NOAC Ex. 1015 Page 9

m»:x":C”:

 
10

15

20

25

30

 

1

METHOD AND APPARATUS FOR MONITORING

TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of US. Provisional Patent Application Serial No.:

60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference.

This application is related to the following US. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc., the

assignee of the present invention:

1 ‘\
US; Patent Application Serial No. CC\ /6°‘\ 1‘ for PROCESSING PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE, to inventors Koppenhaver, et al., filed June 30, 2000,
5 1;; // flmr/PW"

WWand incorporated herein by reference.

US. Patent Application Serial No. 0‘\ lécE- or RE—USING INFORMATION FROM

DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN, NETWORK

. . 56: ll Pam/hfMONITORING, to inventors Dietz, et al., filed June 30, 2000, Attorney-Agent

WWW-00%, and incorporated herein by reference.

US. Patent Application Serial No. °c\ “503Mor ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A

NETWORK MON OR, to in entors Sarkissian, et al., filed June 30, 2000,

S. HI Pi i732;
- , and incorporated herein by reference.

US. Patent Application Serial No. “I #8! 167for STATE PROCESSOR FOR

PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors
Sti / pend;

Sarkissian, et al., filed June 30, 2000,

and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real—time

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

NOAC EX. 1015 Page 9



NOAC Ex. 1015 Page 10

'‘zfliit]!“‘33!Ilfistill!
"a.“

if...

w
n.

. E
5:

 

10

15

20

25

30

  

2

BACKGROUND TO THE PRESENT INVENTION

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other internets—

an “internet” being any plurality of interconnected networks which forms a larger, single

network. With the growth of networks used as a collection of clients obtaining services

from one or more servers on the network, it is increasingly important to be able to

monitor the use of those services and to rate them accordingly. Such objective

information, for example, as which services (i.e., application programs) are being used,

who is using them, how often they have been accessed, and for how long, is very useful in

the maintenance and continued operation of these networks. It is especially important that

selected users be able to access a network remotely in order to generate reports on

network use in real time. Similarly, a need exists for a real-time network monitor that can

provide alarms notifying selected users of problems that may occur with the network or

site.

One prior art monitoring method uses log files. In this method, selected network

activities may be analyzed retrospectively by reviewing log files, which are maintained by

network servers and gateways. Log file monitors must access this data and analyze

(“mine”) its contents to determine statistics about the server or gateway. Several problems

exist with this method, however. First, log file information does not provide a map of

real-time usage; and secondly, log file mining does not supply complete information. This

method relies on logs maintained by numerous network devices and servers, which

requires that the information be subjected to refining and correlation. Also, sometimes

information is simply not available to any gateway or server in order to make a log file

entry.

One such case, for example, would be information concerning NetMeeting®

(Microsoft Corporation, Redmond, Washington) sessions in which two computers

connect directly on the network and the data is never seen by a server or a gateway.

Another disadvantage of creating log files is that the process requires data logging

features of network elements to be enabled, placing a substantial load on the device ,

which results in a subsequent decline in network performance. Additionally, log files can

grow rapidly, there is no standard means of storage for them, and they require a

NOAC EX. 1015 Page 10



NOAC Ex. 1015 Page 11

:3

.aw.,

ISSUE-EEK]"'fiffilflflfl'filflflfl

 

10

15

20

25

30

  

significant amount of maintenance.

Though Netflow® (Cisco Systems, Inc., San Jose, California), RMON2, and other

network monitors are available for the real-time monitoring of networks, they lack

visibility into application content and are typically limited to providing network layer

level information.

Pattem—matching parser techniques wherein a packet is parsed and pattern filters

are applied are also known, but these too are limited in how deep into the protocol stack

they can examine packets.

Some prior art packet monitors classify packets into connection flows. The term

“connection flow” is commonly used to describe all the packets involved with a single

connection. A conversational flow, on the other hand, is the sequence of packets that are

exchanged in any direction as a result of an activity—for instance, the running of an

application on a server as requested by a client. It is desirable to be able to identify and

classify conversational flows rather than only connection flows. The reason for this is that

some conversational flows involve more than one connection, and some even involve

more than one exchange of packets between a client and server. This is particularly true

when using client/server protocols such as RPC, DCOMP, and SAP, which enable a

service to be set up or defined prior to any use of that service.

An example of such a case is the SAP (Service Advertising Protocol), a NetWai'e

(Novell Systems, Provo, Utah) protocol used to identify the services and addresses of

servers attached to a network. In the initial exchange, a client might send a SAP request to

a server for print service. The server would then send a SAP reply that identifies a

particular address—for example, SAP#S—as the print service on that server. Such

responses might be used to update a table in a router, for instance, known as a Server

Information Table. A client who has inadvertently seen this reply or who has access to the

table (via the router that has the Service Information Table) would know that SAP#5 for

this particular server is a print service. Therefore, in order to print data on the server, such

a client would not need to make a request for a print service, but would simply send data

to be printed specifying SAP#S. Like the previous exchange, the transmission of data to

be printed also involves an exchange between a client and a server, but requires a second

connection and is therefore independent of the initial exchange. In order to eliminate the

NOAC EX. 1015 Page 11



NOAC Ex. 1015 Page 12

 
i
l.rs.

50s..

WW*wwwmm:

~WWWmmw‘:mWLmummmwwmmwmmww

.,:mrwwvw

.lllll‘liiill“353;“7.1%
  

 

10

15

20

25

30

 

4

possibility of disjointed conversational exchanges, it is desirable for a network packet

monitor to be able to “virtually concatenate”—that is, to link—the first exchange with the

second. If the clients were the same, the two packet exchanges would then be correctly

identified as being part of the same conversational flow.

Other protocols that may lead to disjointed flows, include RPC (Remote Procedure

3 Call); DCOM (Distributed Component Object Model), formerly called Network OLE

(Microsoft Corporation, Redmond, Washington); and CORBA (Common Object Request

Broker Architecture). RPC is a programming interface from Sun Microsystems (Palo

Alto, California) that allows one program to use the services of another program in a ——

remote machine. DCOM, Microsoft’s counterpart to CORBA, defines the remote

procedure call that allows those objects—objects are self—contained software modules—to

be run remotely over the network. And CORBA, a standard from the Object Management

Group (OMG) for communicating between distributed objects, provides a way to execute

programs (objects) written in different programming languages running on different

platforms regardless of where they reside in a network.

What is needed, therefore, is a network monitor that makes it possible to

continuously analyze all user sessions on a heavily trafficked network. Such a monitor

should enable non-intrusive, remote detection, characterization, analysis, and capture of

all information passing through any point on the network (i.e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e. g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e. g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context (e.g., options selected, service

delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

Considering the previous SAP example again, because one features of the

invention is to correctly identify the second exchange as being associated with a print

NOAC EX. 1015 Page 12



NOAC Ex. 1015 Page 13

'‘é‘lflmfiyrww
’~:31'11]”r

5.3.“wx4!
.1;

1‘?M91‘53)“1

"ml/r‘5‘\zk'avW;
m”rug“.»r,2

n’Htfl

may;.-.w,

m..‘.~1me‘‘‘mmpgauy

 
. «

10

15

20

25

30

  

5

service on that server, such exchange would even be recognized if the clients were not the

same. What distinguishes this invention from prior art network monitors is that it has the

ability to recognize disjointed flows as belonging to the same conversational flow.

The data value in monitoring network communications has been recognized by

many inventors. Chiu, et al., describe a method for collecting information at the session

level in a computer network in United States Patent 5,101,402, titled “APPARATUS

AND METHOD FOR REAL-TIME MONITORING OF NETWORK SESSIONS AND

A LOCAL AREA NETWORK” (the “402 patent”). The 402 patent specifies fixed

locations for particular types of packets to extract information to identify session of a

packet. For example, if a DECnet packet appears, the 402 patent looks at six specific

fields (at 6 locations) in the packet in order to identify the session of the packet. If, on the

other hand, an IP packet appears, a different set of six different locations is specified for

an IP packet. With the proliferation of protocols, clearly the specifying of all the possible

places to look to determine the session becomes more and more difficult. Likewise,

adding a new protocol or application is difficult. In the present invention, the locations

examined and the information extracted from any packet are adaptively determined from

information in the packet for the particular type of packet. There is no fixed definition of

what to look for and where to look in order to form an identifying signature. A monitor

implementation of the present invention, for example, adapts to handle differently IEEE

802.3 packet from the older Ethernet Type 2 (or Version 2) DIX (Digital-Intel-Xerox)

packet.

The 402 patent system is able to recognize up to the session layer. In the present

invention, the number of levels examined varies for any particular protocol. Furthermore,

the present invention is capable of examining up to whatever level is sufficient to

uniquely identify to a required level, even all the way to the application level (in the 081

model).

Other prior art systems also are known. Phael describes a network activity monitor

that processes only randomly selected packets in United States Patent 5,315,580, titled

“NETWORK MONITORING DEVICE AND SYSTEM.” Nakamura teaches a network

monitoring system in United States Patent 4,891,639, titled “MONITORING SYSTEM

OF NETWORK.” Ross, et al., teach a method and apparatus for analyzing and

monitoring network activity in United States Patent 5,247,517, titled “METHOD AND

NOAC EX. 1015 Page 13



NOAC Ex. 1015 Page 14

m”.

L..33W:MWIW55W..
1Afifl‘mW?
C311*"

peer:his?#1:;.x9

.anewwfirwarwa-nmmm*z‘W’W‘W
:6ea

=2

PE
‘5‘"

p

  

III}!913313211$31.37.‘5':leFill"’as“:'12-...

10

15

20

25

 
1“

l .3
$9

6

APPARATUS FOR ANALYSIS NETWORKS,” McCreery, et al., describe an Internet

activity monitor that decodes packet data at the Internet protocol level layer in United

States Patent 5,787,253, titled “APPARATUS AND METHOD OF ANALYZING

INTERNET ACTIVITY.” The McCreery method decodes IP—packets. It goes through the

decoding operations for each packet, and therefore uses the processing overhead for both

recognized and unrecognized flows. In a monitor implementation of the present invention,

a signature is built for every flow such that future packets of the flow are easily

recognized. When a new packet in the flow arrives, the recognition process can

commence from where it last left off, and a new signature built to recognize new packets

of the flow.

SUMMARY

In its various embodiments the present invention provides a network monitor that

can accomplish one or more of the following objects and advantages:

0 Recognize and classify all packets that are exchanges between a client and

server into respective client/server applications.

0 Recognize and classify at all protocol layer levels conversational flows that

pass in either direction at a point in a network.

0 Determine the connection and flow progress between clients and servers

according to the individual packets exchanged over a network.

0 Be used to help tune the performance of a network according to the current

mix of client/server applications requiring network resources.

0 Maintain statistics relevant to the mix of client/server applications using

network resources .

0 Report on the occurrences of specific sequences of packets used by particular

applications for client/server network conversational flows.

Other aspects of embodiments of the invention are:

0 Properly analyzing each of the packets exchanged between a client and a

server and maintaining information relevant to the current state of each of

these conversational flows.

NOAC EX. 1015 Page 14



NOAC Ex. 1015 Page 15

5.
4.

 
10

15

20

25

@  

7

0 Providing a flexible processing system that can be tailored or adapted as new

applications enter the client/server market.

0 Maintaining statistics relevant to the conversational flows in a client/sever

network as classified by an individual application.

0 Reporting a specific identifier, which may be used by other network-oriented

devices to identify the series of packets with a specific application for a

specific client/server network conversational flow.

In general, the embodiments-of the present invention overcome the problems and

disadvantages of the art.

As described herein, one embodiment analyzes each of the packets passing

through any point in the network in either direction, in order to derive the actual

application used to communicate between a client and a server. Note that there could be

several simultaneous and overlapping applications executing over the network that are

independent and asynchronous.

A monitor embodiment of the invention successfully classifies each of the

individual packets as they are seen on the network. The contents of the packets are parsed

and selected parts are assembled into a signature (also called a key) that may then be used

identify further packets of the same conversational flow, for example to further analyze

the flow and ultimately to recognize the application program. Thus the key is a function

of the selected parts, and in the preferred embodiment, the function is a concatenation of

the selected parts. The preferred embodiment forms and remembers the state of any

conversational flow, which is determined by the relationship between individual packets

and the entire conversational flow over the network. By remembering the state of a flow

in this way, the embodiment determines the context of the conversational flow, including

the application program it relates to and parameters such as the time, length of the

conversational flow, data rate, etc.

The monitor is flexible to adapt to future applications developed for client/server

networks. New protocols and protocol combinations may be incorporated by compiling

files written in a high—level protocol description language.

NOAC EX. 1015 Page 15



NOAC Ex. 1015 Page 16

  

 

5

£3
,3:

é:
5:

.. 10

g 15‘ 5

g 20
2%
r
a:
k

g 25
g

" 30

 

8

The monitor embodiment of the present invention is preferably implemented in

application-specific integrated circuits (ASIC) or field programmable gate arrays (FPGA).

In one embodiment, the monitor comprises a parser subsystem that forms a signature from

a packet. The monitor further comprises an analyzer subsystem that receives the signature

from the parser subsystem.

A packet acquisition device such as a media access controller (MAC) or a

segmentation and reassemble module is used to provide packets to the parser subsystem

of the monitor.

In a hardware implementation, the parsing subsystem comprises two sub-parts, the

pattern analysis and recognition engine (PRE), and an extraction engine (slicer). The PRE

interprets each packet, and in particular, interprets individual fields in each packet

according to a pattern database.

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree. Each

protocol is either a parent node or a terminal node. A parent node links a protocol to other

protocols (child protocols) that can be at higher layer levels. For example, An Ethernet

packet (the root node) may be an Ethertype packet—also called an Ethernet Type/Version

2 and a DIX (DIGITAL—Intel—Xerox packet)—or an IEEE 802.3 packet. Continuing with

the IEEE 802.3—type packet, one of the children nodes may be the IP protocol, and one of

the children of the IP protocol may be the TCP protocol.

The pattern database includes a description of the different headers of packets and

their contents, and how these relate to the different nodes in a tree. The PRE traverses the

tree as far as it can. If a node does not include a link to a deeper level, pattern matching is

declared complete. Note that protocols can be the children of several parents. If a unique

node was generated for each of the possible parent/child trees, the pattern database might

become excessively large. Instead, child nodes are shared among multiple parents, thus

compacting the pattern database.

Finally the PRE can be used on its own when only protocol recognition is

required.

For each protocol recognized, the slicer extracts important packet elements from

the packet. These form a signature (i. e., key) for the packet. The slicer also preferably

NOAC EX. 1015 Page 16



NOAC Ex. 1015 Page 17

1”]

"WW.ramp,Wmv

érwvl‘thfirn’Z'.Mfls‘fl’w‘,’t€‘“~$;¢"~'
‘(flflkrfl'Q.“i!

wmflmvm

mmmae
,3.«mam.
«aim.,’

2:{43%a

.2»?33';.ZSARH‘*Mfl'i

5—1. :

;:n:.
===§

ill
I:l \

 
  

,i“i

ll“:‘Eiillllllll‘"at...
HI}!Hill!llIill.;.

10

15

20

25

30

 a

9

generates a hash for rapidly identifying a flow that may have this signature from a

database of known flows.

The flow signature of the packet, the hash and at least some of the payload are

passed to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem

includes a unified flow key buffer (UFKB) for receiving parts of packets from the parser

subsystem and for storing signatures in process, a lookup/update engine (LUE) to lookup

a database of flow records for previously encountered conversational flows to determine

whether a signature is from an existing flow, a state processor (SP) for performing state

processing, a flow insertion and deletion engine (FIDE) for inserting new flows into the

database of flows, a memory for storing the database of flows, and a cache for speeding

up access to the memory containing the flow database. The LUE, SP, and FIDE are all

coupled to the UFKB, and to the cache.

The unified flow key bufferlthus contains the flow signature of the packet, the

hash and at least some of the payload for analysis in the analyzer subsystem. Many

operations can be performed to further elucidate the identity of the application program

content of the packet involved in the client/server conversational flow while a packet

signature exists in the unified flow signature buffer. In the particular hardware

embodiment of the analyzer subsystem several flows may be processed in parallel, and

multiple flow signatures from all the packets being analyzed in parallel may be held in the

one UFKB.

The first step in the packet analysis process of a packet from the parser subsystem

is to lookup the instance in the current database of known packet flow signatures. A

lookup/update engine (LUE) accomplishes this task using first the hash, and then the flow

signature. The search is carried out in the cache and if there is no flow with a matching

signature in the cache, the lookup engine attempts to retrieve the flow from the flow

database in the memory. The flow—entry for previously encountered flows preferably

includes state information, which is used in the state processor to execute any operations

defined for the state, and to determine the next state. A typical state operation may be to

search for one or more known reference strings in the payload of the packet stored in the

UFKB.

Once the lookup processing by the LUE has been completed a flag stating whether

NOAC EX. 1015 Page 17



NOAC Ex. 1015 Page 18

 
  

 
'71?“12'.“‘52“lL‘E‘MH

([33!HI]![Iii£132:I" 

10

15

20

25

3O

  

10

it is found or is new is set within the unified flow signature buffer structure for this packet

flow signature. For an existing flow, the flow-entry is updated by a calculator component

of the LUE that adds values to counters in the flow-entry database used to store one or

more statistical measures of the flow. The counters are used for determining network

usage metrics on the flow.

After the packet flow signature has been looked up and contents of the current

flow signature are in the database, a state processor can begin analyzing the packet

payload to further elucidate the identity of the application program component of this

packet. The exact operation of the state processor and functions performed by it will vary

depending on the current packet sequence in the stream of a conversational flow. The

state processor moves to the next logical operation stored from the previous packet seen

with this same flow signature. If any processing is required on this packet, the state

processor will execute instructions from a database of state instruction for this state until

there are either no more left or the instruction signifies processing.

In the preferred embodiment, the state processor functions are programmable to

provide for analyzing new application programs, and new sequences of packets and states

that can arise from using such application.

If during the lookup process for this particular packet flow signature, the flow is

required to be inserted into the active database, a flow insertion and deletion engine

(FIDE) is initiated. The state processor also may create new flow signatures and thus may

instruct the flow insertion and deletion engine to add a new flow to the database as a new

item.

In the preferred hardware embodiment, each of the LUE, state processor, and

FIDE operate independently from the other two engines.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

specific embodiment because such embodiments are provided only for the purposes of

explanation. The embodiments, in turn, are explained with the aid of the following

figures.

NOAC Ex. 1015 Page 18



NOAC Ex. 1015 Page 19

HillMlHilllliii:“55!!IE“‘"5.311.11232is?!iii-ill“Ill“.32".\l‘ith“I'll 
Wm,mvuvdram-I.Wm~

10

15

20

25

.1

o

11

FIG. 1 is a functional block diagram of a network embodiment of the present

invention in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their

formats that might be exchanged in starting, as an illustrative example, a conversational

flow between a client and server on a network being monitored and analyzed. A pair of

flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be generated

and used in the process of analyzing packic'éts and of recognizing the particular server

applications that produce the discrete application packet exchanges.

FIG. 3 is a functional block diagram of a process embodiment of the present

invention that can operate as the packet monitor shown in FIG. 1. This process may be

implemented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and optimization

process, which in one embodiment may be used to generate data for monitoring packets

according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part of

the analyzer in an embodiment of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including

the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

NOAC Ex. 1015 Page 19



NOAC Ex. 1015 Page 20

,..M,
i

l
E4

§I
E

 
10

15

20

25

 

12

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form pan of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process embodiment of the

present invention that can operate as the packet monitor shown in FIG. 1. This process1

may be implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of

the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of

FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17Blis an example of an IP packet, for example, of the Ethertype packet

shown in FIGs. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used to store elements of the

pattern, parse and extraction database used by the parser subsystem in accordance to one

embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment of

the invention.

NOAC EX. 1015 Page 20



NOAC Ex. 1015 Page 21

«awaivvm.%W-w~s'FM'wgq«whims»gs...‘Aw
ll(Ellll'L'll‘liillll‘ithll'fflll
 

 

i.4.

:i%'..‘ .'"”r..”PM.4

.ur'i,11:337.

llIIfll”If."11111115322155511112311

10

15

20

25

30

g %

13

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may

include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network 102

that communicates packets (e. g., IP datagrams) between various computers, for example

between the clients 104—107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shown in the interior of the

cloud. A monitor 108 examines the packets passing in either direction past its connection

point 121 and, according to one aspect of the invention, can elucidate what application

programs are associated with each packet. The monitor 108 is shown examining packets

(i. e., datagrams) between the network interface 116 of the server 110 and the network.

The monitor can also be placed at other points in the network, such as connection point

123 between the network 102 and the interface 118 of the client 104, or some other

location, as indicated schematically by connection point 125 somewhere in network 102.

Not shown is a network packet acquisition device at the location 123 on the network for

converting the physical information on the network into packets for input into monitor

108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communicatiOn, e.g., TCP/IP, etc. Any network activity—for example an

application program run by the client 104 (CLIENT 1) communicating with another

running on the server 110 (SERVER 2)—will produce an exchange of a sequence of

packets over network 102 that is characteristic of the respective programs and of the

network protocols. Such characteristics may not be completely revealing at the individual

packet level. It may require the analyzing of many packets by the monitor 108 to have

enough information needed to recognize particular application programs. The packets

may need to be parsed then analyzed in the context of various protocols, for example, the

NOAC EX. 1015 Page 21



NOAC Ex. 1015 Page 22

’'I'ZJ'fn" 8
@  

14

transport through the application session layer protocols for packets of a type conforming

to the ISO layered network model.
“SEWJW«13;»P5."1

Communication protocols are layered, which is also referred to as a protocol stack.

The ISO (International Standardization Organization) has defined a general model that

5 provides a framework for design of communication protocol layers. This model, shown in

table form below, serves as a basic reference for understanding the functionality of

existing communication protocols.

ISO MODEL

Application Telnet, NFS, Novell NCP, HTTP,

  
 

 

 

H.323

RPC, NETBIOS, SNMP, etc.
  

  

 
  
  

 
 
  

 

IP, Novell IPX, VIP, AppleTalk, etc.

Data Link; Network Interface Card (Hardware

Interface). MAC layer

5

4

3

2

Ethernet, Token Ring, Frame Relay,

ATM, T1 (Hardware Connection)

 

 

Different communication protocols employ different levels of the ISO model or

may use a layered model that is similar to but which does not exactly conform to the ISO

model. A protocol in a certain layer may not be visible to protocols employed at other

 
layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2—3).

In some communication arts, the term “frame” generally refers to encapsulated

15 data at 081 layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

NOAC EX. 1015 Page 22

ii
i

2*

E-
E

'3;
g

i



NOAC Ex. 1015 Page 23

Qa

 
" .78;at;1'1"?é‘iwwww-v.«cu

.riomrwnh-uwaw»;ham».4"“mw»rr~<fl*(.‘nuxhwwwfi
1355!!113321111le".333““‘51:H

lL'fH11:]!llIll£153.".'Ei-‘ll111211"'all:ill-232'.

 

10

15

20

25

30

  

15

“packet” generally refers to encapsulated data at 081 layer 3. In the TCP/IP world, the

term “datagram” is also used. In this specification, the term “packet” is intended to

encompass packets, datagrams, frames, and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for transmission

across a network. For example, a data packet typically includes an address destination

field, a length field, an error correcting code (ECC) field, or cyclic redundancy check

(CRC) field, as well as headers and footers to identify the beginning and end of the

packet. The terms “packet format” and “frame format,” also referred to as “cell format,”

are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packet carries the same information useful for recognizing all levels

of the protocol. For example, in a conversational flow associated with a particular

application, the application will cause the server to send a type-A packet, but so will

another. If, though, the particular application program always follows a type-A packet

with the sending of a type-B packet, and the other application program does not, then in

order to recognize packets of that application’s conversational flow, the monitor can be

available to recognize packets that match the type—B packet to associate with the type-A

packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

simultaneously also in partial completion of identifying other packet exchanges that are

parts of conversational flows associated with other applications. One aspect of monitor

108 is its ability to maintain the state of a flow. The state of a flow is an indication of all

previous events in the flow that lead to recognition of the content of all the protocol

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a

signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

In real-world uses of the monitor 108, the number of packets on the network 102

passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

and identify and maintain the state of the flows passing through the connection point. The

NOAC EX. 1015 Page 23



NOAC Ex. 1015 Page 24

 
'uznmmazzait‘i"'12:.

 
10

15

20

25

30

  

16

monitor 108 therefore masks out all the unimportant parts of each packet that will not

contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application

programs according to the packets that their executions produce, is a multi-step process

within the monitor 108. At a first level, for example, several application programs will all

produce a first kind of packet. A first “signature” is produced from selected parts of a

packet that will allow monitor 108 to identify efficiently any packets that belong to the

same flow. In some cases, that packet type may be sufficiently unique to enable the

monitor to identify the application that generated such a packet in the conversational flow.

The signature can then be used to efficiently identify all future packets generated in traffic

related to that application.

In other cases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated application

program. In such a case, a subsequent packet of a second type—but that potentially

belongs to the same conversational flow—is recognized by using the signature. At such a

second level, then, only a few of those application programs will have conversational

flows that can produce such a second packet type. At this level in the process of

classification, all application programs that are not in the set of those that lead to such a

sequence of packet types may be excluded in the process of classifying the conversational

flow that includes these two packets. Based on the known patterns for the protocol and for

the possible applications, a signature is produced that allows recognition of any future

packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to

proceed to a third level of analysis using the second level signature. For each packet,

therefore, the monitor parses the packet and generates a signature to determine if this

signature identified a previously encountered flow, or shall be used to recognize future

packets belonging to the same conversational flow . In real time, the packet is further

analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

flows associated with different applications. A new Signature for recognizing future

packets may also be generated. This process of analysis continues until the applications

NOAC EX. 1015 Page 24



NOAC Ex. 1015 Page 25

 
“L";115533.6752'.fill“12'.“‘53?““15301.2“
1125.11“1leHI]!21535:'12-}![1131"' 
 

10

15

20

25

30

a a

17

_are identified. The last generated signature may then be used to efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes

it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative

embodiments of the present invention capable of eavesdropping, once the monitor 108

has recognized the executing application programs passing through some point in the

network 102 (for example, because of execution of the applications by the client 105 or

server 110), the monitor sends a message to some general purpose processor on the

network that can input the same packets from the same location on the network, and the

processor then loads its own executable copy of the application program and uses it to

read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present

invention that can be implemented with computer hardware and/or software. The system

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet

acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,

for example in an attempt to determine its characteristics, e.g., all the protocol information

in a multilevel model, including what server application produced the packet.

The packet acquisition device is a common interface that converts the physical

signals and then decodes them into bits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what

operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing—parsing and extraction of selected portions—0f

packets to generate an identifying signature—accomplished by parser subsystem 301, and

(3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

information to parser subsystem 301 and to analyzer subsystem 303. The initialization

NOAC EX. 1015 Page 25



NOAC Ex. 1015 Page 26

 
 

 
"‘E".3E?“Will‘liiill“Eh[it

32:.as:

mm3333:5133

10

15

20

25

30

  

18

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the

network. For each protocol there are known to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and other fields are used in

monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304

that parses the packet and determines the protocol types and associated headers for each

protocol layer that exists in the packet 302. An extraction process 306 in parser subsystem

301 extracts characteristic portions (signature information) from the packet 302. Both the

pattern information for parsing and the related extraction operations, e.g., extraction

masks, are supplied from a parsing-pattem—structures and extraction—operations database

(parsing/extractions database) 308 filled by the compiler and optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and

states of all protocols that an occur at any layer, including how to interpret header

information, how to determine from the packet header information the protocols at the

next layer, and what information to extract for the purpose of identifying a flow, and

ultimately, applications and services. The layer selections database 338 describes the

particular layering handled by the monitor. That is, what protocols run on top of what

protocols at any layer level. Thus 336 and 338 combined describe how one would decode,

analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data

structures. The first is the set of parsing/extraction operations 308. The pattern structures

include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elements of a packet are to be extracted from

the packets based on the patterns that get matched. Thus, database 308 of

parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that indicate

a protocol used in the packet.

NOAC EX. 1015 Page 26



NOAC Ex. 1015 Page 27

WE"5h'3M _,

;’~e“

10

15

20

25

30

 

19

The other internal data structure that is built by compiler 310 is the set of state

patterns and processes 326. These are the different states and state transitions that occur in

different conversational flows, and the state operations that need to be performed (e.g.,

patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the

information it needs to begin processing packets. In an alternate embodiment, the contents

of one or more of databases 308 and 326 may be manually or otherwise generated. Note

that in some embodiments the layering selections information is inherent rather than

explicitly described. For example, since a PDL file for a protocol includes the child

protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input

into a packet buffer. The pattern recognition process 304 is carried out by a pattern

analysis and recognition (PAR) engine that analyzes and recognizes patterns in the

packets. In particular, the PAR locates the next protocol field in the header and

determines the length of the header, and may perform certain other tasks for certain types

of protocol headers. An example of this is type and length comparison to distinguish an

IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also

called a DIGITAL-Intel—Xerox (DIX) packet. The PAR also uses the pattern structures

and extraction operations database 308 to identify the next protocol and parameters

associated with that protocol that enables analysis of the next protocol layer. Once a

pattern or a set of patterns has been identified, it/they will be associated with a set of none

or more extraction operations. These extraction operations (in the form of commands and

associated parameters) are passed to the extraction process 306 implemented by an

extracting and information identifying (EII) engine that extracts selected parts of the

packet, including identifying information from the packet as required for recognizing this

packet as part of a flow. The extracted information is put in sequence and then processed

in block 312 to build a unique flow signature (also called a “key”) for this flow, A flow

signature depends on the protocols used in the packet. For some protocols, the extracted

components may include source and destination addresses. For example, Ethernet frames

have end-point addresses that are useful in building a better flow signature. Thus, the

signature typically includes the client and server address pairs. The signature is used to

NOAC EX. 1015 Page 27



NOAC Ex. 1015 Page 28

Humamm-fiflmmmt
Lil“$111121“

10

15

2O

25

3O

20

recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key includes. generating a

hash of the signature using a hash function. The purpose if using such a hash is

conventional—to spread flow-entries identified by the signature across a database for

efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.
,1

In one embodiment, the parser passes data frOm the packet—a parser record—that

includes the signature (i.e., selected portions of the packet), the hash, and the packet itself

to allow for any state processing that requires further data from the packet. An improved

embodiment of the parser subsystem might generate a parser record that has some

predefined structure and that includes the signature, the hash, some flags related to some

of the fields in the parser record, and parts of the packet’s payload that the parser

subsystem has determined might be required for further processing, e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation

of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal

data store of records of known flows that the system has already encountered, and decides

(in 316) whether or not this particular packet belongs to a known flow as indicated by the

presence of a flow-entry matching this flow in a database of known flows 324. A record

in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The

UFKB stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

stores the packet sequence number, and another is filled with state information in the form

of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already

exists is carried out by a lookup engine (LUE) that Obtains new UFKB records and uses

the hash in the UFKB record to lookup if there is a matching known flow. In the

particular embodiment, the database of known flows 324 is in an external memory. A

NOAC EX. 1015 Page 28

\L/



NOAC Ex. 1015 Page 29

 10

1:":11....“'.‘.".:\il'i‘h“It“
15

20

25

30

 

  

21

cache is associated with the database 324. A lookup by the LUE for a known record is

carried out by accessing the cache using the hash, and if the entry is not already present in

the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow-

signature, state information, and extracted information from the packet for updating

flows, and one or more statistical about the flow. Each entry completely describes a flow.

Database 324 is organized into bins that contain a number, denoted N, of flow-entries

(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.

Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser

subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the

database to allow for fast lookups of entries, allowing shallower buckets. The designer

selects the bucket depth N based on the amount of memory attached to the monitor, and

the number of bits of the hash data value used. For example, in one embodiment, each

flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a

16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be

more than adequate for the vast majority of cases. Note that another embodiment uses

flow—entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a

new flow, then a protocol and state identification process 318 further determines the state

and protocol. That is, process 318 determines the protocols and where in the state

sequence for a flow for this protocol’s this packet belongs. Identification process 318 uses

the extracted information and makes reference to the database 326 of state patterns and

processes. Process 318 is then followed by any state operations that need to be executed

on this packet by a state processor 328.

If the packet is found to havega matching flow—entry in the database 324 (e.g., in

the cache), then a process 320 determines, from the looked-up flow—entry, if more

classification by state processing of the flow signature is necessary. If not, a process 322

updates the flow—entry in the flow—entry database 324 (e.g., via the cache). Updating

includes updating one or more statistical measures stored in the flow—entry. In our

NOAC EX. 1015 Page 29



NOAC Ex. 1015 Page 30

any—W15“firm-01r‘4g‘mhw

”05:““V‘FJ”."'W“7WrvrrwmvwWWW"’‘W““’"‘‘ ~"
W

 

 
10

15

20

25

3O

 :3

22

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor

328 carries out any state Operations specified for the state of the flow and updates the state

to the next state according to a set of state instructions obtained form the state pattern and

processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze

all levels of the protocol stack, ultimately classifying the flows by application (level 7 in

the ISO model). It does this by proceeding from state-to-state based on predefined state

transition rules and state'operations as specified in state processor instruction database

326. A state transition rule is a rule typically containing a test followed by the next—state

to proceed to if the test result is true. An operation is an operation to be performed while

the state processor is in a particular state—for example, in order to evaluate a quantity

needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a packet,

and carrying out the operation or operations may leave one in a state that causes exiting

the system prior to completing the identification, but possibly knowing more about what

state and state processes are needed to execute next, i.e., when a next packet of this flow

is encountered. As an example, a state process (set of state operations) at a particular state

may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up

using the information from previously encountered flows, the network traffic monitor 300

provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub-flows that occur in server announcement type flows.

What may seem to prior art monitors to be some unassociated flow, may be recognized by

the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packet for this

particular flow—entry. A process 330 decides if more operations need to be performed for

this state. If so, the analyzer continues looping between block 330 and 328 applying

NOAC EX. 1015 Page 30



NOAC Ex. 1015 Page 31

15

20

n...~.~“.

30

t
My:

o a

23

additional state operations to this particular packet until all those operations are

completed—that is, there are no more operations for this packet in this state. A process

332 decides if there are further states to be analyzed for this type of flow according to the

state of the flow and the protocol, in order to fully characterize the flow. If not, the

conversational flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing by

sing the last protocol recognized by the parser as an offset into a jump table (jump

vector). The jump table finds the state processor instructions to use for that prom in the

state patterns and processes database 326. Most instructions test something in the unified

flow key buffer, or the flow—entry in the database of known flows 324, if the entry exists.

The state processor may have to test bits, do comparisons, add, or subtract to perform the

test. For example, a common operation carried out by the state processor is searching for

one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an

end state. If not at an end state, the flow—entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow—entry is updated in process 322.

The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically

maintains flow-entries, which in one aspect includes storing states. The monitor of FIG. 3

also generates characteristic parts of packets—the signatures—that can be used to

recognize flows. The flow—entries may be identified and accessed by their signatures.

Once a packet is identified to be from a known flow, the State of the flow is known and

this knowledge enables state transition analysis to be performed in real time for each

different protocol and application. In a complex analysis, state transitions are traversed as
NOAC Ex. 1015 Page 31



NOAC Ex. 1015 Page 32

 10

15

20

25

30

 

24

more and more packets are examined. Future packets that are part of the same

conversational flow have their state analysis continued from a previously achieved state.

When enough packets related to an application of interest have been processed, a final

recognition state is ultimately reached, i.e., a set of states has been traversed by state

analysis to completely characterize the conversational flow. The signature for that final

state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.

Once a particular set of state transitions has been traversed for the first time and ends in a

final state, a short—cut recognition pattern—a signature—can be generated that will key on

every new incoming packet that relates to the conversational flow. Checking a signature

involves a simple operation, allowing high packet rates to be successfully monitored on
the network.

In improved embodiments, several state analyzers are run in parallel so that a large

number of protocols and applications may be checked for. Every known protocol and

application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the conversational flow are

encountered, signatures are updated and the states of the set of state transitions for any

potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation process.

That is, part of the initialization generates the pattern structures and extraction operations

database 308 and the state instruction database 328. Such initialization can occur off-line

or from a central location.

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

NOAC EX. 1015 Page 32



NOAC Ex. 1015 Page 33

‘EJ

 
10

15

20

25

30

 

25

level 0). Each protocol is either a parent node or a terminal node. A parent node links a

protocol to other protocols (child protocols) that can be at higher layer levels. Thus a

protocol may have zero or more children. Ethernet packets, for example, have several

variants, each having a basic format that remains substantially the same. An Ethernet

packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet

Type/Version 2 and a DIX (DIGITAL-Intel—Xerox packet)——or an IEEE 803.2 packet.

Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP protocol,

and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i. e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now shows the header information for the next level (level-2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

packet that indicates the next layer level is a two-byte type field 1702 containing the child

recognition pattern for the next level. The remaining information 1704 is shown hatched

because it not relevant for this level. The list 1712 shows the possible children for an

Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 17B shows the structure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern recognition database, or PRD)

308 generated by compilation process 310, in one embodiment, is in the form of a three

dimensional structure that provides for rapidly searching packet headers for the next

protocol. FIG. 18A shows such a 3-D representation 1800 (which may be considered as

an indexed set of 2—D representations). A compressed form of the 3—D structure is

preferred.

An alternate embodiment of the data structure used in database 308 is illustrated in

FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid

searches to be performed by the pattern recognition process 304 by indexing locations in a

memory rather than performing address link computations. In this alternate embodiment,

NOAC EX. 1015 Page 33



NOAC Ex. 1015 Page 34

..1..If“:'~

 

fi5

‘:

4c

 

10

15

20

25

30

  

26

the PRD 308 includes two parts, a single protocol table 1850 (PT) which has an entry for

each protocol known for the monitor, and a series of Look Up Tables 1870 (LUT’s) that

are used to identify known protocols and their children. The protocol table includes the

parameters needed by the pattern analysis and recognition process 304 (implemented by

PRE 1006) to evaluate the header information in the packet that is associated with that

protocol, and parameters needed by extraction process 306 (implemented by slicer 1007)

to process the packet header. When there are children, the PT describes which bytes in the

header to evaluate to determine the child protocol. In particular, each PT entry contains

the header length, an offset to the child, a slicer command, and some flags.

The pattern matching is carried out by finding paiticular “child recognition codes”

in the header fields, and using these codes to index one or more of the LUT’s. Each LUT

entry has a node code that can have one of four values, indicating the protocol that has

been recognized, a code to indicate that the protocol has been partially recognized (more

LUT lookups are needed), a code to indicate that this is a terminal node, and a null node

to indicate a null entry. The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source—code information in the

form of protocol description files is shown as 402. In the particular embodiment, the high

level decoding descriptions includes a set of protocol description files 336, one for each

protocol, and a set of packet layer selections 338, which describes the particular layering

(sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and—extract

operations 406 is generated (404), and a set of packet state instructions and operations

407 is generated (405) in the form of instructions for the state processor that implements

state processing process 328. Data files for each type of application and protocol to be

recognized by the analyzer are downloaded from the pattern, parse, and extraction

database 406 into the memory systems of the parser and extraction engines. (See the

parsing process 500 description and FIG. 5; the extraction process 600 description and

FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each

type of application and protocol to be recognized by the analyzer are also downloaded

from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

NOAC EX. 1015 Page 34



NOAC Ex. 1015 Page 35

iand...331mm'U»:I)
m

"aw?we.
5’

 

10

15

20

25

30

  

27

Note that generating the packet parse and extraction operations builds and links

the three dimensional structure (one embodiment) or the or all the lookup tables for the

PRD.

Because of the large number of possible protocol trees and subtrees, the compiler

process 400 includes optimization that compares the trees and subtrees to see which

children share common parents. When implemented in the form of the LUT’s, this

process can generate a single LUT from a plurality of LUT’s. The optimization process

further includes a compaction process that reduces the space needed to store the data of

the PRD.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be

thought of as a set of 2-D structures each representing a protocol. To enable saving space

by using only one array per protocol which may have several parents, in one embodiment,

the pattern analysis subprocess keeps a “current header” pointer. Each location (offset)

index for each protocol 2—D array in the 3-D structure is a relative location starting with

the start of header for the particular protocol. Furthermore, each of the two-dimensional

arrays is sparse. The next step of the optimization, is checking all the 2-D arrays against

all the other 2-D arrays to find out which ones can share memory. Many of these 2-D

arrays are often sparsely populated in that they each have only a small number of valid

entries. So, a process of "folding" is next used to combine two or more 2-D arrays

together into one physical 2—D array without losing the identity of any of the original 2—D

arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur between any

2-D arrays irrespective of their location in the tree as long as certain conditions are met.

Multiple arrays may be combined into a single array as long as the individual entries do

not conflict with each other. A fold number is then used to associate each element with its

original array. A similar folding process is used for the set of LUTs 1850 in the alternate

embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting

at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next

(initially the first) packet component from the packet 302. The packet components are

extracted from each packet 302 one element at a time. A Check is made (504) to determine

NOAC EX. 1015 Page 35



NOAC Ex. 1015 Page 36

..L.)“Ill~.‘

10

15

2O

25

30

  

28

if the load-packet-component operation 503 succeeded, indicating that there was more in

the packet to process. If not, indicating all components have been loaded, the parser

subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to provide a set of patterns and

processes for that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determine if the fetch pattern node operation 505 completed

successfully, indicating there was a pattern node that loaded in 505. If not, step 511

moves to the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the component extracted in 503. A pattern match obtained in 507 (as

indicated by test 508) means the parser subsystem 301 has found a node in the parsing

elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test

508), the parser subsystem 301 moves (510) to the next pattern node from the pattern

database 308 and to step 505 to fetch the next node and process. Thus, there is an

“applying patterns” loop between 508 and 505. Once the parser subsystem 301 completes

all the patterns and has either matched or not, the parser subsystem 301 moves to the next

packet component (51 1).

Once all the packet components have been the loaded and processed from the

input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6

FIG. 6 is a flow chart for extracting the information from which to build the

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this

point parser subsystem 301 has a completed packet component and a pattern node

available in a buffer (602). Step 603 loads the packet component available from the

pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there

was indeed another packet component, the parser subsystem 301 fetches in 605 the

extraction and process elements received from the pattern node component in 602. If the

fetch was successful (test 606), indicating that there are extraction elements to apply, the

parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

NOAC EX. 1015 Page 36



NOAC Ex. 1015 Page 37

 10

15

20

25

30

  

29

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this

component, and if not, the parser subsystem 301 moves back to 603 to load the next

packet component at hand and repeats the process. If the answer is yes, then the parser

subsystem 301 moves to the next packet component ratchet. That new packet component

is then loaded in step 603. As the parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component if

there is more to extract, or to a different packet component if there is no more to extract.

The extraction process thus builds the signature, extracting more and more

components according to the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet component operation 603 fails (test

604), all the components have been extracted. The built signature is loaded into the

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301 loads the next

pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

hash elements that are found in the pattern node that is in the element database. In 706 the

resulting signature and the hash are packed. In 707 the parser subsystem 301 moves on to

the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left

(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the

form of a UFKB record which is similar to a parser record, but with one or more different

fields.

FIG. 8 is a flow diagram describing the operation of the lockup/update engine

(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with

the parser record that includes a signature, the hash and at least parts of the payload. In
NOAC EX. 1015 Page 37



NOAC Ex. 1015 Page 38

#2,

 

10

15

20

25

3O

  

30

802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the

lookup engine 314 computes a “record bin number” from the hash for a flow-entry. A bin

herein may have one or more “buckets” each containing a flow-entry. The preferred

embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the

hash. If the cache successfully returns with a bucket from the bin number, indicating there

are more buckets in the bin, the lockup/update engine compares (807) the current

signature (the UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry

signature). If the signatures match (test 808), that record (in the cache) is marked in step

810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the

UFKB-entry in 802 has a status of “found.” The “found” indication allows the state

processing 328 to begin processing this UFKB element. The preferred hardware

embodiment includes one or more state processors, and these can operate in parallel with

the lockup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a

calculator for every packet analyzed. The statistical operations may include one or more

of counting the packets associated with the flow; determining statistics related to the size

of packets of the flow; compiling statistics on differences between packets in each

direction, for example using timestamps; and determining statistical relationships of

timestamps of packets in the same direction. The statistical measures are kept in the flow-

entries. Other statistical measures also may be compiled. These statistics may be used

singly or in combination by a statistical processor component to analyze many different

aspects of the flow. This may include determining network usage metrics from the

statistical measures, for example to ascertain the network’s ability to transfer information

for this application. Such analysis provides for measuring the quality of service of a

conversation, measuring how well an application is performing in the network, measuring

network resources consumed by an application, and so forth.

To provide for such analyses, the lockup/update engine updates one or more

counters that are part of the flow-entry (in the cache) in step 812. The process exits at 813_

NOAC EX. 1015 Page 38



NOAC Ex. 1015 Page 39

 

31

In our embodiment, the counters include the total packets of the flow, the time, and a

differential time from the last timestarnp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again

looks up the cache for another bucket from that bin. The lookup/update engine thus

continues lookup up buckets of the bin until there is either a match in 808 or operation

804 is not successful (test 805), indicating that there are no more buckets in the bin and no

match was found.

If no match was found, the packet belongs to a new (not previously encountered)

flow. In 806 the system indicates that the record in the unified flow key buffer for this

. packet is new, and in 812, any statistical updating operations are performed for this packet

by updating the flow—entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFIGB-entry for the packet with a

“new” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash may be used that corresponds to a single flow-entry. In such an

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the

system are now described with reference to FIGS. 10 and 11. Note that while we are

describing a particular hardware implementation of the invention embodiment of FIG. 3,

it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be

implemented in software running on one or more general-purpose processors, or only

partly implemented in hardware. An implementation of the invention that can operate in

software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

NOAC EX. 1015 Page 39



NOAC Ex. 1015 Page 40

firm.“'."‘¢"«¢

10

15

20

25

30

 

32

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is

the extraction—operation database memory, in which the extraction instructions are stored.

Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3. Typically, the

system is initialized from a microprocessor (not shown) at which time these memories are

loaded through a host interface multiplexor and control register 1005 via the internal

buses 1003 and 1004. Note that the contents of 1001 and 1002 are preferably obtained by

compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface

controller 1022. The buffer 1008 and interface control 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packet start

signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packet starts loading into the buffer memory 1008, pattern recognition engine (PRE) 1006

carries out the operations on the input buffer memory described in block 304 of FIG. 3.

That is, protocol types and associated headers for each protocol layer that exist in the

packet are determined.

The PRE searches database 1001 and the packet in buffer 1008 in order to

recognize the protocols the packet contains. In one implementation, the database 1001

includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.

The first lookup table is always at address zero. The Pattern Recognition Engine uses a

base packet offset from a control register to start the comparison. It loads this value into a

current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a

terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a first

stage that checks the protocol type field to determine if it is an 802.3 packet and the field

should be treated as a length. If it is not a length, the protocol is checked in a second

NOAC EX. 1015 Page 40



NOAC Ex. 1015 Page 41

10

15

20

25

30

 
5»

®

33

stage. The first stage is the only protocol level that is not programmable. The second stage

has two full sixteen bit content addressable memories (CAMS) defined for future protocol

additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for the

extraction engine (also called a “slicer”) 1007. The recognized patterns and the commands

are sent to the extraction engine 1007 that extracts information from the packet to build

the parser record. Thus, the operations of the extraction engine are those carried out in

blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to slicer 1007 in

the form of extraction instruction pointers which tell the extraction engine 1007 where to

a find the instructions in the extraction operations database memory (i.e., slicer instruction

database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol

identifier and a process code to the extractor. The protocol identifier is added to the flow

signature and the process code is used to fetch the first instruction from the instruction

database 1002. Instructions include an operation code and usually source and destination

offsets as well as a length. The offsets and length are in bytes. A typical operation is the

MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains a

byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.

The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the

input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already

processed by PRE 1006 while more (i.e., later arriving) packet information is being

simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory 1010. Any additional payload from

NOAC EX. 1015 Page 41



NOAC Ex. 1015 Page 42

 

.; ,3, 5

. it

10

3‘7:
1“"
£51“
”A

5"
2

4 ’v 15

.

tr

:;~.

:8“gig

' at

20

30

 

 

34

the packet that is required for further analysis is also included. The parser output memory

1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once

all the information of a packet is in the parser output buffer memory 1010, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is

initialized prior to operation, and initialization includes loading the state processing

information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer

host interface controller 1118, which in turn has access to a cache system 1115. The cache

system has bi—directional access to and from the state processor of the system 1108. State

processor 1108 is responsible for initializing the state processor instruction database

memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

comprising packet signatures and payloads that come from the parser into the unified flow

key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFIGB

records. A UFKB record is essentially a parser record; the UFKB holds records of packets

that are to be processed or that are in process. Furthermore, the UFKB provides for one or

more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:

the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more

finite state machines (FSM's). There is bi-directional access between each of the finite

state machines and the unified flow key buffer 1103. The UFKB record includes a field

that stores the packet sequence number, and another that is filled with state information in

the form of a program counter for the state processor 1108 that implements state

processing 328. The status flags of the UFKB for any entry includes that the LUE is done

NOAC EX. 1015 Page 42



NOAC Ex. 1015 Page 43

fi,xx». 10

15

20

25

30

 

35

and that the LUE is transferring processing of the entry to the state processor. The LUE

done indicator is also used to indicate what the next entry is for the LUE. There also is

provided a flag to indicate that the state processor is done with the current flow and to

indicate What the next entry is for the state processor. There also is provided a flag to

indicate the state processor is transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been

processed by the LUE 1107 may be processed by the state processor 1 108, and a UFKB

record data may be processed by the flow insertion/deletion engine 1110 after being

processed by the state processor 1108 or only by the LUE. Whether or not a particular

engine has been applied to any unified flow key buffer entry is determined by status fields

set by the engines upon completion. In one embodiment, a status flag in the UFKB-entry

indicates Whether an entry is new or found. In other embodiments, the LUE issues a flag

to pass the entry to the state processor for processing, and the required operations for a

new record are included in the SP instructions.

Note that each UFKB—entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem

1115 that includes a caching engine. Cache 1115 is designed to have information flowing

in and out of it from five different points within the system: the three engines, external

memory via a unified memory controller (UMC) 1119 and a memory interface 1 123, and

a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host

interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor) can

thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content

addressable memory cells (CAMs) each including an address portion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.

The CAMs are arranged as a stack ordered from a t0p CAM to a bottom CAM. The

bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom

NOAC Ex. 1015 Page 43



NOAC Ex. 1015 Page 44

10

15

20

25

30

  

36

CAM are replaced by the flow-entry from the flow-entry database 324. This now becomes

the most recently used entry, so the contents of the bottom CAM are moved to the top

CAM and all CAM contents are shifted down. Thus, the cache is an associative cache

with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the operation

of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate that a “new”

UFKB—entry is available. The LUE uses the hash in the UFKB-entry to read a matching

bin of up to four buckets from the cache. The cache system attempts to obtain the

matching bin. If a matching bin is not in the cache, the cache 1115 makes the request to

the UMC 1119 to bring in a matching bin from the external memory.

When a flow—entry is found using the hash, the LUE 1107 looks at each bucket

and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow—entries from the

cache, a time stamp in set in the flow key of the UFKB record, a protocol identification

and state determination is made using a table that was loaded by compilation process 310

during initialization, the status for the record is set to indicate the LUE has processed the

record, and an indication is made that the UFKB-entry is ready to start state processing.

The identification and state determination generates a protocol identifier which in the

preferred embodiment is a “jump vector” for the state processor which is kept by the

UFKB for this UFKB-entry and used by the state processor to start state processing for

the particular protocol. For example, the jump vector jumps to the subroutine for

processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a

previously encountered flow, then a calculator component enters one or more statistical

measures stored in the flow—entry, including the timestamp. In addition, a time difference

from the last 'stored timestarnp may be stored, and a packet count may be updated. The

state of the flow is obtained from the flow—entry is examined by looking at the protocol

identifier stored in the flow-entry of database 324. If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

NOAC EX. 1015 Page 44



NOAC Ex. 1015 Page 45

I".A n“0,913:

5: .

.. $91

10

15

20

25

30

 

37

vector for the state processor to a subroutine to state processing the protocol, and no more

classification is indicated in the preferred embodiment by the jump vector being zero. If

the protocol identifier indicates more processing, then an indication is made that the

UFKB—entry is ready to start state processing and the status for the record is set to indicate

the LUE has processed the record.

The state processor 1108 processes information in the cache system according to a

UFKB-entry after the LUE has completed. State processor 1108 includes a state processor

program counter SPPC that generates the address in the state processor instruction

database 1109 loaded by compiler process 310 during initialization. It contains an

Instruction Pointer (SPIP) which generates the SPID address. The instruction pointer can

be incremented or loaded from 3 Jump Vector Multiplexor which facilitates conditional

branching. The SPIP can be loaded from one of three sources: (1) A protocol identifier

from the UFKB, (2) an immediate jump vector form the currently decoded instruction, or

(3) a value provided by the arithmetic logic unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and String

Compare functions necessary to implement the State Processor instructions. The main

blocks of the SPALU are: The A and B Registers, the Instruction Decode & State

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference

Search Register set, and a Compare block which compares two operands by exclusive-or-

ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state

operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is

NOAC EX. 1015 Page 45



NOAC Ex. 1015 Page 46

~;~.2.x...~w-«w‘w”

wvwrimm-47";a—-r“a!“
‘a,y-f‘w‘(”#4n

10

15

20

25

30

 

38

new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB—entry is used

to set the state processor’s instruction counter. The state processor 1108 starts the process

by using the last protocol recognized by the parser subsystem 301 as an offset into a jump

table. The jump table takes us to the instructions to use for that protocol. Most

instructions test something in the unified flow key buffer or the flow-entry if it exists. The

state processor 1108 may have to test bits, do comparisons, add or subtract to perform the

test.

The first state processor instruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performs the one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, a compare, etc.), so that many such instructions need to be

performed on each unified flow key buffer entry. One aspect of the state processor is its

ability to search for one or more (up to four) reference strings in the payload part of the

UFKB entry. This is implemented by a search engine component of the state processor

responsive to Special searching instructions.

In 1307, a check is made to determine if there are any more instructions to be

performed for the packet. If yes, then in 1308 the system sets the state processor

instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by the

SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet

has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is fully

determined. If indeed there are no more states to process for this flow, then in 1311 the

processor finalizes the processing. Some final states may need to put a state in place that

tells the system to remove a flow—for example, if a connection disappears from a lower

level connection identifier. In that case, in 1311, a flow removal state is set and saved in

NOAC EX. 1015 Page 46



NOAC Ex. 1015 Page 47

 

 

 

 

 

 

10

25

  

39

the flow-entry. The flow removal state may be a NOP (no-op) instruction which means

there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP or

otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in

1310 the system saves the stateyprocessor instruction pointer in the current flow-entry in

the current flow-entry. That will be the next operation that will be performed the next

time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer 1103

and the flow-entry in the cache. Once the state processor is done, a flag is set in the

UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be

inserted or deleted from the database of flows, control is then passed on to the flow

insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB-entry indicating that

the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the

flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are

grouped into bins of buckets by the hash value. The engine processes a UFKB—entry that

may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin

(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that

matches the hash of the UFKB, so this bin may already have been sought for the UFKB—

entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be

maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the

bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket

and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp that

NOAC EX. 1015 Page 47



NOAC Ex. 1015 Page 48

 

 

30

 

 
 

40

is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and

bucket record flow signature to the packet to verify that all the elements are in place to

complete the record. In 1211 the system marks the record bin and bucket as “in process”

and as “new” in the cache system (and hence in the external memory). In 1212, the initial

statistical measures for the flow-record are set in the cache system. This in the preferred

embodiment clears the set of counters used to maintain statistics, and may perform other

procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next

bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket,

the unified flow key buffer entry‘ for the packet is set as “drop,” indicating that the system

cannot process the particular packet because there are no buckets left in the system. The

process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow insertion and

deletion operations are completed for this UFKB-entry. This also lets the UFKB provide

the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow key buffer entry by all of

the engines required to access and manage a particular packet and its flow signature, the

unified flow key buffer entry is marked as “completed.” That element will then be used

by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow—entries are maintained in the external memory and some are maintained

in the cache 1115. The cache system 1115 is intelligent enough to access the flow

database and to understand the data structures that exists on the other side of memory

interface 1123. The lookup/update engine 1107 is able to request that the cache system

pull a particular flow or “buckets” of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate on

information found in the cache system once it is looked up by means of the lookup/update

engine request, and the flow insertion/deletion engine 1110 can create new entries in the

cache system if required based on information in the unified flow key buffer 1103. The

cache retrieves information as required from the memory through the memory interface

1123 and the unified memory controller 1119, and Updates information as required in the

NOAC EX. 1015 Page 48



NOAC Ex. 1015 Page 49

o

r,.:u: Ave{-9041'Fv«'0:

V.,a»M,“~.~.r..~'x nohm~;.9..np;r..m»..n.4m.~...n’¢4,..v
,5.

am...'v¥»~.$-%~w1.9....-.~‘:-

-c1315..UHL‘cfu‘A'

 

"a;

 

10

15

20

25

30

g:- a",

 

41

memory through the memory controller 1119.

There are several interfaces to components of the system external to the module of

FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

processing system such as a microprocessor or a multiplexor (MUX) system.

Consequently, one can connect the overall traffic classification system of FIGS. 11 and 12

into some other processing system to manage the classification system and to extract data

gathered by the system.

The memory interface 1123 is—designed to interface to any of a variety of memory

systems that one may want to use to store the flow-entries. One can use different types of

memory systems like regular dynamic random access memory (DRAM), synchronous

DRAM, synchronous graphic memory (SGRAM), static random access memory (SRAM),

and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012——a general interface that works in tandem with the signals of the input buffer

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host interface

multiplexor and control registers 1005. This enables the parsing system to be managed by

an external system, for example a microprocessor or another kind of external logic, and

enables the external system to program and otherwise control the parser.

The preferred embodiment of this aspect of the invention is described in a

hardware description language (HDL) such as VHDL or Verilog. It is designed and

created in an HDL so that it may be used as a single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposes related

to creating and analyzing traffic within a network. Verilog or other HDL‘implementation

is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in FIGS. 10

and 11 are implemented in a set of six field programmable logic arrays (FPGA’s). The

boundaries of these FPGA’s are as follows. The parsing subsystem of FIG. 10 is

implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts

NOAC EX. 1015 Page 49



NOAC Ex. 1015 Page 50

*’WW1‘-3a.:.«,«.,x.<..».a,.,n.
'2251‘-

i
if‘K

 

 

 

 
l1

@

42

of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of

1005. Referring to FIG. 11, the unified look—up buffer 1103 is implemented as a single

FPGA. State processor 1108 and part of state processor instruction database memory

1109 is another FPGA. Portions of the state processor instruction database memory 1109

are maintained in external SRAM’s. The lockup/update engine 1107 and the flow

insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes the cache

system 1115, the unified memory control 1119, and the analyzer host interface and

control 1 118.

Note that one can implement the system as one or more VSLI devices, rather than

as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is

anticipated that in the future device densities will continue to increase, so that the

complete system may eventually formta sub-unit (a “core”) of a larger single chip unit.

Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets

from a connection point 121 on network 102 so that all packets passing point 121 in either

direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 301,

which determines flow signatures, and analyzer sub-system 303 that analyzes the flow

signature of each packet. A memory 324 is used to store the database of flows that are

determined and updated by monitor 300. A host computer 1504, which might be any

processor, for example, a general-purpose computer, is used to analyze the flows in

memory 324. As is conventional, host computer 1504 includes a memory, say RAM,

shown as host memory 1506. In addition, the host might contain a disk. In one

application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an Optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one

would, for example, implement an RMON probe, where a network interface card is used

to send RMON information to the network. Commercial SNMP implementations also are

available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

NOAC EX. 1015 Page 50



NOAC Ex. 1015 Page 51

 
 guy:

43

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly“I

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state

analysis for packet exchanges that are cormnonly referred to as “server announcement”

type exchanges. Server announcement is a process used to ease cormnunications between

a server with multiple applications that can all be simultaneously accessed from multiple

clients. Many applications use a server announcement process as a means of multiplexing

a single port or socket into many applications and services. With this type of exchange,

messages are sent on the network, in either a broadcast or multicast approach, to

announce a server and application, and all stations in the network may receive and decode

these messages. The messages enable the stations to derive the appropriate connection

point for communicating that particular application with the particular server. Using the

server announcement method, a particular application communicates using a service

channel, in the form of a TCP or UDP socket or port as in the IP protocol suite, or using a

SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out “in-stream analysis” of packet

exchanges. The “in-stream analysis” method is used either as a primary or secondary

recognition process. As a primary process, in-stream analysis assists in extracting detailed

information which will be used to further recognize both the specific application and

application component. A good example of in-strearn analysis is any Web-based

application. For example, the commonly used PointCast Web information application can

be recognized using this process; during the initial connection between a PointCast server

and client, specific key tokens exist in the data exchange that will result in a signature

being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server

announcement process. In many cases in—stream analysis will augment other recognition

Processes. An example of combining in-stream analysis with server announcement can be

found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires

NOAC EX. 1015 Page 51



NOAC Ex. 1015 Page 52

 
 

 

 

 
 
 

 

 / ‘3 tto

44

an initial connection to a predefined socket or port number. This method of

communication is used in a variety of transport layer protocols. It is most commonly seen

in the TCP and UDP tranSport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

port to exchange the remainder of the data between the client and the server. The server

then replies to the request of the client using this newly created port. The original port

used by the client to connect to the server will never be used again during this data

exchange.

One example of session tracking is TFTP (Trivial File Transfer Protocol), a

version of the TCP/IP FTP protocol that has no directory or password capability. During

the client/server exchange process of TFI‘P, a specific port (port number 69) is always

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDP port 69. Once the server receives this request, a

new port number is created on the server. The server then replies to the client using the

new port. In this example, it is clear that in order to recognize TFTP; network monitor

300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for monitoring

the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular

connections in the network. Connection-oriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCP transport

protocol that provides a reliable means of sending information between a client and a

server. When a data exchange is initiated, a TCP request for synchronization message is

sent. This message contains a specific sequence number that is used to track an

acknowledgement from the server. Once the server has acknowledged the synchronization

request, data may be exchanged between the client and the server. When communication

is no longer required, the client sends a finish or complete message to the server, and the

server acknowledges this finish request with a reply containing the sequence numbers

from the request. The states of such a connection-oriented exchange relate to the various

types of connection and maintenance messages.

NOAC EX. 1015 Page 52



NOAC Ex. 1015 Page 53

-tmx4u¢m>~u2az~we...,
652“».x...

10

15

”i:

3.m...33...

~".‘'“I“?"."L"‘Q““:fireman-m‘and“ I~“'KI.‘'‘ .
 

 
20

25

a: I ‘2'
.3 RT:

45

Server Announcement Example

The individual methods of server announcement protocols vary. However, the

basic underlying process remains similar. A typical server announcement message is sent

to one or more clients in a network. This type of announcement message has specific

content, which, in another aspect of the invention, is salvaged and maintained in the

database of flow-entries in the system. Because the announcement is sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto, California)

of the Remote Procedure Call (RPC), a programming interface that allows one program to

use the services of another on a remote machine. A Sun—RFC example is now used to

explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must establish

a connection, for which the RFC protocol can be used.

Each server running the Sun-RFC protocol must maintain a process and database

called the port Mapper. The port Mapper creates a direct association between a Sun-RPC

program or application and a TCP or UDP socket or port (for TCP or UDP

implementations). An application or program number is a 32-bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a Sun—RPC server can present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1) making

a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined

UDP or TCP socket. Once the port Mapper process on the sun RPC server receives the

request, the specific mapping is returned in a directed reply to the client.

NOAC EX. 1015 Page 53



NOAC Ex. 1015 Page 54

 
 

 

 

5

f‘ 10

1 15

~ g?. 3*”

53‘

20

a?

25

30

 

 

 a

46

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified, and

thus will use the TCP protocol for its reply.

3. The server 110 sends a TCP packet to port number 111, with an RPC Bind

Lookup Reply. The reply contains the specific port number (e.g., port number

‘port’) on which future transactions will be accepted for the specific RPC

program identifier (e.g., Program ‘program’) and the protocol (UDP or TCP)

for use.

It is desired that from now on every time that port number ‘port’ is used, the

packet is associated with the application program ‘program’ until the number ‘port’ no

longer is to be associated with the program ‘program’. Network monitor 300 by creating a

flow-entry and a signature includes a mechanism for remembering the exchange so that

future packets that use the port number ‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways

that a particular program—say ‘program’—might be associated with a particular port

number, for example number ‘port’. One is by a broadcast announcement of a particular

association between an application service and a port number, called a Sun RPC

portMapper Announcement. Another, is when some server—say the same SERVER 2-—

replies to some client—say CLIENT 1——requesting some portMapper assignment with a

RPC portMapper Reply. Some other client—say CLIENT 2—might inadvertently see this

request, and thus know that for this particular server, SERVER 2, port number ‘port’ is

associated with the application service ‘program’. It is desirable for the network monitor

300 to be able to associate any packets to SERVER 2 using port number ‘port’ with the

application program ‘program’.

NOAC EX. 1015 Page 54



NOAC Ex. 1015 Page 55

 

.. ~.
w;

.’ .

.. . 5w

.. .
a
4‘3'

i2

’3,..
x§, t

:ii.

.3? 10‘,
“‘5‘.< 3‘

; ..
.

..
UV"
4

2::
t

}

, 15fi2 ,
, . .
‘ .;

M g;

; r.“1.2 H.

3‘

a"
1

N: I
. j,

w 20
. ‘ I;

’2 _ x

,9".

v4 J
, v1

.9 (
1:?

t

t";

’ 53;:

i . ..
.."
.: ’ ='

w s
. :3», ,
(3,3
f ~ A.' (it

. .ss' 30

 
 

  
47

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e. g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

FIG. 1) via the server’s interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow 900

starts with a step 910 that a Remote Procedure Call bind lookup request is issued by client

106 and ends with the server state creation step 904. Such RPC bind lookup request

includes values for the ‘program,’ ‘version,’ and ‘protocol’ to use, e.g., TCP or UDP. The

process for Sun RPC analysis in the network monitor 300 includes the following aspects. :

0 Process 909: Extract the ‘program,’ ‘version,’ and ‘protocol’ (UDP or TCP).

Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

0 Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If

value is portMapper, save paired socket (i.e., dest for destination address, src

for source address). Decode ports and mapping, save ports with socket/addr

key. There may be more than one pairing per mapper packet. Form a signature

(e.g., a key). A flow-entry is created in database 324. The saving of the request

is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lookup

the request (905). A new signature (i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow-

entry database. That signature now may be used to identify packets associated with the

861V61'.

The server state creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol can

announce that it is able to provide a particular application service. Embodiments of the

present invention preferably can analyze when an exchange occurs between a client and a

server, and also can track those stations that have received the announcement of a service

in the network.

NOAC Ex. 1015 Page 55



NOAC Ex. 1015 Page 56

fkfigy.V“

.a»..V...“~”u,. a:fitmkédlfi».www.-...M..

348...}

f.’

”L (A

‘ a
p,

:3.

 

10

15

20

25

30

 

48

The RPC Announcement portMapper announcement 902 is a broadcast. Such

causes various clients to execute a similar set of Operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapper step 901 could

be in reply to a portMapper request, and is also broadcast. It includes all the service

parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206-209 are exchanged, e. g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodiment of the present

invention might generate a pair of flow signatures, “signature-l” 210 and “signature-2”

212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds

to such a request sent from CLIENT 3 to SERVER 2. This packet contains important

information that is used in building a signature according to an aspect of the invention. A

source and destination network address occupy the first two fields of each packet, and

according to the patterns in pattern database 308, the flow signature (shown as KEYl 230

in FIG. 2) will also contain these two fields, so the parser subsystem 301 will include

these two fields in signature KEY l (230). Note that in FIG. 2, if an address identifies the

client 106 (shown also as 202), the label used in the drawing is “C1”. If such address

identifies the server 110 (shown also as server 204), the label used in the drawing is “S1”.

The first two fields 214 and 215 in packet 206 are “S1” and C1” because packet 206 is

provided from the server 110 and is destined for the client 106. Suppose for this example,

“S1” is an address numerically less than address “C1”. A third field “pl” 216 identifies the

particular protocol being used, e. g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate

port numbers that are used. The conversation direction determines where the port number

field is. The diagonal pattern in field 217 is used to identify a source-port pattern, and the

hash pattern in field 218 is used to identify the destination-port pattern. The order

indicates the client-server message direction. A Sixth field denoted “11” 219 is an element

NOAC EX. 1015 Page 56



NOAC Ex. 1015 Page 57

~‘.~3‘._’ «WhatA43»....53-u...x.
é
; 5..

:3;If
4*
tr...

é;.f

g 10
s is

a

X

.

. 15

.11“
xx
?‘2.
a

a
.m

J
. V.i .

”i

A I. .

t" 20

A
.g .’ .

.f ‘
tr
.

r

,.
‘ .7

4 T2?

“.2. 25.»
,2 .

§
..«

fl: :«2.3 .
J . ,

.3 .5.” 30
a.

1"“
s 5".

3““

  

49

that is being requested by the client from the server. A seventh field denoted “51a” 220 is

the service requested by the client from server 110. The following eighth field “QA” 221

(for question mark) indicates that the client 106 wants to know what to use to access

application “sla”. A tenth field “QP” 223 is used to indicate that the client wants the

server to indicate what protocol to use for the particular application.

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well—defined format, as do all the

packets, and is transmitted to the server 110 on a well—known service connection identifier

(port 111 indicating Sun RPC).

Packet 207 is the‘first sent in reply to the client 106 from the server. It is the

RFC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224-233. The destination and source addresses are

carried in fields 224 and 225, e. g., indicated “C1” and “SI”, respectively. Notice the order

is now reversed, since the client-server message direction is from the server 110 to the

client 106. The protocol “p1” is used as indicated in field 226. The request “i1” is in field

229. Values have been filled in for the application port number, e.g., in field 233 and

protocol ““p2”” in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a source

address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the particular embodiment, the numerically

lower address is always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume “Sl”<“C1”, the order is address “SI”

followed by client address “C1”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p1”. The next

field used for the signature is field 243, which contains the destination source port number

shown as a crosshatched pattern from the field 218 of the packet 206. This pattern will be

NOAC EX. 1015 Page 57



NOAC Ex. 1015 Page 58

5

10

:i z1‘

53' 5

3" i

:f’. 15

K) 1

2

”

w

3. 20

if.34:
p

‘3’ 255
.g

i

.4,

30

~*,"r, “53“}: 'z“7;;5.;

 

50

recognized in the payload of packets to derive how this packet or sequence of packets

exists as a flow. In practice, these may be TCP port numbers, or a combination of TCP

port numbers. In the case of the Sun RPC example, the crosshatch represents a set of port

numbers of UDS for p1 that will be used to recognize this flow (e.g., port 111). Port 111

indicates this is Sun RPC. Some applications, such as the Sun RPC Bind Lookups, are

directly determinable (“known”) at the parser level. So in this case, the signature KEY-l

points to a known application denoted “a1” (Sun RPC Bind Lookup), and a next—state that

the state processor should proceed to for more complex recognition jobs, denoted as state

“stD” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY-1. Hence, when the signature enters

the analyzer subsystem 303 from the parser subsystem 301, the complete flow-entry is

obtained, and in this flow-entry indicates state “stD”. The operations for state “stD” in the

state processor instruction database 326 instructs the state processor to build and store a

new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the

state processor also includes the destination and a source addresses 250 and 251,

respectively, for server “SI” followed by (the numerically higher address) client “C1”. A

protocol field 252 defines the protocol to be used, e.g., “p2” which is obtained from the

reply packet. A field 253 contains a recognition pattern also obtained from the reply

packet. In this case, the application is Sun RFC, and field 254 indicates this application

“a2”. A next-state field 255 defines the next state that the state processor should proceed

to for more complex recognition jobs, e.g., a state “stl”. In this particular example, this is

a final state. Thus, KEY-2 may now be used to recognize packets that are in any way

associated with the application “a Two such packets 208 and 209 are shown, one in

each direction. They use the particular application service requested in the original Bind

Lookup Request, and each will be recognized because the signature KEY-2 will be built

in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “SI” followed by client “C1”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,

NOAC EX. 1015 Page 58



NOAC Ex. 1015 Page 59

 
  

51

large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e. g., represented

by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address 31 and C1, in a pair of fields 260 and 261. A field

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

Some network-server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the packet.

Others require a sequence of state transitions to occur in order to match a known and

predefined climb from state—to-state.

Thus the flow signature for the recognition of application “a2” is automatically set

up by predefining what packet-exchange sequences occur for this example when a

relatively simple Sun Microsystems Remote Procedure Call bind lockup request

instruction executes. More complicated exchanges than this may generate more than two

flow signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a “final” resting state such as “stl”

in field 255 is reached. All these are used to build the final set of flow signatures for

recognizing a particular application in the future.

Embodiments of the present invention automatically generate flow signatures with

the necessary recognition patterns and state transition climb procedure. Such comes from

analyzing packets according to parsing rules, and also generating state transitions to

search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Note that one in the art will understand that computer networks are used to

connect many different types of devices, including network appliances such as telephones,

“Internet” radios, pagers, and so forth. The term computer as used herein encompasses all

such devices and a computer network as used herein includes networks of such

computers.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted as

NOAC EX. 1015 Page 59



NOAC Ex. 1015 Page 60

. an

"3 ‘ 711%

52

limiting. Various alterations and modifications will no doubt become apparent to those or

i * ordinary skill in the an after having read the above disclosure. Accordingly, it is intended

,; that the claims be interpreted as covering all alterations and modifications as fall within

:3 _ ‘ the true spirit and scope of the present invention.J

xa,‘;,:7(,i
>mtww.m‘mw‘J.

k
w:<

“12:44?"n"
‘3»?

“v.“r“

’u'gvs

"2‘w.".:fv

v.»-,«w.5‘.H‘c»A.,,:1.”i‘';~ $aém~4~wim£amwant-We:- v.z* (A’

‘ NOAC EX. 1015 Page 60

 



NOAC Ex. 1015 Page 61

3 ,~,

.v4;
“r:

4r 53

CLAIMS

What is claimed is:

‘ Z; 1. A packet monitor for examining packets passing through a connection point on a

computer network in real—time, the packets provided to the packet monitor via a

5 packet acquisition device connected to the connection point, the packet monitor

5 ) comprising:

(a) a packet-buffer memory configured to accept a packet from the packet

acquisition device;at.5.“.5“...“wkaa:
(b) a parsing/extraction operations memory configured to store a database of

. 10 parsing/extraction operations that includes information describing how to

“ determine at least one of the protocols used in a packet from data in the

packet;

5 ‘3 (c) a parser subsystem coupled to the packet buffer and to the

‘ pattern/extraction operations memory, the parser subsystem configured to

E 15 examine the packet accepted by the buffer, extract selected portions of the

accepted packet, and form a function of the selected portions sufficient to

,4" identify that the accepted packet is part of a conversational flow-sequence;

(d) a memory storing a flow-entry database including a plurality of flow—

. g . entries for conversational flows encountered by the monitor;

20 (e) a lookup engine connected to the parser subsystem and to the flow-entry

database, and configured to determine using at least some of the selected

portions of the accepted packet if there is an entry in the flow-entry database

for the conversational flow sequence of the accepted packet; 
NOAC EX. 1015 Page 61

 



NOAC Ex. 1015 Page 62

  

54

(f) a state patterns/operations memory configured to store a set of predefined

state transition patterns and state operations such that traversing a particular

transition pattern as a result of a particular conversational flow-sequence of

packets indicates that the particular conversational flow-sequence is

 
5 associated with the operation of a particular application program, visiting

‘ each state in a traversal including carrying out none or more predefined state

operations;

(g) a protocol/state identification mechanism coupled to the state

x patterns/operations memory and to the lookup engine, the protocol/state

10 identification engine configured to determine the protocol and state of the

, g conversational flow of the packet; and

i r:

j, T?“ (h) a state processor coupled to the flow—entry database, the protocol/state

: t identification engine, and to the state patterns/operations memory, the state

: 3; processor, configured to carry out any state operations specified in the state

3’ i ii 15 patterns/operations memory for the protocol and state of the flow of the

:1! * packet,

i, the carrying out of the state operations furthering the process of identifying which

application program is associated with the conversational flow-sequence of the

packet, the state processor progressing through a series of states and state operations

20 until there are no more state operations to perform for the accepted packet, in which

case the state processor updates the flow-entry, or until a final state is reached that

‘ indicates that no more analysis of the flow is required, in which case the result of the

We“: analysis is announced.

5‘ 2. A packet monitor according to claim 1, wherein the flow-entry includes the state

25 of the flow, such that the protocol/state identification mechanism determines the

«5“, state of the packet from the flow—entry in the case that the lookup engine finds a

g . flow-entry for the flow of the accepted packet.

:3 NOAC EX. 1015 Page 62

 



NOAC Ex. 1015 Page 63

>2"
a.

rwby). .0...Asmrum-u.
,..r
o

M...
a!“.Ia?1(«2.4“

'4x”‘. m.:‘x11;.7
.'5‘:

 

 

 

3.

5 4.

10

5.

15

20

6.

25

  

55

A packet monitor according to claim 1, wherein the parser subsystem includes a

mechanism for building a hash from the selected portions, and wherein the hash is

used by the lookup engine to search the flow-entry database, the hash designed to

spread the flow-entries across the flow-entry database.

A packet monitor according to claim 1, further comprising:

a compiler processor coupled to the parsing/extraction operations memory, the

compiler processor configured to run a compilation process that includes:

receiving commands in a high-level protocol description language that

describe the protocols that may be used in packets encountered by the

monitor, and

translating the protocol description language commands into a plurality of

parsing/extraction operations that are initialized into the parsing/extraction

operations memory.

A packet monitor according to claim 4, wherein the protocol description language

commands also describe a correspondence between a set of one or more application

programs and the state transition patterns/operations that occur as a result of

particular conversational flow-sequences associated with an application program,

wherein the compiler processor is also coupled to the state patterns/operations

memory, and wherein the compilation process further includes translating the

protocol description language commands into a plurality of state patterns and state

operations that are initialized into the state patterns/operations memory.

A packet monitor according to claim 1, further comprising:

a cache memory coupled to and between the lookup engine and the flow-entry

database providing for fast access of a set of likely-to-be-accessed flow-entries from

the flow-entry database.

A packet monitor according to claim 6, wherein the cache functions as a fully

associative, least-recently-used cache memory.

NOAC EX. 1015 Page 63



NOAC Ex. 1015 Page 64

5'”assauw.”was...
.),,.'

u..a.-Wewmm

‘:«’h’7"~*tz;..;"‘g33:?a.a"
‘.~a.“(mu.Bvfi.

‘”a;2*ling?“

im magma‘mfifiifié
s;5.3n anon».1.5.x:

u,

(,»r
..r.

x:3

 

“3::1K:

8.

9.

5

10.

10

ll.

15

20

25

  

56

A packet monitor according to claim 7, wherein the cache functions as a fully

associative, least—recently-used cache memory and includes content addressable

memories configured as a stack.

A packet monitor according to claim 1, wherein one or more statistical measures

about a flow are stored in each flow—entry, the packet monitor further comprising:

a calculator for updating the statistical measures in a flow-entry of the accepted

packet.

A packet monitor according to claim 9, wherein, when the application program of

a flow is determined, one or more network usage metrics related to said application

and determined from the statistical measures are presented to a user for network

performance monitoring.

 

 
 

 

A method of examining packets passing thro gh a connection point on a

computer network, each packets conforming t one or more protocols, the method

comprising:

(a) receiving a packet from a pack acquisition device;

(b) performing one or more pars' g/extraction operations on the packet to

create a parser record compris' g a function of selected portions of the

packet;

(c) looking up a flow-en database comprising none or more flow-entries

for previously encounte ed conversational flows, the looking up using at

least some of the sele ed packet portions and determining if the packet is of

an existing flow;

((1) if the packet i of an existing flow, classifying the packet as belonging to

the found exist' g flow; and

(e) if the pac et is of a new flow, storing a new flow-entry for the new flow

in the flow entry database, including identifying information for future

packets be identified with the new flow-entry,

NOAC EX. 1015 Page 64



NOAC Ex. 1015 Page 65

  
57

 

 

 

 

 

 

 

 

 

 

 

 

wherein the parsing/extraction operations depend on e or more of the protocols to

which the packet conforms.

12. A method according to claim 11, wherein each p cket passing through the

connection point is examined in real time.

5 13. A method according to claim 11, wherein cla ifying the packet as belonging to

 
the found existing flow includes updating the fl w—entry of the existing flow.

:13) 14. A method according to claim 13, wherein dating includes storing one or more

statistical measures stored in the flow—entry o the existing flow.

15. A method according to claim 14, wherei the one or more statistical measures

 
10 include measures selected from the set co isting of the total packet count for the

flow, the time, and a differential time fro the last entered time to the present time.

16. A method according to claim 11, wh rein the function of the selected portions of 
‘ ‘1. the packet forms a signature that inclu es the selected packet portions and that can

identify future packers, wherein the l okup operation uses the signature and wherein

15 the identifying information stored i the new or updated flow-entry is a signature for

‘3 i ' identifying future packets. §\
17. A method according to claim 1 , wherein at least one of the protocols of the

packet uses source and destinati addresses, and wherein the selected portions of

the packet include the source destination addresses.

20 18. A method according to clai 17, wherein the function of the selected portions for

19. A method according to c aim 18, wherein the source and destination addresses 
in the function of selecte portions.

25 20. A method according 0 claim 19, wherein the numerically lower address is placed

before the numerically higher address in the function of selected portions.

21. A method accordi g to claim 11, wherein the looking up of the flow-entry

of the selected packet portions.

NOAC EX. 1015 Page 65

database uses a has 
 



NOAC Ex. 1015 Page 66

vmafi

“»~w~7w>5fix:,’s’a¥?'¥wW§§'u*«t~|
«x55

.r' .,.“2x.. ..‘w‘..!§,~nf;fiura““:?;*.':
,w‘aH‘s-Arms;at

£3

 ’~1:3m=si.5u“'~3£s-;“
  

.
32

10

15

20

25

22.

23.

24.

25.

26.

27.

28.

29.

 

58

 

 

A method according to claim 11, wherein the par ng/extraction operations are

according to a database of parsing/extraction opera ons that includes information

describing how to determine a set of one or more rotocol dependent extraction

operations from data in the packet that indicate protocol used in the packet.

A method according to claim 11, wherein ep ((1) includes if the packet is of an

existing flow, obtaining the last encountered tate of the flow and performing any

state operations specified for the state of th flow starting from the last encountered

state of the flow; and wherein step (e) incl des if the packet is of a new flow,

performing any state operations required f r the initial state of the new flow.

A method according to claim 23, whe ein the state processing of each received

packet of a flow furthers the identifyin of the application program of the flow.

A method according to claim 23, w erein the state operations include updating

the flow—entry, including storing iden ifying information for future packets to be

identified with the flow-entry. y\
A method according to claim 25 wherein the state processing of each received

packet of a flow furthers the identi 'ng of the application program of the flow.

A method according to claim 3, wherein the state operations include searching

the parser record for the existen of one or more reference strings.

A method according to cl ' 23, wherein the state operations are carried out by a 
programmable state processor ccording to a database of protocol dependent state

operations.

A packet monitor for exa 'ning packets passing through a connection point on a

computer network, each pa kets conforming to one or more protocols, the monitor

comprising:

(a) a packet acqui ition device coupled to the connection point and

configured to re eive packets passing through the connection point;

(b) an input buf er memory coupled to and configured to accept a packet

from the pack t acquisition device;

NOAC EX. 1015 Page 66



NOAC Ex. 1015 Page 67

hfinfit’tI.

 

‘0(oi)‘‘ A’’.ln“’‘x v,wV.z., <xi“mam;“a

92.,

‘

10

15

20

25

30.

31.

  

59

 

 

 

  

 
 

 
 

  
 

 

 

(c) a parser subsystem coupled to the input buffer. emory and including a

slicer, the parsing subsystem configured to extrct selected portions of the

accepted packet and to output a parser record , ontaining the selected

portions;

(d) a memory for storing a database compr'sing none or more flow—entries for

previously encountered conversational ws, each flow-entry identified by

identifying information stored in the flw-entry;

(e) a lookup engine coupled to the outut of the parser subsystem and to the

flow-entry memory and configured t lookup whether the particular packet

whose parser record is output by th parser subsystem has a matching flow—

entry, the looking up using at leas some of the selected packet portions and

determining if the packet is of . v existing flow; andI

(f) a flow insertion engine co 1 ed to the flow-entry memory and to the

lookup engine and configure: to create a flow—entry in the flow—entry

database, the flow—entry incl - ding identifying information for future packets

to be identified with the ne flow-entry,

the lookup engine configured suc that if the packet is of an existing flow, the

monitor classifies the packet as nelonging to the found existing flow; and if the

packet is of a new flow, the fio ., insertion engine stores a new flow-entry for the

new flow in the flow-entry da base, including identifying information for future

packets to be identified with e new flow-entry,

wherein the operation of th parser subsystem depends on one or more of the

protocols to which the pac et conforms.

A monitor according 0 claim 29, wherein each packet passing through the

connection point is acc ted by the packet buffer memory and examined by the/

monitor in real time.

A monitor accord'- g to claim 29, wherein the lookup engine updates the flow—

entry of an existing ow in the case that the lookup is successful.

NOAC EX. 1015 Page 67



NOAC Ex. 1015 Page 68

‘.F$fi§§£fl§¥lfiih£fl
..-.

 

  

 
Ad;
m

mil-3332121623«was»I231

  
 

10

15

20

25

32.

33.

34.

35.

36.

37.

  

6O

  

 

 

 

 

 
 

 

A monitor according to claim 29, further includin a mechanism for building a

hash from the selected portions, wherein the hash i included in the input for a

particular packet to the lookup engine, and where‘ the hash is used by the lookup

engine to search the flow—entry database.

A monitor according to claim 29, further in luding a memory containing a

database of parsing/extraction operations, the parsing/extraction database memory

coupled to the parser subsystem, wherein th parsing/extraction operations are

according to one or more parsing/extractio operations looked up from the

parsing/extraction database.

A monitor according to claim 33, whe ein the database of parsing/extraction

operations includes information describ' g how to determine a set of one or more

protocol dependent extraction operatio s from data in the packet that indicate a

protocol used in the packet. V?
A monitor according to claim 29, rther including a flow—key-buffer (UFKB)

coupled to the output of the parser bsystem and to the lookup engine and to the

flow insertion engine, wherein the utput of the parser monitor is coupled to the

lookup engine via the UFKB, and wherein the flow insertion engine is coupled to

the lookup engine via the UFKB

A method according to clai 29, further including a state processor coupled to

the lookup engine and to the fl w-entry—database memory, and configured to

perform any state operations ecified for the state of the flow starting from the last

encountered state of the flo in the case that the packet is from an existing flow,

and to perform any state op rations required for the initial state of the new flow in

the case that the packet is rom an existing flow.

A method according t claim 29, wherein the set of possible state operations that

the state processor is co figured to perform includes searching for one or more

patterns in the packet p rtions.

NOAC EX. 1015 Page 68



NOAC Ex. 1015 Page 69

a4:"A... '71““x
..~*u‘3aM

@1511“u...«a«A
’r
x

cm"‘"€52”.fig(“76“..,i ......y.

.{‘afi’m"e. ”Qua-$2
«a.2m

,,.Hgm K,

£454,

38.

5 39.

10

40.

41.

15

20

42.

25

 

61

A monitor according to claim 36, wherein the st 6 processor is programmable,

the monitor further including a state pattems/oper ions memory coupled to the state

processor, the state operations memory configure to store a database of protocol

dependent state patterns/operations.  

 

 

 

 
 

 

A monitor according to claim 35, further in luding a state processor coupled to

the UFKB and to the flow-entry—database me cry, and configured to perform any

state operations specified for the state of the ow starting from the last encountered

state of the flow in the case that the packet i from an existing flow, and to perform

any state operations required for the initial tate of the new flow in the case that the

packet is from an existing flow.

A monitor according to claim 36, whe ein the state operations include updating

the flow-entry, including identifying inf rmation for future packets to be identified

\

\3
A packet monitor according to cl

with the flow-entry.

29, further comprising:

a compiler processor cou ed to the parsing/extraction operations

memory, the compiler proc ssor configured to run a compilation process that

includes:

receiving co ands in a high—level protocol description language

that describe the rotocols that may be used in packets encountered

by the monitor (1 any children protocols thereof, and

translating he protocol description language commands into a

plurality of p sing/extraction operations that are initialized into the

parsing/ex ction operations memory.

A packet monitor acc ding to claim 38, further comprising:

a compiler p cessor coupled to the parsing/extraction operations

memory, the c mpiler processor configured to run a compilation process that

includes:

NOAC EX. 1015 Page 69



NOAC Ex. 1015 Page 70

wHIVc

.-

wum‘1\hJTl,’fit.
é

 

 

 

«3“» ,;.. ‘?

 
10

15

20

25

43.

45.

46.

47.

48.

62

receiving commands in a high—lev 1 protocol description language

that/describe a correspondence bet een a set of one or more

application programs and the state ransition patterns/operations that

occur as a result of particular co ersational flow-sequences

associated with an application p ograms, and

 

 

 

 

 

 

 

 

 

translating the protocol des ription language commands into a

plurality of state patterns and tate operations that are initialized into

the state pattems/operations

A packet monitor according to claim 29 further comprising:

a cache subsystem coupled to and be een the lookup engine and the flow-entry

database memory providing for fast acc ss of a set of likely-to-be-accessed flow-

entries from the flow-entry database.

A packet monitor according to clai 43, wherein the cache subsystem is an

associative cache subsystem includi

cells (CAMS). Y}
A packet monitor according to aim 44, wherein the cache subsystem is also a

one or more content addressable memory

least—recently-used cache memo such that a cache miss updates the least recently

used cache entry.P

A packet monitor according 0 claim 29, wherein each flow-entry stores one or

more statistical measures abo the flow, the monitor further comprising

a calculator for updating a least one of the statistical measures in the flow-entry

of the accepted packet.

A packet monitor accor mg to claim 46, wherein the one or more statistical

measures include measure selected from the set consisting of the total packet count

for the flow, the time, an a differential time from the last entered time to the

present time.

A packet monitor ac ording to claim 46, further including a statistical processor

configured to determi one or more network usage metrics related to the flow from

one or more of the st istical measures in a flow-entry.

NOAC EX. 1015 Page 70



NOAC Ex. 1015 Page 71

 
 
 

49.

5

50.

51.

10

52.

53.

15

54.

20

25

@  

63

 

 

 

 

 

 

 
 

 

 

A monitor according to claim 29, wherei .

flow-entry—database is organized into a In urality of bins that each contain N-

number of flow-entries, and wherein said ins are accessed via a hash data value

created by a parser subsystem based on t 6 selected packet portions, wherein N is

one 01' more.

A monitor according to claim 49, herein the hash data value is used to spread a

plurality of flow-entries across the flw-entry—database and allows fast lookup of a

flow-entry and shallower buckets.

A monitor according to claim 36 wherein the state processor analyzes both new

and existing flows in order to clas fy them by application and proceeds from state-

to—state based on a set of predefin d rules.

A monitor according to clai 29, wherein the lookup engine begins processing as

soon as a parser record arrives it om the parser subsystem.
\

A monitor according to %' 36, wherein the lookup engine provides for flow
state entry checking to see if . flow key should be sent to the state processor, and

that outputs a protocol iden '1er for the flow.

(b) performing on or more parsing/extraction operations on the packet

according to a d tabase of parsing/extraction operations to create a parser

record compris‘ g a function of selected portions of the packet, the database

of parsing/extrction operations including information on how to determine

a set of one or more protocol dependent extraction operations from data in

the packet th t indicate a protocol is used in the packet;

(c) looking

NOAC EX. 1015 Page 71



NOAC Ex. 1015 Page 72

 
 
 

10

15

20

55.

56.

5'7.

58.

59.

64

(d)' if the packet is of an existing flow, ‘obtai ing the last encountered state of

the flow and performing any state operati ns specified for the state of the

flow starting from the last encountered ate of the flow; and

(e) if the packet is of a new flow, perf rrning any analysis required for the

initial state of the new flow and sto ng a new flow-entry for the new flow in

the flow-entry database, including dentifying information for future packets

to be identified with the new flo -entry.

A method according to claim 54, wh rein one of the state operations specified for

at least one of the states includes upda g the flow-entry, including identifying

information for future packets tobe i entified with the flow-entry.

A method according to claim 54, herein one of the state operations specified for

at least one of the states includes 5 arching the contents of the packet for at least one

reference string. 5?}
A method according to claim 5, wherein one of the state operations specified for

at least one of the states includ 3 creating a new flow-entry for future packets to be

identified with the flow, the n flow-entry including identifying information for

future packets to be identifie with the flow-entry.

A method according to c 'm 54, further comprising forming a signature from the

selected packet portions, w erein the lookup operation uses the signature and

wherein the identifying in ormation stored in the new or updated flow-entry is a

signature for identifying ture packets.

A method accordin to claim 54, wherein the state operations are according to a

database of protocol pendent state operations.

 

NOAC EX. 1015 Page 72



NOAC Ex. 1015 Page 73

 

 
 

 
10

15

20

  

 

 

includes receiving a packet from a packet acquisitio device and performing one or more

parsing/extraction operations on the packet to cre e a parser record comprising a

function of selected portions of the packet. Th parsing/extraction operations depend on

one or more of the protocols to which the pa et conforms. The method further includes

looking up a flow-entry database containi flow-entries for previously encountered

conversational flows. The lookup uses t 6 selected packet portions and determining if

the packet is of an existing flow. If th packet is of an existing flow, the method

classifies the packet as belonging to he found existing flow, and if the packet is of a new

flow, the method stores a new flo -entry for the new flow in the flow-entry database,

including identifying informatio for future packets to be identified with the new flow-

entry. For the packet of an exi ing flow, the method updates the flow-entry of the

existing flow. Such updatin may include storing one or more statistical measures. Any

stage of a flow, state is m ' tained, and the method performs any state processing for an

identified state to further e process of identifying the flow. The method thus examines

each and every packet p sing through the connection point in real time until the

application program a ociated with the conversational flow is determined. The method

NOAC EX. 1015 Page 73



NOAC Ex. 1015 Page 74

d

.,:5‘4 .
:1

azflfl .‘
99‘1““ ‘3.,~ J

- 1 66510919
 

1/18

100 CUENT4 ‘08
“\ ANALYZER

107 116
—

 
g; :IE531: SERVER;

“\ —\\110
i; A 106 121

 DATA COMMUNICATIONS

NETWORK

102

125

 
123

_ 118

Z 5 SERVER 4 — 105 _—/

fi; ‘“\ CUENT2—v/ CUENT1-\
it;
i?»

B

112 104

FIG. 1

NOAC EX. 1015 Page 74

 



NOAC Ex. 1015 Page 75

,  

g‘IIfi!

 

214 215 (2116 217218 219 220 221 222 223

K265

tW}

  

  
  

 

 
 

NOAC EX. 1015 Page 75

L'LOO-iddV

 



NOAC Ex. 1015 Page 76

310

336

DESCIPTIO LAYER
LANGUAGE 

 

 

  
  

  
  
  
 

  
  
  

  
   

 
 
  

 
  
  

  

  
 
  

 
 
 

 

 

ANALYZE AND EXTRACT I
RECOGNIZE IDENTIFYING BUILD UNIQUE I I LOOKUP ..

PMTERN INFORMATION CONVERSAT'O ' Kflgova NEEVCSEODXV DATABASE
INFORMATION (EH) FLOW KEY RECORDS . OF FLOWS

(DB 324

 
 
 

 
 

 
  
 
 

|

PATTERN, PARS : PROTOCOL "FLOW" I
AND & STATE KNOWN

EXTRACTION I IDENTIFICATION RECORD

DATABASE I

I

J

CLASSI FICATN

FINALIZATION

 
  

 
  
 

PROCESSOR

INSTRUCTION

COMPILER DATABASE
AND

OPTIMIZER

DATAGRAM

PROCESSN e

OPERATION '-
ANALYZER

1&3
 

8US

NOAC EX. 1015 Page 76

 

 
 L'LOO'iddV

 



NOAC Ex. 1015 Page 77

g
639” et al. APPT—OO1-1

404

  
GENERATE

PACKET
PARSEAND

EXTRACT

OPERAWONS fifisfimafiyfiifififitfi
 

  
 

406:5fiJTERN,PARS
AND

EXTRACRON

DATABASE

 

LOAD
PARENG

SUBSYSTEM

MEMORY 

‘I. 401

 

  
  

 

IflGHLEVEL

PACKET

DECODWG

WESCWPWON‘

 
 

COMPlE

IESCWPWON‘ 
403

408 409

0

FIG. 4

LOADSTKHE

NSTRUCWO

DATABASE

MEMORY 

405

V I A

PACKET

STATE

INSTRUCWON‘

AND

OPERAHONS

  

  

STATE

PROCESSOR

INSTRUCRON

DATABASE
 

400

NOAC EX. 1015 Page 77



NOAC Ex. 1015 Page 78

I z 2 ‘
. y:

8: ‘.

M32 w

f» g
.
g ,

w ;5’
.t‘ “é

;.

C.

;
LA x (t‘

510

PATTERN
NODE

APPT—OO1-1

  

5/18

0

M 502
503 LOAD PACKET

COMPONENT
512

= I I

PACKET
KEY

513

504 ORE IN PACKE v, 

 

  
 
 

 
 

 
 

FETCH NODE AN I

PROCESS FROM
PTTE 'N

NEXT

PACKET

COMPONE 5n

  

 

 

‘IIV‘.' A‘.‘

PROCESS TO

COMPONENT

500V
V

EXTRACT

509 ELEMENTS

FIG. 5

NOAC EX. 1015 Page 78



NOAC Ex. 1015 Page 79

APPT—OO1-1

cg 
6/18

; U’ . 601

T PACKET 602
3; Y COMPONENT AND
3; ~ PATTERN NODE

603

LOAD PACKET

‘ COMPONENT 610

""46 604
MORE PACKE LOAD KEY
COMPONENT BUFFER

F; YES

FETCH EXTRACTION @
ND PROCESS FRO ;

PATTERNS 605

“‘ §‘" 611NO

606 NEXT
NO PACKET 609

COMPONEN

 

 

  
  

OREEXTRACHO‘

ELEMENTS?

* ‘ YES

607 APPLY EXTRACTION

- STORES
: 1:. P K

F 600
608  

  
 

 
 

MORETO
EXTRACT?

YE

FIG. 6

NOAC EX. 1015 Page 79



NOAC Ex. 1015 Page 80

APPT—OO1-1

  

7/18

. 701a“

EY BUFFER AND 702

PATTERN NODE

:Irif'; LOAD PATI'ERN

‘ i 703 NODE ELEMENT 708

704 MORE PATTER OUTPUT T'
NODES? ANALYZER

   
 

YES

HASH KEY BUFFER

fig? ELEMENT FROM 705
:‘ga PATTERN NODE

g: 709

:9” PACK KEY & HAS

{3 g 706 \

NEXT PACKET

COMPONENT

~ 707

FIG. 7

700

NOAC EX. 1015 Page 80

 



NOAC Ex. 1015 Page 81

yietz et al. APPT—001-1
ks. ‘

  

8/18

# .: . 801

UFKB ENTRY FOR 802
PACKET

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE 804

806

NO SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET No@ 808
YES

 

  ORE BUCKET
805 IN THE BIN?

 

 

YES

809 MARK RECORD BIN AND 810
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET

8“ AS 'FOUND'

 
812 UPDATE STATISTICS FOR

RECORD IN CACHE

‘.

%
Iz

I;I
z
i 8131/. FIG. 8

NOAC EX. 1015 Page 81



NOAC Ex. 1015 Page 82

.9.»A

 

 

 
 

 

» :Dietz et al. APPT—OO1—1

  

9/18

901 902 910

 
 

 
 

 

 
  

 
 

RPC

BIND LOOKU '

REQUEST 
 
 

909

EXTRACT PROGRAM EXTRACT PORT

 
 

 
 

 

 
 
 

 
 

903 GET ‘PROG RAM’, GET 'PROGRAM',
'VERSION', 'PORT' AND 'VERSION' AND

IPROTOCOL (TOF OR 'PROTOCOL (TCP OR

UDP) UDP)‘

SAVE REQUEST

SAVE 'PROGRAM',

 
CREATE SERVER STAT

 

 

 
 

  

 
 
  

  

 
  

 

 
 

 
 

  
 

 

 
 
 

 
 

SAVE 'PROGRAM', 'VERSION' AND

904 ‘VERSION', ‘PORT' AND ‘PROTOCOL (TCP OR
'PROTOOOL (TCP OR UDP)‘ WITH

UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY BOTH MAKE A KEY.
ON SERVER ADDRESS

AND TCP OR UDP PORT.

 
 

RPC

BIND

LOOKUP

REPLY

EXTRACT

PROGRAM 
 

 

  

LOOKUP REQUE

FIND 'PROGRAM'

AND 'VERSION'

WITH LOOKUP OF

SOURCE NETWORK

ADDRESS.

 

 

 
  
  

 
 
 

900/ GET 'PORT' AND

‘PROTOCOL (TCP
OR UDP)‘.

FIG. 9
NOAC EX. 1015 Page 82



NOAC Ex. 1015 Page 83

1;, et aI. APPT—001-1

  

10/18

53:: PATTERN 100 EXTRACTION
M RECOGNITION OPERATIONS

_:g, DATABASE‘ H DATABASE
: MEMORY 1001 MEMORY
  

3: 100 1031
if ~ 1 5x
A” 00 1004

 
 

 

 
 

INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL IN

1031)

1 007

100-
 

 
 

PATTERN

RECOGNITN

ENGINE

(PRE)
  
 

EXTRACTION ENGINE

(SLICER) 
 

 
 

 

 
100.

 
 

 

  

 

 
 
 

   
 

PARSER

OUTPUT PACKET KEY
BUFFER AND PAYLOA I
MEMORY

 

 
PA KE PARSERINPUTBUFFER

%, INPUT MEMORY

1012

1021

PACKET
START INPUT BUFFER

INTERFACE

CONTROL

ANALYZER DATA REA I Y
INTERFACE
CONTROL 

 

  
  

 

V v

ANALYZER
PACKET READY

102

1023 FIG. 10 1027

NOAC EX. 1015 Page 83



NOAC Ex. 1015 Page 84

$.13‘.

APPFOOFI

35:2 9‘ a" g
«:x‘  

11/18

1100 N

g n01 H03 1H5 H18 “22
3%? n07

  LOOKUP/

UPDATE

ENGINE

LU E)mmmzwmzm

 

  ANALYZE'

INIF‘ESJAC
h AND

CONTROL

(ACIC)

  
 

 

 

HOST

H HE'PEsR
FACE

(HIB)

  
 

 
 

 
 

  
 

 PROCESS‘

INSTRUCN

DATABASE

(SHD)

 
  
  

 

  
 

 

UNIFIED

it FLOW
 
 KEY

:UFFER

(UFKB)

' PARSER

‘E; INTER-.’   

  
 

 f; PROCESSR  (SP) 1119 1123

 
 

 

 
 
 

 

2,2:

UNIFIED MEMORY

.g .‘ MEMORY INTER-:. FLOW CONTROL” FACE
=§ INSERnON/ (UMC)
; DELETION

 
  
 ENGINE

(HDE)
 

  

3; NOAC EX. 1015 Page 84

 



NOAC Ex. 1015 Page 85

.5};

i::,,9tz 9" a"
in ,

mmmmfir’rw.11*A1
h“i““QT-‘9‘“

.,x

w.m.11»«

APPT—OO1 -1

12/18

1201

  
UFKB ENTRY FOR

PACKET WITH

STATUS 'NEW'

 
 

1202
 

 

 
 

 

 
 

ACCESS

CONVERSATION

RECORD BIN

REQUEST RECORD BIN/

BUCKET FROM CACHE

<‘IN/BUCKET EMPTY

1203
 

 

 

 

  
 

1 204

 
 
 

REQUEST NEXT
BUCKET FROM

CACHE

 

1 205
1206
 

 YES 
 
 

 
1207

 
 
 

 
 

 
  
 

 

INSERT KEY AND HASH

= N BUCKET, MARK 'USED
1208 WITH TIMESTAMP

YES OMPARE CURRENT BI 1209
1210 AND BUCKET RECCRD

SET UFKB FOR

PACKET AS KEY TC PACKET
'DROP' 

  MARK RECORD BIN AND

BUCKET 'IN PROCESS'

AND 'NEW' IN CACHE

SET INITIAL STATISTICS

FOR RECORD IN CACHE

1213

FIG. 12

1211

  
 
  

NOAC EX. 1015 Page 85



NOAC Ex. 1015 Page 86

1'91; et al. APPT-001-1

 

13/18

E!:“<

:; ,

1300 N UFKB ENTRY FOR
PACKET WITH STATUS

t , 'NEW' OR 'FOUND' 1302

3512‘ I
$2 SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303

ALUE FOUND IN UFKB ENTRY

3?», FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

NO

 
 
 

  
   

 SET STATE

PROCESSOR

INSTRUCTION

POINTER TO

VALUE FOUND IN

CURRENT STATE

 

  
  

 
  

DONE PROCESSING 1307
STATES FOR THIS

PACKET?

 

 

1 308

 
 

  
  

 

 

SAVE STATE

1w PROCESSOR

INSTRUCTION 1309
POINTER IN

CURRENT FLOW

3 RECORD

1,

 
 

STATE PROCESSOR 1311
INSTRUCTION IN CURRENT

FLOW RECORD

Ow
FIG. 13

NOAC EX. 1015 Page 86



NOAC Ex. 1015 Page 87

“cm y.

140

 
 

 

 
 

 

 

 
 

INFORMATION /STATE

 

 

 
 

PATTERN

STRUCTURES
AND

EXTRACTION

OPERATIONS

PARSER

SUBSYSEM

 EXTRACT

RECOGNIZE IDENTIFYING

PATTERN , INFO & PROCL

 

 
 
 

 

 
 

 

 
 

 
  
 

LOOKUP
KNOWN

RECORDS

(DB 1424)

  

  

  

 RECORD? DATABASE

OF FLOWS

UPDATE

"FLOW"
KNOWN

RECORD

 
 
 

   CLASSIFICATION

I STATE

MACHINE

SELECTOR

1426

CLASSIFICATN

FlNALIZATlON

 
 
 

STATE

ANALYSIS

ANALYZER

SUBSYSTEM

8L/VL_—————_————

NOAC EX. 1015 Page 87

 



NOAC Ex. 1015 Page 88

,» fi‘eflzmi £15? . “a “.9. ‘ ’ r ’9.*n,."~ :. . . x is ' ’3 w., H WW. ,,, _ ,, .... 0.~ -. ': an" .Evnwax ”21 .~ '3‘?» 2%..3 ‘ . "5 k“ «X x , w“; - ‘ 3/n , - ., .  

324

 
  

 

ANAEYZE'

3%
DATABASE

1502  
1504 1506 

HOST

MEMORY 
MONWOR

3m

8L/9L
121

‘ 102 INTERFACE

CARD  
NOAC EX. 1015 Page 88



NOAC Ex. 1015 Page 89

«nm

Dietz et 3.].

Hum“mu0...“I3“...

APPT—OO1 -1

 

16/18

 
  

Dst MAC 
 

 

 

 
met=12

FIG. 16

NOAC EX. 1015 Page 89



NOAC Ex. 1015 Page 90

 1; tZ et a1. APPT—OO1-1 w.

zf‘
‘ A

17/18
1702

:la 1704

‘~ offset

5:12to13 n‘
a?
5;,

5 1706

F 1708 Type(2)
1

\-;et =14

g

r
g:

2‘
5“.

£31
ag»

FIG. 17A
1712

7'Him""119333321."PMfl‘mgt}!112.1
 
 

 

 
 

 

III!113!11.31if”
 
 

!   
{Imarzmmmmwm
WWW-  L3 to o : ‘ J y I! .

113:, 4 rIIfiTIn-wmmwm

VIII/[flWififlifiz’fifllllllllllln

-1]  

 

Src Hash (2)

-ol<1>

-et = L3 + (lHL/4)

 
 

FIG. 17B

 

IDP = 0x0600*
IP = 0X0800*

CHAOSNET = 0x0804
ARP = 0X0806
VIP = OXOBAD*

VLOOP = OXOBAE
VECHO = OXOBAF

NETBIOS-3COM = 0X3COO -
0X3COD#

DEC-MOP = 0x6001
DEC-RC = 0x6002

DEC—DRP = 0x6003*
DEC-LAT = 0x6004

DEC-DIAG = 0X6005
DEC-LAVC = 0x600?

RARP = 0x8035
ATALK = 0X8098*

VLOOP = 0x8004
VECHO = 0x80C5
SNA-TH = 0X80D5*

ATALKARP = 0x80F3
IPX = 0X8137*

SNMP = 0x814C#
IPv6 = 0x86DD*

LOOPBACK = 0X9000

Apple = 0x080007

* L3 Decoding
# L5 Decoding

1752

ICMP =1

lGMP = 2

GGP = 3

TCP = 6*

EGP = 8

IGRP = 9

PUP =12

CHAOS =16

UDP = 17*

IDP = 22#

lSO-TP4 = 29
DDP = 37#

ISO-IP = 80

VIP = 83#

EIGRP = 88

OSPF = 89

* L4 Decoding
# L3 Re-Decoding

 
NOAC EX. 1015 Page 90



NOAC Ex. 1015 Page 91

 

 
APPT—001 -1

[llDAM—n.“—0

8Ecomtrm
H

8o1%LroE‘ECcmIV
0

mAOOOPON—Q
IPOZMJDim—m

xE@@mwm‘maéaa
NOAC EX. 1015 Page 91

FIG. 188



NOAC Ex. 1015 Page 92

E
: .JOF DRAWLNG:

gfibfilcflLfl—LY man I01"___..

I

1/18\

100 —
CLIENT 4 103

N ANALYZER
107

116

—

— SERVER 2
CLIENT3 ’-: M

106
121

  DATA COMMUNICATIONS

NETWORK '

 
113E“IIIEIIIII‘ICII‘I‘KII113111111
12:",

:2 102

” 125

123
— 118
SERVER 4 — 105 ——/

\ CLIENT 2 -112 CLIENT1 104

FIG. 1

NOAC EX. 1015 Page 92

 



NOAC Ex. 1015 Page 93

 
(I. ,. ,.., u .~ m. . , ‘0 m. .. m. u 1.

¥; :4 .1! s‘ M: "I ’ H n: ' ”a, (1.4 11211111311[11191111131111 h

2.14 215 Q216 217K218 219 220 221 222K223

IIIIE!
M

  
 

  
K

IlllllllI

209 1

(270 R27.1K272 273 (274 (275

  
NOAC EX. 1015 Page 93



NOAC Ex. 1015 Page 94

   I'H’ II?“ III! III”? '93?“ IIII'II .nIfL

 

 
  

 
 
 

302 I
 

 

 

 
 

 
  
 

 

 
 

ANALYZE AND I I

| RECOGNIZE IDEEflTFI‘éfiLG BUILD UNIQUE I I LOOKUP ..
PACKET PATI‘ERN INFORMAT'ON CONVERSATIO - FROM NEW FLOW DATABASE

INFORMATION E I "FLOW" KEY I KNOWN RECORD? OF FLOWS
(pm) ( I) I RECORDS

 
PROTOCOL

& STATE

IDENTIFICATION

PATTERN. PARS
AND

EXTRACTION

DATABASE 
 

  

 
 

I I
310

PROCESSOR
INSTRUCTION

COR’mLER DATABASE
OPTIMIZER

336 338

 

PROTOCOL DATAG RAM
LAYER

SELECTION '

DESCIPTIO
LANGUAGE

FIG. 3 .

 
 

PROCESSN C

OPERATION ',
  

:I::.:: III! III: III 'I‘EII III II::I

(DB 324

 
 
 

 
 

 
 

   
 

 
 

  
 

  

 
 

 
 

UPDATE
“FLOW“

KNOWN

RECORD

 
   
  CLASSIFICATIO .  
   

 
YE

 
 

CLASSIFICATN

FINALIZATION ,

 

NO

330

 

 

 MORE

OPERATIONS.  
ANALYZER

€103

NOAC EX. 1015 Page 94 -

‘loE
0

amATTVNfl
L'I-OI



NOAC Ex. 1015 Page 95

3'41 PRLNT 0F DRAWLNG)
sf: Aggflcyvmv man ’01'1‘ =3!"—

4/18

0

v 402

HIGH LEVEL
PACKET

DECODING
I ESCRIPTION ‘

404 405

 

  
 

  

V l A

PACKET
STATE

AND

GENERATE
PACKET

PAFISE AND
EXTRACT

 
  

  

COMPILE
I ESCRIPTION "  OPERATIONS OPERATIONS

”’ 403

E: 407

: STATE
:.. PROCESSOR
: EXTRACTION INSTRUCTION
E DATABASE 408 409 DATABASE

  
LOAD LOAD STATE

PARSING NSTRUCTIO
SUBSYSTEM DATABASE

MEMORY MEMORY 
400

 
6§1

3

ixIx
s
I

NOAC EX. 1015 Page 95



NOAC Ex. 1015 Page 96

 

 

PRLNT 05 muwmc;
‘ AS omcmALLY FILED

'fifi

“IWe

5"

if;

-_.._. .

.13;“?ll?“IL‘I!'E'Jl“3'u(Hi
a.|',

1‘I..
I

"‘18.if,“

{V[f'1‘!‘l”'
II131'

510

 

  
  

 
 

PA'ITERN
NODE

'-001-1

  
 
 

 
  
 

 

5/18

501

503 LOAD PACKET
COMPONENT

:I I

504 ORE IN PACK 9» PACKET
KEY

FETCH NODE AN I

PRSCESS FROM‘ i k

513

 
 

 
  

  

 
 

 
 

MORE NEXT
PATTERN PACKET

NODES? COMPONE 511

  
  

 

‘3' 7". A‘.‘

PROCESS TO
COMPONENT

500v

 
 

  

EXTRACT
509 ELEMENTS

NOAC EX. 1015 Page 96



NOAC Ex. 1015 Page 97

 
g PRLNT 05 memm

‘ AS ORIGINALLY FILED

',JJ1135.933;.5'.-

~—n———- _

 

.nt'f,1|."

1'151:1111!'

1!Tl9.1‘1!H1*

'-001-1

. @

6/18

0

PACKET 602
COMPONENT AND
PATTERN NODE

603

LOAD PACKET

COMPONENT 610

604

LOAD KEY
BUFFER 

YES

FETCH EXTRACTION 6‘ ND PROCESS FRO
PATTERNS 605

NO 611
606  

  

NEXT

N0 PACKET 609
COMPONEN  

ORE EXTRACTIO ‘
ELEMENTS?

 

YES

607 APPLY EXTRACTION

230%688 TO
M NENT \600
 

  MORE TO 603
EXTRACT?

 
 

YE

FIG. 6

NOAC EX. 1015 Page 97



NOAC Ex. 1015 Page 98

g PRLNT 05 DRAWLNG:. 001-1
V A§_O;R._I_QHVALLY my

'73 T , %

7/18

. 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN

703 NODE ELEMENT 708

704 MORE PATTER OUTPUT T
MODES? ANALYZER

YES w
HASH KEY BUFFER

ELEMENT FROM 705
PATTERN NODE

 

 
 

I"1H33!"1135!:III.“"Fillilfiizu1H!
‘1‘I

"in1H:

709H:Ti”[Ili"ll11'
PACK KEY & HAS

706 \

NEXT PACKET
COMPONENT

4am-5':
700

707"‘mu3%'L
FIG. 7

NOAC EX. 1015 Page 98

 



NOAC Ex. 1015 Page 99

q mum or DRAWLNG: .0012 AS ORIGINALLY nun ' '1

WT ,
I.
,5-..

8/18

. 801

UFKB ENTRY FOR 802
PACKET

800\
. COMPUTE CONVERSATION 803

RECORD BIN FROM HASH

04REQUEST RECORD BIN/
BUCKET FROM CACHE 8 806

NO SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET N0® 808
YES

 

  
ORE BUCKET

805 IN THE BIN?
III“,IIIIIIII“III”InIf.“

 

 WW;II

YES

IIIIIII!IIIIII"IIIIII!“’
809 MARK RECORD BIN AND 810

BUCKET ‘IN PROCESS' |N
CACHE AND TIMESTAMP

2,8325!5,1‘I
SET UFKB FOFI PACKET

8“ AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813$. FIG. 8

NOAC EX. 1015 Page 99

 



NOAC Ex. 1015 Page 100

I} PRLNTOF DRAWLNG) 'T-001'1
Mi ORIGINALLY mu '

.
t ‘ ~--x—..— ' kw

~z " a. 1' '

 
 

  

 

 
 

 
 

 

9/1 8

901 902

BlegquoKU
. . ‘NNOUNCME

ORTMAPP ,0RTMAPP _ REQUEST
909 

EXTRACT PROGRAM EXTRACT PORT  
 
 
 
 

 

  

 

903 GET ‘PROGRAM', GET 'PROGRAM',
‘VERSION‘, ‘PORT‘ AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (TCP OR
 UDP) UDP)‘

g: 908

SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND

CREATE SERVER STAT

SAVE 'PROGRAM',

 
 
 
 
 
 

 

 
 
 

 
 
  
  

 
  

 
  

 
 

 
 
 
  
 

904 ‘VERSION‘, ‘PORT‘ AND ‘PROTOCOL (TCP OR
'PROTOCOL (TCP OR UDP)‘ WITH

UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

 STATE DATABASE. KEY BOTH MAKE A KEY.
ON SERVER ADDRESS

AND TCP OR UDP PORT.

 
TM

 
  
 

RPC
BIND

LOOKUP
REPLY

.I'MLr

EXTRACTLOOKUP REOUE ‘
PROGRAM

FIND 'PROGRAM'

!.WHEI'II'.   
 
 

 

 

 

 
 
 
 

:w.gvvifl“;'Sud;(
 
 
 

900/ AND 'VERSION' GET ‘PORT‘ AND

WITH LOOKUP OF ‘PROTOCOL (TCP

is; SOURCE NETWORK OR UDP)‘.
“I... ADDRESS.

.15‘,

FIG. 9

NOAC EX. 1015 Page 100

 



NOAC Ex. 1015 Page 101

PRLNT 0F DRAWING: 31-1
AS ORIGINALLY FILED

:1 “T'- _ @

  
1 0/1 8

a: 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 1001 MEMORY

100 1031

100 1004

INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL l

 
 
 

 
 
 
 

 
 

 
 

 
 

 

   
 

 

 
 

  
 
 
 
 

 

 
 

 
  

; 1031

=i 100' PATTERN 1007
_ RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
:._ (PRE)

- 100.

; PARSER
’5? PA KE PARSER INPUT BUFFER OUTPUT PACKET KEY
A INPUT MEMORY BUFFER AND PAYLOAr

MEMORY

1012

E 1021

A PSATSARETT INPUT BUFFER ANALYZER DATA REA'Y
INTERFACE INTERFACE

‘ . CONTROL CONTROL
» ANA z R

a PACKET READY 

102

1023 FIG. 10 1027

NOAC EX. 1015 Page 101

 



NOAC Ex. 1015 Page 102

1' PRmT or memca 001-1
U ORIGINALLY FILED

.01 0

 
 

 

11/18

1100 N

1101 1103 1115 1113 “22
1107

SSS? 'ANALYZE' HOST

1111 " 11181111111 1 INTER—
” AND .1 FACE

CONTROL (HIB)
STATE (ACIC)

PROCESS'
INSTRUCN

: DATABASE

: (SPID)

_ PARSER
I..:1NTER- fl

FACE

Z PROCES R
(SP)S 1119 1123

UNIFIED MEMORY 
 

 

MEMORY INTER-

FLOW 1" CONTROL“ FACE
INSERTION/ (UMC)

NOAC EX. 1015 Page 102

 



NOAC Ex. 1015 Page 103

‘4 FRUIT OF DRAWLNG: )01-1
ASORKHNALLYFHJI

a ET .

12/18

1201

  
UFKB ENTRY FOR

PACKET WITH
STATUS 'NEW'

  1202
 

 

 
 

 

  

 

  
  

 
  

 

  
   YES

1200
N ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204
: BUCKET FROM CACHE

Z REQUEST NEXT '
: BUCKET FROM : IN/BUCKET EMPTY 1205
= 1206 CACHE

 

  
NO INSERT KEY AND HASH 1207

: N BUCKET, MARK 'USED
1208 WITH TIMESTAMP

YES
 

 

  

II‘II:I"'IIIIII‘I'''IIIIII!
 
 

OMPARE CURRENT BI 1209
AND BUCKET RECORD

KEY TO PACKET1210 SET UFKB FOR
PACKET AS

'DROP'
 
 

  Mr
 

  
MARK RECORD BIN AND

BUCKET 'IN PROCESS'
AND ‘NEW‘ IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

FIG. 12

1211

  
 

 
i'WIII“?II-

 

NOAC EX. 1015 Page 103

 



NOAC Ex. 1015 Page 104

F L; PRLNT or DRAWLNG:
" ‘ AS ORIGINALLY nun“W-_V_———..

T-001-1

£3.1! ‘_
:1.)

13/18

@1301
1300 N UFKB ENTRY FOR

PACKET WITH STATUS
'NEW' R‘ 0, ND‘ 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTIONII“.11""III.II1:1111:1:11

  
 
  
  
  

 
 SET STATE  
  
   
 

 
 

 

  
 

  
  

 

 
 

  
  

: PROCESSOR
:3 .; INSTRUCTION NO DONE PROCESSING 1307

V : POINTER TO STATES FOR THIS
:: VALUE FOUND IN PACKET?

‘ - CURRENT STATE

1303 YES

1‘ , 1310
g; 3- SAVE STATE
': PROCESSOR

INSTRUCTION NO DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO

.3 CURRENT FLOW

,1 RECORD,- YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR 1311

INSTRUCTION IN CURRENT
FLOW RECORD

@1313
FIG. 13

NOAC EX. 1015 Page 104

 



NOAC Ex. 1015 Page 105

mm ‘

w; '3 mm: :, ' “am: :2 :59 t};

I, II IIIIII'II 'I'f‘, “.‘EII II II ‘“ .r'fl, II?" III. IICEZI IIIII ‘IEEEII IIZIII‘CII

I ___________________I I———————————————————

II

II 1416\  
  

140
  

 

 
 
 

 
 

 

   
 

 
 

 
 
 

  

 LOOKUP

  
 
 
  

  
 

 
  

 
 
 

‘aléégZGEqANED EXTRACT | I .KNOWN
PACKET IZ IDENTIFYING .. u

PATTERN INFO & PROCL FLOW KEY RECORD DATABASE
INFORMATION /STATE ('33 1424) OF FLOWS

 
 

  
 

 
 
 

 
  

 

UPDATE
"FLOW"
KNOWN
RECORD

PATTERN
STRUCTURES

AND
EXTRACTION
OPERATIONS

    CLASSIFICATION

 

PARSER
SUBSYSEM

 
   
 
   
 
 

STATE

MACHINE

SELECTOR

1 426

CLASSIFICATN
FINALIZATION

  
STATE

ANALYSIS

ANALYZER
SUBSYSTEM

NOAC EX. 1015 Page 105

1

|

I

|

I

I

I

|

|

I

I

I

|

I

|

l

I

I

|

I

I

I

I

I

I

I

I

|

I

I

I

8L/I7L

a

__._..‘.EA'nvmomosvf: comnwa5011mm3?
L'LOO'.(1311'!



NOAC Ex. 1015 Page 106

1111151233123.:S,   
DE<Ow0<mmm._.z_

      

anEOEZOZ

15/18

 

m0_>mo,0759300.kme/E

“r92

 

%.MN>._<Z<

 

mm<m<k<o

 

,,,,._..=.:,..iz,1,,,..,.,z.3.1.,_._3.q.
,,_,gin:f.a.1..

11591;qu nun 01-1

PRLNT OF DRAWLNG:

an

‘1

(21&1...
NOAC EX. 1015 Page 106



NOAC Ex. 1015 Page 107

i PRLNTOF DRAWLNG) '_001.1
I, A§,o_RJ_qm_ALLY man

1 7/1 8
1702

i ergxggga:offset = x
_Te , CHAOSNET = 0x080412 t° 13 yp " ARP = 0x0806

VIP = 0x0BAD*
VLOOP = 0xOBAE

- 1706 VECHO = 0xOBAF

NETBIOS-3COM = 8x38813111X

W" °E%3”88=8"888§H 1 - = x

’ “- DDE§é°L§¢=8x233§.. ' = X
L3 Offet - 14 . DEC-DIAG = 0x6005

DEC-LAVC = 0x600?
RARP = 0x8035

ATALK = 0x809B*
VLOOP = 0x8004

Fl 1 7A VECHO = 0x8005. SNA—TH = 0x80D5*
ATALKARP = 0x80F3

1712 IPX = 0x8137*
SNMP = 0x814C#

IPv6 = 0x86DD'
LOOPBACK = 0x9000

Apple = 0x080007

* L3 Decoding
# L5 Decoding

13111311II?“"5.3111.3111l1'1
f,'1m,

 
"E11!1111"'

1752111211.1%H,'1!1m."  
 
 

3mm 
 

 
 

  

 
 
 

  

mmmwgwlm

 

L3 to - ,. » , ~ ICMP =1

M + WilT' -W.§'.=1:Wifl=fl¥lm 'GMP = 2

("fi’ 4 Src Address (1%: 32*
Dst Address EGP = 8

IGRP = 9_
VIII/[$1.1117ifliiiififlIIIIII/IIIIA pup =12

CHAOS =16

”D: =12;ID =2

Y‘ 1750 ISO-TP4 = 29
DDP = 3”

-°' (1) FIG. 1 7B ;LL?3%:§g‘gggding
-et = L3 + (lHL/4)

£11951?7‘
 

 
ISO-IP = 80

VIP = 83#
EIGRP = 88
OSPF = 89

 
       

NOAC EX. 1015 Page 107

 



NOAC Ex. 1015 Page 108

18/18

'-001-1
( A5 ORIGINALLY nun.‘_.

mum 0F Danna:

$3

L1802—M

1870

    
/

1802-2

 

1802 1

T NUM
LU :

I-hit!5....E1

Ea

NOAC EX. 1015 Page 108

mE\ABr.§§§“\89mm“.08.‘h.....\1Ecomtrm1attain!. .““th3!!GwGa...A...-III2HHF
1EEEM
D-\1.mmEEEaEl4Emwthan.FE%%685aLm

IPOZNJD.._m=n_

E__...1=__.V__W___i.Eian,“2..1..sV::9marH...1,i.1,3
W._.gn.”smug”..xM

 

,it,sat9.VFEEEnag“,maca;w.2rr¥§rnwxi;1



NOAC Ex. 1015 Page 109

 ~v————

 
 

 

This ”alarm is for HN'TERNAL PTO USE ONLY
‘11".3063‘ NOT get mailed to the applicant.

NOTICE (BI FILING / CLAIM FELIS) DUI:
(CALCULATION SHEET)

APPLICATION NUMBER:

 

Total FCC CuECIImxoc

Tau! .‘-u‘.‘.};rr

 

(

Er
I OMIome-MM-mmcv.12/77)I;-
‘i.-

I

"ELHL‘7

 

 

FerleI :'_lu":: Err“: F F‘" ' TM”

Sme: 5" F1 ”‘ LgtEnnrw

' .[IzL
ELIE Fulmg F1: MPH] _

fl "7’ ’37 f ZdTIJLH Clara: >1!) 1")? II); J j) - fl .' -%

l:..‘;;:c:dI::I: Chm; >3 20‘. m: ,2 ‘ - g 7.;
MIII Cc; Chum P722134 I'M M- '

- @ .___‘Squhxgc 1'13. It)"; ‘

Enghm Tr::.:!mon H" ._._.___

‘ 27TH. FEE CALCULATION ___.._

t ‘72:: (in: upon fiiutg L5: 3;;EICJZICJT3

g [é a)
TOLII Fxlnng F::: Du: = S

1”L=:: FIling Fczs Submad S

3‘ mjfl
? B-iLANCE OUT: = s

{0 — . I . . I
2 - ICc oflmual Palcnl Exmumuon{i

NOAC EX. 1015 Page 109

 



NOAC Ex. 1015 Page 110
of]

file:///c:/APPS/preexam/correspondcnceM.htm

    
FORMALITIES LETTER UNITED STATES DEPARTMENT OF COMMERCE

P k orr

lllllllllllllllllllllllllllllllllll llll llll lllll llll lllll llll llll lllllllllll 25;: ”2:012:30 0F Film AND TRADEMARKS
'ocooooooo05353894~ Washington, D c 20231

APPLICATION NUMBER FILING/RECEIPT DATE ‘ FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/608,237 06/30/2000 Russell 8. Dietz APPT-001 -1

Dov Rosenfeld
Suite 2

5507 College Avenue
Oakland, CA 94618

Date Mailed: 08/25/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below, however,

are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and
pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition
accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The statutory basic filing fee is missing.
Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming such
status (37 CFR 1.27).

- Total additional claim fee(s) for this application is $780.
I $702 for 39 total claims over 20.

I $78 for 1 independent claims over 3 .
- The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

- To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of
$130 for a non-small entity, must be submitted with the missing items identified in this letter.

- The balance due by applicant is $ 1600.

A copy of this notice MUST be returned with the reply.

gnaw; 1, ' r1 ct. , \
ustomer Service Center \

Initial Patent Examination Diviswn (703) 308~1202
, 1 PART 3 - OFFICE COPY

NOAC EX. 1015 Page 110
8/25/00 7:29 AM



NOAC Ex. 1015 Page 111

, ‘ SW/L
Our Ref/Docket No: A1 - F-001—1 _ Patent /

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE i“:3
  

 
 

 

b? E‘Afip'o ant(s): Dietz, et al.
6’

w as ampligation No.: 09/608237

Files}? June 30, 2000
. 6‘
mafia; METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

Group Art Unit: 2755

Examiner: (Unassigned)

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Missing Parts ‘

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53 (f).

Enclosed is a copy of said Notice and the following documents and fees to complete the filing

requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above-identified application is the

same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet. '

___X__ A credit card payment form in the amount of $ 1772.00 is attached, being for:

X Statutory basic filing fee: m

X Additional claim fee of $182

Assignment recordation fee of M0

Extension Fee First Month of m

Missing Parts Surcharge w
Mal“!
Applicant(s) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

1 overlooked the need for a petition for an extension of time.
i X Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

X one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

____—-

  

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commissioner for Patents. WashmgtOIl, DC. 1 on.

Date: Ab; / $19190 \  
< nrvuan‘.» .



NOAC Ex. 1015 Page 112

Application 09/608237, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50—0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

[19/ 1 , 200—0
Date ov Rosenfeld, Reg. No. 38687

Address for correspondence: . v
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653—7992

“" NOAC EX. 1015 Page 112



NOAC Ex. 1015 Page 113

tw,

a ‘m 11:3
PATENT APPLICATION

   
ATTORNEY DOCKET NO. APPT-OOl-l

 

 
As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

Ibelieve I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which15 claimed and for which a patent is sought on the invention entrtled:

METHOD AND APPARATUS FOR MONITORD‘IG TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

 

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section I20 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application15 not disclosed1n the prior United States application1n the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined1n Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atented/ endin_ abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

  
    

 

  
  

  
   

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all Statements made on information and belief are believed
to be true, and firrther that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 ofTitle 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

 

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San JoseI CA 95120-2736

,9 £0

Date NOAC EX. 1015 Page 113
 



NOAC Ex. 1015 Page 114

Declaration and Power of Attorney (Continued)

Case No; «Case CaseNumber»

Page 2 / " M I " I

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court, Autos, CA 95003

Post Office Address: Same

Inventor’s Signature

Name of Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

 

Inventor’s Signature

Name of Fourth Inventor: William H. Bares

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Inventor’s Signature

Name of Fifth Inventor: Haig A. Sarkissian

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

 

Inventor’s Signature

Name of Sixth Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

 

Inventor’s Signature

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

 

Date

Citizenship: USA

Date

NOAC EX. 1015 Page 114



NOAC Ex. 1015 Page 115

 

  EcLARATIONANDPOWER OF myDOCKET NO. APPT-001-1
F’og PATENT APPLICATION
As it below named inventor, I hereby declare that: H:. _ of

MY residence/post office address and citizmship are = Wbelow nfi’to my name;
[believe I am the original, W and 3916 inventor (ifo- ‘ an", .4 MM" “listed below) or an original, first and joint inventor (ifplural names are
listed below) of the subject matter which rs claimed and for w c a patent is sought on the invention entitled:

MEIHODAND APPARATUS FOR MONITORING TRAFFIC [N A NETWORK

me specification of which is attached hereto unless following box is checked
(X) was filed on June 30 2000 as US Ap'phc 'on Serial No. 09/608237 or PCT International Application Numba and

was amended on (if applicable).

Ihereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

 

 

Foreign Application(s) and/or Claim ofForeign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 ofany foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

-——-
—-——

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 J1me 30, 1999

US. Priority Claim

I hereby claim the benefit lmder Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter ofeach of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this applicatiorr

‘ ’ 'LICATION SERIAL NUMBER FILING DATE STATU aten ‘-o . audm; abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

  
   

  
  

  
  

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547—3378
Oakland, CA 94618 

I hqeby declare that all statemmts made herein ofmy own lmowledge are true and that all statemmts made on information and belief are believed
to be true; and further that these statements were made with the knowledge that wrllful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
Validity of the application or any patent issued thereon.

Name ofFirst Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

  

First Inventor’s Signature ”a“ NOAC Ex. 1015 Page 115



NOAC Ex. 1015 Page 116

 
 
 

 
 

 

  DECL‘ - - TION AND POW g
., 5 : FOR PAT T; PPLICAT s -

”TNT“ VI  

‘ _METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

' the specification of which is attached hereto unless the following box is checked: 
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

[hereby state that I have reviewed an r the contents of the above-identified specification, including the claims, as amended by any
‘ amendment(s) referred to above. I {c180 edge‘th duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

, Foreign Application(s) and/or Claim of Foreign Priority

, [hereby claim foreign priority benefits under Title 35, United States Code Section 1 19 of any foreign application(s) for patent or inventor(s)
‘ certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of

the application on which priority is claimed:

. COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

__— yes: NO:
3——— was: NO:

Provisional Application

(7‘3 I hereby claim the benefit under Title 35, United States Code Section 1 19(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

. A‘ US. Priority Claim

3‘ I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
“ ~: subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first

1 paragraph of Title 35, United States Code Section 1 12, I acknowledge the duty to disclose material information as defined in Title 37, Code of
. Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT intemational filing

’ 3‘ date ofthis application:

APPLICATION SERIAL NUMBER FILING DATE STATUS( nnatented/ending/abandoned)

’ POWER OF ATTORNEY:

AS a named inventor, l hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
In the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

  

 
 

  

 
 

 

 

  I
 

  
   

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618
 
I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
‘0 be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
line or imprisonment, or both, under Section 1001 of Title 18 ofthe United States Code and that such thlful false statements may jeopardize the
Validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: _Uifl

Residence: 6146 Ostenbeg Drive, San Jose, CA 95120-2736

Post Office Address: Same

NOAC EX. 1015 Page 116
.\-———-——————-———————

. F"'St Inventor’s Signature Date

 



NOAC Ex. 1015 Page 117

 
PATENT APPLICATION _

CLARATION AND POWER OF ATTORNEY - “Tommy DOCKET NO. APPT-oor-r
RAPATENT APPLICATION ‘ » "’- ré *r- 5 ~“ ‘1 '» — ‘~

 
 

 

  
  *1135 3 below named inventor, I hereby declare that:
iMY residence/post office address and citizenship are as stated below next to my name;

ieve I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
.‘ $5611 below) of the subject matter which rs claimed and for which a patent is sought on the invention entitled:
I;METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NEl WORK;, /‘C —
'2'R3th"! specification of which is attached hereto unless the following box is checked:t,

(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT International Application Number and
was amended on (if applicable). ,

hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
ii amendmenfis) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

 

(
,TX‘W

Foreign Application(s) and/or Claim of Foreign Priority

{I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent'or inventor(s)
:Icmjficate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

a;

m APPLICATION NUMBER , DATE FILED PRIORITY CLAIMED UNDER 35
" — YES: NO:

_— YES: N0:

a, Provisional Application

. 1hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

 

  

   

  
 

~24?"

 
US. Priority Claim

‘ 1hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
, subject matter of each'of the claims Of this application is not disclosed in the prior United States application in the manner provided by the first

paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
'» Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing

date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atented/ Hendin abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith: ‘

Dov Rosenfeld, Reg. No. 38,687

  
  fay).~

,m;

47,

retru~«w
Send COrrespondence to: ‘ ‘ A Direct Telephone Calls To:

Dov Rosenfeldw ~ Dov Rosenfeld, Reg; No. 38,68

5507‘ConegeA'venue,stirrer“; ~ ‘Tel:(51:0)547~3378'
Oakland, CA 94618 ~

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
' to be true; and further that these statements were made with the knOWledge that wrllful false statements and the like so made are punishable by
,‘x fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the

Validity of the application or any patent issued thereon.

 

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

  

First Inventor’s Signature Date

NOAC EX. 1015 Page 117



NOAC Ex. 1015 Page 118

Declaration and Power of Attorney inontinued)
Case No; «Case CaseNumber»

Page 2 Ifl'fi) ~5U/4.

ADDITIONAL INVENTOR SIGNATURES:

\

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood CouLt, Aptos, CA 95003

Post Office Address: Same

  nventor’s Sign

Name of Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature

Name of Fourth Inventor: William H. Bares

Residence: 9005 Gleiialden Drive, Germantown, TN 38139

Post Office Address: Same

 

Inventor’s Signature

Name of Fifth Inventor: Haig A. Sarkissian3

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

 

Inventor’s Signature

Name of Sixth Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

 

Inventor’s Signature

Citizenship: US
_.._

I

[0/23/2000
Date

 

Citizenship: USA

 

Date

Citizenship: USA

 

Date

Citizenship: USA

 

Date

Citizenship: USA

Date

NOAC EX. 1015 Page 118

“~41a

x:1_:N:,(f‘¥1.

 



NOAC Ex. 1015 Page 119

' .C) |.O
Declaration and Power ofAttorney (Continued)

Case No; «Case CaseNumber»

Page 2 AI’FT’W’ ”I

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Cong, Aptos, CA 95003

Post Office Address: §ame

  

Inventor’s Signature Date

Name of Third Inventor: Andrew A. Koppengver Citizenship: USA

Residence: 9325 W. Hinsdale Place Littleton CO 80128

Post Office Address:

”it ‘ IOZIOHOQQ
Date

Inventor’s Slgnature

 

 

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 005 l nalden Driv Ge anto TN 381

Post Office Address: Same

  

Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

  

Inventor’s Signature Date

Name of Sixth Inventor: James F. Taggerson Citizenship: USA

Residence: 227 157th Ave.I NWa Andover, MN 55304

Post Office Address: Same

  

Inventor’s Signature Date

NOAC EX. 1015 Page 119

 



NOAC Ex. 1015 Page 120

 
 

O
ATTORNEY DOCKET NO. APPT-001-l  PATENT APPLICATION '

 
 

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (ifplural names are
listed below) of the subject matter whlch 15 claimed and for which a patent is sought on the invention entitled:
METHOD AND PARATU FOR MO ORING C IN AW RK 

the specification ofwhich is attached hereto unless the following box is checked:
(X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCI' International Application Number and

was amended on (if applicable). w».

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER PRIORITY CLAIMED UNDER 35

   YES: NO:

YES: NO:  

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

Us. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowle the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the ' g date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS - atented/ - endin; abandoned

3 POWER OF ATTORNEY:
Sr

    

  
   

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687“rte—xi»"a.'
Send Correspondence to: Direct Telephone Calls To:

Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that Willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such w111ful false statements may jeopardize the
validity of the application or any patent issued thereon.

 
5773?"?P3”;at“if.a};

 

if Name of First Inventor: Russell S. Dietz Citizenship: £55
‘3' Residence: 6146 Ostenberg Drive, San Jose, CA 25120—2736

:3} Post Office Address: m

*2 Date
 ~—

First Inventor’s Signature

NOAC EX. 1015 Page 120 



NOAC Ex. 1015 Page 121

)eclaIation and Power ofAttorney ‘ ued) ..

jase No; «Case CaseNumbem « 0
’age 2 Am- 00: —/ ' . ’

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Court, AptosI CA 95003

Post Office Address: Same

 

Inventor's Signature Date

Name of Third Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fail-fag, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Fourth Inventor. William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive, Germantowg, TN 38139

Post Office Address: Same

774%‘ flag 2 Mg V/O o
Inventor’s Signature ( Date

Name ofFifth Inventor. Hajg A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

  

Inventor’s Signature Date

Name of Sixth Inventor. James F. Togerson Citizenship: 11—34

ReSidence: 227 157th Ave.I NW, Andover, MN 55304

Post Office Address: Same

 W

InVentor’s Signature Date

NOAC EX. 1015 Page 121



NOAC Ex. 1015 Page 122

~’d—v~

 

is:
i
gr,

9,;

  
As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I. believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

 

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

APPLICAmN NUMBER

__——
__——

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS natented/ vendin; abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

  
    

 
 

 

  

 
 

 
   

Direct Telephone Calls To:»Séhd:c"fihépbpdéiiceitfii ( v H ‘ V T:
Dov Rosenféld,Reg,N5_, 38,687 ;'- vvéyxkognrar “ 

‘vlfig’acoflégs‘xv’gfiggggggté2“ x; I; 1 (v . ’xTei: (510) 547-3378"
”Oakiafrd, CA 94618 a .

I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that wrllful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such wrllful false statements may jeopardize the
validity of the application or any patent issued thereon.

 

Name of First Inventor: Russell S. Dietz Citizenship: _Ufl

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

 \___—___________

First Inventor’s Signature Date
NOAC EX. 1015 Page 122



NOAC Ex. 1015 Page 123

,. .0, ..0

Declaration and Power ofAttorney (Continued)
Case No; «Case CaseNumbez»

Page2 rip/fugue]

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Cong, Aptog CA 95003

Post Oflice Address: Same

Inventor’s Signature Date

Name of Third Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drivg Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name ofFourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive_, Germantogn, TN 38139

Post Office Address: SameWWs»:
Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio: Texas 78255

Post Office Address: Same

fig}: 1’ £000n 
Name of Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

 

Inventor’s Signature Date

NOAC EX. 1015 Page 123

yd‘



NOAC Ex. 1015 Page 124

  
PATENT APPLICATION

 
 
 

 

  “Hark-lithe;'1 . ,. rowan DF‘ATIORNEY
FORPATENTAPPLICATION

As a below named inventor, I hereby declare that

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (ifplural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
METHOD APPARATUS F R MONITORING TRAFFIC IN A NETWORK

   

 

the specification ofwhich is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCI' International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

 

Foreign Application(s) and/or Claim of Foreign Priority

Ihereby claim foreign priority benefits tmder Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed;

comm

_—_—
_—_—

Provisional Application

[hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

U.S. Priority Claim

Ihereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph ofTitle 35, Unith States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section l.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date ofthis application:

APPLICATION SERIAL NUMBER FILING DATE STATUS - atented/ - ndin abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. N0. 38,687

     

    

     

Send Correspondence to: _ Direct Telephone Calls To:
DovRosenfeld A Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 4 Tel: {510) 547~3378
CA 94618 ‘

I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements mayjeopardize the
validity ofthe application or any patent issued thereon.

 

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Qstenberg Drive, San Josg CA 95120—2736

Post Office Address: Same

 ____________.___

First Inventor’s Signature Date

NOAC EX. 1015 Page 124



NOAC Ex. 1015 Page 125

 

v.

Declaration and Power of Attorney (Continued)
Case No; «Case CaseNumber»

Pagez MPT'OOI‘f

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Cougta Aptos, CA 95003

Post Office Address: Same

Inventor’s Signature

Name of Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore DriveI Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature

Name of Fourth Inventor: William H. Bares

Residence: 9005 Glenalden Drive, Germantown: TN 38139

Post Office Address: Same

Inventor’s Signature

Name of Fifth Inventor: Haig A. Sarkissian

Residence: 8701 Mountain Top: San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature

Name of Sixth Inventor: James F. Torgerson

Residence: 227 157th Ave., NW: Andover, MN 55304

Post Office Address: 
 
  In ntor’s Signature

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

 

Date

Citizenship: USA

M
Date

NOAC EX. 1015 Page 125



NOAC Ex. 1015 Page 126

’Q E “LC" ‘ file:///c:/APPS/precxan'i/corrcspondence/Zi.Iitm
s. 0e a7 us 1000 iii ‘ 1“:
“0‘ t S A

UNITEBSTATES DEPARTMENT OF COMMERCE
Patent and Trademark Office

Address COMMISSIONER OF PATENT AND TRADEMARKS
Washington. D c. 20231

MFG LITIES LETTERIIIIIIIIIIlIIlIlIIIlIIlllIII |I|ll||l|l|ll|| III III IlIllllllllIlllllll
'OC000000005353894'

 /  
\

APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/608,237 06/30/2000 ‘ Russell S. Dieiz A APPT-OOI-I

Dov Rosenfeld
Suite 2

5507 College Avenue
Oakland, CA 94618

Date Mailed: 08/25/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below, however,

are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and
pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition
accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The statutory basic filing fee is missing.

Applicant must submit W0 complete the basic filing fee and/or file a small entity statement claiming such
status (37 CFR 1. 27) 7'0

0 Total additional claim fee(s) for this application is $780.
I $702 for 39 total claims over 20.

l $78 for1 independent claims over 3 . i0
- The oath or declaration is missing.

3; A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

- To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of
$130 for a non-small ’entity, must be submitted with the missing items identified in this letter.

- The balance due by applicant is $1600.
no

   

B L A—“O z \ 1 ’1 ,all:
A copy ofthisnotice M___U_ST be returned with the reply.

 /

TIMI” g 4.,
Customer Service Center 5}
Initial Patent Examination Division (703) 308-1202 "‘3,

PART 2 - COPY TO BE RETURNED WITH RESPONSE :2”:

0f
1 8/25/00 7:29 AM

NOAC EX. 1015 Page 126



NOAC Ex. 1015 Page 127

 Our Docket/Ref. No.2 APPT-OUl-l

  

 

  

6P/W

Patent 2] 3 /
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group Art Uni“ 2755 RECEIVED
Examiner:

. / APR 1 6 2001
Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A Tommy Center 2‘00
NETWORK

Commissioner for Patents ’

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X

_X_

_X_

Date: April 9, 2001

An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

 

Respectfull submitted,  

 
  ov Rosenfeld

I Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1—510—547-3378

Certificate of Mailing under 37 CFR 1.18

l hereby certify that this correspondence is being deposited with. the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 2023],

DateofDeposit: (4.4!“ 4, & I
Signature: 

NOAC EX. 1015 Page 127

#1
4400

\



NOAC Ex. 1015 Page 128

~ . O :3
Our Docket/Ref. No.: APPT-OOl-l Patent

 

  

 
 

 

Group Art Unit: 017 r;

Examiner: RECE\VED
Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR MR 1 5 200‘
MONITORING TRAFFIC IN A 100
NETWORK Technologv centeIZ

Commissioner for Patents

Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

L under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

under 37 CFR l.97(c) together with either a:

Certification under 37 CFR 1.97(e), or

__ a $180.00 fee under 37 CFR 1.17(p)

(After the CFR 1.97(b) time period, but before final action or notice of

allowance, whichever occurs first)

under 37 CFR 1.97(d) together with a:

__ Certification under 37 CPR 1.97(e), and
_ a petition under 37 CFR l.97(d)(2)(ii), and

_ a $130.00 petition fee set forth in 37 CFR 1.17(i)(1).

(Filed after final action or notice of allowance, whichever occurs first, but before

payment Of the issue fee)

X Applicant(s) submit herewith Form PTO 1449-Inforrnation Disclosure Citation together

with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

  

 

I hereby certify that this correspondence is belng depOSlted with the United States Postal Service as first
class mail in an envelope addressed to. Commissioner for Patents, Washington, DC. 20231.

Date of Deposit: Q 2'90 f

Signature1%Dov R0 d, Reg. No. 38,687

  

 . , NOAC EX. 1015 Page 28



NOAC Ex. 1015 Page 129

OS/N: 09/608237 Page 2 D IDS

X Some of the references we1e cited'1n a search report f1om a foreign patent office1n a

counterpart foreign application. In particular, references AD, AF, AH, CI, EA, EB, EC, and ED

were cited1n a search leport f10m a foreign patent office1n a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR l.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

P/6/

osenfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Date: April ‘7, 2001

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510—547—3378

NOAC EX. 1015 Page 129



NOAC Ex. 1015 Page 130

 

<3 SHEET 1 OF 5.
ATTY. DOCKET NO. SERIAL NO.

APPT—OOl-l 09/60823PECEIV'ID
APPUCANT

Dietz et a1.

 
 
 
  
 
 

  
 

 
 
  

 

 
FILING DATE

6/30/2000

DOCUMENT

NUMBER
'EXAMINER

INITIAL  
O 0 rr 8:
1985

Jun. 23,
1988

.5

LA)L»)Wb.) \I O

0 825. 500

1988

-
AC 5101402 Chui et al.1992

Sep.

Sep.

1988

(D m (D 'U N
AD 5247517 Ross et al.1993 1992

247693 Bristol 395 8 ov. 17,
1993 1992

O O

1994 1991

1994 1992

1994 1991

1994 1993

1994 1993
394394 Feb. , Crowther et al. 370 24,

1995 1993
FORHGNPATENTDOCUMENTS

PUBLl-CATION TRANS-

DOCUMENT COUNTRY CLASS SUB-CLASS LATION
NUMBER YES I NC

”Technical Note: the Narus System," Downloaded April 29,1999 from
.narus com, Narus Corporation, Redwood City California.

 
   
 
 

 

DATE CONSIDERED

EXAMINER L /L/&/l7/\ 5; Z /
EXAMINER: InitIaI If CItann consudered, whether or not Citation IS In conformance With MPEP 609 mgquxtatiTfl15" B .u, n. n¥30

and no_t consudered Include a copy of II'IIS form wnh next communication to Applicant

 
 

  



NOAC Ex. 1015 Page 131

Eta/.FORMv1449 "‘ SHEET 2 OF 5.

ATI'Y. DOCKET NO. SERIAL NO.

APPT—OOl-l 09/6082fi7ECEIVE”
APPUCANT

Dietz et al.

(Use several sheets if necessary) FILING DATE
6/30/2000

US.PATENTDOCUMENTS

FILING DATE

'EXAMINER DOCUMENT NAME CLASS SUB-CLASS IFAPPFIOPRIATE
INITIAL NUMBER

ekhuls 64 15.02 24,51) HI

. 4 Galloway

Harper
1995

Stansfield e

H- kDSD kD‘< 01
LG

I

HHmHHq \l\l[\J\]LAJ H

m m'U

1993

um. 17,
1992

c H LaJ q o g
H: \D to U1

30,
1993

. 1,
1993

an. 26,
1994

$1) HFeb. 2 aclawsky et a1 95

—7“

I-—‘ \D \D 0"
Iar

H w k0 m

m (D H m :3" (D‘< (D n m H1

2 OJ \1 O 61U) (D"Om (D H m D" m‘< m n m H

t al. .
1993

1993

1993

lar. Large et a1. 64 24.01 ran. 12

Iddon et a1. 95 00.11 . 27,
1995

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT COUNTRY CLASS
NUMBEFI

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages. Place of Publication. Etc.)

1995

a; o L» DJ '1 12,O

i1996

N O O H H O 0 ('I'

. 2'11 (D

I
E?s(DQ;

1

0

9

2

2

7

5

1

1

4

I

/

I

I

I

I

I

I

I O 0 rr9:‘< m q IIIIIIIIIIII
SUB-CLASS

III-IIIIIIII

‘EXAMINEH; Initial if Cltallon considered, whether or not citation is in conformance with MPEP 609. r ()Iirlgtzouficnati quonnancf3 1
and n_ot considered. Include a copy of this form with next communication to Applicant. X' age

 



NOAC Ex. 1015 Page 132

 
 
 

 
 

D SHEET 3 OF 5.
SERIAL NO.

09"”8fiECEIVE-

Et aI.FOFIM - 1449

 
 

 
 

A'ITY. DOCKET NO.

APPT—OOl—l

  

  
 

  
 

 
 

 
APPUCANT

Dietz et a1.

  (Use several sheets if necessary) FILING DATE
6/30/2000

US. PATENT DOCUMENTS

DOCUMENT NAME CLASS
NUMBER

an Seters et all.

CB 684954 Kaiserswerth et al 395I1997

outhard

 

  
  

'EXAMINEFI
INITIAL LA.) \‘I O

C) (D m m (D I—‘ (D (T W I—‘

 

 
 
 
 
 

Il"1998

“II—j:1998

“II-1998
5764638

781735 S 395

III 1998

1998

1998

1998 1996

PUBLI-CATION
DOCUMENT COUNTRY CLASS

NUMBER

71 m (T n3cE! L.) \l O

b.) \D 01

q||||IIIIIIiIIIiiIIiilIIIIIIIHHD

0m' Nmo mD0 I1(/2H :3a:m H-:3m wHH
*<

mm rrrr(0
(T

mm ,_.,_.m ..._. w \0 U1

 
 

 
w \‘I O

SUB—CLASS

III IIII
 

and flO_I considered. Include a copy of Ihis form wnh next communicafion to Applicant.



NOAC Ex. 1015 Page 133

T} D SHEET 4 OF 5.i
0

6L A‘I'I'YI DOCKET NO.APPT—OOl—l

INFORMATION DISCLO l RE STATEMENT APPLICANT
Dietz et al.

(Use several sheets if necessary) FILING DATE
6/30/2000

US.PATENTDOCUMENTS

SD :3IQ:1" H HBDJ I—‘ DJ:3 I-' (D (1. DJ I—‘ I-' (I) U! I-'

FILING DATE
CLASS SUB-CLASS IF BPPROPFIIBTE

1997

1995

1996

1996

1996

1996

'EXAMINER DOCUMENT DATE
INITIAL NUMBER

NAME

Oct. 6
1998

. 2
1998

. 1

1998

O I—‘ C I-‘

T'—O0OO<il
. l

1998

IOV.

1998
O0 ('1'

U) 0 13‘S91 H H (D H (D ('1' p: I—‘ N[\J
O 0 U1 LO

-Huf fman 3 8 2

I

I

I

I

I

I

I

I

e .

1998

D c

D c

| r

LA.) \I O

I

55

41

21 b.) \I O 25 31,
HO L00 LOFT 0’1

0

O

7

4

5

. 5

1998

91gDJ

Ilil

e

1999
a .

1999

‘pr. 6
1999

2

1

2 Q, (D I-‘ Q) U) Q) I—' I-‘ (D I-‘N
3H. (DLOO Okorr .\1.

to L0

0:3”(D H H rr 0:3 H H H p p

903754 , Pearson91I< I—1 I—1 (A LO U'l ox 00 O
1999

FORHGNPATENTDOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY
NUMBER

CLASS SUB—CLASS

I!!-IIIIII III

in

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

I
EXAMINER

M I»
'EXAMINER: inItIal If cnation considered, whether or not citation Is in conformance with MPEP 609. NOIA

and n_ot conSIdered. Include a copy of this form WIth next communication to AppIICant.

 



NOAC Ex. 1015 Page 134

SHEET 5 OF 5.

ATTY. DOCKET NO.

APPT— O O l - l

APPLICANT

Dietz et a1.

(Use several sheets if necessary) FILING DATE
6 / 3 O / 2 O O O

FILING DATE

'EXAMINER I DOCUMENT DATE CLASS SUB-CLASS IFBPPROPRIBTEINITIAL NUMBER

917821 un. 2 obuyan et al 370 392 ug. 16,
MIN _ --

5

[A EB 5414704 , Spinney ‘ pr. ,M M 1994

Mill/l a“
,

l-‘ LO LO LO

1-!" on) ko‘< U'I

Lo Lo \1 o

[\J O O 0
Cl: (D :3O;(D [—1 (D ('1' Q) [—1 \1 O U.) LO [\3

1997

. 26,
1993

Jun 30,

Apr. 23 00 o o O O rt

EC

ED
5.1 LO LO ON

395

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT COUNTRY CLASS
NUMBER

—

SUB-CLASS

OTHER DISCLOSURES (Including Author, Title. Date, Pertinent Pages, Place of Publication, Etc.)

'EXAMINER Initial If Citation consudered. whether or not citation is in conformance With MPEP 609. NMEUI (Xatiolgfl 51 Bflgfimlsél.
and not conSIdered Include a copy of this form wuth next communication to Applicant.

 



NOAC Ex. 1015 Page 135

Our Docket/Ref. No.2 APPT-OO IL1 Patent

  
 
 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group Art Unit: 173’;

Examiner:  
 
 

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK

Commissioner for Patents N)“
Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

A under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

A Applicant(s) submit herewith Form PTO] 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 156.

3; (Certification under 37 CFR. 1.97 (e)) Each item of information contained in this

information disclosure statement was first cited in an official communication from a foreign

patent office in a counterpart foreign application not more than three months prior to the filing of

this information disclosure statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR‘1.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is \
Certificate of Mailing under 37 CFR 1.18

  

  

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

D osenfeld, Reg. No. 38,687

k.A _ | ’1',

$5



NOAC Ex. 1015 Page 136

S/N: 09/608237 page 2 IDS

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Date: é 0 HM Ml
Respectfully submitted,

'Eov Rosenfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547—3378

NOAC EX. 1015 Page 136



NOAC Ex. 1015 Page 137

Eta/.FOP... . .- SHEET 1 OF 1. 

A'ITY. DOCKET NO. - SERIAL NO.
APPT—OOl—l 09/608237

INFORMATION DISCLOSURE STATEMENT APPLICANT 
 
 

Dietz et al. ”kg

FILING DATE GROUP

6/30/2000 32233 2,57
U.S. PATENT DOCUMENTSl

u

._.-‘......D

‘EXAMINER I DOCUMENT DATE NAME CLASS SUB-CLASSINITIAL NUMBER

5,249,292 SEP- 28, I ar. 10,1MAMI-1993
. 5,511,213 pr. 23, Correa 395M

FILING DATE
IF APPROPRIATE

LO \0 I.\)

m o o 9’“<1 C0

0:3“ H. mUUn) w m U1 m U1 0

MIMI/I I-Dec. 30, I uber et al. ' 370 -| CV. 22,1997 1995

351 Aug. 16,
1996

AD 5,802,054 Sep. 1, 'ellenger 37o
MIMI/I 1998

AE

b'71-
b
l

FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS-

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION
NUMBER YES | NO

 

  
 



NOAC Ex. 1015 Page 138

IlllllIlllllllIllIllll||||l||||lllllllllll'um.ililllllllllIIlIlllIlIllll

 

. i _ ‘ 11500524929».
Umted States Patent [19] [1)] Patent Number: 5,249,292
Chiappa [45] Date of Patent: Sep. 28, 1993

[54] DATA PACKET SWITCH'USINGAPRIMARY 4,975,321;~ 12/1990 Wishneusky et a1. .. 395/325

[761

[21]

[22]

[63]

[51]

152]

[531

[56]

PROCESSING UNIT TO DESIGNATE ONE
OF A PLURALITY OF DATA STREAM
CONTROL CIRCUITS TO SELECTIVELY
HANDLE THE HEADER PROCESSING OF
INCOMING PACKETS IN ONE DATA
PACKET STREAM

 
 
 
 

 
 
 
 

 
 
  

 
 

Inventor: .1, Noel Chiappa, 708 E. Woodland
Dr., Grafton, Va. 23692

App]. No.: 847,880

Filed: Mar. 10, 1992 '

Related US. Application Data /
Continuation of Ser. No. 332,530, Mar. 31. 1989, aban-
doned.

Int. Cl.-‘ ......................... G06F 9/28; G06F 13/ 12
US. Cl. .................................... 395/650; 395/325;

395/800; 370/60; 370/61; 364/DIG. 1;
364/228; 364/229.2; 364/230.3; 364/230.4;

364/266
Field of Search .................. 364/DIG. l, DIG. 2:

340/825.52, 825.1; 370/60, 61, 80; 395/200, '
325, 650, 800

References Cited

U.S. PATENT DOCUMENTS

3.846.763 11/1974 Riikonen ............................. 395/275
4.281.315 7/l981 Bauer et a1 364/200
4,312,065 l/l982 Ulug ............. 370/94
4,456,957 6/l984 Schieltz 364/200
4.493.030 1/1985 Barran et a1. 364/200
4,494,230 1/1985 Turner . . 370/60
4,499,576 2/ 1985 Fraser ..... . 370/60
4.601.586 7/l986 Bahr et a1. 364/200
4.630.258 12/1986 McMillen et al. 370/60
4.630.260 12/1986 Toy et a1. ........ .. 370/60
4.777.595 10/1988 Strecker et a1. 364/200
4,807,282 2/1989 Kazan et a1. 379/284
4,851,997 7/1989 Tatara ............. 364/200
4,858.112 8/l989 Puerzer et a1 364/200
4,899,333 2/1990 Roediger ............. I ..... 370/60

. (I'm willuamum

  
4,979,100 12/1990 Makris et al. 395/325

. 4,991,133 2/1991, Davis et al. ......................... 395/375

OTHER PUBLICATIONS

“Hyperchannel Net Is Plugged Into the Open—Systems
World,“ Electronics. Oct. 1, 1987, pp. 96-97,
“Cisco Introduces High-Performance Desktop Gate-

way That Allows Remote Users to Access World—
Wide Networks", ciscoSystems, Inc., Mar. 4, 1988.

“Company Backgrounder Mar. 1988". ciscoSystems,
Inc. Network Systems brochures.

Primary Examineh—Thomas C. Lee
Assistant Examiner—John C. Loomis

Attorney, Agent. or Finn—Fish & Richardson

[57] ABSTRACT

A high speed data packet switching circuit has a soft-
ware controlled primary processing unit, a plurality of
network interface units connected to a plurality of net-
works for receiving incoming data packet streams and
for transmitting outgoing data packet streams, a plural-
ity of high speed data stream hardware control circuits
for processing data packets in response to instructions
from the primary processing unit and circuitry for inter-
connecting the primary processing unit, the interface
units, and the data stream control circuits. The primary
processing unit receives from the network interface unit
at least a first one of the data packets of each new data
packet stream and assigns that stream to be processed
by one of the data stream control circuits without fur-
ther processing by the primary processing unit. The
apparatus and method thus perform routine, repetitive
processing steps on the further packets of the data
stream using the high speed hardware circuitry, while
the initial processing and other non-repetitive or special
proeessing of the data packets are performed in soft-
ware. Particular hardware is described for effecting the
high speed hardware processing of the data packets.

17 Claims, 5 Drawing Sheets

m: u 110:: >'1". mm!  

Hm". '

NOAC EX. 1015 Page 138



NOAC Ex. 1015 Page 139

@
US. Patent Sep. 28, 1993 Sheet 1 of 5 5,249,292

mmmmmm

mm m: ”1 WW ”Iggy/um
”TIMI
MIMI/70!

III'WII llfflflif
It’ll”!

“fit/ll ”WWW Mllfl‘f/fll
r30:4!:

llfflflt't‘ III/I'll -—--——--

It'll”!
Mllfl'f/W

3/

III'IMI "III/16‘! ”I’M!
5/7”!” Mllifl/fll

I‘MIIMM

-———o Will/f Ill/VII

Fflflll
”0555/!“

till!

L.____________________

FIG. 1

 
NOAC EX. 1015 Page 139



NOAC Ex. 1015 Page 140

mums-4pw4~

“r

US. Patent Sep.28, 1993 Sheet 2 of 5 5,249,292

mmmm

i N f?”
mm”(MMWWW—LP“

(”W

I”! ”fl-2Mj_______________________n—
II?!”
Ill!

0171 [DC X____________-_.__--X:J__

If” PM”71'70 I l H

\ If”! f/M'sl ;

FIG. 2
 
 

 

mmmm

mm[iii-ill

0%"r m: ”fir-m ________________n__

”I” __________.X:L_ 

NOAC EX. 1015 Page 140



NOAC Ex. 1015 Page 141

.‘11
US. Patent Sep. 28, 1993 Sheet 3 of 5 5,249,292

MW mmmm

51/555, 3/ my
,-———~——‘ M

 
SIR/PF!”

IMMII/

Mill”!

Fx
EI

E

3

x.mw—n-V
.m1.»

Mffflfl
fiflM/I’”

Ill/ff! Mfl’l/f

”If”! 01/74
[0576‘ [Iii/"if,».mwmnmvmm»:~,  

NOAC EX. 1015 Page 141



NOAC Ex. 1015 Page 142

«yang-m..

,WV."’5'“um“...x...WWW ‘-

n

v ',

‘1

US. Patent

II” ”If![ff

 2.5?

I”

@
Sep. 28, 1993

””27
571”

Sheet 4 of 5 5,249,292

M’Pl/f MM
[”5

NOAC EX. 1015 Page 142



NOAC Ex. 1015 Page 143

WM.“WW
“3...,

wt.“«Mawww.a...

«Hmxb‘I‘.'swk"

@ a

US. Patent Sep.28, 1993 Sheet 5 of 5 5,249,292

. mm II

   

 
 

320

IIfl/f
”lift?

””27 3;;

--—--~rfm

; w
  
  

 
 

f0 Illffflfi ”RIM/l
PM, IIIII, #012, AM, (It.

”6'”fo

FIG. 6’

NOAC EX. 1015 Page 143



NOAC Ex. 1015 Page 144

xvi—J‘-~th3»yaflgfl

Am.a-%,.7m.‘WMW’,.sxiv“!v-nu‘»\iwmrfi‘mWr,&‘1~
.
3t
ix
i

”wrwwvmnefimi
M.«.

 

w.

.,’i,.,

1

DATA PACKET SWITCH USING A PRIMARY
PROCESING UNIT TO DESIGNATE ONE OF A

PLURALITY OF DATA STREAM CONTROL
CIRCUITS TO SELECI'IVELY HANDLE THE

HEADER PROCESSING OF INCOMING PACKETS
IN ONE DATA PACKET STREAM

This is a continuation of co-pending application Ser.
No. 332,530 field on Mar. 3], 1989 now abandoned.

BACKGROUND OF THE INVENTION

The invention relates generally to data communica—
tions networks and in particular to the packet switch
used to direct the flow of data packets along data paths
in a data communications network.

In a data communications network, a data packet
switch directs data packets from one network node to
mother. The throughput for a packet switch can be
measured in the number of either data packets per sec-
ond or bits per second which pass through the switch.
The former measure is important because in a typical
network traffic, the bulk of the packets are small. How-
ever, when the traffic is weighted by packet size, the
bulk of the data is carried in large data packets. In large
bulk data transfers, the second measure is thus more

important. This is a continuing dichotomy in through-
put measurement. For example. the amount of work
needed to switch packets is fairly constant, independent
of the packet size.

The average desired values for both of these mea-
sures of packet throughput are going up quickly, just as
other basic measures of computer power have been
increasing. As the volume of the data transfers in-
creases, increasingly higher throughput rates are being
demanded. The increase in the volume of data transfers

results as experience is gained in new systems, and more
and more applications, with more and more expansive
needs, are being developed. Also, quickly changing
technology has made the basic underlying data trans-
mission resource very inexpensive. Fiber optics, for
example, offers data rates in the gigabyte per second
range. Finally, many difficult problems in the organiza-
tion of large systems can be bypassed by the free con-
sumption of resources. The typical drop in cost of such
rsources has always made this an attractive path for
meeting difficult system requirements.

Accordingly, the need for throughput rates substan-
tially higher than currently available in a packet switch
is presently sought. Switches more than an order of
magnitude faster than current switches would seem to
be required.

The present invention is directed to a class of packet
switch which differs substantially from the other two
classes of devices often commonly (and confusingly)
referred to as packet switches.

One class of packet switch is that commonly used in
digital telephone exchanges. This switch is intended
only to transfer packets among the devices in a single
station, such as a telephone exchange. The format of the
packet in these systems is chosen to make the hardware
in the switch as simple as possible; and this usually
means that the packets include fields designed for direct
use by the hardware. The capabilities of this class of
switches (for example, in such areas as congestion con-
trol) are very limited to keep the hardware simple.

The second class of packet switch is used in networks
such as X15 networks. In some sense, these switches

5

IO

15

20

25

30

35

45

50

55

65

5,249,292
2

are little different from the switch described above, but

there is a substantial difference. The format of the pack-
ets (that is, the protocols) handled by these switches is
much more complex. The greater complexity is neces-
sary since the protocols are designed to work in less
restricted environments and in a much larger system,
and provide a greater range of services. While the for-
mats interpreted by the first class of switches above are
chosen for easy implementation in hardware, the data
packets handled by this second class of switches are
generally intended to be interpreted by software (which
can easily and economically handle the greater com-
plexity).

In the third class of packet switch, the packet proto-
cols are intended to be used in very large data networks
having many very dissimilar links (such as a mix of very
high speed LAN’s and low speed long distance point to
point lines). Examples of such protocols are the United
States designed TCP/IP, and the lntemational Stan-
dards Organization’s IP/CLNS protocols.

In addition, this third class of switches (called rout-
ers) often handle multiple protocols simultaneously.
Just as there are many human languages, there are many
computer protocols. While a single set of telephone
links and exchanges suffice to handle all human lan-
guages, in computer communication systems the
switches are more involved in the carrying of data, and
must understand some of the details of each protocol to
be able to correctly handle data in that protocol. The
routers often have to make fairly complex changes to
the packets as they pass through the switch.

It is this latter class of packet switch to which this
invention primarily relates. In current conventional
packet switch design, a programmed general purpose
processor examines each packet as it arrives over the
network interface and processes the packet. Packet
processing requires assignment to an outbound network
interface for transmission over the next communications

link in the data path. While attempts are being made to
build higher speed packet switches. based on this gen-
eral architecture, the attempts have not been very suc-
cessful. One approach is to use faster processors; an-
other is to make the software run faster; and a third is to
apply multiple processors to the processing task. All of
these approaches fail to meet the need for the reasons
noted below.

The approach which uses faster processors simply
keeps pace with processor dependent (future) demands
since the traffic which the packet switch will handle
will depend upon the speed of the user processors being
used to generate the traffic. Those user processors, like
the processors in the packet switches, will increase in
speed at more or less the same rate and accordingly no
overall increase in the ability of the future packet switch
over the present packet switch, relative to traffic load,
will be available. Furthermore, this approach may be
impractical as not .being cost-effective for wide spread
use. For example, two high speed machines, distant
from each other, must have intermediate switches
which are all equally as powerful; deployment on a
large scale of such expensive switches is not likely to be
practicable.

The approach which increases the execution rate of
the software itself by, for example, removing excess
instructions or Writing the code in assembly language,
leads to a limit beyond which an increase in execution

rate cannot be made. The gains which result are typi-
cally small (a few percent) and the engineering costs of

NOAC EX. 1015 Page 144



NOAC Ex. 1015 Page 145

 
E

51
i53,i
3?

{3
i

i
g.

:3* *4

~wenkm,pm
:~w

\«‘9an-

 
i
i
t

i5

E
i

“

3
such distortions in the software are significant in the
long term.

The use of multiple processors to avoid the “proces-
sor bottleneck" provides some gains but again has lim-
its. Given a code path to forward a packet, it is not
plausible to split that path into more than a few stages.
Three is typical: network input; protocol functions; and
network output. The basis for this limitation is the over-
head incurred to interface the different processors be-
yond a limited number of task divisions; that is, after a
certain point, the increase in interface overhead out-
weighs the savings obtained from the additional stage.
This is particularly true because of the need to tightly
integrate the various components, for example, conges-
tion control at the protocol level requires close coordi-
nation with the output device. Also, the interface over-
head costs are made more severe by the complication of
the interface which is required.

In general then, the multiprocessor approach is not.
as expected, the answer to substantially increasing the
throughput of the packet switching network. This has
been borne out by several attempts by technically well-
regarded groups to build packet switches using this
approach. While aggregate throughput over a large
number of interfaces can be obtained, this is, in reality,
little different than having a large number of small
switches. It has thus far proven implausible to substan-
tially speed up a single stream using this approach.

Accordingly, it is a primary object of the present
invention to increase the throughput of a data packet
switch while maintaining reasonable cost, and avoiding
a high complexity of circuitry.

Other objects of the invention are a high speed data
packet switching circuitry and method which can han-
dle large numbers of input streams, large numbers of
output destinations and lines, and large and small data
packets at high bit and packet throughput rates.

SUMMARY OF THE INVENTION

The invention relates to a method and apparatus for
effecting high speed data packet switching. The switch-
ing circuit features a software controlled primary pro-
cessing unit; a plurality of network interface units for
receiving incoming data packet streams and for trans-
mitting outgoing data packet streams from and to net-
work paths respectively; a plurality of data stream con-
trol circuits or flow blocks for processing data packets
in response to the primary processing unit; and circuitry
for interconnecting the primary processing unit and the
plurality of interface units and data stream control cir-
cuits. The primary processing unit is adapted to receive
from the network interface units, and to process, at least
a first one of the data packets of each new data packet
stream and to assign this stream to be processed by a
data stream control circuit without further intervention

or processing by the primary processing unit. It is im-
portant to note that this first packet is not necessarily a
"connection set up" packet or any other similar explicit
direction to the switch to set up a stream. Rather, as is
usual in the connectionless datagram model, this first
packet is just another user data packet.

In particular aspects of the invention, the data stream
control circuit features a pattern matching circuit, re-
Sponsive to pattern setting signals from the primary
processing unit and to the incoming data packets from
the network interface units, for identifying those pack-
ets of a packet stream which will be processed by the
control circuit. The data stream control circuit further

l0

[5

20

25

30

35

45

55

65

5,249,292

features a processing unit responsive control circuit for
controlling, in response to control signals sent by the
primary processing unit, the congestion control and
header modification, stripping and prepending func—
tions of the data stream control circuit. The data stream

control circuit further features a data buffer responsive
to the pattern matching circuitry and the processing
unit responsive control circuit for storing data and pro-
tocol elements of an incoming data packet stream and
for outputting a data packet stream to be forwarded
along a communications -path.

The network interface unit features, in one aspect of
the invention, a network interface circuit for communi-

cating with a network channel and an interface adapter
for receiving channel data from the network interface
circuit and for transmitting that channel data over the
interconnecting circuit structure to the data stream
control circuits and the primary processing unit, and for
receiving network data from the data stream control
circuits and the primary processing unit over the inter-
connecting circuit structure and for providing received
data to the associated network interface circuit for
transmission over a network channel.

In another particular aspect of the invention, the
software controlled primary processing unit features a
central processing unit, bus circuitry, a plurality of
input storage units for receiving respectively each of
the plurality of data streams from the network interface
units and each storage unit having its output connected
to the bus circuitry, elements for connecting the central
processing unit to the bus circuitry, and a plurality of
output storage units for receiving data from the central
processing unit over the bus circuitry and for providing
the data to the network interface units.

The method of the invention features the step of
separating from a software controlled primary process-
ing unit used in a high speed data packet switching
circuit a portion of the functionality which is repeti-
tively used in connection with the processing of the
second and further packets of an input data stream and
implementing that portion of the functionality in hard-
ware elements.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the inven-
tion will be apparent from the following description
taken together with the drawings in which:

FIG. 1 is an electrical block diagram of an overall
packet switching circuitry in accordance with a particu-
lar embodiment of the invention;

FIG. 2 is a timing diagram of an input interconnect
circuitry according to a particular embodiment of the
invention;

FIG. 3 is a timing diagram of an output interconnect
circuitry in accordance with a particular embodiment of
the invention;

FIG. 4 is a detailed block diagram of the control
circuitry according to a particular embodiment of the
invention;

FIG. 5 is a detailed block diagram of the pattern
matching circuitry according to a particular embodi-
ment of the invention; and

FIG. 6 is a detailed block diagram of the control
circuitry of the flow blocks according to a particular
embodiment of the invention.

NOAC EX. 1015 Page 145



NOAC Ex. 1015 Page 146

 
lr;

-\up.»nwWa-«W«~.»«~-‘~‘-.Mwmmsifi:x:v:xzd'..‘1rei"ss‘*'v10W}“W1’“."F1“”“T”
5

DESCRIPTION OF A PARTICULAR
PREFERRED EMBODIMENT BACKGROUND

According to the invention, a selected portion of the
packet forwarding operation, previously performed by
the processor software, is moved from the software to
the packet switch hardware. In this manner, all of the
load on the software is removed for “normal user data

packets;" and since hardware can operate at a substan-
tially greater speed than software, substantial perfor-
mance gain can be achieved. However, any attempt to
translate into hardware all of the functions currently
performed in software would not be possible. Typical
packet switches contain tens of thousands of lines of
code, and are thus of extreme complexity. To imple-
ment all of this software in hardware would require
either programmability of the hardware, thus reintro-
ducing the problem of a software system, or require an
unmanageable and uneconomic configuration of hard-
ware circuitry. Accordingly, it is necessary is to select
that amount of software which can efficiently and effec-
tively be performed in hardware and thus reduce to
hardware Only a small, but effective, portion of the
software function.

If the software code of a typical packet switching
system were monitored, most of it is exercised infre-
quently. It is there to handle errors, or to handle the
control traffic which forms a small, albeit vital, share of

the packets in the system. Very little of the code, a few
percent, is used in connection with processing a ”nor-
mal" packet through the switch. And it is precisely
those “normal" packets which form a preponderance of
the packets with which the switch deals. Thus, in one
aspect, the invention herein is to select that portion of
the software which will be reproduced in hardware and
leave the remaining functionality in software where it is
more appropriate for reasons of efficiency and support.
In particular, the illustrated embodiment attempts to do
so with the minimum number of circuit elements.

One way to reduce the functionality which must be
reproduced in hardware is to not implement in hard-
ware the code which handles packets other than normal
data packets. It is feasible to produce a device which
would handle all normal user data packets entirely in
hardware. This would allow a far faster router than is
available with current means.

However, even that level of reduction can be sur-

passed, producing an even more efficient implementa-
tion (the illustrated embodiment of the invention) if a
further observation is made. In the handling of a single

data packet, several operations are necessary to forward
each packet. In accordance with the invention, it is
recognized that many of these forwarding operations
are completely repetitive when performed on individual
packets which are part of a common connection path,
that is, pan of a data stream having a common source
and often the same destination.

Thus, most packets in the system are part of ongoing
transfers in which as many as thousands of similar pack-
ets flow through the switch. While the meaning of the
various packets at higher levels of the communications
system can be quite different, the portion of the packet
protocol which concerns the packet switch is usually
identical from packet to packet. Thus, judicious reten-
tion of information about a traffic stream passing

through the switch is often both necessary and useful. It
is necessary to implement some required functions such
as flow and congestion control. It is further useful to

10

IS

6

prevent the repetitive computation of identical informa-
tion for packets belonging to the same traffic stream.

It is further important to recognize that although the
complexity of the functionality provided at the packet
protocol layer is increasing, it does so (a) because net—
work systems are getting larger and more mechanisms
are required to make the larger systems work correctly,
(b) because the user community is becoming more so-
phisticated, and (c) because systems are being deployed
with extra functionality. This complexity has a direct
bearing on the cost of forwarding packets, since many
added functions are performed on each packet.

5,249,292

System Description

Accordingly, the illustrated embodiment of the in-
vention operates using two important assumptions.
First, that traffic streams exist and are ofsufficient dura-

, tion to be useful. Second, that the majority of the traffic

20

25

30

35

40

45

50

55

65

in the network is in the streams. Both of these assump-
tions are reasonably descriptive of most data communi-
cations networks.

Referring to FIG. I, in accordance with a particular
embodiment of the invention, a specialized hardware 10
does all the work necessary for forwarding a “normal"
packet in a previously identified packet stream from one
network interface to another. All packets which the
specialized hardware 10 cannot process are passed to a
sofiware controlled primary processing unit 11, includ—
ing a central processing unit, CPU, 12. running software
code which is more or less similar to the current soft-

ware code run by the processors of most packet
switches. If the packet looks like it is part of a new
traffic stream, the central processing unit 12 provides
the specialized hardware 10 with the necessary data
parameters to deal with further packets from that
packet traffic stream. Accordingly, any further packets
seen from that data stream are dealt with automatically
by the specialized hardware 10.

In operation, a packet switch normally examines the
low level network header of an incoming packet at the
input network, and removes that header from the
packet. The packet is then passed to the software of the
appropriate “protocol.“ The software generally checks
the packet for errors, does certain bookkeeping on the
packet, ensures that the packet is not violating flow or
access controls. generates a route for the packet, and
passes it to the output network. The output network
constructs the outgoing network header, attaches it to
the packet, and sends the packet on to the next packet
switch or other destination. At all stages in the process,
the packet switch must guard against data congestion.

Most of these functions are identical on packets of the
same stream and can therefore be separated from those
functions which vary from packet to packet in the same
packet stream. The repetitive functions can be per-
formed once in software at CPU 12, at the time the
hardware is first set up for a packet stream, that is, at the
time the first packet of the stream is being processed. At
this time, the hardware itself has very little that it is able
to do. Thereafter, the hardware will handle all succeed-
ing packets of the stream without any further interven~
tion from the central processing unit.

The illustrated specialized hardware 10 has a plural-
ity of data stream control circuits (flow blocks) 14a,
14b, . . . ,l4p. each flow block having a pattern matching
hardware 16, a control circuitry 18, and a data buffer 20.
An input bus 22 connects, as described below, to any of
the inbound network interfaces, and an output bus 24

NOAC EX. 1015 Page 146



NOAC Ex. 1015 Page 147

 
s
I

i

’ ®

7
can connect to any outbound network interface. There
is further associated with each input network interface a
CPU input storage buffer 26, the output of which is
directed to the CPU 12 for handling special packets,
that is, packets which are not “normal,“ and a CPU
output storage buffer 32, for receiving special packets
from the CPU 12 for transmission to the network inter-
faces.

The network interface devices 30 or 400, as viewed

from the packet processing elements, (either flow
blocks 14, or CPU 12 and storage buffers 26, 32), are
pure sources or sinks of data. They are always function-
ing autonomously, and accordingly no intervention is
required on the part of the flow blocks 14 or storage
buffers 26, 32 and CPU 12 to keep these network inter-
face devices operating. The flow blocks 14 should not
interact with the network interfaces since that interac-
tion would require extra complexity in the flow block,
a cost to be paid for in each flow block, and not by the
network interface. Further, the central processor 12
should not control the network operation since that
control inevitably slows the central processor opera-
tion, as well as the network. Accordingly, each network
interface device is an autonomous unit.

In the illustrated embodiment, two classes ofnetwork
interface devices are illustrated. The network interfaces
300, . . . .30", each include a network interface adapter
42, and a standard network interface circuit 40. The

10

I5

20

25

network interfaces 30 connect to an input interconnect ‘
path 31, an output interconnect path 52, and a CPU
standard bus 41 for complete communications with all
other circuit elements of the packet switch, and receive
data from and transmit data to the associated standard
network interface circuit 40. The other class of network
interface device is the special purpose network interface
400 which connects to the input interconnect path 31,
the output interconnect path 52, the CPU standard bus
41, and also to the associated network.

In the illustrated embodiment, the packet switch is
configured so that it can be expanded as necessary to
support more traffic streams. The expansion can be
easily implemented by adding additional flow block
circuitries, and if necessary, additional network inter-
face devices. This allows an existing unit to be scaled up
as the traffic load grows.

In operation, a traffic stream is received and first
identified by the CPU 12, as it receives the first packet
of a new traffic stream from a CPU input buffer 26
connected to the input interconnect path 31. A free flow
block 14 is selected to handle future packets of that
traffic stream and all of the necessary information to
handle the traffic stream, including the identification of
the stream, is loaded into the pattern matching circuitry
16 and the control circuitry 18 of the selected flow
block over the CPU bus 41.

As each subsequent packet ofthe stream arrives at the
packet switch interface circuit, it is handled by the
network interface 30 (for ease of explanation it is gener-
ally assumed that the receiving network device will be
an interface 30) and flow block 14 without intervention
by the CPU 12. In particular. as it is received at inter-
face circuit 30, it passes through the network interface
circuitry 30 and is placed on the input interconnect path
31 so that each flow block 14, assigned to that interface,
can check the packet, in parallel, to determine if any one
of those flow blocks recognizes the packet as being
assigned to it. If a match is found, the packet is accepted
by that flow block and the data, usually modified by the

35

40

45

50

55

65

5,249,292

control circuitry 18 of the flow block, is read and stored
by the flow block. Further circuitry of control circuitry
18 will remove the packet from the data buffer 20 of the
flow block 14. with a new header prepended thereto,
when the system is ready to send the packet over the
next link of the data communications path.

Any packet which is not recognized by any of the
flow blocks is available to the CPU from the one of the

CPU input buffers 26 assigned for receiving data from
that network interface. The CPU input buffer for each
network automatically starts to copy each packet from
the input interconnect path 31 each time a packet at.
rives, and continues to do so until one of the flow blocks
14 for that network interface accepts, or all fiow blocks
assigned to that network interface reject, the packet. If
the packet was accepted by one of the assigned flow
block circuitries, the portion of the data stored in the
associated CPU input buffer 26 is discarded, and the
CPU input buffer resets to await the next packet from
that network interface. If the packet is rejected by those
flow blocks assigned to that network interface, the asso-
ciated buffer 26 passes the packet to the processor 12
which will analyze the packet and process it accord-
ingly. It is important to note that no conflict arises from
trying to put two packets into a CPU input buffer at the
same time since each network interface has its own
associated buffer 26 and a network interface 30 can

receive only one packet at a time.
The CPU 12 further has access to the set of output

buffers 32 (one buffer for each output network) oVer a
bus 420, through which it can send packets to the net-
work interfaces over output interconnect path 52 for
transmission along a link of the transmission chain.

Description of Detailed Elements
Network Interface

Data enters the packet switch from a network
through the network interface. As noted above, these
units are autonomous. They can be constructed either
by building the special purpose hardware 400, one for
each network, which‘ enables a network to connect
directly with the respective interconnect paths, or by
providing the standard adapter 42, into which an exist-
ing off-the-shelf hardware network interface 40 can be
inserted. The two classes of hardware can both be ad-

vantageously used in the same embodiment.
Referring to FIG. 1, the second approach employs a

standard network interface element 40 (typically an
off-the-shelf commercially available circuitry) which
connects over lines 410 (which is usually a standard bus)
to the associated interface adapter 42. Each adapter 42
has a standard interface connection which connects to
the input interconnect path 31 for eventual connection
to an as yet unknown one of the flow blocks 14 and to
the network associated storage buffer 26. The interface
adapter also has a standard bus interface which con-

nects to CPU bus 41. The interface adapter 42 also
provides a third interface for receiving packets from the
flow blocks over the output interconnect path 52.
Adapter 42 provides those received packets, to the
associated network interface 40 for transmission over a
network path to the next network connection. The
choice of this second interface approach is convenient
and allows for modular expansion and network inter-
face card interchangeability; however, use of the
adapter 42 with a separate network interface 40 is likely
to be more expensive than a special purpose network
interface card 400.

NOAC EX. 1015 Page 147



NOAC Ex. 1015 Page 148

 
i1)5

®

The choice of which network interface approach is
adapted thus depends upon both cost and speed. The
interface adapter 42 with its various bus connections is,
most likely, the slower path unless the bus 41a is very
fast; and even then, most current network interfaces for
high speed networks cannot keep up with a network
which is running at maximum capacity. Additionally,
the use of several cards is likely to be more expensive.
Accordingly, it may be desirable to provide the special
purpose network interfaces, such as a special network
interface 400, which connect to interconnect paths 31
and 52, for high volume networks where speed is more
important; whereas the slower network interface, em<
ploying off the shelf components, can be employed
where speed is not as important or where the construc-
tion of special purpose hardware is not cost justified.

The autonomous interface network unit is, as noted

above, responsible, on the input side, only for ensuring
that all packets destined for the switch are received
from the network and are fed to the flow blocks 14 and

storage buffers 26. Congestion and control are the re-
sponsibility of the flow blocks 14 and the control de—
vices 18 therein. Similarly, the output side of the net-
work interfaces 30 needs only to read data packets sent
by the flow blocks 14 and buffers 32, and transmits them
over the selected network.

It is also possible that inexpensive and slow network
interfaces can be connected directly to the standard bus
41 and be run by the general purpose CPU 12 rather
than by the interface adapter 42. These packets would
then be sent on whichever path the processor normally
uses to send packets which it originates. This is an ac-
ceptable alternative, subject to the speed and time re-
quirements imposed upon the central processor. The
standard bus also provides the central processor unit
with full access to the standard network interfaces 40

and special network interfaces 400 through the network
adapter 42 so that any network interface can be con-
trolled by the CPU 12 when unusual functions, such as
problems with the transmission layer, fault isolation, or
other complex testing tasks must be performed.

The Interconnect Path

As noted above, each interface adapter 42 or special
network interface 400 connects to each of the flow
blocks 14 in a most general form of illustrated structure.
Depending upon the economics and speed desired, the
interconnect circuitry can take a variety of forms using
a number of techniques which are already known in the
art. One particular approach, using “brute force," is to
use a full crossbar switch to make all possible connec-
tions between each of the network interface adapters
and each of the flow blocks, both on the input and the

output interconnect paths. As the flow blocks are as-
signed, and reassigned, between interface adapter units
and special network interfaces, the various points of the
crossbar can be Opened and closed.

An alternate approach, used in digital telephone sys-
tems, is to interface all of the functional units to a high
speed, time division, multiplexed bus. This approach
requires less switch hardware but necessitates a bus
speed comparable to the maximum speed of an interface
times the number of interfaces. Such speed require-
ments may make it less economical to build such a bus
than might otherwise appear.

The input interconnect path is conceptually simple in
that flow blocks 14 are assigned to but a single network
interface at a time. The relationship is not symmetrical,

10

15

20

25

30

35

45

50

55

65

aw:

W

5,249,292
10

hOWever. The input network interface thus feeds at
most one input packet at a time to the flow blocks;
however, the input packet can be read by many differ—
ent ilow blocks, all of which are assigned to that net-
work interface. The output side of the flow blocks is
slightly more complex since several flow blocks, each
connected to a different network interface at its input,
may present a packet to the same output network inter-
face simultaneously. The output interconnect must thus
have some method for choosing which, and in what
order, to send the packets. For example, it can service
the flow blocks in the same order specified by the CPU
when the processor sets up the traffic stream; or prefer—
ably, a grant passing ring configuration can be em-
ployed. It is important, however, to be sure to allocate
appropriate bandwidths to each stream so that accept-
able Operation is attained. There are various concepts
for performing this function, well known to those prac-
ticed in the art, and they will not be discussed here in
any further detail.

The Flow Blocks 14

Each flow block 14 consists, as noted above, of a
pattern matching circuit, the flow block data buffer 20,
and the control device 18. The pattern matching hard-
ware, in the illustrated embodiment of the invention,
contains two variable length bit strings: a "match" bit
string and a “mask” bit string. Those fields in the packet
which can vary among the packets of a single stream,
are set “on“ in the "mask“ string. Values in these bits
are then ignored. The values in the fields which identify
a stream, and which are always present in a packet of
the stream, are stored in the “match" bit string. Several
functions can thus be performed by the pattern match-
ing circuitry 16, in addition to merely checking the
assignment of a packet to a traffic stream. For example,
certain error checks (for valid values) can be per-
formed. Also. since a flow block 14 is assigned by the
CPU 12 to forward a traffic stream only if a route for
the traffic stream exists, and if the traffic stream is au-
thorized by the accss control software in the CPU 12,
a match by the circuitry 16 immediately implies that the
packet is allowed by the access control to pass through
the switch, and that a route for the packet exists.

The data buffer 20 of a flow block can be imple-
mented in a variety of ways. The simplest approach, is
to have associated with each flow block a separate
memory array having head and tail registers to allow
reading and writing. Two disadvantages to this ap-
proach are that it requires additional hardware and the
buffer memory is split up into many small memory
banks rather than employing a single large memory
bank for the entire packet switch.

Nevertheless, the use of a large memory bank, from
which each flow block buffer memory is allocated,
results in a complex storage management problem. It is
necessary in such' a memory structure to maintain a list
of unused blocks, a mapping of the used blocks, etc. In
addition, the flow control mechanism must be more

complex, particularly if there is less total buffering than
the sum of the maximum storages of all of the data
streams. It must therefore deal with a global resource
shortage of buffer memory in the switch. This problem
can thus remove a primary advantage of having a large
memory bank. In addition, with separate memory
banks, each bank need only be able to support two
simultaneous accesses: a read and a write. With a single

NOAC EX. 1015 Page 148



NOAC Ex. 1015 Page 149

 
* a.

11

large bank, all of the network interface accesses must be
handled simultaneously.

A number of practical operating problems exist with
the circuitry illustrated in FIG. 1. Thus, if there are
more identified traffic streams than there are flow
blocks, or if a single packet stream is to be routed over
multiple paths by the network protocol, appropriate
hardware must be available to deal with the various
circumstances. In particular, if there are more identified
traffic streams than there are flow blocks 14, it is impor-
tant to avoid “thrashing" as the streams compete for the
flow blocks. If the protocol has adequate flow and con-
gestion control mechanisms, these can be used to inhibit
the excess streams. Also, the flow blocks should be
packaged and interfaced to the rest of the system so that
additional flow blocks can be installed as load patterns
change or as switches experience higher usage rates
than they are able to handle.

Further, the software can maintain a record of the
streams including the time when each flow block was
last used, so that periodic scans can be made by the
software to find flow blocks which are associated with
streams that are no longer active and list those flow
blocks as ready for reuse. Further, the software can
maintain a record of the stream parameters so that if a
previously terminated stream should restart, it would
not be necessary to recompute everything. Preferably,
the CPU stores this information in its local memory.

It may also be desirable to avoid assigning a stream to
a flow block until a minimum number of packets relat-
ing to a stream have been counted. In this instance the
CPU 12 can maintain the necessary information regard-
ing the stream (and pass the packets of the stream on to
the next network node) and dedicate a flow block to
that stream only after the length of the stream has been
assessed.

There are also instances when a single packet is for-
warded over multiple paths. The situation can thus exist
when packets of the same data stream are received over
two different network interfaces and/or where a single
packet stream must be divided and forwarded to two or
more output networks. The first problem can be han-
dled simply by allocating one flow block to each inter-
face. The second problem is somewhat harder to han-
dle; however, in most protocols, there is a sequence
field in each packet wherein it is possible to assign two
different flow blocks to the stream in which the se-

quence field was masked out except for, for example,
the lowest bit. In one flow block the bit would have to
match to “zero" and in the other flow block to “one."
Thereafter, each flow block can be assigned to a differ-
ent output stream, the split being roughly into two divi-
sions. More complex and controlled splitting requires
more sophisticated mechanisms to effect proper queu-
ing and sequencing on the output.

The Flow Block Circuitry

In the description of this particular embodiment, the
width of the various buses, the number of identical
interface units or flow blocks, the length of a counter,
etc.. are subject to the particular switching system envi—
ronment and capacity. Accordingly, while specific
numbers are suggested from time to time, the values
"N", “n“, "P", etc. are variable and may be equal to
each other or not as the particular embodiment requires.

Referring to FIG. 1, the flow block control device
circuitry 18 effects bookkeeping functions at the proto-
col level and flow and congestion control. One func-

IO

15

20

25

30

35

45

50

55

65

 
5,249,292

12
tional unit 190 of each control circuitry 18 strips the
input header from a packet before it enters the flow
block data buffer 20 and another functional unit 19b of
the control circuitry prepends the output header to the
data packet before it exits the flow block data buffer.

In addition, each protocol tends to have certain book-
keeping functions which must be performed on each
packet of the stream; however, these functions tend to
be slightly different for each protocol. The design of the
illustrated control device provides flexibility for han-
dling the different protocols, including in particular the
capability of computing the checksum (and signaling an
error should one occur), and updating the “hop" count.
The control circuitry 18 also needs to be flexible
enough to handle the different protocols in a very short
time. Accordingly, the design preferably allows for
additional circuitry to be added to the protocol function
circuitry 190 and 19b. The additional circuitry can also
be implemented in the state machine controller for the
flow block.

The flow block control circuitry also acts as a flow
control agent. Thus, if packets are entering the flow
block at too fast a rate, an error is caused. The specific
hardware configuration depends on the protocol archi-
tecture and the policy implemented therein. One effec-
tive mechanism uses the error alarm signal to show that
the flow block buffer is filled past a selected level. The
control circuitry also needs to set a so-called “discard"
level. This is necessary to protect the congestion con-
trol mechanism of the switch from being overloaded by
a single, out of control, data stream. Such a mechanism
would cause a selectable percentage of the incoming
packets of a stream to be ignored completely rather
than passed, over bus 41, to the congestion control
mechanism of the CPU 12, which it could overload.

The Interconnect Path Operation

In the illustrated embodiment of the invention, the
presently preferred embodiment of the interconnect
paths 31 and 52 uses the simple, brute force, approach;
that is, a full cross bar is provided for each interconnect
path by assigning a separate bus to each network inter-
face adapter 30, to which each of flow blocks 14 and
buffers 26 is connected. Each bus has a full set of con-
trol lines for, and in addition to, the data lines of the bus.
The illustrated interconnect circuitry thus consists of a
set of, for example, “N" identical buses. The intercon-
nect further can include some general signal lines such
as, for example. a system reset line. The full cross bar is
also large enough to support the maximum complement
of interface circuitries simultaneously, each interface
being able to proceed at full speed with no buffering.

Considering in particular the input interconnect 31,
there are R buses, “R" being equal to the sum of the
number of special network interface units 400 and inter-
face adapter 42. Each interface data bus is “M" bits
wide, and is driven only by the associated network
adapter 30 or interface 400. In addition to the data from
each network interface 30, each bus also has a plurality
of control signals for controlling the transfer of the
incoming packets from the network to the flow blocks
14 and buffers 26. The control signals allow a flow
block 14 to indicate to the associated CPU input buffer
26 (and CPU 12) whether the packet has been accepted.

Referring to FIG. 2, the control signal functions can
be performed with two lines, both driven by the net-
work interface or adapter and “listened" to by all of the
flow blocks assigned to that network (including the

NOAC EX. 1015 Page 149



NOAC Ex. 1015 Page 150

 
"it
t

“i

’J"1.!“.WW“\‘r
than.»arr-err».~.a

,,»«wasw..~.m.m1rmmW«.mu-«.
nan-Hmrw~~.'
-madam:

W,"7,“.WW......

w

5,249,292
13

corresponding CPU input buffer 26 assigned to that
network). One line 200 indicates when a packet is being
transferred and is active for the duration of the packet
transfer. A non-active period 202 has a minimum time
duration so that the next active period (and the next
packet) is spaced in time from the previous active per-
iod. The beginning of the inactive period indicates the
end of the packet. A second line 206 is a “word trans-
fer" line and each active transition 208 on that line

signals that a new word (a byte in the illustrated em-
bodiment) of data has been placed on the bus by the
network interface.

There is further a common control line 210 which can
be driven by any of the flow blocks 14 and listened to by
the CPU input buffer 26 for that network. When going
active, it signals to the CPU that the current packet has
been accepted by a flow block and the packet may thus
be ignored by the CPU 12. The timing must be carefully
controlled, especially if faults are to be detected. For
example, if the packet length in the protocol header is to
be verified, it is necessary to wait until the entire packet
has been received before accepting the packet. How-
ever, by that time, the next packet is starting. This prob—
lem also arises when verifying header check sums for
packets with no data. The timing can be resolved by
having the accept line driven at a time during the man-
datory non-active period of the packet line, that is, after
the packet has completely arrived and before the next
packet begins.

Referring to FlG. 3, the output interconnect 52 has a
slightly more complex data bus. The bus is “P“ bits
wide and is driven by a sequentially varying one of the
flow blocks 14 and buffers 32 (the "driving circuits")
assigned to the connected network interface. The out-
put of the driving circuit is read by the associated net-
work interface 30 or 400. Preferably, the driving cir-
cuits are arranged as, and include the circuitry to form,
a grant-passing ring. In addition, there are other control
lines which are used to control the transfer of the packet
from the drive circuit having the grant. These other
lines 218, 220 are substantially the same as those control
lines 200, 206 of the input interconnect bus. After a
packet has been transferred to a network interface, the
“grant" advances to the next driving circuit. If the iden—
tified driving circuit has a packet waiting at the time the
grant line becomes active (typically the rising edge), it
begins a transfer. Otherwise, the grant is passed to the
next driving circuit which repeats the process.

Flow Block Details

As noted above, the flow blocks 14 has several major
functional units. The stages, in the illustrated embodi-
ment, are connected asynchronously since the through-
put of the stages is not constant and some stages have
buffering between them. Referring to FIG. 4. the circuit
structure of flow block 14, considered in more detail,
has an input multiplexer 250 which selects the current
input bus and passes the data to both the pattern
matcher 16 and the rest of the flow block. The pattern
matcher. as noted above, examines the header of the
incoming packet. If it matches the pattern to be handled
by this flow block, the match is indicated by a signal
over a line 252 to the control device logic 18.

Simultaneously, data from the input bus flows
through a stripping circuit 254 which includes a counter
and which discards the first “n" bytes of data (the
header) allowing the remainder of the packet to pass
through unmodified. The packet then passes to the

10

l5

20

25

30

35

45

50

55

65

14

control logic 18 where the higher level protocol func-
tions such as check sum computation and hop count
modification occur. The control logic 18, pattern
matcher 16, and stripping circuit 254 have all been pre-
viously loaded with other necessary data from CPU 12
over bus 41. The input to the control device has a small
amount of buffering to allow the control device to take
more than one cycle when processing certain bytes in
the data stream. The packet passing through this stage
of processing may be modified; for example, this stage
may abort further processing of the packet if an error is
found, as described in niore detail below. The packet
then passes to a counter/truncate circuitry 260 which
contains a counter loaded by the control logic over
circuitry 262. The counter serves two functions: any
unused trailer in the packet is discarded, and, if the
packet is truncated, an error flag is raised over a.line
264. The next stage of processing, a circuitry 266, pre-
pends “)1” bytes of data, the new output header, loaded
from the CPU 12 in a similar manner to stripping circuit
254, to the packet as it passes therethrough. It also con-
tains some buffering on the input to allow the new
packet header to be inserted. In those instances where
the new packet is substantially larger than the old one,
the buffering is a necessity. The packet next passes to
the output data buffer 20 which consists of a dual port
(one read-only and one write-only) memory, along with
a control logic 268 to keep track of the packets in the
buffer. The buffer 20 is organized in a ring structure and
a hardware queue of “t" buffer pointer/size pairs keeps
track of the utilization of the buffer. Additional control

circuitry within the buffer keeps track of the current
start and end of the “free space". The packet'then passes
to an output multiplexor 274 which has output bus con-
trol logic and a set of drivers, one for each output bus in
the Output interconnect 52. When the flow block re-
ceives the “grant," for the appropriate output network
interface 30, as described above, packets which are in
the output buffer are read out and passed along the bus.
Throughout the flow block, there are, in addition. data
paths 276 which allow the CPU 12, over bus 41, to load
memories, etc. in order to maintain proper Operation of
the flow block.

Referring to FIG. 5, the pattern matcher 16 has two
small memories 60, 62 each “a" bits wide and "b" bytes
long. In the illustrated embodiment, 8x256 bit RAM’S
are employed. One memory 62 contains the “masked“
bits and the other memory 60 contains the “match“ bits.
More precisely, for those header positions for which a
bit is “on" in the mask memory, the packet can have any
value in the header whereas, if a bit is “off" in the mask
memory, those corresponding bits in the packet header
must match the CPU predetermined values stored in the
match memory. .

The pattern matcher can operate with varying quan-
tities of data in the memories 60, 62, and if all the mask
“off" bits in the header match the "match" memory bits,
the header is a “match", as indicated over line 252, and
the flow block continues to read the packet. In the
illustrated embodiment, an “n" bit counter 280 is reset

over a line 282 when the packet begins arriving and
counts up “one" for each byte received from the bus.
The output of the counter over lines 284 is used as an
index into the two memories and is directed, also, to an
“n" bit comparator 286. Comparator 286 compares the
output of counter 280 with the output of an "n" bit latch
288 which holds the current header size count. When

NOAC EX. 1015 Page 150



NOAC Ex. 1015 Page 151

 
15

the count reaches the header count, a header complete
Signal is generated over a line 290.

The comparison of the input header to the match
word is effected byte-by-byte, using an eight bit com-
parator 294 and a series of eight identical two-to-one
multiplexors 296. The output of the match memory is
one input of the identical two-to-one multiplexers 296
with the “n" bits (typically eight bits) from the data bus
292 as the other input. In each multiplexor, the select
input is driven by the corresponding output bit over
lines 292 of the mask memory; so that if a mask bit is
"off". the data bus bit is selected. Otherwise, the match
bit is selected. The “n" selected bits are then fed into the
“n" bit (illustrated as eight bits) comparator 294 which,
as noted above, receives the original match data word
as the other input.

The output of the comparator is fed to a flip flop 298
which is set by a signal over a line 299 when the packet
begins to be read. If any byte of the header fails to have
a complete match (of the selected bits). the output ofthe
comparator goes low and clears (resets) the flip flop. If
the flip flop is still set when the counter 280 has also
reached a match (the end of the header), the packet
header is accepted and the logical “AND" circuit 300
provides the match indication signal over line 252.

In addition, the pattern matcher further contains data
pads, not shown. which allow the CPU 12 to load
(through bus 41) the match and mask memories 60, 62,
the length latch 288, and other data as well.

Referring now to FIG. 6, the data stream control unit
18 (and stripping circuitry 254) has an arithmetic logic
unit (ALU) 310. special purpose logic which will be
described hereinafter, and a control table stored in a
memory 312. The ALU and the control store act like a
general purpose microcode engine, but one which has
been specialized to create a very minimal, high speed
processor for packet headers. The functions to be per-
formed, as described above, are very limited.

The illustrated circuitry allows the processing of the
headers in the transmission time of a complete packet
having no data, thus allowing the flow block to operate
at full network bandwidth with minimum sized packets.
In addition. the control device keeps its required cycle
time as high as possible (that is, operates as slow as
possible) to keep its costs down. ,

In the illustrated typical circuitry, the control table
312 is the heart of the control device. It consists of an

array of words, which are horizontal microcode, used
to directly control the ALU and gates of the control
circuit as is well known in the art. While some fields of
the control word will perform standard operations,
such as selecting which ALU operation is to be per-
formed on each cycle, other fields will control the spe-
cial logic associated with packet forwarding.

The illustrated control circuitry further includes a
control counter 314 which is set at the start of each

packet. The counter selects one of the control words in
the control array (the output of the control word con-
trolling the logic elements of the control device). While
processing a packet, this counter is incremented at the
cycle speed of the control device, essentially asynchro-
nous to the rest of the system, thereby stepping through
the control table at a fixed rate. The input data packet
flows through an input FIFO buffer 320, the output of
which is controlled by a bit in the control table 312. If
the bit is “on," a byte is read out of the input buffer. This
function, which is thus not performed automatically
when data is read from the buffer, allows data to be

10

I5

20

25

30

35

45

50

55

60

65

5,249,292
16

passed through under control of the local processor,
and allows certain bytes of the packet to be operated on
by more than one control word without the necessity of
storing the byte in an intermediate location. A second
counter 322, cleared at the start of each packet, counts
the current data byte and provides that count for use by
the rest of the control device 18.

Another bit of the control word from array 312, cf-
fectively disables the control device, thereby allowing
the rest of the packet to pass through to the next stage
of processing. This bit is set in the last control word of
the process Sequence, that is, once processing of the
header has been completed. Another field ofthe control
word controls the logic which cancels the packet if
certain conditions are true. This field is thus used to

cancel processing of the packet when fatal errors are
detected. ' .

The control circuitry also includes several scratch
pad registers 330. These registers allow accumulation of
results etc., and provide constants for use by the ALU
310. The scratch pad registers 330 can be loaded by the
CPU 12 during that process by which the CPU selects
a flow block to receive a data packet stream.

The apparatus further has a multiplexor 340 to allow
selection from the variety of data' sources available as
inputs to the ALU. The results of the ALU processing
can be sent to a number of circuitries. In particular,
inputs to the multiplexor 340 come from either the input
data buffer 320, count register 322, or the scratch pad
registers 330. Data may be written from the ALU 310,
through a shift/rotate register 311, to either the scratch
pad registers, or output from the control unit through
an output multiplexor 342. Further, a pass around path
343 allows the result ofan ALU calculation to be sent to

a register while a data byte is sent to the output. Other
data paths not shown are available which allow the
CPU 12 to load the control table, the scratch pad regis-
ters 330, the counters 314, 322, etc. when a flow block
is selected to receive a data packet stream.

As noted above, the illustrated embodiment provides
for a flexible flow block configuration which, when
loaded from CPU 12 with protocol setting data signals,
enables the flow block to handle a particular one of a
plurality of packet stream protocols. In an alternative
embodiment of the invention, each flow block can have
implemented therein, in hardware, the necessary cir-
cuitry to enable it to handle one (or more) particular
protocols. Accordingly therefore, different hardware
modules would be needed for different protocols; how-
ever, some speed advantage can be obtained by reduc-
ing the flexibility of the hardware controlled flow
block.

In addition, further circuit efficiency can be obtained,
without loss of flexibility, if those flow blocks which
can be assigned to a particular interface share the same
ALU circuitry (FIG. 6). Recalling that ALU 310 oper-
ates to process an incoming data packet, and, since only
one data packet can be received from a network at a
time, all of the flow blocks assigned to a particular
network interface can then share the same ALU since
only one of the assigned flow blocks will be active for
receiving a data packet at any particular instant. This
savings in circuitry can. for example, be advantageously
implemented when a plurality of flow blocks are pro-
vided on the same card module. In that configuration,
all flow blocks of a card module which share an ALU
should be used in connection with the same selected
network interface, and in particular, as noted above, the

NOAC EX. 1015 Page 151



NOAC Ex. 1015 Page 152

 
t

E
t

l

E
i

an

17
card module may be implemented fully in hardware
with different flow blocks of the card module being
used for different protocols.

Additions, subtractions, deletions and other modifica-

@

18

memory with an output of the match bit memory
for determining the validity of an incoming data
stream packet.

4. The packet switching circuit of claim 2 wherein

5,249,292

tiorrs to the illustrated embodiment of the invention will 5 said pattern matching circuit comprises
be apparent to those practiced in the art and are within
the scope of the following claims.

What is claimed is:

1. A high speed data packet switching circuit com-
prising: to

a software controlled primary processing units.
a plurality of network interface units for receiving

incoming data packet streams and for transmitting
outgoing data packet streams, each of said data
packet streams having a selected protocol and all of 15
the data packets in a said stream having the identi-
cal protocol,

a plurality of data stream control circuits for concur-
rently receiving at least a portion of a header of the
data packets and selectively processing the re- 20
ceived packets only wherein each said data stream
control circuit processes the data packets of one
data stream having one of said selected protocol in
response to previously generated electrical signals
from the primary processing unit based upon 25
header identification information in the at last first

data packet of the new data packet stream for des-
ignating and initializing one of said data stream
control circuits to process a remainder of the data
packets of the new data packet stream, 30

means for interconnecting said primary processing
unit, said plurality of interface units and said plural-
ity of data stream control circuits,

said primary processing unit receiving from said net-
work interface units, and for processing. at least a 35
first one of the data packets of a new data packet
stream and having means for generating said elec—
trical signals means in each said designated and
initialized data stream control circuit for receiving
and processing only those data packets which in- «to
elude said header identification information upon
which said designated and initializing is based.

2. The packet switching circuit of claim 1 further
wherein each data stream control circuit comprises

a pattern machining circuit responsive to pattern 45
setting signals from the primary processing unit
and to incoming data packets from said network
interface units for identifying and receiving a
packet stream which will be processed by said
control circuit, 50

a processing unit re5ponsive control circuit for con-
trolling, in response to control signals sent by the
primary processing unit, a congestion control
means, and a header stripping and prepending func-
tions means for the data stream control circuit, and 55

a data buffer responsive to said pattern matching
circuit and the processing unit responsive control
circuit for receiving and storing data and protocol
elements for an incoming data packet stream and
for outputting a data packet stream to a said net- 60
work interface unit to be forwarded to a next net-
work node.

3. The packet switching circuit of claim 2 wherein
said pattern matching circuit comprises

a mask bit memory, 65
a match bit memory, and
means for comparing data bits of incoming data pack-

ets, not masked by a data word from the mask bit

a match memory
a mask memory,
a comparator circuitry, and
means for inputting, to the comparator circuitry, data

bits from the match memory and corresponding
data bits from an input packet, said corresponding
data bits being selected in accordance with the bit
values in the mask memory, for determining the
acceptability of an input packet.

5. The packet switching circuit of claim 4, wherein
said pattern matching circuit further comprises

means for determining the end of an input header for
an input packet,

to the comparator circuit for determining whether all
of the matched bits in the input header are valid,
and

means for providing an acceptance signal in response
to a valid output of the comparator responsive
means and the header determining means.

6. The high speed data packet switching circuit of
claim 2 wherein the processing unit responsive control
circuit comprises

a table array storage for storing horizontal micro-
code,

a control counter for selecting words of the table
array storage,

an arithmetic logic unit, and
means for controlling operation of the processing unit

responsive control circuit using horizontal micro-
code output of the table array memory.

7. The packet switching circuit of claim 1 wherein
said data stream control circuit comprises

an input multiplexor for selecting a data packet
stream source from among the interconnecting
means accessible to the control circuit;

a pattern matching circuit responsive to pattern set-
ting signals from the primary processing unit and to
incoming data packets from the input multiplexer
for identifying those data packets which will be
processed by the control circuit.

a header stripping circuitry for removing the header
from each data packet from the input multiplexor.

control logic, re5ponsive to the pattern matching
circuit and to the stripping circuitry, for passing
the data packet, without the header, for further
processing by the control circuit,

a counter/truncator circuit for determining whether
the data packet from the control logic is truncated
and for providing an error signal in the event the
packet is truncated, ‘

a prepend circuitry for adding a new header to the
data packet from the counter/truncator circuit,

an output data buffer for buffering the data packet
from the prepend circuitry and responsive to a
buffer control logic, for maintaining accurate status
data regarding the contents of the buffer, and for
outputting a next data packet for transmission over
a network, and

an Output demultiplexor connected to the output data
buffer for transmitting data from the output data
buffer over the output interconnecting path.

8. The packet switching circuit of claim 1 further
wherein said network interface unit comprises

NOAC EX. 1015 Page 152



NOAC Ex. 1015 Page 153

 
1?;,
ka
f

5,249,292
19

a network interface circuit for communicating with a
network channel in accordance with a said selected

protocol and delivering data from the channel in a
predetermined format, and

an interface adapter for receiving data from the chan-
nel through the network interface circuit in said
predetermined format and for transmitting that
data from the channel over the interconnecting
means to said data stream control circuits and said

primary processing unit, for receiving data, to be
sent over a network channel, over said intercon-
necting means from the data stream control circuit
and the primary processing unit and for delivering
data received from said interconnecting means to
said network interface circuit for transmission over
a said network channel.

9. The packet switching circuit of claim 8 wherein
said network interface unit further comprises

a single network special purpose hardware interface
circuit having
means for communicating with a network channel,

means for transmitting received network data over
the interconnecting means to said data stream con-
trol circuits and said primary processing unit,
means for receiving network data packets from the

data stream control circuits and the primary
processing unit, and

means for processing the received data packets for
transmission over a network channel.

10. The packet switching circuit of claim 1 wherein
said software controlled primary processing unit further
includes

a central processing unit,
a bus means;
a plurality of input storage units for selectively re-

ceiving ones of said plurality of data streams from
the network interface units and each storage unit
having its Output connected to said bus means,

means for connecting the central processing unit to
said bus means,

a plurality of output storage units for selectively re.
ceiving data from said central processing unit over
said bus means, and for providing said data to said
network interface units, and

means for controlling the input of data to said input
and output storage units.

11. The packet switching circuit of claim 1 wherein
said interconnecting means comprises

an input bus for interconnecting the outputs of said
network interface units, the inputs of said data
stream control circuits, and the primary processing
unit, and

an output bus for interconnecting the outputs of said
data stream control circuits, the inputs to said net-
work interface units, and the primary processing
unit.

12. The packet switching circuit of claim 11 wherein
said interconnecting means further comprises a central
processing unit bus interconnecting said data stream
control circuits, said network interface units, and a
central processing unit of said primary processing unit.

13. The packet switching circuit of claim 12 wherein
said input and output bus means each comprises data
lines and control lines.

14. A high speed data packet switching method for
switching data packet stream among communication
paths comprising the steps of

l0

15

20

25

30

35

4s

50

55

60

65

20

receiving each packet stream from one of a plurality
of networks,

processing at least a first packet of each received data
packet stream using a software controlled, primary
processing unit,

designating that performance of routine, repetitive
header processing of the further packets of one of
said received packet steams, said processing includ-
ing packet forwarding processing to effect routing
of said packet,

receiving and examining by each said high speed
hardware circuitry at least a portion of each packet
of each said received data packet stream, detennin-
ing based on said examination of said at least a
portion of each packet by each of said high speed
hardware circuitry, which said high speed hard-
ware circuitry has been designated to process each
further packet of each received data packet stream,
receiving in said designated high speed hardware
circuitry said each further packet.

15. The high speed data packet switching method of
claim 4 further comprising the step of

controlling at leat the initialization of a said high
speed hardware circuitry assigned to process a
packet stream from the software controlled, pri-
mary processing unit.

16. A high speed data packet switching method com-
prising the steps of

receiving incoming packet streams from network
interface units;

processing ones of the received data packets in re-
sponse to a software controlled primary processing
unit using a plurality of hardware data stream con-
trol circuits,

interconnecting the primary processsing unit, the
interface units, and the data stream control circuits
for communications therebetween,

processing at least a first one of the data packets from
the receiving step for each new data packet stream
in the primary processing unit,

identifying, using the‘ primary processing unit, one of
the data stream control circuits for processing the
incoming data packet stream,

determining by each said data stream control circuit
the one data stream control circuit which will pro-
cess each packet of that portion of said incoming
data packet stream which is not processed by said
primary processing unit,

processing that portion of a said data packet stream
which is not processed by said primary processing
unit by said identified data stream control circuit,
and

outputting the results of the data stream control cir-
cuit processing and the primary processing unit
processing to form an output data stream for trans-
mission along a communications path.

17. A high speed data packet switching circuit for
receiving data packet streams from a plurality of input
communication paths and for transmitting data packet
streams to a plurality of output communication paths,
said circuit comprising

a plurality of network interface units for receiving the
inc0ming data packet streams and for transmitting
outgoing data packet streams,

a software controlled primary processing unit, havinga bus means,

a central processing unit,

NOAC EX. 1015 Page 153



NOAC Ex. 1015 Page 154

a,was..9\x

‘1
 

' 5,249,292
21

a plurality of input storage units for receiving re-
spectively each of said plurality of data streams
from the network interface units and each input
storage unit having its output connected to said
bus means,

means for connecting the central processing unit to
said bus means, and

a plurality of output storage units for receiving
data from said central processing unit over said
bus means, and for providing said data to said
network interface units,

a plurality of data stream control circuits for ma-
nipulating data packet stream in re5ponse to the
primary processing unit,

said data stream control circuits comprising
a pattern matching circuit responsive to pattern

setting signals from the central processing unit
and to incoming streams of data packets from
said network interface units for identifying a data
packet to be processed by said control circuit,

means for transferring identified data packets to
said control circuit,

10

15

20

25

30

35

40

4s

50

55

65

22
a processor responsive control circuit for control—

ling, in response to control signals sent by the
primary processing unit. means for congestion
control, and means for header stripping and pre-
pending functions for the data stream control
circuit, and

a data buffer responsive to said pattern matching
circuit and the procasor responsive control cir—
cuit for storing an incoming data packet stream
from said control circuit and for outputting a
stored data packet stream to be forwarded to a
network interface unit,

means for interconnecting said primary processing
unit, said plurality of network interface units and

' said plurality of data stream control circuits, and
said primary processing unit receiving from said net—

work interface units at least a first one of the data

packets of each new data packet stream and having
means for designating those data packets of the
stream which are not processing by the primary
processing unit to be processed by a said data
stream control circuit without further processing
by said primary processing unit.. t I i .

NOAC EX. 1015 Page 154



NOAC Ex. 1015 Page 155

it: “  3%
Hllllllllllllllllllllllllllllllllllllllll|l|| ll llllllllllllllllllllllll

 

U8005511213AU

Umted States Patent [19] , [11] Patent Number: 5,511,213

Correa [45] Date of Patent: Apr. 23, 1996

[54] ASSOCIATIVE MEMORY PROCESSOR Assistant Examiner—John Hanity
ARCHITECTURE FOR THE EFFICIENT Attorney, Agent, or Firm—Beveridge, DeGrandi, Weilacher
EXECUTION OF PARSING ALGORITHMS & Young
FOR NATURAL LANGUAGE PROCESSING

AND PATTERN RECOGNITION [57] ABSTRACT

[75] Inventor. Nelson Coma. Camera 53 No 57-11 An associative memory processor architecture is disclosed
Apt. 402’ Santa Fe de Bogota, DC, for the fast and eflicient execution of parsing algorithms for
Colombia natural language processing and pattern recognition appli-

cations. The architecture consists of an associative memory
. unit for the storage of parsing state representations, 3 ran-

[21] App1' No.. 880’711 dom accessmemory unit for the storage of the grammatical
[22] Filed: May 8, 1992 ‘ rules and other tables according to which the parsing is done,

a finite state parsing control unit which embodies the chosen
[51] Int. Cl.6 ...................................................... G061? 15/38 parsing algorithm, and a communications unit for commu_
[52] US. Cl. .......................... 395/800; 395/700; 364/153; nication with a host processor or external interfaca The use

. 364/2743; 364/DIG. 1 of associative memory for the storage of parsing state
[53] Field of Search .................................... 395/800, 700; representations aflows the architecture to reduce the algo-

364/253, 274.8, DIG. 1 rithmic time complexity of parsing algorithms both with
respect to grammar size and input string length, when

 
156] References Cited compared to standard software implementations on general

US. PATENT DOCUMENTS ptn'pose computers. The disclosed architecture provides for
a fast and compact computer penpheral or system, particu-

4.686,623 8/1987 Wallace ................................... 395/700 1311)! when physically realiud in one or a small number of
4.914.590 4/1990 Loaunan et al.
4,994,966 2/1991 Hutchins .......
5,105,353 4/1992 Charles et a1.

354/4199“ integrated circuit chips. and thus contributes to the technical

3645,3333 feasibility of real time applications in speech recognition,
machine translation, and syntactic pattern recognition.

 
 

 

 
  
 
 

5,239,293 8/1993 Wei .................. '. ..... 341/51
5,239,663 8/1993 Faudemay et a1. .. 395/800

Primary Emitter—Alyssa H. Bowler 7 Claims, 5 Drawing Sheets

l2 10

r———_———— ——— ——__---——_ -—_--.... -

ASSOCIATIVE
MEMORY

 

 

PARSING CONTROL
UNlT

  

 
COMMUNICATlONS
UNIT _
 r____.__.__.__________..__

NOAC EX. 1015 Page 155



NOAC Ex. 1015 Page 156

 
   361521L,eHWe9P55‘1fi0

1X.
J“E

sumnM.nOu_Nau
h

sE02u:"mmuoo<_282EJomkzoo02meu%mmEosms._m,_m>fi<60mm<“AW .lllllllllllllllllllllllllllllll.n
noA

QN_
m.h_.2“.

m

 



NOAC Ex. 1015 Page 157

~ 6%. @

US. Patent Apr. 23, 1996 Sheet 2 of5 5,511,213

DATA BUS OPCODE MATCHFLAG

  

  

 

20

2

FIG. 2 M?“ MR2 5133 PSIORITY

   

INITIALIZE COMMUNICATIONS UNIT

LOAD GRAMMAR
AND PARSING TABLE

RECOGNIZER

““6

EXTRACT PARSE INFORMATION

 

 

 
I NOAC EX. 1015 Page 157



NOAC Ex. 1015 Page 158

‘ @

US. Patent Apr. 23, 1996 Sheet 3 of 5 5,511,213

H63

m ME.

1 —— s s

s —> up up

up —> “JOHN"

W -»“ms"
aN—l
“JOHN THIMS S"

1 4 M

0123

FIG. 5

RULE MEMBER

DDT PBSIHDN

  SIRE PROCESSED Bfl

msr worm mm \
LAST WORD MEX mmsmsol

FIG. 78

  
NOAC EX. 1015 Page 158

 



NOAC Ex. 1015 Page 159

‘

 
 

US. Patent Apr. 23, 1996 Sheet 4 of 5 5,511,213

0

RULE o

RULE I

RULE 2

RULE 3

P-OFFSET

42
S

M’ P-TABLE

ll’

HP+1

N-OFFSET

4M1

‘IJUHNH

"THINKS"

ZS N-TABLE
8

DP

ll'

 
NOAC EX. 1015 Page 159 



NOAC Ex. 1015 Page 160M‘EAHAF'-.nanny

US. Patent

@

Apr. 23, 1996 Sheet 5 of 5

FIG; 7C

“JflHN THMS 3"

WWI NEVIS

<fl,fl, 1,0, S, “P, 1> S---- ONP HP

   

 

 
 
 

 

<0,0, 2, 0, NP, “JOHN", 1>

<0,1,2,1, AP, ML, 1>

<0,1,1,1, 8, HP, 1>

<1, 1, 3, 0, UP,"IHN(8f',1>

ll 1

NP 0"J0HN"

 

 
 

  
  

NP --- “JOHN"°

S --- NP 0 “P

"P ---- 0 “THIIWS”

UP -----"THIM(S"°

<0,2,fl,1, Z, “S , >

—
_

s —--- NP HP-

Z _____ S . us"

2 _____ S n n .

x
.1;~ 2;

5,511,213

ABM

WENT '

PflflllT

BMLEI'E

MEET

CMLETE

WEE

MEET

NOAC EX. 1015 Page 160



NOAC Ex. 1015 Page 161

3” 5‘:

y»«1'

ream“....,MW

~

5,511,213
1

ASSOCIATIVE MEMORY PROCESSOR
ARCHITECTURE FOR THE EFFICIENT

EXECUTION OF PARSING ALGORITHMS
FOR NATURAL LANGUAGE PROCESSING

AND PATTERN RECOGNITION

BACKGROUND or me INVENTION

The present invention relates broadly to computer hard-
ware architectures using parallel processing techniques and
very large scale integration (VLSI) microelectronic imple-
mentations of them More particularly, the invention relates
to an integrated associative memory processor architecture
for the fast and eflicient execution of parsing algorithms
used in parsing intensive and real time natural language
processing and pattern recognition applications, including
speech recognition, machine translation, and natural lan-
guage interfaces to information systems. Parsing is a tech-
nique for the analysis of speech, text, and other patterns,
widely used as a key process in contemporary natural
language processing systems and in syntactic pattern recog-
nition for the identification of sentence structure and ulti-

mately the semantic content of sentences.
Parsing is done with respect to a fixed set of rules that

describe the grammatical structure of a language. Such a set
of rules is called a grammar for the language. In a standard
parsing model, the parser accepts a string of words fi'om its
input and verifies that the string can be generated by the
grammar for the language, according to its rules. In such
case the string is said to be recognized and is called a
sentence of the language. There exist many forms of gram-
mar that have been used for the description of natural
languages and patterns, each with its own generative capac-
ity and level of descriptive adequacy for the grammatical
description given languages. A hierarchy of grammars has
been proposed by N. Chomsky, “On Certain Formal Prop-
erties of Grammar,” Information and Control, Vol. 2. 1959,
p. 137—167, and some of the formalisms that have been or
are currently in use for the description of natural language
are transformational grammar, two-level grammar, unifica-
tion grammar, generalized attribute grammar, and aug-
mented transition network grammar. Nonetheless, the for-
malisrn most widely used is that of context-free grammars;
the formalisms just cited, and others, are in some sense
augmentations of or based on context-free grammars.

Likewise, many parsing methods have been reported in
the literature for the parsing of natural languages and
syntactic pattern recognition. For context-free grammars
there are three basic parsing methods, as may be inspected
in “The Theory ofParsing, Translation and Compiling," Vol.
1, A. V. Aho and l. D. Ullman, 1972. The universal parsing
methods, represented by the Cocke-Kasami—Younger algo-
rithm and Earley’s algorithm, do not impose any restriction
on the properties of the analysis grammar and attempt to
produce all derivations of the input string. The two other
methods, known as top-down or bottom-up, attempt as their
names indicate to construct derivations for the input suing
from the start symbol of the grammar towards the input
words, or from the input words towards the start symbol of
the grammar. The parsing state representations used by the
parsing methods include, in general, a triple consisting of the
first and last word positions in the input string covered by the
parsing state, and a parsing item which may be a grammati-
cal category symbol or a "dotted” grammatical nrle, that
shows how much of the item has been recognized in the
segment of the input string marked by the first and last word
positions.

10

15

25

30

35

45

50

55

60

65

2

In contrast to the parsing of some artificial languages,
such as programming languages for computers, the chief
problems encountered in parsing natural languages are due
to the size of the grammatical descriptions required, the size
of the vocabularies of said languages and several sorts of
ambiguity such as part of speech, phrase structure, or
meaning found in most sentences. The handling of ambigu-
ity in the description of natural language is by far one of the
most severe problems encountered and requires the adoption
of underlying grammatical formalisms such as general con-
text-free grammars and the adoption of universal parsing
methods for processing.

Even the most eflicient universal parsing methods known
for context-free grammars (Cocke-Kasami-Younger and
Earley's algorithms) are too ineflicient for use on general
purpose computers due to the amount of time and computer
resources they take in analyzing an input string, imposing
serious limitations on the size of the grammatical descrip-
tions allowed and the types of sentences that may be
handled. The universal parsing methods produce a number
of parsing state representations which is in the worst case

proportional to the size of the grammatical description of the
language and proportional to the square of the number of
input words in the suing being analyzed The set of parsing
states actually generated in typical applications is, however,
a sparse subset of the potential set. Other universal parsing
methods used in some systems, including chart parsers,
augmented transition network parsers, and top-down or
bottom—up backpacking or parallel parsers encounter prob-
lems similar to or worse than the standard parsing methods
already cited. Since parsing algorithms in current art are
typically executed on general purpose computers with a you
Neumann architecture, the number of steps required for the
execution of these algorithms while analyzing an input
sentence can be as high as proportional to the cube of the
size of the grammatical description of the language and
proportional to the cube of the number of words in the input
string.

The existing von Neumann computer architecture is con-
stituted by a random access memory device (RAM) which
may be accessed by location for the storage of program and
data, a central processing unit (CPU) for fetching, decoding
and execution of instructions from the RAM, and a com-
munications bus between the CPU and RAM, comprising
address, control, and dam lines. Due to its architecture, the
you Neumann type computer is restricted to serial operation,
executing one instruction on one data item at a time, the
communications bus often acting as a “bottleneck" on the
spud of the serial operation.

With a clever choice of data structure for the representa-
tion of sets of parsing states on 9. von Neumann computer,
such as the use ofan array ofboolean quantities used to mark
the presence or absence of a given item from the set of
parsing states, it is possible to reduce the number of steps
required to perform basic operations on a set of parsing
states to a time that is proportional only to the logarithm of
the number of states in the set, and therefore to reduce the
total time required for the execution parsing algorithms on
the von Neumann computer. However, the number of pars-
ing states that may be generated by universal parsing algo-
rithms is dependent on grammar size and input string length
and can be quite high. For the type of grammars and inputs
envisioned in language and pattern recognition applications,
this number can be of the order of two to the power of thirty,
or several thousands of millions of parsing items. This
amount of memory space is beyond the capabilities of
current computers and, where available, it would be inefii—

NOAC EX. 1015 Page 161



NOAC Ex. 1015 Page 162

 
ii

E:

-

5,511,213
3

ciently used. The speedup technique suggested is well
known and illustrates the tradeofi‘ of processing memory
space for reduction of execution time. Universal parsing
algorithm, furthermore, require multiple patterns of access
to their parsing state representations. This defeats the: pur-
pose of special data structures as above, unless additional
memory space is traded 05 for a fast execution time.

In the technical article “Parallel Parsing Algorithms and
VLSI Implementations for Syntactic Pattern Recognition,”
Y. T. Chiang and K. S. Fu, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 6, No. 3, 1984, p.
302—314, a parallel processing architecture consisting of a
triangular-shaped VLSI systolic array is devised for the
execution of a variant of the universal parsing algorithm due
to Earley. In the Chiang-Fu architecture, the systolic array
has a number of rows and a number of columns equal to the
number of symbols in the string to be analyzed. Each
processing cell of the systolic array is assigned to compute
one matrix element of the representation matrix computed
by the algorithm. Each cell is a complex VLSI circuit that
includes a control and data paths to implement the operators
used in the parsing algorithm, and storage cells for the
storage of cell data corresponding to matrix elements. The
architecture has a regular communication geometry, with
each cell communicating information only to its upper and
right-hand side neighbors. In order to achieve its processing
eificiency requirements, allowing as many processing cells
of the array as possible to operate in parallel, the Chiang-Fu
architecture must use a weakened form of Earley’s algo-
rithm. Furthermore, in order to meet the VLSI design
requirement that each processor perform a constant time
operation. the architecture restricts the grammar to be free of
null productions, i.e., those whose fight-hand sides have
exactly zero symbols.

In addition to the two disadvantages of the Chiang-Fu
architecture noted above, its main disadvantage, however, is
the complexity of each cell in the processing array and the
required size of the array. The cell design uses complex
special purpose hardware devices such as programmable
logic arrays, shift registers, arithmetic units, and memories.
This approach yields the fastest execution speed for each
cell, but due to its complexity and the highly irregular
pattern of interconnections between the cell’s components
the design is not the best suited for VLSI implementation.
Since the systolic array has a number of rows and a number
of columns equal to the number of symbols in the string to
be analyzed, the number of cells in the array is proportional
to the square of the number of symbols in the string.

Associative processing is a technique of parallel compu-
tation that seeks to remove some problems of the von
Neumamr computer by decentralizing the computing
resources and allowing the execution of one operation on
multiple data items at a time. An associative memory
processor has distributed computation resources in its
memory, such that the same operation may be executed
simultaneously on multiple data items, in situ. The opera-
tions that may be executed in the memory are fairly simple,
usually restricted to comparison of a stored data word
against a given search pattern. The distributed computation
approach eliminates two major obstacles to computation
speed in the von Neumann computer, namely the ability to
operate only on one data item at a time, and the need to move
the data to be processed to and from memory. Since asso-
ciative memory is essentially a memory device, it is the best
suited type of circuit for large scale VLSI implementation.
Associative processing is cunently used in some special
purpose computations such as address translation in current

10

15

30

35

45

50

55

60

65

4

computer systems, and is especially well suited for symbolic
applications such as string searching, data and knowledge
base applications, and artificial intelligence computers. In
contrast to addressing by location in a random access
memory, associative processing is particularly efiecfive
when the sets of data elements to be processed are sparse
relative to the set of potential values of their properties, and
when the data elements are associated with several types of
access patterns or keys.

An associative memory processor architecture for parsing
algorithms, as has been proposed by N. Correa, “An Asso-
ciative Memory Architecture for General Context-free Lan-
guage Recognition,” Manuscript, 1990, stores sets of pars-
ing state representations in an associative memory,
permitting inspection of the membership of or the search for
a given parsing state in a time which is small and constant,
independent of the number ofstate representations generated
by the algorithm. Additionally, the parsing method chosen is
implemented in a finite state parsing control unit, instead of
being programmed an executed by instruction sequences in
the central processing unit of a general purpose computer or
microprocessor. This allows for a maximally parallel sched-
uling of the microoperations required by the algorithm, and
eliminates the need for instruction fetching and decoding in
the general purpose computer. Furthermore, since the asso—
ciative memory need be dimensioned only for the number of
parsing states that may actually be generated by the parsing
algorithms, and since the finite state control unit contains
only the states and hardware required for the execution of
the algorithm, said machine may be fabricated and pro-
grammed more compactly and economically with integrated
circuit technology.

It is apparent from the above that prior art approaches to
the execution ofuniversal parsing algorithms are neither fast
enough nor compact enough for the technical and economic
feasibility of complex symbolic applications requiring a
parsing step, such as real-time voice recognition and under-
standing, real—time text and voice-to-voiee machine transla-
tion, massive document processing, and other pattern rec-
ognition applications. The general purpose von Neumann
computer and other previous proposals for the parallel
execution of those algorithms are not fast enough and not
compact enough. The associative processing architecture for
the execution of universal parsing algorithms herein dis-
closed has the potential to offer significant speed improve-
ments in the execution of universal parsing algorithms and
is furthermore more compact and better suited for large scale
VLSI implementation.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a new and improved parallel processor architecture that
executes parsing algorithms faster than the prior art
approaches.

It is a further object of the present invention to provide a
new and improved parallel processor architecture which is
dedicated exclusively to the execution of parsing algorithms
and is physically more compact, smaller, and better suited
for large scale VLSI implementation than the prior art
approaches.

It is still a further object of the present invention to show
a particular embodiment of a universal parsing algorithm in
said architecture and the method by which this is achieved.

In accordance with the above objects, the present inven-
tion is addressed to an associative memory processor archi-

NOAC EX. 1015 Page 162



NOAC Ex. 1015 Page 163

 
 

'

5,511,213
5

tecture consisting of an associative memory unit for the
storage of parsing state representations, a random access
memory unit for the storage of the grammatical rules and
other parsing data and tables according to which the parsing
is done, a finite state parsing control unit which embodies
the chosen parsing algorithm, and a communications unit for
communication with a host processor or external interface.

The associative memory unit (CAM) is used for the
storage of parsing state representations, dynamically com-
puted by the parsing algorithm according to the input string
and grammar. Each parsing state representation consists of
a tuple of a first word index to a position in the input string,
a last word index to a position in the input string, a parsing
item, a left-hand side symbol field, a next symbol field, a
state-not—processed field, and optional fields to store other
information related to the parsing process, such as context
and lookahead symbols, attributes of the parsing state, and
information for parse tree extraction. Each parsing state
representation is storm in one logical CAM word, which
permits fast and easy inspection of the parsing states already
generated by the algorithm. The parsing item in the third
field of a parsing state representation may be a grammar
symbol or a dotted rule, consisting of a rule number and an
index to a position on the right hand side of the rule.

The random access memory unit (RAM) is used for the
storage of the grammatical rules according to which the
parsing is done. This memory unit is also used to store other
parsing data and tables used by the parsing algorithm, as
detailed below; alternatively, a second random access
memory unit may be used for the storage of such informa-
tion. Each, grammatical rule consists of one left-hand side
symbol and aright—hand side of zero or more symbols. Each
grammatical rule is stored in one logical RAM record, with
one RAM word allocated to store each of the rule’s symbols.
In this manner, it is possible to retrieve the j-th symbol ofthe
p-th grammatical rule from the j-th word of the p-th record
in the RAM. The RAM may be accessed by the communi-
cations unit for the purpose of allowing the host processor
writing into the RAM the grammatical rules according to
which the parsing is done. Alternatively, the RAM may be
a read—only memory, which permanently stores a predefined
set of grammatical rules and tables.

The finite state parsing control unit (PCU) is connected to
the CAM and the RAM and is a finite state machine that

embodies the chosen parsing algorithm. The PCU accesses
the CAM for the purposes of initializing it, inserting initial
or seed parsing states for the parsing process, and requesting
parsing states marked unprocessed for processing. When an
unprocessed parsing state is retrieved from the CAM, the
PCU may access the RAM and may request input symbols
from the communications unit for the purpose of generating
new parsing states to be added to the CAM, as unprocessed.
Each access to the RAM allows the inspection of the
grammatical rules, if any, that may be applicable for pro—
cessing of the current parsing state. The input symbols
requested form the communications unit allow verification
that the next input symbol is compatible with the current
parsing state. When the PCU has generated the number of
parsing state sets required by the input string and all parsing
states in the CAM axe marked processed—Le, there are no
unprocessed states—the'PCU performs a test on the contents
of the CAM to decide acceptance of the input suing, may
optionally execute some post—processing operations, as
detailed below, signals the communications unit that the
parsing of the cun'ent input string is complete, and termi—
nates execution. The exact order and the precise nature of the
operations performed by the parsing control unit, generically

10

15

20

30

35

45

50

55

60

65

6

described above, depend on the particular parsing algorithm
embodied in the finite state parsing control unit.

The communications unit (CU) is connected to the CAM,
RAM, and PCU and is used for communication with a host
processor or external interface. The communications unit
may be as simple as an interface to a given computer
interconnection bus, or as complex as a system that imple-
ments a computer communications protocol. The commu-
nications unit accesses the RAM for the purpose of allowing
the host processor writing into the RAM the grammatical
rules according to which the parsing is done. Alternatively,
the RAM may be a read-only memory, which permanently
stores a predefined set of grammatical rules, in which case
the CU need not have access to the RAM. The CU also

accesses the finite state control unit for the purposes of
initializing it and supplying to it input symbols from the
input string to be analyzed. The CU also accesses the CAM
at the end of a parsing process for the purpose of reading out
and sending to the host processor the parsing state repre-
sentations and any other information that may be relevant to
further processing of the input string. An optional additional
function of the communications unit is its ability to issue
commands and data to the RAM, CAM and PCU for the
purpose of testing their functionality and correctness of
operation.

Preferably, the associative memory unit is formed on a
single integrated circuit chip, and the random access
memory unit, finite state parsing control unit, and a com—
munications unit are formed together or programmed on a
separate integrated circuit controller chip. Alternatively, all
system components may be integrated on a single chip, with
optional provision for external expansion of the RAM or
CAM memories. In either case, the operation of the finite
state parsing control unit may allow for the execution of
parse extraction algorithms and useless parsing state mark-
ing and elimination algorithms, to simplify further process-
ing of the parsing result by the host processor.

BRIEF DESCRIPTION OF THE DRAWINGS

In the detailed description of the preferred embodiment of
the invention presented below, reference is made to draw-
ings as presently detailed. The drawings are not necessarily
to scale, emphasis being placed instead upon illustrating the
principles of construction and operation of the invention.

FIG. 1 is a complete schematic illustration of the asso-
ciative memory processing system for parsing,algorithms,
object of the present invention.

FIG. 2 shows the general organization of the associative
memory unit assumed by the preferred embodiment.

FIG. 3 is a small example context-free grammar and
shows a sample input string with annotated string positions.

FIG. 4 is a schematic illustration of the RAM memory
map corresponding to the example grammar in FIG. 3

FIG. 5 is a schematic illustration of the parsing state
encodings to be stored in the associative memory, for the
preferred embodiment where the processor embodies Ear-
ley’s algorithm.

FIG. 6 is a flow chart of the steps followed by the system
during loading of a grammar, parsing, and extraction of the
parse information.

FIGS. '7.a—c are a schematic illustration of a series of

CAM memory maps of the associative processing system at
different times during parsing an input string, according to
the example grammar in FIG. 3.

NOAC EX. 1015 Page 163



NOAC Ex. 1015 Page 164

m.

M,2.)

.4...».3.u.

r‘mmmw

r
I

5,511,213
7

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 illustrates an embodiment of the present invention
suitable for the execution of a wide family of parsing
algorithms. Referring to the same figure, the system includes
an associative memory unit 1 and a communications and
parsing control unit 5. The communications and parsing
control unit includes a random access memory unit 2, a finite
state parsing control unit 3, a conununications unit 4, a first
data bus 10, a second data bus 11, and other signals further
detailed below.

Associative memory unit 1 is connected by the internal
data bus 10 and by control fines 81 and 82 to the parsing
control unit The associative memory unit (CAM) is used for
the storage of parsing state representations and its word
width is commensurate with the number of bits required for
the representation of parsing states. The parsing state rep-
resentations produced by the parsing control unit may be
transferred, i.e., written, to the associative memory through
the internal data bus 10. Likewise, parsing states stored in
the associative memory may be transferred in the opposite
direction, i.e., read, to the parsing control unit by means of
the same internal data bus 10. To provide for fast data
transfers between the associative memory and the parsing
control unit, in one bus cycle, the width of the first data bus
10 is equal to the width of one CAM tword. Control line 81
from the parsing control unit to the associative memory is
the operation select code for the operation requested of the
associative memory. Control line 82 from the associative
memory to the parsing control unit is a match flag produced
by the associative memory after a match operation. Because
an associative memory is used for the storage of parsing
state representations, operations such as the insertion of a
new parsing state into the CAM may be perfcrrned in
constant time, independent of the number of parsing states
already generated, and the performance degradation result-
ing from the use of random access memory in avon Neu-
mann computer for the storage of the same representations
is mitigated. Also, because an associative memory is used,
multiple access patterns are permitted into the parsing state
representations, without the overhead of additional data
structures. These multiple access patterns play a role in the
implementation of some optimizations of the parsing algo-
rithm to be embedded in the finite state parsing control unit.

The general organization of the associative memory unit
assumed by the preferred embodiment is shown in FIG. 2.
This device has one array 20 of content addressable memory
cells, one data register 21, one mask register 22, three
general purpose match registers 23, 24, and 25, a priority
encoder 26 for multiple response resolution, and an internal
control section 27 for control of CAM operations. The
device has an associative method of word selection for read

and write operations, in which word selection is achieved by
the use of one of the match registers 23, 24, or 25, and the
priority encoder 26. The memory receives data and control
signals from the outside through data and control buses 28
and 29, and produces one match signal .MATCl-IFLAG 30
after the execution of match operations. The set of opera-
tions provided by the associative memory unit is further
detailed below in the description of the parsing control unit.

Random access memory unit 2 in FIG. 1 is connected to
the parsing control unit and other system components by a
second internal data bus 11 and by address and control lines
S3 from the PCU. Physically. the RAM is organized as a
linear array of words, divided into logical records of several
words. The number of bits per RAM word must be selected

10

15

20

30

35

45

50

55

60

65

8

according to the number of terminal and non-terminal sym-
bols in the ar, for example, with a word width of ten
bits a total of 1024 different symbols may be encoded. We
let PLEN be the number of words in one logical RAM record
and require that it be at least one more than the number of
symbols in the longest grammatical rule to be represented.
The grammatical rules areordered by their left-hand side
symbol and numbered from zero to some positive integer
PMAX, so that the number of RAM words required to store
the grammatical rules is PLEN times PMAX.

The rules ofFIG. 3 constitute a simple grammar with four
non-terminal symbols Z, S, NP, and VP, and three terminal
symbols “$", “John", and “thinks”; Z is the start symbol of
the grammar, and “$” is the “end-of-input—stn'ng" marker.
Each grammatical rule is stored in one logical RAM record,
as shown in FIG. 4, with one RAM word used to store each

of the rule's symbols. In this preferred embodiment, the
logical records have a fixed number of words, such that the
j-th symbol of the p-th grammatical rule may be retrieved
from the RAM word at address p times PLEN plus j. The
symbol NIL, not in the vocabulary of the grammar, is used
to mark the end of each rule’s right-hand side. The RAM
may be accessed by the communications unit through the
second internal data bus 11 for the purpose of allowing the
host processor to write into the RAM the grammatical rules
according to which the parsing is done. Alternatively, the
RAM may be a mad-only memory, which permanently
stores a predefined set of grammatical rules.

In this embodiment, the random access memory unit
contains additional space for the storage of two parsing
tables, P-TABLE and N-TABLE. P-TABLE relates the non-
terminal symbols of the grammar to the number of the record
of the fast production in their list of alternatives in the RAM.
This information is used by the parsing algorithm and is
stored at an offset P_0FFSEI‘ from the first word of the

RAM, beyond the end of the space used to store the
grammatical rules. N—TABLE is a table of all the symbols in
the grammar and the special symbol NIL that indicates for
each one whether it may derive the empty string after one or
more derivation steps (i.e., whether it may be nulled). This
table is storm at an offset N_OFFSET from the fast word of
the RAM, beyond the end of the space used to store the
P-TABLE. These tables are also shown in FIG. 4.

The parsing control unit 3 in FIG. 1 is connected to the
associative memory unit and to the random access memory
unit as already described. The parsing control unit is also
connected by the second internal data bus 11 and by control
lines S4, SS, and $6 to the communications unit. The second
internal data bus 11 is used to transfer commands and input
symbols to the parsing control unit, and to read status
information from the same. Control line S4 is the SYM-
BOL_REQUEST line from the PCU to the communications
unit, while SS is the SYMBOL_READY line in the converse
direction. Control line 86 is the END_OF_PARSE line from
the PCU to the communications unit. Because the parsing
control unit is a finite state machine that embodies the

chosen parsing algorithm. it is optimized both with regard to
speed and size. In this preferred embodiment, the parsing
control unit is designed to execute a version of Earley’s
algorithm, “An Eficient Context-free Parsing Algorithm,"
Communications of the Association for Computing Machin-
ery, Vol. 13, No. 2, p. 94—102, known in the art, and includes
some optimizations of the original algorithm, suggested by
S; Graham et al.. “An Improved Context-free Recognizer,"
A CM Transactions on Programming Languages and Sys-
tems, Vol. 2, No. 3, 1980, p. 415—462. According to Earley’s
algorithm, in the preferred embodiment the parsing control

NOAC EX. 1015 Page 164



NOAC Ex. 1015 Page 165

 

'

69

5,511,213
9

unit has a main procedure that initializes the machine, writes
an initial parsing state into the associative memory unit, and
then reads unprocessed states from the CAM and processes
them according to one of three actions: PREDICI‘, COM-
PLETE, and EXAMINE, to be detailed below. The embodi-
ment is most general, allowing arbitrary context-flee gram-
marrules, including grammar rules with zero right-hand side
symbols. In this version, the algorithm uses a number k of
“lookahead” symbols equal to zero. Modification of this
feature of the algorithm is within the state of current an and
may be made by those skilled in the art.

The parsing state representations stored in the associative
memory unit are hit patterns arranged into seven fields
named “first-word-index", “last-word-index", “mle-num-
her", “dot-position”, “left-hand-side” symbol, “symbol-af-
ter-dot”, and "processed-bit", as shown in FIG. 5. The data
in the fifth and sixth fields, “left-hand-side" symbol and
“symbol-after-dot”, respectively, are redundant, since they
may be obtained from the grammar rules stored in the
random access memory knowing the “mle-number” and
“dot—position” values. However, the operation of retrieving
the symbol on the right side of the dot is essential to the three
actions of the algorithm, particularly the COMPLETER, and
hence the “symbol-after-dot" field is included in the parsing
state representations to facilitate and speed up the execution
of this operation. Similarly, the inclusion of the fifth field,
“left—hand-side" symbol, allows the implementation of an
important optimization to the COMPLETER step. A com-
plete behavioral description of the parsing control unit,
corresponding to Earley's algorithm with the noted optimi-
zations, appears below in TABLE 1, pans A through G. The
first data bus 10 of FIG. 1 is referred to as CAM__BUS in the

descriptive code, and the second data bus 11 of the same
figure is referred to as D_BUS in the same code. The
behavioral description assumes the purely associative
memory of FIG. 2, with one data and one mask register, and
with three match registers MR1, MR2, and MR3, which may
be used for word selection in the CAM operations. The
behavioral description of the CAM operation codes assumed
by the parsing control unit is given in TABLE 2, below.

The communications unit is connected to the associative

memory unit, the random access memory unit, and the
parsing control unit through the second internal dam bus 11.
The CU accesses, through said second internal data bus 11,
the finite state parsing control unit for the purposes of
initializing it and supplying to it input symbols of the input
string to be analyzed. The unit also accesses the CAM at the
end of a parsing process for the purpose of reading out and
sending to the host processor the parsing state representa-
tions and any other information that may be relevant to
further processing of the input string. In this embodiment,
the communications unit implements a corrrrnunications
protocol for computer peripherals that may be supported by
small computers and workstations. This allows the use of the
associative processor object of the present invention as an
internal or external peripheral device for a wide variety of
computers.

The operation of the associative parsing machine, accord-
ing to the behavioral description of its components given in
TABLE 1 and TABLE 2 below, with the grammar of FIG. 3
and for the input string “John thinks S" will now be
described with reference to FIG. 6 and FIGS. 7A to 7C.

When the associative parsing machine starts its operation
in response to a command from the host processor or
external interface, it requires that the parsing grammar, the
productions table (P-TABLE), and the nullable symbols
table (N-TABLE) have already been loaded into the random

10

15

20

25

30

35

45

50

55

60

65

10

access memory. Thus, for the grammar of FIG. 3, the RAM
configuration is that shown in FIG. 4. FIG. 6 is a flow chart
that shows the general operation of the system, including
loading of the analysis grammar, invocation of the main
recognizer procedure, execution of optional post—processing
actions, and extraction of the parse information.

The parsing control unit of the machine uses an associa-
tive memory with one data register DATA_REG, one mask
register MASK_RBG, and three match registers MR1, MR2,
and MR3. MR1 is used as a general “match” register, MR2
as a temporary “match” register, and MR3 as a “free words”
register. The parsing control unit contains three registers
CURRENT_SET, INPUT_SYMBOLS, and NEXT_SYM-
BOL which are used to store the number of the current

parsing state set being processed (last-word-index), the
number of symbols from the input string already seen, and
the next input symbol from the input string. A one bit flag
BXIST_SYMBOL is use to indicate that the NEXI‘_SYM-
BOL register currently contains the next input symbol from
the input string. The parsing control unit also has a data
register DR used for storing parsing state representations
and a STATUS register‘with “accept" and “error“ fields, into
which the result of recognition of the input string is depos-
ited, in the “accept" field of the register. An END_OF—
_PARSE one bit flag is used to signal the communications
unit the end of the parsing process for the input string.

The descriptive code corresponding to the top level of the
parsing control unit (RECOGNIZER) is shown in TABLE 1,
part A. The code contains steps to initialize the recognizer,
write an initial parsing state representation into the CAM,
dynamically compute the set of all parsing state represen-
tations, and test for acceptance of the input string, depending
on the set of parsing states computed. The intialization steps
of the recognizer in the code of INITIALIZE_RECOG—
NIZER, shown in TABLE 1, part B, reset the CURRENT—
_SET and other registers of the machine, reset the STATUS
accept and END_OF_PARSE flags, clear the associative
memory, and according to the operation CLEARCAM, in
TABLE 1, part G, set the “free words" register MR3 of the
CAM, indicating that initially all CAM words are free.
Immediately thereafter the parsing control unit assembles
and writes into the CAM an initial parsing state represen-
tation that corresponds to the application of the production
for the initial symbol of the grammar in a top-down deri-
vation. This is shown in the code of WRITE_INITIAL-
__STATE, also in TABLE 1, part B. This initial parsing state
corresponds to the zero-th production of the grammar in
FIG. 3 and has first and last word indices equal to zero, rule
number equal to zero, dot position equal to zero, left-hand-
side symbol equal to the numeric code of Z, symbol-alter-
dot equal to numeric code of S, and processed-bit mark in
zero. The contents of the CAM after insertion of this parsing
state are shown in FIG. 7A.

The principal part of the RECOGNIZE-R code consists of
an iteration cycle in which the CAM is searched for unproc-
essed parsing states in the current state set and, if any are
found, these are processed, one at a time, according to one
of three actions: PREDICT, COMPLETE, and EXAMINE,
depending to the type of the symbol found in the “symbol-
after-dot" field of the unprocessed parsing state. PREDICT
is applied when the symbol afler the dot is a non—terminal
symbol, COMPLETE when there is no symbol (i.e., NIL)
after the dot, and EXAMINE when the symbol is a terminal
symbol. The processing of each state includes toggling its
processed-bit mark to one (i.e., marking it as processed). The
descriptive code for the three actions PREDICT, COM-
PLEI'E, and EXAMINE is shown in TABLE 1, part C. The

NOAC EX. 1015 Page 165



NOAC Ex. 1015 Page 166

,'tKim?!»a..

‘.‘v

r.‘1.”

--.-x«M.

. 3:;

r,”a,m“mm

s

5,511,213
11

descriptive code for the search of unprocessed parsing states
from the current state set appears in the code of
MATCH_UNPROCESSED_STATES in TABLE 1, part F.

The first parsing state to be processed by the machine is
the initial state inserted into the CAM, as part of the
initialization steps of the RECOGNIZER code. This parsing
state is first read from the CAM into register DR of the
parsing control unit, and then processed according to the
PREDICT operation, since the symbol S found in the
“symbol-afier-dot" field is a non-terminal symbol. The PRE-
DICI‘ operation first searches the CAM to verify if the
“symbol-after-dot" in the state (S in this case) has not
already been predicted during processing of the current
parsing state set, and then marks the state processed by
toggling its “processed-bit" field to one and rewriting it into
the CAM. If the symbol has been predicted during process-
ing of the current parsing state set no fiirther action is done
by the PREDICT operation. Otherwise, the operation seeks
grammar rules with the “symbol-after-dot” on the left-hand
side and for each one generates a new parsing state repre-
sentation, t0‘he added to the CAM as unprocessed. The new
states are added into the CAM by the operation
ADD_STATE, shown in TABLE 1, part D. According to this
operation, a new parsing state representation is not added
into the CAM if it is already found there, ignoring its
“processed-bit". The ADD_STATE operation may also add
some additional states into the CAM, if some symbols after
the dot in the original state to be added are nullable. Since
in the grammar of FIG. 3 there is only one rule for the
symbol S of the initial parsing state representation, and there
are no nullable symbols, there is only one new parsing state
added into the CAM by the PREDICT operation. and the
CAM contents after execution of this operation are the two
parsing states shown in FIG. 73.

After one more iteration in the RECOGNIZER code, in
which the production for the NP non-terminal symbol is
predicted, the associative processor is ready to apply the
EXAMINE operation to the first symbol “John" of the input
string. Symbols from the input string are obtained from the
communications unit by the GET_INPU'I‘_SYMBOL opera-
tion of TABLE 1, part B, Ifthe symbol is not already in the
NEXLSYMBOL register, the operation raises the SYM-
BOL_REQUEST signal to the communications unit and
waits until the unit responds with the SYMBOL_READY
signal in the converse direction, at which time the symbol
must be present on the data bus 11 (D_BUS) of FIG. 1 and
is loaded into the NEXLSYMBOL register.

The parsing control unit continues operating as made
explicit in its behavioral description of TABLE 1, parts A
through G, until no parsing states axe found unprocessed in
the current parsing state set and the value of the CURRENT-
__SEI‘ register is greater than the value in the INPUT_SYM-
BOLS register. This condition signals the end of the
dynamic computation of parsing state representations for the
input string read. For the input string “John thinks $",
assumed as input to the associative parsing machine, the
parsing state representations computed, and hence the con-
tents of the CAM at the end of the iterations of the

RECOGNIZER, are shown in FIG. 7C. The last two steps of
the of the parsing control unit, as shown in the RECOG-
NIZER code of TABLE 1, part A. are a test for acceptance
of the input string, by searching the CAM for presence of a
particular parsing state representation, and to signal the end
of the parsing process, by setting the END_OF_PARSE flag
to one. The details of the test for acceptance appear in
TABLE 1, part F.

Throughout TABLE 1, the interaction between the opera-
tion of the parsing control unit and the associative memory

10

15

3O

35

4O

45

50

55

60

65

12

unit is done through the operations of TABLE 1, part G.
These operations assume the basic operation codes of
TABLE 2 for the associative memory rmit, and are macro
codes that utilize those primitive operations of the associa-
tive memory.

Two optimizations of Earley’s original algorithm appear
in the steps CHECK_IF_ALREADY_PREDIC'I'ED and
CI-IECK_1F_ALREADY_COMPLETED of the PREDICT
and COMPLETE operations in TABLE 1, part C. The two
steps, shown in TABLE 1, part F, help to avoid lengthy
computations in which a non-terminal symbol already pre-
dicted during computation of the current parsing state set is
tried to be predicted again, or a non-terminal symbol already
completed from a given parsing state set is tried to be
completed again. A third optimization of the algorithm
appears in the operation ADD_STATE of TABLE 1, part D.
This operation handles in an efficient way what would
otherwise be a series of predict and complete operations on
nullable symbols, using the precomputed information on
nullable symbols from the N-TABLE.

In addition to the execution of the selected parsing
algorithm, the finite state parsing control unit may optionally
execute some post-processing operations, such as parse
extraction algorithms and useless parsing state marking and
elimination algorithms, to simplify further processing of the
parsing result by the host processor.

The chief advantage of the associative memory parsing
processor over a traditional von Neumann computer is that
it reduces the theoretical and practical time complexity of
universal parsing algorithms both with respect to grammar
size and input string length, in a compact manner. The
hardware implementation of the parsing algorithm to be
used also contributes significantly to speed of operation.
Additionally, when attached to the central processing unit of
a standard computer, the associative processor acts as a
dedicated parallel processor that frees general computing
resources of the host computer for other user tasks. An
advantage of the associative memory processor over other
parallel architectures for the execution of parallel parsing
algorithms, such as the systolic array architecture of Chiang
and Fu, is that the parallel processing element in the asso-
ciative processor is its associative memory, which is better
suited for large scale VLSI implementation, due to its
regularity of layout and interconnection patterns and its wide
range of applications. For the purposes of illustration, but
not of limitation, in the following TABLE 1, parts A through
G, an example behavioral description of the associative
processor in accordance with the invention is given. It
should be noted by those skilled in the art that the descrip-
tion admits man), difierent structural realizations and that,
therefore, in the interest of generality, none such is given.

 

 

TABLE 1

m

Behavioral Description of Parsing Control Unit (PCU):RECOGNIZER

RECOGNIZER:

I‘ Data register fields DR: <f, i, p, j, 111:, sad, pb>
CAM MR1: General match register
CAM MRZ: Temporary matdr register
CAM MR3: Free words register
.__._.__.———-—-———-—._.___________ n/
MIALIZEJUECOGNIZER;
WRITE__INlTIAL_STATE;
repeat _

MATGi_UNPROCESSH)_STATE;

NOAC EX. 1015 Page 166



NOAC Ex. 1015 Page 167

w"11

ait»>

m-w)..r..‘..

-wz.‘
as:

M

Mr».

1.“

7-».av-w

c- ca

 
 

 

u

 

 

5,5 1 1,213

13 14

TABLE l-continued TABLE 1

WA 25E

Behavioral Description of Parsing Comm] Unit (PCU): 5 Behavicmal Dcscription of PCU: PREDICT, COMPLEI'E,RECOGNIZER EXAMINE

while. MATCIHED_SI‘ATES do begin PREDICT:

 

 
 

 

 

 

READCAM MR1; GEMJLREADY_PREDICTED;
switch CLASSIFY(DR.sId) begin MARK_STATE_PROCESSED;

NON__TERMINAL: PREDICI‘, 10 if not( MATCHED__SFATES) begin
NIL: comm-ms; FIRSTJ := P_TA.BLE[ DR.sad];
TERMINAL; EXAMINE; LAST_P .= P_TABLE[ DKsad + 11;
default mom 0); mu := CURRENT_SEI‘:

endswimh; ' mm .= CURRENF_SE1‘;
MATCl-I_UNPROCESSED_STATES; DRj .= o;

eudwhile; 15 DRJhs := DRsad;CURRENT_SEI' := CURRENT_SE1‘ + 1; repeat.
EXISI‘_SYMBOL := 0; DR]: := FIRST};

until CURRENT_SEI‘ > INPUTJYMBOLS; DKsad .= RULE[ FIRSI‘J, 1];
TEST_ACCEPTANCE; Dpr := (mum = NIL);
END_OF__PARSE := 1; ADD_SI‘A’I‘E;

END. FIRST_P .= HRSI‘_P + 1,
20 until 1:111er = LASLP:

endif;
END.

TABLE 1 COWLEI‘E:
GIECLIF_ALREADY_00MPLEI'ED;

Pan 3 MARLSI‘ATUROCESSED;
25 ifnot( MATCHED_STATES) begin

Behavioral Description of PCU: Inifialiuu'un muting: mu 3 DRf;
DRsnd := DRJhs;

INTI'IALIZLRECOGNIZERI MATCHCAM MR1, DR, < 1. o, 1. 1, 1, o. 1>;
CURRENLSEr := 0; while MATCHED_SI‘ATES do begin
INPUT_SYMBOIS .= o. READCAM MR1;
EXISLSYMBOL .= 0. 30 BM :=-— CURRENT__SEI‘;
SYMBOL_REQU1§T := 0; Dllj : DR.j + 1;
END_OF_PARSE := 0. 1mm .—= RULEI DR.p, m + 1};
SfA'I'USJcccpt .= 0; 13pr ;= o;
S'I'A'I'US.cnor[0) := 0; ADD_STATE;
CLEARCAM; SELECl'N'EXTCAM MR1:

m. endwbile;
WRI'I‘E__INT1‘1AL_S[‘ATE: 35 endif;

DR! .= 0; HID.
DRj := o, EXAMINE:
DR_p = 0. MARK_SI‘ATE_PROCESSED:
DRJ' 'r— 0: Gammon
-DR.1hs .= RULE! 0. 0]: if DR.sad = NEXLSYMBOL begin
mum := RULE! 0. 11; 40 mm .= CURRWLSEI‘ + 1;
DKpb ~= 0; DRj .= DR.j + 1;
ADD.SFATE: 1mm .= RULEI D1111, DR.j + 1];

END. 1)pr .= o.
ADD_STATE;

mdlf;
4s END.

50

NOAC EX. 1015 Page 167



NOAC Ex. 1015 Page 168

f.31.}.V.t

1110‘.

.2Maury»...H

mm.

4..'¢3.t.:’

 

,.g..Q'm
u

f

51‘.9“..."am

..1.31.“a."a.
ma‘

~::

.3,p,«r.

e:10".a“

o 0

5,511,213
15

TABLE 1

16

 
pan D

Behavioral Description of PCU: ADD_STATE

ADD_STATE:
WRI'IESEI‘CAM MR3, DR. < 0, 0. 0, 0. 0, 0, l>;
if not( MKI'CHED_STATES) begin

repeat
NU'LLABLE := N_TABLE[ DR.sad];
if NULLABLE begin

DR.j .= DRJ + l
DR.snd := RULE[ DRp, DRj + 1];
WRII'ESEI‘CAM MR3, DR, < 0. 0, 0, 0, 0, 0, 1);

endif;
until not( NULLABLE) OR MATCHED__STATES;

endif;
3 

 

 

if not( EX]ST_SYMBOL) begin
SYMBOL~REQUEST := I;
wait on SYMBOL_READY;
NEXT_SYMBOL :2 D_BUS.
SYMBOL__REQUEST := 0;
EXIST_S'YMBOL .= 1;
INPUTJYMBOLS := IN'PUI‘_SYMBOLS + 1;

endif;
3
CLASSIFY( SYMBOL):

I" Assume: an n-bit encoding of ‘SYMBOL‘ as follow:
Sun symbol (ETA): 2‘ (n—l)
Other non-Iexminals: 2‘ (11—1), . . ., 2‘ )1 ~ 1
Terminals: 1,. . ., 2“ (11—1) —1
End-of-sh'ing (NIL): 0

.__—_.___..__~.__.___—. i]
N'l‘ = SYMBOL[ n—l];
ZERO =not( OR( SYMBOLI 11—2], . . ., SYMBOL[ OD);
if (NT AND ZERO) begin mun(ZETA) endif.
if (NT AND not ERG» begin retum(NON_TERMD1AL)endif;
if (not NT) AND not( ZERO» begin retm'n( TERMINAL) endif;
if (nol( NT) AND ZERO) begin remm( NIL) endif;

 

,3 

TABLE 1

part F

 
 

Behavioral Description of PCU: Other Macros 5° 

MATCH_UNPROCESSED_STATES:
DRJ r: CURRENT_SEI".
DR.pb := 0;
MATCHCAM MR1. DR1 <1, 0.1, 1,1. 1. 0>:

. 55
MARK_STA’1‘E,.PROCESSED:

Dpr := 1',
WRITECAM MR1, DR;

3

E
CHECK.IF_ALREADY_PREDICTED:

DKpb := l; 50
MATCHCAM MR2. DR. <1,0,1,1,1. O, 0>;

E
CHECK_IF__ALR1=ADY COMPLETED:

DR.pb := l;
MATCHCAM MRZ, DR. < o.o,1,1,o,o,0>;

mom i): ‘5S'I‘A’IUS.ermr[ i] := l:

3

TABLE l-conlinued

me

 

Behavioral Description of PCU: Other Macros 
END.
TBT_AOCEPI‘ANCE:

DRE := O;
DlLi
DR.p
DRj :=
MATCHCAM MR7. DR, < 0, 0, 0, 0.1.1.1);
STATUSJcoept := MATCHED_STATES;

 
3 

TABLE 1

part6

 

Behavioral Description of PCU: CAM Mam); 

These macros are expanded into primitive CAM opemion codes,
with the following usage of the thxee match registers: MR1 =

NOAC EX. 1015 Page 168



NOAC Ex. 1015 Page 169

 

w‘m

um"?"awe.g»£-

NwSwn
a»

’a."

,xurn-mm

“

  

5,5 11,213

17 18

TABLE l-continued TABLE l-continued

pan G Earl G
 

Behavionl Description of PCU: CAM Macros 

march registu'. MR2 = lempanry match regisrer, ME =

5 Behavioral Description of PCU: CAM Macros 

MOVEREG REG, (REG AND no!( MR3));

 

 

 

free words register. MATCHED_STATES := MATCHFLAG;
CLEARCAM: END.

CLEAR: WRII‘ESEI'CAM REG, DATA, MASK:
SETREG MR3; 10 CAM_BUS = MASK;END. LOADMASK:

READCAM REG: CAM_BUS = DATA;
READ REG; MATCH MR2;
DR .= CAM_BUS; MOVEREG MR2. (MR2 AND nol( MR3»;

END. MATCHE)_STA'I‘ES := MATCHFLAG;

WRlTECAM REG, DATA: 15 if not( MATCHFLAG) beginCAM_BUS = DATA; WRITE REG;
WRITE REG; SELECI'NEXI‘ REG,

END. endif;
SELECl‘NEXTCAM REG: END.

smcmm REG;

MATCHED_STATES := MATCH'FLAG: 20END. . u . . I .

MATCHCAM REG, DATA. MASK: Also, for the purposes of lllustranon, but not of limitation,
CAM_BUS = MASK; in the following TABLE 2, a behavioral description of the

CAMJUS = DATA; CAM operauon codes assumed by the parsmg control um: is
MATCH REG; giveIL

TABLE 2

Behavionl Description of CAM Opanfion Codes

1* CAM registers: DATA_REG. MASLREG. MR1. MR2. MR3
CAM width: WCAM (hits per word)
CAM height HCAM (mnnber of words)
CAMIiIiIlhei—IhCAMqudfuri=l,...,l-ICAM
_._..._...._.__..___.___.____ __._......_..... 0/

 

CLEAR
DATA__REG .= 0;
MASLREG := O; l‘ MASK register: "0" don't mask; "1" mail: ’I
MRl[ i] := 0; I“ MATCH register 1. far i = 1. . . .. HCAM ‘I
MR2[il.-=0; PMATCngiserfori=l.....l-ICAM ‘I
MR3Ii].=O; I‘MATCI-Iregister3.fari=l,...,HCAM ‘I

END.
READREG: I'REG=MR1,MR2.orMm ’l

DATLREG := CAM[ PRIORITYl REGn;
CAM_BUS = DATA_REG:

END.
WRITE REG: I“ REG = MR1. MR2. or MIG *l

DATLREG .= CAMJUS:
CAMI PRIORlTY[ REGII := DATA_REG;

END. .
SELECI'NEXX‘ REG: l‘l REG = MR1. MRZ. or MR3 'I

REG .= SELECI'_NEXT( REG); l' resets LSB of REG set to “l" ‘I
MATCHFLAG r: OR(REG[ 1]. . . .. REG[ HCAMI);

END.
IDADMASK.‘

MASLREG := CAM_BUS;
END.

SEI'REG REG: I" REG = MR1. MRZ. or MR3 'I
REGli]:=l; I‘furi=l....,HCAM ’l

m.
RESEI‘REG REG: FREG=MR1.MR2.orMR3 'l

REGli]:=0; l‘fori=l,...,HCAM ‘IEND
l" REG=MR1.MR2, arm
I* expression: register, Boolean

REGI i] := expressioul i]; l' fori = l, . . ., HCAM
MATCHFLAG := OR(REG[ l]. . . ,, REG[ HCAMl);

Mom REG, expression:

END.
MATCH REG:

DATA__RFG := CAM_EUS;
SEARCELPATI'ERN = DATA_REG ‘ MASK_REG;
MLl'NEI i] = MATCH( CAMI i], SEARCH_PA'ITERN);
MATCHFLAG := OR( MUNEI 1]. . . -. MLINEI HCAMD:
REGI i] .=MLINE[ i]; I" fori = l, . . .. HCAM

/" REG=MRLMR2, or MR3

NOAC EX. 1015 Page 169

*I
*l
‘I

’l

‘l



NOAC Ex. 1015 Page 170

“4:1“...J.

¢~(was.a...‘.an

«Mr...
W».;.

 

ir
il
5.

 

5,511,213
19

TABLE 2~continued

20

 

Behavioral Description of CAM Operation Codes 
END.
 

While this invention has been shown particularly and
described with reference to a preferred embodiment, it shall
be understood by those skilled in the an that numerous
modifications may be made in form and details of the
architecture, in the choice of the parsing algorithm to be
used, and in the particular embodiment of said algorithm,
that are within the scope and spirit of the inventive contri-
bution, as defined by the appended claims. For example, the
associative memory unit has been shown with a particular
organization and set of operation codes it can execute, but
this does not preclude the use of other associative memory
means that can implement the required operations. Likewise,
different arrangements in the number and nature of the
control signals used to interconnect the system components
are possible. Variations and optimizations in the choice of
the parsing algorithm are possible, which may afl'ect the time
and space complexity of the device. Some of the optimiza-
tions referred to may require minor changes to the architec-
ture of the preferred embodiment, such as the inclusion of
additional tables for the parsing process. One such optimi-
zation worth noting is the inclusion of a table or other means
in the random access memory to store the relation FERSTk
between non-terminal and terminal symbols, to avoid use-
less predictions.

Finally, the behavioral description of the parsing control
unit shown in Table 1, corresponding to the particular
parsing algorithm chosen, or any other alternative one,
admits of many distinct physical realizations, such as may be
obtained by manual transformation of the specification into
structural, logical, electrical, and geometrical levels of
description, or as the same descriptions may be obtained by
means of automated synthesis tools for silicon compilation.

What is claimed is:

1. An associative memory processing system for execut-
ing parsing algorithms and real time context-free language
processing and pattern recognition of an input symbol string,
said system comprising:

an associative memory unit logically arranged as an array
of words for storing parsing state representations, each
associative memory word being compared, in parallel
with all other words, to an input search pattern corre-
sponding to a parsing state representation;

10

15

20

25

3O

35

40

45

a random access memory unit for storing parsing data
including context-free language grammatical rules
according to which parsing is done for the context-free
language of the input symbol string;

a parsing control unit, connected to said associative
memory unit and said random access memory unit, for
accessing said associative memory unit to store and
retrieve parsing state representations according to an
input symbol string said parsing control unit being a
finite state machine that executes a parsing algorithm,
corresponding to the context-free language of the input
symbol string, for syntactically recognizing the input
symbol string; and

a communications unit for providing communication
between said associative memory processing system
and an external device.

2. An associative memory processing system as claimed
in claim 1 wherein said parsing control urtit executes parsing
algorithms for natural language processing and pattern rec-
ognition applications.

3. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of integrated circuit semiconductor
chips. .

4. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of associative memory chips, and said
random access memory unit and said parsing control unit are
formed on a separate integrated circuit semiconductor chip.

5. An associative memory processing system as claimed
in claim 1 wherein all system components are formed on a
single integrated circuit semiconductor chip.

6. An associative memory processing system as claimed
in claim 1, wherein said parsing control unit accesses said
associative memory unit in an amount of time that is
constant and independent of an amount of parsing data
stored in said associative memory unit.

7. An associative memory processing system as claimed
in claim 1, wherein said parsing control unit performs
post-processing actions.

* * * * *

NOAC EX. 1015 Page 170



NOAC Ex. 1015 Page 171

...

1“a";if.”
”use.“

.mem‘Jo»

 

lllllllilllllllllllfllllilllllllflfllllllilllll

 

USOOS703877A

Umted States Patent [19] [11} Patent Number: 5,703,877
Nuber et al. [45} Date of Patent: *Dec. 30, 1997

[54] ACQUISITION AND ERROR RECOVERY on 5,376,969 12/1994 211qu .......................- 348/466
AUDIO DATA CARRIED IN A PACKETIZED 5,467,342 11/1995 Loam a 21- mm 370053
DATA STREAM 5,517,250 5/1996 Hoogenboom et .1. 348/467 

5,537,409 7/1996 Maliynmaall. ..................... 370/471

[75] Inventors: Ray Nnber. La Jolln; Paul Moroney,
Olivenhain; G. Kent Walker, Primary Exanfinerh—Alpus B. Hsu
Escondido. all of Calif. Anornqt Agent, or Firm—Barry R. Lipsitz

['73] Assignee: General Instrument Corpontiou of [57] ABSTRACT
Delaware, Chicago, Ill. Audio data is processed from a packetized data stream

canying digital television information in a succession of
fixed length transport packets. Some of the packets contain
a presentation time stamp (P'I‘S) indicative of a time for

[*1 Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.

1517350- commencing the output of associated audio data After the
audio data stream has been acquired. the detected audio

[21] AppL N05 5611611 packets aremonitotedtolocete subsequent P'I‘S‘s for adjust-
[22] Filed: Nov. 22' 1995 ing the timing :1 which audio data is output. thereby

providing proper lip synchronintion with associated video.
[51] Int. Cl.‘ ........................~....... H04] 3!“; H04N 7/12 Elm in the audio data are processed in a manner which
[52] us. Cl. mmmm... 370/395; 370/510; 370/514; manpts to maintain syndrroniufion of the audio data

375/366; 348/423: 348/462; 348/466; 348/467 stream while masking the errors. In the event that the
[58] Field of Search __,.......-."new.-.“ 370/389, 395. ‘Ynchroniufion condition “not be maintained- for

370/503, 509. 510, 514, 516; 375362, example in the [rescue of cam-s over rum-e than one audio
365, 366, 368, 371; 343/423‘ 461, 462, frame, the audio data stream is reaequired while the audio

464, 466. 467 output is concealed An mar condition is signaled to the
audio decoder by nltaing the audio synchronization word

[56] Referenca Cited associated with the audio frame in which the error has
occurred.

U.S. PATENT DOCUMENTS '

5,365,272 11/1994 Sincnsa "um..- 348/461 25 Claims, 4 aning Sheets

,100
couuAerI-‘oncz IDLE

102

 
 

 
 

EVENTzALIDIO PIS AND DATA
RECENED

ERROR: PIS. smc. 0v, ADP.

Evmsm-mwm l ENC. RS. mo, ms FULL

 
ERROR: PTS. WNC. 0V. ADP. ENC. RS. AUD. FTRS FULL

" NOAC EX. 1015 Page 171



NOAC Ex. 1015 Page 172

 

ELEMENTARY

AUDIO FRAME AUDIO FRAME STREAM mama'S‘fl 

 
  

 

U

8

PES g
PACKET L

l 8
I \l
l
l

i
. 24 , , 24 \ \ w
} ”‘25 x ,I' X \\ ‘x\ 24 g
I /’ \ \ \\ H
l O

‘ annflflma 2
I

II 30 \\\ 28 24 / 24
ll 32 \\\\\ 22 a
XPT é"

HDR PAYLOAD \ FIG. 1 g
24 ‘ 3»

188 BYTES(MPEG) 3
\l

NOAC EX. 1015 Page 172



NOAC Ex. 1015 Page 173

TRANSPORT

‘ _ STREAM

40_

 

 

 
 

 
 

 

 

42

VIDEO CONTROL DATA

ADDR.-+ CONTROL 48 52
1mm- vmao

DATA PARSING

AUD'O BUFFER AUD'O AUDIO

88 mama'S'Il
  
  

VIDEO OUT

 

 
 

 
 

 

AUDIO OUT U
. R

ADDR. + CONTROL DECODE 3l_“ 54 8
AUDIO CONTROL DATA 7%DECODER

“ME PROGRAM CLOCK HQ 2 q
CLOCK ,

45 g,
L g;

N

9..h

PROGRAM

CLOCK

i"

5'
DJ

46/ FIG. 3 <5
\I

NOAC EX. 1015 Page 173



NOAC Ex. 1015 Page 174

TRANSPORT 70 FIG“ 4
PACKETS

- DETECT

40 74

72 MODIFIED SYNC AUDIO DATA T0

DEMUX AUDIO PKTS WORD INSERTER BUFFER

‘— 78
ERROR SYNC WORD
DEFECT INVERTER

CONTROL VIDEO

 
 

 

  

 

 
 

PKTS PKTS

/ SYNC WORD ML": SYNC 6c IBUFFER
44 PCR 8: PTS st OUTPUT TIMING CONTROL 84

DETECT COMPENSATOR

AUDIO SAMPLE

& BIT RATE CONTROL

CALCULATOR

ADDRESS

TO

up 88

mama'S'fl

L661‘ocma

71°C199118

LL8‘EOL‘S

NOAC EX. 1015 Page 174

 



NOAC Ex. 1015 Page 175

.nuzvcaaz‘3ELMI:.“j,,'f

..4‘,A¢'m. w3m."“L.~..:~,«~“L,.~.;“mm3:.
Ivadv-fx

.. G <3

US. Patent Dec. 30, 1997 Sheet 4 of 4 5,703,877

,100

COMMANDzFORCE IDLE _

102

COMMAND:ACQUIRE —

INTERRUPT:DPTS REQ I

 

 
 

 

 

 
 

 
 

 
 

 

 

DELTA PTS WAIT

1 04

EVENT:|NPUT PROCESSOR WRITES DPTS-ACQ ERROR:SYNC.
ENC. RS, AUD.
PTRS FULL

PCR ACQUIRE

106

. ERROR:SYNC, ENC.
EVENT.AUD|0 PCR RECEIVED RS, AUD. PTRS

1 08 FULL

PTS ACQUIRE

 ERROR:SYNC, ENC, RS.

EVENT:AUD|O PTS AND DATA AUD. PTRS FULL
RECEIVED

110 ® ERRORzPCR DIS1
ERROR: PTS, SYNC, ov, ADP,

EVENT25TC=st+DpTS I ENC. RS. AUD. PTRS FULL

ERROR: PTS. SYNC. 0V. ADP. ENC, RS, AUD. PTRS FULL
FIG. 5

NOAC EX. 1015 Page 175



NOAC Ex. 1015 Page 176

21a..

7who“

a.”new.“

rMfie‘N'stxxa’Muff”

3tut»

’

0

5,703,877
1

ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED [N A PACKETIZED

DATA STREAM

BACKGROUND OF THE INVENTION

The present invention relates to a method and apparatus
for acquiring audio data from a packetized data stream and
mommy from errors contained in sud: data.

Various standards have emerged for the transport of
digital data. such as digital television data. Examples of such
standards include the Moving Pictures Experts Group
(MPBG) standards and the DigiCiphct® II standard prop-i-
etary to General Instrument Corporation of Chicago, 111.,
U.S.A.. the assignee of the present invention. The DigiCi-
phex® 11 standard extends the MPEG-2 systems and video
standards, which are widely known and recognized as trans-
port and video compression specifications specified by the
International Standards Organization (ISO) in Document
mica ISO 13818. The MPEG-2 specification's systems
"layer" provides a transmission mediumindependent coding
technique to build bitstrearns containing one (I more MPEG
programs. The MPEG coding technique uses a formal gram-
mar (“syntax") and a set of semantic rules for the construc-
tion of bitstreams. The syntax and semantic rules include
movisions for demultiplexing, clock recovery, elementary
stream synchronization and «rot handling.

The MPBG transport stream is specifically designed for
use with media that can generate data enors. Many
programs, each comprised of one or more elementary
streams, may be combined into atl‘ansport stream. Examples
of services that can be provided using the MPEG founat are
television services broadcast over terrestrial, cable television
and satellite networks as well as interactive telephony-based
services. The primary mode of inframan‘on carriage in
MPEG broadcast applications will be the MPEG-2 transport
stream. The syntax and semantics of the MPEG2 transport
stream are defined in International Organisation for
Standardisation, ISO/IEC 13818-1. International Standard.
1994 entitled “Generic Coding of Moving Picunes and
AssociatedAudio: Systems," recommendan'on H.222, incor-
porated herein by reference.

Multiplexing according to the MPEG-2 standard is
accomplished by segmenting and packaging elementary
streams such as compressed digital video and audio into
packetized elementary stream (M) packets which are then
segmented and packaged into transport packets. As noted
above. each MPEG transport packet is fixed at 188 bytes in
length. The first byte is a synchronization byte having a
Specific e' t-bit pattern. e.g., 01000111. The sync byte
indicates the beginning of each transport packet.

Following the sync byte is a three-byte field which
includes a one—bit transport packet error indicator, a one-bit
payload unit start indicator, a onerbit transport priority
indicator. a 13-bitpacket identifier (PID). a two-bit transport
scrambling control, a two-bit adaptation field control. and a
forn-bit continuity counter. The remaining 184 bytes of the
packet may carry the data to be communicated An optional
adaptation field may follow the prefix for carrying both
MPEG related and private infamation of relevance to a
given transport stream or the elementary stream carried
within a given transport packet. Provisions for clock
recovay, such as a program clock refuence (PCR), and
bitstrearn splicing information are typical of the information
carried in the adaptation field. By placing such information
in an adaptation field. it becomes encapsulated with its

10

15

35

45

55

65

2

associated data to facilitate remultiplexing and network
routing operations. When an adaptation field is used. the
payload is correspondingly shmer in length.

The PCR is a sample of the system time clock (STC) for
the associated program at the time the PCR bytes are
received at the decoder. The decoder uses the PCR values to

synchronize a decoder system time clock (SI‘C) with the
encoda‘s system time clock. The lower nine bits of a 42—bit
SI‘C provide a modulo-300 counta that is incremented at a
27 MHz clock rate. At each modulo-300 rollover. the count

in the uppa 33 bits is incremented. such that the upper bits
of the SFC represent time in units of a 90 kHz clock period.
This enables presentation time stamps (HS) and decode
time stamps (DTS) to be used to dictate the proper time ft:
the decodu to decode access units and to present presenta-
tion units with the accuracy of one 90 kHz clock period.
Since each program or service carried by the data stream
may have its own PCR. the programs am be multiplexed
asynchronously.

Synchronization of audio. video and data presentation
within a program is accomplished using a time stamp
appoach. Presentation time stamps (FI‘Ss) and/or decode
time stamps (Ul‘Ss)arc insuted into the transport stream for
the separate video and audio packets. The FPS and DTS
information is used by the decoder to determine when to
decode and display a picture and when to play an audio
segment. The FPS and UPS values are relative to the same
system time clock sampled to generate the PCRs.

All MPH} video and audio data must be formatted into a

pafletized elementary stream (PBS) formed from a succes-
sion ofPBS packets. Each PBS packet includes a P13 header
followed by a payload. The PES packets are then divided
into the payloads of successive fixed length transport pack-
ets

PBS packets are of variable and relatively long length.
Various optional fields, such as the presentation time stamps
and decode time stamps may be included in the P13 header.
When the transport packets are formed from the PBS. the
PBS headers immediately follow the transport packet head-
ers. A single PBS packet may span many transport packets
and the subsections of the PBS packet must appear in
conseurtive transport packets of the same PID value. It
should be appreciated. however, that these transport packets
may be freely multiplexed with other transport packets
having different PIDs and carrying data from dilferent
elementary streams within the constraints of the MPEG-2
Systems specification.

Video programs are carried by placing coded MPEG
video streams into PBS packets which are then divided into
transport packets in insertion into a transport stream. Each
video PBS packet contains one or more coded video
pictures, referred to as video “access units." A PPS and/or a
Ul‘S value may be placed into the PBS packet header that
encapsulates the associated access units. The 111‘s indicates
when the decoder should decode the access unit into a

presentation unit. The Pl‘S is used to actuate the decoder to
present the assodated presentation uniL

Audio programs are provided in accordance with the
MPEG Systems specification using the same specification of
the PES packet layer. PI‘S values may be included in those
PES packets that contain the first byte of an audio access unit
(sync frame). The first byte of an audio access unit is part of
an audio sync word. An audio frame is defined as the data

between two consecutive audio sync words. including the
preceding sync word and not including me succeeding sync
word.

NOAC EX. 1015 Page 176



NOAC Ex. 1015 Page 177

 

a0.

{3 O.h~,‘3..i,v 9:“He..."avavg.Vawn-Ms...t.,v
x

a a

o

5,703,877

3 4
In DigiCipherO )1. audio transport packets include one or

V.’4.“~.
.:g

.,‘fi .2.c-&a..~.a”é;hfi.

“132..ia”"as.fast»:an.».a3i.
was3”.“‘.‘fi‘rafl'uas.’

N‘.m

{s

a»;JewA4
axes»)

W‘WJA.V "
u‘

.1-9acne...”.:..-ma».es..w'“’"
ha...a“

Fri-12‘."~42.'5x
t“....“(Iu
a"

saith“

both of an adaptation field and payload field. The adaptation
field may be used to transport the PCR values. The payload
field transports the audio PBS. consisting of PBS headas
and PBS data. PBS headers are used to transprrt the audio
PI‘S values. Audio PBS data consists of audio frames as

specified. e.g., by the Dolby® AC-3 or Musicam audio
syntax specifications. The AC-3 specifications are set forth
in a document entitled Digital Audio Compression (AC-3),
ATSC Standard. Doc. N52. United States Advanced Tele-
vision Systems Committee. The Musiam specification an
be found in the document entitled “Coding of , Moving
Pictures and Associated Audio for Digital Stu-age Media at
Up to About 1.5 MBlTIs," Part 3 Audio, 11172-3 (MPEG-1)
published by ISO. Each syntax specifies an audio sync frame
as audio sync word, followed by audio information includ-
ing audio samplerate, bit rate and/sa- frame size. followedby
audio data.

In orda- to reconstruct a television signal from the video
and audio information carried in an MPEG/DigiCipherQ II
transport stream.adecoderis requiredtoprocess the video
packets for output to a video decompression processor
(VDP) and the audio packets for output to an audio decom-
Fession processra' (ADP). In order to Foperly process the
wdiodatafltedecoda'isrequiredtosyndrmnizetothe
audio data packet stream. In particular, this is required to
enable audio data to be buflued for continuous output to the
ADP and to enable the audio syntax to beread for audio rate
information necessary to delay the audio output to achieve
proper lip synchronization with respect to the video of the
same program.

Several events can result in error conditions with respect
to the audio Fooessing. These include loss of audio trans-
port packets due to transmission channel errors. Erors will
also result from the receipt of audio packets which are not
properly deaypted orare still encrypted. Adecodcrmustbe
able to handle such errors without significantly degrading
the quality of the audio output

The decoder must also be able to handle changes in the
audio sample rate and audio bit rate. The audio sample rate
for a given audio elementary stream will rarely change. The
audio bit rate, however, can ofien change at program
boundaries. and at the start and end of commercials. It is
difficult to maintain synchronization to the audio stream
through such rate changes, since the size of the audio sync
frames is dependent on the audio sample rate and bit rate.
Handling undeteded errors in the audio stream. particularly
in systems where error detection is weak. complicates the
Inciting of the audio stream through rate changes. When a
received bitstream indicates that an audio rate has changed.
the rate may or may not have acmally changed If the
decoduresponds to an indication from the bitstream that the
audio rate has changed when the indication is in error and
the rate has not changed. a loss of audio synchronization will
likely occur. This can result in an audio signal degradation
that is noticeable to an end usa.

To support an audio sample rate change, the audio clock
rates utilized by the decode must be changed. This process
an take significant time. again degrading the quality of the
audio output signal. Still further; such a sample rate change
will require the audio buifers to be cleared to establish a
ditferent sample-rate—dependent lip sync delay. Thus. it may
not be advantageous to trust a signal in the received bit-
stream indicating that the audio sample rate has changed.

With respect to bit rate changes. the relative frequency of
such changes compared to undetected erras in the bit rate

information will be dominated by whether the receiver has
adequate error detection. Thus. it would be advantageous to
provide a decodin- having two modes of operation. In a
robust error detection environment such as for satellite
communications or cable media, where error detedion is
robust, a seamless mode of operation can be provided by
trusting a bit rate change indication provided by the data. In
a less robust erra- detection environment, indications of bit

rate changes can be ignored, at the expense of requiring
resynchronization of the audio in the event that the bit rate
has actually changed.

It would be finther advantageous to provide an audio
decoder in which synchronintion to the audio bitstream is
maintained when the audio data contains arors. Such a

decodu' should conceal the audio for those sync frames in
whichanemrhasoccun'ed. tominimizethe atn-al impact of
audio data errors.

It would be still furthu- advantageous to provide a decode-
in which the timing at which audio data is output from the
decodq's audio bufl'u- is adjusted on an ongoing basis. The
intent of such adjustments would be to insure ctrrect pre-
sentation time for audio elementary streams.

The present invention movides methods and apparatus for
decoding digital audio data from a packetized transport
stream having the aforementioned and our: advantages.

SUMMARY OF THE INVENTION

In accordance with the peach! invention, a method is
provided for processing digital audio data from a packetized
data steam carrying television information in a succession
of fixed length transport packets. Each of the packets
includes a packet identifiu- (PID). Some of the packets
contain a yogi-am clock reference (PCR) value for syndro-
nizing a decoder system time clock (SI'C). Some of the

35 packets contain a presentation time stamp (PIS) indicative
of a time for commencing the output of associated data for
use in reconstructing a television signal. In accordance with
the method, the PID’s for the packets carried in the data
stream are monitored to identify audio packets associated
with the desired program. The audio packets are examined
to locate the occtnrenoe of at least one audio synchroniza-
tion wra'd thaein fra' use in achieving a synchronization
condition. The audio packets are monitored after the syn-
chronization condition has been achieved to locate an audio

PI‘S. After the PI'S is located, the detected audio packets are
searched to locate the next audio synchronization word.
Audio data following the next audio synchronization word is
stored in a buffer. The stored audio data is output from the
buffer when the decoder system time clock reaches a speci-
fied time derived from the HS. The detected audio packets
are continually monitored to locate subsequent audio Pl‘S’s
for adjusting the timing at which the stored audio data is
output from the bufl‘er on an ongoing basis.

A PPS pointer can be provided to maintain a cun'ent PTS
value and an address of the bird’s identifying where the sync
wordofsnaudio framerefuaedtobythecurrentl’l‘s is
stored. In order to provide the timing adjustment. the PI‘S
value in the PPS pointer is replaced with a new PI‘S value
after data stored at the address specified by the PPS pointa
has been output from the butter. The address specified by the
FIS pointeris then replaced with a new address correspond-
ing to the sync word of an audio frame refmed to by the new
PI'S value. The oquut of data from the bufler is suspended
when the new bufier address is reached during the presen-
mfion process. The output of data from the buifcr is recom-
mcnwd when the decoder's system time clock reaches a
specified time da'ived from the new PIS value.

NOAC EX. 1015 Page 177



NOAC Ex. 1015 Page 178

«its.‘m’fl~:
r‘

~m.f:1. ,.arde‘vsadn‘u
.,mama”as

as?

t
(ua
t't

 

‘ C) 0

5,703,877
5

In an illustrated embodiment. the output of data flom the
buifer is recommenced when the decoder's system time
clock reaches the time indicated by the sum of the new PI‘S '
value and an oifset value. The offset value provides propu-
lip synchronization by accounting for any decodin- video
signal processing delay. In this manner, after the audio and
video data has been decoded, the audio data can be presented
synchronously with the video data so that. for example. the
movement of a person's lips in the video picture will be
sufliciently synchronous to the sound remoduced

The method of the present invention can comprise the
further step of commencing a reacquisition of the audio
synchronization condition if the decoder’s system time clock
is beyond the specified time derived from the new PI‘S value
before the output of data from the bufl‘er is recomrneneed.
Thus, if a PI‘S designates that an audio flame should be
presented at a time which has already passed, reacquisition
of the audio data will automatically commence to cmect the
timing error, thus minimizing the duration of the resultant
audio artifact.

In the illustrated embodiment. two consecutive audio

synchronization words define an audio flame therebetween,
including the preceding sync word. but not including the
succeeding sync word. The occurrence of mots may be
detected in the audio packets. Upon detecting a first audio
packet ofa ctnrent audio flame containing an user, the write
points for the We is advanced by the maximtnn numb:
ofbytes (N)containedinoneoffl1eflxedlengthtransport
packets. At the same time, the ctnrent audio flame is
designated as being in error. The subsequent audio packets
of the current audio frame are monitored for the next audio

synchronization word after the error has been detected. Ifthe
synchronization word is not received at the expected point in
the audio elementary stream, subsequent data is not stored in
the butter until the sync word is located. Sta-age of audio
data into the buh‘u' is resumed with the nut sync word if the
next audio synchronization word is located within N bytes
after the commencement of the search tltu'efor. If the next

audio synchronization word is not located within N bytes
after the commencement of the search therefor, a reacqui-
sition of the synchronization condition is commenced. These
steps will insure the butter is maintained at the correct
fullness when as many as one transport packet is lost per
audio sync flame. even with the sync flame size changes
such as with a sample rate of 44.1 ksps, and will resynchro-
nize the audio when too many audio transport packets are
lost.

Whenever the audio data from which the television audio

is being reconstructed is in error, it is preferable to conceal
the error in the television audio. In the illustrated

embodiment, a current audio frame is designated as being in
error by altering the audio synchronization word for that
flame. For example, every 0th: bit of the audio synchro-
nization word can be inverted. The error in the television

audio for the corresponding audio frame may then be
concealed in response to an altered synchronization word
during the decoding and presentation process. This method
allows the bufering and error detection process to signal the
decoding and presentation process when errors occur via the
data itself, without the need for additional intuprocess
signals.

The audio data can include information indicative of an

audio sample rate and audio bit rate, at least one of which is
variable. In such a situation, it is advantageous to maintain
synchronization within the audio elementary stream during
a rate change indicated by the audio data. This can be
accomplished by ignoring an audio sample rate change

10

15

35

45

55

6

indicated by the audio data on the assumption that the
sample rate has not actually changed, and concealing the
audio flame containing the data indicative of an audio
sample rate drange while attempting to maintain the syn-
chronization condition. This strategy will propaly respond
to an event in which the audio sample rate change or bit rate
change indication is the result of an error in the indication
itsdf, as opposed to an actual rate change.

Similarly, audio data can be processed in accordance with
a new rate indicated by the audio data in the absence of an
error indication pertaining to the audio flame containing the
new rate, while attempting to maintain the synchronization
condition. The audio data is processed without changing the
rate if an error indication pertains to the audio frame
containing the new rate. At the same time, the audio flame
to which the error condition pertains is concealed while the
decodu' attempts to maintain the synchronization condition.
If the synchronization condition cannot be maintained. a
reacquisition of the synchronization condition is
commenced, as desired when the sample rate actually
changes.

Apparatus in accordance with the present invention
acquires audio information carried by a packetized data
stream The apparatus also handles errors contained in the
audio infrrman'on. Means are provided for identifying audio
packets in the data stream. An audio elunentary stream is
recovu‘ed flom the detected audio packets for storage in a
bufier. An audio presentation time stamp (PI‘S) is located in
the detected audio packets. Means remonsive to the PPS are
provided for commencing the output of audio data flom the
bufier at a specified time. Means are provided for monitoring
the detected audio packets after the output of audio data
from the bufer has commenwd, in cadu- to locate subse-
quent audio PI‘S's fcr use in governing the output of audio
data from the bufl’u'to insure audiois presented synchronous
to any om: elementary streams of the same program and to
maintain correct buffer fullness.

The apparatus can furtha comprise means for maintain-
ing aPl‘Spointerwith acurrentP'i‘S value andanaddress
of the butter identifying where a portion of audio data
referred to by the current PI‘S is stored. Means are provided
for replacing the PI‘S value in the PPS pointer with a new
cun'entP'I‘S valueaflerdatastoredstthe address sctforthin

the PTS point: has been output flom the buifer. The address
in the Pl‘S pointer is then replaced with a new address
corresponding to a portion of audio data referred to by the
new amentPI'S value. Means responsive to the PI8 pointu'
are provided for suspending the output of data from the
butler when the new address is reached. Means are provided
for recommendng the output of data flom the buii‘a at a
time thrived flom the new ctnrent PI‘S value. In the event

that the new unrcnt PI‘S value is outside a predetermined
range, means provided in the apparatus conceal the audio
signal and reestablish synchronization.

In an illustrated embodiment, the audio transport packets
have a fixed length of M bytes. The transport packets carry
a succession of audio frames each contained wholly or
partially in said packets. The audio flames each begin with
an audio synchronization wcxd. Means are provided for
detecting the occurrence of mots in the audio packets. A
write pointer for the buffer is advanced by the maximum
number of audio flame bytes per audio transport packet (N)
and a current audio flame is designated as being in error
upon detecting an error in an audio packet of the current
audio flame. Means are provided for monitoring the detected
audio packets of the unrent audio flame for the next audio
synchronization word after the error has been detected. If the

NOAC EX. 1015 Page 178



NOAC Ex. 1015 Page 179

 
‘ O 9

5,703,877
7

synchronization word is not received where expected within
the audio elementary stream, subsequent audio data is not
buffered until the next audio synchronization word is
received. This process compensates for too many audio
bytes having been bufl’ered when the errored audio packet
was detected. Such an event will occur each time the lost

packet does not carry the maximrnn number of possible
audio data bytes. Means are provided for resuming the
storage of audio data in the bufl'er if the next audio syn-
chronization word is located within N bytes after the com-
mencement of the search therefor. If the next audio syn-
chronization word is not located within said N bytes after the
commencement of the search therefor. the audio timing will
be reacquired. In this manner. the size of the sync frames
bulfered will be maintained including for those frames that
are marked as being in emu, unless the next sync word is not
located where expected in the audio elementary stream to
recover from the error before bufi‘ering any of the next
successive frame. This algorithm allows the decode and
presentation processes to rely on buifered audio flames
being the correct size in bytes. even when data mots result
in the loss of an unknown amount of audio data.

Means can also be provided for concealing em in an
audio signal reproduced from data output from the butfu
when the data output flom the bufl’er is in error. Means are
furtherprovided for altering the audio synchronization word
associated with a unrent audio flame. to signal the decode
and presentation process that a particular frame is in mot.
The concealing means are responsive to altered syndrroni-
zation words for concealing audio associated with the cor-
responding audio flame.

Decoder apparatus in accordance with the invention
acquires audio information can-led by a packeh'zed data
stream and handles emu-s therein. Means are provided fa:
identifying audio packets in the data stream. The successive
audio flames are exuaaed from the audio transport packets.
Each audio frame is carried by one or more of the packets.
and the start of each audio flame is identified by an audio
synchronization word. Means responsive to the synchroni-
zation words obtain a synchronization condition enabling
the recovery of audio data from the detected audio packets
for storage in a buffer. Means are provided for detecting the
presence of «tors in the audio data. Means responsive to the
error detecting means control the flow of data through the
bufler when an erra- is present, to attempt to maintain the
syndrmnization condition while masking the error. Means
are provided for reestablishing the audio timing if the
controlling means cannot maintain the syndrronization con-
dilion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic illustration showing how audio
transport packets are formed from an elementary stream of
audio data;

FIG. 2 is a block diagram of decoder apparatus that can
be used in accordance with the present invention;

FIGS is amtredetailedblockdiagmmofthedecodt:
system time clock (SI‘C) illustrated in FIG. 2;

FIG. 4 is a more detailed block diagram of the demulti-
plexing and data parsing circuit of FIG. 2; and

FIG. 5 is a state diagram illustrating the processing of
audio data in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a diagramman'c illustration showing how one or
more digital programs can be multiplexed into a stream of

10

15

35

45

55

65

8

transport packets. Multiplexing is accomplished by seg-
menting elementary streams such as coded video and audio
into PES packets and then segmenting these into transport
packets. The figure is illustrative only, since a PBS packet.
sudr as PBS packet 16 illustrated, will commonly translate
into othu than the six transport packets 24 illustrated

In the example of FIG. 1. an elementary stream generally
designated 10 contains audio data provided in audio flames
14 delineated by synchronization words 12. Similar elemen—
tarystreamswillbeprovidedforvidcodataand othu data
to be transported.

'l‘hefirst step informing a transport packet streamis to
reconfigure the elementary stream for each type of data into
a corresponding packetized elementary sfleam (PBS)
formed flom successive PBS packets, such as packet 16
illustrated. Each PBS packet contains a PBS header 18
followed by a PBS payload 20. The payload comprises the
data to be communicated. The PES header 18 will contain

information useful in processing the payload data. such as
the presentation time stamp (PPS).

The header and payload data flom each PBS packet are
encapsulated into transport packets 24, each containing a
transport header 30 and payload data 32. The payload data
of the transport packet 24 will contain a portion of the
payload data 20 andlor PPS header 18 flomPES packet 16.
In an MPEG implementation, the transt header 30 will
contain the packet identifier (PID) which identifies the
transport packet. such as an audio transport packet 24, a
video transport packet 26. or other data packet 23. In FIG.
1. only the derivation of the audio transport packets 2A is
shown. In order to derive video packets 26 and other packets
28, corresponding elementary streams (not shown) are pro-
vided which are processed into PBS packets and transport
packets in essentially the same manner illustrated in FIG. 1
with respect to the formation of the audio transport packets

FachMPEGtransportpae‘xetcontains 188bytes ofdata.
formed from the four-byte transport header 30 and payload
data32.whichcanbeupt0184bytes.lnflreMPEG
implementation, an adaptation field of. e.g., eight bytes may
be [.l'ovided between the tr'ansptrt header 3. and payload 32.
The variable length adaptation field can contain. for
example. the program clock reference (PCR) used for syn-
chronization of the decoder system time clock (STC).

The plurality of audio transport packets 24. video trans-
port packets 26 and other packets 28 is multiplexed as
illustrated in FIG. 1 to form a transport stream 22 that is
communicated ova the communication channel flom the

encodu' to the decoder. The purpose of the decoder is to
demultiplex the ditferent types of transport packets flom the
transport stream. based on the PID's of the individual
packets. and to then process each of the audio. video and
other components for use in reconstructing a television
signal.

FIG. 2 is a block diagram of a decoder for recovering the
video and audio data. The transport stream 22 is input to a
demulliplexer and data parsing subsystem 44 via terminal
40. The demultiplexing and data parsing subsystem com-
municates with a decoder microprocessa- 42 via a data bus
88. Subsystem 44 recovers the video and audio transport
packets from the transport packet stream and parses the
PCR, FPS and other necessary data therdrom for use by
other decoder components. For le. PCR's are recov-

ered from adaptation fields of transput packets for use in
synchronizing a decoder system time clock (STC) 46 to the
system time clock of the encode. Presentation time stamps
for the video and audio data streams are recovered from the

NOAC EX. 1015 Page 179



NOAC Ex. 1015 Page 180

 
' 0

5,703,877
9

respective PBS packet headers and communicated as video
or audio control data to the video decode- 52 and audio
decoder 54, respectively.

The decoder time clock 46 is illustrated in great: detail
in FIG. 3. An important function of the decoder is the
reconstruction of the clock associated with a particular
program. This clock is used to reconstruct. for example, the
proper horizontal scan rate for the video. The paper tre-
sentation rate of audio and video presentation units must
also be assured. These are the audio sample rate and the
video frame rate. Synchronization of the audio to the video,
referred to as “lip sync”. is also required.

In order to generate a synchronized program clock. the
decoder system time clock (STC) 46 receives the PCR’s via
terminal 60. Before the commencement of the u'ansport
stream decoding, a PCR value is used to preset a count: 68
for the decoder system time dock. As the clock runs, the
value of this counter is fed backto a subtractin- 62. The local

feedback value is then compared with subsequent PCR’s in
thetranspcu'tstieamastheyan-iveattaminaloo.Whena
PCR arrives, it represents the cured STC value fix the
program. The difl'erence between the PCR value and the
Sl‘C value, as output from subtract: 62, is filtered by a loop
film 64 and used to drive the instantaneous frequency of a
voltage controlled oscillator 66 to either decrease or increase
the Sl‘Cfrequency asnecessary.The SI‘Chasbotha90kHz
and 27 MHz component. and the loop filter 64 converts this
to units in the 27 Mhz domain. The output of the VCO 66
is a 27 MHz oscillator signal which is used as theprogmn
clock frequency output from the decoder system time clock.
Those skilledintheartwillrecognizethatthedecodertime
clock 46 illustrated in FIG. 3 is implemented using well
known phase locked loop (PIL) techniques.

Before beginning audio synchronization. the decode of
FIG. 2. and particularly subsystem 44, will remain idle until
it is configured by decoda' microprocessor 42. The configu-
ration consists of identifying the type of audio data stream
to be processed (c.g.. Dolby AC-3 or Musicam audio).
identifying the PD) of packets from which the audio PCR
values are to be extracted, and identifying the PID for audio
packets.

During the idle state. subsystem 44 will instruct audio
decoder 54 to conceal the audio output. Concealment can be
accomplished by zeroing all of the audio samples. Subse-
quent digital signal processing will result in a smooth aural
transition from no sound to sound, and back to no sound.
The concealment of the audio output will be terminated
when the synchronization process reaches a tracking state.
Decoder microprocessor 42 configures the audio fcrmat as
AC-3 or Musicam, depending on whether audio decoder 54
is an AC-3 or Musicam decoder. Miaoprocessor 42 deta-
mines the audio P11) and audio PCR PID from program map
information Fovided in the transport stream The program
map information is essentially a directory of PID‘s, and is
identified via its own PID.

Once the demultiplexer and data parsing subsystem 44 is
commandedtoenteraFrameSyncstateviaanacquire
command, it will begin searching for two consecutive audio
sync words and will supply the decoder microprocessor 42
with the audio sampling rate and audio bit rate indicated
within the audio elementary stream. To locate the sync
wads, subsystem 44 will receive transport packets on the
audio P11) and extract the PBS data. searching for the
occurrence of the audio sync word, which is a

predetermined. fixed word. Fa example, the AC-3 audio
sync word ls 0000 1011 0111 0111 (16 hits) while the
Musicam sync word is 1111 1111 1111 (12 bits).

10

15

35

45

55

10
The number of bits between the first bit of two consecu-

tive audio sync words is referred to as the frame size. The
frame size depends on whether the audio stream is AC—3 or
Musicam and has a difi‘rrent value for each combination of

audio sample and bit rate. In a preferred embodiment.
subsystem 44 is required to synchronize to AC-3 and Musi-
cam sample rates of 44.1 ksps and 48 ksps. The AC-3 audio
syntax conveys the audio sample rate and audio frame size
while the Musicam audio syntax conveys the audio sample
rate and audio bit rate. Both AC-3 and Musicam specify one
sync frame size for each bit rate when the sample rate is 48
ksps. However, AC—3 and Musicam specify two sync frame
sizes for each bit rate when the sample rate is 44.1 ksps, a
fact which complicates synchronization. especially through
packet loss. When the sample rate is 44.1 ksps. the correct
sync frame size between the two possibilities is indicated by
the least significant bit of the AC~3 frame size code or by a
Musicam padding bit.

Once two consecutive audio sync words have been
received with the cured number of bytes in between. as
specified by the sync frame size, subsystem44 will store the
audio sample rate and audio bit rate implied by the audio
syntax for access by the decoder microprocessor 42. inter-
rupting the microprocessa- to indicate that subsystem 44 is
waiting fit the microprocessor to supply it with an audio
PTS correction factor. The correction facta' is necessary in
0rd: to know when to output audio data to the audio
decoder 54 dining initial acquisition and during tracking for
prcper lip synchronization. The value is denoted as dP'l‘S.
The lip sync value used for tracking is slightly less than that
used for initial acquisition to allow for time errors which will
exist between any two P'l‘S values. namely that which is
used for acquisition and those which are used for tracking.

Decodu microprocessa- 42 sets the correction factors
such that audio and video-will exit the decoder with the

same time relationship as it entered the encoder. thus achiev—
ing lip synchronization. These correction factors are deter-
mined based on audio sample rate and video frame rate (e.g.,
60 Hz or 50 Hz). These dependencies exist becausethe audio
decompression processing time required by audio decode-
54 potentially depends on audio sample and bit rate while
the video decompression implunented by video decoda‘ 52
potentially depends on video frame rate and delay mode. In
a preferred implementation. the FPS con‘ection factors con-
sist of 11 bits, representing the number of 90 kHz clock
periods by which audio data is to be delayed before output
to the audio decoder 54. With 11 bit values, the delay can be
as high as 22.7 milliseconds.

Once the demultiplaring and data parsing subsystem 44
requests the decoder mia'oproccssor 42 to supply the cor-
rection factors. it will monitor reception of consecutive sync
words at the expected positions within the audio elementary
stream. If an error condition occurs during this time. sub-
system 44 will transition to searching for two consecutive
audio sync wads with the correct number of data bytes in
between. Otherwise. subsystem 44 remains in State dPIS-
wait until the decoder microprocessor services the inten'upt
from subsystem 44 by writing dl’l‘Sq to subsystem 44.

Once subsystem 44 is provided with the FPS correction
facttxs. it checks whether a transport packet has been
received on the audio PCR PID containing a PCR value.
carried in the adaptation field of the packet. Until this has
occurred, reception of consecutive sync words will continue
[StathCR Acquire]. If an error condition occurs during
this time, subsystem 44 will transition to searching for two
consecutive audio sync words [State=Frame Sync].
Otherwise. it will remain in State=PCR Acquire until it
receives a PCR value on thc audio PCR PlD.

NOAC EX. 1015 Page 180



NOAC Ex. 1015 Page 181

 

’?

tVcx,V'‘va.mmnw’w”‘.kérica€.‘..5x
0‘.
'~aw

,3”,b‘slthfzme..3
N:»—~

swimI:‘5:1»et-

1r

 

' G 0

5,703,877
11

After a PCR has been acquired. subsystem 44 will begin
searching for a PI‘S [Stat=PTS Acquire], which is carried
in the PES header of the audio transport packets. Until this
has occurred, subsystem 44 will monitor the reception of
consecutive sync words. If an error condition occurs during
this time, it will transition to an error handling algorithm
[state=Error Handling]. Otherwise, it will rennin in the Fi‘S
acquire state until it receives a PI'S value on the audio PID.

When subsystem 44 receives an audio PI‘S value, it will
begin searching for reception of the next audio sync word.
This is important since the P13 defines the time at which to
output the data which begins with the next audio frame.
Since audio flames are not aligned with the audio PBS. the
number of bytes which will be received between the FI‘S
and the next audio sync word varies with time. If an error
condition occms beta-e reception of the next audio sync
word, subsystem 44 returns to searching for audio frame
synchronization [State=Prame Sync]. It should be appeti-
atedthatsinceaudio syncframesandPESheadersarenot
aligned, it is possible for a PBS header, and the FPS which
it may contain, to be received between the 12 or 16 bits
which ftam an audio sync word. In this case. the sync word
to which the PPS refas is not the sync wm'd which is split
by the PBS header, but rather the following sync word.

When subsystem 44 receives time next sync ward, it has
acquired FI‘S. At this point. it will store the received PI‘S
andthePES data(startingwiththe syncwordwhidiflrst
followed the PPS) into an audio buffer 50, together with the
buffer address at which it writes the sync word. This stored
FPS/butler address pair will allow subsystem 44 to begin
outputting audio PBS data to the audio decoder 54 at the
correct time. starting with the audio sync word. In a [re-
fcrred embodiment. the butter 50 is implemented in a
portion of dynamic random acceSs memory (DRAM)
already provided in the decoda.

Once subsystem44 begins bufl‘ering audio data, a number
of parameters must be tracked which will allow it to handle
particular error conditions. such as loss of an audio transport
packet to transmission errors. These parameters on be
n-acbd using audio pointers including a PI‘S pointer, a
DRAM offset address pointer. and a valid flag point:
discussed in greater detail below.

Afier PPS is acquired. snbsystern 44 begins waiting to
synchronize to PI'S [StatFPI‘S Sync]. In this state. the
demultiplexer and data parsing subsystem 44 continues to
receive audio packets via terminal 40. writes their PES data
into butter 50, and maintains the error pointus. When this
state is entered, subsystem 44 compares its audio SI‘C to the
correct output start time, which is the PPS value in the PI‘S
pointer plus the acquisition PI‘S correction factor (dl’l‘an).
If subsystem 44 discovers that the correct time has passed,
ie.. PCR>PrS+dFrSm. one or more of the three values is
incorrect and subsystem 44 will flag decoder microprocessor
42. At this point. the state will revert to State=Frame Sync,
and subsystem 44 will return to searching for two consecu-
tive audio sync words. Otherwise, until PCR=FFS+dPFSw
subsystem 44 will continue to receive audio packets. write
their PBS data into the buifer 50, maintain the error pointers,
and monitor the reception of conseraltive sync words.

When PCR=PTS+dPrSw subsystem 44 has syndtro-
nized to Pl‘S and will begin tracking the audio stream
[State=Track]. At this time. subsystem 44 will begin trans-
ferring the contents of the audio bufier to the audio dated:
54 upon the audio decode- requesting audio data, starting
with the sync word located at the buifa address pointed to
by the FPS pointer. In the tracking state, subsystem 44 will

10

15

35

4-5

55

65

12

continue to receive audio packets, write their PES data into
the bulfa‘ 50. maintain the aror pointers, and monitor
reception of consecutive sync words. If an error condition
occurs during this time, subsystem44 will transition to cum
processing. Otherwise. it will remain in State=1tack until an
error occurs or mimoprocessor 42 commands it to return to
the idle state.

As subsystem 44 outputs the sync word of each sync
frame to the audio decoder 54 as part of the “audio" referred
to in FIG. 2, it will signal the aror status of each audio sync
frame to the audio decoder using the sync word. The sync
word of audio sync flames in which subsystem 44 knows of
no arors will be output as specified by the Dolby A0?! or
Musicam specification. as appropriate. The sync word of
audio sync flames in which subsystem 44 knows of errors
will be altered relative to the correct sync words. As an
example, and in the preferred embodiment. every other bit of
the sync word of sync frames to which an error pointer
points will be inva‘ted, starting with the most significant bit
of the sync word. Thus. the altered AC—3 sync word will be
1010 0001 1101 1101 while the altered Musicam sync word
will be 0101 01010101. Only the bits of the sync Word will
be altered. The audio decoder 54 will conceal the audio

errors in the sync flame which it receives in which the sync
word has been altered in this manna. Howevu, the audio
decoder will continue to maintain synchronization with the
audio bitsu'eam. Synchronization will be maintained assum-
ing the audio bit rate did not change. and knowing that two
sync flame sizes are possible when the audio sample rate is
44.1 ksps.

In accordance with the preferred embodiment, audio
decoder 54 will maintain synchronization through sample
and bit rate changes if this feature is enabled by the decoder
mimocessm 42. If the microln-ocessor disables sample
rate changes. audio decoder 54 will conceal the audio enors
in each sync flame received with a sample rate that does not
match the sample rate of the sync frame on which the audio
decoder last acquired, and will assume that the sample rate
did not change in order to maintain synchronization. The
audio decoder is required to process through bit rate
changes. If an aror in the bit rate information is indicated.
e.g., through the use of a cyclic redundancy code (CRC) as
well known inthe artaudiodecoder54willassume thatthe
bitrate of the corresponding sync flame is the same bit rate
as the previous sync frame in order to maintain synchroni-
ution. If the decoder microprocessor 42 has enabled rate
changes. the audio decoder 54 will assume that the rates
indicted in the sync frame are cared, will process the sync
frame. and use the appropriate sync frame size in maintain-
ing synchronization with the audio bitstream.

Demultiplexer and data parsing subsystem44 will also aid
microprocessor 42 in checking that audio data continues to
be output at the correct time by resynchronizing with the
PPS for some PI‘S values received. To accomplish this.
when a PI'S value is received it will be stored in the HS
pointer, along with the audio offset address at which the next
sync word is written in audio buffer 50. if the FPS pointer
is not already occupied. In doing this, subsystem 44 will
ensure that the next sync word is received at the correct
location in the audio PBS bitstream. Otherwise. the PI‘S
value will not be stored and subsystem 44 will defer resyn-
chronization until the next successful PPS/DRAM ofi‘set
address pair is obtained. Subsystem 44 will store the FPS]
DRAM oifsct address pair in the PI'S pointer until it begins
to output the associated audio sync frame. Once it begins
outputting audio data to the audio decoder 54. subsystem 44
will continue to service the audio decoder's requests for

NOAC EX. 1015 Page 181



NOAC Ex. 1015 Page 182

 

6

”ff-Lu‘

.9),

W.t..m.,s,~.41;,w

it

 

‘ r

"'2

’i

' 9

5,703,877
13

audio data. outputting each audio sync frame in sequence.
This will continue until the sync frame pointed to by the Pl‘S
pointer is reached When this occrn's, subsystem“ will stop
outputting data to the audio decoder 54 until PCR=PTS+
dl’I‘SM This will detect audio timing errors which may
have occurred since the last resynchronization by this
method.

If PCR>PTS+dPTS¢q when subsystem 44 completes
output of the previous sync frame, the audio decoder 54 is
processing too slow or an undeteded error has occurred in
a PCR or PI‘S value. After this error condition, subsystem“
will flag miaoprocesscr 42. stop the output to the audio
decoder 54. clear audio buffa- 50 and the pointers. and return
to searching for two consecutive sync words separated by
the corred number of audio data bytes. If the audio decoder
54 is not requesting data when the buifer read pointer equals
the address pointed to by the PPS pointer, an audio process-
ing error has occurred and subsystem 44 will maintain
synchronization with the audio stream, clear its audio butter
and pointers, and rem to searching for two consecutive
audio sync wards [Stathrarne Sync].

In order to handle errors, subsystem 44 sets a unique errcr
flag for each error condition. which is reset when micropro-
cessor 42 reads the flag. Each error condition which inter-
rupts microprocessor 42 will be maskeble under control of
the microprocessor. Table 1 lists the various error conditions
related to audio synchronization and the response by sub-
system 44. In this table. “Name" is a name assigned to each
error condition as referenmd in the state diagram of FIG. 5.
“Definition“ defines the conditions indicating that the cor-
responding error has occurred. “lN'l'” is an interrupt desig~
nation which, if “yes", indicates that subsystem 44 will
interrupt miaoprocesscr 42 when this error occurs. “Check
State" and "Next State” designate the states in which the
uror will be detected (checked) and the audio processor will

10

15

14

enter, respectively, with the symbol “>" that the designated
error will be detected when the audio processing state of
subsystem 44 is higher than the designated state. The audio
processing state hierarchy. from lowest to highest. is:

l. Idle

2. Frame Sync

3. dPl‘Smu

4. PCRn,
5. PIS”,
6. PTS Sync
7. Met

The symbol “.2.” preceding a state indicates that the error
will be detected when the audio processing state of sub—
system44 is equal to or higher than the designated state. The
des‘gnated state(s) indicate(s) that the odor will be detected
in this state or that the audio processing of subsystem 44 will
proceed to this state after the associated actions are can-ied
out. The designation “same" indicates that the audio pro-
cessing of subsystem 44 will stay in the same state after the
associated actions are carried out.

The heading “Buffer Action“ indicates whethu the audio
buifer is to be flushed by setting its read and write pointers
to be equal to the base address of the audio bufier. The
designation “none" indicates no change from normal audio
buffer management

The heading "Pointer Action" indicates by the term
“reset" that the FPS pointer, error pointers or both will be
returned to the state specified as if subsystem 44 had been
reset. The designation “none" indicates no change from
normal pointer management. The designation “see other
actions” indicates that otha actions under the “Other

Actions" heading may indicate a pointer to be set or reset.
The "Othu' Actions" heading states any additional actions
required of the subsystem 44 as a result of the mor.

NOAC EX. 1015 Page 182



NOAC Ex. 1015 Page 183

 
’ < lava)». w‘w . i ‘ ”Wu a (”w 0‘, “a“; ; .1 “‘1 ex

    
 

 

‘15 “ ‘* «J, " , ' 7 "

TABLE 1 .

SUMMARY OF ERRORS. mums, AND flog.

Check Nen Bull": Points:
Nam: Definificn In! State Sun Action Acficn Odin Antim-

ann' PCR > PIS + dPI‘S.‘ yea M M huh lust nun:
pu_en' PCR > PI'S + airs“ yea truck finan__aync Buah met Slap output In Audio Deccan: (ADP).
synchr Input place-not lam Iynl: vim input audio ya >idle hum flush mu: Slop own to ADP.frames

ov_en Audio Bula- overflow yea im fi-aln=_sync flush reset Input pronoun: mainmina Immunization with an audio 5:bit-team. Stop output to ADP.
unchm Andi: Bufl’u mxkrflom no tuck 5m nme non: 11pmMmaimiu minimization with the audio

bilsueam. Stop output to ADP.
Len Input mtnachea Audio PBS dam ya mine—3!” um: name no]: Continue wow-ling u if the audb ample me had not changed.

which indium the audio sample me has
changed-incexhocunentl’m wuuquimd

£b_m Input pm: receive- Audio PBS dm yea >fi-une_aync lame none no]: If bit rate chaps axe cabled. input pronunci- will continue
whichhdimmachaandiobflmhuchmpd MWMMbflth-ctchmaadmdufingh
ninivemlhchsuudioqncfnmomchcd appopdmayncmdummahminayuhxminfinmlfbk

ma changes an notcnabled. inpu prompt will continue
pmceuinguainglkhitnlcindicamdbythehtwdioayn: fi'u'ncmind. U1

pm Syncwuxdnotlmmddmtoioncf-Miodam no Zpu_loquin same none none Nonnhnoflzuemrooldifionamayalnamlyinmiacan L]In: a PIS is received O

chdisl. lupmpmmachuamnportpachton no Mn: pin-min: flulh prune! mmpmceuornopasmringmvakuinlhePISpohmmfil 1:”
IheAndioPCRmeiflnhc mm aflumpdonofhmnAudioPCRvalue. ‘3diaconfinuhyflm hit of in \)
adapuxionfild set

chdia’l Inpm processor mivu I tampon packet on no nack same non: punts: lupin pm mp: non-hag PIS “in“ in h: PI‘S pointer until
theAudioPCRPlDwid-nhe erratum: IftuteeepcbnmhnnnAudioPCRvalm.
discontimxinyndicawx bit of in
adapt-flown set

aud_mla Audio data of one hamper! packet of the Sea >idJe um: or nan: pamon: Maintain Audio Sulfa fullneu by advancing the FIFO wile
cminpulryncfnmeilbndmmmn other fi'aln=_aync; gnu-23°: pohmbylubytuomoymmmpoiflerwmukthc

action: moun- other marmhmuinmandeominmpmoeuingwhhmn
action action: gemnfinzanhnanlptlfitiapouibhmumbnoncaudb

mwdwuhwfihmfihnflhmpflmmhu
whcnmppufiruMusicamLaywn at has thanfiktpaorAC-S at
batmanwtbpgremmzbel'nmeSyncmandgmm I—t
inwlflhcmxlaudioayqudianmmiwdwhm 0‘
makfinabyb-hy-bneuuchbrdnmlymwd
diningihercoepfionofaubaequmamiodaqueflnay-n:

byteuuchhmwpmfinzmfiodanhdnbufiuunfil ( >melyncwurdhfumbonotduelhefimbybamfimd '
dwhthhkmmuflbdauwhnthnaymbym
hmmwimmelymwmiudtfilhewwmi-w
mammefintlubymsnIMIcm-nmthel'm
Symama‘nndgemnleanhlmmpt

NOAC EX. 1015 Page 183



NOAC Ex. 1015 Page 184

TABLE l-confinucd 

SUMMARY OF ERRORS. EXCEPTIONS, AND ACTIONS.

Chock Nun Mel- Point:
Nune Dcfinifim In: sum Sula Action Aerial Other Acfims__—______—_____————_——_—_—___—__—

“Len-1b Audi: data of on: Innspon picks! of the yes >idle trim lush ptsnnet mu:
cum: input sync film: is bit due to enun cum
nfia “Ln-1| bu occmed main; rh: me
input Iync firm .

IucLen’Z Aldio dun ofmalu than one humor! pub: ya >idb 5M1: flush punts! Us: menu: poimzr to mark the uncut Iync Erune Is in snot.
ofdrcmentinpunyncfnmoillonducto mun-e:
mm min:

union.

[2M1] Audio dun of am mmpon yacht in 106! yd 31mm Wm 11th rue: Input pmuor mnimnim lynchmizlt‘nn with :11: audio
while Enur Mods LI Unpmlccbd bitsuum. Stop outpu! to ADP. 

‘Tbhnpbmmthalbavempmcmbgfinmmmiphnflunpkmhfimsmalnpmhomcmmduhinmlmfinhmnbyucmby:
wfingleomur'avtluenolhelyuchmeliuinbytcsuuchsyncwmdilmceivad.

' mamumuueachmcivedudiobylaianmulhhAm‘nnufia-(HFO),
dumnfiuthcwunmbylflbymwhennningknudbmmhtiflo‘bmpm-mbrtheadvnmmmofflnmompohmby184,
inauneminglheannex-bythomflnofflmqmmmhbymmflmmdlcmbhmflhIMummhlmguflmamumvdmm‘cafingdnbatmapmplckm

poniblycontahwdthomludiogncwmdlnimmfimfarthepom'bifitylhnflnludionmphnmilMJqumdflnlymfimdnhnc edfimnflwluwvfluemtlnmaflavdu),nunuingbflnfiumoSyncsme‘ lbs-bow:WWhlmmwhkhwmflmmM(hdhmmebnmwpuhtwdb muinedmmvthmoneuudiosyncwoxd),md
beginninadlebyw-by-bymsyncwmdmhwhmthemmhmu.

LI

SI

LLS‘EOL‘S

 

NOAC EX. 1015 Page 184



NOAC Ex. 1015 Page 185

 
0

5,703,877
19

As indicated above, the demultiplexing and data parsing
subsystem 44 of FIG. 2 maintains several pointers to support
audio processing. The PI‘S pointer is a set of parametus
related to a PI'S value, specifically 1 P15 value. a DRAM
offset address, and a validity flag. In the illustrated embodi-
ment. the PI‘S value comprises the 17 least significant bits
of the PPS value received from the audio PBS header. This

value is associated with the audio sync frame pointed to by
the pointa's DRAM oifset address field. The use of 17 bits
allows this field to specify a 1.456 second time window
((2"—l)/90 kl-lz). which exceeds the maximum audio time
span which the audio buifer 50 is sized to store.

The DRAM ofi‘set address maintained by the PPS pointq
is a 13—bit ofiset address. relative to the audio bufi'er base
address. into the DRAM at which the first byte of the audio
sync frame associated with the pointer’s PTS value is stored.
The 13 bits allows the pointer to address an audio bufiq as
large as 8192 bytes.

The PI‘S point: validity flag is a one-bit flag indicating
whether or not this PI‘S point: contains a valid PIS value
and DRAM offset address. Since MPBG does not require
I’I‘S values to be transported more often than every 700
milliseconds, subsystem 44 may find itself not having a valid
[’1‘S value for some intervals of time.

Aficr the decoder is reset. the valid flag of the PTS points
is set to invalid. When a new PI‘S value is received, if use

valid flag is set. the newly received I’l‘S value is ignored. If
the valid flag is not set. the newly received PTS value is
stored into the PPS pointer but its valid flag is not yet set to
valid After a new PTS value is strand into the PPS pointer,

the processing of audio data is continued and each audio data
byte is counted. If the next audio sync frame is received and
placed into the bufier correctly. the DRAM ofi‘set address
(which corresponds to the bufier address into which the first
byte of the sync word of this sync frame is stored) is stored
into the pointer's DRAM ofiset address field. Then. the
pointer‘s valid flag is set to valid The next audio sync frame
is received and placed into the bufi‘er correctly when no data
is lost for any reason between reception of the PTS value and
reception of a subsequent sync word before too many audio
bytes (i.e.. the number of audio bytes per sync frame) are
bufl'ered. If the next audio, sync frame is not received tr
placed into the bufi'er correctly. the valid flag is not set to
valid.

Alter the PIS point: is used to detect any audio timing
errors which may have occurred since the last resyndzroni-
ration. the valid flag is set to invalid to allow subsequent
PI‘S polnta's to be captured and used. This occurs whetha
the I’l‘S pointer is in the PPS sync or tracking state.

The error pointers are parameters related to an audio sync
frame currently in the butter and known to contain errtrs.
The aror pointers comprise a DRAM offset address and a
validity flag. The DRAM offset address is a 13-bit ofiset
address. relative to the audio bufier base address. into the
DRAM at which the first byte of the audio sync frame
known to contain errors is stored. Thirteen bits allows the

pointer to address an audio bufferas large as 8192 bytes. The
validity flag is a one-bit flag indicating whether or not this
error pointer contains a valid DRAM otfset address. When
receiving data from a relatively error free medium. sub-
system 44 will find itself not having any valid errta' pointers
for some intervals of time.

Subsystem 44rs required to maintain a total of two erra-

pointers and one error mode flag. Afterreset. the validity flagis set to invalid and the em: mode'ls set to ‘fiotected.’
When a sync wordrs placed into the audio buifer. if the valid

10

15

45

55

65

20

flag of one or more error poinhn's is not set. the buffer
address of the sync wra'd is recorded into the DRAM ofl‘set
address of one of the invalid enu' pointers. At the same time.
thearormodeis settoprotectedlfthevalidityflag ofboth
error pointers is set when a sync word is placed into the
butter, the error mode is set to unprotected but the DRAM
offset address of the sync word is not recorded.

When audio data is placed into the bullet and any error is
discovered in the audio data. such as due to the loss of an

audio transport packet or the reception of audio data which
has not been properly decrypted, subsystem 44 will revert to
the ITS acquire state if the error mode is unprotected.
Otha'wise, the validity bit of the error pointer which con~
tains the DRAM oEset address of the sync word which starts
the sync frame unrently being received is set. In the rare
war that an error is discovered in the data for an audio sync
frame during the same clock cycle that the sync word for the
sync frame is removed from the bufi’er. the sync word will
be corrupted as indicated above to specify that the sync
frameisknown tocontainanaudio error. Atthe sametime.
the validity bitis cleared such thatit does notremain set after
the sync frame has been output. This avoids the need to reset
subsystem 44 in order to rendu' the pointer useful again.

When audio data is being removed from the audio buffer.
the sync word is corrupted if the DRAM oti'set address of
any error pointer matches that of the data unrently being
removed from the buEer. At the same time. the validity bit
is set to invalid.

The decoder of FIG. 2 also illustrates a video bum: 58

and video dwoder 52. These process the video data at the
same time the audio data is being processed as described
above. The ultimate goal is to have the video and audio data
output together at the groper time so that the television
signal can be reconstructed with proper lip synchronization.

FIG. 4 is a block diagram illustrating the demultipiexing
and data parsing subsystem 44 of FIG. 2in great: detail.
Aftu'dieuansportpacketsareinputviata‘minalu, thePlD
ofeachpacketisdetectedby circuit70. The detection ofthe
Pl'Ds enables demultiplexer 72 to output audio packets.
video packets and any other types ofpackets carried in the
data stream. such as packets carrying control data. on
separate lines.

The audio packets output from demultiplexer 72 are input
to the various circuits necessary to implement the audio
processing as described above. Circuit 74 modifies the sync
word of each audio frame known to contain was. The

modified sync words are obtained using a sync word invert:
78. which invuts every othq bit in the sync words output
from a sync word. PCR and PI‘S detection circuit 80. in the
event that the audio frame to which the sync word corre
sponds contains an error. Error detection is provided by error
detection circuit 76.

The sync word. PCR and FI‘S detection circuit 80 also
outputs the sync word for each audio frame to an audio
sample and bit rate calculator 86. This circuit determines the
audio sample and bit rate of the audio data and passes this
information to decoder microprocessor 42 via data bus 88.

The PCR and I’I‘S are output from circuit 80 to a lip sync
and output timing compensator 82. Circuit 82 also receives
the dPI‘S values from microprocessor 42. and adds the
appropriate values to the PTS in order to provide the
necessary delay for proper lip synchronization. Compensa-
tor 82 also determines if the delayed presentation time is
outside of the aweptable range With respect to the PCR. in
which case an error has occun'ed and resynchronization will
be required.

NOAC EX. 1015 Page 185



NOAC Ex. 1015 Page 186

 
ii
S

L

‘ O G

5,703,877
21

Buffer control 84 provides the control and address infor-
mation to the audio output buifer S0. The bufier control 84
is signaled by error detection circuit 76 whenever an erra-
occurs that requires the temporary suspension of the writing
of data to the bufia‘. The buifer control 34 also receives the
delay values from lip sync and output timing compensator
82 in order to control the proper timing of data output from
the bulls.

FIG. 5 is a state diagram illustrating the processing of
audio data and response to errors as set forth in Table 1. 'llre
idle state is represented by box 100. Acquisition of the audio
data occurs timing the frame sync state 102. The dPI‘S~wait
state is indicated by box 104. Boxes 106,- 108 and 110

represent the PCRW, may, and PI‘S sync states. respec-
tively. Once audio synchronization has occurred, the signal
is tracked as indicated by the tracking state of box 112. The
outputs of each of boxes 104. 106, 108, 110 and 112 indicate
the aror conditions that cause a return to the frame syn-
drronization state 102. The error PCR DISl dining the PPS
sync state 1.10 will cause a return to the PPS acquire state,
as indicated in the state diagram of FIG. 5.

It should now be appreciated that the present invention
provides methods and apparatus for acquiring and process-
ing errors in audio data communicated via a transport packet
scheme. Transport packet errors are handled while main-
taining audio synchronization. During such error conditions,
the associated audio errors are concealed. Corrupted data in
an audio frame is signaled by altering the sync pattern
associated with the audio frame. Pl‘S's are used to check the

timing of processing and to correct audio timing errors.
Although the invenu'on has been described in connection

with various specific embodiments. it should be appreciated
and understood that ntnnaous adaptations and modifications
may be made thereto, without departing from the spirit and
scope of the invention as set forth in the claims.

We claim:

1. A method for processing digital audio data from a
pocketized data stream carrying digital television informa-
tion in a succession of fixed length transport packets, each
of said packets including a packet identifier (PID), some of
said packets containing a program clock reference (PCR)
value for synchronizing a decoder system time clock (SI‘C),
and some of said packets containing a presentation time
stamp (PI'S) indicative of a time for commencing the output
of associated data for use in reconstructing a television
signal. said method comprising the steps of:

monitoring the PID's for the packets carried in said data
stream to detect audio packets, some of said audio
packets carrying an audio PPS;

storing audio data from the detected audio packets in a
buffer for subsequent output;

monitoring the detected audio packets to locate audio
FI‘S’s;

comparingatirnederivedfromsaidSTCwithatime
derived from the located audio FI‘S‘s to determine

whether said audio packets are too early to decode, too
late to decode, or ready to be decoded; and

adjusting the time at which said stored audio data is output
from said buffer on an ongoing basis in response to said
comparing step.

2.Amethodinaccordancewithclaim1whereinaPI‘S so

pointer is provided to maintain a current PI‘S value and an
address of said bulfer identifying where a portion of audio
data referred to by said current PI‘S is stra'ed, said timing
adjustment being provided by the fimher steps of:

replacing said PTS value in said FI‘S pointer with a new
current PTS value aftu' data stored at said address has

been output from said butter.

5

10

15

35

4O

45

55

65

22

replacing said address in said PI‘S pointer with a new
address corresponding to a portion of audio data
referred to by said new current PI‘S value;

suspending the output of data from said bufl’er when said
new address is reached; and

recomrnencing the output of data from said bufi‘er when
said decoder system time clock reaches a presentation
time daived from said new urn-eat Pl‘S value.

3.Amethodinaceorda.ncewith claim2wherein said

presentation time is deta-rnined from the sum of said new
current [’18 value and an offset value that trovides proper
lip synchronization by accounting for a video signal pro-
cessing delay.

4. A method in accrrdance with claim 1 who'ein the time

at which the audio data is output from said buffer is
dependent on an ofiset value added to said PI‘S forproviding
proper lip synchronization by accounting for a video signal
processing delay.

5. A method in accordance with claim 1 comprising the
further stems of:

examining the detected audio packets to locate the occur—
rence of at least one audio synchronization word
therein for use in achieving a synchronization condition
prior to locating said audio FTS’s;

commencing areaequisition of said synchronization con-
dition if said comparing step determines that said audio
packets are too late to decode.

6.Amethodinaccordancewith claimSwherein two

consecutive audio synchronization wads with a correct
number of audio data bytes in between define an audio
frame. said audio frame including only one of said two
consecutive audio synchronization words. said method com-
prising the further steps of:

detecting the occurrence of errors in said audio packets;
upon detecting a first audio packet of a current audio

frame containing an error, advancing a write points:- for
said buffer by the maximum number of payload bytes
(N) contained in one of said fixed length transport
packets and designating said current audio frame as
being in error:

monitoring the detected audio packets of said current
audio frame for the next audio synchronization wcrd
afier said error has been detected. and if said synchro-
nization word is not received where expected in the
audio stream, discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said butter:

resuming the storage of audio data in said bufi’er upon
detection of said next audio synchronizan'on word if
said next audio mchronization wra'd is located within
N bytes after the commencement of the search therefor;
and

if said next audio synchronization word is not lomted
within said N bytes am: the commencement of the
search thaefor. commencing a reacquisition of said
synchronization condition.

7. A method in accordance with claim 6 comprising the
further step of concealing television audio errors whenever
the audio data from which said television audio is being
reconstructed is in error.

8. A method in accordance with claim 7 wherein:

a current audio frame is designated as being in error by
‘ltqing the audio synchromzau‘'on word for that frame;
and

said concealing step is responsive to an altered syncluo-
nization word for concealing audio associated With the
corresponding audio frame.

NOAC EX. 1015 Page 186



NOAC Ex. 1015 Page 187

 
:

1"

5,703,877
23

9. A method for processing digital audio data lit-om a
packetized data stream carrying digital television informa-
tion in a succession of transpat packets having a fixed
length of N bytes. each of said packets including a packet
identifier (PID). some of said packets containing a program
clock reference (PCR) value for synchronizing a decoda'
system time clock, and some of said packets containing a
presentation lime stamp (PI‘S) indicative of a time fr:
commencing the output of associated data for use in recon-
structing a television signal. said method comprising the
steps of:

monitoring the PlD’s for the packets carried in said data
stream to detect audio packets;

examining the detected audio packets to locate the occur-
rence of audio synchronization words for use in achiev-
ing a synchronization condition. each two consecutive
audio synchronization words defining an audio frame
thaebetween;

monitoring the detected audio packets after said synchro-
uization condition has been achieved to locate an audio
I’l‘S;

searching the detected audio packets afier locating said
audio P'I‘S to locate the next audio synchronization
word;

storing audio data following said next audio synchroni-
zation word in a buffer:

detecting the occurrence of errors in said audio packets;
upon detecting a first audio packet of a cunent audio

frame containing an error. advancing a wu'te pointer- fr:
said buifer by N bytes and designating said unrent
audio frame as being in error:

monitoring the detected audio packets of said current
audio frame for the next audio synchronization word
after said error has been detected, and if said synchro-
nization word is not received where expected in the
audio stream. discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said buffer.

resuming the storage of audio data in said buflu‘ upon
detection of said next audio synchronization word if
said next audio synchronization word is located within
N bytes after the commencement ofthe search thmfor,
and

if said next audio synchronization word is not located
within said N bytes after the commencement of the
search therefor. commencing a reacquisin'on of said
synchronization condition.

10. A method in accordance with claim 9 comprising the
further step of concealing television audio errors whenever
the audio data from which said television audio is being
reconstructed is in error.

11. A method in accordance with claim 10 wherein:

a ctnrent audio frame is designated as being in arm by
aiming the audio synchronization word for that frame:
and

said concealing step is responsive to an altered syndtro-
nization word for concealing audio associated with the
corresponding audio frame.

12. A method in accordanw with claim 9 wherein said
audio data includes information indicative of an audio

sample rate and audio bit rate. at least one of said audio
sample rate and audio bit rate being variable, said method
comprising the further step of attempting to maintain syn-
chronization of said audio packets dining a rate change
indicated by said audio data by:

S

10

15

35

45

55

65

24

ignoring arate change indicated by said audio data on the
assumption that the rate has not actually changed;

concealing the audio frame containing the data indicative
of an audio sample rate change while attempting to
maintain said synchronization condition: and

commencing in reacquisition of said synchronization con-
dition if said condition cannot be maintained.

13. A method in accordance with claim 9 whaein said
audio data includes information indicative of an audio

sample rate and audio bit rate, at least one of said audio
sample rate and audio bit rate being variable. said method
comprising the furthu' step of attempting to maintain syn-
chronization of said audio packets during a rate change
indicated by said audio data by:

processing said audio data in accordance with a new rate
indicated by said audio data in the absence of an error
indication pertaining to the audio frame containing the
new rate. while attempting to maintain said synchro-
nization condition;

processing said audio data without changing the rate if an
error indication pertains to the audio frame containing
the new rate. while concealing the audio flame to which
said not condition pertains and attempting to maintain
said synchronization condition; and

commendng a reacquisition of said synchronization con-
dition if said condition cannot be maintained.

14. Apparatus for acquiring audio information carried by
a packetized data stream and processing errors therein,
comprising:

means for detecting audio transport packets in said data
stream;

means for recovering audio data from said detected audio
transpat packets for storage in a buffer;

means for locating an audio pesentation time stamp
(P18) in said detected audio transport packets;

means responsive to said PTS for commenting the output
of audio data from said butter at a specified time;

means for monituing the detected audio transpat packets
afta'theoutputofaudiodatafrom said bulferhas
commenced, to locate subsequent audio PI‘S's;

means fa comparing a time derived tit-om a decoder
systemtimeclock(STC)toatimedu-ived frcmthe
subsequent audio PTS's to determine whether audio
data stored in said buifa is too early to decode. too late
to decode. or ready to be decoded; and

means responsive to said comparing means for adjusting
the time at which said stored audio data is output fi'om
said buifer.

15. Apparatus in accordance with claim 14 further com-
Prisms:

meansformaintainingaPI‘SpointerwithacurrentPl‘S
value and an address of said butter identifying where a
portion of audio data referred to by said atcrent PTS is
stored;

means for replacing said PTS value in said PTS pointer-
with a new utrrent Pi‘S value alter data stored at said

address has been output from said buffer, and for
replacing said address in said PI‘S pointu' with a new
address corresponding to a portion of audio data
refuted to by said new cmrent P'I‘S value;

means responsive to said PI'S pointer for suspending the
output of data from said bu‘fl’a‘ when said new address
is reached: and

means for tecommencing the output of data from said
butter at a time derived from said new current PTS
value.

NOAC EX. 1015 Page 187



NOAC Ex. 1015 Page 188

 
1; x

’3’
M

newa;

30””;;our“:
‘anaé‘
u

smut}‘

“:x‘at‘25‘

,t

 

' 0

5,703,877
25

16. Apparatus in accordance with claim 15 further com-
prising:

means for concealing error in an audio signal reproduced
from data output from said bufi‘er andreestablishing the
detection of said audio transport packets if the time
derived from said new current Pl‘S value is outside a

predetermined range.
17. Apparatus in accordance with claim 14 wherein said

audio transport packets each contain a fixed number N of
payload bytes. said packets being manged into successive
audio flames commencing with an audio synchronization
word. said apparatus finther comprising:

means for detecting the occurrence of carts in said audio
packets;

means for advancing a write pointer for said buffer by N
bytes and designating a current audio flame as being in
error upon detecting an error in an audio transport
packet of said current audio frame:

means for monitoring the detected audio transport packets
of said current audio frame for the next audio synchro-
nization word after said error has been detected, and if
said synchronization word is not received where
expected in the audio stream, discarding subsequent
audio data while searching for said syndrronization
word rather than storing the subsequent audio data into
said bufi‘er;

means for resuming the storage of audio data in said
bufi‘u upon detection of said next audio synchroniza-

5

10

15

20

75

tion word if said next audio synchronization word is 30
located within said fixed ntnnber N of bytes alter the
commencement of the search therefor; and

means for reestablishing the detection of said audio
transport packets if said next audio syndrronization
word is not located within said fixed number N of bytes
after the commencement of the search therefor.

18. Apparatus in accordance with claim 17 further com-
prising:

means for concealing error in an audio signal reproduced
from data output from said bufi‘er when the data output
from said butfer is in aror.

19. Apparatus in accordance with claim 18 timber com-
prising:

means for altering the audio synchronization wq'd asso-
ciated with a current audio frame to designate that
frame as being in error;

whu'ein said concealing means are responsive to aimed
synchronization words for concealing errors in audio
associated with the corresponding audio frame.

20. Apparatus for acquiring audio infmnation carried by
a packedzed data stream and processing mots therein,
comprising:

means for detecting audio transport packets in said data
stream. said packets being arranged into successive
audio flames commencing with an audio synchroniza-
tion word;

means responsive to said synchronization words for
obtaining a synchronization condition embling the
recovery of audio data flom said detected audio trans-
port packets for storage in a butfer:

means for detecting the presence of arms in said audio
data;

means responsive to said crrm' detecting means fra- con-
trolling the flow of data through said butter when an
error is present, to attempt to maintain said synchroni-
zation condition while masking said error; and

35

40

45

50

55

65

26
means for reestablishing the detection of said audio

transport packets if said controlling means cannot
maintain said synchronization condition.

21. Apparatus in accordance with claim 20 wherein said
audio transport packets each contain a fixed number N of
payload bytes. and said means responsive to said aror
detecting means comprise:

means fm‘ advancing a write pointer for said bufierby said
fixed number N of bytes and designating a current
audio frame as being in error upon the detection of an
error in an audio transpcxt packet thereof;

means for monitra'ing the detected audio transport packets
of said cun'ent audio frame for the next audio synchro—
nization word afier said error has been detected. and if
said synchronization word is not received where
expected in the audio stream. discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said butfer‘. and

means for resuming the storage of audio data in said
bufl’er upon detection of said next audio synchroniza-
tion word if said next audio synchronization word is
located within said fixed number N of bytes after the
commencement of the search therefor.

22.. Apparatus in accordance with claim 20 further com-
prising:

means for concealing error in an audio signal reproduced
from data output from said bufier when the data output
from said butfer is in error.

23. Apparatus in accordance with claim 22 fin-ther com-
prising”-

means for altering the audio synchronization word asso-
ciatedwithanaudiofiame containing adataeuu'to
designate that flame as being in end;

whu‘ein said concealing means are responsive to altered
synchronization words for concealing mats in audio
associated with the corresponding audio flame.

MArnethodfcrmanagingerrorsindatareoeivedin
hints from a packetized data stream carrying digital infor-
mation in a succession of fixed length transptrt packets. at
least some of said packets containing a presentation time
stamp (PI‘S) indicative of a time for commencing the fixed
rate presentation of presentation units from a bufier into
which they are temporarily straed upon receipt. said method
comprising the steps of:

monitoring received pachts to locate associated PI‘S’s.
said received packets carrying pesentatr'on units to be
presented;

syndrronizing the presentation of said presentation units
from said buifer to a system time clock (STC) associ-
ated with the packetized data stream using timing
information duived flom the PI‘S's located in said

monitoring step; and
identifying discontinuity emu resulting from a loss of

one (r more transmitted packets between successive
ones of the received pacimts and. if a discontinuity of
no more than one packet is identified, advancing a write
pointer of said buffer by a suitable number of bits to
compensate for the discontinuity, while maintaining the
synclnoniration of said presentation with respect to
said 81'C.

25. A method in accordance with claim 24 whaein said
transport packets each contain a fixed number N of payload
bytes. said method comprising the further steps of:

advancing said write pointer by said fixed number N of
bytns upon the detection of a discontinuity error;

NOAC EX. 1015 Page 188



NOAC Ex. 1015 Page 189

. . G 0

5,703,877
27 28

continuing said monitoring step after said discontinuity resuming the storage of presentation units in said bufl‘er
error has been detected in order to search for a syn~ upon the detection of said synchronization wordif said
chronizatiou wad. and if said synchronization word is synchronization word is located within said fixed num-
not located where expected. discarding subsequent bet N of bytes after the commencement of the search
presentation unit: while searching for said synchroni— 5 therefor.
zau'ou word rather than staing said subsequent [re-
sentation units in said bufl’cr, and z- :- zu :- :-

NOAC EX. 1015 Page 189

 



NOAC Ex. 1015 Page 190

 

.,:

3rs..

7‘.

3"”(mu-I.»

~2thon"v.0'2tx,

r‘REEF/«4x“I,“‘::7:2

,

J
V A;r

iis
3"r5

 

.4»

United States Patent [19]

Bellenger

HIIII llllllllllllllll ummy!!!)lllygll Illll tun Ill ||ll| llll
5,802,054

Sep. 1, 1998

[11] Patent Number:

[45] Date of Patent: 

[54] ATOMIC NETWORK SWITCH WITH
INTEGRATED CIRCUIT SWITCH NODFS

[75] Inventor: Donald M. Bellenger. Los Altos Hills.
Calif.

[73] Assignce: 3Com Corporation, Santa Clara, Calif.

[21] AppL No.: 698,745

[22] Filed: Aug. 16, 1996

[51] Int. Cl.‘ .......................... HML 12/66
[52] US. Cl. .............................................................. 370/491
[58] min of Search .................. 370551, 400,

370/401. 402. 407, 408, 422

[56] References Cited

U.S. PATWI' DOCUMENTS

4,947.3” 8/19” Sheehy mmmmmmmmmmmmm. 37W401
5,047,917 9/1991 AM et I1.................. 36m
5,166,931 11/1992 Riddlc .._......._....................... 37W”!
5321.695 6/1994 Fllllk, Jr. .....name-manna: WWW]
53911173 2/1995 Spinney etul. ........................ 370/401
5,477,547 12/1995 Sngiylrn: ............................... 370/401
5,610.95 3/1997 thhy ct I1. .......................... 370/401
5,657,114 8/1997 McGure et a]. ..................... 370/401

OTHER PUBIJCATIONS

ATOMIC: A low—Cost Very High-Speed, Local Commu-
nienfion Architecture, Denny Cohen, Gregory Finn, Rabat
Feldenmn, Annette DeSdron, USCJInformntion Sciences
Institute, 1993 International Conference on Parallel Process-
mg.

The Use of Message—Besed Mulfieomputer Components to
Construct Gigabit Networks, by D. Cohen, G. Finn, R.
Feldmmn and A. DeSchon, Univa'sity of Southern Cali-
fornia/Information Sdenws Institute. ‘

ATOMIC: A High-Speed Locel Communication Architec-
ture, byRFddmmADeSdronD. Cohen, G.finn.
USUInfarmafion Sciences Institute. Journal of High Speed
Netwa'ks 1 (1994) pp. 1—28, 108 Press.
ATOMIC: A Local Communicction Netwcrk Crested

Through Repeated Application of Mulficomputing Compo
nents, by D. Cohen, G. Finn, R. Feldermcn, A. DeSehon.

 

An Integration ofNetwork Cormnunication and Workstation
Architecture, by Gregory G. Finn, USC/Information Sci-
ences Institute. Published Oct. 1991. ACM Computer Com-
munication Review.

(List continued on next page.)

Primary Examiner—Ajit Patel
Attorney Agent, or Firm—Mark A. Haynes: Kent R.
Richardson; Wilson, Sonsini. Goodrich & Rosati

[57] ABSTRACT

An atomic type switch meshis combined with standard local
area netwrtk links, such as high speed Ethernet. and a
bridge-like protocol to provide a high pafonnnnce scalable
network switch. The netwcrk switch compiscs a plurality of
switch nodes, a first set of communication links which are
coupled between switch nodes internal to the network
switch, end a swond set of communication links which
comprise networklinks from switdl nodes on the herds: of
the netwcrk switdt to systems external to the netwrrk
switch. The respective switch nodes include a set of pats
(havingmethantwomunbers)whichareconnecmdto
respective communication links in eithu' the first (I second
set ofcommnnicction links. Each port in the set comprises
1 medium access control (MAC) logic unit for IcOnnco-
tionless network protocol, preferably high speed Eben-net.
The switchnodes also includearoute tablememory which
his a set of accessible memory loafions that sttre switch
route data specifying routes through the plurality of switch
nodes within the boundaries of the network switdr. Flow

detect logic is coupled with the set of puts on the switch
node, whidr monitors frames recdvedhy the set ofpats md
generates nn identifying tag for use in accessing the route
'tahle memory. Finally, the switch node includes node mute
logic which is coupled with the flow detect logic, the route
tablememory sndthe setofports.'l‘he noderoutelogic
monitasfnmesreeeivedbyme setofponstoroutea
reocivedfnme for transmission out a port in the set of ports.

SGChimsonnwhrgSheets

NOAC EX. 1015 Page 190



NOAC Ex. 1015 Page 191

 
“

0

5,802,054
Page 2 

01mm PUBLICATIONS

A'I‘OMIC: A Low-Cost, Vay—High—Speed LAN, by D.
Cohen, G. Finn. R. Felderman, A. DcSchon.
The Design of the Canech Mosaic C Multicomputer, C.
Seiiz, N. Baden, J. Seizovic, and W. Su, Computer Science
256—80, California Institute of Technology.
802.37. Higher Speed Task Force Objectives (Gigabit Eth—
ernet), Apr., 1996.

Netsmion Archilocmrc Mulfi—Gigabit Workstation Network
Fabric, G. Finn, P. Mockapetris, USCIInfonnafion Sciences
Institute.

A Zero—Pass End-to—End Checksum Mechanism for IPVG‘,
G. Finn. S. Hotz, C. Rogers, USCIInformation Sciencm
Institute, Dec. 1995.

Network Backphne, G. Finn, USCIInformafion Sciences
Instinltc. Apt, 1994.

NOAC EX. 1015 Page 191



NOAC Ex. 1015 Page 192

o. 0

US. Patent Sep. 1,1998 Sheet 1 of6 5,802,054

  

 
ATOMIC MESH

NETWORK SWITCH

\ 1 2-5

’ " ,- I x "'6 51511:»:
11-9 11-7

sumo"

11-8 END 126STATION
12-9

w STATION1 2-7

12'” FIG. 1

NOAC EX. 1015 Page 192

 



NOAC Ex. 1015 Page 193

a 0

US. Patent Sep.1,1998 Sheet 2 016 5,802,054

121 122 123

PHY PHY

105 02 110 1 1 11

PHY SWITCH SWITCH pHy- 1,, -
04

1.2

1 1m m m

121 FLOW 113 125

1 33

m m m

12° FLOW FLOW now 114

SWITCH SWITCH SWITCH mPHY 3-1 3-2 3-3

m m m

“9 I=Low FLOW FLOW 1 ‘5
PHY SWITCH SWITCH SWITCH+1 +2 I; W

131118 E 117 m 116 m 127

m PHY
0 129 12813

151

W FIG. 2
1 50

NOAC EX. 1015 Page 193

 



NOAC Ex. 1015 Page 194

O. O O

  

 
 

 
  
  
 

 

US. Patent Sep. 1, 1993 Sheet 3 of 6 5,802,054

I filo- ________________I
I FLOW SWITCH NODE I 203‘ 270-1
I Ic mg TO OTHERI CHIP

215

I I 260-1 204
I l 2702

I FLOW 201-2 I 2034 205

I 055$ swrrcn mg I PORT 2.I (N FLOWS) P0RT2 I PHY
I I 260-2

I .2022 I 271
I 212 I
l 0 I

I (ROUTE . I
I TABLE 21 0 202.x I
I "9"” 201-x I 203-x 270~X

I CF“ swrrcn m To OTHER
I (MODE PORTX I CHIP
I Rom I 260«)(
I I

| I

I 21 3 I
| ARBITER 21 1 I

| I

I I

'— ———————— FIG. 3

FRAME

BUFFERIS) 
250

TAG ROUTE HDR BLK-UNBLK m

251 252 253 254

NOAC EX. 1015 Page 194

 



NOAC Ex. 1015 Page 195

 
 

US. Patent

FIG. 4

 
 

TRANSHIT ON DEFAULT
PORT

Sep. 1, 1998

 
 

 

 

  
 
 
  

RECEIVED ON PORT N

ROUTE HEADER?

GENERATE TAG FROM
FLOW DETECT

ADD ROUTE HEADER

0

Sheet 4 of 6 5,802,054

300

 FRAME

YES

 
 

DECREMENT HEADER,
TRANSMIT ON PORT [D IN

HEADER

NOAC EX. 1015 Page 195



NOAC Ex. 1015 Page 196

      
  
 

4

wE...m2,ae
g

.0.am7IO5@G-u-E«8maxIIEa; momIFgo::2:IC689.8...He:#59.I%'A.mEaos.II—EEIN
tmun—E:

alaaas...Ila—El2.IE
com

8mastmnu>fiomm
l9

Qm.

Smohémzmo:2:
tnem

PaLS.8..U

 



NOAC Ex. 1015 Page 197

 

 

as;
i

I ...
w

“‘5

{Se

»»»»

"Zia:’"

US. Patent

9

Sep. 1, 1998 Sheet 6 of 6 5,802,054

700

 
  

 
 
 

 
 
 

  

 

 
 
  

 

FRAME

RECEIVED IN ROUTER

 GENERATE ROUTE

HEADERS FOR FLOWS

SWITCHES

 SEND MSG TO FLOW

SWITCHES TO UPDATE

ROUTE TABLES AND

BLOCK MATCHING
PACKETS

703

FORWARD PACKET TO
DESflNATION

704

  SEND MSG TO FLOW

SWITCHES TO UNBLOCK

FIG. 7

NOAC EX. 1015 Page 197



NOAC Ex. 1015 Page 198

 
0

5,802,054
1

ATOMIC NETWORK SWITCH WITH
INTEGRATED CIRCUIT SWITCH NODFS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of network
intermediate devices, and more particularly to high-
pcrformance switches for routing data in computer net-
works.

2. Desu'iption of Relaxed Art
Network intermediate systems for interconnecting net-

works include various classes of devices, including bridges,
routes and switches. Systems for the intuconnection of
multiple networks encounter a variety of problems, includ-
ing the divasity of network protocols execmed in the
networks to be intu'connected, the high bandwidth required
in ordtn' to handle the convergence of data tom the inter-
connected netwaks at one place, and the complexity of the
systemsbeingdesignedtohandle theseproblems.Asthe
bandwidth of local area network protocols increases, with
the development of so-called asynchronous transfa mode
("AIM"), 100 megabit pa second Ethmet standards, and
proposals for gigahit per second Ethu'net standards, the
problems encountu'ed at network intmnediate systems are
being multiplied.

One technique which has been the subject of significant
research fa’ increasing the throughput of netwmzks is known
as the so—calledatomicLAN.'I‘heatomicLANis described

for example in Cohen, et al., “ATOMIC: ALow-Cost, Very
High-Speed Local Communimtion Architeemre", 1993
International Conference on Paralld Processing. Time is a
significant amount of published information about the
atomic LAN technology. Felderman, et al. “ATOMIC: A
High-Speed Local Communication Architechue", Journal
ofHigh fixed Nenvorb, Vol. 1, 1994, pp. 1—28; Cohen, et
aL, “ATOMIC: A Local Communication Network Cream!
Through Repeated Application of Multicomputing
Components", DARPA Contraa No. DABT63—9l-C-001,
Oct. 1, 1992;00henetal..'l‘he Usechessage-Based
Multicomputu Components to Construct Gigabyte Net-
wa' "; DARPA Contract No. DABT63-9l-C-001, pub-
lished Jun. 1, 1992: Finn, “An Integration of Netwuk
Communications with Wcrkstation Architecture", ACM, A
Computer Communication Review, Octobc 1991; Cohen et
aL. “ATOMIC: Low-cost, Very-High-Speed LAN”, DARPA
Contract No. DABT63o9l-C-001 (publication date
unknowmdownloadedhunlntu-netona'aboutMay 10,
1996).

'I'heatomicLANisbuiltbyrcpeatingshnplefomport
switch integrated drcuits in the end stations, based on the
well known Mosaic architecture created at the Califcn'nia
Institute ofTechnology. These integrated circuits at the end
stations areintuconnmdinameshamngementtopro-
ducealargepoolofbandwidththatcanu'ossmanyputs.
The links that intuconnect the switches run at 500 megabits
per secondFrames aremntedamong the end stations ofthe
network using a difl‘erential source route code adapted ft!
themesb. Oneormoreend stationsinthemeshactfiddress

consultants"tomapthemesh and caluilatesomcemute
codea.Alldthelinksaresclft:imed,anddependon
acknowledged signal protocols to coordinate flow across the
links to prevent congestion. The routing method for navi-
gating through the mesh, known as "worm hole" routing is
dcsignedtoredncemehufleringrequirements ateaehnode.

The atomic LAN has not achieved ccanmereial applica—
tion to a significant degree, with an exception possibly in

10

15

35

45

55

2

connection with a supercomputer known as Paragon from
Intel Capra-anon of Santa Clara, Calif. Basically it has been
only a research demonstration project. Critiml limitations of
the design include the fact that it is based on grossly
non-standard elements which make commercial use imprac-
tical. For example, there is no way to interface the switch
chips taught according to the atomic LAN project with
standard workstations. Each workstation needs a special
interfacechiptobecomepartofthemeshinordcrto
participate in the IAN. Nonetheless, the ATOMIC LAN
project has demonstrated a high throughput and readily
extendable architecun'e for communicating data.

Typical switdtes androutu’sinthepriorartarebasedon
an architecture requiring a “backplane” having electrical
characteristics that are superior to any of the incoming links
to be switched. Fa example. 3Com Corporation of Santa
(Jan, Ca1if., produces a product known as NetBuildu-Z,
having a cue bus backplane defined which runs at 800
megabits per second. This backplane may: traflic among
various local area netwa'k extanal pea-ts.

Three are several Foblans with the backplane app-each
typical ofprior art immediate systems. First, the backplane
must be fined fast enough to handle the largest load that
mightocalrinflieintermediatesystemMQ-more,dte
alstomu' must pay for worst case backplane design, regard-
less of the customer’s actual need fu- the wcrst case system.
Second, the backplane itself is just another communication
link. This communication link must be completely sup-
portedas a backplane forthe netwa'kintermediatesystem,
involving intricate and expensive design. The lower vol-
umesforspedalizedbackplanelinkfimhaina-eases the
costofnetworkintrrmediate systemsbased on the back-
plane architearn-e.

In light of the evcr increasing complexity and bandwidth
requirements of network inteunediate systems in coma-
cialsetfings,itisdesirabletoapplytbeatomicLANpin-
eiples in practical, easy to implement, and extendable net-
work inmdiate systems.

SUMMARY OF THE INVENTION

Amending to the {resent invention, the fine scalability of
matcnfictypeLAansLiscombinedwithstandardlocal
areanetwcrklinksduchashiy: speedEthemetanda
standardroutingprotocoltoprovideahighperfonnance
scalable network switch. The need fa: the special purpose
baskplanebusiaranovedaccu'dingtothisn'dfitecture,
while pcviding scalability, high puformance, and simplic-
ity of “sign

Amordingly, the present invention can be diaraetcrized as
anetworkswitchthatcomra'isesaplnralityofswitdinodes
arrangedinanmsh,afirstsetofintmialoommunication
linkswhidiarecoupledbetween switchnodea intemalto the
netwa‘k switch, and a second set of external communication
links which compise network link from switch nodes on
theborderofthenetwonkswitchto systanscxternalto the
netwa'k switch. The respective switch nodes include a set of
ports (having more than two members) which are connected
to respective communication linls in one of the first or
second sets of communication links. The ports in the set of
ports include respective medium access control (MAC) unis
for h'ansmission and reception ofdata frames aectrding to a
network [romeo]. preferably a eonnectionlecs protocol like
highspwdlathanctmdareconnectabletoaportonanodia
network switch node inside the mesh across an internal
communication link, or to a netwa-k communication
medium outside the mesh which constitutes, or is coupled
with, an external communication link.

NOAC EX. 1015 Page 198



NOAC Ex. 1015 Page 199

 
(- “

5,802,054
3

The switch nodes also include resources to execute a
routing process for flames inside the mesh. These resources
include a route table memory which has a set of accessible
memory locations that store switch route data specifying
routes through the plurality of switch nodes inside the mesh
of the network switch for specific flows of data flames, orfa'
data flames having specific destination addresses. Flow
detect logic is coupled with the set of ports on the switch
node, which monitors flames received by the set ofports and
generates an identifying tag for use in accessing the route
table memory. Example tags consist of a destination address
at one of the data link laya' or the netwofi layer, a portion
of the destination address, or hash values based on one (a
more fields in control segments of the frame. The tags
preferably act as flow signatures to associate a flame with a
sequence of frames mining the switdi. For (sample,
when a large file is transfencd, a sequence of flames is
generated which constitutes a flow of data to a single
destination, and flames in the sequence have a single iden-
tifying tag. Finally, the switch node includes node route
logic which is coupled with the flow dcted logic. the route
table memory and the set of ports. The node route logic
nmnitorsframesreceivedbythe setofportstorontea
rcccivcdfnme fortransmission outaportinthe set ofports.

The node route logic detamines whethu' the rccdvcd
frame includes a switch route field thatindicates apart in the
setofpmstowhichmefnmeshouldbedirectedfu
transmission. If the received flame includes a switch route

field, diatfieldistmdatedaccordingtoasanceroutetype
protocol, andtheflameisftn'wardcdwiflitheupdamdswitdi
relucfieldoutthcindimtedpa'tlfthereca'vedframedoes
notinchidea switchroutefield, suchas wotndnormallybe
Ihecascfm'aframeentedngthenetwakswimhataswitd:
nodeon the borderefthenetwmksndtdi, thentheidenti-
fyingtag generatcdbythefiow detectlogieiausedtoaccesa
thcroutetable memory. Switdi routedataisreuievedflom
dreroutetablememcry, ifau entryexistsforthe identifying
tagoftheamntflann'l‘hisdataisuscdtogeneratca
switchroutcfieldforflieflame,andtodireatheflameout
a port indicated by the data.

'I‘henoderoutelogicontherespediveswitchnodealso
includes logic that fcrwards a tweived frme for transmis—
sion onadefaultportinthesetofportsmhenthcroutcuble
memory does not include swltdi route data ft: the identi-
fyingtag.'l‘he defaultportis conpledtoamuteleadingtoa
pocessorindiesystematwhidtswitchroutedataia
generated, such as a mum-protocol network route eitha'
internal or external to the netwmt switch. Thus, the node
route logic further includes logic toreceive switch route data
fromaremotesystemforaparfiaflaridentifyingtag'l'hia
switdimutedataisstcrcdintheroutetablememoryin
association with the partiurlar identifying tag. When a new
entryismadcinaswitchroutetablc,flameshavingthc
particularidentifyingtagucblockcdwifllorwithout
bufi'ering, until notification is received that it is clear to
forward frames having the particular identifying tag. This
blocking technique allows the remote system to which a
framewas dh'ectedforroufingnofmwarddieflametoits
destination, prior to other frames in the same flow sequence
beingroutedtotliatdestinafionflhiapreservestheorda'of
transmission offiamcs inaparticulartlaw.’l‘he nod: route
logicbeginsfca'wardingframes accordingtothe switdnoute
datastorcdintheroutetablemanoryforapartiailartag
after it receives notification flomthe remote system that it is
clear to forward frames.

The term flame is used hadn, unless stand otherwise, in
a gcnaic scnscas aunit ofdatatransfu'red woudingto a

10

15

35

45

55

60

4

network protocol, intending to include data units called
frames. packets, cells, strings, a other names which may
have more specific meaning in other contexts.

In the preferred system, all the ports on the switch node
execute a single local area networkprotocoL Refer-ably this
protocol is an Ethanet protocol like the carrier sense,
multiple access with collision detection CSMA/CD protocol
of the widely used Ethernet standard and variants of it. Mta‘c
preferably, the protocol is specified fm‘ operation at 100
megabits per second or higher, more preferably at the
emerging one gigabitpa second Edict-net standard protoooL
For example, half duplex and full duplex “Gigabit” Ethernet
(M80232) or 100 Megabit Eliza-net (802.3u) are used in
prefurcd embodiments.

Flow control between the nodes is handled according to
the standard LANprotocol ofthepta'ts. such as the Ethanol:
protocol. Thus, management of the flame flow through the
switdlisconductcdonaflamebyflamebasiswiththe
format of the frame inside the switch essentially unaltered
from the format utuing or exiting the switch, with well
undra'stood and easily implcmmted technology.

Aocta'ding to another aspectof the present invention, the
flow detect logic on the respeuive switch nodes comprises
logic which computesapluralityof hash values inresponse
torespective sets of control fields lnareceived frame. The
respective sets of control fields correlate with different
networkflame fonnatswhiehmightbeencountuedin the
netwcxk. Logic is alsoiucludcd which determines spaniel-
laruetwmtflameftunat fuareceived frame, and selects
oneofthepluralityofhashvaluesutheidenfifyingtagin
regionsetothepartiailarnetwukflamefonnatthathas
beardetectedl‘hehashvaluespcfmblycomprisecyclic
redundancy codes which are generated with hardware CRC
genaatmlnthismannu'.flieidenfifyingtagfcranincom-
ingframeis generatedvu'y quickly, showingfa cutthrough
ethameainaswlhdinodesofltatah’annnissionofaflame

onanoutgoingportcanbcginbefmethecmnpletcfiamebas
bemrcceivcdattheincomingport.

'l‘heprcscntinventionunalaobechxactaizedasindi—
vitllalswitdanodeaftxuscinanetwu-kswitdiinflre
configmationdescribedabove.lnanodiaaspcct,thenet-
watlwinflznodecompdseaanintegrateddmfltonwhhh
drephnalityofpms,fllefiowcontrolloglc,andtheflow
detedlogicneincmpmtedandinterconnectedbyan
embeddedhighspcedbusAsystemimlntfinganytwoor
111me such integrand cimuits cranbiucd togetha'toform
amhpovwcandwakmhmAccordingtoanother
aspeetol'tlw invention. thepmtson the integrated circuits
arecoupledwithstandardjackconnecta's,txotha standard
connector interfaces. allowing users of switd: circuits
indudingaplm‘alityofintegntcdcflcuitstoconnectthem
topdra'usingcablesinanydesiredconfigmtion. Thus, a
vuyfiexibleswitdiarchitecmreiaprovidedwhichcanbe
configured for individual installations vuyeasily.

Ahighpufonnancenetworkswitchisrnovidedamording
tothertesentinventlonbasedonaswitchnodemadewith
anintegratcdcircuithaving3ormureLANports.A£rame
is routed amongst the nodes in the switdr without moving
aaoss any intermediate non-LAN bus (excluding the
memmyintcrfaceinelchofthenodesusedforflicflame
bulfas).Amute®dsionismadeincachnodebasedona
switdlrouteheadcrlttarhcdtotthANflame,oronmc
Ethernetaddresscontainedwithinthcflame,ordirectedto
adefanltrouteifnorouteisstmedintheroutetableanddie
Ethernetaddressisunknowm'l‘heflow control amongst the
nodesinthe switchishandlcdbasedonstandardLAN

NOAC EX. 1015 Page 199



NOAC Ex. 1015 Page 200

 
' 0

5,802,054
5

control signals. In the preferred system, the standard LAN
interface amongst the nodes is 100 megabit per second (a'
higher Ethernet, and mac preferably the emerging l gigabit
per second Ethernet protocol.

Other aspects and advantages of the present invention can
be seen upon review of the drawings, the detailed descrip-
tion and the claims which follow.

BRIEF DFSCRIFI'ION OF THE DRAWINGS

FIG. 1 is a simplified diagram of a network including an
atomic network switch according to the present invention,
interconnecting a plurality of standard Ethernet links.

FIG. 2 is a block diagram ofa network switch based on
a mesh of switch nodes ascending to the present invention.

FIG.3is ablockdiagmmofaswitch nodeaccordingto
the present invention.

FIG. 4 is a flow (mart illustrating the process executed by
the node route logic in the switch node of FIG. 3.

FIG. Sis a diagram illustrating the process of generating
identifying tags based on cyclic redundancy code hash
gcnaam for the flow detect logic of the system of FIG. 3.

FIG. 6 is a simplified block diagram of the flow detect
logic formultiple parallel flows for use in the system ofFIG.
3.

FIG.7is allow chartillustrating theproccss cxeeutedin
aroutcrorothernetworkroutcprocessorftrframcsreceived
frcmthenetworkswitch,whichdonothavc cntriesinthc
route tables of the network switch.

DETAILED DESCRIPTION

A detailed description of embodiments of the [resent
invention is provided with reference to FIGS. 1 through 7,
whereFIG.1illumtelthecontextinwhichthep-esent
inventionisutilized.InFIG.Lanatomicnetwm'kswitchlo
warding to the present invention is connected by standard
Ehu'netlinb 11-1 through 11-9 to a plurality of end stations
12-1 through 12-9. The number of end stations and Blind
linksshowninFIG.lisarlitrary.Alargertrsmallernumba
offinkscouldbeoonnectedtoasinglcatorrficswitdrl.
accorcflngtoflrcpescntinvenfiomasdescribedindetail
below. Furthermore, the connections 11-1 through 11-9 from
theatmnicswitchtothcrespca‘rvcendstationsareall
standard netwa’k connections. pefaably CSMAICD pro-
tooollinks,suchasflrcstandardfullduplexfastEthernet
(IEEESOZSu) specified for 100 megabits per second each
way, or the emn'ging standard full duplex, 1 gigalit pa
secondEthu'netprctocol. In the preferred system, alllinks
114 through 11-9 opaate warding to the same network
protocol. However, alta'nativc systems accommodate nail-
tiplc network protocols on the external ports of switch 10.

The end stations 12-1 through 12-9 may be pascnal
computers, high performance workstations, multimedia
appliances, printas, netwcrk intmnediate systems coupled
to furthe- networks, or other data [accessing devices as
understood in the art.

According to one embodiment of the present invention
one of the end stations, such as end station 12-1 includes
resources to manage the configuration of the atomic network
switch 10, sud: as initializing route tables, maintaining the
route tables, and providing other functions. Thus, end station
12-1 mayincludcrcsourccstoactasamulti—rxotocolroutrr,
sud: as the NetBuilderQ manufactured by 3Com Corpcntion
of Santa. Clara, Calif.

FIG. 2 illustrates the internal architecture of the atomic
network switch 10 shown in FIG. 1. The atomic network

10

15

35

45

55

6

switch 10 is comprised of a plurality of switch nodes
arranged in rows and columns in FIG. 2. The switch nodes
are labeled in the drawing by column and row numbu's.
Thus, the switch node in the upper left hand corner is node
1‘1. The switch node at row 1, column 2 is node 1-2. and so
on throughout the medr. In a preferred embodiment, each
switch node includes an integrated circuit, such as integrated
circuit 105 in node 1-1. coupled to a may chip, such as
chip 106 in node 1-1. Each of the nodes includes four ports.
Thus, node 1-1 includes pm 101, pcrt 102, port 103. and
port 104.

The boundary of the network switch in FIG. 2 comprises
the nodes 101 and 102 of node 1-1,prrt 110 of node 1-2,pott
111 of node 1-3, 112 of node 1-3, port 113 of node 2-3. port
114 of node 3-3, port 115 of node 4-3, port 116 of node 4-3,
port 117 ofnode4-2,pcrt1180fnodc4-1,pcrt 1190fnodc
4-1,pa11200fnode3-1,andport 121 ofnode2-1.Each of
the ports 110—121, 101 and 102 on the boundary of the
switch is connected to through a physical layu- device,
121—134 to respective physical communication media, such
as liberopu'c cables, twistedpair cables, wireless links, such
asradiofrequencytrinfi'aredchanncls,orod1ermcdia
specified according to standard local area netwa-k physical
layer specifications. The connection between switch nodes,
such as the connection 140 between port 141 on node 2-3
and port 142 on node 2-2, consist cfmcdium independent
intaface connections whidr are defined fa comedian

between MAC logic on a port, and medimn dependent
components for a port. However, these medium independent
comedians are connmd from MAC logic to MAC logic
directly. Preferablyallthelinks betwecnthcpcrtsinthe
netwakswimh caeartethesame networkprotocolasthc
ports on the boundary of the switch. Howevu', alternative
systems suppmmultiplemotocol typesattheboundary.

Management of the configuration of the netwcrk switch is
aceomplishedinarouter 150 which is connected across link
151 to the physical layer device 130 on the netwrxk switdi.

'Ihememorychipssuchaschip 106nnode l-l,inthe
netwraiswitchareusedtostcu'eroutctaflesnndasfi'ame
bufl'us usedinroutingofframcs amongstthcnodes ofthe
swltda.

In operation, the netwtrk switch receives and transmits
standard LAN frames on physical intafacea 121—134.
Prefaably, the LAN interconnections comrrise CSMA/CD
LANs, such as 100 Megabit Ehu'net (IEEE8023 u), or 1
gigabitEthemeLWhenastandardframcenter-s theswitchat
oncphysicalintufaeehisdirectedwtcftheswitch
through anotha' lirysical intaface as indicated by the
addreesdatacauiedbythcfi'amcitself.'lheindividual nodes
intheswitdrincludeaswitdrroutingfcahne.Eadrindi~
vidual node selectssportonwhidr totnnsmitarecu'ved
frame based upon the contents of the header of the incoming
frame.

'l‘herearctwointunalnmdesformutingframesinsidethe
smmmebasemodeuchnodemutesfiamesusinga
switdrromeheaduattachedto thcbeginning oftheregular
LANframe.Theswitdrrouteheaderinone example con-
sistsofaseriesofbytes,ead1bytespedfyingonetrmote
hops of the route. The top two bits in one byte specify a
dirediominthenextbitsspedfythedisunmAsafiame
movcsthrougheadrnodc,theheadaisupdatedunlilit
reaches the target. Before a flame leaves the mesh. all the
switchroutebytes arestripped, andtheframehasthe same
fmmataslthadwhcnitentaedflremeshcrjfrequiredn
far-mat adapted to the netwat protocol of the exit port.

The nodes of the switch, at least nodes on the boundary
ofthc switch.alsohavealookupmodc.Whenafnrme

NOAC EX. 1015 Page 200



NOAC Ex. 1015 Page 201

 
C) 0

5,802,054
7

enters the switch, with no source route header, the Ethernet
addresses, or other fields of the control head: of the frame
are utilized access the route table. In preferred systems, a
CRC-like checksum generator is run over the header of the
frame, or over selected fields in the header. At the end of the
header, the checksum, or the low order hits of the checksum,
are used as a hash code to access aroute table storedin the

memory associated with the node. Other look up techniques
could be utilized for accessing the route table in the memory.
For example, the destination address of the incoming frame
could be used directly as an address in the table.

Ifthereisanentryintbcroutetable correspondingtothe
header of the frame, then the switch route data fromthe table
isusedtocreateaswitchrouteheader.’l‘heheadu'is
attadtedtotheframe,andtheframcisu'ansmittedatthe
approgriate put. If no entry is found in the mute table, then
the frame is routed to a default address, such as the address
of a mnltiprotccol route: associated with the sudtcb. The
multiprotoool renta- at the default address also pu'forms
management functions such as reporting status, initializing
the network, broadest functions, and managing node mute
tables. Routing the frame to a default address sltrn'natively
involves attachment of a switch route header to direct the
flametothcdefanltaddress,a‘simplyfawardingthefi‘ame
atadefaultportintheloalnode, suchthatthe next nodein
themeshtorecdvetheframe alsolooksitupinitsownronte
tahletodetermine whethathet'rameisrecognizcd. Either
way, the frame reaches the Mann address and is handled
Wiv-

Flowcontrolofthefnmesinthemesh.andatthe

boundaryofthemesh,is based onthenetwoikprotoool of
the links, sud: as Ethernet. Therefore, in the Infrared
Ethu-net exampleifaputis notavailableinatargetnode
thretoabusylink. acollision onthelinhorlackofnmmory
spaceatthetargetnode, thefi'amewillberefusedwithajam
signalorabusy slgnalonthelink'l‘he sendingnode butters
the frame, andretries thetransmissionlater, accadingtothe
backofl’ and retry rules ofthe motocol or othe- flow control
tedmiqnes of the protocol.

The standard higher-am Ethanet [rotocols include
both half duplex and full duplex embodiments. The 100
Megabit pa second Elba-net, defined by IEEESOZSu,
clause 31 “MAC Control,” defines a frame-based flow
controlschemet'ortiiefullduplesrernbodinremflow con-
trol slows downtheaggregaterateofpacketsthatapartiw—
larportis sending. The method used revolves around control
fi-amesdisfinguishedbyauniquemulticastaddressanda
hngmltypefiemmmepmknWhenaMACpmtcomller
detects thatithasreoeivedaconlrolh'amenheopcodeinthe
controlt'rameis sensed, andtransmissionofpechuis
controlled based on the opcode. In existing spcdflcations, a
single opcodePAUSEis defined'l‘hus,inresponaetothe
PAUSE opcode, transmission of packets is either enabled or
disabled depending on the uncut state in a Xoanofitype
mechanism. Thus, thisfullduplex mode does notdepend on
the shared media, collision detect techniqum of the classic
CSMA/CD protocols.

All the troposed standards in the Ethernet family basi—
cally use the standard 8023/Ethernet frame fu'mat, con-
formed to the 802.2 logical link control layer intazface, and
the 802 funuional requirement domment with the possible
mrception of Hamming distance. Also, the minimum and
maximmnframcsizeas spedfledbythecurrent8023
standardandbythehalftrfullduplexoperationalmodesis
ditfaentinthehighu'rate standards'l‘hus,thehalfandfull
duplex embodiments of the 100 Megabit pa second and
Gigabit pa- second FJhu-net standards are often refined to

10

15

35

55

8

as (EMA/CD protocols, even though they may not fit
completely within the classic CSMAICD definition.

FIG. 3 is a simplified block diagram of a single node in
the network switch according to the present invention. The
node consists of an integrated drcuit 200 comprising ports
201-1, 201-2, . . . 201-X. Each port includes the frame butter
and port management logic normally associated with stan-
dard bridges. Also, coupled to each of the ports, is a medium
access control MAC unit 202—1, 202-2, . . . 202-X. The MAC
units 202-] to ZOZ-X are coupled to medium independent
interfaces MJI 203-1, 203-2, . . . 203-X.

In the embodiment of FIG. 3. each of the medium

independent interfaces is connected to a connector jack
260-1, 260—2, MK. The connector jacks comprise a stan-
dard connector to which a cable 270-1, 270-2, 270-X is
easily connected by the usu. The table may comprise a
coaxial cable fa- medirnn independent interfaces based on
saial data, a ribbon cables for wider data buses. A variety
ofmedranicaljackconfigm'ations canbeuscdasknownin
the art. Fra' example, coaxial stubs can be mounted on
printed cirarit boards adjacent each put of the integrated
circuits. A shcrt coaxial table is then connected from stub-

to-stnb in ordrz to an'ange the plurality of integrated circuit
chips lnameshdratsuitsthepartieularinstallatiomAlso,
standardribbon connecta'jackscen be surfacemountedon
printed wiring boards adjacent to the integrated circuitThe
ribbon cables are connected into the ribbon connector jacks
in order to establish the inter-connection.

In altu'natives, each ofthe switches is mounted on a
danghnnboudwithjacks designcdtobeconncctcdto a
motherboardinwhidtthedataisroutedaccordingtoflte
needs of the particular amlication. In aha-native systems,
the jacks 260-1 through 260-X are not included, and the
mdiumindependentinterfmaremutedinflteninted
wiringhosrdinahard—wircdcoufignration, designedfora
partiuilar installation.

Medium independent intataces allow for communication
bymeansofthejacks 260-1t0260-X andcables 270-1 to
270-X,orotherwise,direcdywitltothaMACunitsonodn
switdt integrated circuits, ca' tophysical layer devices ft!
connection to actual communication media. For example,
theMII203-1 inFIG.2isconnecteddirectlytoap<rton
mahanodeinflrerwiteh.’l‘hehflI203—2infl6.2is

connectcdtoaphysicallayu' deviceZMforportZthrough
jack271.’l‘hephysicallayadevice204isconnectedto a
physical transmission medium 205 ft: the LAN being
utilizedTheMIIm-XinFIG. 2iscoupleddirectlyto
anothe- chip within the switdt mesh.

According to one embodiment of the present invention,
integrated drcuit 200 includes a may interface 206 ft!
connection direcdytoanartea'nalmemory, such as aRam-
busdynamicrandomamessmemrxykDRAMZM.The
RDRAMZO'Iisutilizedto strrethe switchroutetaliem,
andfra'framebufi'ers 221 utilizedduringthe routing of
frames through the node.

Theintta'nal ardtitedin'eofdte integratedcirmitZMcen
take on a variety of formats. In one Feta-red embodiment,
thelntcrnalardritemrreisbasedonastandardbusarchi—

tecun'especifiedforoperationatl Gigabitpasecond,or
higher. In one example, a 64 bit-wide bus 210 opaating at
100 Megabertz is used, mviding 6.4 Gigabits per mond as
smearedcdmaximumliven higherdataratesare achiev-
able with faster clocks. The integrated circuit of FIG. 3
includes bus 210 which is connected to a my arbiter
unit211.Arbiterunit211 connectsthebuszmtoaCPU

processor 212 across line 213. The processor 212 is utilized

NOAC EX. 1015 Page 201



NOAC Ex. 1015 Page 202

 
" D

5,802,054
9

to execute the mute logic for the node. Each of the switch
ports 201-1 to 201-X is coupled to the bus 210, and thereby
through the arbiter 211 to the CPU 212 and the memory
interface 206. Also, flow detect logic 215 is coupled to the
bus 210 for the purpose of monitoring the frame received in
the node to detect flows, and to genu'ate identifying tags for
the purpose of accessing the switch route table in the
RDRAM 207. The arbiter 211 provides for arbitration
amongst the puts, the flow detect logic, the memory. and the
CPU for access to the bus, and otha' management necessary
to awomplish thehigh speedtransfa datafromtheports to
the frame butters and back out the port.

Arepresentafivc location 250 ofthe switch route tableis
shown. The location 250 indudes a field 151 for theiden—

tifying tag, a field 252 for the route header, afield 253 for
a block-unblock control bit, and a field 254 or fields fu’
information uscdinthe management of the route table, such
asthc age ofthe entry.The tag field251 maybesssociated
withalocationbyoneormoreofusingdrctagoraportion
ofdretagintheaddress,bystodnga1lorpartoftheaaual
tagdatainthcaddressedlocation,m'byusingothermemory
tag techniques.

'I'heruuteheaderinflieprefuredembodimcntconsistsd’
a sequence of route bytes. The first field in a route byte
includes information identifying a direction, which ware-
spondstoapartiarlarportonthenode,andasecondfieldin
the byte includes a count indicating the numb: of steps
ttn'oughtheswitdrfmmnodetonodewhidrshouldbe
exearted in the direction indiated by the first field. Fra-
examplemeightbitroutebyminaswitdl havingnedes
withfourports,inc1udesatwobitdireaimfield,andatix
bitoountfield,spedfyingupto63 hops inonedfour
diredionsAsequeneectroutebymisnsedtospedfya
route through the switch. Thus, the switch route headeruses
sonrcermtingtechniqueswithintheswitdrforflrepmposes
(fmanagingflowframesflrrwghthe switch/Them
romeapfxoachmayJorexampleina-tportnodeinctndea
fiddfahopsmflshthopsmmemhopsupandhopa
down.1hefirstfieldmaycanyinfa'mationindieatinglefi4
hops, followed by afield indicatingdownZhops, followed
byafieldindimfinglefimehopmeidtdreswhmmusa
fi'amewouldbetransmittedoutmelettandintherightport
of3nodes,intherightsndoutthedownportdlnode,in
thetopandoutthedownoflnode andinthetopandout

10

15

daelet'tofflrelastnodeontheboundaryoftheswitthas
standard Ethernet frame famat tabs over for transmission

t1noughtbenetworkoutsidetheswitches.Astheaizetfthe
mesh grows, and the bandwiddi handled by the mesh
intreases, me sophisticated routing techniques are avail-
able because of the flexible technology utilized. Fa larger
switdteamuethanonemuteexistsfcrfiamesentujngone
node and leaving on another node. 'lhus, the switch an be
configmedtominimizethenumbu'offrameswhidrare
blocked in passage through the switch, while maintaining
optimum utilization of the bandwidth available through the
switch.

The block-unblock field 253 is used during the updating
ofthe switchroutetablcbythehost CPU212toblock
routingofframes correspondingto new entries, untilitis
assuredthatthefirstframeintheflowtowhich the entry
corresponds, arrives at its destination before the node begins
forwarding following frames in me flow to the destination
usingtherouteheadcr,incrdertopreservememduof
transmissionofflrefi'ames.'1‘heagefield254isusedalsoby
dreCPU212forthepurposeofmanagingtheoontentsofflre 65
route table. Thus, entries which have not been utilized ft'a' a
oertainamountoftimearedeleted,orusedacctrdingto

10
least-recently-used techniques for the purposes of finding
locations for new entries. Other control fields (not shown)
include a field for storing a count of the numbn- of packets
forwarded by the node using this route, a drop/keep field to
indicate packets that will he dropped dining overflow
conditions, a priority “high/low" field for quality of service
algorithms, and additional fields reserved for future use, to
be defined accuding to a particular embodiment

The frame bulfcr 221 is preferably large enough to hold
several frames of the standard LAN format. Thus, a standard
Ethernet frame may comprise 1500 bytes. Preferably, the
flame butfu' 221 is large enough to hold at least one frame
for each ofthe ports on the flow switch.

Theflowswitch200includesmca’ethan2ports,and
preferably 4 ormore puts. All the pats are either connected
through the media independent interfaces 203-1 through
203-X directly to otha' chips in the mesh, ca- to physical
layer devices for connection to enunal communication
media.

The router or our: management node fca' thc switch may
communicate with each of the nodes 200 using well-known
management poteeols, sud: as SNMP (simple network
management protocol), enhancements of SNMP, or the like.
Thus, the RDRAM 207 associated with each node also
sures statistics and control data used by the management
process in controlling the switdr node.

AldroughinHG.3,t:lreRDRAM207isshownoffflre
chip 20., alternative embodiments incaporate memory into
therwitchintegrated drudtMJormca‘eintegrateddMign,
smaller footprint for the switch, and otha classic pmposes
fra- hith integration designs.

The CPUZlZexeurtesmenoderoutelogic forthenode.
Asimplifiedfiowdiartdthenodcmuteprocess exewted
by CPU 211 is shown in FIG. 4.

Theprowssbeginswiththerweiptoftheframeona
partieularprxt(step300).'1‘heCPUfirstdetermines whether
theframe carries aroute hcadn'(step301).'l‘his [recessis
exeurtediuparallel with themsferring oftheframebeing
receivedtotlrefi‘anrebufl’a’ofthenorhlfflrefimnccarries

atoneheader,theadreCPUupdateatheheadu'bydeae-
mentingthehop comeorothawlseupdatingflreinfonna-
flonto accountftratravcrsedleg oftheroute accmding to
theparfictflarswitchmutetechniquenfilized'l‘heCPU
transmit: theframe(withupdatedheada) ontheport
identifiedbythehuder-(smpM). Eat stq) 301, no switch
route header was tbteaed, the flow detect logic is accessed
todaermineatagforflrefiame(stq3303).'lhetagis
utilizedbytheCPUtoawess enuiesinflreroutetable (step
MHamatdrisfoundindrcmutehblethenaroute
header is generated ft: the frame (step 305). Then, the
header is updated (ifreqnired), and the frame is transmitted
onthepmtidentifiedbydredatainthctable (step302).1f
atsmpmmomatchwasfoundintheroute table,thenthe
fi'ameisu’ansmittedonadefaultptrflstepmmdtu-
nativetedrniquetoh’ansmittingmcfi-ame onsdefaultpca-t,
istoaddadefaultmuteheadertodmfiamqandtransmitthe
frame according to the infumation in the default route
header. In this manna, subsequent nodes in the switch will
not be required to perform the look-up operation for the
purposes of routing the frame. However, it may be desirable
tohaveeach node lookuptheframcinitsownroutetable,
inadea'tolnsn‘ethatifanynodealrurlyhasdatausefirlin
forwarding the frame, then that frame will be forwarded
appropriately without requiring processing resotn'oes of the
management process at the default address.

HG. 5 illustrates the technique executed by the flow
detect logic in gcmfing an identifying tag ft: the flame

NOAC EX. 1015 Page 202



NOAC Ex. 1015 Page 203

M.,,s2;

 
 

,

,3
fl"5' 1

’0‘ w.

)3
r. l

x

,m

 

‘ D ‘3

5,802,054
11

bcmg received. FIG. 5 includes the format of a standard
Ethanet (8023) style frame 400. The frame includes a start
of frame deliminator SOF in field 401. A destination address
is carried in field 402. A source address is carried in field
403, and miscellaneous control information is carried in
additional fields 404. A network layer header, such as an
Internet protocol header in this example, is found in field
405. Other style network layer headers could be used
depending on the particular frame format. The data field of
variable length is found at section 406 of the frame. The end
of the frame includes a CRC-type checksumfield 407 and an
end-of-frame (bliminator 408. The flow deter: logic runs a
CRC-type hash alga-ithm ova selected fields in the control
header of the frame to generate a pseudo-random tag. Thus,
the field 410, the field 411, the field 412, and the field 413
areselectedforinputintoaCRChashgenerator4l4.’Ihetag
generated by the hash genm 414 is supplied on line 415
for use in accessing the route table 416. The route table
eitha supplies a route heada' on line 417, or indimtes a miss
on line 418. In this way, the route management software
exeurtedbytheCPUcanmaketheapfropriatededsions.

TheembodimentofFlG. 5 selectsaparticularsetoffields
within the flame for the purpose of generating the pseudo-
randomtag.’lheparticularsetoffieldsisselectedto
cmespond to one standard frame format encountaed in the
network. Howcva, a variety of frame format: may be
transmitted within a single Ethernet style of network,
although in this example, a CRC-type hash generatm' is
utilized, relying on typical CRC-type algaithms, rdared to
aspolynonfialuiflimedemodidon'l‘histypeofarithmetic
isalsoret'aredtoas‘binnyuiflrmeflcudfltnoemfa
serial shift exclusive-0R feedback. waa, a variety of
pseudo-random number generation techniques can be
utilized, otha' than CRC—like algorithms. The two primary
aspects needed for a suitable pseudo-random hash code are
widthanddiaos,wherewidthisthenumba'ofbitsinthe
hashcodewhidiisuiti‘ealtopreventetmrs csusedbythe
occurrence ofpaeketswhieh areunrdatedbut nonetheless
resultinthe samehashbeinggenaated,anddiaosisbased
ontheabflitytop'odnoeanumberinfliehashregisterfliat
is unrelated to previous values.

Also. acecrdingtothepresentinvention, theparsingof
thefi'amesmomingforthepurposesofpodudngan
address tothe look-uptable mntakeotha‘approadiesfll‘his
parsingmnberefuredtoascirenitidenfifieatiombecauaeit
isintendedtogenarateannmberthatisuniquetothe
particular path of the incoming frame.

The ciruiit identification method depends on vaifying a
matchon spedficfieldsdnumbersintheincomingframe.
Thue are two common table look-up methods, referred to as
binary searehandhasheoding.’l‘hekeydiaraauisticof
binary seardiisthatthetimetoloateanentryispropor-
tionaltothe logbaseZofthe numberofentriesinthetable.
This look-up time is independent ofthe numba‘ ofbits in the
comparison, nndthetimetoloerteanumberisrelatively
precisely known.

A swond, mire deed, method of look-up is based on
hash coding. Inthistedmique, asubset ofaddressfieldta’
othereonh'olfieldsofthefnmen'eusedasashortaddress
tolookinto thecircuittable. Ifthecircuittable containsa
matditotherestoftheaddressfield,thenthedrmithas
been found. If the table contains a null value, then the
addressisknownnottoexistinflietable. Thehashmethod

has several disadvantages. It requires a mostly empty table
tobe eficient'lhetimetofindach‘cuitcannotbeguann—
teed. The disn'itaition of duplicates may not be uniform,
depending on the details of which fields are selected fa- the
initial address generation.

10

15

45

55

12

The address degeneracy problem of the hash coding
technique is reduced by processing the initial address frag-
ment through a polynomial shifi register. This translates the
initial address to a unifminly-dish'ibuted random number. A
typical example of random number generation is the CRC
algorithm mentioned above. In a preferred hashing
tedmique, the hardware on the flow switch includes at least
a template register, pseudo-random number generation logic
and a pseudo-random result register. The template register is
loadedtospedfy bytes ofasubjectframetobeineludedin
the hash code.The template specifies all potocol-dependent
fields for a particular ml. The fields are not distin-
guished beyond whether they are included in the hash or not.
Asmefiamehp'omssedcadibyteoftheinifialheaderis
eithaindudedindxehashfimcfionoritisignoredbasedon
the template. A hash function is generated based on the
incoming packet and the template. The pseudo-random
numbergenmtorisseededbytheinputhash bits sdectedby
thetmnplateThechangeofaslnglebitinflieinputstream
should cause a completely unrelated random number to be
genn‘ated. Most common algaithms fta‘ generating pseudo-
random numbers are linear-oongruential, and polynomial
shifimethodsknownintheart. Ofcomseothapseudo-
random number g-eration techniques are available.

Afirst field ofthe pseudo-random numb: is used as an
address for the look-up table. The numberof bits in this field
depends on the dimensions of the look-up table. For
example, if the circuit table has 64,000 possible entries, and
thehashnnmbuiseightbytes long, thefirsttwobytes are
usedasanaddrese'l‘heothasixbyteaatestoredasalmy
indiehashhbhfffliekeyinthehashtablematdiesthekey
inthehashmdedienfliedrufitisidenfified'l‘headdifional
bytesindietableftxtheaddressedentryspecifythemuteto
beqpliedfl‘helength ofthepseudo—randomhash code is
eriflmLtoaecountfathep'obabilityfliattwounrelnted
fi-ameswillresultinthe samehashnumba'being generated.
Therequiredlength depuids onthe sizeoftherouti‘ngtables,
and the rate of turnover of routes.

'I‘hepmblemwifitapurehasheodedrcuitidentifieation
techniqueisdixthereisachanceofrandomlymisronting a
MneprOblemariseswhenyouaregenaatingrandom
nnmba'startofalargu'set'l‘hereisarhaneethattwo
difl’erentlnputpatternawillp-oducethesamehasheode.
'I‘yplally,ahasheodewillbeloadedintoatablewitha
knownrouteThaa a second, difi'aent, pacbtwill appear
thatrethlaestothe samehashcodeastheonealreadyin the
table'l‘hesecondpacketwillbefalsely identifiedashaving
aknownrouteundwillbesenttothewrong address'l'he
exaetmechanismofthismoreanbenndastoodbydie
well-known statistics of the “birthday problem" The “birth-
day problem” answm the question, “What is the probability
thattwopeopleinagtoupwillhavethe umebinhdayrn
tlrrnsomthatdienumbuofpeoplein agronprequiredfor
thaetobealikelihoodoftwopeoplehavingthesame
birdidayisquitesmaflFcrexample,fliereisa50%diance
thattwopeople outofagrwpof23willhave the same
birthday.

The mbubiliiy of a swrtchin'' 3 error depentk on the
numb: of circuits active. For example. if then: are no
drums active. thenthu'eis nodiancediataninvalidcircuit
wfllbewnfimedudthamflmrcircumsineedicrearenovalid
ckcuits.AseadidraIitlsaddedtoflietable,itdeei-eases the
remaining available space for othu' ntnnbcrs by approxi-
mately (56)”. whae “bits" is the number ofbits in the hash
comlffliehashcodeiSSZbitslong,theneachentryinto
the cireuittablewillreduce theremniningeode space by
as)”, which is equal to 232x10"°. The annulative prob-

NOAC EX. 1015 Page 203



NOAC Ex. 1015 Page 204

 

.5: x“:4

t,”a

sM"5%
‘1‘:

.'4."a;":7.’H-4.Vwith."«a!‘m~o¥‘;~7&§dfisi*m'ti‘t'w.w“n
.g“. "W:

~..~¢' *‘twvw
1:"‘

im

we:

5?

‘5

 

 

(‘v_ \.‘Mfi—~‘&(.qv‘...~ ,...(hp‘e

- Cl 0

 

5,802,054

13 , 14
abflityofnotmakinganminthedrcuitmbleisequalto ExamplefcrIP:

the product of the individual entryen'mu? to the size of the
table. This is (1)-(1%’5*(1%35-(1-)3/23 .*(1-11/2”),
wheren isthe number ofenuiesindietagle. Inthe ease of Mbk“""‘“m .
a 32-bit hash code, and an spoofing circuit table, the 5 MW 2,”: i352 Emma,
probability of making an error in the table would be about Packet; typo bytu 13—14 191a: (8023 length)
0.7%. With a 64,000-entry eimuit table, the probability of an byte 15: 11’ byte 1 = msiou length: optional

amt would be about 39%. 31131.6: $13 2 fm_'!P°= 19m
Using a 32-bit hash code and some typical-sized circuit 19—21: I? 5—: = Ignaz

tables indicates that the conventional wisdom is oonect. ‘0 2 IP 9 =Thi=upoptional
That is, face will bet-outing mots if only a 32-bithash code 1’ ‘0 '_" =M
is used. However, if the number of bits in the hash code is 33$ 3 {:1}: ;mmmm
increased and Fobebiiity is recelatlated for typiml-sized 31.34 m 17.20 =W11) m= ugd
citenit tables, we find that the probability of en'or quickly 35— 11’ 21- = Isaac
appxoaches m for hash codes just slightly longer than 32
bits. Fu- example, an 8,000-entry table with a 40-bit hash
eodewillieduce the mute to 0.003%.A48-bit hash code
will reduce the error to 0.000012%. These calculations show

thatapurehash codelook-uptablemnbeusedifthelength
ofthe hash code is longerthan32 bits fu‘ typical-size tables.

Asafurtherexamfle,considertheeaseofa64—bithash
eodeAasuming an 8,000-entry table, the probability of
makinganmis2'10'“. Evenifthetableisoumpletely
replacedwithnewennies evay24houn, itwouldtakeover
onebillionyearsforanctrartoocumUsinga64—bithash
code with a 64,000-entay table would give a pmbability of
moth"°.Aasnming the table tin-nod ova evay day,it
wutldtakeabunnmillionyeatsfm'anemrtoocamm
murmightocem'sooner,buttheratewouldbenegligible.
Inalleases,thaeisnorealisfiechaneeofmakinganetror
basedonthismufingteehniquewithinthelifetimeoftypieal
netwofiingeqdpmmt.

In a ptefm'ed embodiment, filming mechanisms are
implementedontbeflow switchintegrateddrcuiand
mnlfiflefiltusoperateinpatalleL'l‘hedrcuitlook—uptable
isimplementedwifltetta’nalmemorymmflflatgerthanthe
numbaofdreuitsexpeetedtobesimultaneooslyadive.
'Ihismeansthatthehashpointergeneratedeitherpointsto
avalidkeyoramissisassmned'lhaeisnolinearseamh
formatdlingkey.Wheuadrwitisnufmndinthetab|e,
thepaekuisroutedtoadefmltaddtess.Namally,this
defaultaddressdireetsthepackettoastuedprogmnrouta.
'I‘hemuterwilltheuparsethepaehetusingstandard

metindgandtheneomumnieatewiththeflowswimhchmit

without further assistance from the mutant

Example template organizetions for the bridging

 

unbodimengtheIProuting embodiment. andtheIPXrout-
ing embodiment are set firth below.

Exampleforlxidgn'' g:

B-etlmetpleha: fimbbflbitlmdilenfid
Welt haul—6 Used
Scum b18742 Used
W131»: hymns—14 migned(m3iengfll)
bat-byes. unpheo new
one mug-u unnamed 

Thetemplatetegisteris 8bytellongEaehbitspedfies
onebyteoftheheedet'l‘hefirstbitemespondstobytelof
theDestinationAddiess.

The template fa‘ bridging is FF—Fo-OG-Oo 00-00-004”
The selector is: Always TRUE. Hiaarchy=l (default to

lIl‘ldsifls)

IS

55

 

Assume that optional fields are included in the pseudo-random hash code.

The template would then be: FREQ-03>” FC-oo-oo-oo
The selecttr is: Bytes 13-15=080045, Hierarchy=2
Example fa' [PX in an Ethernet frame:
 
Humble 64 bit: It: distended
Dutimtim bytes 1—6 Optimal
Somme byla- 7-12 Optinl
'Iyps bye:- 13—14 Optional (Saleem 8137)
byb M
15—16 1—2 Chem 13mm
11—18 3-4 [snub 13mm
19 5 liq» cunt Optbml
m 6 Type Opt'annl (Selecta- = 2 or 4)21—14 'I—lO D‘ N‘ Use
75—30 11-16 Du Host the
31-32 17-13 Du Soehet lam
33—36 19-22 Ste Not Use
31-42 23-2! Ste lb: Use

[me
W(with optiot-l fiefll): FF-PC~3F-IC moo-coco

3m 13—14=I137,Hienlchy :2 

'I‘heexamples shown «representative, andmay not
conespondtowhatwouldactnallyherequiredfor any
putiuflaramlicatiom'l‘ha‘earemanypraooolpattempos-
sibilities. Some combinations may not beresolvable with the
hierarchy detaibedin thesethree examples.

Intheembodimentinwhidathu‘eateannmberoffiltm-s
opaafinghpuflitheflowdetealogie includes the
tunplateregistadiamssed above, aseeond tegista’ loaded
withltemplatefu'detectingthespecificptotoooitype
rqaesentedbyflietunplatetegistm'l‘hisfeeds combina-
tion] logic that [rovides aboolean function, netm‘ningatrue
otfalse conditionbasedona suing compare of a section of
thefi'ametodeteuninefllepmtoooLAthirdregistuisloaded
withahiauchynumber.whid1isusedtoarbitnteamong
similar poteeols, whidi migit simultaneously appeartobe
truebasedonthesecondprotocoldetedregistenAfomfli
registuisoptionaLandeontainsamemorysmaddress
whidt biggus the opu-ation of the filter.

The multiple instantiation: ofthe filters operate in paral-
lel.1‘heflltetseenbereprogtammedontheflytosupportthe
and types of tnflic eneountaed. thenncre, the film
mayoperateinapipelinemodealongaseriesofswitnhing
nodes.Eachprotocoltcun'nsits hiu-u-diy numberwbenthat
film-detects daemotoeolpattemeontainedinthetunplate.
Forenample,btidgi.ngpmtoeolmaybedefinedastruefor
bicarchyl fotallframestno strongerfilter fixes,suchas
anIPu'IPXfilterJhenthelnidgingfilterwillbeselectedas
thedefault.

Thus, the flow detect logicinap-efen-ed system executes
aplurality of hash flow analysesinparalld ”illustrated by

NOAC EX. 1015 Page 204



NOAC Ex. 1015 Page 205

 
5,802,054

15

FIG. 6. Thus in FIG. 6, a received frame is supplied on line
500 in parallel to bash flow logic 1 through hash flow logic
N, each flow corresponding to a particular frame format.
Also, the received frame is supplied to a hash flow “select"
501 which is used fra' selecting one of the N firms. The
output of flows 1 through N are supplied through multi-
plexer 502 in FIG. 6. which is controlled by the output of the
select flow 501. The output of the select flow 501 causes
selection of a single flow on line 503, which is used for
accessing the route table by the CPU.

Thus a prdured embodiment of the present invention
uses a routing technique base on flow signatures. Individual
framesofdatamovefi-omoneoftheEthernetportstoa
sharedbufi’amemoryatthe node.Asthedataisbeing
moved from the input port to the buffer, a sonic: of hash
codes is compumd fra' various sections of the input data
sn-eamWhicbbitsarea'arenotincludedineadihash

alculationisdeterminedbyasmdvectminavectta'
register corresponding to that calmlation. For example, in
the most common case of an IP packet, the hash function
startsatthe96thbittoflndflae“0800"codefollowingthe
link-lsya source address, it then includes the “45"code,32
bitsofIPsom-oe,32bitsoflPdestination,skipstoprotocol
D)8bits,anddienatbyte20takesthesomceput16bits
andthe destinationportlfibita.’lheresultisa64bitrandom
numb: identifying this particularIPflow.

Thehashcodeislookedupinorusedtoaecesaaloesl
mmornythecodeisfounddrmsthatthisflowtypehas
beenanalymdplevionslyflndthenodewlllknowtoapply
the sameroutingasappliedtoflwrestofflaeflowathcre
isnoentryccrrespondingtoflxishashcode,itmesnsthatthe
flowhas notbeenseenlately,andthenodewillroutethe
frame to a default destination. A least recently used
algorithm,orothaesrhereplacanentsdreme,isusedtoage
flow entries out of the local tables.

Inpractice,manyfiltessopaatesimultsneonaly.l=<n
examplefinasmaybedefinedfmbadcbddgingn’
routing, sub-variants,AppleTalk, and so on.The amal limit
tothenmnberofflltuawillbedetarninedbydlesvaflable
spaceontheASIC'l‘heloglcdthefiltersisbasiesllydte
sameforallthcfiltersfllheacmalfunctionofeadtfiltuis

definedbyavedorregisterspedfyingwhlchbitaare
detected.

Asecondfeanneisdieusetfmtllfl-levelfilmlnthe

commnasesimnltaneonslysuppufingbddgingmand
IPX;abouttenfiltersoperateinparallel.Ansddilionallevd
(foodingisusedtoselectwhlchoftheotha'flltersiatobe
nsedasflterelevamhashcode'lhisweondlevelflltawmfld
detectwhedrertheflowwaslPorIPXformle.

Inthecasewhuemeflowisnamcognizeiitlspassed
to the default route. As the packet passes along the default
route, additional nodes may examine the packet and deter:
itaflowtypebasedondilferentfiltersm'onadifierentsetof
flow signatures (hash table entries) strred. This method of
easeading filters and tables allows for the total size and
spwdofthemeshtobeexpandedbyaddingnodes.
Ultimately,ifapanketeannotberoutedbyanyofmenodes
along the default route, the packet will arrive at the final
default routu', typically a NetBnilderZ. The default route
willanalyze thepacketusing standatdparsing methodsto
determineits curectdesfimfiomAflow signaturewillbe
installedin anappropriatenode.ornodes,ofthemesh so
that subsequent flows of the same signature can be routed
autonomously without faith: lam-vendors.

A how effectively defines a “druid!” or a “connection";
however, in standard Edict-net design, packets are treated

10

15

45

55

65

16

individually without any regard to a connection. Typically a
route will analyze every single packet as if it had never seen
it before, even though the router might have just processed
thousands of identical packets. This is obviously a huge
waste of routing resources. The automation of this flow
analysis with multiple levels of parallel and waded hash-
ing algorithms combined with a default router is believed to
be a significant improvement over existing routing methods.

Flow based switching is also uiticalto ensuing quality of
service guarantees ft: different classes of traific.

FIG. 7 is a flow chart illustrating the process executed in
the trailer or other management node, whenever a frame is
received which does not have a switch route header. Thus,
thep'ocess ofFIG.1beginsatstep700where aframeis
received in the router, such as the router 150 in FIG. 2. The
route applies the multixxotocol routing techniques to deter-
mine the destination of the frame. Based on the destination,
and 0th: information about the flows within the switch,
switdrrouteheadersaregeneratedfca' nodes intheswiteh
(stq) 701). Thus, a difl‘erent mute header is generated for
eadinodeintheswitdtmesh, andoon'elatedwiththetag
which would be generated awording to the received frame
ateschnode.Next, amessageis ssattothe nodesinthe
switehto updatedierontetableswiththe new routeheaders,
andtoblockfi‘ameswhidtmatmmetagoftheh'amebeing
routed (block 702).

Afia'step702.thcfiameisforwardedfmmthemmato
its destination (step 703). Afia the frame has been f1!-
wardedtoits desfinadomtheroutusendsamessagetoall
ofthenodesinflieswitdlmunblockfnmeswhidihavca

matching tag (step 704). This blocking and unbloeking
protocolisusedtopseservetheorderinwhiehframes are
uanamidedthroughmeswitdi,bymaking mediatthefirst
frameofasingleflowanivesatits destinationaheadof
following frames.

Ingieinthenodesftrthepurposeofsccomplishingme
blockingandunblockingopetationtakeavafietyofformats.
In one example, the entry at each location in the mute table
indndesafleldwhich indicates whether the flowisbloclred

ornat.Whmanentryisfirstmadeindzeroutetable,the
blockingfieldisseLOnlyafia'aspedalinsn-ncfionis
received to unblock the lomflon, is the blocking field
cleared,andnseoftheloestionallowedattheswitebnode.

Acctadinglydnthela'efmedsystemtheatomicnetwcrk
switch according to the present invention is based on
repeatednseofashnpled-pcatswitehintegratedcirmiL'I‘he
integateddraaitaareinterconneetedtoaesteameshwidi
alargepoolofbandwidflnu'ossmanyptxts.1helinksthat
interconnecttheintegratedcirmitsrunaceordingtoaLAN
protocol, at pueferably 100 megabits per second (1' highs,
sndtuagigabitpa'seccndlndividnalpatsaaasantono-
mousrouters betweentheboundaries oftheswitchaccord—

ingtodreswitdiroutepmtocolwhidaislayercd ontopof
the standard frame format. The overall bandwidth of the

switdresnbearlinarilyinaeasedbyaddingmeatomic
nodes to the switch. Using a well-understood and simple
intarfaoebasedon standard EthernctLANp'otocols, vastly
simplifies the implementalion of cad: node in the switch.
because eschis abletorely on well undustcod MAC logic
units and port strucmres. rathu than propietary complex
systems of prior atomic IANS. Furthermore, any node of
anyswitdtesnbcconnectedtoaphysimllayer device that
comeasmmBmernetmedimoreanbediswmeaed
from the Ehernetmediumand connected to mourn- node

mitdl tomdily expandandcbangethetopologyofthe
switdi. The fine granularity and scalability of the mesh

NOAC EX. 1015 Page 205



NOAC Ex. 1015 Page 206

 

 

 

 

“E.s .
r .eas
d.,-4..
3‘:

it,
2‘2

..,51"":‘x‘l'fm,,

 

l7

architecture, combined with the ability to opn'mize the
topology of the switch for a particular environment allow

Implementation of a high bandwidth, low cost networkswitch.

A high bandwidth and vay flexible network switch is
achievable according to the present invention with a simple.
scalable, low-cost architecture.

The foregoing description of a prefa-red embodiment of
the invention has been presented for purposes of illustradon
and description. It is not intended to be exhaustive (I to limit
the invention to the precise founs disclosed. Obviously,
many modifications and variations will be apparent to prac-
titiona’s skilledinthis art. Itis intended thatthe scopeofthe

invention be defined by the following claims and their
equivalents.

What is claimed is:

1. Ft! a network switch including a mesh of intaeon-
nected network switch nodes, a network switch node oom-

pising:
asetofportshavingmra‘ethantwomembu‘s, andthe

ports in the set induding respedive medium access
control units for transmission and reception of data
frames acctrding to a netwofiprotocol, the ports in the
setofportsbeingeonneaabletoaporton another
network switch node inside the mesh. or to a network .
communication medium outside the mesh; and

node route logic, coupled with the set of port, which
monitrasframcsreceivedbythesetdpmtstoroutea
received frame for transmission awording to the net-
wra'kga’otoooltoaselectedpminthe setofporta,
includinglogictoselectdreselectedportamdingto
rules for navigan'ng through the mesh inside to the
network switch, and wherein the node route logic
forwards the received frame fra- transmission to a

default location of a multiprotocol router resource
assodatedwiflrtheswitdiwhenthenoderoutelogic
cannotothawise detmnineamutefortherwdved
frame.

2.1Mnetwazkswitchnodeofclaiml,whaninthe
networkprotoooloomprisesaconnwtionlessprotoool.

3.1'henetwcakswitd1nodeofclaim1,whueindie
netwmzkprotoeolcompisesanEtlmnetprotoool.

4.111enetwukswitdrnodeofciaim1,whercinflie
netwmkprotocdmmpdsesmEthunQfirllduplexpoto-
col.

5.1henetwta'kswitchnodeofclaimehereinportsin
thesetofpmtsinchrdemediumindependentintafacesfta'
the networkprotocoL

6.1‘henetworkswitchnodeofclaiml,firrtherincludingz
route table memory, coupled with the node route logic,

havingasetofaccessiblelocationsforsta'ingswitch
routedata;

flowdetectlogic, coupledwith thesetofportnwhich
monitrrsframesreceivedbythesetofpmtsand
generates an identifying tag for use in messing the
route table memory;

wherein the node route log'c includes logicwhich deter-
mines whethu' the received frame includes a switch

romeiieldindieatingaportinthesetofports,andifthe
received frame includes a switch route field, updates
the switchroutefield, and forwards thereceivedfnrne
with theupdatedswitchroutefieldtothcportindicated

5 ,802,054

5

18

port in the set of,ports, adds a switch route field to the
received frame. and forwards the received frame with

\the switch route field to the port indicated by the switch
route data.

7. The netwcxk switch node of claim 6, whaein the
default location indudes a default put and wherein the node

‘ route logic forwards the received frame for transmission on

10

15

25

50

55

60

the defaultport in the set ofports when the switch route table
does not include switch route data for the identifying tag.

8. The netwuk switch node of claim 7. wherein the
default port is coupled to a route to a multi-protocoL
network route pocessor at which switch route data is
generated.

9. The network switdr node of claim 6, including logic to
recu've switch route data from a runote system for a
partimlaridenfifying tag, to stra’e the switdr route datain the
route table memory in association with the particular iden-
tifying tag, and to blockfi'ames having the particular iden—
tifyingtagunfilnofifleafionisrecdvedmatitisclearto
forward frames having the partiarlar identifying tag, and
afternotiticationisreceivedthatitis deartofta'wardframes

having the particular identifying tag, forward frames having
theparticulartag accordingtothe switdiroutedata.

10. The network switch node of claim 6, whuein the
defaultiocntionindudesadefaultpmtandwherdn the node
routelogicfcrwards thereceivedfi'amefortransmission on
tiredefanltportinthesetofportswhentheroutetable
mnnory does not include switch route data fra- the identi—
fyingtagundfurthu‘iuclnding:

logictoreceiveswitchromedatafromaremotesystem
faaparfiaflnidenfifyingtagtosttucflreswitdrroute
dataindiermtetahlememsayinassociaflonwiththe
pardwlaridentifyingtag,andtoblockframes having
the particular identifying tag until notificeh'on is
roceivedthatitiscleartofcrwardfiames having the
partimlaridentifyingtag,andafianotificationis
roceivedthatitisclesrtofu'wardframeshavingdie
particrlar identifying tag. forwardfram having the
partieilartagswordingtotheswirchroutedata.

11Thcnetwa'kswitchnodeofelaim10,whadnthe
defaultportiscoupledtoaroutetoamuhi-protocol.
network route met at which switch route data is
generated.

uThenetwta‘kswitdrnodeofdaimdmha’dntheflow
detedlogiccompdses:

logic whidr computes a plurality of hash vahies in
responsetorespectiveseuodeonuolfieldsina
received fi'amc, whee the respective set: of control
field: correlate withrespective network frame formats:
and

logicwhichdetenninesaparticularnetworkframeformat
fcrareceivedftame.andselectsoneofthepluralityof
hashvaluesaatheidentifyingtaginrwponsetome
partiarlarnetworkframefonnat.

ll'l‘hcnetworkswitchnodeofclaimlzwhereinthe

hashvahrescomprisepseudo-iandomcodes.
ll'IhenetwukswitchnodeofclaimG, whaeintheiiow

dmlogiccomra-ises:
logicwhichconputesahashvalucinreqaonsetoasetof

conuolfiddsinarecdvedfiamewherethesetof
control fields correlates with a networkframeformat.
and applies the hash value as the identifying tag.

15. The network switch node of claim 14. wherein the

by the switch route field, and if the received frame does hash value comprises a pseudo-random code.
not include a switch route field. accesses the route table 65

memory using the identifying tag generated1n the flow
detect logic to retrieve switch route data indicating a

16. The network switch node of claim 1, wherein the
network protocol compises an Ethernet protocol. specified
for operation at too Megahits per second.

NOAC EX. 1015 Page 206



NOAC Ex. 1015 Page 207

 

 

~ <5
i .

C»)

5,802,054

19
17. The network switch node of claim 16, wherein the

Ethernet protocol comprises a full duplex protocol.
18. The netwu'k switch node of claim 1, wherein said set

of ports and said node route logic comprise elements of a
singleintegrated circuit.

19. The network switch node of claim 18, wherein puts
in the set of ports include medium independent interfaces ft:
the netwa'kprotocol, and the networkprotocol comprises an
Ethernet protocol, specified for opinion at 100 Megabit:
per second or higher.

20. The network sudtch node of claim 19, wherein the

Ethernet protocol comprises a full duplex protocol.
21. The network switch node ofclaim Lwhereinportsof

the set of ports include medium independent intafaces for
the network protocol, the medium independent interfaces
definingapartiutlarbus configuration, andfurtherincluding
connectors coupled to the medium independent intufaces
adapted to receive cables configlned exuding to the par-
ticular bus configuration.

22. An integrated circuit, comprising:
a set of ftr access to respective communication

medimdiesetofportshavlngmorethantwomembas,
and the ports in the set including respective medium
access control logic fir a network protocol;

a memory intake: for connection to a route table
memory havinga setofawessible locations fa storing
switchrome data;

flow detect logic, coupled with the set of ports, which
monittrsfi‘ameareceivedbythesetofports and
generates an identifying tag for use in awessiug the
route tablememta'y; and

noderoutelogic,eoupledwiththeflowdetectlogic,fl1e
memayinterface andthesetofputa,whidimonim
fiameareceivedbydiesetofpmtstorouteareceived
hamefta'n'anamissiontoapatinthe setofpms,the
node route logic determining whether the received
fiameindudesaswitdimutcfleldindicatingaportin
thesetofportsnndifthereceivedfiameinclndesa
svdtdroutefieldmpdatestheswitehroutefieldund
forwardsthercceivedh’amewiflrmeupdatedswitch
routefieldtothepu‘tindicawdhytheswitdtmute
field,andifthcrweivedfrmedoesndinclndea
switdirontetield,aocessestheroutetablememcry

generatcdintheflowdetectlogictorenieveswhdt
romedataindicatingaptatinthesetofptuu,addsa
switdtroutefiddtothemcdvedfimandforwarda
thereoeivedfiamewiththeswihfiroutefleldtotheport
indiatedbythe switnhroutedetaandlftheroutctable
memorydoesnotincludeswitmroutedatafathe
identifying tag, then fer-wards the received frame to a
defaultlocatlonofamnlfipotocolroutaresource
assodated with the switch.

fineinmgramddrmflofdaimehueinthenet-
wm'k protocol comprises a connedzionless protocol.

24.111eintegratcdcirwitofdaim22,whaeindtenet—
wakprotoool compises an Ethanet protocol.

25.111eintegramdcircuitofclaim24,wbaeinmefith—
ernetprotocolcomprisesafulldnplexpmtocol.

26.1'he' circuitofdaimnwhereinpmsinme
set if ports include medium independent interfaces ft: the
network protocoL

27.111eintegnteddrwitofclaim22,wha‘dnthedd’ault
lomtlon includes a default put and wherein the node route
logic forwards the rwdved frame for transmission on the
dcfaultpca'tinthe setclfportswhcntheswitchroutetable
does not include switdl mutt: data for the identifying tag.

20

28. The integrated circuit of claim 27, including logic to
receive switch route data from a remote system for a
particular identifying tag, to store the switch route data in the
route table memory in association with the particular iden-

5 tifying tag, and to block frames having the particular iden-
tifying tag until notifican'on is received that it is clear to
forward frames having the particular identifying tag. and
after notification is received that it is clear to fcrward frames

having the particular identifying tag. forward trams having
[0 the particular identifying tag according to the switch route

data.

29. The integrated circuit of claim22, wherein the default
loation includes adefaultportandwherein the noderoutc
logic forwards the received frame for transmission on the

15 defaultportinflresetofportswhentheroutetable memcry
does not include switch route data fa- the identifying tag;
and further including:

logic to receive switch route data from a remote system
fu- apartiarlaridcntifyingtag, to staethe switchroute
dataintheroutetahlernemyinassociationwiththe
partiailar identifying tag, and to block frames having
the particular identifying tag until notification is
received that it is clear to forward frames having the
particular identifying tag, and after notification is
received that it is clear to forward frames having the
partimlar identifying tag, forward frames having the
particular identifying tag wedding to the switch routedata.

30.1‘heintegratcdeirmitofdaimnwha’eintheflow
3" ma logic comprises:

logic which computes a plurality of hash values in
response to respective sets of control fields in a
received frame, where the respective sets of control
fields careletewithrespective networkfi-amefmnats;
and

logicwhidideminesapartimlarnetworkfmmeformat
faamcdvedfiamandseledsonedthephnalityof
hashvaluesastheidendfylngtaginresponsetothe
partiarlar networkfiamefm

3L'lheintegratedcircuitddaim30,whaeinthehash
values comprise pseudo-random codes.

31Theintegratedcirmitrfdaimnwhu‘dnd1etlow
detectlogic compises:

45 logicwhichcomputesahashvalueinresponsetosetof
mmlfiddsmamdvedmmewhetethesetof
comrolfiddsccrrelateswithanetworkfi’amefounat,

and applies the hash value as the identifying tag.
33.111eintegratedcirwitofclaim32,whu'einthehash

vahtecomprisesapseudo-randomcode.
34.1heintegi’atedcirmdtofdaimnimlndingan

embeddedbusintaconnccfingthesetofpatsfiheflow
detect logic, the noderomelogicandme manta-yinterface.

35.113eintegratcddruritofclaim22,whereind1enctp
55 work potocol comprises an Ethernet protocol, speta'fied for

opa'ation at 100 Megabits pa second a- highu'.
36.1‘he integratedcircuitot'claim 3§,whet\:in the Eth-

ernet potocol comprises a full duplex [:0me
37. The integrated drcuit of claim 35, including a

a, Isl-directional, embedded bus interconnecting the set of
ports, the flow detect logic, the node route logic and the
manory interface, the embedded bus specified for operation
at 1 Gigabit per second or high:

38. The integrated circuit of claim 22, induding the route
table memory on the integrated drum.

39. A network switdl. comprising:
a plurality of switch nodes;

NOAC EX. 1015 Page 207



NOAC Ex. 1015 Page 208

9

5,802,054
21

a first set of communication links, communication um in
the first set coupled between switch nodes in the
plurality of switch nodes internal to the network switch;

a second set of communication links, communication
links in the second set comprising network links exter-
nal to the network switch;

the respective switch nodes in the plurality of switch
nodes including
a set of pats connected to respective communication

links ineithu'thcfirstsetofcommunication links (I
the second set of communication links, the set of
por-tshavingmorethantwomembers,andthepau
in the set including respective medium access control
logic for a network protocol;

route table memy having a set of accessible locations
for storing switch route data which specify routes
through the plurality of switch nodes;

flowdetealogic, coupledwiththe setofportswhich
monitorsfi-amesreceivedbythesetofportsand
gena'ates an identifying tag fa- use in accessing the
route table memory; and

node route logic. coupledwilh the flow detea logic, the
routetahlememoryandthesetofports,whirh
monitors framesrecm'vedhythesetofportstoroute
areceivedframeforh‘ansmissiontoapatinthe set
of ports, the node route logic detmnining whethu’
the received frame includes a switch route field

indicatingaportinthesetofpmts,andifflie
received frame includes a switch route field, updates
the switch route field, and fawards the recdved
frame with the updatedswitehroutefieldtothepmt
indicatedbytheswitchmutefieldandifthe
receivedframedoes notinciudea switchrmtefield,
accesses the route table manory using the identify-
ingtaggeneratedintheflow malogictoretfleve
switchroutedataindicatingapatinthesetofports,
addsa switchmrflefiddtoflrereeeivedfiameand
fca-wards therecdvedfi'amewiththeswitchroute

fieldtotheportindieated by the switchrcute data,
andiftberoutetaflememorydoeanotinclude
switchroutedataeonespondingtotheidentifying
tag, then fawarding the received trans: to a dd‘ault
location of a multipmtocol route- resource associ-
ated with the switch.

40.1‘he network switchofdaim39, whereinthe network
ra-otocolfa-portsinthesetofprrts ontherespective switch
nodes compisea a connectionless 1:10me

41. The network switch of claim 39, wherein the network
potocolfca-portsinthe setofprata ontherespectiveswitch
nodes comp-lees an Ethernet protocoL

42.1‘he networkswitd:ofclaim41,whereintheflthemet
protocol comprises a full duplex protocoL

43.The networkswitdt dchhn39,whu’einpratlinthe
set ofpa-ts on tintespectiveswitch nodes includemedium
independent interfaces for the netwra-k protocol.

44. The network switch of claim 39, whaein the default
location indudes a default put and whu-dn the node route
logic on the respective switch nodes forwards the received
frame frx transmission on the defaultpu't in the set ofprrts
when the switch route table does not include switch route

datafortheidentifying tag.
45. The networkswitdi ofclaimM, whueinthe default

portiscwpledtoaroutetolmulti-protoeol,netwukroute
pocessoratwhich switchroutedatais generated.

46. The network switch of claim39, including logic on the
respective switd: nodes to reca've switch route data from a
remote system fra- a particular identifying tag, to store the

10

15

75

30

35

40

45

55

65

22

swim: route data in the route table memory in association
with the particular identifying tag, and to block frames
having the partiurlar identifying tag until notification is
received that it is clear to fcrward frames having the
particular identifying tag, and after notification is received
that it is clear to forward frames having the particular
identifying tag, forward frames having the particular iden-
tifying tag acctrding to the switch route data.

47. The network switch of claim 39, wherein the node
route logic on the respective switch nodes forwards the
received frame for transmission on a default port in the set
of pars when the route table memory does not include
switch route data for the identifying tag; and further includ-
mg:

logic on the respective switch nodes to receive switch
route data from a remote system for a particular iden-
tifyingtag,tostoreflteswitchroutedataintheroute
table memory in association with the particular identi-
fying tag, and to block frames having the partiuilar
identifying tag unfil notification is received that it is
clear to forward frame: having the particular identify-
ing tag, and after notification is received that it is clear
to forward frames having the particular identifying tag,
fcrwand frames having the particular identifying tag
according to the switch route data.

4&Thenetworkswitch ofdaim47,whaeinthe default
port is cmpled to a route to a mum-protocol, netwa'k route
processcratwhich switchroutedataisgenerated.

49. The netwa’k switch of claim 39, wherein the flow
demct logic on the respedive switch nodes comprises:

logic which computes a plurality of hash values in
response to respective sets of control fields in a
rweived frame, where the respective sets (t control
fields cruelate with respective netwrmk frame formats;
and

logicwhich determines apartimlarnetworkframe format
fa arecdved frame, and selects one (i the phrrality of
hashvaluelastheidentifyingtaginresponsetodie
partiailar network frame format.

50.1henetwakswitchofdaim49,whcreinthe hash
vahiea comprise pseudo-random codes.

SL'I‘henetwukswitdiofdaim39,wherein theflow
detectlogic ontherespective switdi nodes comprises:

logicwhidicomputes ahashvalueinresponsetosetof
control fieldsin arecdvedfiamewhere the setof
controlfielda couelateawithanetwatframefounat,
andappliesthehashvalne as theidentifying tag.

SilhouetworkswitdrdclaimSI,whe-rein thehash
vahie comprises a pseudo-random code.

53. The networkswitdr ofciaim 39, whuein the netwca'k
protocolfca'pca'tsinthesetofpa'tsontherespectiveswitdr
nodes comprises anEthu-netpa'otocol, speeifiedforopera-
tion at 100 Megabits pa- second or highu.

54. The network switdi of claim53,whaein the Ethernet
protocol comprises a full duplex [rotocoL

55. The network switch of claim 39, whueiu the MAC
logic for ports in the set of ports on the respective switch
nodes executes the same networkprotocol for all ports in the
set of puts.

56.1‘he networkswitthofclaim39,whaeinpatsinthe
set of puts on the respective switdi nodes include medium
independent into-faces for the netwa-kprotocol, the medium
independent interfaces defining a particular bus
configuration, and further include connectors coupled to the
medium independent interfaces adapted to receive cables
configured according to the particular-bus ooniigm-afion.

tees.

NOAC EX. 1015 Page 208



NOAC Ex. 1015 Page 209

  
 
 

Patent

Group Art Unit:. 2755  
 

  
 

 
Filed: June 30, 2000 Examiner:

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy 'of each reference cited in form 1449.

A check for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated

with’this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Datezfél fZZZQLJ: LQQL

 

Respectfully submitted,

‘" lgov Rosenfeld
Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.2 +1-510—547-3378

  
  

  

Certificate of Mailing under 37 CFR 1.18

 I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit: 19 2 Mat 2%L Signature: %
. D0v o enfeld, Reg. No. 38,687

NOAC EX. 1015 Page 209



NOAC Ex. 1015 Page 210

 

C O

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent Ind Trademuk Office
Addreu' COWISSIONER FOR PATENTS

PO Box 1450
Alexuldm. Vugml: 11313-1450
mulpto gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO CONFIRMATION N0.

09/608,237 06/30/2000 Russell S. Dietz APPT-OOI -J 9993 7590 05/25/2003

Dov Rosenfeld EXAMINER
Suite 2

5507 College Avenue MEKY. MOUSTAFA M
Oakland, CA 94618

2157 EDATE MAILED: 06/25/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01)

NOAC EX. 1015 Page 210



NOAC Ex. 1015 Page 211

‘ I \ Application No. Applicant(s) 
   09/608,237 DIETZ ET AL.

Office Action Summary Examine, Art Unit

Moustafa M Meky 2157 -
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE Q MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a) In no event. however. may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- lf NO period for reply is specified above. the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 US C. § 133)
- Any reply received by the Office later than three months after the mailing date of this communication. even if timely filed, may reduce any

earned patent term adjustment. See 37 CFR 1.704(b).
Status

  

  
  

  

  
  
  
  

  
  
  
  
  
  
  

  
  
  

  
  
  
  
  
  
  
  
  

  
  
  
  
  

  

  

 

DIX Responsive to communication(s) filed on 18 April 2002 .

2a)l:l This action is FINAL. 2mg This action is non-final.

3)l:I Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 CD. 11, 453 O.G. 213.

Disposition of Claims

4)IZ Claim(s) lflis/are pending in the application.

4a) Of the above Claim(s)_ is/are withdrawn from consideration.

5)IZ Claim(s) lfl is/are allowed.

6)XI Claim(s) LEE is/are rejected.

7)I:I Claim(s) __ is/are objected to.

8)l:l Claim(s) are subject to restriction and/or election requirement.

Application Papers

9)I:I The specification is objected to by the Examiner.

10)I:I The drawing(s) filed on __ is/are: a)I:I accepted or b)|:l objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)I:I The proposed drawing correction filed on __ is: a)|:l approved b)I:I disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)I:I The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)l:l Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)|:| All b)|:| Some * c)|:l None of:

1.1:] Certified copies of the priority documents have been received.

2.I:I Certified copies of the priority documents have been received in Application No.

3.1:] Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

14)X| Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) E] The translation of the foreign language provisional application has been received.

15)I:I Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

1) IE Notice of References Cited (PTO-892) 4) D Interview Summary (PTO-413) Paper No(s). .
2) E] Notice of Draflsperson‘s Patent Drawing Review (PTO-948) 5) D Notice of Informal Patent Application (PTO—152)

  
3) IE lnfonnation Disclosure Statement(s) (PTO-1449) Paper No(s) .43 _ 6) D Other:L l

US Patent and Trademark Office V . l . ;
PTO-326 (Rev. 04-01) Office Action Summary Part of Paper No. 6



NOAC Ex. 1015 Page 212

C7 0

Application/Control Number: 09/608,237 ' Page 2

Art Unit: 2157

1. Claims 1—59 are presenting for examination.

2. Claims 1-10 are allowed over the prior art of record.

2.1. The prior art of record taken singularly or in combination does not teach or suggest a

packet monitor having a state patterns/operations memory configured to store a set of predefined

state transition patters and state operations such that traversing a particular transition pattern as a

result of a particular conversational flow-sequence ofpackets indicates that the particular

conversational flow-sequence is associated with the operation of a particular application program

and a state processor configured to carry out any state operations in the state patterns/operations

memory for the protocol and state of the flow of the packet (claim 1).

3. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in a patent granted on an application for patent by another filed in the

United States before the invention thereofby the applicant for patent, or on an international application by

another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371© of this title before

the invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act

of 1999 (AIPA) do not apply to the examination of this application as the application being

examined was not (1) filed on or after November 29, 2000, or (2) voluntarily published under 35

U.S.C. 122(b). Therefore, this application is examined under 35 U.S.C. 102(e) prior to the

amendment by the AIPA (pre—AIPA 35 U.S.C. 102(e)).

NOAC EX. 1015 Page 212



NOAC Ex. 1015 Page 213

O 0

Application/Control Number: 09/608,237 Page 3

ArtUnit: 2157

4. Claims 11-59 are rejected under 35 U.S.C. 102(e) as being anticipated by Muller et al.

(US Pat. No. 6,483,804).

5. As to claims 11-12, Muller shows in Fig 1A, a method of examining packets through a

connection point (the point connects the network to the NIC of the circuit 100).

Muller discloses the following steps:

* receiving a packet from a packet acquisition device (NIC), see col 6, lines 26-29, lines 54—60,

col 8, lines 33-35;

* performing one or more parsing/extraction operations to create a record comprising a function

of selected portions of the packet, see col 7, lines 31-44, col 8, lines 50—67, col 9, lines 1-5;

* looking up a flow-entry database 110 to determine if the packet is of an existing flow, see col 9,

lines 18-24, col 11, lines 32-45 ;

* if the packet is of an existing flow, classifying the packet as belonging to the found existing

flow, see col 11, lines 46-52; and

* if the packet is of a new flow, storing a new flow-entry in the flow-entry database 110, see col

11, lines 46-52.

6. As to claims 13-15, Muller teaches updating the flow-entry of the existing flow including

measures selected from the set consisting of the total packet count, see col 7, lines 36-45, col 8,

lines 50—54, lines 64-66.

7. As to claim 16, Muller shows that the function of the selected portions of the packet

forms a signature (flow key), see col 8, lines 64-67, col 9, lines 1—5, col 11, lines 35—37.

NOAC EX. 1015 Page 213



NOAC Ex. 1015 Page 214

Application/Control Number: 09/608,237 ( Page 4

Art Unit: 2157

8. As to claims 17—20, Muller shows at least one of the protocols uses source and destination

addresses, see col 7, lines 31-40.

9. As to claim 21, Muller shows the looking up of the flow-entry database 110 uses a hash

of the selected packet portions, see col 9, lines 18-22.

10. As to claim 22, Muller shows determining a set of one or more protocol from data in the

packet, see col 10, lines 63—67, col 11, lines 27-30.

11. As to claim 23, Muller shows obtaining the last encountered state of the existing flow and

performing any state operations required for a new flow, see col 9, lines 15-28.

12. As to claim 24, Muller shows identifying of the application program of the flow, see col

8, lines 60-61, col 12, lines 45—47.

13. As to claim 25, Muller shows storing identifying information for future packets, see col 9,

lines 26—28.

14. As to claim 26, Muller shows identifying the application program of the flow, see col 8,

lines 60-61, col 12, lines 45-47.

15. As to claim 27, Muller shows searching the parser record for the existence of one or more

reference strings, see col 9, lines 32-36.

16. As to claim 28, Muller shows the state operations are carried by state processor , see col

9, lines 42—47, col 10, lines 61-63

17. As to claim 29-59, the claims are similar in scope to claims 11-28, and they are rejected

under the same rationale.

NOAC EX. 1015 Page 214



NOAC Ex. 1015 Page 215

Application/Control Number: 09/608,237 Page 5

Art Unit: 2157

Therefore, it can be seen fiom paragraphs 5-17 that Muller anticipates claims 11-59.

18. The prior art made of record and not relied upon is considered pertinent to applicant's

disclosure.

19. Any inquiry concerning this communication or earlier communications fiom the examiner

should be directed to Moustafa M. Meky Whose telephone number is (703) 305-9697. The

examiner can normally be reached on week days fiom 8:30 am to 4:30 pm.

If attempts to reach the examiner by telephone are unsuccessfiil, the examiner's

supervisor, Ario Etienne, can be reached on (703) 308-7562. The fax phone number for

this Group is (703) 308-9052.

Any inquiry of a general nature or relating to the status of this application or proceeding

should be directed to the Group receptionist whose telephone number is (703) 305-

9600. The fax number for the After-Final correspondence/amendment is (703) 746—

7238. The fax number for official correspondence/amendment is (703) 746-7239. The

fax number for Non-official draft correspondence/amendment is (703) 746-7240.

M.M.M

June 22, 2003

\

i

m: r a,
Farsi" '

if'i'rw'r‘t 

NOAC EX. 1015 Page 215



NOAC Ex. 1015 Page 216

 

 

Application/Control No. ApplicantiS)/Patent Under
Reexamination

09/608,237 DiETZ ET AL.
Notice of References Cited Examiner Art Unit Pa e 1 f

Moustafa M Meky 2157 g 0 1
U.S. PATENT DOCUMENTS

Document Number Date . ,

A US—6,483,804 11-2002 Mulleretal 370 230
,,_ f

   

 
 

 

c

US-6,453,360 Muller et al.

F

3712/22.

US-

 
  

 

cc9”‘P  
Cl  

FOREIGN PATENT DOCUMENTS '

Document Number Date _ _

Country Code-Number-Kind Code MM-YYYY Country ClaSSIficatlon

iIllllIlfll‘lflflflflflll 

 
  

EDA °°PY of this reference is not being fumished with this Office action. (See MPEP § 707.05(a)‘)
ates in MM-YYYY format are publication dates. Classifications may be US or foreign.

U's~ Patenl and Traden'ark Office

PTO~892 (Rev. 01-2001) A- Notice of References CitfiOAC EX 1015 PagePirtlodeaper No. 6

 



NOAC Ex. 1015 Page 217

 

|I|||||||ll|||l|||| 0500648380431

 

 

(12) Umted States Patent (10) Patent No.: US 6,483,804 B1
Muller et a]. (45) Date of Patent: Nov. 19, 2002

(54) METHOD AND APPARATUS FOR DYNAMIC EP 0 573 39 12/1993 H04L’12156
PACKET BATCHING WITH A HIGH EP 0 853 411 7/1993 11041129/06
PERFORMANCE NETWORK INTERFACE EP 0 865 13° 9/1993 -- “041117156wo wo 95/142159 5/1995 G06F/7/08

. , wo wo 97/913505 8/1997 .. GOfiF/13/14

(75) mvems’ 15,233): $31,: 5113??“ CA (3:) wo wo 99/0037 1/1999 .. 606F/13/00
' try’ " “um" wo w099/00945 1/1999 .. H04L/12/46

(US) wo W099/00948 1/1999 .. .. H04L/1fl569 1 1999 ........... H04 1 56

(73) Assignee: Sun Micmsystems, Inc., Santa Clara, W0 W0 99/0094 I U 21
CA (US) OTHER PUBLICATIONS

Toong Shoon Chan, et 31., “Parallel Architecture Support for
High—Speed Protocol Processing," Feb. 1, 1997, Mic/12pm-
casors And Microsystems, vol. 20, No. 6, pp. 325—339.

(List continued on next page.)

( * ) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) APPL N0-= 09/260,324 Primary Examiner—Wellington Chin

(22) Filed: Mar. 1 1999 Assisl'am Examiner—William Schultz
’ (74) Attorney, Agent, or Firm—-Pad<, Vaughan & Fleming

(51) Int. Cl.7 ................................................... H04] 1/16 LLP

52 US. Cl. ....................... 37 230; 370 5; 709 ; QBSTR!( ) 0/ ’23 709322258 (57) CT
(58) Fleld of Search ................................. 370/230, 231, A system and method are provided for identifying related

370/235, 392, 389, 225, 226, 241, 401, packets in a communication flow for the purpose of collec-
428, 427, 473, 474, 394, 252, 466, 409; tively processing them through a protocol stack comprising

709/225, 226, 235, 241, 228 one or more protocols under which the packets were trans—
mitted. A racket gce’r ~ u at a network interface is parsed to 
  

  

(56) References Cited rel; u nu u u nu r n t u u .353: .£
U.S. PATENT DOCUMENTS ilow key is generated to identgy‘ a communication flow that W

includes the pac ct, an 15 stored in a database of flow keys.
5,414,704 A 5/1995 Spinney .......... . 370/60 When the packet is placed in a queue to be transferred to a
5,583,940 A 12/1996 Vidrascu et al. ........... 380/49 host computer, the flow key and/or its flow number (e.g., its

2,33% 2 13:33; 323?: d 31- ”3332/3897; index into the database) is stored in a separate queue. Near, user e . . ' - -

mom A m 6..., .. .1. -- - moo :2, w:2‘ $93,300:;““01““... .225:
5,778,180 A 7/1993 Gentry et a1. .. 395/200.42 mp ’ y” 

 
 

 

 

:........ 711/5 packet that is related to the packet being transferred (i.e., is
_ 395,200,“ in the same flow) but which will be transferred later in time.

3195,2003 If a related packet is located, the host computer is alerted
370/392 and, as a result, delays processing the transferred packet

5,920,705 A ‘ 7/1999 Lyonet al. 370/409 until the related packet is also received. By collectively
6,157,955 A ‘ 1m Narad d. 81. ................ 709/228 pming thg related packets, pmssor fimc is more efli—

FOREIGN PATENT DOCUMENTS ‘5‘le “m

EP 0 447 75 9/1991 ........... GOGF/15/16 27 Claims 49 Draw Sheets

5,778,414 A 7/1998 Winter ct ll. ..
5,787,255 A 7/1998 Parlan et aL ..
5,793,954 A 8/1998 Baker et ll.
5,870,394 A 211999 Oprea

urn-u.-Kai-Inage: 
NOAC EX. 1015 Page 217



NOAC Ex. 1015 Page 218

A.“W,"

US 6,483,804 B1
Page 2 

OTHER PUBLICATIONS

Peter Newman, et al., “IP Switching and Gigabit Routers,”
IEEE Communications Magazine, vol. 335, No. 1, Jan.
1997, pp. 64—69.
Francois Le Faucheur, “[ETF Multiprotoco] Label Switch-
ing (MPLS) Architecture,” IEEE International Conference,
Jun. 22, 1998, pp. 6—15.
F. Hallsall, “Data Communications, Computer Networks
and Open Systems,” Electronic Systems EngineeringSeries,
pp. 451—452.
R. Cole, et al., “IP Over ATM: A Framework Document,”
IETF Online, Apr. 1996, pp. 1—31.
Sally Floyd & Van Jacobson, Random Early Detection
Gateways for Congestion Avoidance, Aug., 1993, IEEE/
ACM Tramactions on Networking.
US. patent application Ser. No. 08/893,862, entitled
“Mechanism for Reducing Interrupt Overhead in Device
Drivers," filed Jul. 11, 1997, inventor Denton Gentry.
Pending US. patent application Sen No. 09/259,445,
entitled “Method and Apparatus for Distrflaufing Network
Processing on a Multiprocessor Computer,” by Shimon
Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN—P3481—JTF).
Pending US patent application Ser. No. 09/260,367,
entitled “Method and Apparatus for Suppressing Interrupts
in a High—Speed Network Environment," by Denton Gentry,
filed Mar. 1, 1999 (Attorney Docket SUN—P3482—J'I‘F).
Pending US. patent application Set: Na. 09/259,736entitled
“Method and Apparatus for Modulating Interrupts in a
Network Interface,” by Denton Gentry et al., filed Mar. 1,
1999 (Attorney Docket SUN—P3483—JTF).
Pending U.S. patent application Sen No. 09/259, 765,
entitled “A High Performance Network Interface,” by Shi-
mon Muller et al, filed Mar. 1, 1999 (Attorney Docket
SUN—P3485—JTF).

Parding US. patent application Set: No. 09/260,618,
entitled “Method and Apparatus for Classifying Network
Tralfic in a High Performance Network INterface,” by
Shimon Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN—P3486—J'I'F).

Parding U.S. patart application Set: No. 09/259,932,
entitled “Method and Apparatus for Managing a Network
Flow in a High Performance Network Interface,” by Shimon
Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN—P3487—JTF).

Parding US. patent application Set: No. 09/258,952,
entitled “Method and Apparatus for Early Random Discard
of Packets,” by Shimon Muller et al., filed Mar. 1, 1999
(Attorney Docket SUN—P3490—JTF).

Parding US. patent application Ser. No. 09.260,333,
entitled “Method andApparatus for Data Re—Assembly with
a High Performance Network Interface,” by Shimon Muller
et al., filed Mar. 1, 1999 (Attorney Docket
SUN—P3507—JTF).

Pending U.S. patart application Set: No. 09/258,955,
entitled “Dynamic Parsing in a High Performance Network
Interface,” by Denton Gentry, filed Mar. 1, 1999 (Attorney
Docket SUN—P3715—JTF).

Parding U.S. patart application Set: No. 09/259,936,
entitled “Method and Apparatus for Indicating an Interrupt
in a Network Interface," by Denton Gentry et al., filed Mar.
1, 1999 (Attorney Docket SUN—P3814—JTF).

‘ cited by examiner

NOAC EX. 1015 Page 218



NOAC Ex. 1015 Page 219

Zm4m<w

DMA ENGlNE
120

DYNAMlC
PACKET

BATCHING
MODULE

122

CONTROL
OUEUE

Ha

PACKET
QUEUE

118

FLOW
DATABASE

1 1 0

LOAD
DISTRIBUTOR

112

CHECKSUM
GENERATOR

114

FLOW DATABASE
MANAGER 108

HEADER PARSER
106

INPUT PORT

PROCESSING
MODULE

104 
mama'S'Il

ZO0Z‘61'AON

61710I1391lS

Ifl1708‘9817‘9Sfl

NOAC EX. 1015 Page 219



NOAC Ex. 1015 Page 220

US. Patent Nov. 19, 2002 Sheet 2 of 49 US 6,483,304 Bl

RECEIVE PACKET AT IPP
MODULE FROM NETWORK

132

NOTIFY HOST COMPUTER
OF PACKET TRANSFER

148

PARSE PACKET:

GENERATE FLOW KEY,
RETRIEVE HEADER INFO

134

STORE PACKET IN HOST
MEMORY

146

  
 

  
 

 STORE/UPDATE FLOW IN

FLOW DATABASE; ASSIGN
OPERATION CODE

1 36

SEARCH FOR RELATED

PACKET(S)
144

 
YES

 

 
 
  
  
 

NO
 
   

  

 

ASSIGN PROCESSOR
NUMBER FOR MULTI-
PROCESSOR SYSTEM

138

PACKET
READY TO BE

TRANSFERRED?
142

POPULATE PACKET AND
CONTROL QUEUES

140 

FIG. 1B

NOAC EX. 1015 Page 220 



NOAC Ex. 1015 Page 221

US. Patent Nov. 19, 2002 Sheet 3 of 49 US 6,483,804 Bl

LAYER ONE HEADER
21D

LAYER TWO HEADER
212

HEADER PORTION
204

LAYER THREE HEADER
214

LAYER FOUR HEADER
216

 
DATA PORTION

202 
' TRAILER 206

l _______________________~______J

PACKETZOO

FIG. 2

NOAC EX. 1015 Page 221



NOAC Ex. 1015 Page 222

U.S. Patent Nov. 19, 2002 Sheet 4 of 49 US 6,483,804 Bl

HEADER PARSER 106

HEADER MEMORY “ IPP
302 MODULE

  
INSTRUCTION MEMORY

306

FLOW .-_
DATABASEl MANAGER {——

II

: PARSER

: 304I
I
I
I
I

I

’ FIG. 3
i

NOAC EX. 1015 Page 222

IPP
MODULE 



NOAC Ex. 1015 Page 223

m“,www.mw.

  
-v-MWm-WWM

US. Patent Nov. 19, 2002 Sheet 5 of 49 US 6,483,804 B1

 
  
 

 

 

COPY PACKET HEADER
402

VLAN TAGGED
HEADER?

404

  

 
 
 

 

ETHERNET ETHERNET OR
802.3 HEADER?

408

 
 

 
 
  
  
  

 

VERIFY
LLC SNAP

ENCAPSULATION?
410

NO

OTHERIUNKNOWN :

.®

IPv4 OR IPv6
HEADER?

412

FIG. 4A

NOAC EX. 1015 Page 223



NOAC Ex. 1015 Page 224

 US. Patent Nov. 19, 2002

 
 
 
 

 YES

PROCESS IPv4 HEADER
416 

Sheet 6 of 49 US 6,483,804 B1

'\C lC/ ~

VERIFY £0IPv6? A
418

. ' YES

  

 
 PROCESS IPv6 HEADER

420

NO : :

 YES

PROCESS TCP HEADER
424

GENERATE FLOW KEY
426

GENERATE CONTROL INDICATOR
428

SET NO_ASSIST FLAG FOR
PACKET

 
430

FIG. 4B

NOAC EX. 1015 Page 224



NOAC Ex. 1015 Page 225

 

gm.5:2:22.5.N8».
FLOW ACTIVITY
INDICATOR 524

WmF
SEQUENCE #

522

FLOW VALIDITY
INDICATOR 520

FLOW '

0
TOP

FLOW DATABASE 110

DESTINATION
PORT 516

w
4mmSRPm

CTNAT
RmommmE5RSUSomSDmm

was"qem.6 
Cm@3933wH

ASSOCIATED PORTION 504

FIG. 5

ASSOCIATIVE PORTION 502

NOAC EX. 1015 Page 225



NOAC Ex. 1015 Page 226

U.S. Patent Nov. 19, 2002 Sheet 8 of 49 US 6,483,304 Bl

 

  
RECEIVE SEARCH

REQU EST
602

 
 
 

 
 

FLAGGED FOR NO
ASSISTANCE?

604

SEARCH FLOW DATABASE
606

 
 

 
 
  

 
   

 MATCH FLOW
KEY IN DATABASE?

608

RETRIEVE FLOW # AND
FLOW DATA

610

  
  

 

YES ATTEMPT
TO ESTABLISH
CON NECTION?

614

DOES PACKET
CONTAIN DATA?

612
  

 
FIG. 6A

NOAC EX. 1015 Page 226

 



NOAC Ex. 1015 Page 227

 

I US. Patent Nov. 19, 2002 Sheet 9 of 49 US 6,483,804 B1 
 
 

   

  
  

 

 
 
  

 
 

FLOW
SEQUENCE

NUMBERS MATCH?
616

NO TEAR DOWN FLOW;
SELECT OPCODE 2 FOR

PACKET
628

TEAR DOWN FLOW;
SELECT OPCODE 3 FOR

PACKET
626

 
  

 
  
  

 
  
 

MORE DATA
TO FOLLOW?

620

UPDATE FLOW SEQUENCE
NUMBER 8. ACTIVITY

INDICATOR; SET FLOW
VALIDITY INDICATOR

622

SELECT OPCODE 4 FOR
PACKET

624

 
FIG. GB

NOAC EX. 1015 Page 227



NOAC Ex. 1015 Page 228

U.S. Patent Nov. 19, 2002 Sheet 10 of 49 US 6,483,804 B1

 
 
 
 

 
 
 

  

REPLACE FLOW: 

 

 
 

MORE DATA SET FLOW SEQUENCE #:
TO FOLLOW? SET ACTIVITY INDICATOR;

630 SET FLOW VALIDITY

  
634

 
  
 

 

TEAR DOWN FLOW;
  

  
 

   
 SELECT OPCODE 2 FOR SELECT OPCODE 7 FORPACKET

PACKET 636
 
 632 

 
 

  
  

 
  
 SELECT OPCODE 0 FOR TEAR DOWN FLOW? 

 
 

  

SELECT OPCODE 1 FOR

”3:5 PACKETs40

  UPDATE AS REQUIRED:
FLOW SEQUENCE #1

ACTIVITY INDICATOR;
VALIDITY INDICATOR

642

  FLAGS OKAY?
638    

  
FIG. 6C

mu»m

NOAC EX. 1015 Page 228mun--w»-



NOAC Ex. 1015 Page 229

I

US. Patent Nov. 19, 2002

 
 

NO

RETRIEVE LOWEST FLOW #
HAVING AN INVALID FLOW

INDICATOR
648

 

 
 

: : YES

646

DOES PACKET
CONTAIN DATA?

652

' MORE DATA
TO FOLLOW? — .-

654

FLOW
DATABASE FULL?

Sheet 11 of 49 US 6,483,804 B1

YES
 
 

 
 
 
 

 

 
 

 RETRIEVE FLOW # OF
LEAST RECENTLY ACTIVE

FLOW
650

 
 
 

NO
 

 
 
 

NO
 

  NO
- F

FIG. GD

NOAC EX. 1015 Page 229



NOAC Ex. 1015 Page 230

US. Patent

 
 

 
 

660

 
 

PACKET
662

ADD FLOW:

SET FLOW SEQUENCE #:
SET ACTIVITY INDICATOR;

SET FLOW VALIDITY

SELECT OPCODE 6 FOR

Nov. 19, 2002

 
  

 
 

 
 

 

 
 

NO

SELECT OPCODE 5 FOR
PACKET

668

 

FLOW
DATABASE FULL?

658

Sheet 12 of 49 US 6,483,804 B1

YES
 

 
 
 
 

REPLACE FLOW:

SET FLOW SEQUENCE #;
SET ACTIVITY INDICATOR;

SET FLOW VALIDITY
664
 

 SELECT OPCODE 7 FOR
PACKET

666  
 

FIG. 6E

NOAC EX. 1015 Page 230



NOAC Ex. 1015 Page 231

U.S. Patent Nov. 19, 2002 Sheet 13 of 49 US 6,483,804 Bl

 

  
 

RECEIVE AND PARSE
PACKET PROCESS PACKET

702 718 
 

 
 

 

 

 

LOAD DISTRIBUTOR
RECEIVES FLOW KEY

704

ALERT SELECTED
PROCESSOR

716 
 

 

 

 
   
 

PACKET INFORMATION
STORED FOR PROCESSING
BY SELECTED PROCESSOR

714

 HASH FLOW KEY
706
 

 

 

 
 
  
  
 

PERFORM MODULUS
OPERATION ON HASH

VALUE
708

 

 
 

ALERT HOST COMPUTER
712

 

 STORE PACKET AND
PROCESSOR NUMBER

710

FIG. 7

NOAC EX. 1015 Page 231



NOAC Ex. 1015 Page 232

US. Patent Nov. 19, 2002 Sheet 14 of 49 US 6,483,804 B1

 
PACKET QUEUE 116 PACKET

1:

ENTRY 80' PACKET PORTION 802 l
READ .......................... . 0

POlNTER a FILLER 802a

810 CHECKSUM PACKET DEA'GNOSTIC AND STATUS
VALUE LENGTH INFORMATION

804 806 808

WRITE
POINTER

812

255

FIG. 8

NOAC EX. 1015 Page 232



NOAC Ex. 1015 Page 233

U.S. Patent Nov. 19, 2002 Sheet 15 of 49 US 6,483,804 B1

CONTROL QUEUE 118 PACKET

CPU # NO_ OP. PAYLOAD PAYLOAD OTHER
902 ASSIST CODE OFFSET SIZE STATUS904 906 908 910 912

ENTRY 900
     

 
   
 

 

 

 
 

READ
POINTER

914

WRITE
POINTER

916

255

FIG. 9

NOAC EX. 1015 Page 233

 



NOAC Ex. 1015 Page 234

  
    

 
 
  

4

1nBe4I02.0EMa8.,P
3

854_llllllllllllllllllllllllllllllllllllllllllllllllllllllll_1a06__1So:I_Ilnl_.Umamas_X.5on_uE__h32_M_$92329;._O_20565.8_N9__4n_.m_nm6__w1___._-au_moEEowmo__m_Engage“3S__n.m:__EmazeoJoEzoo|_.K._oW_Noe_
_

2_mmo<z<2<2082“._.
9_

U_59:.as.“moEEommo"w.....................__vn_IIIIIIII_OMMHu_I.___«a_“mmo<z<2_W3:00:.r.ozEmmEntozioba_n_520$._82um_0.5225"Emfi_a__fimsmm?"Pm,..................L_.mm39"._.__S.1IIII1|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIILU.09wzazm<55
 



NOAC Ex. 1015 Page 235

 
US. Patent Nov. 19,2002 Sheet 17 of 49 US 6,483,804 B1

PACKET

FLOW RE-ASSEMBLY TABLE 1004 # lVALIDITY FLOW RE—ASSEMBLY

INDICATOR NEXT SEERESS BUFFER INDEX1106 1102

HEADER TABLE 1006

VALIDITY HEADER BUFFER

INDICATOR NEXTmBRESS INDEX1116 1112

MTU TABLE 1008

VAUD'TY NEXT ADDRESS MTU BUFFER INDEXINDICATOR

1126 1124 1122

JUMBO TABLE 1010

VALIDITY JUMBO BUFFER

INDICATOR NEXT QEBRESS INDEX1 13B 1 132

FIG. 11

  
63

NOAC EX. 1015 Page 235 



NOAC Ex. 1015 Page 236

    

   

.

El}

FREE BUFFER ARRAY 1210 EU
FREE DESCRIPTOR 1202 ARRAY INDEX :3H

FREE DESCRIPTOR BUFFER IDENTIFIER FIELD 1214 (D
RING B
1200 (I!

\\
\\ g

\ .<
/ \ H

I \ a
l x .

/ \ N
I \\ 8I \ N

m
5"(D

3
p—L
M
OW
h
\0

.'

RING INDEX I,
CI

"’1’ m

nv'l' “a

g
3”W

FIG. 12A euh

U!p—L

NOAC Ex. 1015 Page 236

 

I



NOAC Ex. 1015 Page 237

DESCRIPTOR Sfiffiié‘s DATA OFFSET DATA BUFFER DATA SIZE ‘x\
TYPE 1238 1236 1234 INDEx 1232 1230 \ E \ \

HEADER
OFFSET 1246

LAYER THREE PROCESSOR FLow ’

HEADER OFFSET IDENTIFIER Sgfifiil'f; g'gEDRé‘Egg' NUMBER //1258 1256 1250 /

OWNERSHIP PACKET /

OTHER 1266 INDICATOR LENGTH ngfig‘g /
1264 1262 ’

 

COMPLETION DESCRIPTOR 1222

 

 HEADER BUFFER HEADER SIZE NEXT BUFFER
INDEX 1244 1242 INDEX 1240

 COMPLETION
DESCRIPTOR RING

1220

FIG. 123

I

mama'S'fl

Z002‘61'Am

 6171061199IIS

Iflvos‘ssv‘9sn
NOAC EX. 1015 Page 237



NOAC Ex. 1015 Page 238

US. Patent Nov. 19, 2002 Sheet 20 of 49 US 6,483,304 Bl

START
1300

PACKET STORED IN DATA
QUEUE NO

1302
 

  
  

 

    
  

 

 

  
  

 

 

  
  

 

 

  
  

 

 

  
 
 

YES OPERATION
CODE 5?

1313

READ PACKET ENTRY
FROM CONTROL QUEUE

1304

NO

YES OPERATION

FETCH FLOW NUMBER CODE 4?
1306 1316

NO

OPERATION YES YES OPERATION
CODE 0? CODE 3?

1308 1 314

NO

NO

YES YES OPERATlON
CODE 2?

1312

OPERATION
CODE 1?

1310

NO

FIG. 13

NOAC EX. 1015 Page 238

 



NOAC Ex. 1015 Page 239

US. Patent Nov. 19,2002 Sheet 21 of 49 US 6,483,304 Bl

 
  

 
 

 

  

  

 
  

 
 

HEADER
BUFFER VALID?

1400

PREPARE HEADER BUFFER
1402

 
 
  

COPY PACKET INTO
HEADER BUFFER

1404

WRITE COMPLETION
DESCRIPTOR

1406

 
  
 

 
 
 

UPDATE HEADER BUFFER
TABLE

1412

H EADER
BUFFER FULL?

1408
 
 

INVALIDATE HEADER
BUFFER

1410

FIG. 14

NOAC EX. 1015 Page 239

 



NOAC Ex. 1015 Page 240

US. Patent Nov. 19, 2002 Sheet 22 of 49 US 6,483,804 Bl

  
  
 

 
 
 

HEADER
BUFFER VALID?

1500
 

 

PREPARE HEADER BUFFER
1502

 
 

COPY PACKET INTO
HEADER BUFFER

1504  
  
 

   

 
    

FLOW
RE—ASSEMBLY

BUFFER VALID?
1506

 

  
 

WRITE COMPLETION
DESCRIPTOR

1508  

  
 
 

 
 
 

INVALIDATE FLOW RE—
ASSEMBLY BUFFER

1510

WRITE COMPLETION
DESCRIPTOR

1512
 

  
 
 
 
 

 
 
 

UPDATE HEADER BUFFER
TABLE

1518

HEADER

BUFFER FULL?
1514

 
  

 

 
INVALIDATE HEADER

BUFFER
1516

 
  
  

FIG. 15

NOAC EX. 1015 Page 240

 



NOAC Ex. 1015 Page 241

US. Patent Nov. 19,2002 Sheet 23 of 49 US 6,483,804 B1

 
  
 
  
  

 

  

  
  

 
  

 

FLOW
RE—ASSEMBLY

BUFFER VALID?
1600

 
 
 

WRITE COMPLETION
DESCRIPTOR

1602

INVALIDA‘IE FLOW RE-
ASSEMBLY BUFFER

1604

SMALL PACKET?
1 606

JUMBO PACKET?
1608 

FIG. 16A

NOAC EX. 1015 Page 241



NOAC Ex. 1015 Page 242

US. Patent Nov. 19, 2002 Sheet 24 of 49 US 6,483,804 B1

,3

  
 
 
 

HEADER
BUFFER VALID?

1610
 

  

 
  

 
 
 

PREPARE HEADER BUFFER
1612

COPY PACKET INTO
HEADER BUFFER

1614

WRITE COMPLETION
DESCRIPTOR

1616

 
 
 

UPDATE HEADER BUFFER
TABLE

1622

HEADER
BUFFER FULL?

1618

 

 
  
 

 

INVALIDATE HEADER
BUFFER

1620

FIG. 1GB

NOAC EX. 1015 Page 242

 



NOAC Ex. 1015 Page 243

U.S. Patent Nov. 19, 2002 Sheet 25 of 49 US 6,483,804 B1

 
  
   

 

  

 
  

 
 

MTU
BUFFER VALID?

1630
   

PREPARE MTU BUFFER
1632

COPY PACKET INTO MTU
BUFFER

1634

WRITE COMPLETION
DESCRIPTOR

1636

 

  
 
 
 

MTU
BUFFER FULL?

1638

UPDATE MTU BUFFER
TABLE

1642 

 
   
 

INVALIDATE MTU BUFFER
1640

FIG. 16C

NOAC EX. 1015 Page 243

 



NOAC Ex. 1015 Page 244

US. Patent Nov. 19,2002 Sheet 26 of 49 US 6,483,804 Bl

C3

 
 

NO
 

  
 

JUMBO
BUFFER VALID?

1650

PREPARE JUMBO BUFFER
1652 

YES

 

  
 

  
SPLIT JUMBO

BUFFERS?
1654

NO

 
  

 

 
 
 
 
  

 TRANSFER FIRST PART OF
PACKET INTO CURRENT

JUMBO BUFFER
1662

PACKET

TOO LARGE FOR
ONE BUFFER?

1656

 
 
 

 
 
 

TRANSFER REMAINDER OF 
 
 

 
 

 

 
 
 
 

TRANSFER PACKET INTO PACKET INTO SECOND

JUMBO BUFFER JUMBO BUFFER
1658 1664

WRITE COMPLETION
DESCRI PTOR

1666

WRITE COMPLETION
DESCRIPTOR

1660

INVALIDATE JUMBO END
BUFFER 1699

1668

FIG. 16D

  
 

 
 

 

NOAC EX. 1015 Page 244

 



NOAC Ex. 1015 Page 245

US. Patent Nov. 19, 2002 Sheet 27 0f 49 Us 6,483,804 B1

(A

 
  

 

MM;yams:,(.
 
  

HEADER
BUFFER VALID?

1670

PREPARE HEADER BUFFER
1672

 
 
  

 
   

 
 
 
 

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1674

 

 

 
 

 
 
 

 
 
 
 

PACKET
TOO LARGE FOR

ONE BUFFER?
1676

TRANSFER FIRST PART OF

PACKET DATA, INTO JUMBO
BUFFER

1682
 

 
 

  
 
 

   
  
 

TRANSFER pACKET DATA TRANSFER REMAINDER 0F
INTO JUMBO BUFFER PACKET DATA INTOSECOND JUMBO BUFFER

1678 1684

  

 
  

WRITE COMPLHION
DESCRIPTOR

1680

WRITE COMPLETION
DESCRIPTOR

1686
 
 

GE)

FIG. 16E

NOAC EX. 1015 Page 245



NOAC Ex. 1015 Page 246

US. Patent Nov. 19, 2002 Sheet 28 of 49 US 6,483,804 Bl

G)

INVALI DATE JUMBO
BUFFER

1688

  

 

  

 
 

  

  
 

YES NO
 HEADER

BUFFER FULL?
1690

 
UPDATE HEADER BUFFER

TABLE
1694

INVALIDATE HEADER
BUFFER

1692
  
 

 
 

 

FIG. 16F

NOAC EX. 1015 Page 246



NOAC Ex. 1015 Page 247

US. Patent Nov. 19, 2002 Sheet 29 0f 49 US 6,483,804 B1

 
 

NO

 
  
 

 
 

 
  
 

  
 

  
 

 

 

HEADER

BUFFER VAUD? PREPARE HWEPEgER BUFFER
1700

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1704

RE-ASSEMBLY ”0 PREPARE FLOW RE-
BUFFER VALID? ASSEMBLY BUFFER

1706 1708

YES

TRANSFER PACKET DATA
INTO FLOW RE—ASSEMBLY

BUFFER
1710

WRITE COMPLETION
DESCRIPTOR

1712

INVALIDATE FLow RE-
ASSEMBLY BUFFER

1714

NOAC EX. 1015 Page 247

 



NOAC Ex. 1015 Page 248

US. Patent Nov. 19, 2002 Sheet 30 of 49 US 6,483,804 B1

  
 
 
 
 

   
  
  
 

TCP
PAYLOAD TOO

LARGE FOR
BUFFER?

1716

 
 
 
 

 
 
 
 

TRANSFER FIRST PORTION
OF PAYLOAD INTO FLOW
RE-ASSEMBLY BUFFER

1722 
 

 

 
  

TRANSFER PAYLOAD INTO
FLOW RE-ASSEMBLY

BUFFER
171 8

TRANSFER SECOND
PORTION OF PAYLOAD
INTO SECOND BUFFER

1724

 

  
 
   

 

WRITE COMPLETION

DESCRIPTOR .
1720

WRITE COMPLETION
DESCRIPTOR

1726
 

 
  

  

 

 

INVALIDATE ENTRY IN
FLOW RE—ASSEMBLY

BUFFER TABLE
1728

FIG. 17B

NOAC EX. 1015 Page 248

 



NOAC Ex. 1015 Page 249

US. Patent Nov. 19,2002 Sheet 31 of 49 US 6,483,804 B1

 
 

YES NO
 HEADER

BUFFER FULL?
1730  

 
 

 
 
 

 
 

  

INVALIDATE HEADER UPDATE HEADER BUFFER
BUFFER TABLE

1 732 1734

 

FIG. 17C

NOAC EX. 1015 Page 249

 



NOAC Ex. 1015 Page 250

US. Patent Nov. 19,2002 Sheet 32 of 49 US 6,483,804 B1

 
  

   
 

HEADER
BUFFER VALID?

1800
 PREPARE HEADER BUFFER

1802
 

  
  

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1804  

 
  
 

 

   

 
 

  

TCP
PAYLOAD TOO

LARGE FOR
BUFFER?

1808

 
  
 
  
  
 

FLOW
RE-ASSEMBLY

BUFFER VALID?
1806

 
NO

FIG. 18A

NOAC EX. 1015 Page 250



NOAC Ex. 1015 Page 251

 
US. Patent Nov. 19, 2002 Sheet 33 0f 49

PREPARE FLOW RE-
ASSEMBLY BUFFER

1810

TRANSFER PACKET DATA

INTO FLOW RE—ASSEMBLY
BUFFER

1812

WRITE COMPLETION
DESCRIPTOR

1814

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

1816

 
(ED

FIG. 183

US 6,483,804 B1

NOAC EX. 1015 Page 251



NOAC Ex. 1015 Page 252

 
US. Patent

YES

 
 
 

TABLE

1826

Nov. 19, 2002

RELEASE FLOW IN FLOW
RE-ASSEMBLY BUFFER

 

  

 
  

 
  
  

  
 
 

 TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1820

WRITE COMPLETION
DESCRI PTOR

1822

 FLOW
RE-ASSEMBLY
BUFFER FULL?

1824

  

 

FIG. 18C

Sheet 34 of 49

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

US 6,483,804 B1

NO

  

 1828

NOAC EX. 1015 Page 252



NOAC Ex. 1015 Page 253

US. Patent Nov. 19, 2002 Sheet 35 of 49 US 6,483,804 Bl

4:)  
 

  
TRANSFER FIRST PORTION
OF PACKET PAYLOAD INTO

RE-ASSEMBLY BUFFER
1 830

 
  

 
 
 

 TRANSFER REMAINING
PACKET PAYLOAD INTO

SECOND BUFFER
1 832

 

  
  

WRITE COMPLETION
DESCRI PTOR

1834

 
 
 

 UPDATE FLOW RE—
ASSEMBLY BUFFER TABLE

1 836
 

  
 
 

YES NO
 HEADER

BUFFER FULL?
1838
 

 
 
 

 
  
 
 

INVALIDATE HEADER
BUFFER TABLE

1840
 
  

UPDATE HEADER BUFFER
1842

FIG. 18D

NOAC EX. 1015 Page 253

 



NOAC Ex. 1015 Page 254

U.S. Patent Nov. 19, 2002 Sheet 36 of 49 Us 6,483,804 B1

0 4;
YES

 

  
 

  
NO

SMALL PACKET?
1900

JUMBO PACKET?
1 902

YES
NO

 
 

  
 

NO
 MTU

BUFFER VALID?
1904

PREPARE MTU BUFFER
1906

YES

WRITE COMPLETION
DESCRIPTOR

191 0

TRANSFER PACKET INTO
MTU BUFFER

1908

  
 
 
 
 

 
 

MTU
BUFFER FULL?

1912

UPDATE MTU BUFFER
TABLE

1916
 

 
 
   
 

INVALIDATE MTU BUFFER
1914

END
1 999

FIG. 19A

NOAC EX. 1015 Page 254

 



NOAC Ex. 1015 Page 255

US. Patent Nov. 19, 2002 Sheet 37 of 49 US 6,483,804 B1

 
 
  

 
 

 
 
 

HEADER
BUFFER VALID?

1920

PREPARE HEADER BUFFER
1922

  

 

TRANSFER PACKET INTO
HEADER BUFFER

1924

WRITE COMPLETION
DESCRIPTOR

1926

 

 
  
 

 
 
 

UPDATE HEADER BUFFER
TABLE

1932

HEADER
BUFFER FULL?

1928
 
 

INVALIDATE HEADER
BUFFER

1930

FIG. 193

NOAC EX. 1015 Page 255

 



NOAC Ex. 1015 Page 256

US. Patent Nov. 19,2002 Sheet 38 of 49 US 6,483,804 B1

F2

 
  

  
 

 

  
 

NO
JUMBO

1940

YES

YES
SPLIT JUMBO

PACKETS?
1944

  F3

NO

 

 
 

 

 

 
  

 
 

 
  

 

  
 
 
 
 

PACKET TRANSFER FIRST PORTION
TOO LARGE FOR OF PACKH INTO CURRENT

ONE BUFFER? JUMBO BUFFER

 1 946 1952

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1954

  
 
 

TRANSFER PACKET INTO
JUMBO BUFFER

, 1943

  
  

 

 
 

 WRITE COMPLETION
DESCRI PTOR

1950

WRITE COMPLETION
DESCRIPTOR

1956 
 

INVALIDATE JUMBO END
BUFFER 19991958

FIG. 19C

 

NOAC EX. 1015 Page 256

 



NOAC Ex. 1015 Page 257

US. Patent Nov. 19, 2002 Sheet 39 of 49 US 6,483,804 B1

 
  
  
 

 
 

HEADER
BUFFER VALID?

1960
 
 

 

PREPARE HEADER BUFFER
1962

   
  

 
 
 
 
 

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1964

 
 
 
 

PACKET
TOO LARGE FOR

ONE BUFFER?
1 966

 

  
 
 

TRANSFER FIRST PORTION
OF PACKET DATA INTO

CURRENT JUMBO BUFFER
1 972

 

 
 

TRANSFER PACKET DATA TRANSFER REMAINDER OF
 
  

PACKET DATA INTO

INTO JUMBO BUFFER SECOND JUMBO BUFFER
1968 1974

 

 
WRITE COMPLETION

DESCRIPTOR
1 970

WRITE COMPLETION
DESCRI PTOR

1976 
 

FIG. 19D

NOAC EX. 1015 Page 257

 



NOAC Ex. 1015 Page 258

US. Patent Nov. 19, 2002 Sheet 40 of 49 US 6,483,804 B1

/"‘\IF4)

  

 
 
 

INVALIDATE JUMBO
BUFFER

1978

YES NO
 HEADER

BUFFER FULL?
1980  

  
 
 

  
 

 
INVALIDATE HEADER UPDATE HEADER BUFFER

BUFFER TABLE
1982 1984

FIG. 19E

NOAC EX. 1015 Page 258

 



NOAC Ex. 1015 Page 259

U.S. Patent Nov. 19, 2002 Sheet 41 of 49 US 6,483,804 B1

 
  
 

 

  
 
 

HEADER

BUFFER VALID?
2000

 
 

 
 

PREPARE HEADER BUFFER
2002

 

  

 
 

 

 

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
2004

 
 
 

 
  

 

FLOW
RE-ASSEMBLY

BUFFER VALID?
2006

 

 

WRITE COMPLETION
DESCRIPTOR

2008

PREPARE FLOW RE-
ASSEMBLY BUFFER

2010

FIG. 20A

NOAC EX. 1015 Page 259

 



NOAC Ex. 1015 Page 260

US. Patent

 
 
 

  

 
  

 
 
  

 
 
 
 

   
  
 

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
2012

WRITE COMPLEHON
DESCRIPTOR

2014

 UPDATE FLOW RE~
ASSEMBLY BUFFER TABLE

2016

 
 
 

HEADER
BUFFER FULL?

2018

INVALIDATE HEADER
BUFFER

2020

Nov. 19, 2002

FIG. ZOB

UPDATE HEADER BUFFER

Sheet 42 of 49 US 6,483,804 B1

 
 

TABLE
202

NOAC EX. 1015 Page 260



NOAC Ex. 1015 Page 261

 

 

I DYNAMIC PACKET BATCHING MODULE 122

ENTRY ENTRY g
2106 VALIDITY

INDICATOR FLOW NUMBER
2110 2108

  

 
  

mama'S'fl
READ POINTER

ZO0Z‘61'AON
CONTROLLER 2104 MEMORY 2102 
 

WRITE POINTER

6171"£17133118
255

I

I

I

I

|

I

|

I

I

I

I

I

|

HIvos‘ssv‘9sn

NOAC EX. 1015 Page 261



NOAC Ex. 1015 Page 262

US. Patent Nov. 19, 2002 Sheet 44 of 49 US 6,483,804 Bl

 
  

 
 
  

 
  

 

 

TRANSFER

PACKET TO HOST?
2202

INVALlDATE PACKET
ENTRY IN MEMORY

2204

INCREMENT READ
POINTER

2206

SEARCH MEMORY FOR
RELATED PACKET

2208

ALERT HOST COMPUTER
2210

FIG. 22A

NOAC EX. 1015 Page 262

 



NOAC Ex. 1015 Page 263

US. Patent Nov. 19, 2002 Sheet 45 of 49 US 6,483,804 B1

 
 
 
 
  

 

CREATE NEW
ENTRY?

2222

MEMORY FULL?
2224

GENERATE NEXT ENTRY
2226

INCREMENT WRITE
POINTER

2228

FIG. 223

NOAC EX. 1015 Page 263

 



NOAC Ex. 1015 Page 264

US. Patent Nov. 19, 2002 Sheet 46 0f 49 US 6,483,804 B1

 

  
 
 

 

 
  

 
 

  

 

INSTRUCTION CONTENT 2306

(EXTRACTION MASK, COMPARE VALUE, OPERATOR,
SUCCESS OFFSET. SUCCESS INSTRUCTION, FAILURE OFFSET,

FAILURE INSTRUCTION. OUTPUT OPERATION, OPERATION ARGUMENT,
OPERATION ENABLER, SHIFT, OUTPUT MASK)

WAIT 0xFFFF, 0x0000 NP 6, VLAN 0, WAIT, CLR_REG, 0X3FF, 1, 0, 0x0000

VLA

CF

OXFFFF 0x8100 E0, 1, CFI, 0 802 3 IM CTL, OXOOA, 3, 0, OXFFFF

 
 
 

INSTR. INSTR.
NO. NAME

2302 2304 
 

  

 

 
 

_

7 IPV4 2

IPV4 3 0X3FFF, 0x0000, EQ, 1, IPV4_4, 0, DONE, LD_LEN, 0x03E, 1, 0, OXFFFF

m—

“ 0x0000, 0x0000, EQ, 3, IPV6_4, 0, DONE, LD_FID, 0x484, 1, 0, OXFFFF
IPV6_4 OXFFOO, 0x0600, E0, 18, TCP_1, 0, DONE, LD_LEN, 0x03F, 1. OXFFFF

meow, meow, E0, 0, TCP_2, 4, TCP_2, LD_SEQ, 0x081, 3, o, OxFFFF

TCP_2

OXFFFF, axoaoo, E0, 1, IPV4_2, 0. IPV6_1, LD_SAP, 0x100, 3, o, OXFFFF 
 

 OXFFOO, 0x4500, E0, 3, IPV4_3, 0. DONE, LD_SUM, OXOOA, 1, 0, 0x0000 
  
 

1

1

 
 

 

0

1

13

 
 
  

 

  

1

 
 

 0x0000, 0x0000, EQ, 0, TCP_3, 0, TCP_3, ST_FLAG, 0x145, 3, 0, 0x002F

TCP 3 0x0000, 0x0000, E0, 0. TCP_4, 0, TCP_4, LD_R1, 0x205, 3, 0x3, OXFOOO

TCP 4 0x0000, OXOOOO, E0, 0, WAIT, 0, WAIT, LD_HDR, OXOFF, 3, 0, OXFFFF

m OXOOOO, 0x0000, E0, 0, WAIT, 0, WAIT, IM_CTL, 0x001, 3, 0x0000

4

17

 
PROGRAM 2300

FIG. 23

NOAC EX. 1015 Page 264

 



NOAC Ex. 1015 Page 265

 
 
 

1B

MvN.OE
8,384,6

S8%Umoh<o_oz_
BEEF8%9.vmg0

9mmkznoo
4f074aehS

W.8a3a«SN2xmozcmz02¢20.0mmwzo206mm0mm~20.0mmmmfiazoo9,20$50:9
1m0N

oovw

53555800000000080waDO
meo<m

o5Nvrvmw3N«6.22szm0k<052_ .mOh<U_DZ_>._._.=m<m0mm>b.=m<m0mm>.:.=m<m0mn_

US. Patent

 

NOAC EX. 1015 Page 265

 



NOAC Ex. 1015 Page 266

 
US. Patent Nov. 19, 2002 Sheet 48 of 49

IDENTIFY PACKET QUEUE
REGIONS OR THRESHOLDS

2502

CON FIGURE PROBABILITY

INDICATOR(S)
2504

SELECT CRITERIA FOR
NON-DISCARDABLE

PACKETS, IF ANY
2506

INITIALIZE COUNTER
2508

RECEIVE PACKET FROM
NETWORK

2510

IS
PACKET

DISCARDABLE?
2512

 
FIG. 25A

US 6,483,804 B1

NOAC EX. 1015 Page 266



NOAC Ex. 1015 Page 267

US. Patent Nov. 19, 2002 Sheet 49 of 49 US 6,483,804 B1

  

 
  

 
  

 
 

  

 
  

DETERMINE ACTIVE
REGION

2514

COMPARE COUNTER AND
PROBABILITY INDICATOR

2516

INCREMENT COUNTER
2518

 
DISCARD
PACKET?

2520

DISCARD PACKET
2524  

STORE PACKET
2522
 
 

FIG. 25B

NOAC EX. 1015 Page 267

 



NOAC Ex. 1015 Page 268

 
US 6,483,804 B1

1

METHOD AND APPARKI'US FOR DYNAMIC
PACKET BATCHING WITH A HIGH

PERFORMANCE NETWORK INTERFACE

TABLE OF CONTENTS

BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE FIGURES
DETAILED DESCRIPTION

Introduction

One Embodiment of a High Performance Network Inter-
face Circuit

An Illustrative Packet

One Embodiment of a Header Parser

Dynamic Header Parsing Instructions in One Embodi-
ment of the Invention

One Embodiment of a Flow Database

One Embodiment of a Flow Database Manager
One Embodiment of a Load Dish'ibutor

One Embodiment of a Packet Queue
One Embodiment of a Control Queue

One Embodiment of a DMA Engine
Methods of Transferring a Packet Into a Memory Buffer

by a DMA Engine
A Method of Transferring a Packet

Code 0

A Method of Transferring a Packet
Code 1

A Method of Transferring a Packet
Code 2

A Method of Transferring a Packet
Code 3

A Method of Transferring a Packet
Code 4

A Method of Transferring a Packet
Code 5

A Method of Transferring a Packet with Operation
Code 6 or 7

One Embodiment of a Dynamic Packet Batching Module
Early Random Packet Discard in One Embodiment of the

Invention
CLAIMS

with Operation

with Operation

with Operation

with Operation

with Operation

with Operation

BACKGROUND

This invention relates to the fields of computer systems
and computer networks. In particular, the present invention
relates to a Network Interface Circuit (NIC) for processing
communication packets exchanged between a computer
network and a host computer system.

The interface between a computer and a network is often
a bottleneck for communications passing between the com-
puter and the network. While computer performance (e.g.,
processor speed) has increased exponentially over the years
and computer network transmission speeds have undergone
similar increases, inefficiencies in the way network interface
circuits handle communications haVe become more and
more evident. With each incremental increase in computer or
network speed, it becomes ever more apparent that the
interface between the computer and the network cannot keep
pace. These iuefliciencies involve several basic problems in
the way communications between a network and a computer
are handled.

10

15

30

35

45

50

55

60

65

2

Today’s most p0pular forms of networks tend to be
packet-based. These types of networks, including the Inter-
net and many local area networks, transmit information in
the form of packets. Each packet is separately created and
transmitted by an originating endstation and is separately
received and processed by a destination endstation. In
addition, each packet may, in a bus topology network for
example, be received and processed by numerous stations
located between the originating and destination endstations.

One basic problem with packet networks is that each
packet must be processed through multiple protocols or
protocol levels (known collectively as a “protocol stack") on
both the origination and destination endstations. When data
transmitted between stations is longer than a certain minimal
length, the data is divided into multiple portions, and each
portion is carried by a separate packet. The amount of data
that a packet can carry is generally limited by the network
that conveys the packet and is often expressed as a maxi—
mum transfer unit (MTU). The original aggregation of data
is sometimes known as a “datagram,” and each packet
carrying part of a single momprocessed very simi-
larly to the other packets of the datagram.

Communication packets are generally processed as fol-
lows. In the origination endstation, each separate data por-
tion of a datagram is processed through a protocol stack.
During this procesing multiple protocol headers (e.g., TCP,
IP, Ethernet) are added to the data portion to form a packet
that can be transmitted across the network. The packet is
received by a network interface circuit, which transfers the
packet to the destination endstation or a host computer that
serves the destination endstation. In the destination

endstation, the packet is processed through the protocol
stack in the opposite direction as in the origination endsta-
tion. During this proceging the protocol headers are
removed in the opposite order in which they were applied.
The data portion is thus recovered and can be made available
to a user, an application program, etc.

Several related packets (e.g., packets carrying data from
one datagrarn) thus undergo substantially the same process
in a serial manner (i.e., one packet at a time). The more data
that must be transmitted, the more packets mustbe sent, with
each one being separately handled and processed through
the protocol stack in each direction. Naturally, the more
packets that must be processed, the greater the demand
placed upon an endstation’s processor. The number of
packets that must be processed is affected by factors other
than just the amount of data being sent in a datagram. For
example, as the amount of data that can be encapsulated in
a packet increases, fewer packets need to be sent. As stated
above, however, a packet may have a maximum allowable
size, depending on the type of network in use (e.g., the
maximum transfer unit for standard Ethernet traffic is

approximately 1,500 bytes). The speed of the network also
affects the number of packets that a NIC may handle in a
given period of time. For example, a gigabit Ethernet
network operating at peak capacity may require a NIC to
receive approximately 1.48 million packets per second.
Thus, the number of packets to be processed through a
protocol stack may place a significant burden upon a com-
puter’s proce$or. The situation is exacerbated by the need to
process each packet separately even though each one will be
processed in a substantially similar manner.

A related problem to the disjoint processing of packets is
the manner in which data is moved between “user space”
(e.g., an application program’s data storage) and “system
space” (e.g., system memory) during data transmission and
receipt. Presently, data is simply copied from one area of

NOAC EX. 1015 Page 268



NOAC Ex. 1015 Page 269

 
US 6,483,804 Bl

3

memory assigned to a user or application program into
another area of memory dedicated to the processor’s use.
Because each portion of a datagram that is transmitted in a
packet may be copied separately (e.g., one byte at a time),
there is a nontrivial amount of processor time required and
frequent transfers can consume a large amount of the
memory bus’ bandwidth. Illustratively, each byte of data in
a packet received from the network may be read from the
system space and written to the user space in a separate copy
operation, and vice versa for data transmitted over the
network. Although system space generally provides a pro-
tected memory area (e.g., protected from manipulation by
user programs), the copy operation does nothing of value
when seen from the point of view of a network interface
circuit. Instead, it risks over-burdening the host processor
and retarding its ability to rapidly accept additional network
traflic from the NIC. Copying each packet’s data separately
can therefore be very inefiicient, particularly in a high-speed
network environment.

In addition to the ineflicient transfer of data (e.g., one
packet’s data at a time), the processing of headers from
packets received from a network is also ineflicient. Each
packet carrying part of a single datagram generally has the
same protocol headers (e.g., Ethernet, IP and TCP), although
there may be some variation in the values within the packets’
headers for a particular protocol. Each packet, however, is
individually processed through the same protocol stack, thus
requiring multiple repetitions of identical operations for
related packets. Successively processing unrelated packets
through different protocol stacks will likely be much less
eflicient than progressively processing a number of related
packets through one protocol stack at a time.

Another basic problem concerning the interaction
between present network interface circuits and host com-
puter systems is that the combination often fails to capitalize
on the increased processor resources that are available in
multi-processor computer systems. In other words, present
attempts to distribute the processing of network packets
(e.g., through a protocol stack) among a number ofprotocols
in an eflicient manner are generally ineffective. In particular,
the performance of present NICs does not come close to the
expected or desired linear performance gains one may
expect to realize from the availability of multiple processors.
In some mum-processor systems, little improvement in the
processing ofnetwork traflic is realized from the use of more
than 4—6 processors, for example.

In addition, the rate at which packets are transferred from
a network interface circuit to a host computer or other
communication device may fail to keep pace with the rate of
packet arrival at the network interface. One element or
another of the host computer (e.g., a memory bus, a
processor) may be over-burdened or otherwise unable to
awept packets with sufiicient alacrity. In this event one or
more packets may be dropped or discarded. Dropping pack—
ets may cause a network entity to re-transmit some traffic
and, if too many packets are dropped, a network connection
may require re-initialization. Further, dropping one packet
or type of packet instead of another may make a significant
difference in overall network trafiic. If, for example, a
control packet is dropped, the corresponding network con-
nection may be severely affected and may do little to
alleviate the packet saturation of the network interface
circuit because of the typically small size of a control packet.
Therefore, unless the dropping of packets is performed in a
manner that distributes the effect among many network
connections or that makes allowance for certain types of
packets, network trafiic may be degraded more than neces-
sary.

10

15

25

4

Thus, present Nle fail to provide adequate performance
to interconnect today’s high-end computer systems and
high-speed networks. In addition, a network interface circuit
that cannot make allowance for an over-burdened host

computer may degrade the computer's performance.

SUMMARY

In one embodiment of the invention a system and method
are provided for identifying a packet within a particular
communication flow through a communication device such
as a network interface. In particular, the communication flow
may include a first packet transferred from the network
interface to a host computer. Based on an identifier of the
flow, another packet in the same flow may be identified to
the host computer. To increase the efliciency of handling
network trafiic, the flow packets may then be collectively
processed through a protocol stack on a host computer.

In this embodiment, a high performance network interface
of a host computer receives a packet from a network.
Information within a header ortion of the acket is

assembled to enerate a ' ' '-fcation flow, connection or circuit that includes the acket.
  

 
i. a . 'ncludes identifiers . the source

an destination e ' ’ t are exchan ' the acket. In
one em odiment of the invention flow e m one or
more communication flows are sto w dat

'ch 15 ind flow number and which ma \b mana ule. If the
 

30 database does not already include the flow key of the

35

40

45

50

55

receive packet, then the received acket’s communication
flow—may 55 a new flow at the network interface. In gs“ cme

ow is registered in the database b storin its flow ke
an , possibly, other information concerning the flow. Thus,aaetsowma lne ioweanorits

112W;—
The packet is stored in a packet memo e. . a ue

awar ans er to e r an the acket’s flow
num er 15 s r in a ow memo o a d amic acket

c mo e. en the packet is transfen'ed or is about
to be transferred, the flow memory is searched to determine
whether another packet stored in the packet memory is part
of the same communication flow (e.g., has the same flow
number or flow key).

In this embodiment, if another packet has the same flow
number then the host computer is alerted by storing an
indicator in a host memory, such as a descriptor. In another
embodiment of the invention, if no other packet is found
with the same flow number then a diflerent indicator is

stored in a host memory. Adiiferent indicator may be stored,
for example, if the packet is determined to be the last packet
of its communication flow. Depending on the indicator that
is stored, the host computer may delay processing the packet
to await another packet having the same flow number.

The dynamic packet batching module also includes a
controller in a present embodiment of the invention. The
controller attempts to populate the flow memory with infor-
mation associated with or derived from packets stored in the

 
 

packet memory. Illustratively, each entry in the flow
50 memory in this eke ’ r

an an indicator of whether e ' ‘ entry may

65

be mv 1 a w en its packet is transferred to the host
computer, at which time it may be replaced with another
entry.

In one embodiment of the invention, nl ckets that

conform to one or more of a set of Ere-selected pmtogz are
eligible for dynamic packet batching. In this embodiment, a 

a

L I‘d e- 119’
fi’ifi’va ”bit

NOAC EX. 1015 Page 269



NOAC Ex. 1015 Page 270

 
US 6,483,804 B1

5

header arser module may be configured to determine
Mw pacersormamacom’dang with
one of the protocols. If co atrble with the re—selected
WmWe. twat
of other processing efliciencies, such as re-assembling data
WWW

system.

BRIEF DESCRIPTION OF THE FIGURES

FIG. lAis a block diagram depicting a network interface
circuit (NIC) for receiving a packet from a network in
accordance with an embodiment of the present invention.

FIG. 1B is a flow chart demonstrating one method of
operating the NIC of FIG. 1A to transfer a packet received
from a network to a host computer in accordance with an
embodiment of the invention.

FIG. 2 is a diagram of a packet transmitted over a network
and received at a network interface circuit in one embodi-
ment of the invention.

FIG. 3 is a block diagram depicting a header parser of a
network interface circuit for parsing a packet in accordance
with an embodiment of the invention.

FIGS. 4A—4B comprise a flow chart demonstrating one
method of parsing a packet received from a network at a
network interface circuit in accordance with an embodiment

of the present invention.
FIG. 5 is a block diagram depicting a network interface

circuit flow database in accordance with an embodiment of
the invention.

FIGS. 6A—6E comprise a flowchart illustrating one
method of managing a network interface circuit flow data-
base in accordance with an embodiment of the invention.

FIG. 7 is a flow chart demonstrating one method of
distributing the procesing of network packets among mul-
tiple processors on a boa computer in accordance with an
embodiment of the invention.

FIG. 8 is a diagram of a packet queue for a network
interface circuit in accordance with an embodiment of the
invention.

FIG. 9 is a diagram of a control queue for a network
interface circuit in accordance with an embodiment of the
invention.

FIG. 10 is a block diagram of a DMA engine for trans-
ferring a packet received from a network to a host computer
in accordance with an embodiment of the invention.

FIG. 11 includes diagrams ofdata structures for managing
the storage of network packets in host memory bufi'ers in
accordance with an embodiment of the invention.

FIGS. 12A~12B are diagrams of a free descriptor, a
completion descriptor and a free buffer array in accordance
With an embodiment of the invention.

FIGS. 13—20 are flow charts demonstrating methods of
transferring a packet received from a network to a buffer in
a host computer memory in accordance with an embodiment
of the invention.

FIG. 21 is a diagram of a dynamic packet batching
module in accordance with an embodiment of the invention.

FIGS. 22A—22B comprise a flow chart demonstrating one
method of dynamically searching a memory containing
information concerning packets awaiting transfer to a host
computer in order to locate a packet in the same communi-
cation flow as a packet being transferred, in accordance With
an embodiment of the invention.

6

FIG. 23 depicts one set of dynamic instructions for
parsing a packet in accordance with an embodiment of the
invention.

FIG. 24 depicts a system for randomly discarding a packet
5 from a network interface in accordance with an embodiment

of the invention.

FIGS. 25A—25B comprise a flow chart demonstrating one
method of discarding a packet from a network interface in
accordance with an embodiment of the invention.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention, and
is provided in the context of particular applications of the
invention and their requirements. Various modifications to
the disclosed embodiments will be readily apparent to those
slcilled in the art and the general principles defined herein
may be applied to other embodiments and applications
without departing from the spirit and scope of the present
invention. Thus, the present invention is not intended to be
limited to the embodiments shown, but is to be accorded the
widest scope consistent with the principles and features
disclosed herein.

75 In particular, embodiments of the invention are described

below in the form of a network interface circuit #10recei ' communication a ets ormatte in acco ance

emet in e art will recognize, however, that
30 the present invenn'on is not limited to communication pro-

tocols compatible with the Internet and may be readily
adapted for use with other protocolLantiinmmmlmication
devices fifir man a NIC.,___._.——a

The program environment in which a present embodiment
35 of the invention is executed illustratively incorporates a

general—purpose computer or a special purpose device such
a hand-held computer. Details of such devices (e.g.,
processor, memory, data storage, input/output ports and
display) are well known and are omitted for the sake of

40 clarity.
It should also be understood that the techniques of the

present invention might be implemented using a variety of
technologies. For example, the methods described herein
may be implemented in software nmning on a program-

45 mable microprocessor, or implemented in hardware utilizing
either a combination of microprocesors or other specially
designed application specific integrated circuits, program-
mable logic devices, or various combinations thereof. In
particular, the methods described herein may be imple-

so mented by a series of computer-executable instructions
residing on a storage medium such as a carrier wave, disk
drive, or other computer—readable medium.
Introduction

In one embodiment of the present invention, a network

551WW
Wan articular. the

NI ' nfi red to receive and mani ulateszafi
matted in accordance w1t a rotoco stac e. . a com i-

60 nation of communication protocols! supported by a network
coupled to the NIC.

A protoml stack may be described with reference to the
seven-layer ISO-OSI (International Standards
Organization—Open Systems Interconnection) model

65 framework. Thus, one illustran‘ve protocol stack includes the
Transport Control Protocol (TCP) at layer four, Internet
Protocol (IP) at layer three and Ethernet at layer two. For

10

15

20

NOAC EX. 1015 Page 270



NOAC Ex. 1015 Page 271

US 6,483,804 B1
. l . 7

‘ ' purposes of discussion, the term “Ethemer” may be used
herein to refer collectively to the standardized IEEE
(Institute of Electrical and Electronics Engineers) 802.3

. specification as well as version two of the non-standardized
form of the protocol. Where ditferent forms of the protocol
need to be distinguished, the standard form may be identified
by including the “8023" designation.

Other embodiments of the invention are configured to
.‘ work with communications adhering to other protocols, both

Exchange), etc.) and unknown at e present time. One
sldlled in the art will recognize that the methods provided by
this invention are easily adaptable for new communication
protocols.

In addition, the processing of packets described below
may be performed on communication devices other than a
NIC. For example, a modem, switch, router or other com-
munication port or device (e.g., serial, parallel, USB, SCSI)
may be similarly configured and operated.

In embodiments of the invention described below, a NIC
receives a packet from a network on behalf of a Host

f com ter 5 tem or other communication devrce. The NIC

;'~.' C) analyzes the packet leg, by retrieving certain fields Eom
“7, ne or more of 1E protocol Eeagersi and 355 action to
." . . ~ ”a
f» . increase the eflicrency W) W c e packet is transferred

’ 9W.Equipment and methods
discussed below for increasing the efliciency of processing
or transferring packets received from a network may also be
used for packets moving in the reverse direction (i.e., from
the NIC to the network).

    

f >. One techmqu ay be applied to incoming network
. a“. tratlic involves ' o arsin one or more headers of

. ., headers for the layer two, three and
four protocols) in order to iden ' the ac ' cc and
destination entities and ibl retrieve certain othe ‘ —

mation. Using identifiers of the communicatin enti '

Fe . aata fro 'mwmwam
V ii" re—assembled. Typically, a datagram sent to one destination

P‘ ‘ 's transmitted via multi 1eentrt from one source

packets. Ag atin data from multiple related packets
Terpackets «3mg data m mthus
allows a data to be mhledjandmllcctively

Wedatagram may then beprovr e destination e i ' -

255.; For example, rather than providing data from one packe
at a time (and one byte at a time) in separate “copy”
operations, a “page-flip” operation may be performed. In a
page-flip, an entire memory page ofdata may be provided to
the destination entity, possibly in exchange for an empty or
unused page.

In another technique, ceived from a network are
laced in a ueue to await transfer uter. e

awaiting transfer, multiple related packets may be identified
to the host computer. After being transferred, they may be
processed as a group by a host processor rather than being
processed serially (e.g., one at a time).

Yet another technique involves submitting a number of
related packets to a single processor of a multi—processor
host computer system. By distributing packets conveyed
between different pairs of source and destination entities
among different processors, the processing of packets
through their respective protocol stacks can be distributed
While still maintaining packets in their correct order.

The techniques discussed above for increasing the efli—
ciency with which packets are processed may involve a
combination of hardware and software modules located on
a network interface and/or a host computer system. In one

 
a. 3 b, i
"a

a»?aree"Q’Mxk"4~.;,'
p(gr;3155

R(1’22"?!1»;

 

8

particular embodiment, a parsing module on a host comput-
We.Illustratively, the
parsing module comprises a microsequencer operating
according to a set of replaceable instructions stored as

5 micro-code. Using information extracted from the packets,
multiple packe om one source entity to one estinauon
WetaEnEfieH. Khardware re-assembly module on
the NIC may then gather the data from ilie multiple packets.

0 er ar odule on the Nlém—gured to
10 recognize related packets awaiting transfer to the host com- K

puter so that they may be processed through an appropriate
protocol stack collectively, rather than serially. The
re-asembled data and the packet’s headers may then be
provided to the host computer so that appropriate software

15 (e.g., a device driver for the NIC) may process the headers
and deliver the data to the destination entity.

Where the host computer includesmultiple processors, a
load distributor (which may also be implemented in hard-
ware on the NIC) ma select a processor to process the

20 headers of the multi e pac ts ough a protoco stack.
In another embodiment of the invention, a system is

provided for randomly discarding a packet from a NIC when
the NIC is saturated or nearly saturated with packets await-
ing transfer to a host computer.

7.5 One Embodiment of a High Performance Network Interface
Circuit

FIG. 1Adepicts MC 100 configured in accordance with
an illustrative embodiment of the invention. Abrief descrip-
tion of the operation and interaction of the various modules

30 of MC 100 in this embodiment follows. Descriptions incor-
porating much greater detail are provided in subsequent
sections.

A communication packet ma be received at NIC 100 at?
frdm netwoflE 102 5 a medium access contro / Qj35 mfle inot shown in FIG. 1A). The MAC module performs

W' theac et om k, performing some error checking,
detecting padret fragments, detecting over-sized packets,
removing the layer one preamble, etc.

40 Input Port Processing (IPP) module 104 then receives the )

 

11mm
WWmangornetwork,
and a rtron of the acket is ied into header arser 106.

In one embodiment of the invention IPP module 104 may act
45 as a coordinator of sorts to prepare the packet for transfer to

a host computer system. In such a role, IPP module 104 may
receive information concerning a packet from various mod-
ules of NIC 100 and dispatch such information to other
modules. i '2

Header parser 106 arses a header portion of the packet to Iéé Q
momma-m ,2:
same so en 1 y or one estmation entit and ' .a WI'MJt r

su se uen rocessing of the ackets. In the illustrated
55 embaiment, header arser i06 communicates with flow

database manager QEQBMt 1081 which manages flow data-
base FDB 110. In articular, header arser 106 submits a

ue to FDBM 108 to determine w e ' u-
Lgy_________h_ther_uahd.mmm
nication flow (described below! exists between the source

60 entity at sent a acket and the destination entity. 'I_"he_
destination entity may comprise an application program, a

WWW—“umcomputer system t at is to receive the pac»ket.
millustrated embodiment of the invention a commu-

65 nication flow comprises one or more data am acEets fim

1 entified by a flow key assembled from source and desti-
W

50

 

NOAC EX. 1015 Page 271



NOAC Ex. 1015 Page 272

US 6,483,804 Bl
9

er06. 11 one em odiment of the invention a flow ke com-

pugs address and/or port information for the source and
destination entities m e aciet 5 la er three (e.g., 1?)
and/or layer m long, 162) gitocol headers.

For purposes of the illustrated embodiment of the
invention, a communication flow is similar to a TCP end-
to—end connection but is generally shorter in duration. In
particular, in this embodiment the duration of a flow may be
limited to the time needed to receive all of the packets

 

. associated with a single datagram passed from the source
ntity to the destination entity.

Thus, for purposes of flow management, header parse

 
 

manager with other information concerning e pac et that

‘ 106 passes the packet’s flow ke to flow database manager

, Wfi‘w108. The header arser ma also rovide e flow database
  
 

 was retrieve m the acket e. .len h of the packet).

atabase manager 108 searches FDB 110in

ing each vali-
y serve
 
 y NIC 100. Thus, FDBM 108 updates FDB

, ftp!
A.” 1 ' , en.
‘ ‘ ‘ [Q 110 as necessary, depending upon the information received
 m header parser tron, in em 0 ent of

Wtheinvention FDBM 108 associates an o eration or actioncode with the realm ackEt. An gpemnon fie mayb

J‘rfigused to 13mm Whether a packet15 art of a new or existincow, whether e pa e 1ncu es data or just control ~z”W”!%Manon, the amount of data within the packet, whether
the packet data can be re-assembled with related data (e.g,

/ other datam a datagram sent from the source entity to the

it?

{5‘

;> ,W’"

W

1%: Mr may ctermine which rocessor an incomin acket5‘ is to Be rouEd to for rocessin

PW15‘“WW load distfibuto

destination entity), etc.FDBM108 ma use information
retrieved from the packet and provided b header arser106

tion codeis thenoassed back to theheaderparser alon with
anindexofthea ets owwr FDB 110oneembodimentof the invention the combination of
header parser 106, FDBM 108 and FDB 110, or a subset of
these modules, may be known as a traffic classifier due to
their role in classifying or identifying network traffic
received at MC 100.

In the illustrated embodiment, header arser 106 also

pass:uthe packet’s flow key to load distn uto host

 

 

 

that re ated packets are routed to a single pm; By

WM-en connection to a single processor, the correct orderin of
mgbe
'mtemafive embodiment of the invention. In
another alternative embodiment, header parser 106 may also
communicate directly with other modules of NIC 100
besides the load distributor and flow database manager.

Thus, afterh a _ arser 106 arses a acket 08MEDINA—

BEE—“WE
WW3

ac et Wmmofrmation back to module 104 Illustrativel this

Wof
”mmmnfimwmafifir of
amother
«WWa
Mr).

Now the acket ma be storedin acket ue ' h

ho packets or manipulation by DMA (Direct Memory
Wig/LN.

M

Li “(a

10

15

20

30

35

50

55

60

65

10

Access) gngins 120 and transfer to a host computew
Wm

 
assed to d annc acket batchin modille 122. Control
WmTflco'3"! “ea—con”kWh ““11

acket 1n acket queue 116.

concerning packets in ac et queue o batch

(rims-mrelated
m. In one embodiment of the invention pac et batch-ing module 122 alerts the host computer to the availability
of headers from related packets so that they may be pro-
cessed together.

Although the processing of a packet’s protocol headers is
performed by a processor on a host computer system in one
embodiment of the invention, in another embodiment the
protocol headers may be processed by a processor located on
NIC 100. In the former embodiment, software on the host
computer (e.g., a device driver for NIC 100) can reap the
advantages of additional memory and a replaceable or
upgradeable processor (e.g., the memory may be supple-
mented and the processor may be replaced by a faster
model).

During the storage of a packet in packet queue 116,
checksum generator 114 may perform a chedrsum opera-
tion. The checksum may be added to the packet queue as a
trailer to the packet. Illustratively, checksum generator 114
generates a checksum from a portion of the packet received
from network 102. In one embodiment of the invention, a
chedrsum is generated from the TCP portion of a packet
(e.g., the TCP header and data). If a packet is not formatted
according to TCP, a checlsum may be generated on another
portion of the packet and the result may be adjusted in later
processing as necessary. For example, if the checksum
calculated by chccksum generator 114 was not calculated on
the correct portion of the packet, the chedrsum may be
adjusted to capture the correct portion. This adjustment may
be made by software operating on a host computer system
(e.g., a device driver). Checksum generator 114 may be
omitted or merged into another module of NIC 100 in an
alternative embodiment of the inwntion.

From the information obtaned by header mgr 106 and
the ow information managed by flow database man er
108, the host coiflei item servfl EE EIC 100 in the

45 ' ustrated embodiment is able to process network traffic
very efficiently. For example, data portions of related pack-
ets-BETH? re-assembled by DMA engine 120 to form
mm
mmof a memory
page, the data can be more efliciently transferred to a
destination entity through “page-flipping," in which an
entire memory page filled by DMA engine 120 is provided
at once. One page-flip can thus take the place of multiple
copy operations. Meanwhile, the header portions of the
re-assembled packets may similarly be processed as a group
through their appropriate protocol stack.

As already described, in another embodiment of the
invention the procesing of network traflic through appro-
priate protocol stacks may be efliciently distributed in a
mum-processor host computer system. In this embodiment,
load distributor 112 assi or distrrbu re ed

(e.g., packetspin the same communication flow to the sameprocessor. ar, pac ets avmg the same source and
Temon aaa'fcsses in their layer three protocol (e.g.., IP)
headers and/or the same source and destination orts in their

layer four protocol jag, TCPj headers may be sent to__a
smgle processor. 

NOAC EX. 1015 Page 272



NOAC Ex. 1015 Page 273

11

In the NIC illustrated in FIG. 1A, the processing enhance-
ments discussed above (e.g., re-assembling data, batch pro-
cessing packet headers, distributing protomck

1 that are formatte acco g 0 one or more pre- ted
protocol stacks. In this embodiment of the invention net-
work 102 is the Internet and NIC 100 is therefore configured
to process packets using one of several protocol stacks
compatible with the Internet. Packmccord-
mg to the pre-selected protocols are also processed, but may
not receive the benefits of the full suite of processing
efliciencies provided to packets meeting the pre-selected
protocols.

For example, packets not matching one of the pre-selected
protocol stacks may be distributed for processing in a
multi—processor system on the basis of the packets’ layer two
(e.g., medium access control) source and destination
addresses rather than their layer three or layer four
addresses. Using layer two identifiers provides less granu-
larity to the load distribution procedure, thus pogrbly dis-
tributing the processing of packets less evenly than if layer
three/four identifiers were used.

FIG. 1]} depicts one method of using NIC 100 of FIG. 1A
to receive one packet fiom network 102 and transfer it to a
host computer. State 130 is a start state, possibly character-
ized by the initialization or resetting of NIC 100.

In state 132, a packet is received by NIC 100 from
network 102.MWe

kW”-cols. The packet may erecerve an rm ymamp ated
by a MAC module befiore being passed to an IPP module.

In state 134, a rtion of the acket is co ied and assed
to header parser £56. HeEer r 106 e arses e
pac ettoe ac v u ' eaders

or its am. A flow ke is enerated fiom some of the
retrrev ormauon to ident’ the mmumcatron flow

that includes the packet. The degree or extent to which the
packet is arsed ma d nd on its protocols, in that the
headerparser may be configured to parse headers ofdiiferent
protocolE to aifiereni HepiEs'. In parhmar, header parser 106
may e optimized (e.g., its operating instructions
configured) f r a ecific set of protocols or rotocol stacks.
If the packei‘oofimrficd
protocols it may be parsed more fully than a packet that does
not adhere to any of the protocols.

’ }0% In state EQWS
5 headers is forwarded to flow database manager 08 and/or

, load distributor 112. The FDBM uses the information to set
‘ (MW up a How 111 How database 110 if one does not already exist

”‘9 / or this communication 110 If an entry already ensts oré ? fie packet’s flow, it may be 11 dated to reflect the recer t of
anew . er, FDBM 108 generates an opera-

 
 

I°°
@

I36

W

4:4,;

i tion code to summarize one or more c err cs or
conditions of the packet. The 0 ration code may be used by

appropriate manner, as described in subsequent se rons.
The eratron code is returned to the header arser alon

with an index (e.g., a flow number) of the packet’s flow in
W—

m, load distributor Q2 gig a processor
number to the packet, e host computer includes multr 1e

PW”Mums{WW-1;,
PW“w c processor is to conduct the packet throng]: im]
stac on e ost com uter State 138 may be omitted in an
'mfiimfidf;the invention, particularly if the
host computer consists of only a single processor.

US 6,483,804 Bl
12

In stateMohawk.Asthe contents of the pac et are placed into the packet queue,
checksum generator 114 may compute a checksum. The
checksum generator may be informed by IPP module 104 as

5 to which por1ion of the packet to compute the checksum on.
The computed checksum is added to the packet queue as a
trailer to the packet. In one embodiment of the invention, the
packet is stored in the packet queue at substantially the same
time that a copy of a header portion of the packet is provided

10 to header parser 106.

Also in state 140, gngol information for the packet is
stored in control gpeue 1187apd information concealing the

Wedto ynamic acket batchin modulij_22_.=g
15 "In siate 142, NIC 100 determines whether the packet is

ready to be transferred to host computer memory. Until it is
ready to be transferred, the illustrated procedure waits.

When the packet is ready to be transferred (e.g., the
packet is at the head of the packet queue or the host

20 computer receives the packet ahead of this packet in the
packet queue), in state 144 dynamic packet batching module
12 determines whether a related packet will soon be
transferred. If so, then when the present packet is transferred
to host memory the host computer is alerted that a related

25 packet will soon follow. The host computer may then
process the packets (e.g., through their protocol stack) as a
group.

In state 146, the packet is transferred (e.g., via a direct
memory accessWEttermemory. And,

30 in state 148, the host com uter is notified that the acket was
transferred. Ihe illustrated procedure then ends at state 150.
Wedin the art of computer systems and networhng
will recognize that the procedure described above is just one
method of employing the modules of NIC 100 to receive a

35 singe packet from a mom—Wat

W.Other suitable methods are also contem-p ted within the scope of the invention.
An Illustrative Packet

FIG. 2 is a diagram of an illustrative packet received by
40 NIC 100 from network 102. Packet 200 comprises data

portion 202 and header portion 204, and may also mntain
trailer portion 206. Depending upon the network environ-
ment traversed by packet 200, its maximum size (e.g., its
maximum transfer unit or MTU) may be limited.

In the illustrated embodiment, data por1ion 21? comprises
data being provided to a destination or recervmg entity
within a computer system e. . user a lication ro ,
o eratrn s stem or a communication subs tem of the

computer. Header mrtion 204 comprises one or more ead-
50 ers prefixed to the data anion by the source or orig'pating

entity or a computer system comprising the source entity

cation rotocol.

"Ii1—a£t—ypical network environment, such as the Internet,
55 individual headers within header portion 204 are attached

(e.g., prepended) as the packet is processed through difi'erent
layers of a protocol stack (e.g., a set of protocols for
communicating between entities) on the transmitting com-
puter system. For example, FIG. 2 depicts protocol headers

60 210, 212, 214 and 216, corresponding to layers one through
four, respectively, of a suitable protocol stack. Each protocol
header contains information to be used by the receiving
computer system as the packet is received and proce§ed
through the protocol stack. Ultimately, each protocol header

65 is removed and data portion 202 is retrieved.
As described in other sections, in one embodiment of the

invention a system and method are provided for parsing

45

 

 

NOAC EX. 1015 Page 273



NOAC Ex. 1015 Page 274

 
US 6,483,804 B1

13

packet 200 to retrieve various bits of information. In this
em iment, packet 200 is parsed in order to identify the
beginning of data portion 202 and to retrieve one or more
values for fields within header portion 204. Illustratively,
however, layer one protocol header or preamble 210 com-
sponds to a hardware-level specification related to the cod-
ing of individual bits. Layer one protocols are generally only
needed for the physical proces of sending or receiving the
packet across a conductor. Thus, in this embodiment of the
invention layer one preamble 210 is stripped from packet
200 shortly after being received by NIC 100 and is therefore
not parsed.

The extent to which headgr portion 204 is parsed may
depend umn how manyz if any2 of the protocols represented
in the hemer portion match a set of pre-selected protocols.
For example, the192113;;me or
aborted once it is ' ed that one of the acket’s headers

Witprotocol-particular, in one embodiment of the invention NIC 100
is configured primarily for Internet traflic. Thus, in this
embodiment packet 200 is extensively parsed onlzgen the

y r o rotocol is Ethernet (either traditional Ethernet or
mEmmcmggngor cal
Area Networks the e rotocol rs le(Intemet
Protoco and the layer four rotocol is TCP ransport
Con ro co .Wkmay
be parsed to some (e.g., lesser) extent NIC 100 may,
Wed to su port and pm}:

WWW]headers at are parsed, and the extent to which they are
parsed, are determined by the configuration of a set of
instructions for operating header parser 106.

As described above, the protocols corresponding to head-
ers 212, 214 and 216 depend upon the network environment
in which a packet is sent. The protocols also depend upon the
communicating entities. For example, a packet received by
a network interface may be a control packet exchanged
between the medium accm controllers for the source and

destination computer systems. In this use, the packet would
be likely to include minimal or no data, and may not include
layer three protocol header 214 or layer four protocol header
216. Control packets are typically used for various purposes
related to the management of individual connections.

Another communication flow or connection could involve

two application programs. In this case, apacket may include
headers 212, 214 and 216, as shown in FIG. 2, and may also
include additional headers related to higher layers of a
protocol stack (e.g., session, presentation and application
layers in the 180—051 model). In addition, some applications
may include headers or header-like information within data
portion 202. For example, for a Network File System (NFS)
application, data portion 202 may include NFS headers
related to individual NFS datagrams. A datang may be
defined as a collection of data sent fiom one entity to
another, and may comprise data transmitted in multiple
packets. In other words, the amount of data constituting a
datagram may be greater than the amount of data that can be
included in one packet

One skilled in the art will appreciate that the methods for
parsing a packet that are described in the following section
are readily adaptable for packets formatted in accordance
with virtually any communication protocol.
One Embodiment of a Header Parser

FIG. 3 depicts header parser 106 of FIG. 1Ain accordance
with a present embodiment of the invention. Illustratively,
header parser 106 comprises header memory 302 and parser
304, and parser 304 comprises instruction memory 306,

14

Although depicted as distinct modules in FIG. 3, in an
alternative embodiment of the invention header memory 302
and instruction memory 306 are contiguous.

In the illustrated embodiment, parser 304 parses a header
stored in heade _ cco g to instructions
stored 111‘ instruction memory 306. The instructions are
desi ed for the arsin articular rotocols or a articu-

ar protocol stack, as discussed above. In one embodiment of
The invention, instruction memory 306 is modifiable (e.g.,

10 the memory is implemented as RAM, EPROM, EEPROM or

15

30

the like), so that new or modified parsing instructions may
be downloaded or otherwise installed. Instructions for pars-
ing a packet are further discussed in the following section.

In FIG. 3, a header portion of a packet stored in IPP
module 104 (shown in FIG. 1A) is copied into header
memory 302. Illustratively, a specific number of bytes (e.g.,
114) at the beginning of the packet are copied. In an
alternative embodiment of the invention, the portion of a
packet that is copied may be of a dilferent size. The
particular amount of a packet copied into header memory
302 should be enough to capture one or more protocol
headers, or at least enough information (e.g., whether
included in a header or data portion of the packet) to retrieve
the information described below. The header portion stored
in header memory 302 may not include the layer one header,
which may be removed prior to or in conjunction with the
packet being processed by IPP module 104.

After a header portion of the packet is stored in header
memory 302, parser 304 parses Elie header rtion according

e instructions store in Instruction memo 306. In the

' presently describa embaiment instructions for oErating
parser 304 a l the forma tep

the contents of hea 'eve

s ' c information. In particular, specifications of commu-
35 'incation protocols are well known and widely available.

Thus, a rotocol header ma be traversed byte by byte or
some other fashion by referring to the rotoco ca-
tions. In a present em cut 0 the invention the parsingM

algorithm is dynamic, with information retrieved from one
40 field of a header often altering the manner in which another

45

50

55

60

65

part is parsed.
For example, it is known that the Type field of a packet

adhering to the traditional, form of Ethernet (e.g., version
two) begins at the thirteenth byte of the (layer two) header.
By comparison, the Type field of a packet following the
IEEE 802.3 version of Ethernet begins at the twenty-first
byte of the header. The Type field is in yet other locations if
the packet forms part of a Virtual Local Area Network
(VLAN) communication (which illustratively involves tag-
ging or encapsulating an Ethernet header). Thus, in a present
embodiment of the invention, the values in certain fields are
retrieved and tested in order to emure that the information

needed from a header is drawn from the correct portion of
the header. Details concerning the form of a VLAN packet
may be found in specifications for the IEEE 802.3p and EB
8023q forms of the Ethernet protocol.

The operation of header parser 106 also depends upon
other dilferences between protocols, such as whether the
packet uses version four or version six of the Internet
Protocol, etc. Specifications for versions four and six of IP
may be located in [E'I‘F (Internet Engineering Task Force)
RFCs (Request for Comment) 791 and 2.460, respectively.

The more protocols that are “known” by parser 304, the
more protocols a packet may be tested for, and the more
complicated the parsing of a packet’s header portion may
become. One skilled in the art Will appreciate that the
protocols that may be parsed by parser 304 are limited only

NOAC EX. 1015 Page 274



NOAC Ex. 1015 Page 275

 
US 6,483,804 B1

15

by the instructions according to which it operates. Thus, by
augmenting or replacing the parsing instructions stored in
instruction memory 306, virtually all known protocols may
be handled by header parser 106 and virtually any informa-
tion may be retrieved from a packet’s headers.

If, of course, a packet header does not conform to an
expected or suspected protocol, the parsing operation may
be terminated. In this case, the packet may not be suitable for
one more of the efliciency enhancements ofi‘ered by NIC 100
(e.g., data re-assembly, packet batching, load distribution).

lllustratively, the information retrieved from a packet’s
headers is used by other portions of NIC 100 when process-
ing thatpacket. For example, as a result of the acket arsm

performed by parser 304 a flow key is generated to identify
the communication flow or communication connection that
comprises the packet. Illustratively, the flow key isassembled tenatin one or more addresses corre-

SWaMSentitieS- In
a present embodiment, a flow key is formed from a combi-
nation of the source and ation a esses awn

Wm
macs
maybe used, such as the Ethernet source and destination
addresses (drawn from the layer two header), NFS file
handles or source and destination identifiers for other appli-
cation datagrams drawn from the data portion of the packet.

One skilled in the art will appreciate that the communi-
cating entities may be identified with greater resolution by
using indicia drawn from the higher layers of the protocol
stack escalated with a packet. Thus, a combination of IP
and TCP indieia may identify the entities with greater
particularity than layer two information.

Besides a flow key, parser 304 also generates a control or
status indicator to summarize additional information con-

cerning the packet. In one embodiment of the invention a
control indicator includes a sequence number (e.g., TCP
sequence number drawn from a TCP header) to ensure the
correct ordering of packets when m-ammbhng their data.
The control indicator may also reveal whether certain flags
in the packet's headers are set or cleared, whether the packet
contains any data, and, if the packet contains data, whether
the data exceeds a certain size. Other data are also suitable

for inclusion in the control indicator, limited only by the
information that is available in the portion of the packet
parsed by parser 304.

In one embodiment of the invention, header arser 106
provides the flow key and all or a ortron of {he ni 1
WWa
following section, FDBM 108 manages a database or other
datastructurecontainin information relevani to communi-cation ows assin thro NIC 100.

In other embodiments of the invention, parser 304 pro-
duces additional information derived from the header of a

packet for use by other modules of NIC 100. For example,
header parser 106 may report the offset, from the beginning
of the packet or from some other point, of the data or
payload portion of a packet received from a network. As
described above, the data portion of a packet typically
follows the header portion and may be followed by a trailer
portion. Other data that header parser 106 may report
include the location in the packet at which a checksum
operation should begin, the location in the packet at which
the layer three and/or layer four headers begin, diagnostic
data, payload information, etc. The term “payload" is often
used to refer to the data portion of a packet. In particular, in
one embodiment of the invention header parser 106 provides
a payload otfset and payload size to control queue 118.

 

10

15

753

16

Sin appropriate circumstances, header parser 106 may also
report (e.g., to IPP module 104 and/or control queue 118)
that the packet is not formatted in accordance with the
protocols that parser 304 is configured to manipulate. This
report may take the form of a signal (e.g., the No_Assist
signal described below), alert, flag or other indicator. The
signal may be raised or issued whenever the packet is found
to reflect a protocol other than the pre-selected protocols that
are compatible with the processing enhancements described
above (e.g., data re-assembly, batch processing of packet
headers, load distribution). For example, in one embodiment
of the invention parser 304 may be configured to parse and
efliciently process packets using TCP at layer four, 11’ at
layer three and Ethernet at layer two. In this embodiment, an
IPX (Internetwork Packet Exchange) packet would not be
considered compatible and IPX packets therefore would not
be gathered for data re—assembly and batch processing.

At the conclusion of parsing in one embodiment of the
invention, the various pieces of information described above

are disseminated to appropriate modules of NIC 100,gmr
MW“anager etermines whether an active 1193 g @ci-
ated with the flow e errv om the acket and sets an

0WWebs-.13tion, IPP mo transmits the ac et t acket
queue 116. [PP module 104 ma also re ' f the

are—Mit to
wodule of NIC 100.

In the embodiment of the invention depicted in FIG. 3, an
30 entire header portion of a received packet to be parsed is

35

40

45

50

55

60

65

copied and then parsed in one evolution, after which the
header parser turns its attention to another packet. However,
in an alternative embodiment multiple copy and/or parsing
operations may be performed on a single packet. In
particular, an initial header portion of the packet may be
copied into and parsed by header parser 106 in a first
evolution, after which another header portion may be copied
into header parser 106 and parsed in a second evolution. A
header portion in one evolution may partially or completely
overlap the header portion of another evolution. In this
manner, extensive headers may be parsed even if header
memory 302 is of limited size. Similarly, it may require
more than one operation to load a full set of instructions for
parsing a packet into instruction memory 306. Illustratively,
a first portion of the instructions may be loaded and
executed, after which other instructions are loaded.

With reference now to FIGS. 4A—4B, a flow chart is
presented to illustrate one method by which a header parser
may parse a header portion of a packet received at a network

interface circuit from a network. In this implementation, the
header r is confi iii-cl?
ets confo to a set ofc re-se rprotocol
stacks). For ackets me tin these criteria, various informa-
tion is retrieved from the header mon to assist in the

”Wpackets (e.g.,
pWfitagram). Othere ea 5 of the network interface circuit may also
be enabled.

The information generated by the header arser includes,
in particular, a flow key With which to identify the commu-
nit—[Taon flow or communication connecfion Eat com rises

e received acket. ln one em ment 0 the invention,
data from pac ets having the same flow key may be iden-
tified and re-assembled to form a datagram. In addition,
headers of packets having the same flow key may be
processed collectively through their protocol stack (e.g.,
rather than serially).

NOAC EX. 1015 Page 275



NOAC Ex. 1015 Page 276

 

 

 

we“.,
.11......

 

US 6,483,804 B1
17

In another embodiment of the invention, information
retrieved by the header parser is also used to distribute the
processing of network traflic received from a network. For
example, multiple packets having the same flow key may be
submitted to a single processor of a multi-processor host
computer system.

In the method illustrated in FIGS. 4A-4B, the set of
pre-selected protocols corresponds to communication pro-
tocols frequently transmitted via the Internet. In particular,
the set of protocols that may be extensively parsed in this
method include the following. At layer two: Ethernet
(traditional version), 802.3 Ethernet, Ethernet VLAN
(Virtual Local Area Network) and 802.3 Ethernet VLAN. At
layer three: IPv4 (with no options) and IPv6 (with no
options). Finally, at layer four, only TCP protocol headers
(with or without options) are parsed in the illustrated
method. Header parsers in alternative embodiments of the
invention parse packets formatted through other protocol
stacks. In particular, a NIC may be configured in accordance
with the most common protocol stacks in use on a given
network, which may or may not include the protocols
compatible with the header parser method illustrated in
FIGS. 4A-4B.

M described below, a received packet that does not
correspond to the protocols parsed by a given method may
be flagged and the parsing algorithm terminated for that
packet. Because the protocols under which a packet has been
formatted can only be determined, in the present method, by
examining certain header field values, the determination that
a packet does not conform to the selected set of protocols
may be made at virtually any time during the procedure.
Thus, the illustrated parsing method has as one goal the
identification of packets not meeting the formatting criteria
for re-assembly of data.

Variousprotocol header fields appearing in headers for the
selected protocols are discussed below. Communication
protocols that may be compatible with an embodiment of the
present invention (e.g., protocols that may be parsed by a
header parser) are well known to persons skilled in the art
and are described with great particularity in a number of
references They therefore need not be visited in minute
detail herein. In addition, the illustrated method ofparsing a
header portion of a packet for the selected protocols is
merely one method of gathering the information described
below. Other parsing procedures capable of doing so are
equally suitable.

In a present embodiment of the invention, the illustrated
procedure is implemented as a combination of hardware and
software. For example, updateable micro-code instructions
for performing the procedure may be executed by amicrose—
quencer. Alternatively, such instructions may be fixed (e.g.,
stored in read-only memory) or may be executed by a
processor or microprocessor.

In FIGS. 4A-4B, state 400 is a start state during which a
packet is received by NIC 100 (shown in FIG. 1A) and initial
processing is performed. NIC 100 is coupled to the Internet
for purposes of this procedure. Initial processing may
include basic error checking and the removal of the layer one
preamble. After initial processing, the packet is held by IPP
module 104 (also shown in FIG. 1A). In one embodiment of
the invention, state 400 comprises a logical loop in which
the header parser remains in an idle or wait state until a
packet is received.

In state 402, a eader rtion of ‘ ' ' to
memory (e.g., header memo 302 of FIG. 3). In a present
cm ‘ e invention a predetermined number of
bytes at the beginning (e.g., 114 bytes) of the packet are

10

15

30

35

45

50

55

60

65

18

copied. Packet portions of diflerent sizes are copied in
alternative embodiments of the invention, the sizes of which

are guided by the goal of copying enough of the packet to
capture and/or identify the necessary header information.
Illustratively, the full packet is retained by IPP module 104
while the following parsing operations are performed,
although the packet may, alternatively, be stored in packet
queue 116 prior to the completion of parsing.

Also in state 402, a pointer to be used in parsing the
packet may be initialized. Because the layer one preamble
was removed, the header portion copied to memory should
begin with the layer two protocol header. Illustratively,
therefore, the pointer is initially set to point to the twelfth
byte of the layer two protocol header and the two-byte value
at the pointer position is read. As one skilled in the art will
recognize, these two bytes may be part of a number of
dilferent fields, depending upon which protocol constitutes
layer two of the packet’s protocol stack. For example, these
two bytes may comprise the Type field of a traditional
Ethernet header, the Length field of an 802.3 Ethernet header
or the TPID (Tag Protocol IDentifier) field of a VLAN-
tagged header.

In state 404, a first examination is made of the layer two
header to determine if it comprises a VLAN—tagged layer
two protocol header. Illustratively, this determination
depends upon Whether the two bytes at the pointer position
store the hexadecimal value 8100. If so, the pointer is
probably located at the TPID field of a VLAN-tagged
header. If not a VLAN header, the procedure proceeds to
state 4%.

If, however, the layer two header is a VLAN-tagged
header, in state 406 the CF] (Canonical Format Indicator) bit
is examined. If the CFI bit is set (e.g., equal to one), the
illustrated procedure jumps to state 430, after which it exits.
In this embodiment of the invention the CFI bit, when set,
indicates that the format of the packet is not compatible with
(i.e., does not comply with) the pre-selected protocols (e.g.,
the layer two protocol is not Ethernet or 802.3 Ethernet). If
the CFI bit is clear (e.g., equal to zero), the pointer is
incremented (e.g., by four bytes) to position it at the next
field that must be examined.

In state 408, the layer two header is further tested.
Although it is now known whether this is or is not a
VLAN-tagged header, depending upon whether state 408
was reached through state 406 or directly from state 404,
respectively, the header may reflect either the traditional
Ethernet format or the 8023 Ethernet format. At the begin-
ning of state 408, the pointer is either at the twelfth or
sixteenth byte of the header, either of which may correspond
to a Length field or a Type field. In particular, if the two-byte
value at the position identified by the pointer is le$ than
0600 (hexadecimal), then the packet corresponds to 8023
Ethernet and the pointer is understood to identify a Length
field. Otherwise, the packet is a traditional (e.g., version
two) Ethernet packet and the pointer identifies a Type field.

If the layer two protocol is 802.3 Ethernet, the procedure
continues at state 410. If the layer two protocol is traditional
Ethernet, the Type field is tested for the hexadecimal values
of0800 and 08DD. If the tested field has one of these values,
then it has also been determined that the packet’s layer three
protocol is the lntemet Protocol. In this case the illustrated
procedure continues at state 412. Lastly, if the field is a Type
field having a value other than 0800 or 86DD (hexadecimal),
then the packet’s layer three protocol does not match the
pre—selected protocols according to which the header parser
was configured. Therefore, the procedure continues at state
430 and then ends.

NOAC EX. 1015 Page 276



NOAC Ex. 1015 Page 277

(3’:

US 6,483,804 B1
19

In one embodiment of the invention the packet is exam-
ined in state 408 to determine if it is a jumbo Ethernet frame.
This determination would likely be made prior to deciding
whether the layer two header conforms to Ethernet or 802.3
Ethernet. Illustratively, the jumbo frame determination may
be made based on the size of the packet, which may be
reported by [PP module 104 or a MAC module. If the packet
is a jumbo frame, the procedure may continue at state 410;
otherwise, it may resume at state 412.

In state 410, the procedure verifies that the layer two
protocol is 802.3 Ethernet with LLC SNAP encapsulation. In
particular, the pointer is advanced (e.g., by two bytes) and
the six-byte value following the Length field in the layer two
header is retrieved and examined. If the header is an 802.3
Ethernet header, the field is the LLC__SNAP field and
should have a value ofAAAA03000000 (hexadecimal). The
original specification for an LLC SNAP header may be
found in the specification for IEEE 802.2. If the value in the
packet’s LLC_SNAP field matches the expected value the
pointer is incremented another six bytes, the two-byte 802.3
Ethernet Type field is read and the procedure continues at
state 412. If the values do not match, then the packet does
not conform to the specified protocols and the procedure
enters state 430 and then ends.

In state 412, the pointer is advanced (e.g., another two
bytes) to locate the beginning of the layer three protocol
header. This pointer position may be saved for later use in
quickly identifying the beginning of this header. The packet
is now known to conform to an accepted layer two protocol
(e.g., traditional Ethernet, Ethernet with VLAN tagging, or
802.3 Ethernet with LLC SNAP) and is now checked to
ensure that the packet’s layer three protocol is IP. As
discussed above, in the illustrated embodiment only packets
conforming to the IP protocol are extensively processed by
the header parser.

Illustratively, if the value of the Type field in the layer two
header (retrieved in state 402 or state 410) is 0800
(hexadecimal), the layer three protocol is expected to be IP,
version four. If the value is 86DD (hexadecimal), the layer
three protocol is expected to be IP, version six. Thus, the
Type field is tested in state 412 and the procedure continues
at state 414 or state 418, depending upon whether the
hexadecimal value is 0800 or 86DD, respectively.

In state 414, the layer three header’s conformity with
version four of IP is verified. In one embodiment of the

invention the Version field of the layer three header is tested
to ensure that it contains the hexadecimal value 4, corre-
sponding to version four of IP. If in state 414 the layer three
header is confirmed to be [P version four, the procedure
continues at state 416; otherwise, the procedure proceeds to
state 430 and then ends at state 432.

In state 416, various ieces of information from the IP
header are gved. l SEE information may include the IHL (IP

“'Header Length), Total Length, Protocol and/or Fragment
Offset fields. The [P source address and the IP destinationw

aflmssgs may also be stored. TWINE-Wu
address values are each four bytes long in version four of IP.

lliese addresses are used, as described above, t‘wgfle‘g, flow ke that identifies the communication flow in whic
Writ. [lie Iota] fingffi field stores Elie size

of the [1’ segment of this packet, which illustratively com-
prises the [P header, the TCP header and the packet’s data
portion. The TCP segment size of the packet (e.g., the size
of the TCP header plus the size of the data portion of the
packet) may be calculated by subtracting twenty bytes (the
size of the IP version four header) from the Total Length
value. After state 416, the illustrated procedure advances to
state 422.

10

15

30

35

45

50

55

60

65

20

In state 418, the layer three header’s conformity with
version six of [P is verified by testing the Version field for
the hexadecimal value 6. If the Version field does not contain

this value, the illustrated procedure proceeds to state 430.
In state 420, the values of the Payload Length (e.g., the

size of the TCP segment) and Next Header field are saved,
plus the IP source and destination addresses. Source and
destination addresses are each sixteen bytes long in version
six of IP.

In state 422 of the illustrated procedure, it is determined
whether the IP header (either version four or version six)
indicates that the layer four header is TCP. Illustratively, the
Protocol field of a version four [P header is tested while the
Next Header field of a version six header is tested. In either

case, the value should be 6 (hexadecimal). The pointer is
then incremented as necessary (e.g., twenty bytes for IP
version four, forty bytes for IP version six) to reach the
beginning of the TCP header. If it is determined in state 422
that the layer four header is not TCP, the procedure advances
to state 430 and ends at end state 432.

In one embodiment of the invention, other fields of a
version four [P header may be tested in state 422 to ensure
that the packet meets the criteria for enhanced processing by
NIC 100. For example, an IHL field value other than 5
(hexadecimal) indicates that [P options are set for this
packet, in which case the parsing operation is aborted. A
fragmentation field value other than zero indicates that the IP
segment of the packet is a fragment, in which case parsing
is also aborted. In either case, the procedure jumps to state
430 and then ends at end state 432.

In state 424, the packet’s TCP header is parsed and
various data are collected from it. In parficular, the TCP
source port and destination port values are saved. The TCP
sequence number, which is used to ensure the correct
re-assembly of data from multiple packets, is also saved.
Further, the values of several components of the Flags
field-—illustral:ively, the URG (urgent), PSH (push), RST
(reset), SYN (synch) and FIN (finish) bits—are saved. As
will be seen in a later section, in one embodiment of the
invention these flags signal various actions to be performed
or statuses to be considered in the handling of the packet.

Other signals or statuses may be generated in state 424 to
reflect information retrieved from the TCP header. For

example, the point from which a checksurn operation is to
begin may be saved (illustratively, the beginning of the TCP
header); the ending point of a checksum operation may also
be saved (illustratively, the end of the data portion of the
packet). An ofl’set to the data portion of the packet may be
identified by multiplying the value of the Header Length
field of the TCP header by four. The size of the data portion
may then be calculated by subtracting the offset to the data
portion from the size of the entire TCP segment.

In state 426, a Wkey is assembled by concatenating the
[P source and d ’ ' and
glgginafimports. As already descn the flow ke ma be
used to ideng'fy a mmmunicatign firm or communication
connection, and ma be used b other mo f C 100
to proceS network traflic more efliciently. Although the
sumaddresses ditfer between
[P versions four and six (e.g., four bytes each versus sixteen
bytes each, rewectively), in the presently described embodi-
ment of the invention all flow keys are of uniform size. In
particular, in this embodiment they are thirty-six bytes long,
including the two-byte TCP source port and two-byte TCP
destination port. Flow keys generated from IP, version four,
packet headers are padded as necessary (e.g., with twenty-
four clear bytes) to fill the flow key’s allocated space.

NOAC EX. 1015 Page 277



NOAC Ex. 1015 Page 278

 

US 6,483,804 B1
21

In state 428, a control or status indicator is assembled to
provide various information to one or more modules of NIC
100. In one embodiment of the invention a control indicator

includes the packet’s TCP sequence number, a flag or
identifier (e.g., one or more bits) indicating whether the 5
packet contains data (e.g., whether the TCP payload size is
greater than zero), a flag indicating whether the data portion
of the packet exceeds a pre-determined size, and a flag
indicating whether certain entries in the TCP Flags field are
equivalent to pre-determined values. The latter flag may, for
example, be used to inform another module of NIC 100 that
components of the Flags field do or do not have a particular
configuration. After state 428, the illustrated procedure ends
with state 432.

State 430 may be entered at several different points of the
illustrated procedure. This state is entered, for example, 15
when it is determined that a header portion that is being
parsed by a header parser does not conform to the pre-
selected protocol stacks identified above. As a result, much
of the information deserted above is not retrieved. A

practical consequence of the inability to retrieve this infor- 20
mation is that it then cannot be provided to other modules of
NIC 100 and the enhanced processing described above and
in following sections may not be performed for this packet.
In particular, and as discused previously, in a present
embodiment of the invention one or more enhanced opera- 75
tions may be performed on parsed packets to increase the
efliciency with which they are processed. Illustrative opera-
tions that may be applied include the re—assembly of data
from related packets (e.g., packets containing data from a
single datagram), batch processing of packet headers 30
through a protocol stack, load distribution or load sharing of
protocol stack processing, efficient transfer of packet data to
a destination entity, etc.

In the illustrated procedure, in state 430 a flag or signal
(illustratively termed No_Assist) is set or cleared to indicate 35
that the packet presently held by [PP module 104 (e.g.,
which was just procesed by the header parser) does not
conform to any of the pre-selected protocol stacks. This flag
or signal may be relied upon by another module of NIC 100
when deciding whether to perform one of the enhanced 40
operations.

Another flag or signal may be set or cleared in state 430
to initialize a checlmim parameter indicating that a check-
sum operation, ifperformed, should start at the beginning of
the packet (e.g., with no offset into the packet). lllustratively, 45
incompatible packets cannot be parsed to determine a more
appropriate point from which to begin the checksum opera-
tion. After state 430, the procedure ends with end state 432.

Winf rmation generated from the packet to one or more 50modules ofNIC 100. For exam 1e in on
invention e ow ke is rovided to flow datab a er

WIo“diffil'lhm’l'ueue
W116. Illustratively, the control indica-
tor is rovided to flow database maria erWm 55
ammwtm
offset and the No__Assist signal may be returned to IPP
module 104 and provided to control queue 118. Yet addi—
tional control and/or diagnostic information, such as offsets
to the layer three and/or layer four headers, may be provided 60
to IPP module 104, packet queue 116 and/or control queue
118. Checksum information (e.g., a starting point and either
an ending point or other means of identifying a portion of the
packet from which to compute a checksum) may be pro-
vided to checksum generator 114. 65

As discussed in a following section, although a received
packet isparsed on NIC 100 (e.g., by header parser 106), the

10

22

packets are still processed (e.g., through their respective
protocol stacks) on the host computer system in the illus-
trated embodiment of the invention. However, after parsing
a packet in an alternative embodiment of the invention, NIC
100 also performs one or more subsequent processing steps.
For example, NIC 100 may include one or more protocol
processors for processing one or more of the packet’s
protocol headers.
Dynamic Header Parsing Instructions in One Embodiment
of the Invention

In one embodiment of the present invention, header parser
106 parses a packet received from a network according to a
dynamic sequence of instructions. The instructions may be
stored in the header parser’s instruction memory (e.g.,
RAM, SRAM, DRAM, flash) that is re-programmable or
that can otherwise be updated with new or additional
instructions. In one embodiment of the invention software

operating on a host computer (e.g., a device driver) may
download a set of parsing instructions for storage in the
header parser memory.

The number and format of instructions stored in a header

parser’s instruction memory may be tailored to one or more
specific protocols or protocol stacks. An instruction set
configured for one collection of protocols, or a program
constructed from that instruction set, may therefore be
updated or replacedby a difierent instruction set or program.
For packets received at the network interface that are for—
matted in accordance with the selected protocols (e.g.,
“compatible” packets), as determined by analyzing or pars-
ing the packets, various enhancements in the handling of
network traflic become possrble as described in the follow-
ing sections. In particular, packets from one datagram that
are configured according to a selected protocol may be
re-assembled for eflicient transfer in a host computer. In
addition, header portions of such packets may be processed
collectively rather than serially. And, the processing of
packets from different datagrams by a multi-processor host
computer may be shared or distributed among the proces-
sors. Therefore, one objective of a dynamic header parsing
operation is to identify a protocol according to which a
received packet has been formatted or determine whether a
packet header conforms to a particular protocol.

FIG. 23, discused in detail shortly, presents an illustrative
series of instructions for parsing the layer two, three and four
headers of a packet to determine if they are Ethernet, II’ and
TCP, respectively. The illustrated instructions comprise one
possible program or microcode for performing a parsing
operation. As one skilled in the art will recognize, after a
particular set of parsing instructions is loaded into a parser
memory, a number of diflerent programs may be assembled.
FIG. 23 thus presents merely one of a number of programs
that may be generated from the stored instructions. The
instructions presented in FIG. 23 may be performed or
executed by a microsequencer, a processor, a microproces-
sor or other similar module located within a network inter-
face circuit

In particular, other instruction sets and other programs
may be derived for ditferent communication protocols, and
may be expanded to other layers of a protocol stack. For
example, a set of instructions could be generated for parsing
NFS (Network File System) packets. Illustratively, these
instructions would be configured to parse layer five and six
headers to determine if they are Remote Procedure Call
(RPC) and External Data Representation (XDR), respec-
tively. Other instructions could be configured to parse a
portion of the packet’s data (which may be considered layer
seven). An NFS header may be considered a part of a
packet’s layer six protocol header or part of the paeket’s
data.

NOAC EX. 1015 Page 278



NOAC Ex. 1015 Page 279

US 6,483,804 B1
23

One type of instruction executed by a microsequencer
may be designed to locate a particular field of a packet (e.g.,
at a specific offset within the packet) and compare the value
stored at that offset to a value associated with that field in a

particular communication protocol. For example, one
instruction may require the microsequencer to examine a
value in a packet header at an oifset that would correspond
to a Type field of an Ethernet header. By comparing the
value actually stored in the packet with the value expected
for the protocol, the microsequencer can determine if the
packet appears to conform to the Ethernet protocol.
lllustratively, the next instruction applied in the parsing
program depends upon whether the previous comparison
was successful. Thus, the particular instructions applied by
the microsequencer, and the sequence in which applied,
depend upon which protocols are represented by the pack-
et’s headers.

The microseqnencer may test one or more field values
within each header included in a padret. The more fields that
are tested and that are found to comport with the format of
a known protocol, the greater the certainty that the packet
conforms to that protocol. As one skilled in the art will
appreciate, one communication protocol may be quite dif-
ferent than another protocol, thus requiring examination of
different parts of packet headers for dilferent protocols.
Illustratively, the parsing of one packet may end in the event
of an error or because it was determined that the packet
being parsed does or does not conform to the protocol(s) the
instructions are designed for.

Each instruction in FIG. 23 may be identified by a number
and/or a name. A particular instruction may perform a
variety of tasks other than comparing a header field to an
expected value. An instruction may, for example, call
another instruction to examine another portion of a packet
header, initialize, load or configure a register or other data
structure, prepare for the arrival and parsing of another
packet, etc. In particular, a register or other storage structure
may be configured in anticipation of an operation that is
performed in the network interface after the packet is parsed.
For example, a program instruction in FIG. 23 may identify
an output operation that may or may not be performed,
depending upon the success or failure of the comparison of
a value extracted from a packet with an expected value. An
output operation may store a value in a register, configure a
register (e.g., load an argument or operator) for a post-
parsing operation, clear a register to await a new packet, etc.

A pointer may be employed to identify an olfset into a
packet being parsed. In one embodiment, such a pointer is
initially located at the beginning of the layer two protocol
header. In another embodiment, however, the pointer is
situated at a specific location within a particular header (e.g.,
immediately following the layer two destination and/or
source addresses) when parsing commences. lllustratively,
the pointer is incremented through the packet as the parsing
procedure executes. In one alternative embodiment,
however, offsets to areas of interest in the packet may be
computed from one or more known or computed locations.

In the parsing program depicted in FIG. 23, a header is
navigated (e.g., the pointer is advanced) in increments of
two bytes (e.g., sixteen-bit words). In addition, where a
particular field of a header is compared to a known or
expected value, up to two bytes are extracted at a time from
the field. Further, when a value or header field is copied for
storage in a register or other data structure, the amount of
data that may be copied in one operation may be expressed
in multiples of two-byte units or in other units altogether
(e.g., individual bytes). This unit of measurement (e.g., two

10

15

20

25

30

35

45

50

55

60

65

24

bytes) may be increased or decreased in an alternative
embodiment of the invention. Altering the unit of measure-
ment may alter the precision with which a header can be
parsed or a header value can be extracted.

In the embodiment of the invention illustrated in FIG. 23,
a set of instructions loaded into the header parser’s instruc-
tion memory comprises a number of pOSIblc operations to
be performed while testing a packet for compatibility with
selected protocols. Program 2300 is generated from the
instruction set. Program 2300 is thus merely one possible
program, microcode or sequence of instructions that can be
formed from the available instruction set.

In this embodiment, the loaded instmction set enables the
following sixteen operations that may be performed on a
packet that is being parsed. Specific implementations of
these operations in program 2300 are discussed in additional
detail below. These instructions will be understood to be

illustrative in nature and do not limit the composition of
instruction sets in other embodiments of the invention. In

addition, any subset of these operations may be employed in
a particular parsing program or microcode. Further, multiple
instructions may employ the same operation and have dif-
ferent effects.

ACLR_REG operation allows the selective initialization
of registers or other data structures used in program 2300
and, posibly, data structures used in functions performed
after a packet is parsed. Initialization may comprise storing
the value zero.Anumber of illustrative registers that may be
initialized by a CLR_REG operation are identified in the
remaining operations.

A LD_FID operation copies a variable amount of data
from a particular ofiset within the packet into a register
configured to store a packet’s flow key or other flow
identifier. This register may be termed a FLOWD) register.
The efiect of an LD_FID operation is cumulative. In other
words, each time it is invoked for one packet the generated
data is appended to the flow key data stored previously.

A LD_SEQ operation copies a variable amount of data
from a particular offset within the packet into a register
configured to store a packet’s sequence number (e.g., a TCP
sequence number). This register may be assigned the label
SEQNO. This operation is also cumulative—the second and
subsequent invocations of this operation for the packet cause
the identified data to be appended to data stored previously.

A LD_CI'L operation loads a vahre from a specified
offset in the packet into a CONTROL register. The CON-
TROL register may comprise a control indicator discussed in
a previous section for identifying whether a packet is
suitable for data re-assembly, packet batching, load distri—
bution or other enhanced functions ofMC 100. In particular,
a control indicator may indicate whether a No__A$ist flag
should be raised for the packet, whether the packet includes
any data, whether the amount of packet data is larger than a
predetermined threshold, etc. Thus, the value loaded into a
CONTROL register in a LD_CI'L operation may affect the
post-parsing handling of the packeL

A LD_SAP operation loads a value into the CONTROL
register fi'om a variable ofi'set Within the packet. The loaded
value may comprise the packet’s ethertype. In one option
that may be associated with a LD_SAP operation, the offset
of the packet’s layer three header may also be stored in the
CONTROL register or elsewhere. As one skilled in the art
will recognize, a packet’s layer three header may immedi-
ately follow its layer two ethertype field if the packet
conforms to the Ethernet and IP protocols.

A LD_RI operation may be used to load a value into a
temporary register (e.g., named R1) from a variable offset

NOAC EX. 1015 Page 279



NOAC Ex. 1015 Page 280

US 6,483,804 B1
25

within the packet. A temporary register may be used for a
variety of tasks, such as accumulating values to determine
the length of a header or other portion of the packet. A
LD__R1 operation may also cause a value from another
variable otfset to be stored in a second temporary register
(e.g., named R2). The values stored in the R1 and/or R2
registers during the parsing of a packet may or may not be
cumulative.

A LD_13 operation may load a value from the packet
into a register configured to store the location of the packet’s
layer three header. This register may be named BOFFSET.
In one optional method of invoking this operation, it may be
used to load a fixed value into the BOFFSET register. m
another option, the LD__IB operation may add a value
stored in a temporary register (e.g., R1) to the value being
stored in the L30FFSET register.

ALD_SUM operation stores the starting point within the
packet from which a checksum should be calculated. The
register in which this value is stored may be named a
CSUMSTART register. In one alternative invocation of this
operation, a fixed or predetermined value is stored in the
register. As another option, the I.D_SUM operation may
add a value stored in a temporary register (e.g., R1) to the
value being stored in the CSUMSTART register.

A ID_J~IDR operation loads a value into a register
configured to store the location within the packet at which
the header portion may be split. The value that is stored may,
for example, be used during the transfer of the packet to the
host computer to store a data portion of the packet in a
separate location than the header portion. The loaded value
may thus identify the beginning of the packet data or the
beginning of a particular header. In one invocation of a
[D_HDR operation, the stored value may be computed
from a present position of a parsing pointer described above.
In another invocation, a fixed or predetermined value may be
store. As yet another alternative, a value stored in a tempo-
rary register (e.g., R1) and/or a constant may be added to the
loaded value.

A [D_LEN operation stores the length of the packet’s
payload into a register (e.g., a PAYLOADIEN register).

An IM_FlD operation appends or adds a fixed or prede-
termined value to the existing contents of the FIDWID
register described above.

An IM_SEQ operation appends or adds a fixed or pre-
determined value to the contents of the SEQNO register
described above.

An IM_SAP operation loads or stores a fixed or prede-
termined value in the CSUMSTART register described
above.

An IM_Rl operation may add or load a predetermined
value in one or more temporary registers (e.g., R1, R2).

An IM_CI‘L operation loads or stores a fixed or prede-
termined value in the CONTROL register described above.

A ST_FLAG operation loads a value from a specified
ofl’set in the packet into a FLAGS register. The loaded value
may comprise one or more fields or flags from a packet
header.

One skilled in the art will recognize that the labels
assigned to the operations and registers described above and
elsewhere in this section are merely illustrative in nature and
in no way limit the operations and parsing instructions that
may be employed in other embodiments of the invention.

Instructions in program 2300 comprise instruction num-
ber field 2302, which contains a number of an instruction
within the program, and instruction name field 2304, which
contains a name of an insn'uction. In an alternative embodi-
ment of the invention insn'uction number and instruction

name fields may be merged or one of them may be omitted.

10

15

35

4s

50

55

26

Instruction content field 2306 includes multiple portions
for executing an instruction. An “extraction mask” portion
of an instruction is a two-byte mask in hexadecimal notation.
An extraction mask identifies a portion of a packet header to
be copied or extracted, starting from the current packet offset
(e.g., the current position of the parsing pointer).
Illustratively, each bit in the packet’s header that corre-
sponds to a one in the hexadecimal value is copied for
comparison to a comparison or test value. For example, a
value of OxFFOO in the extraction mask portion of an
instruction signifies that the entire first byte at the cturent
packet ofiset is to be copied and that the contents of the
second byte are irrelevant. Similarly, an extraction mask of
013FFF signifies that all but the two most signifith bits of
the first byte are to be copied. A two—byte value is con-
structed from the extracted contents, using whatever was
copied from the packet. Illustratively, the remainder of the
value is padded with zeros. One skilled in the art will
appreciate that the format of an extraction mask (or an
output mask, described below) may be adjusted as necessary
to reflect little endian or big endian representation.

One or more instructions in a parsing program may not
require any data extracted from the packet at the pointer
location to be able to perfiorm its output operation. These
instructions may have an extraction mask value of0x0000 to
indicate that although a two-byte value is still retrieved from
the pointer position, every bit of the value is masked off.
Such an extraction mask thus yields a definite value of zero.
This type of instruction may be used when, for example, an
output operation needs to be performed before another
substantive portion of header data is extracted with an
extraction mask other than 0x0000.

A “compare value" portion of an instruction is a two-byte
hexadecimal value with which the extracted packet contents
are to be compared. The compare value may be a value
known to be stored in a particular field of a specific protocol
header. The compare value may comprise a value that the
extracted portion of the header should match or have a
specified relationship to in order for the packet to be
considered compatible with the pre-selected protocols.

An “operator” portion of an instruction identifies an
operator signifying how the extracted and compare values
are to be compared. Illustratively, EQ signifies that they are
tested for equality, NE signifies that they are tested for
inequality, [21' signifies that the extracted value must be less
than the compare value for the comparison to succeed, GE
signifies that the extracted value must be greater than or
equal to the compare value, etc. An instruction that awaits
anival of a new packet to be parsed may employ an
operation of NP. Other operators for other functions may be
added and the existing operators may be amigned other
monikers.

A “sucoes offset" portion of an instruction indicates the
number of two-byte units that the pointer is to advance if the
comparison between the extracted and test values succeeds.
A “success instruction” portion of an insn'uction identifies
the next instruction in program 2300 to execute if the
comparison is successful.

Similarly, “failure offset” and “failure instruction" por-
tions indicate the number of two—byte units to advance the
pointer and the next instruction to execute, respectively, if
the comparison fails. Although offsets are expm$ed in units
of two bytes (e.g., sixteen—bit words) in this embodiment of
the invention. in an alternative embodiment of the invention
they may be smaller or larger units. Further, as mentioned
above an instruction may be identified by number or name.

Not all of the instructions in a program are necessarily
used for each packet that is parsed. For example, a program

NOAC EX. 1015 Page 280



NOAC Ex. 1015 Page 281

US 6,483,804 B1
27

may include instructions to test for more than one type or
version of a protocol at a particular layer. In particular,
program 2300 tests for either version four or six of the IP

protocol at layer three. The instructions that are actually
executed for a given packet will thus depend upon the format
of the packet. Once a packet has been parsed as much as
posible with a given program or it has been determined that
the packet does or does not conform to a selected protocol,
the parsing may cease or an instruction for halting the
parsing procedure may be executed. Illustratively, a next
instruction portion of an instruction (e.g., “sucoes instruc-
tion” or “failure instruction") with the value “DONE” indi-
cates the completion of parsing of a packet. A DONE, or
similar, instruction may be a dummy instruction. In other
words, “DONE” may simply signify that parsing to be
terminated for the present packet. Or, like instruction eigh—
teen of program 2300, a DONE instruction may take some
action to await a new packet (e.g., by initialr'n'ng a register).

The remaining portions of instruction content field 2306
are used to specify and complete an output or other data
storage operation. In particular, in this embodiment an
“output operation” portion of an instruction corresponds to
the operations included in the loaded instruction set. Thus,
for program 2300, the output operation portion of an instruc-
tion identifies one of the sixteen operations described above.
The output operations employed in program 2300 are further
described below in conjunction with individual instructions.

An “operation argument” portion of an instruction com-
prises one or more arguments or fields to be stored, loaded
or otherwise used in conjunction with the instruction’s
output operation. Illustratively, the operation argument por-
tion takes the form of a multi-bit hexadecimal value. For

program 2300, operation arguments are eleven bits in size.
An argument or portion of an argument may have various
meanings, depending upon the output operation. For
example, an operation argument may comprise one or more
numerical values to be stored in a register or to be used to
locate or delimit a portion of a header. Or, an argument bit
may comprise a flag to signal an action or status. In
particular, one argument bit may specify that a particular
register is to be reset; a set of argument bits may comprise
an offset into a packet header to a value to be stored in a
register, etc. Illustratively, the oifset specified by an opera-
tion argument is applied to the location of the parsing pointer
position before the pointer is advanced as specified by the
applicable succes oifset or failure offset. The operation
arguments used in program 2300 are explained in further
detail below.

An “operation enabler” portion of an instruction content
field specifies whether or when an instruction’s output
operation is to be performed. In particular, in the illustrated
embodiment of the invention an instruction’s output opera-
tion may or may not be performed, depending on the result
of the comparison between a value extracted from a header
and the compare value. For example, an output enabler may
be set to a first value (e.g., zero) if the output operation is
never to be performed. It may take difierent values if it is to
be performed only when the comparison does or does not
satisfy the operator (e.g., one or two, respectively). An
operation enabler may take yet another value (e.g., three) if
it is always to be performed.

A “shift” portion of an instruction comprises a value
indicating how an output value is to be shifted. A shift may
be necesary because diiferent protocols sometime require
values to be formatted difl‘erently. In addition, a value
indicating a length or location of a header or header field
may require shifting in order to reflect the appropriate

5

10

15

20

30

35

40

45

50

55

60

65

28

magnitude represented by the value. For example, because
program 2300 is designed to use two-byte units, a value may
need to be shifted if it is to reflect other units (e.g., bytes).
Ashift value in a present embodiment indicates the number
of positions (e.g., bits) to right-shift an output value. In
another embodiment of the invention a shift value may
represent a difierent shift type or direction.

Finally, an “output mask” specifies how a value being
stored in a register or other data structure is to be formatted.
As stated above, an output operation may require an
extracted, computed or assembled value to be stored. Similar
to the extraction mask, the output mask is a two-byte
hexadecimal value. For every position in the output mask
that contains a one, in this embodiment of the invention the
corresponding bit in the two-byte value identified by the
output operation and/or operation argument is to be stored.
For example, a value of OxFFFF indicates that the specified
two-byte value is to be stored as is. Illustratively, for every
position in the output mask that contains a zero, a zero is
stored. Thus, a value of 0xF000 indicates that the most
significant four bits of the first byte are to be stored, but the
rest of the stored value is irrelevant, and may be padded withzeros.

An output operation of “NONE” may be used to indicate
that there is no output operation to be performed or stored,
in which case other instruction portions pertaining to output
may be ignored or may comprise specified values (e.g., all
zeros). In the program depicted in FIG. 73, however, a
CLR_REG output operation, which allows the selective
re—initialization of registers, may be used with an operation
argument of zero to effectively perform no output. In
particular, an operation argument of zero for the CLR_REG
operation indicates that no registers are to be reset In an
alternative embodiment of the invention the operation
enabler portion of an instruction could be set to a value (e.g.,
zero) indicating that the output operation is never to be
performed.

The format and sequence of instructions in FIG. 23 will
be understood to represent just one method of arsin a
packet t e ' other it conforms to m
communi ' rotocol. In particular, the instructions are
designed to examine one or more portions of one or more
pac e ea ers for com arison o own ore t values

Wlocationawry. one skilled in the art will appreciate,
instructions for parsing a packet may take any of a number
of forms and be performed in a variety of sequences without
exceeding the scope of the invention.

With reference now to FIG. 23, instructions in program
2300 may be described in detail. Prior to execution of the
program depicted in FIG. 23, a parsing pointer is situated at
the beginning of a packet’s layer two header. The position of
the parsing pointer may be stored in a register for easy
reference and update during the parsing procedure. In
particular, the position of the parsing pointer as an offset
(e.g., from the beginning of the layer two header) may be
used in computing the position of a particular position
within a header.

Program 2300 begins with a WAIT instruction (e.g.,
instruction zero) that waits for a new packet (e.g., indicated
by operator NP) and, when one is received, sets a parsing
pointer to the twelfth byte of the layer two header. This offset
to the twelfth byte is indicated by the success otfset portion
of the instruction. Until a packet is received, the WAIT
instruction loops on itself. In addition, a CLR_REG opera-
tion is conducted, but the operation enabler setting indicates
that it is only conducted when the comparison succeeds
(e.g., when a new packet is received).

NOAC EX. 1015 Page 281



NOAC Ex. 1015 Page 282

US 6,483,804 B1
29

The specified CLR_REG operation operates according to
the WAIT inshuction’s operation argument (i.e., 0x3FF). In
this embodiment, each bit of the argument corresponds to a
register or other data structure. The registers initialized in
this operation may include the following: ADDR (e.g., to
store the parsing pointer’s address or location), FLOWID
(e.g., to store the packet’s flow key), SEQNO (e.g., to store
a TCP sequence number), SAP (e.g., the packet’s ethertype)
and PAYIDADLEN (e.g., payload length). The following
registers configured to store certain offsets may also be reset:
FLOWOFF (e.g., ofiset within ROWID register), SEQOFF
(e.g., ofiset within SEQNO register), BOFFSET (e.g.,
offset of the packet’s layer three header), HDRSPLIT (e.g.,
location to split packet) and CSUMSTART (e.g., starting
location for computing a checksum). Also, one or more
status or control indicators (e.g., CONTROL or FIAGS
register) for reporting the status of one or more flags of a
packet header may be reset. In addition, one or more
temporary registers (e.g., R1, R2) or other data structures
may also be initialized These registers are merely illustra-
tive of the data structures that may be employed in one
embodiment of the invention. Other data structures may be
employed in other embodiments for the same or diEerent
output operations.

Temporary registers such as R1 and/or R2 may be used in
program 2300 to track various headers and header fields.
One skilled in the art will recognize the number of possible
combinations of communication protocols and the effect of
those various combinations on the structure and format of a

packet’s headers. More information may need to be exam-
ined or gathered from a packet conforming to one protocol
or set ofprotocols than from a packet conforming to another
protocol or set of protocols. For example, if extension
headers are used with an Internet Protocol header, values
from those extension headers and/or their lengths may need
to be stored, which values are not needed if extension
headers are not used. When calculating a particular ofiset,
such as an ofi'set to the beginning of a packet’s data portion
for example, multiple registers may need to be maintained
and their values combined or added. In this example, one
register or temporary register may track the size or format of
an extension header, while another register tracks the base [P
header.

Instruction VLAN (e.g., instruction one) examines the
two-byte field at the parsing pointer position (possflaly a
Type, Length or 'I'PID field) for a value indicating a VLAN-
tagged header (e.g., 8100 in hexadecimal). If the header is
VLAN-tagged, the pointer is incremented a couple of bytes
(e.g., one two-byte unit) and execution continues with
instruction CFI; otherwise, execution continues with instruc-
tion 802.3. In either event, the instruction’s operation
enabler indicates that an IM_CI‘L operation is always to be
performed.

As described above, an IM_CI'L operation causes a
control register or other data structure to be populated with
one or more flags to report the status or condition of a
packet. As described in the previous section, a control
indicator may indicate whether a packet is suitable for
enhanced processing (e.g., whether a No_Assist signal
should be generated for the packet), Whether a packet
includes any data and, if so, whether the size of the data
portion exceeds a specified threshold. The operation argu-
ment 0x00 A for instruction VLAN comprises the value to
be stored in the control register, with individual bits of the
argument corresponding to particular flags. Illustratively,
flags associated with the conditions just described may be
set to one, or true, in this IM_CI'L operation.

10

15

35

45

50

55

60

65

30

Instruction CF] (e.g., instruction two) examines the CPI
bit or flag in a layer two header. If the CPI bit is set, then the
packet is not suitable for the processing enhancements
described in other sections and the parsing procedure ends
by calling instruction DONE (e.g., instruction eighteen). If
the CPI bit is not set, then the pointer is incremented another
couple of bytes and execution continues with instruction
802.3. As explained above, a null output operation (e.g.,
“NONE") indicates that no output operation is performed. In
addition, the output enabler value (e.g., zero) further ensures
that no output operation is performed.

In instruction 802.3 (e.g., instruction three), a Type or
Length field (depending on the location of the pointer and
format of the packet) is examined to determine if the
packet’s layer two format is traditional Ethernet or 802.3
Ethernet. If the value in the header field appears to indicate
802.3 Ethernet (e.g., contains a hexadecimal value leg than
0600), the pointer is incremented two bytes (to what should
be an LLC SNAP field) and execution continues with
instruction LLC_1. Otherwise, the layer two protocol may
be considered traditional Ethernet and execution continues
with instruction IPV4 __1. Instruction 8023 in this embodi-
ment of the invention does not include an output operation.

In instructions LLC__1 and LLC__2 (e.g., instructions
four and five), a suspected layer two LLC SNAP field is
examined to ensure that the packet conforms to the 802.3
Ethernet protocol. In instruction LLC__1, a first part of the
field is tested and, if successful, the pointer is incremented
two bytes and a second part is tested in instruction LLC_,2.
If instruction LLC_2 succeeds, the parsing pointer is
advanced four bytes to reach what should be a'I‘ype field and
execution continues with instruction IPV4 _1. If either test
fails, however, the parsing procedure exits. In the illustrated
embodiment of the invention, no output operation is per-
formed while testing the LLC SNAP field.

In instruction IPV4__1 (e.g., instruction six), the parsing
pointer should be at an Ethernet Type field. This field is
examined to determine if the layer three protocol appears to
correspond to version four of the Internet Protocol. If this
test is successful (e.g., the Type field contains a hexadecimal
value of 0800), the pointer is advanced two bytes to the
beginning of the layer three header and execution of pro-
gram 2300 continues with instruction IPV4_2. If the test is
unsuccessful, then execution continues with instruction
IPV6_1. Regardless of the test results, the operation enabler
value (e.g., three) indicates that the specified I..D_SAP
output operation is always performed.

As described previously, in a [DwSAP operation a pack-
et’s ethertype (or Service Access Point) is stored in a
register. Part of the operation argument of 0x100, in par-
ticular the right—most six bits (e.g., zero) constitute an offset
to a two-byte value comprising the ethertype. The offset in
this example is zero because, in the present context, the
parsing pointer is already at the Type field that contains the
ethertype. In the presently described embodiment, the
remainder of the operation argument constitutes a flag
specifying that the starting position of the layer three header
(e.g., an ofi'set from the beg'nning of the packet) is also to
be saved (e.g., in the [SOFFSET register). In particular, the
beginning of the layer three header is known to be located
immediately after the two-byte Type field.

Instruction IPV4_2 (e.g., instruction seven) tests a sus-
pected layer three version field to ensure that the layer three
protocol is version four of 11’. In particular, a specification for
version four of IP specifies that the first four bits of the layer
three header contain a value of 0x4. If the test fails, the
parsing procedure ends with instruction DONE. If the test

NOAC EX. 1015 Page 282



NOAC Ex. 1015 Page 283

US 6,483,804 B1
31

succeeds, the pointer advances six bytes and instruction
IPV4_3 is called.

The specified LD_SUM operation, which is only per-
formed if the comparison in instruction IPV4 _2 succeeds,
indicates that an offset to the beginning of a point from
which a checksum may be calculated should be stored. In
particular, in the presently described embodiment of the
invention a checksum should be calculated from the begin-
ning of the TCP header (amuming that the layer four header
is TCP). The value of the operation argument (e.g., 0x00A)
indicates that the checksum is located twenty bytes (e.g., ten
two-byte increments) from the current pointer. Thus, a value
of twenty bytes is added to the parsing pointer position and
the result is stored in a register or other data structure (e.g.,
the CSUMSTART register).

Instruction IPV4_3 (e.g., instruction eight) is designed to
determine whether the packet’s IP header indicates 1P frag-
mentation. If the value extracted from the header in accor-

dance with the extraction mask does not equal the compari-
son value, then the packet indicates fragmentation. If
fragmentation is detected, the packet is considered unsuit-
able for the processing enhancements described in other
sections and the procedure exits (e.g., through instruction
DONE). Otherwise, the pointer is incremented two bytes
and instruction IPV4_4 is called after performing a
LD__LEN operation.

In accordance with the LD_LEN operation, the length of
the IP segment is saved. The illustrated operation argument
(e.g., 0x03E) comprises an offset to the Total Length field
where this value is located. In particular, the least-significant
six bits constitute the offset. Because the pointer has already
been advanced past this field, the operation argument com-
prises a negative value. One skilled in the art will recognize
that this binary value (e.g., 111110) may be used to represent
the decimal value of negative two. Thus, the present ofiset
of the pointer, minus four bytes (e .g., two two-byte units), is
saved in a register or other data structure (e.g., the PAY-
LOADLEN register). Any other suitable method of repre-
senting a negative offset may be used. Or, the IP segment
length may be saved while the pointer is at a location
preceding the Total Length field (e.g., during a previous
instruction).

In instruction IPV4_4 (e.g., instruction nine), a one—byte
Protocol field is examined to determine whether the layer
four protocol appears to be TCP. If so, the pointer is
advanced fourteen bytes and execution continues with
instruction TCP__1; otherwise the procedure ends.

The specified [D_F[D operation, which is only per-
formed when the comparison in instruction IPV4_4
succeeds, involves retrieving the packet’s flow key and
storing it in a register or other location (e.g., the FLOWID
register). One skilled in the art will appreciate that in order
for the comparison in instruction IPV4_4 to be successful,
the paeket’s layer three and four headers must conform to IP
(version four) and TCP, respectively. If so, then the entire
flow key (e .g., IP source and destination addresses plus TCP
source and destination port numbers) is stored contiguously
in the packet’s header portion. In particular, the flow key
comprises the last portion of the [P header and the initial
portion of the TCP header and may be extracted in one
operation. The operation argument (e.g., 0x182) thus com-
prises two values needed to locate and delimit the flow key.
Illustratively, the right-most six bits of the argument (e.g.,
0x02) identify an ofi'set from the pointer position, in two-
byte units, to the beginning of the flow key. The other five
bits of the argument (e.g., 0x06) identify the size of the flow
key, in two-byte units, to be stored.

10

15

20

35

45

50

55

60

65

32

In instruction IPV6_1 (e.g., instruction ten), which fol-
lows the failure of the comparison performed by instruction
IPV4_1, the parsing pointer should be at a layer two Type
field. If this test is successful (e.g., the Type field holds a
hexadecimal value of 86DD), instruction IPV6_2 is
executed after a [D_SUM operation is performed and the
pointer is incremented two bytes to the beginning of the
layer three protocol. If the test is unsuccessful, the procedure
exits.

The indicated LD__SUM operation in instruction IPV6_1
is similar to the operation conducted in instruction IPV4_J
but utilizes a difierent argument. Again, the checksum is to
be calculated from the beginning of the TCP header
(assuming the layer four header is TCP). The specified
operation argument (e.g., 0x015) thus comprises an offset to
the beginning of the TCP header—twenty-one two-byte
steps ahead. The indicated ofiset is added to the present
pointer position and saved in a register or other data struc-
ture (e.g., the CSUMSTART register).

Instruction [PV6 _2 (e.g., instruction eleven) tests a
suspected layer three version field to further ensure that the
layer three protocol is version six of IP. If the comparison
fails, the parsing procedure ends with the invocation of
instruction DONE. If it succeeds, instruction [PV6_3 is
called. Operation IM_R1, which is performed only when
the comparison succeeds in this embodiment, saves the
length of the IP header from a Payload Length field. As one
skilled in the art will appreciate, the Total Length field (e.g.,
[P segment size) of an IP, version four, header includes the
size of the version four header. However, the Payload
Length field (e.g., [P segment size) of an [P, version six,
header does not include the size of the version six header.

Thus, the size of the version six header, which is identified
by the right-most eight bits of the output argument (e.g.,
0x14, indicating twenty two—byte units) is saved.
Illustratively, the remainder of the argument identifies the
data structure in which to store the header length (e.g.,
temporary register R1). Because of the variation in size of
layer three headers between protocols, in one embodiment
of the invention the header size is indicated in different units

to allow greater precision. In particular, in one embodiment
of the invention the size of the header is specified in bytes
in instruction [PV6_2, in which case the output argument
could be 0x128.

Instruction IPV6_3 (e.g., instruction twelve) in this
embodiment does not examine a header value. In this

embodiment, the combination of an extraction mask of
0x0000 with a comparison value of 0x0000 indicates that an
output operation is desired before the next examination of a
portion of a header. After the LD__FID operation is
perfonned, the parsing pointer is advanced six bytes to a
Next Header field of the version six [P header. Because the

extraction mask and comparison values are both 0x0000, the
comparison should never fail and the failure branch of
instruction should never be invoked.

As described previously, a LD__FID operation stores a
flow key in an appropriate register or other data structure
(e.g., the FLOWID register). Illustratively, the operation
argument of 0x484 comprises two values for identifying and
delimiting the flow key. In particular, the right-most six bits
(e.g., 0x04) indicates that the flow key portion is located at
an ofiset of eight bytes (e.g., four two-byte increments) from
the current pointer position. The remainder of the operation
argument (e.g., 0x12) indicates that thirty-six bytes (e.g., the
decimal equivalent of 0x12 two-byte units) are to be copied
from the computed offset. In the illustrated embodiment of
the invention the entire flow key is copied intact, including

NOAC EX. 1015 Page 283



NOAC Ex. 1015 Page 284

 

US 6,483,804 B1
33

the layer three source and destination addresses and layer
four source and destination ports.

In instruction IPV6__4 (e.g., instruction thirteen), a sus-
pected Next Header field is examined to determine whether
the layer four protocol of the packet’s protocol stack appears
to be TCP. If so, the procedure advances thirty-six bytes
(e.g., eighteen two-byte units) and instruction TCP_1 is
called; otherwise the procedure exits (e.g., through instruc-
tion DONE). Operation LD_LEN is performed if the value
in the Next Header field is 0x06. As described above, this
operation stores the IP segment size. Once again the argu-
ment (e.g., 0x03F) comprises a negative ofiset, in this case
negative one. This ofl'set indicates that the desired Payload
Length field is located two bytes before the pointer’s present
position. Thus, the negative offset is added to the present
pointer offset and the result saved in an appropriate register
or other data structure (e.g., the PAYLOADLEN register).

In instructions TCP_1, TCP__2, TCP—3 and TCP__4
(e.g., instructions fourteen through seventeen), no header
values—other than certain flags specified in the instruction’s
output operations—are examined, but various data from the
packet’s TCP header are saved. In the illustrated
embodiment, the data that is saved includes a TCP sequence
number, a TCP header length and one or more flags. For each
instruction, the specified operation is performed and the next
instruction is called. As described above, a comparison
between the comparison value of 0x0000 and a null extrac-
tion value, as used in each of these imtructions, will never
fail. After instruction 'ICP_4, the parsing procedure returns
to instruction WAIT to await a new packet

For operation ID_SEQ in instruction TCP_,1, the opera-
tion argument (e.g., 0x081) comprises two values to identify
and extract a TCP sequence number. The right~most six bits
(e.g., 0x01) indicate that the sequence number is located two
bytes from the pointer’s current position. The rest of the
argument (e.g., 0x2) indicates the number of two-byte units
that must be copied from that position in order to capture the
sequence number. Illustratively, the sequence number is
stored in the SEQNO register.

For operation ST_FLAG in instruction 'ICP_2, the
operation argument (e.g., 0x145) is used to configure a
register (e.g., the FLAGS register) with flags to be used in
a post-parsing task. The right-most six bits (e.g., 0x05)
constitute an offset, in two-byte units, to a two-byte portion
of the TCP header that contains flags that may affect whether
the packet is suitable for post-parsing enhancements
described in other sections. For example, URG, PSH, RST,
SYN and FIN flags may be located at the offset position and
be used to configure the register. The output mask (e.g.,
0x002F) indicates that only particular portions (e.g., bits) of
the 'ICP header’s Flags field are stored.

Operation LD__,R1 of instruction TCP_3 is similar to the
operation conducted in instruction IPV6_.2. Here, an opera-
tion argument of 0x205 includes a value (e.g., the least-
significant six bits) identifying an offset of five two-byte
units from the current pointer position. That location should
include a Header Length field to be stored in a data structure
identified by the remainder of the argument (e.g., temporary
register R1). The output mask (e.g., OXPUOO) indicates that
only the first four bits are saved (e.g., the Header Length
field is only four bits in size).

As one skilled in the art may recognize, the value
extracted from the Header Length field may need to be
adjusted in order to reflect the use of two-byte units (e.g.,
sixteen bit words) in the illustrated embodiment. Therefore,
in accordance with the shift portion of instruction 'ICP_3,
the value extracted from the field and configured by the

10

15

35

45

50

55

65

34

output mask (e.g., 0xF000) is shifted to the right eleven
positions when stored in order to simplify calculations.

Operation LD_HDR of instruction TCP_4 causes the
loading of an ofiset to the first byte of packet data following
the TCP header. As described in a later section, packets that
are compatible with a pre-selected protocol stack may be
separated at some point into header and data portions.
Saving an offset to the data portion now makes it easier to
split the packet later. Illustratively, the right-most seven bits
of the 0x0FF operation argument comprise a first element of
the offset to the data. One skilled in the art will recognize the
bit pattern (e.g., 1111111) as equating to negative one. Thus,
an ofi‘set value equal to the current parsing pointer (e.g., the
value in the ADDR register) minus two bytes—which
locates the beginning of the TCP header—is saved. The
remainder of the argument signifies that the value of a
temporary data structure (e.g., temporary register R1) is to
he added to this ofiset. In this particular context, the value
saved in the previous instruction (e.g., the length of the TCP
header) is added. These two values combine to form an
ofl'set to the beginning of the packet data, which is stored in
an appropriate register or other data structure (e.g., the
HDRSPLIT register).

Finally, and as mentioned above, instruction DONE (e.g.,
instruction eighteen) indicates the end of parsing of a packet
when it is determined that the packet does not conform to
one or more of the protocols associated with the illustrated
instructions. This may be considered a “clean-up” instruc-
tion. In particular, output operation L.D_CI‘L, with an
operation argument of 0x001 indicates that a No_A$ist flag
is to be set (e.g., to one) in the control register described
above in conjunction with instruction VLAN. The
Nofiist flag, as described elsewhere, may be used to
inform other modules of the network interface that the

present packet, is unsuitable for one or more processing
enhancements described elsewhere.

Itwillberecognizedbyoneskilledintheartthatthe
illustrated program or microcode merely provides one
method ofparsing a packet Other programs, comprising the
same instructions in a different sequence or different instruc-
tions altogether, with similar or dissimilar formats, may be
employed to examine and store portions of headers and to
configure registers and other data structures.

The efliciency gains to be realized from the application of
the enhanced processing described in following sections
more than offset the time required to parse a packet with the
illustrated program. Further, even though a header parser
parses a packet on a NIC in a current embodiment of the
invention, the packet may still need to be procemed through
its protocol stack (e.g., to remove the protocol headers) by
a processor on a host computer. Doing so avoids burdening
the communication device (e.g., network interface) with
such a task.
One Embodiment of a Flow Database

FIG. 5 depicts flow database (FDB) 110 according to one
embodiment of the invention. Illustratively FDB 110 is
implemented as a CAM (Content Addressable Memory)
using a re-writeable memory component (e.g., RAM,
SRAM, DRAM). In this embodiment, FDB 110 comprises
associative portion 502 and associated portion 504, and may
be indexed by flow number 506.

The scope of the invention does not limit the form or
structure of flow database 110. In alternative embodiments

of the invention virtually any form of data structure may be
employed (e.g., database, table, queue, list, array), either
monolithic or segmented, and may be implemented in hard-
ware or software. The illustrated form of FDB 110 is merely

NOAC EX. 1015 Page 284



NOAC Ex. 1015 Page 285

 
‘"‘"‘"_"——'”‘\

US 6,483,804 B1
35

one manner of maintaining useful information concerning
communication flows through MC 100. As one skilled in the
art will recognize, the structure of a CAM allows highly
efficient and fast associative searching.

In the illustrated embodiment of the invention, the infor-
mation stored in FDB 1‘10 and the operation of flow database
manager (FDBM) 108 (described below) permit functions
such as data re-assembly, batch processing of packet
headers, and other enhancements. These functions are dis-
cussed in detail in other sections but may be briefly
described as follows.

One form of data re-assembly involves the re-assembly or
combination of data from multiple related packets (e,g.,
packets from a single communication flow or a single
datagram). One method for the batch processing of packet
headers entails processingWfle
simmer

PmofC 100 involves the distribution or sharing of such proto-
col stack processing (and/or other functions) among proces-
sors in a mum-processor host computer system. Yet another
possible function of MC 100 is to enable the transfer of
re-assembled data to a destination entity (e.g., an application
program) in an eflicient aggregation (e.g., a memory page),
thereby avoiding piecemeal and highly inefficient transfers
of one packet’s data at a time. Thus, in this embodiment of
the invention, one purpose of FDB 110 and FDBM 108 is to
generate information for the use of NIC 100 and/or a host
computer system in enabling, disabling or performing one or
more of these functions.

Asociative portion 502 of FDB 110 in FIG. 5 stores the
flow key of each valid flow destined for an entity served by
MC 100. Thus, in one embodiment of the invention asso-
ciative portion 502 includes [P source address 510, IP
destination address 512, TCP source port 514 and TCP
destination port 516. As described in a previous section these
fields may be extracted from a packet and provided to
FDBM 108 by header parser 106.

Although each destination entity served by MC 100 may
panicipate in multiple communication flows or end-to-end
TCP connections, only one flow at a time will exist between
a particular source entity and a particular destination entity.
Therefore, each flow key in associative portion 502 that
corresponds to a valid flow should be unique from all other
valid flows. In alternative embodiments of the invention,
associative portion 502 is composed of different fields,
reflecting alternative flow key forms, which may be deter-
mined by the protocols parsed by the header parser and the
information used to identify communication flows.

Asociated portion 504 in the illustrated embodiment
comprises flow validity indicator 520, flow sequence num-
ber 522 and flow activity indicator 524. These fields provide
information concerning the flow identified by the flow key
stored in the corresponding entry in associative portion 502.
The fields of associated portion 504 may be retrieved and/or
updated by FDBM 108 as described in the following section.

Flow validity indicator 520 in this embodiment indicates
whether the associated flow is valid or invalid. Illnstratively,
the flow validity indicator is set to indicate a valid flow when
the first packet ofdata in a flow is received, and may be reset
to reassert a flow’s validity every time a portion of a flow’s
datagram (e.g., a packet) is correctly received.

Flow validity indicator 520 may be marked invalid after
the last packet of data in a flow is received. The flow validity
indicator may also be set to indicate an invalid flow when-
ever a flow is to be torn down (e.g., terminated or aborted)
for some reason other than the receipt of a final data packet.

10

15

75

35

45

50

55

60

65

36

For example, a padret may be received out of order from
other packets of a datagram, a control packet indicating that
a data transfer or flow is being aborted may be received, an
attempt may be made to re-establish or re-synchronize a
flow (in which case the original flow is terminated), etc. In
one embodiment of the invention flow validity indicator 520
is a single bit, flag or value.

Flow sequence number 522 in the illustrated embodiment
comprises a sequence number of the next portion of data that
is expected in the associated flow. Because the datagram
being sent in a flow is typically received via multiple
packets, the flow sequence number provides a mechanism to
ensure that the packets are received in the correct order. For
example, in one embodiment of the invention MC 100
re-assembles data from multiple packets of a datagram. To
perform this re-asembly in the most efficient manner, the
packets need to be received in order. Thus, flow sequence
number 522 stores an identifier to identify the next packet or
por1ion of data that should be received.

In one embodiment of the invention, flow sequence num-
ber 52 corresponds to the TCP sequence number field
found in TCP protocol headers. As one skilled in the art will
recognize, a packet’s TCP sequence number identifies the
position of the packet’s data relative to other data being sent
in a datagram. For packets and flows involving protocols
other than TCP, an alternative method of verifying or
ensuring the receipt of data in the correct order may be
employed.

Flow activity indicator 524 in the illustrated embodiment
reflects the recency of activity of a flow or, in other words,
the age of a flow. In this embodiment of the invention flow
activity indicator 524 is associated with a counter, such as a
flow activity counter (not depicted in FIG. 5). The flow
activity counter is updated (cg, incremented) each time a
packet is received as part of a flow that is already stored in
flow database 110. The updated counter value is then stored
in the flow activity indicator field of the packet’s flow. The
flow activity counter may also be incremented each time a
first packet of a new flow that is being added to the database
is received. In an alternative embodiment, a flow adivity
counter is only updated for packets containing data (e.g., it
is not updated for control packets). In yet another alternative
embodiment, multiple counters are used for updating flow
activity indicators of difierent flows.

Because it can not always be determined when a com-
munication flow has ended (e.g., the final packet may have
been lost), the flow activity indicator may be used to identify
flows that are obsolete or that should be torn down for some

other reason. For example, if flow database 110 appears to
be fully populated (e.g., flow validity indicator 520 is set for
each flow number) when the first packet of a new flow is
received, the flow having the lowest flow activity indicator
may be replaced by the new flow.

In the illustrated embodiment of the invention, the size of
fields in FDB 110 may diflfer from one entry to another. For
example, IP source and destination addresses are four bytes
large in version four of the protocol, but are sixteen bytes
large in version six. In one alternative embodiment of the
invention, entries for a particular field may be uniform in
size, with smaller entries being padded as necessary.

In another alternative embodiment of the invention, fields
within FDB 110 may be merged. In particular, a flow’s flow
key may be stored as a single entity or field instead of being
stored as a number of separate fields as shown in FIG. 5.
Similarly, flow validity indicator 520, flow sequence number
522 and flow activity indicator 524 are depicted as separate
entries in FIG. 5. However, in an alternative embodiment of

NOAC EX. 1015 Page 285



NOAC Ex. 1015 Page 286

..Wm..-“WM"um-«mWWWWW“«~

US 6,483,804 B1
37

the invention one or more of these entries may be combined.
In particular, in one alternative embodiment flow validity
indicator 520 and flow activity indicator 524 comprise a
single entry having a first value (e.g., zero) when the entry’s
associated flow is invalid. As long as the flow is valid,
however, the combined entry is incremented as packets are
received, and is reset to the first value upon termination of
the flow.

In one embodiment of the invention FDB 110 contains a

maximum of sixty-four entries, indexed by flow number
506, thus allowing the database to track sixty-four valid
flows at a time. In alternative embodiments of the invention,
more or fewer entries may be permitted, depending upon the
size of memory allocated for flow database 110. In addition
to flow number 506, a flow may be identifiable by its flow
key (stored in amdafive portion 502).

In the illustrated embodiment of the invention, flow
database 110 is empty (e.g., all fields are filled with zeros)
when NIC 100 is initialized. When the first packet of a flow
is received header parser 106 parses a header portion of the
packet. As described in a previous section, the header parser
assembles a flow key to identify the flow and extracts other
information concerning the packet and/or the flow. The flow
key, and other information, is passed to flow database
manager 108. FDBM 108 then searches FDB 1.10 for an
active flow mociated with the flow key. Because the
database is empty, there is no match.

In this example, the flow key is therefore stored (e.g., as
flow number zero) by copying the IP source address, I?
desfination address, TCP source port and TCP destination
port into the corresponding fields. Flow validity indicator
520 is then set to indicate a valid flow, flow sequence
number 522 is derived from the TCP sequence number
(illustratively provided by the header parser), and flow
activity indicator 524 is set to an initial value (e.g., one),
which may be derived from a counter. One method of
generating an appropriate flowsequence number, which may
be used to verify that the next portion ofdata received for the
flow is received in order, is to add the TCP sequence number
and the size of the packet’s data. Depending upon the
configuration of the packet (e.g., whether the SYN bit in a
Flags field of the packet’s TCP header is set), however, the
sum may need to be adjusted (e.g., by adding one) to
correctly identify the next expected portion of data.

As described above, one method of generating an appro-
priate initial value for a flow activity indicator is to copy a
counter value that is incremented for each packet received as
part of a flow. For example, for the first packet received after
NIC 100 is initialized, a flow activity counter may be
incremented to the value of one. This value may then be
stored in flow activity indicator 524 for the associated flow.
The next packet received as part of the same (or a new) flow
causes the counter to be incremented to two, which value is
stored in the flow activity indicator for the asociated flow.
In this example, no two flows should have the same flow
activity indicator except at initialization, when they may all
equal zero or some other predetermined value.

Upon receipt and parsing of a later packet received at NIC
100, the flow database is searched for a valid flow matching
that packet’s flow key. Illustratively, only the flow keys of
active flows (e.g., those flows for which flow validity
indicator 520 is set) are searched. Alternatively, all flow keys
(e.g., all entries in associative portion 502) may be searched
but a match is only reported if its flow validity indicator
indicates a valid flow. With a CAM such as FDB 110 in FIG.

5, flow keys and flow validity indicators may be searched in
parallel.

10

15

20

30

35

45

50

55

65

38

If a later packet contains the next portion of data for a
previous flow (e.g., flow number zero), that flow is updated
appropriately. In one embodiment of the invention this
entails updating flow sequence mnnber 522 and increment—
ing flow activity indicator 524 to reflect its recent activity.
Flow validity indicator 520 may also be set to indicate the
validity of the flow, although it should already indicate that
the flow is valid.

As new flows are identifig they are added to FDB 110
Wr to the first flow. When a ow is

WmFDE 110 ismv ated. In one embodiment of the invention, flow

WWW-(eggset to zero) fore termmated flow. In another embodiment, one or more

Wat terminated flow are cleared or set to an arbitrary
or predetermined value. Because of the bursty nature of
network packet traflic, all or most of the data from a
datagram is generally received in a short amount of time.
Thus, each valid flow in FDB 110 normally only needs to be
maintained for a short period of time, and its entry can then
be used to store a ditferent flow.

Due to the limited amount of memory available for flow
database 110 in one embodiment of the invention, the size of
each field may be limited. In this embodiment, sixteen bytes
are allocated for IP source address 510 and sixteen bytes are
allocated for IP destination address 512. For IP addresses

shorter than sixteen bytes in length, the extra space may be
padded with zeros. Further, TCP source port 514 and TCP
destination port 516 are each allocated two bytes. Also in
this embodiment, flow validity indicator 520 comprises one
bit, flow sequence number 522 is allocated four bytes and
flow activity indicator 524 is also allocated four bytes.

As one sldlled in the art will recognize from the embodi-
ments described above, a flow is similar, but not identical, to
an end-to-end TCP connection. ATCP connection may exist
for a relatively extended period of time, suflicient to transfer
multiple datagrams flour a source entity to a destination
entity. A flow, however, may exist only for one datagram.
Thus, during one end-to-end TCP connection, multiple flows
may be set up and torn down (e.g., once for each datagram).
As described above, a flow may be set up (e.g., added to
FDB 110 and marked valid) when NIC 100 detects the first
portion of data in a datagram and may be torn down (e.g.,
marked invalid in FDB 110) when the last portion of data is
received. Blustratively, each flow set up during a single
end-to-end TCP connection will have the same flow key
because the layer three and layer four address and port
identifiers used to form the flow key will remain the same.

In the illustrated embodiment, the size of flow database
110 (e.g., the number of flow entries) determines the maxi-
mum number of flows that may be interleaved (e.g, simul-
taneously active) at one time while enabling the frmctions of
data re-asernbly and batch processing of protocol headers.
In other words, in the embodiment depicted in FIG. 5, NIC
100 can set up sixty-four flows and receive packets from up
to sixty-four different datagrams (i.e., sixty-four flows may
be active) without tearing down a flow. If a maximum
number of flows through NIC 100 were known, flow data-
base 110 could be limited to the corresponding number of
entries.

The flow database may be kept small because a flow only
lasts for one datagram in the presently described embodi—
ment and, because of the bursty nature of packet traflic, a
datagram’s packets are generally received in a short period
of time. The short duration of a flow compensates for a
limited number of entries in the flow database. In one
embodiment of the invention, if FDB 1.10 is filled with active

NOAC EX. 1015 Page 286



NOAC Ex. 1015 Page 287 

Q

o‘b
)

US 6,483,804 B1
39

flows and a new flow is commenced (i.e., a first portion of
data in a new datagram), the oldest (e.g., the least recently
active) flow is replaced by the new one.

In an alternative embodiment of the invention, flows may
be kept active for any number of datagrarns (or other
measure of network traffic) or for a specified length or range
of time. For example, when one datagram ends its flow in
FDB 110 may be kept “open" (i.e., not torn down) if the
database is not full (e.g., the flow’s entry is not needed for
a different flow). This scheme may further enhance the
eflicient operation of NIC 100 if another datagram having
the same flow key is received In particular, the overhead
involved in setting up another flow is avoided and more data
re-assembly and packet batching (as described below) may
be performed Advantageously, a flow may be kept open in
flow database 110 until the end—to-end TCP connection that

encompasses the flow ends.
One Embodiment of a Flow Database Manager

FIGS. 6A—6E depict one method of operating a flow
database manager (FDBM), such as flow database manager
108 of FIG. 1A, for managing flow database (FDB) 110.
lllustratively, FDBM 108 stores and uflates flow informa-' ' an nera '
tron stored in ow ata ase gr; I; Q gpemtion

,code gr a paget Eceived by NIC 100. FDBM 108 also tears

5

10

15

20

down a flow (e.g., replaces, removes or otherwise invali- 25
dates an entry in FDB 110) when the flow is terminated or
aborted.

In one embodiment of the invention a packet’s operation
code reflects the packet’s compatibility with predetermined
criteria for performing one or more functions of NIC 100
(e.g., data re-assembly, batch processing of packet headers,
load distribution). In other words, depending upon a pack-
et’s operation code, other modules of NIC 100 may or may
not perform one of these functions, as described in following
sections.

In another embodiment of the invention, an operation
code indicates a packet status. For example, an operation
code may indicate that a packet: contains no data, is a control
packet, contains more than a specified amount of data, is the
first packet of a new flow, is the last packet of an existing
flow, is out of order, contains a certain flag (e.g., in a
protocol header) that does not have an expected value (thus
possflaly indicating an exceptional circumstance), etc.

The Qpenaon—oLflwEmanagor—IOS-depends
upon acket information mvided by heade and

a drawn from flow database . After FDBM 108. . ”—7
mor da lrnfor-
matron e. . the acket’ o eration code isstoredincontrol

queue 8 d 0 ma er ow
ma be entered or e u in down).

With reference now to FIGS. 6A-6E, state 600is a start

state inwhichFDBM 108 awaits information HEW from a
packet received by NIC 100 from network102.In state 602,arser or another e o NIC 100 no

:FDB a ct b rov1d1n the acket’s flow
ke trol information. Receipt of ata may
be inte reted as a re uest to search FD determine
._—L____‘|______——L—
whether a flow havin this flow ke already exists.
‘ one embodlment of the invention e control informa-

30

35

40

45

50

55

tion passed to FDBM 108 includes a sequence number (e.g., 60
a TCP sequence number) drawn from a packet header. The
control information may also indicate the status of certain
flags in the packet’s headers, whether the packet includes
data and, if so, whether the amount of data exceeds a certain
size. In this embodiment, FDBM 108 also receives a
N0_Assist signal for a packet if the header parser deter-
mines that the packet is not formatted according to one of the

65

40

pre-selected protocol stacks (i.e., the packet is not
“compatible”), as discussed in a previous section.
lllustratively, the No_Assist signal indicates that one or
more functions of NIC 100 (e.g., data re-assembly, batch
processing, load-balancing) may not be provided for the
packet.

In state 604, FDBM 108 determines whether a No.Assist
signal was asserted for the packet. If so, the procedure
proceeds to state 668 (FIG. 6E). Otherwise, FDBM 108
searches FDB 110 for the packet’s flow key in state 606. In
one embodiment of the invention only valid flow entries in
the flow database are searchedAs discussed above, a flow’s
validity may be reflected by a validity indicator such as flow
validity indicator 520 (shown in FIG. 5). If, in state 608, it
is determined that the packet’s flow key was not found in the
database, or that a match was found but the associated flow
is not valid, the procedure advances to state 646 (FIG. 6D).

If a valid match is found in the flow database in state 610

oWIfor the
WEileenfry)othematrad and floworma ron s ore 1n FDB 110 is read. lllustratively, this
informafion—ineludmr‘fiowmvalidity indicator 520, flow
sequence number 522 and flow activity indicator 524
(shown in FIG. 5).

In state 612, FDBM 108 determines from information
received from header parser 106 whether the packet contains
TCP payload data. If not, the illustrated procedure proceeds
to state 638 (FIG. 6C); otherwise the procedure continues to
state 614.

In state 614, the flow database manager determines
whether the packet constitutes an attempt to reset a com-
munication connection or flow. lllustratively, this may be
determined by examining the state of a SYN bit in one of the
packet’s protocol headers (e.g., a TCP header). In one
embodiment of the invention the value of one or more

control or flag bits (such as the SYN bit) are provided to the
FDBM by the header parser. As one skilled in the art will
recognize, one TCP entity may attempt to reset a commu-
nication flow or connection with another entity (e.g.,
because of a problem on one of the entity’s host computers)
and send a first portion of data along with the re-connection
request. This is the situation the flow database manager
attempts to discern in state 614. If the packet is part of an
attempt to re-connect or reset a flow or connection, the
procedure continues at state 630 (FIG. 6C).

In state 616, flow database manager 108 compares a
sequence number (e.g., a TCP sequence number) extracted
from a packet header with a sequence number (e.g., flow
sequence number 522 ofFIG. 5) of the next expected portion
of data for this flow. As discussed in a previous section, these
sequence numbers should correlate if the packet contains the
flow’s next portion of data. If the sequence numbers do not
match, the procedure continues at state 628.

In state 618, FDBM 108 determines whether certain flags
extracted from one or more of the packet’s protocol headers
match expected values. For example, in one embodiment of
the invention the URG, PSH, RST and FIN flags from the
packet’s TCP header are expected to be clear (i.e., equal to
zero). If any of these flags are set (e.g., equal to one) an
exceptional condition may exist, thus making it possible that
one or more of the functions (e.g., data re-assembly, batch
processing, load distribution) offered by NIC 100 should not
be performed for this packet. As long as the flags are clear,
the procedure continues at state 620; otherwise the proce-
dure continues at state 626.

In state 620, the flow database manager determines
whether more data is expected during this flow. As discussed

NOAC EX. 1015 Page 287



NOAC Ex. 1015 Page 288

 

US 6,483,804 B1
41

above, a flow may be limited in duration to a single
datagram. Therefore, in state 620 the FDBM determines if
this packet appears to be the final portion of data for this
flow’s datagram. Illustratively, this determination is made on
the basis of the amount of data included with the present
packet. As one skilled in the art will appreciate, a datagram
comprising more data than can be carried in one packet is
sent via multiple packets. The typical manner of disemi-
nating a datagram among multiple packets is to put as much
data as possrble into each packet. Thus, each packet except
the last is usually equal or nearly equal in size to the
maximum transfer unit (MT‘U) allowed for the network over
which the packets are sent. The last packet will hold the
remainder, usually causing it to be smaller than the MTU.

Therefore, one manner of identifying the final portion of
data in a flow’s datagram is to examine the size of each
packet and compare it to a figure (e.g., MT'U) that a packet
is expected to exceed except when carrying the last data
portion. It was described above that control information is
received by FDBM 108 from header parser 106. An indi-
cation of the size of the data carried by a packet may be
included in this information. In particular, header parser 106
in one embodiment of the invention is configured to com-
pare the size of each packet’s data portion to a pre-selected
value. In one embodiment of the invention this value is

programmable. This value is set, in the illustrated embodi-
ment of the invention, to the maximum amount of data a
packet can carry without exceeding MTU. In one alternative
embodiment, the value is set to an amount somewhat less
than the maximum amount of data that can be carried.

Thus, in state 620, flow database manager 108 determines
whether the received packet appears to carry the final
portion of data for the flow’s datagram. If not, the procedure
continues to state 626.

In state 622, it has been ascertained that the packet is
compatible with pre-selected rotocols and ‘ suitable for

4. one or mor Wm NIC 100. In particular, the
packet has been formatted appropriately for one or more of
the functions discussed above. FDBM 108 has determined

that the received packet is ”Wis
ammwmme
11mmflow (but not the final portion).
mof an attempt to re-set a
flow/connection, and important flags have their expected

values Thus, flow database 110 can be updated as follows.
indicator (e.g., flow activity indicator 524 of

  

 
 activity. In one embo ent o t e mvention flow activity
indicator 524rs implemented as a counter, or is associated
with a counter, thatis incremented each time data'is received
for a flow. In another embodiment of the invention

activit indicator or counter is updated every timtime a packet

havmg a flow key mmmng a v d owmt
the packet includes da

ustrated embodiment, after a flow activity indi-
cator or6counter is incremented it is examined to determine
if it “rolled over" to zero (i.e., whether it was incremented
past its maximum value). If so, the counter and/or the flow
activity indicators for each entry in flow database 110 are set
to zero and the current flow’s activity indicator is once again
incremented. Thus, in one embodiment of the invention the
rolling over of a flow activity counter or indicator causes the
re-initialization of the flow activity mechanism for flow
database 110. Thereafter, the counter is incremented and the

flow activity indicators are again updated as described
previously. One skilledin the artwill recognize that there are
many other suitable methods that may be applied in an

10

15

35

45

50

55

60

65

42

embodiment of the present invention to indicate that one
flow was active more recently than another was.

Also in state 622, flow sequence number 522 is updated.
Illustratively, the new flow sequence number is determined
by adding the size of the newly received data to the existing
flow sequence number. Depending upon the configuration of
the packet (e.g., values in its headers), this sum may need to
be adjusted. For example, this sum may indicate simply the
total amount of data received thus far for the flow’s data-

gram. Therefore, a value may need to be added (e.g., one
byte) in order to indicate a sequence number of the next byte
of data for the datagram. As one skilled in the art will
recognize, other suitable methods of ensuring that data is
received in order may be used in place of the scheme
described here.

Finally, in state 622 in one embodiment of the invention,
flow validity indicator 520 is set or reset to indicate the
flow's validity.

Then, in state 624, an o ration code is associated with
the packet. In thealums
iF—raEBn codes comprise codes generated by flow database
Win—mm this
em1n size, thus
allowing for eight operation codes Operation codes may
have a variety of other forms and ranges in alternative
embodiments. For the illustrated embodiment of the

invention, TABLE 1 describes each operation code in terms
of the criteria that lead to each code’s selection and the

ramifications of that selection. For purposes of TABLE 1,
setting up a flow comprises inserting a flow into flow
database 110. Tearing down a flow comprises removing or
invalidating a flow in flow database 110. The re-assembly of
data is discussed in a following section descnhing DMA
engine 120.

In the illustrated embodiment of the invention, operation
code 4 is selected in state 624 for packets in the present
context of the procedure (e.g., compatible packets carrying
the next, but not last, data portion of a flow). Thus, the
existing flow is not torn down and there is no need to set up
a new flow. As described above, a compatible packet in this
embodiment is a packet conforming to one or more of the
pre-selected protocols. By changing or augmenting the
pro-selected protocols, virtually any packet may be compat-
ible in an alternative embodiment of the invention.

Returning now to FIGS. 6A-6E, after state 624 the
illustrated procedure ends at state 670.

In state 626 (reached from state 618 or state 620),
operation code 3 is selected for the packet. Illusli'atively,
operation code 3 indicates that the packet is compatible and
matches a valid flow (e.g., the packet's flow key matches the
flow key of a valid flow in FDB 110). Operation code 3 may
also signify that the packet contains data, does not constitute
an attempt to re-synchronize or reset a communication
flow/connection and the packet’s sequence number matches
the expected sequence number (from flow database 110).
But, either an important flag (e.g., one of the TCP flags
URG, PSI-I, RST or FIN) is set (determined in state 618) or
the packet’s data is less than the threshold value descnbed
above (in state 620), thus indicating that no more data is
likely to follow this packet in this flow. Therefore, the
existing flow is torn down but no new flow is created.
Illustratively, the flow may be torn down by clearing the
flow's validity indicator (e.g., setting it to zero). After state
626, the illustrated procedure ends at state 670.

In state 628 (reached from state 616), operation code 2 is
selected for the packet. In the present context, operation
code 2 may indicate that the packet is compatible, matches

NOAC EX. 1015 Page 288



NOAC Ex. 1015 Page 289

 
US 6,483,804 B1

43

a valid flow (e.g., the packet’s flow key matches the flow key
of a valid flow in FDB 110), contains data and does not
constitute an attempt to re-synchronize or reset a commu—
nication flow/connection. However, the sequence number
extracted from the packet (in state 616) does not match the
expected sequence number from flow database 110. This
may occur, for example, when a packet is received out of
order. Thus, the existing flow is torn down but no new flow
is established. Illustratively, the flow may be torn down by
clearing the flow's validity indicator (e.g., setting it to zero).
After state 628, the illustrated procedure ends at state 670.

State 630 is entered from state 614 when it is determined

that the received packet constitutes an attempt to reset a
communication flow or connection (e.g., the TCP SYN bit is
set). In state 630, flow database manager 108 determines
whether more data is expected to follow. As explained in
conjunction with state 620, this determination may be made
on the basis of control information received by the flow
database manager from the header parser. If more data is
expected (e.g., the amount of data in the packet equals or
exceeds a threshold value), the procedure continues at state
634.

In state 632, operation code 2 is selected for the packet.
Operation code 2 was also selected in state 628 in a diflerent
context. In the present context, operation code 2 may
indicate that the packet is compatible, matches a valid flow
and contains data. Operation code 2 may also signify in this
context that the packet constitutes an attempt to
re-synchronize or reset a communication flow or connection,
but that no more data is expected once the flow/connection
is reset. Therefore, the existing flow is torn down and no new
flow is established. Ilhrstntively, the flow may be torn down
by clearing the flow's validity indicator (e.g., setting it to
zero). After state 632, the illustrated procedure ends at state
670.

In state 634, flow database manager 108 responds to an
attempt to reset or re-synchronize a communication flow/
connection whereby additional data is expected. Thus, the
existing flow is torn down and replaced as follows. The
existing flow may be identified by the flow number retrieved
in state 610 or by the packet’s flow key. The flow's sequence
number (e.g., flow sequence number 522 in FIG. 5) is set to
the next expected value. Illustratively, this value depends
upon the sequence number (e.g., TCP sequence number)
retrieved from the packet (e.g., by header parser 106) and the
amount of data included in the packet. In one embodiment
of the invention these two values are added to determine a

new flow sequence number. As discussed previously, this
sum may need to be adjusted (e.g., by adding one). Also in
state 634, the flow activity indicator is updated (e.g.,
incremented). As explained in conjunction with state 622, if
the flow activity indicator rolls over, the activity indicators
for all flows in the database are set to zero and the present
flow is again incremented. Finally, the flow validity indica-
tor is set to indicate that the flow is valid.

In state 636, operation code 7 is selected for the packet.
In the present context, operation code 7 indicates that the
packet is compatible, matches a valid flow and contains data.
Operation code 7 may further signify, in this context, that the
packet constitutes an attempt to re-synchronize or reset a
communication flow/connection and that additional data is

expected once the flow/connection is reset. In efiect,
therefore, the existing flow is torn down and a new one (with
the same flow key) is stored in its place. After state 636, the
illustrated procedure ends at end state 670.

State 638 is entered after state 612 when it is determined

that the received packet contains no data. This often indi-

10

15

35

45

50

55

60

65

44

cates that the packet is a control packet. In state 638, flow
database manager 108 determines whether one or more flags
extracted from the packet by the header parser match
expected or desired values. For example, in one embodiment
of the invention the TCP flags URG, PSH, RST and FIN
must be clear in order for DMA engine 120 to re-assemble
data from multiple related packets (e.g., packets having an
identical flow key). As discussed above, the TCP SYN bit
may also be examined. In the present context (e.g., a packet
with no data), the SYN bit is also expected to be clear (e.g.,
to store a value of zero). If the flags (and SYN bit) have their
expected values the procedure continues at state 642. If,
however, any of these flags are set, an exceptional condition
may exist, thus making it possible that one or more functions
ofiered by NIC 100 (e.g., data re-assembly, batch
processing, load distribution) are unsuitable for this packet,
in which case the procedure proceeds to state 640.

In state 640, operation code 1 is selected for the packet.
Illustratively, operation code 1 indicates that the packet is
compatible and matches a valid flow, but does not contain
any data and one or more important flags or bits in the
packet’s header(s) are set. Thus, the existing flow is torn
down and no new flow is established. Illustratively, the flow
may be torn down by clearing the flow' s validity indicator
(e.g., setting it to zero). After state 640, the illustrated
procedure ends at end state 670.

In state 642, the flow’s activity indicator is updated (e.g.,
incremented) even though the packet contains no data. As
described above in conjunction with state 622, if the activity
indicator rolls over, in a present embodiment of the inven-
tion all flow activity indicators in the database are set to zero
and the current flow is again incremented. The flow's
validity indicator may also be reset, as well as the flow's
sequence number.

In state 644, operation code 0 is selected for the packet.
Illustratively, operation code 0 indicates that the packet is
compatible, matches a valid flow, and that the packet does
not contain any data. The packet may, for example, be a
control packet. Operation code 0 further indicates that none
of the flags checked by header parser 106 and described
above (e.g., URG, PSI-l, RST and FIN) are set. Thus, the
existing flow is not torn down and no new flow is estab-
lished. After state 644, the illustrated procedure ends at end
state 670.

State 646 is entered from state 608 if the packet’s flow key
does not match any of the flow keys of valid flows in the
flow database. In state 646, FDBM 108 determines whether
flow database 110 is full and may save some indication of
whether the database is full. In one embodiment of the
invention the flow database is considered full when the

validity indicator (e.g., flow validity indicator 520 of FIG. 5)
is set for every flow number (e.g., for every flow in the
database). If the database is full, the procedure continues at
state 650, otherwise it continues at state 648.

In state 648, the lowest flow number of an invalid flow
(e.g., a flow for which the associated flow validity indicator
is equal to zero) is determined. Illustratively, this flow
number is where a new flow will be stored if the received

packet warrants the creation of a new flow. After state 648,
the procedure continues at state 652.

In state 650, the flow number of the least recently active
flow is determined. As discussed above, in the illustrated
embodiment of the invention a flow’s activity indicator (e.g.,
flow activity indicator 524 of FIG. 5) is updated (e.g.,
incremented) each time data is received for a flow.
Therefore, in this embodiment the least recently active flow
can be identified as the flow having the least recently

NOAC EX. 1015 Page 289



NOAC Ex. 1015 Page 290

 

+16»)

(we

US 6,483,804 B1
45

updated (e.g., lowest) flow activity indicator. Illustratively, if
multiple flows have flow activity indicators set to a common
value (e.g., zero), one flow number may be chosen from
them at random or by some other criteria. After state 650, the
procedure continues at state 652.

In state 652, flow database manager 108 determines
whether the packet contains data. Illmtratively, the control
information provided to FDBM 108 by the header parser
indicates whether the packet ha data. If the packet does not
include data (e.g., the packet is a control packet), the
illustrated procedure continues at state 668.

In state 654, flow database manager 108 determines
whether the data received with the present packet appears to
contain the final portion of data for the associated datagram/
flow. As described in conjunction with state 620, this deter-
mination may be made on the basis of the amount of data
included with the packet. If the amount of data is less than
a threshold value (a programmable value in the illustrated
embodiment), then no more data is expected and this is
likely to be the only data for this flow. In this case the
procedure continues at state 668. If, however, the data meets
or exweds the threshold value, in which case more data may
be expected, the procedure proceeds to state 656.

In state 656, the values of certain flags are examined.
These fla§ may include, for example, the URG, PSI-I, RST,
FIN bits of a TCP header. If any of the examined flags do not
have their expected or desired values (e.g., if any of the flags
are set), an exceptional condition may exist making one or
more of the functions of NIC 100 (e.g., data re-asembly,
batch procesing, load distribution) unsuitable for this
packet. In this case the procedure continues at state 668;
otherwise the procedure proceeds to state 658.

In state 658, the flow database manager retrieves the
information stored in state 646 concerning whether flow
database 110 is full. If the database is full, the procedure
continues at state 664; otherwise the procedure continues at
state 660.

In state 660, a new flow is added to flow database 110 for
the present packet. Illustratively, the new flow is stored at the
flow number identified or retrieved in state 648. The addition

of a new flow may involve setting a sequence number (e.g.,
flow sequence number 522 from FIG. 5). Flow sequence
number 522 may be generated by adding a sequence number
(e.g., TCP sequence number) retrieved from the packet and
the amount of data included in the packet. As discussed
above, this sum may need to be adjusted (e.g., by adding
one).

S ring a new flow ay also include initializing an
activity indicator i e.g., flow activity indicator 524 ofFIG. 5).
In one embodiment of the invention this initialization

involves storing a value retrieved from a counter that is
incremented each time data is received for a flow.

Illustratively, if the counter or a flow activit ' ' tor is
incremented 1 m ’ e value, the counter
and all flow activity in cators are cleared or reset. Also in
state 660, a validity indicator (e.g., flow validity indicator
520 of FIG. 5) is set to indicate that the flow is valid. Finally,
the packet’s flow key is also stored in the flow database, in
the entry corresponding to the assigned flow number.

In state 662, operation code 6 is selected for the packet.
Illustratively, operation code 6 indicates Mule—packet istible ‘ tch an valid flows and contains the

have their expected or necessary values, additional data is
expected in the flow and the flow database is not full. Thus,
operation code 6 indicates that there is no existing flow to
tear down and that a new flow has been slogd in the flqw
database. After state 662, e illustrated procedure ends at
state 670.

10

15

35

45

50

55

60

65

46

In state 664, an existing entry in the flow database is
replaced so that a new flow, initiated by the present packet,
can be stored. Therefore, the flow number of the least
recently active flow, identified in state 650, is retrieved. This
flow may be replaced as follows. The sequence number of
the existing flow (e.g., flow sequence number 522 of FIG. 5)
is replaced with a value derived by combining a sequence
number extracted from the packet (e.g., TCP sequence
number) with the size of the data portion of the packet. This
sum may need to be adjusted (e.g., by adding one). Then the
existing flow’s activity indicator (e.g., flow activity indicator
524) is replaced. For example, the value of a flow activity
counter may be copied into the flow activity indicator, as
discussed above. The flow’s validity indicator (e.g., flow
validity indicator 520 of FIG. 5) is then set to indicate that
the flow is valid. Finally, the flow key of the new flow is
stored.

In state 666, operation code 7 is selected for the packet.
Operation code 7 was also selected in state 636. In the
present context, operation code 7 may indicate that the
packet is compatible, did not match the flow key of any valid
flows and contains the first portion of data for a new flow.
Further, the packet’s flags have compatible values and
additional data is expected in the flow. Lastly, however, in
this context operation code 7 indicates that the flow database
is full, so an existing entry was torn down and the new one
stored in its place. After state 666, the illustrated procedure
ends at end state 670.

In state 668, operation code 5 is selected for the packet.
State 668 is entered from various states and operation code
5 thus represents a variety of possible conditions or situa-
tions. For example, operation code 5 may be selected when
a No__A$ist signal is detected (in state 604) for a packet. As
discussed above, the No_Assist signal may indicate that the
corresponding packet is not compatible with a set of pre-
selected protocols. In this embodiment of the invention,
incompatible packets are ineligible for one or more of the
various functions of MC 100 (e.g., data re-assembly, batch
processing, load distribution).

State 668 may also be entered, and operation code 5
selected, from state 652, in which case the code may indicate
that the recein packet does not match any valid flow keys
and, further, contains no data (e.g., it may be a control
packet).

State 668 may also be entered from state 654. In this
context operation code 5 may indicate that the packet does
not match any valid flow keys. It may further indicate that
the packet contains data, but that the size of the data portion
is less than the threshold discussed in conjunction with state
654. In this context, it appears that the packet’s data is
complete (e.g., comprises all of the data for a datagram),
meaning that there is no other data to re-assemble with this
packet's data and therefore there is no reason to make a new
entry in the database for this one-packet flow.

Finally, state 668 may also be entered from state 656. In
this context, operation code 5 may indicate that the packet
does not match any valid flow keys, contains data, and more
data is expected, but at least one flag in one or more of the
packet’s protocol headers does not have its expected value.
For example, in one embodiment of the invention the TCP
flags URG, PSH, RST and FIN are expected to be clear. If
any of these flags are set an exceptional condition may exist,
thus making it possible that one of the functions offered by
MC 100 is unsuitable for this packet.

As TABLE 1 reflects, there is no flow to tear down and no
new flow is established when operation code 5 is selected.
Following State 668, the illustrated procedure ends at state
670.

NOAC EX. 1015 Page 290



NOAC Ex. 1015 Page 291

 

 

US 6,483,804 B1

47

One skilled in the art will appreciate that the procedure
illustrated in FIGS. 6A—6E and discussed above is but one

suitable procedure for maintaining and updating a flow
database and for determining a packet’s suitability for
certain processing functions. In panicular, different opera-
tion codes may be utilized or may be implemented in a
difierent manner, a goal being to produce information for
later processing of the packet through MC 100.

Although operation codes are migned for all packets by
a flow database manager in the illustrated procedure, in an
alternative procedure an operation code assigned by the
FDBM may be replaced or changed by another module of
MC 100. This may be done to ensure a particular method of
treating certain types of packets. For example, in one
embodiment of the invention IPP module 104 migns a
predetermined operation code (e.g., operation code 2 of
TABLE 1) to jumbo packets (e.g., packets greater in size
than MTU) so that DMA engine 120 will not re-assemble
them. In particular, the IPP module may independently
determine that the packet is a jumbo packet (e.g., from
information provided by a MAC module) and therefore
assign the predetermined code. Illustratively, header parser
106 and FDBM 108 perform their normal fimctions for a
jumbo packet and IPP module 104 receives a first operation
code assigned by the FDBM. However, the IPP module
replaces that code before storing the jumbo packet and
information concerning the packet. In one alternative
embodiment header parser 106 and/or flow database man-
ager 108 may be configured to recognize a particular type of
packet (e.g., jumbo) and assign a predetermined operation
code.

The operation codes applied in the embodiment of the
invention illustrated in FIGS. 6A—6E are presented and
explained in the following TABLE 1. TABLE 1 includes
illustrative criteria used to select each operation code and
illustrative results or effects of each code.

TABLEI 

Op.
Code Criteria firr Selection Result of Operation 03d: 

0 Compatible control packet with
clear flag; I flowwaa previously

Donotsetupanewflnw;
Donctteardownexisting

eatahliahed for this flow key. flow;
Do not re-Iuemble data
(packet contains no data).

1 Compatible control packet with It Do not set up a new flow;
least one flag or SYN bit set; I Tear down existing flow;
now was previously established. Do no re-Isaemble data

(packet contains no data).
2 Compatible packet whole sequence

number does not match sequence
number in flow database, or SYN
bit is let (indicating attempt to re-
establish I connection) but there is
nomoredatatocome;aflowwas
previously established.__ o, __
Jumbo packet.

3 A compatible packet. carrying a
finalportion officwdata,orafiag
is set (but packet is in sequence,
unlike operation code 2); a flow
was previously established.

4 Receipt of next compatible packet
in sequence; I flow was previouslyestablished.

Do not set up a new flow;
Thar down existing How;
Do not re-asaemble packet
data.

Donotsetupanewflow;
Tear down existing flow;
lie—assemble data with
previous packets.

Do not set up a new flow;
Do not tear down existing
flow;
Re-assemble data with
other packets.

5 Packet mnnot be reassembled Do not set up a flow;
beause: incompatible, I flag is set, There is no flow to tax
packet contains no data or there is down;
no more data to come. No flow Do not reassemble.
was previously established.

25

30

35

45

50

48

TABLE 1-coutinued 

Op.
 

5 Code Criteria for Selection Result of Operation 03d:
6 First compatible packet of I new Set up a new flow;

flow;no flowwasprevioualy Thereisno flowtotear
established. down;

Re-auemble data with
packets to follow.

10 7 First compatible packet of I new Replace existing flow;
flow, but new database is full; no Re-Iaaemble data with
flow was previously eatablished. packets to follow._ or _
Compatible packet, SYN bit is set
and additional data will follow; a

15 flow was previotu established. 

One Embodiment of a Load Distributor

In one embodiment of the invention, load distributor 112
enables the processing of ackets through their roiocol

swag to §e EEEEEUEQ iii-5E E Elie—r of firocessors.Illustratively, loa distributor 112 nerates an identifier
(e.g., a processor num5eri of a r to Web a packeto . . e multiple processors may e ocated
West-computer system that is served by NIC 100. In
one alternative embodiment, one or more processors for
manipulating packets through a protocol stack are located on
NIC 100.

Without an effective method of sharing or distributing the
processing burden, one procesor could become overloaded
if it were required to proces all or most network trafiic
received at NTC 100, particularly in a high-speed network
environmenL The resulting delay in procesing network
trafiic could deteriorate operations on the host computer
system as well as other computer systems communicating
with the host system via the network.

As one sldlled in the art will appreciate, simply distrib-
uting packets among processors in a set of processors (e.g,
such as in a round-robin scheme) may not be an efficient
plan. Such a plan could easily result in packets being
processed out of order. For example, if two packets from one
communication flow or connection that are received at a
network interface in the correct order were submitted to two

different processors, the second packet may be processed
before the firsL This could occur, for example, if the
procemr that received the first packet could not immedi-
ately process the packet because it was busy with another
task. When packets are processed out of order a recovery
scheme must generally be initiated, thus introducing even
more ineflicieucy and more delay.

Therefore, in a present embodiment of the invention
packets are distributed among multiple pigmssog based

pon err 0 en es. ascribed above, a header
Wflow key from layer three (e.g., IP)

55 and layer four (e.g., TCP) source and destination identifiers
retrieved from a packet’s headers. The flow key may be used

WWI
ackets having an identical flow ke submitted a

,0We:y C 100, they should be provided to the host computer
and processed in order by their assigned proceScr.

Illustrativelyfilfllfiplip ets sent from one source entity
to one destination entity will have the same 110 ven

65 (”smack e a par te data ams as 10 eir
layer three and layer four identifiers remain the same. As
Wow, separate flows are set up and torn down for

20

NOAC EX. 1015 Page 291



NOAC Ex. 1015 Page 292

US 6,483,804 B1
49

each datagram within one TCP end—to-end connection.
Therefore, just as all packets within one flow are sent to one
processor, all packets within a TCP end—to-end connection
will also be sent to the same processor. This helps ensure the
correct ordering of packets for the entire connection, even
between datagrams.

Depending upon the network environment in which NIC
100 operates (e.g., the protocols supported by network 102),
the flow key may be too large to use as an identifier of a
processor. In one embodiment of the invention described
above, for example, a flow key measures 288 bits.
Meanwhile, the number of processors participating in the
load—balancing scheme may be much smaller. For example,
in the embodiment of the invention described below in

conjunction with FIG. 7, a maximum of sixty-four proces-
sors is supported. Thus, in this embodiment only a six-bit
number is needed to identify the selected processor. The
larger flow key may therefore be mapped or bashed into a
smaller range of values.

FIG. 7 depicts one method of generating an identifier
(e.g., a processor number) to specify a processor to process
a packet received by NIC 100, based on the packet’s flow
key. In this embodiment of the invention, network 102 is the
Internet and a received packet is formatted according to a
compatible protocol stack (e.g., Ethernet at layer two, IP at
layer three and TCP at layer four).

State 700 is a start state. In state 702 a packet is received
by NIC 100 and a header portion of the packet is parsed by
header parser 106 (a method ofparsing a packet is described
in a previous section). In state 704, load distributor 112
receives the packet’s flow key that was generated by header
parser 106.

Because a packet’s flow key is 288 bits wide in this
embodiment,msme—paremo
genmmderfle hash
operation may, for example, comprise a thirty-two bit CRC
(cyclic redundancy check) function such as ATM
(Asynchronous Transfer Mode) Adaptation Layer 5 (AAIS).
AALS generates thirty-two bit numbers that are fairly evenly
distributed among the 232 possible values. Another suitable
method of hashing is the standard Ethernet CRC-32 func-
tion. Other hash functions that are capable of generating
relatively small numbers from relatively large flow keys,
where the numbers generated are well distributed among a
range of values, are also suitable.

operation g' fifionned over e num er 0 processors '
ab e for distributin harin the rocessing. Illustratively,
software executing on the host computer (e.g., a device
driver for NIC 100) programs or stores the number of
processors such that it may be read or retrieved by load
distributor 112 (e .g., in a register). The number ofprocessors
available for load balancing may be all or a subset of the
number ofprocessors installed on the host computer system.
In the illustrated embodiment, the number of processors
available in a host computer system is programmable, with
a maximum value of sixty-four. The result of the modulus
operation in this embodiman therefore, is the number of the
proce$or (e.g., from zero to sixty-three) to which the packet
is to be submitted for proceging. In this embodiment of the
invention, load distributor 112 is implemented in hardware,
thus allowing rapid execution of the hashing and modulus
functions. In an alternative embodiment of the invention,
virtually any number of processors may be accommodated.

In state 710, the number of the processor that will process
the packet through its protocol stack is stored in the host
computer’s memory. Illustratively, state 710 is performed in

10

15

35

45

50

55

65

50

parallel with the storage of the packet in a host memory
butfer. As described in a following section, in one embodi-
ment of the invention a descriptor ring in the host comput—
er’s memory is constructed to hold the processor number
and possibly other information concerning the packet (e.g.,
a pointer to the packet, its size, its TCP checksum).

A descriptor ring in this embodiment is a data structure
comprising a number of entries, or “descriptors,” for storing
information to be used by a network interface circuit’s host
computer system. In the illustrated embodiment, a descriptor
temporarily stores packet information after the packet has
been received by NIC 100, but before the packet is pro-
cessed by the host computer system. The information stored
in a descriptor may be used, for example, by the device
driver for NIC 100 or for processing the packet through its
protocol stack.

In state 712, an intenupt or other alert is igued to the host
computer to inform it that a new packet has been delivered
from NIC 100. In an embodiment of the invention in which

NIC 100 is coupled to the host computer by a PCI
(Peripheral Component Interconnect) bus, the INTA signal
may be asserted across the bus. A PCI controller in the host
receives the signal and the host operating system is alerted
(e.g., via an interrupt).

In state 714, software operating on the host computer
(e.g., a device driver for NIC 100) is invoked (e.g., by the
host computer’s operating system interrupt handler) to act
upon a newly received packet. The software gathers infor-
mation from one or more descriptors in the descriptor ring
and places information needed to complete the processing of
each new packet into a queue for the specified processor
(i.e., according to the processor number stored in the pack-
et’s descriptor). Illustratively, each descriptor corresponds to
a separate packet. The information stored in the procesor
queue for each packet may include a pointer to a buffer
containing the packet, the packet’s TCP checksum, offsets of
one or more protocol headers, etc. In addition, each proces-
sor participating in the load distribution scheme may have an
associated queue for processing network packets. In an
alternative embodiment of the invention, multiple queues
may be used (e.g., for multiple priority levels or for difl'erent
protocol stacks).

Illustratively, one processor on the host computer system
is configured to receive all alerts and/or interrupts associated
with the receipt of network packets from NIC 100 and to
alert the appropriate software routine or device driver. This
initial processing may, alternatively, be distributed among
multiple procemrs. In addition, in one embodiment of the
invention a portion of the retrieval and manipulation of
descriptor contents is performed as part of the handling of
the interrupt that is generated when a new packet is stored
in the descriptor ring. The processor selected to process the
packet will perform the remainder of the retrieval/
manipulation procedure.

In state 716, the processor designated to process a new
packet is alerted or woken. In an embodiment of the inven-
tion operating on a Solaris'm workstation, individual pro-
cesses executed by the processor are configured as
“threads.” A thread is a proce$ running in a normal mode
(e.g., not at an interrupt level) so as to have minimal impact
on other proce$es executing on the workstation. A normal
mode process may, however, execute at a high priority.
Alternatively, a thread may run at a relatively low interrupt
level.

A thread responsible for proceging an incoming packet
may block itself when it has no packets to process, and
awaken when it has work to do. A “condition variable” may

NOAC EX. 1015 Page 292



NOAC Ex. 1015 Page 293

 
 

US 6,483,804 B1
51

be used to indicate whether the thread has a packet to
process. Illustratively, the condition variable is set to a first
value when the thread is to process a packet (e.g., when a
packet is received for processing by the pmcmor) and is set
to a second value when there are no more packets to process.
In the illustrated embodiment of the invention, one condition
variable may be asociated with each processor’s queue.

In an alternative embodiment, the indicated processor is
alerted in state 716 by a “cross-procemor call.” A cros-
processor call is one way of communicating among proces-
sors whereby one processor is interrupted remotely by
another processor. Other methods by which one processor
alerts, or dispatches a procem to, mother processor may be
used in place of threads and cross-processor calls.

In state 718, a thread or other process on the selected
processor begins processing the packet that was stored in the
processor’s queue. Methods of processing a packet through
its protocol stack are well lmown to those skilled in the art
and need not be described in detail. The illustrated procedure
then ends with end state 720.

In one alternative embodiment of the invention, a high—
speed network interface is configured to receive and process
ATM (Asynchronous Transfer Mode) trafiic. In this
embodiment, a load distributor is implemented as a set of
instructions (e.g., as software) rather than as a hardware
module. As one skilled in the art is aware, ATM traflic is
connection-oriented and may be identified by a virtual
connection identifier (VCI), which corresponds to a virtual
circuit established between the packet’s source and destina-
tion entities. Each packet that is part of a virtual circuit
includes the VCI in its header.

Advantageously, a VG is relatively small in size (e.g.,
sixteen bits). In this alternative embodiment, therefore, a
packet’s VCI may be used in place of a flow key for the
purpose of distributing or sharing the burden of processing
packets through their protocol stacks. Illustratively, traflic
from different VCls is sent to different processors, but, to
ensure correct ordering of packets, all packets having the
same VCI are sent to the same processor. When an ATM
packet is received at a network interface, the VCI is retrieved
from its header and provided to the load distributor. The
modulus of the VCI over the number of processors that are
available for load distribution is then computed. Similar to
the illustrated embodiment, the packet and its asociated
processor number are then provided to the host computer.

As described above, load distribution in a present embodi-
ment of the invention is performed on the basis of apacket’s
layer three and/or layer four source and destination entity
identifiers. In an alternative embodiment of the invention,
however, load distribution may be performed on the basis of
layer two addresses. In this alternative embodiment, packets
having the same Ethernet source and destination addresses,
for example, are sent to a single processor.

As one of skill in the art will recognize, however, this may
result in a processor receiving many more packets than it
would if layer three and/or layer four identifiers were used.
For example, if a large amount of traffic is received through
a router situated near (in a logical sense) to the host
computer, the source Ethernet addreg for all of the traffic
may be the router’s addrem even though the traflic is from
a multitude of diflerent end users and/or computers. In
contrast, if the host computer is on the same Ethernet
segment as all of the end users/computers, the layer two
source addresses will show greater variety and allow more
effective load sharing.

Other methods of distributing the processing of packets
received from a network may differ from the embodiment

10

15

35

4s

50

55

60

65

52

illustrated in FIG. 7 without exceeding the scope of the
invention. In particular, one skilled in the art will appreciate
that many alternative procedures for assigning a fiow’s
packets to a processor and delivering those packets to the
processor may be employed.
One Embodiment of a Packet Queue

As described above, acket eue 116 stores ackets
received fiorn IPP module IN_m10_rtgfierr=remssembly by
DMA on e 120 and theirdransfertoslhe host—computer
Wfletqueue 116 according to one
embodiment of the invention.

In the illustrated embodiment, packet queue 116 is imple-
mented as a FIFO (First-In First-Out) queue containing up to
256 entries. Each packet queue entry in this embodiment
stores one packet plus various information concerning the
packet. For example, entry 800 includes packet portion 802
plus a packet status portion. Because packets ofvarious sizes
are stored in packet queue 116, packet portion 802 may
include filler 802a to supplement the packet so that the
packet portion ends at an appropriate boundary (e.g., byte,
word, double word).

Filler 802a may comprise random data or data having a
specified pattern. Filler 802 a may be distinguished from the
stored padret by the pattern of the filler data or by a tag field.

Illustratively, packet status information includes TCP
checksum value 804 and packet length 806 (e.g., length of
the packet stored in packet portion 802). Storing the packet
length may allow the packet to be easily identified and
retrieved from packet portion 802. Packet status information
may also include diagnostic/status information 808.
Diagnostic/stams information 808 may include a flag indi-
cating that the packet is bad (e.g., incomplete, received with
an error), an indicator that a checksum was or was not
computed for the packet, an indicator that the checksum has
a certain value, an offset to the portion of the packet on
which the checksum was computed, etc. Other flags or
indicators may also be included for diagnostics, filtering, or
other purposes. In one embodiment of the invention, the
packet’s flow key (described above and used to identify the
flow comprising the packet) and/or flow number (e.g., the
corresponding index of the packet’s flow in flow database
110) are included in diagnostic/status information 808. In
another embodiment, a tag field to identify or delimit filler
802a is included in diagnostic/status information 808.

In one alternative embodiment of the invention, any or all
of the packet status information described above is stored in
control queue 118 rather than packet queue 116.

In the illustrated embodiment of the invention packet
queue 116 is implemented in hardware (e.g., as random
access memory). In this embodiment, checksum value 804 is
sixteen bits in size and may be stored by checksum generator
114. Packet length 806 is fourteen bits large and may be
stored by header parser 106. Finally, portions of diagnostic/
status information 808 may be stored by one or more of IPP
module 104, header parser 106, how database manager 108,
load distributor 112 and checksum generator 114.

Packet queue 116 in FIG. 8 is indexed with two pointers.
Read pointer 810 identifies the next entry to be read from the
queue, while write pointer 812 identifies the entry in which
the next received packet and related information is to be
stored. As explained in a subsequent section, the packet
stored in packet portion 802 of an entry is extracted from
packet queue 116 when its data is to be-reassembled by
DMA engine 120 and/or transferred to the host computer
system.
One Embodiment of a Control Queue

In one embodiment of the invention, contr ue 118
stores control and status information concerning a packet
W

NOAC EX. 1015 Page 293



NOAC Ex. 1015 Page 294

 

 

US 6,483,804 B1
53

received by NIC 100. In this embodiment, control queue 118
l

54

FIG. 9 depicts a read pointer and a write pointer for
retains information used to enable the batch processing of / indexing control queue 118. Read pointer 914 indicates an
protocol headers and/or the re-ammbly of data from mul-
tiple related packets. Control queue 118 may also store
information to be used by the host computer or a series of
instructions operating on a host computer (e.g., a device
driver for MC 100). The information stored in control queue
118 may supplement or duplicate information stored in
packet queue 116.

FIG. 9 depicts control queue 118 in one embodiment of
the invention. The illustrated control queue contains one
entry for each packet stored in packet queue 116 (e.g., up to
256 entries). In one embodiment of the invention each entry
in control queue 118 corresponds to the entry (e.g., packet)
in packet queue 116 having the same number. FIG. 9 depicts
entry 900 having various fields, such as CPU number 902,
N0_Assist signal 904, operation code 906, payload olfset
908, payload size 910 and other status information 912. An
entry may also include other status or control information
(not shown in FIG. 9). Entries in control queue 118 in
alternative embodiments of the invention may comprise
different information.

CPU (or procemor) number 902, discussed in a previous
section, indicates which one of multiple processors on the
host computer system should process the packet’s protocol
headers. Illustratively, CPU number 902 is six bits in size.

N0_Assist signal 904, also described1n apreceding section,
indicates whether the packet is compatible with (e.g..,
formatted according to) any of a set of pre-selected protocols
that may be parsed by header parser 106. No_A$ist signal
904 may comprise a single flag (e.g. one bit). In one
embodiment of the invention the state or value of No__A$ist
signal 904 may be used by flow database manager 108 to
determine whether a packet’s data is re—asembleable and/or
whether its headers may be processed with those of related
packets. In particular, the FDBM may use the N0_Assist
signal in determining which operation code to assign to the
packet.

Operation code 906 provides information to DMA engine
120 to assist in the re-assembly of the packet’s data. As
described in a previous section, an operation code may
indicate whether a packet includes data or whether a pack-
et’s data is suitable for re-assembly. Illustratively, operation
code 906 is three bits in size. Payload oEset 908 and payload
size 910 conespond to the offset and size of the packet’s
TCP payload (e.g., TCP data), respectively. These fields may
be seven and fourteen bits large, respectively.

In the illustrated embodiment, other status information
912 includes diagnostic and/or status information concern-
ing the packet. Status information 912 may include a starting
position for a checksum calculation (which may be seven
bits in size), an offset of the layer three (e.g., IP) protocol
header (which may also be seven bits in size), etc. Status
information 912 may also include an indicator as to whether
the size of the packet exceeds a first threshold (e.g., whether
the pad(et is greater than 1522 bytes) or falls under a second
threshold (e.g., whether the packet is 256 bytes or less). This
information may be useful in re-assembling packet data.
Illustratively, these indicators comprise single-bit flags.

In one alternative embodiment of the invention, 5 atus
information912 includes a packet’_s flow key and/o flow
number (e.g. the index of the packet’sumdatabase
110). The flow key or flow number may, for example, be
fired for debugging or other diagnostic purposes. In one
embodiment of the invention, the packet’5 flow number may
be stored1n status information 912 so that multiple packets;

/.

10

15

35

40

45

50

55

60

transfer packets from
com um emery.W

WfiWth
WW1)!betrans err together (e.g., in the e buffer). By using one

‘bufie‘r for Hm Em one flow the data can be pro'vrded-to-an

entry to be read by DMA engine 120. Write pointer 916
indicates the entry in which to store information concerning
the next packet stored in packet queue 116.

In an alternative embodiment of the invention, a second
read pointer (not shown in FIG. 9) may be used for indexing
control queue 118. As described in a later section, when a
packet is to be transferred to the host computer, information
drawn from entries in the control queue is searched to
determine whether a related packet (e.g., a packet in the
same flow as the packet to be transfened) is also going to be
transferred. If so, the host computer is alerted so that
protocol headers from the related packets may be procesed
collectively. In this alternative embodiment of the invention,
related packets are identified by matching their flow num-
bers (or flow keys) in status information 912. The second
read pointer may be used to look ahead in the control queue
for packets with matching flow numbers.

In one embodiment of the invention CPU number 902

may be stored in the control queue by load distributor 112
and N0_Assist signal 904 may be stored by header parser
106. Operation code 906 may be stored by flow database
manager 108, and payload offset 908 and payload size 910
may be stored by header parser 106. Porfions of other status
information may be written by the preceding modules and/or
others, such as IPP module 104 and checksum generator 114.
In one particular embodiment of the invention, however,
many of these items of information are stored by [PP module
104 or some other module acting in somewhat of a coordi-
nator role.

One Embodiment of a DMA Engine
FIG. 10 is ablock dia am DMA (Direct Memory

Asses) engine 1n one embodiment of the invention.
One purpose of DMA engine 120 in this embodiment is to

gene 116 into bufl'ers in host
ackets

WHEm
mmflme ost computer receives the
data, a page-flip operation may be performed to transfer the
data to an application’s memory space rather than perform-
ing numerous copy operations.

With reference back to FIGS. lA—B, a packet that is to be
transferred into host memory by DMA engine 120 is stored
in packet queue 116 after being received from network 102.
Header parser 106 parses a header portion of the packet and
generates a flow key, and flow database manager 108 assigns
an operation code to the packet. In addition, the communi-
cation flow that includes the packet is registered in flow
database 110. The packet’s flow may be identified by its flow
key or flow number (e.g., the index of the flow in flow
database 110). Finally, information concerning the packet
(e.g., operation code, a packet size indicator, flow number)
is stored in control queue 118 and, posibly, other portions
or modules of NIC 100, and the packet is transferred to the
host computer by DMA engine 120. During the transfer
process, the DMAengine may draw upon information stored
in the control queue to copy the packet into an appropriate
bufier, as described below. Dynamic packet batching module
122 may also use information stored1n the control queue, as

in a single flow may be identified Such related packet mayi-is discussedin detailin a following section.
then be collectively transferred to and/or processed by a host ‘-
computer.

With reference now to FIG. 10, one embodiment of a
. DMA engine is presented. In this embodiment, DMA man—

NOAC EX. 1015 Page 294



NOAC Ex. 1015 Page 295

  
 

US 6,483,804 Bl
55

ager 1002 manages the transfer of a packet, flom packet
queue 116, into one or more buffers in host computer
memory. Free ring manager 1012 identifies or receives
empty buffers flom host memory and completion ring man—
ager 1014 releases the buflers to the host computer, as
described below. The free ring manager and completion ring
managers may be controlled with logic contained in DMA
manager 1002. In the illustrated embodiment, flow
re-assembly table 1004, header table 1006, MTU table 1008
and jumbo table 1010 store information concerning buflers
used to store different types of packets (as described below).
Information stored in one of these tables may include a
reference to, or some other means of identifying, a buffer. In
FIG. 10, DMA engine 120 is partially or fiilly implemented
in hardware.

Empty buiIers into which packets may be stored are
identified via a flee descriptor ring that is maintained in host
memory. As one skilled in the art is aware, a descriptor ring
is a data structure that is logically arranged as a circular
queue. A descriptor ring contains descriptors for storing
information (e.g., data, flag, pointer, addrem). In one
embodiment of the invention, each descriptor stores its
index within the flee descriptor ring and an identifier (e.g.,
memory address, pointer) of a flee buffer that may be used
to store packets. In this embodiment a butfer is identified in
a descriptor by its address in memory, although other means
of identifying a memory buiIer are also suitable. In one
embodiment of the invention a descriptor index is thirteen
bits large, allowing for a maximum of 8,192 descriptors in
the ring, and a buffer address is sixty-four bits in size.

In the embodiment of FIG. 10, software that executes on
a host computer, such as a device driver for MC 100,
maintains a flee bufler array or other data structure (e.g., list,
table) for storing references to (e.g., addresses of) the buffers
identified in flee descriptors. As dmiptors are retrieved
flom the ring their bufi‘er identifiers are placed in the array.
Thus, when a buffer is needed for the storage of a packet, it
may be identified by its index (e.g., cell, element) in the free
buffer array. Then, when the bulfer is no longer needed, it
may be released to the host computer by placing its array
index or reference in a completion descriptor. A packet
stored in the buffer can then be retrieved by accessing the
butfer identified in the specified element of the array. Thus,
in this embodiment of the invention the size of a descriptor
index (e.g., thirteen bits) may not limit the number of buffers
that may be assigned by flee ring manager 1012. In
particular, virtually any number of buiIers or descriptors
could be managed by the software. For example, in one
alternative embodiment of the invention buffer identifiers

may be stored in one or more linked lists after being
retrieved flom descriptors in a free descriptor ring. When the
buiIer is released to the host computer, a reference to the
head of the buiIer’s linked list may be provided. The list
could then be navigated to locate the particular buffer (e.g.,
by its address).

As one skilled in the art will appreciate, the inclusion of
a limited number of descriptors in the flee descriptor ring
(e.g., 8,192 in this embodiment) means that they may be
re-used in a round-robin fashion. In the presently described
embodiment, a descriptor is just needed long enough to
retrieve its buffer identifier (e.g., address) and place it in the
flee bufler array, after which it may be re-used relatively
quickly. In other embodiments of the invention flee descrip-
tor rings having different numbers of flee descriptors may be
used, thus allowing some control over the rate at which flee
descriptors must be re-used.

In one alternative embodiment of the invention, instead of

using a separate data structure to identify a buffer for storing

10

15

30

35

45

50

55

60

65

56

a packet, a buffer may be identified within DMA engine 120
by the index of the free descriptor within the flee descriptor
ring that referenced the buffer. One drawback to this scheme
when the ring contains a limited number of descriptors,
however, is that a particular bulfer’s descriptor may need to
be re-used before its bufier has been released to the host

computer. Thus, either a method of avoiding or skipping the
re-use of such a descriptor must be implemented or the
buffer referenced by the descriptor must be released before
the descriptor is needed again. Or, in another alternative, a
flee descriptor ring may be of such a large size that a lengthy
or even virtually infinite period of time may pass flom the
time a free descriptor is first used until it needs to be re-used.

Thus, in the illustrated embodiment of the invention flee
ring manager 1012 retrieves a descriptor flom the flee
dmiptor ring, stores its bufler identifier (e.g., memory
addrem) in a flee buffer array, and provides the array index
and/or buffer identifier to flow re-assembly table 1004,
header table 1006, MTU table 1008 or jumbo table 1010.

Free ring manager 1012 attempts to ensure that a bulfer is
always available for a packet. Thus, in one embodiment of
the invention flee ring manager 1012 includes descriptor
cache 1012a configured to store a number of descriptors
(e.g., up to eight) at a time. Whenever there are less than a
threshold number of entries in the cache (e.g., five), addi-
tional descriptors may be retrieved flom the flee descriptor
ring. Advantageously, the descriptors are of such a size (e.g.,
sixteen bytes) that some multiple (e.g., four) of them can be
eflicr'ently retrieved in a sixty-four byte cache line transfer
flom the host computer.

Returning now to the illustrated embodiment of the
invention, each buffer in host memory is one memory page
in size. However, buffers and the packets stored in the
buffers may be divided into multiple categories based on
packet size and whether a packet’s data is being
re-assembled. Re-asembly refers to the accumulation of
data from multiple packets of a single flow into one bufier
for efficient transfer flom kernel space to user or application
space within host memory. In particular, re-assembleable
packets may be defined as packets that conform to a pre-
selected protocol (e.g., a protocol that is parseable by header
parser 106). By filling a memory page with data for one
destination, page—flipping may be performed to provide a
page in kernel space to the application or user space. A
packet’s category (e .g., whether re-assernbleable or non-re-
assembleable) may be determined from information
retrieved flom the control queue or flow database manager.
In particular, and as described previously, an operation code
may be used to determine whether a packet contains a
re—assembleable portion of data.

In the illustrated embodiment of the invention, data por-
tions of related, re—assembleable, packets are placed into a
first category ofbuffers—which may be termed re-assembly
buffers. A second category of buffers, which may be called
header buffers, stores the headers of those packets whose
data portions are being re-assembled and may also store
small packets (e.g., those less than or equal to 256 bytes in
size). A third category of buffers, MI'U buffers, stores
non-re-assembleable packets that are larger than 56 bytes,
but no larger than MTU size (e.g., 1522 bytes). Finally, a
fourth category of bufiers, jumbo buiIers, stores jumbo
packets (e.g., large packets that are geater than 1522 bytes
in size) that are not being reassembled. Illustratively, a
jumbo packet may be stored intact (e.g., its headers and data
portions kept together in one buffer) or its headers may be
stored in a header buffer while its data portion is stored in an
appropriate (e.g., jumbo) non-re-assembly buffer.

NOAC EX. 1015 Page 295



NOAC Ex. 1015 Page 296

 

 US 6,483,804 B1
57

In one alternative embodiment of the invention, no dis-
tinction is made between MTU and jumbo packets. Thus, in
this alternative embodiment, just three types of buffers are
used: re-assembly and header bulfers, as described above,
plus non-re—assembly buflers. lllustratively, all non-small
packets (e.g., larger than 256 bytes) that are not
re-assembled are placed in a non-re-assembly bulfer.

In another alternative embodiment, jumbo packets may be
re-assembled in jumbo buflers. In particular, in this embodi-
ment data portions of packets smaller than a predetermined
size (e.g., MTU) are re-assembled in normal re-assembly
bulfers while data portions of jumbo packets (e.g., packets
greater in size than MTU) are re-assembled in jumbo
bufi'ers. Re-assembly of jumbo packets may be particularly
etfective for a communication flow that comprises jumbo
flames of a size such that multiple frames can fit in one
bulfer. Header portions of both types of packets may be
stored in one type of header bulfer or, alternatively, different
header buffers may be used for the headers of the different
types of re-assembleable packets.

In yet another alternative embodiment of the invention
buffers may be of varying sizes and may be identified in
different descriptor rings or other data structures. For
example, a first descriptor ring or other mechanism may be
used to identify bulfers of a first size for storing large or
jumbo packets. A second ring may store descriptors refer-
encing buflers for MTU-sized packets, and another ring may
contain descriptors for identifying page-sized buffers (e.g.,
for data re-assembly).

Abuffer used to store portions of more than one type of
packet—such as a header bulfer used to store headers and
small padrets, or a non-reassembly hulfer used to store
MTU andjumbo packets—may be termed a “hybrid” bulfer.

Illustratively, each time a packet or a portion of a packet
is stored in a bulfer, completion ring manager 1014 popu-
lates a descriptor in a completion descriptor ring with
information concerning the packet. Included in the informa-
tion stored in a completion descriptor in this embodiment is
a number or reference identifying the free bufi'er my cell
or element in which an identifier (e.g., memory address) of
a bufler in which a portion of the packet is stored. The
information may also include an ofiset into the bufier (e.g.,
to the beginning of the packet portion), the identity of
mother flee buffer array entry that stores a bulfer identifier
for a bulfer containing another portion of the packet, a size
of the packet, etc.Apacket may be stored in multiple bufiers,
for example, if the packet data and header are stored
separately (e.g., the packet’s data is being re-assembled in a
re—assembly bulfer while the packet's header is placed in a
header bulfer). In addition, data portions of a jumbo packet
or a re-assembly packet may span two or more butfers,
depending on the size of the data portion.

A distinction should be kept in mind between a buffer
identifier (e.g., the memory address of a bulfer) and the entry
in the free butfer array in which the bulfer identifier is stored.
In particular, it has been described above that when a
memory bulfer is released to a host computer it is identified
to the host computer by its position within a flee bulfer array
(or other suitable data structure) rather than by its bufler
identifier. 'lhe host computer retrieves the hulfer identifier
from the specified array element and accesses the specified
bulfer to locate a packet stored in the bufier. As one skilled
in the art will appreciate, identifying memory buficps in
completion descriptors by the bulfers’ positions in a flee
bufler array can be more efficient than rdentifying them by
their memory addresses. In 1331110111313 in FIG. 10 buficr
identifiers are sixty-foul bits in size while an index in a free

10

15

35

4s

50

55

60

65

58

buffer array or similar data structure will likely be far
smaller. Using array positions thus saves space compared to
using bufier identifiers. Nonethelm, bufier identifiers may
be used to directly identify buffers in an alternative embodi-
ment of the invention, rather than filtering access to them
through a flee bufler array. However, completion descriptors
would have to be correspondingly larger in order to accom-
modate them.

A completion descriptor may also include one or more
flags indicating the type or size of a packet, whether the
packet data should be re-asembled, whether the packet is
the last of a datagram, whether the host computer should
delay processing the packet to await a related packet, etc. As
described in a following section, in one embodiment of the
invention dynamic packet batching module 122 determines,
at the time a packet is transferred to the host computer,
whether a related packet will be sent shortly. If so, the host
computer may be advised to delay processing the transferred
packet and await the related packet in order to allow more
efficient processing.

A packet’s completion descriptor may be marked appro-
priately when the buffer identified by its buffer identifier is
to be released to the host computer. For example, a flag may
be set in the descriptor to indicate that the packet’s buffer is
being released from DMA engine 120 to the host computer
or software operating on the host computer (e.g., a driver
associated with NIC 100). In one embodiment of the
invention, completion ring manager 1014 includes comple-
tion descriptor cache 1014a. Completion descriptor cache
1014a may store one or more completion descriptors for
collective transfer from DMA engine 120 to the host com-
puter.

Thus, empty buffers are retrieved flom a flee ring and
used buffers are released to the host computer through a
completion ring. One reason that a separate ring is employed
to release used butfers to the host computer is that bulfers
may not be released in the order in which they were taken.
In one embodiment of the invention, a buffer (especially a
flow re-assembly bulfer) may not be released until it is full.
Alternatively, a bufler may be released at virtually any time,
such as when the end of a communication flow is detected.

Free descriptors and completion descriptors are further
described below in conjunction with FIG. 12.

Another reason that separate rings are used for flee and
completion descriptors is that the number of completion
descriptors that are required in an embodiment of the
invention may exceed the number of flee descriptors pro-
vided in a flee descriptor ring. For example, a buffer
provided by a free descriptor may be used to store multiple
headers and/or small packets. Each time a header or small
packet is stored in the header bufl‘er, however, a separate
completion descriptor is generated. In an embodiment of the
invention in which a header buffer is eight kilobytes in size,
a header buffer may store up to thirty-two small packets. For
each packet stored in the header bulfer, another completion
descriptor is generated.

FIG. 11 includes diagrams of illustrative embodiments of
flow re—assembly table 1004, header table 1006, MTU table
1008 and jumbo table 1010. One alternative embodiment of
the invention includes a non-re-assembly table in place of
MTU table 1013 and jumbo table 1010, corresponding to a
single type of non-re-assembly bulfer for both MTU and
jumbo packets. Jumbo table 1010 may also be omitted in
another alternative embodiment of the invention in which

jumbo bulfers are retrieved or identified only when needed.
Because a jumbo buffer is used only once in this alternative
embodiment, there is no need to maintain a table to track its
use.

NOAC EX. 1015 Page 296



NOAC Ex. 1015 Page 297

US 6,483,804 B1
59

Flow re-assembly table 1004 in the illustrated embodi-
ment stores information concerning the re-assembly ofpack-
ets in one or more communication flows. For each flow that

is active through DMA engine 120, separate flow
re-assembly buflfers may be used to store the flow’s data.
More than one bufler may be used for a particular flow, but
each flow has one entry in flow re-assembly table 1004 with
which to track the use of a buffer. As described in a previous
section, one embodiment of the invention supports the
interleaving of up to sixty-four flows. Thus, fiow
re-assembly butfer table 1004 in this embodiment maintains
up to sixty-four entries. A flow’s entry in the flow
re-assembly table may match its flow number (e.g., the index
of the flow’s flow key in flow database 110) or, in an
alternative embodiment, an entry may be used for any flow.

In FIG. 11, an entry in flow re-assembly table 1004
includes flow re—assembly bulfer index 1102, next address
1104 and validity indicator 1106. Flow re-assembly butfer
index 1102 comprises the index, or position, within a free
buffer array or other data structure for storing bufl'er iden-
tifiers identified in free descriptors, of a butfer for storing
data from the associated flow. lllustratively, this value is
written into each completion descriptor associated with a
packet whose data portion is stored in the bulfer. This value
may be used by software operating on the host computer to
access the bufler and process the data. Next address 1104
identifies the location within the bufier (e.g., a memory
address) at which to store the next portion of data.
Illustratively, this field is updated each time data is added to
the bufier. Validity indicator 1106 indicates whether the
entry is valid. lllustratively, each entry is set to a valid state
(e.g., stores a first value) when a first portion of data is stored
in the flow’s re-assembly buffer and is invalidated (e.g.,
stores a second value) when the butfer is full. When an entry
is invalidated, the bufler may be released or returned to the
host computer (e.g., because it is full).

Header table 1006 in the illustrated embodiment stores

information concerning one or more header buflers in which
packet headers and small packets are stored. In the illus-
trated embodiment of the invention, only one header buffer
is active at a time. That is, headers and small packets are
stored in one bulfer until it is released, at which time a new
bufler is used. In this embodiment, header table 1006
includes header bufl'er index 1112, next address 1114 and
validity indicator 1116. Similar to flow r'e-asembly table
1004, header bufier index 1112 identifies the cell or element
in the free buffer array that contains a bufier identifier for a
header bulIer. Next address 1114 identifies the location
within the header bufi'er at which to store the next header or

small packet. This identifier, which may be a counter, may
be updated each time a header or small packet is stored in the
header bufler. Validity indicator 1116 indicates whether the
header bufler table and/or the header buifer is valid. This

indicator may be set to valid when a first packet or header
is stored in a header bulfer and may be invalidated when it
is released to the host computer.

MTU table 1008 stores information concerning one or
more MTU buifers for storing MTU packets (e.g., packets
larger than 256 bytes but 1e$ than 1523 bytes) that are not
being re-assembled. MTU butfer index 1122 identifies the
free bufler array element that contains a buifer identifier
(e.g., address) of a bufier for storing MTU packets. Next
address 1124 identifies the location in the current MI‘U
bufier at which to store the next packet. Validity indicator
1126 indicates the validity of the table entry. The validity
indicator may be set to a valid state when a first packet is
stored in the MTU buffer and an invalid State when the buifer
is to be released to the host computer.

10

15

30

35

45

50

55

60

65

60

Jumbo table 1010 stores information concerning one or
more jumbo bufi‘ers for storing jumbo packets (e.g., packets
larger than 1522 bytes) that are not being re-amembled.
Jumbo bulfer index 1132 identifies the element within the

free bufier array that stores a buffer identifier corresponding
to a jumbo bufler. Next address 1134 identifies the location
in the jumbo bufler at which to store the next packet. Validity
indicator 1136 indicates the validity of the table entry.
lllustratively, the validity indicator is set to a valid state
when a first packet is stored in the jumbo buffer and is set
to an invalid state when the bufler is to be released to the

host computer.
In the embodiment of the invention depicted in FIG. 11,

a packet larger than a specified size (e.g., 256 bytes) is not
re-assembled if it is incompatible with the pie—selected
protocols for MC 100 (e.g., TCP, IP, Ethernet) or if the
packet is too large (e.g., greater than 1522 bytes). Although
two types of bulfers (e.g., MTU and jumbo) are used for
non-re-assembleable packets in this embodiment, in an
alternative embodiment of the invention any number may be
used, including one. Packets less than the specified size are
generally not re-assembled. Instead, as described above,
they are stored intact in a header bulfer.

In the embodiment of the invention depicted in FIG. 11,
next address fields may store a memory address, ofl’set,
pointer, counter or other means of identifying a position
within a bufler. Advantageously, the next addres field of a
table or table entry is initially set to the address of the bufler
assigned to store packets of the type associated with the table
(and, for re-assembly table 1004, the particular flow). As the
bufier is populated, the address is updated to identify the
location in the bufi‘er at which to store the next packet or
portion of a packet.

Illustratively, each validity indicator stores a first value
(e.g., one) to indicate validity, and a second value (e.g., zero)
to indicate invalidity. In the illustrated embodiment of the
invention, each index field is thirteen bits, each addres field
is sixty-four bits and the validity indicators are each one bitin srze.

Tables 1004, 1006, 1008 and 1010 may take other forms
and remain within the scope of the invention as contem-
plated For example, these data structures may take the form
of arrays, lists, databases, etc., and may be implemented in
hardware or software. In the illustrated embodiment of the

invention, header table 1006, MTU table 1008 and jumbo
table 1010 each contain only one entry at a time. Thus, only
one header bufler, MTU bufier and jumbo bufier are active
(e.g., valid) at a time in this embodiment. In an alternative
embodiment of the invention, multiple header buffers, MTU
buflers and/or jumbo bufiers may be used (e.g., valid) atonce.

In one embodiment of the invention, certain categories of
bufiers (e.g., header, non-re-assembly) may store a pre-
determined number of packets or packet portions. For
example, where the memory page size of a host computer
processor is eight kilobytes, a header bufler may store a
maximum of thirty-two entries, each of which is 256 bytes.
Illustratively, even when one packet or header is less than
256 bytes, the next entry in the bufier is stored at the next
256-byte boundary. A counter may be associated with the
bufier and decremented (or incremented) each time a new
entry is stored in the bufier. After thirty-two entries have
been made, the buffer may be released.

In one embodiment of the invention, buflers other than
header bufiers may be divided into fixed-size regions. For
example, in an eight-kilobyte MTU buffer, each MTU
packet may be allocated two kilobytes. Any space remaining

NOAC EX. 1015 Page 297



NOAC Ex. 1015 Page 298

 
US 6,483,804 B1

61

in a packet’s area after the packet is stored may be left
unused or may be padded.

In one alternative embodiment of the invention, entries in
a header bufier and/or non-re-assembly bufier (e.g., MTU,
jumbo) are aligned for more eficient transfer. In particular,
two bytes of padding (e.g., random bytes) are stored at the
beginning of each entry in such a buffer. Because a packet’s
layer two Ethernet header is fourteen bytes long, by adding
two pad bytes each packet’s layer three protocol header
(e.g., IP) will be alimd with a sixteen-byte boundary.
Sixteen-byte alignment, as one skilled in the art will
appreciate, allows efficient copying of packet contents (such
as the layer three header). The addition of two bytes may,
however, decrease the size of the maximum packet that may
be stored in a header bufler (e.g., to 254 bytes).

As explained above, counters and/or padding may also be
used with non-re—assembly buffers. Some non-re—
assembleable packets (e.g., jumbo packets) may, however,
be split into separate header and data portiom, with each
portion being stored in a separate bufier—similar to the
re-assembly of flow packets. In one embodiment of the
invention padding is only used with header portions of split
packets. Thus, when a non-re-assembled (e.g., jumbo)
packet is split, padding may be applied to the header/small
butfer in which the packet’s header portion is stored but not
to the non-re-asembly bulfer in which the packet’s data
portion is stored. When, however, a non-re-assembly packet
is stored with its header and data together in a non-re-
asembly bufier, then padding may be applied to that buffer.

In another alternative embodiment of the invention, a
mond level of padding may be added to each entry in a
buffer that stores non-re-asembled—paekets-that are larger
than 256 bytes (e.g., MTU packets and jumbo packets that
are not split). In this alternative embodiment, a cache line of
storage (e.g., sixty-four bytes for a Solaris'l'“ workstation) is
skipped in the buffer before storing each packet. The extra
padding area may be used by software that processes the
packets and/or their completion descriptors. The software
may use the extra padding area for routing or as temporary
storage for information needed in a secondary or later phase
of processing.

For example, before actually processing the packet, the
software may store some data that promotes efficient multi-
tasking in the padding area. The information is then avail-
able when the packet is finally extracted from the buffer. In
particular, in one embodiment of the invention a network
interface may generate one or more data values to identify
multicast or alternate addresses that correspond to a layer
two address of a packet received fi'om a network. The
multicast or alternate addresses may be stored in a network
interface memory by software operating on a host computer
(e.g., a device driver). By storing the data value(s) in the
padding, enhanced routing functions can be performed when
the host computer processes the packet.

Reserving sixty-four bytes at the beginning of a buffer
also allows header infOrrnation to be modified or prepended
if necessary. For example, a regular Ethernet header of a
packet may, because of routing requirements, need to be
replaced with a much larger FDDI (Fiber Distributed Data
Interface) header. One skilled in the art will recognize the
size disparity between these headers. Advantageously, the
reserved padding area may be used for the FDDI header
rather than allocating another block of memory.

In a present embodiment of the invention DMA engine
120 may determine which category a packet belongs in, and
which type of buffer to store the packetm, by examining the
packet’s operation code. As described In a previous section,

10

15

35

45

50

55

60

65

62

an operation code may be stored in control queue 118 for
each packet stored in packet queue 116. Thus, when DMA
engine 120 detects a packet in packet queue 116, it may fetch
the corresponding information in the control queue and act
appropriately.

An operation code may indicate whether a packet is
compatible with the protocols pro-selected for NIC 100. In
an illustrative embodiment of the invention, only compatible
packets are eligible for data re-assembly and/or other
enhanced operations offered by NIC 100 (e.g., packet batch-
ing or load distribution). An operation code may also reflect
the size of a packet (e.g., less than or greater than a
predetermined size), whether a packet contains data or is a
control packet, and whether a packet initiates, continues or
ends a flow. In this embodiment of the invention, eight
different operation codes are used. In alternative embodi-
ments of the invention more or less than eight codes may be
used. TABLE 1 lists operation codes that may be used in one
embodiment of the invention.

FIGS. 12A—12B fllustrate descriptors from a free descrip-
tor ring and a completion descriptor ring in one embodiment
of the invention. FIG. 12A also depicts a free butter array for
storing buffer identifiers retrieved from free descriptors.

Free descriptor ring 1200 is maintained in host memory
and is populated with descriptors such as free descriptor
1202. Illustratively, free descriptor 1202 comprises ring
index 1204, the index of descriptor 1202 in free ring 1200,
and bufier identifier 1206. A buffer identifier in this embodi—

ment is a memory address, but may, alternatively, comprise
a pointer or any other suitable means of identifying a buffer
in host memory.

In the illustrated embodiment, free bufi‘er may 1210 is
constructed by software operating on a host computer (e.g.,
a device driver). An entry in free bufl'er array 1210 in this
embodiment includes array index field 1212, which may be
used to identify the entry, and buifer identifier field 1214.
Each entry’s buffer identifier field thus stores a bufier
identifier retrieved from a free descriptor in free descriptor
ring 1200.

In one embodiment of the invention, free ring manager
1012 of DMA engine 120 retrieves descriptor 12m from the
ring and stores buffer identifier 1206 in free bufier may
1210. The free ring manager also passes the buffer identifier
to flow re-assembly table 1004, header table 1006, MTU
table 1008 or jumbo table 1010 as needed. In another
embodiment the free ring manager extracts descriptors from
the free descriptor ring and stores them in a descriptor cache
until a buffer is needed, at which time the bufi'er’s buffer
identifier is stored in the free buffer array. In yet another
embodiment, a descriptor may be used (e.g., the buffer that
it references may be used to store a packet) while still in the
cache.

In one embodiment of the invention descriptor 1202 is
sixteen bytes in length. In this embodiment, ring index 1204
is thirteen bits in size, buffer identifier 1206 (and buffer
identifier field 1214 in free buffer array 1210) is sixty—four
bits, and the remaining space may store other information or
may not be used. The size of array index field 1212 depends
upon the dimensions of array 1210; in one embodiment the
field is thirteen bits in size.

Completion descriptor ring 1220 is also maintained in
host memory. Descriptors in completion ring 1220 are
written or configured when a packet is transferred to the host
computer by DMA engine 120. The information written to a
descriptor, such as descriptor 1222, is used by software
operating on the host computer (e .g., a driver associated with
NIC 100) to process the packet. Illustratively, an ownership

NOAC EX. 1015 Page 298



NOAC Ex. 1015 Page 299

 

 

US 6,483,804 B1
63

indicator (described below) in the descriptor indicates
whether DMA engine 120 has finished using the descriptor.
For example, this field may be set to a particular value (e.g.,
zero) when the DMA engine finishes using the descriptor
and a difierent value (e.g., one) when it is available for use
by the DMAengine. However, in another embodiment of the
invention, DMA engine 120 isues an interrupt to the host
computer when it releases a completion descriptor. Yet
another means of alerting the host computer may be
employed in an alternative embodiment. Descriptor 1222, in
one embodiment of the invention, is thirty-two bytes in
length.

In the illustrated embodiment of the invention, informa-
tion stored in descriptor 1222 concerns a transferred packet
and/or the buffer it was stored in, and includes the following
fields. Data size 1230 reports the amount of data in the
packet (e.g., in bytes). The data size field may contain a zero
if there is no data portion in the packet or no data bufl‘er (e.g.,
flow re-assembly bufler, non-re—assembly buifer, jumbo
buffer, MTU bufler) was used. Data bufi‘er index 1232 is the
index, within fi'ee bufier array 1210, of the buffer identifier
for the flow re-assembly bulfer, non-re-assembly buffer,
jumbo bufier or MI'U buffer in which the packet’s data was
stored. When the descriptor corresponds to a small packet
fully stored in a header bufiEer, this field may store a zero or
remain unused. Data offset 1B4 is the offset of the packet's
data within the flow re-agembly buffer, non-reassembly
bufler, jumbo buffer or MI'U bufler (e.g., the location of the
first byte of data within the data buffer).

In FIG. 12B, flags field 1236 includes one or more flags
concerning a bufler or packet For example, if a header
buffer or data is being released (e.g., because it is full), a
release header or release data flag, respectively, is seL A
release flow flag may be used to indicate whether a flow has,
at least temporarily, ended. In other words, if a release flow
flag is set (e.g., stores a value ofone), this indicates that there
are no other packets waiting in the packet queue that are in
the same flow as the packet associated with descriptor 1222.
Otherwise, if this flag is not set (e.g., stores a value of zero),
software operating on the host computer may queue this
packet to await one or more additional flow packets so that
they may be processed collectively. A split flag may be
included in flags field 136 to identify whether a packet’s
contents (e.g., data) spans multiple bufiem. Illustntively, if
the split flag is set, there will be an entry in next data bufler
index 1240, described below.

Descriptor type 1238, in the presently described embodi-
ment of the invention, may take any of three values. Afirst
value (e.g., one) indicates that DMA engine 120 is releasing
a flow buifer for a flow that is stale (e.g., no packet has been
received in the flow for some period of time). Asecond value
(e.g., two) may indicate that a non-re-assembleable packet
was stored in a bufi‘er. Athird value (e.g., three) may be used
to indicate that a flow packet (e.g., a packet that is part of a
flow through NIC 100) was stored in a butfer.

Next bufier index 1240 stores an index, in free bufler

array 1210, of an entry containing a bufi‘er identifier cone-
sponding to a bufi‘er storing a subsequent portion of a packet
if the entire packet, or its data, could not fit into the first
assigned buffer. The oEset in the next butfer may be assumed
to be zero. Header size 1242 reports the length of the header

(e.g., in bytes). The header size may be set to zero if the
header bufl‘er was not used for this packet (e.g., the packet

is not being re-assembled and is not a small packet). Header
bufler index 1244 is the index, in free bufler array 1210, of
the buffer identifier for the header bufi‘er used to store this

packet’s header. Header offset 1246 is the 035d of the

10

15

30

35

45

50

55

60

65

64

packet’s header within the buffer (e.g., header buffer) in
which the header was stored. The header oflset may take the
form of a number of bytes into the buffer at which the header
can be found Alternatively, the oifset may be an index value,
reporting the index position of the header. For example, in
one embodiment of the invention mentioned above, entries
in a header buffer are stored in 256—byte units. Thus, each
entry begins at a 256-byte boundary regardleg of the actual
size of the entries. The 256-byte entries may be numbered or
indexed within the buffer.

In the illustrated embodiment, flow number 1250 is the
packet’s flow number (e.g., the index in flow database 110
of the packet’s flow key). Flow number 1250 may be used
to identify packets in the same flow. Operation code 1252 is
a code generated by flow database manager 108, as
described in a previous section, and used by DMA engine
120 to process the packet and transfer it into an appropriate
bufi‘er. Methods of transferring a packet depending upon its
operation code are described in detail in the following
section. N0_Assist signal 1254, also described in a previous
section, may be set or raised when the packet is not
compatible with the protocols pre—selected for MC 100. One
result of incompatibility is that header parser 106 may not
extensively parse the packet, in which case the packet will
not receive the subsequent benefits. Processor identifier
1256, which may be generated by load distributor 112,
identifies a host computer system processor for processing
the packet As described in a previous section, load distribu-
tor 112 attempts to share or distribute the load of processing
network packets among multiple processors by having all
packets within one flow processed by the same processor.
Layer three header oflset 1258 repons an ofl’set within the
packet of the first byte of the packet’s layer three protocol
(e.g., IP) header. With this value, software operating on the
host computer may easily strip 0E one or more headers or
header portions.

Checksum value 1260 is a chedrsum computed for this
packet by checksum generator 114. Packet length 1262 is the
length (e.g., in bytes) of the entire packet.

Ownership indicator 1264 is used in the presently
described embodiment of the invention to indicate whether

MC 100 or sofiware operating on the host computer “owns”
completion descriptor 1222. In particular, a first value (e.g.,
zero) is placed in the ownership indicator field when MC
100 (e.g., DMA engine 120) has completed configuring the
descriptor. Illustratively, this first value is understood to
indicate that the software may now process the descriptor.
When finished processing the descriptor, the software may
store a second value (e.g., one) in the ownership indicator to
indicate that NIC 100 may now use the descriptor for
another packet.

One skilled in the art will recognize that there are numer-
ous methods that may be used to inform host software that
a descriptor has been used by, or returned to, DMA engine
120. In one embodiment of the invention, for example, one
or more registers, pointers or other data structures are
maintained to indicate Which completion descriptors in a
completion descriptor ring have or have not been used. In
particular, a head register may be used to identify a first of
a series of descriptors that are owned by host software, while
a tail regier identifies the last descriptor in the series. DMA
engine 120 may update these registers as it configures and
releases descriptors. Thus, by examining these registers the
host software and the DMA engine can determine how many
descriptors have or have not been used.

Finally, other information, flags and indicators may be
stored in other field 1266. Other information that may be

NOAC EX. 1015 Page 299



NOAC Ex. 1015 Page 300

 
US 6,483,804 B1

65
stored in one embodiment of the invention includes the

length and/or ofl'set of a TCP payload, flags indicating a
small packet (e.g., less than 257 bytes) or a jumbo packet
(e.g., more than 1522 bytes), a flag indicating a bad packet
(e.g., CRC error), a checksum starting position, etc.

In alternative embodiments of the invention only infor-
mation and flags needed by the host computer (e.g., driver
software) are included in descriptor 1222. Thus, in one
alternative embodiment one or more fields other than the

following may be omitted: data size 1230, data buifer index
1232, data offset 1234, a split flag, next data bufi'er index
1240, header size 1242, header buffer index 1244, header
ofiset 1246 and ownership indicator 1264.

In addition, a completion descriptor may be organized in
virtually any form; the order of the fields of descriptor 1222
in FIG. 12 is merely one possible configuration. It is
advantageous, however, to locate ownership indicator 1264
towards the end of a completion descriptor since this indi-
cator may be used to inform host software when the DMA
engine has finished populating the descriptor. If the owner-
ship indimtor were placed in the beginning of the descriptor,
the software may read it and attempt to use the descriptor
before the DMA engine has finished writing to it.

One skilled in the art will recognize that other systems and
methods than those described in this section may be imple‘
mented to identify storage areas in which to place packets
being transferred from a network to a host computer without
exceeding the scope of the invention.

' Methods of Transferring a Packet into a Memory Butfer by
a DMA Engine

FIGS. 13-20 are flow charts describing procedures for
transferring a packet into a host memory bufier. In these
procedures, a packet’s operation code helps determine
which bulfer or bulfers the packet is stored in.An illustrative
selection of operation codes that may be used in this
procedure are listed and explained in TABLE 1.

The illustrated embodiments of the invention employ four
categories of host memory bufi'ers, the sizes of which are
programmable. The buffer sizes are programmable in order
to accommodate various host platforms, but are pro~
grammed to be one memory page in size in present embodi-
ments in order to enhance the efliciency of handling and
processing network traflic. For example, the embodiments
discussed in this section are directed to the use of a host

computer system employing a SPARC'm processor, and so
each butfer is eight kilobytes in size, These embodiments are
easily adjusted, however, for host computer systems
employing memory pages having other dimensions.

One type of buffer is for re-assembling data from a flow,
another type is for headers of packets being re—assembled
and for small packets (e.g., those less than or equal to 256
bytes in size) that are not re-assembled. A third type ofbulfer
stores packets up to MTU size (e.g., 152.2 bytes) that are not
re-assembled, and a fourth type storesjumbo packets that are
greater than MTU size and which are not re—assembled.
These buffers are called flow re-assembly, header, MTU and
jumbo bulfers, respectively.

The procedures described in this section make use of free
descriptors and completion descriptors as depicted in FIG.
12. In particular, in these procedures free descriptors
retrieved from a free descriptor ring store buffer identifiers

(e.g., memory addresses, pointers) for identifying buffers in
which to store a portion of a packet. Aused buffer may be
returned to a host computer by identifying the location
within a free bufier array or other data structure used to store
the bufier’s buifer identifier. One skilled in the art will

recognize that these procedures may be readily adapted to

10

15

20

30

35

45

50

55

60

65

66

work with alternative methods of obtaining and returning
bulfers for storing packets.

FIG. 13 is a top—level view of the logic controlling DMA
engine 120 in this embodiment of the invention. State 1300
is a start state.

In state 1302, a packet is stored in packet queue 116 and
asociated information is stored in control queue 118. One
embodiment of a packet queue is depicted in FIG. 8 and one
embodiment of a control queue is depicted in FIG. 9. DMA
engine 120 may detect the existence of a packet in packet
queue 116 by comparing the queue’s read and write pointers.
As long as they do not reference the same entry, then it is
understood that a packet is stored in the queue.Alternatively,
DMA engine 120 may examine control queue 118 to deter-
mine whether an entry exists there, which would indicate
that a packet is stored in packet queue 116. As long as the
control queue’s read and write pointers do not reference the
same entry, then an entry is stored in the control queue and
a packet must be stored in the packet queue.

In state 1304, the packet’s associated entry in the control
queue is read. Illustratively, the control queue entry includes
the packet’s operation code, the status of the packet’s
No_Assist signal (e.g., indicating whether or not the packet
is compatible with a pre-selected protocol), one or more
indicators concerning the sin of the packet (and/or its data
portion), etc.

In state 1306, DMA engine 120 retrieves the packet’s flow
number. As described previously, a packet’s flow number is
the index of the packet’s flow in flow database 110. A
packet’s flow number may, as described in a following
section, be provided to and used by dynamic packet batching
module 1.22 to enable the collective processing of headers
from related packets. In one embodiment of the invention, a
packet’s flow number may be provided to any of a number
of NIC modules (e.g., IPP module 104, packet batching
module 122, DMA engine 120, control queue 118) after
being generated by flow database manager 108. The flow
number may also be stored in a separate data structtue (e.g.,
a register) until needed by dynamic packet batching module
12 and/or DMA engine 120. In one embodiment of the
invention DMAengine 120 retrieves a packet’s flow number
from dynamic packet batching module 122. In an alternative
embodiment of the invention, the flow number may be
retrieved from a difierent location or module.

Then, in states 1308—1318, DMA engine 120 determines
the appropriate manner of processing the packet by exam-
ining the packet’s operation code. The operation code may,
for example, indicate which bulfer the engine should transfer
the packet into and whether a flow is to be set up or torn
down in flow re-assembly buifer table 1004.

The illustrated procedure continues at state 1400 (FIG.
14) if the operation code is 0, state 1500 (FIG. 15) for
operation code 1, state 1600 (FIG. 16) for operation code 2,
state 1700 (FIG. 17) for operation code 3, state 1800 (FIG.
18) for operation code 4, state 1900 (FIG. 19) for operation
code 5 and state 2000 (FIG. 20) for operation codes 6 and
7.

A Method of Transferring a Packet with Operation Code 0
FIG. 14 depicts an illustrative procedure in which DMA

engine 120 transfers a packet associated with operation code
0 to a host memory bufi'er. As reflected in TABLE 1,
operation code 0 indicates in this embodiment that the
packet is compatible with the protocols that may be parsed
by NIC 100. As explained above, compatible packets are
eligible for re—assembly, such that data from multiple pack-
ets of one flow may be stored in one buifer that can then be
efliciently provided (e.g., via a page-flip) to a user or

NOAC EX. 1015 Page 300



NOAC Ex. 1015 Page 301

 
US 6,483,804 B1

67

program’s memory space. Packets having operation code 0,
however, are small and contain no flow data for re-ammbly.
They are thus likely to be control packets. Therefore, no new
flow is set up, no existing flow is torn down and the entire
packet may be placed in a header buffer.

In state 1400, DMA engine 120 (e.g., DMA manager
1002) determines whether there is a valid (e.g., active)
header buEer. Illustratively, this determination is made by
examining validity indicator 1116 of header bufier table
1006, which manages the active header buflfer. If the validity
indicator is set (e.g., equal to one), then there is a header
buffer ready to receive this packet and the procedure con-
tinues at state 1404.

Otherwise, in state 1402 a header buffer is prepared or
initialized for storing small packets (e.g., packets less than
757 bytes in size) and headers of re-assembled packets (and,
possibly, headers of other packets—such as jumbo packets).
In the illustrated embodiment, this initialization process
involves obtaining a flee ring descriptor and retrieving its
bufier identifier (e.g., its reference to an available host
memory butfer). The bufier identifier may then be stored in
a data structure such as flee buffer array 1210 (shown in
FIG. 12A). As described above, in one embodiment of the
invention flee ring manager 1012 maintains a cache of
descriptors referencing empty bufifers. Thus, a descriptor
may be retrieved from this cache and its buffer allocated to
header bufier table 1006. If the cache is empty, new descrip—
tors may be retrieved from a flee descriptor ring in host
memory to replenish the cache.

When a new bufier identifier is retrieved flom the cache

or from the free descriptor ring, the bufier identifier’s
position in the flee buffer array is placed in header buffer
index 1112 of header buffer table 1006. Further, an initial
storage location in the bufier identifier (e.g., its starting
address) is stored in next addres field 1114 and validity
indicator 1116 is set to a valid state.

In state 1404, the packet is copied or transferred (e.g., via
a DMA operation) into the header buffer at the addre$ or
location specified in the next address field of header buffer
table 1006. As described above, in one embodiment of the
invention pad bytes are inserted before the packet in order to
align the beg'nning of the packet’s layer three (e.g., IP)
header with a sixteen-byte boundary. In addition, a header
bufier may be logically partitioned into cells of predeter—
mined size (e.g., 256 bytes), in which case the packet or
padding may begin at a cell boundary.

In state 1406, a completion descriptor is written or con-
figured to provide information to the host computer (e.g., a
software driver) for processing the packet. In particular, the
header buifer index (e.g. the index within the flee buffer
array of the buffer identifier that references the header
bufier) and the packet's ofl’set in the header bufier are placed
in the descriptor. Illustratively, the offset may identify the
location of the cell in which the header is stored, or it may

identify the first byte of the packet. The size of the packet is
also stored in the descriptor, illustratively within a header
size field. A data size field within the descriptor is set to zero
to indicate that the entire packet was placed in the header
bufier (e.g., there was no data portion to store in a separate
data bulfer). A release header flag is set in the descriptor if
the header bufi‘er is full, However, the header buffer may not
be tested to see if it is full until a later state of this procedure.
In such an embodiment of the invention, the release header

flag may be set (or cleared) at that time.
As described in a later section, in one embodiment of the

invention a release flow flag may 3150 be SCl, depending

upon dynamic packet batching module 122. For example, if

10

15

30

35

45

50

55

60

65

68

the packet batching module determines that another packet
in the same flow will soon be transferred to the host

computer, the release flow flag will be cleared (e.g., a zero
will be stored). This indicates that the host computer should
await the next flow packet before processing this one. Then,
by collectively proceming multiple packets flom a single
flow, the packets can be processed more efficiently while
requiring less processor time.

In the descriptor type field, a value is stored to indicate
that a flow packet was transferred to host memory. Also, a
predetermined value (e.g., zero) is stored in the ownership
indicator field to indicate that DMAengine 120 is done using
the descriptor and/or is releasing a packet to the host
computer. Illustratively, the host computer will detect the
change in the ownership indicator (e.g., from one to zero)
and use the stored information to process the packet. In one
alternative embodiment of the invention, DMA engine 120
issues an interrupt or other signal to alert the host computer
that a descriptor is being released. In another alternative
embodiment, the host computer polls the NIC to determine
when a packet has been received and/or transferred. In yet
another alternative embodiment, the descriptor type field is
used to inform the host computer that the DMA engine is
releasing a descriptor. In this alternative embodiment, when
a non-zero value is placed in the descriptor type field the
host computer may understand that the DMA engine is
releasing the descriptor.

In a present embodiment of the invention, the ownership
indicator field is not changed until DMA engine 120 is
finished with any other processing involving this packet or
is finished making all entries in the descriptor. For example,
as described below a header buffer or other buffer may be
found to be full at some time after state 1406. By delaying
the setting of the ownership indicator, a release header flag
can be set before the descriptor is reclaimed by the host
computer, thus avoiding the use of another descriptor.

In state 1408, it is determined whether the header buffer
is full. In this embodiment of the invention, where eadi
bufier is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, up to thirty-two entries
may be stored in a header bufl‘er. Thus, a counter may be
used to keep track of entries placed in each new header
buffer and the bufier can be considered full when thirty-two
entries are stored. Other methods of determining whether a
butfer is full are also suitable. For example, after a packet is
stored in the header bufier a new next addres field may be
calculated and the difl'erence between the new next address

field and the initial address of the buifer may be compared
to the size of the buffer (e.g., eight kilobytes). If less than a
predetermined number of bytes (e.g., 256) are unused, the
bufier may be considered full.

If the bufier is full, in state 1410 the header bufier is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header bufier table’s validity indi-
cator to invalid and communicating this status to the host
computer via a descriptor. In this embodiment of the inven-
tion a release header flag in the descriptor is set. If the
descriptor that was written in state 1406 was already
released (e.g., its ownership indicator field changed),
another descriptor may be used in this state. If another
descriptor is used simply to report a full header buffer, the
descriptor’s header size and data size fields may be set to
zero to indicate that no new packet was transferred with this
descriptor.

Ifthe header bufi'er is not full, then in state 1412 the next
address field of header bufier table 1006 is updated to
indicate the address at which to store the next header or

NOAC EX. 1015 Page 301



NOAC Ex. 1015 Page 302

 

US 6,483,804 B1
69

small packet. The processing associated with a packet hav-
ing operation code 0 then ends with end state 1499. In one
embodiment of the invention, the ownership indicator field
of a descriptor that is written in state 1406 is not changed,
or an interrupt is not isued, until end state 1499. Delaying
the notification of the host computer allows the descriptor to
be updated or modified for as long as p0$ible before turning
it over to the host.

A Method of Transferring a Packet with Operation Code 1
FIG. 15 depicts an illustrative procedure in which DMA

engine 120 transfers a packet associated with operation code
1 to a host memory battenAs reflected in TABLE 1, in this
embodiment operation code 1 indicates that the packet is
compatible with the protocols that may be parsed by MC
100. Apacket having operation code 1, however, may be a
control packet having a particular flag seL No new flow is set
up, but a flow should already exist and is to be torn down;
there is no data to re-assemble and the entire packet may be
stored in a header butter.

In state 1500, DMA engine 120 (e.g., DMA manager
1002) determines whether there is a valid (e.g., active)
header butter. Illustratively, this determination is made by
examining validity indicator 1116 of header buflfer table
1006, which manages the active header buflfer. If the validity
indicator is set, then there is a header buffer ready to receive
this packet and the procedure continues at state 1504.

Otherwise, in state 1502 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty butter. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, its bufler identifier (e.g., pointer,
address, index) is stored in free butfer array 1210 and its
initial storage location (e.g., address or cell location) is
stored in next address field 1114 of header butfer table 1006.

The index or position of the butfer identifier within the free
buffer array is stored in header buffer index 1112. Finally,
validity indicator 1116 is set to a valid state.

In state 1504 the packet is copied into the header butter at
the address or location specified in the next address field of
header butfer table 1006. As described above, in one
embodiment of the invention pad bytes are inserted before
the packet in order to align the beginning of the packet’s
layer three (e.g., IP) header with a sixteen-byte boundary.
And, the packet (with or without padding) may be placed
into a pre-defined area or cell of the bufler.

In the illustrated embodiment, operation code 1 indicates
that the packet's existing flow is to be torn down. Thus, in
state 1506 it is determined whether a flow re—assembly butter
is valid (e.g., active) for this flow by examining the flow’s
validity indicator in flow re-assembly butter table 1004. If,
for example, the indicator is valid, then there is an active
butter storing data from one or more packets in this flow.
Illustratively, the flow is torn down by invalidating the flow
re—assembly buffer and releasing it to the host computer. If
there is no valid flow re-assembly butter for this flow, the
illustrated procedure continues at state 1512. Otherwise, the
procedure proceeds to state 1508.

In state 1508, a completion descriptor is configured to
release the flow’s re-assembly butfer and to provide infor-
mation to the host computer for processing the current
packet. In particular, the header bufli'er index and the ofisct
of the first byte of the packet (or location of the packet’s cell)

10

15

45

50

55

60

65

70

within the header butfer are placed in the descriptor. The
index within the free butter array of the entry containing the
re-assembly butfer's bulfer identifieris stored in a data index
field of the descriptor. The size of the packet is stored in a
header size field and a data size field is set to zero to indicate

that no separate butter was used for storing this packet’s
data. A release header flag is set in the descriptor if the
header butter is full and a release data flag is set to indicate
that no more data will be placed in this fiow’s present
re-asembly butfer (e.g., it is being released). In addition, a
release flow flag is set to indicate that DMA engine 120 is
tearing down the packet’s flow. The header butter may not
be tested to see if it is full until a later state of this procedure.
In such an embodiment of the invention, the release header
flag may be set at that time.

In state 1510, the flow’s entry in flow re-assembly bufler
table 1004 is invalidated. After state 1510, the procedure
continues at state 1514.

In state 1512, a completion descriptor is configured with
information somewhat different than that of state 1508. In

particular, the header buffer index, the ofiset to this packet
within the header butter and the packet size are placed
within the same descriptor fields as above. The data size field
is set to zero, as above, but no data index needs to be stored
and no release data flag is set (e.g., because there is no flow
re-assembly butfer to release). A release header flag is still
set in the descriptor if the header buffer is full and a release
flow flag is again set to indicate that DMA engine 120 is
tearing down the packet’s flow. Also, the descriptor type
field is changed to a value indicating that DMA engine 120
transferred a flow packet into host memory.

In state 1514, it is determined whether the header butfer
is now full. In this embodiment of the invention, where each
bufl'er is eight kilobytes in size and entries in the header
butter are no larger than 256 bytes, a counter is used to keep
track of entries placed into each new header butter. The
butter is considered full when thirty-two entries are stored.

If the bufler is full, in state 1516 the header bufler is
invalidated. Illustratively, this involves setting the header
buffer table’s validity indicator to invalid and communicat-
ing this status to the host computer via the descriptor
configured in state 1508 or state 1512. In this embodiment
of the invention a release header flag in the descriptor is set
to indicate that the header buflfer is full.

If the header butter is not full, then in state 1518 the next
address field of header bufler table 1006 is updated to
indicate the address at which to store the next header or

small packet.
The processing associated with a packet having operation

code 1 then ends with end state 1599. In this end state, the
descriptor used for this packet is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero), isuing an interrupt, or some other
mechanism.

One skilled in the art will appreciate that in an alternative
embodiment of the invention a change in the descriptor type
field to any value other than the value (e.g., zero) it had when
DMA engine 120 was using it, may constitute a surrender of
“ownership” of the descriptor to the host computer or
software operating on the host computer. The host computer
will detect the change in the descriptor type field and
subsequently use the stored information to process the
packet.
A Method of Transferring Packet with Operation Code 2

FIGS. 16A—16F illustrate a procedure in which DMA
engine 120 transfers a packet associated with operation code
2 to a host memory butter. As reflected in TABLE 1,

NOAC EX. 1015 Page 302



NOAC Ex. 1015 Page 303

 

US 6,483,804 B1
71

operation code 2 may indicate that the packet is compatible
with the protocols that may be parsed by MC 100, but that
it is out of sequence with another packet in the same flow.
It may also indicate an attempt to re—establish a flow, but that
no more data is likely to be received after this packet. For
operation code 2, no new flow is set up and any existing flow
with the packet’s flow number is to be torn down. The
packet’s data is not to be re-assembled with data from other
packets in the same flow.

Because an existing flow is to be torn down (e.g., the
flow’s re-assembly butfer is to be invalidated and released to
the host computer), in state 1600 it is determined whether a
flow re-assembly buffer is valid (e.g., active) for the flow
having the flow number that was read in state 1306. This
determination may be made by examining the validity
indicator in the {law’s entry in flow re-assembly buffer table
1004. Illustratively, if the indicator is valid then there is an
active butfer storing data from one or more packets in the
flow. If there is a valid flow re-assembly butfer for this flow,
the illustrated procedure continues at state 1602. Otherwise,
the procedure proceeds to state 1606.

In state 1602, a completion descriptor is written or con—
figured to release the existing flow re-assembly buffer. In
particular, the flow re-assembly buffer‘s index (e.g., the
location within the free bufl'er array that contains the bufl'er
identifier corresponding to the flow re-assembly buffer) is
written to the descriptor. In this embodiment of the
invention, no ofl‘set needs to be stored in the descriptor’s
data ofiset field and the data size field may be set to zero
because no new data was stored in the re-assembly butfer.
Similarly, the header buffer is not yet being released, there-
fore the header index and header ofi'set fields of the descrip-
tor need not be used and a zero may be stored in the header
size field

Illustratively, the descriptor’s release header flag is
cleared (e.g., a zero is stored in the flag) because the header
buffer is not to be released. The release data flag is set (e.g.,
a one is stored in the flag), however, because no more data
will be placed in the released flow re—assembly buffer.
Further, a release flow flag in the descriptor is also set, to
indicate that the flow asceiated with the released flow

re-assembly buffer is being torn down.
The descriptor type field may be changed to a value

indicating that DMA engine 120 is releasing a stale flow
butfer (e.g., a flow re-assembly buffer that has not been used
for some time). Finally, the descriptor is turned over to the
host computer by changing its ownership indicator field or
by issuing an interrupt or using some other mechanism. In
one embodiment of the invention, however, the descriptor is
not released to the host computer until end state 1699.

Then, in state 1604, the flow re-assembly buffer is invali-
dated by modifying validity indicator 1106 in the flow’s
entry in flow re-assembly buffer table 1004 appropriately.

In state 1606, it is determined whether the present packet
is a small packet (e.g., less than or equal to 256 bytes in
size), suitable for storage in a header buffer. If so, the
illustrated procedure proceeds to state 1610. Information
stored in packet queue 116 and/or control queue 118 may be
used to make this determination.

In state 1608, it is determined whether the present packet
is a jumbo packet (e.g., greater than 1522 bytes in size), such
that it should be stored in a jumbo buffer. If so, the illustrated
procedure proceeds to state 1650. If not, the procedure
continues at state 1630.

In state 1610 (reached from state 1606), it has been
determined that the present packet is a small packet suitable
for storage in a header bufl'er. Therefore, DMA engine 120

10

15

30

35

45

50

55

60

65

72

(e.g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buffer. Illustratively, this determi-
nation is made by examining validity indicator 1116 of
header buffer table 1006, which manages the active header
buffer. If the validity indicator is set, then there should be a
header butfer ready to receive this packet and the procedure
continues at state 1614. .

Otherwise, in state 1612 a new header bufler is prepared
or initialized for storing small packets and headers of
re-assembled packets. This initialization process may
involve obtaining a free ring descriptor from a cache main-
tained by free ring manager 1012 and retrieving its reference
to an empty butfer. If the cache is empty, new descriptors
may be retrieved from the free descriptor ring in host
memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the bufl'er identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The bufier’s initial address or some other
indicator of the first storage location in the buffer is placed
in next address field 1114 of header buffer table 1006. The

bufier identifier’s position or index within the free buffer
array is stored in header buffer index 1112, and validity
indicator 1116 is set to a valid state.

In state 1614 the packet is copied or transferred (e.g., via
a DMA operation) into the header bufler at the address or
location specified in the next address field of header bufier
table 1006. As described above, in one embodiment of the
invention pad bytes are inserted before the header in order
to align the beginning of the packet’s layer three protocol
(e.g., IP) header with a sixteen-byte boundary. In addition,
the packet may be positioned within a cell of predetermined
size (e.g., 256 bytes) within the header butfer.

In state 1616, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter (e.g., a software driver) for processing the packet In
particular, the header bufler index (e.g. the position within
the free bufler array of the header bufi'er's buffer identifier)
and the packet’s ofl’set within the header bufl'er are placed in
the descriptor. Illustratively, this offset may serve to identify
the first byte of the packet, the first pad byte before the
packet or the beginning of the packet’s cell within the buffer.
The size of the packet is also stored in the descriptor in a
header size field. A data size field within the descriptor may
be set to zero to indicate that the entire packet was placed in
the header bufier (e.g., no separate data portion was stored).
A release header flag is set in the descriptor if the header
buflfer is full. HoWever, the header butfer may not be tested
to see ifit is full until a later state ofthisprocedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. A release data flag is cleared
(e.g., set to a value of zero), because there is no separate data
portion being conveyed to the host computer.

Also, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. And, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In one embodiment of the
invention the ownership indicator field is not changed until
end state 1699 below. In one alternative embodiment of the

invention, DMA engine 120 issues an interrupt or other
signal to alert the host computer that a descriptor is beingreleased.

In state 1618, it is determined whether the header buffer

is full. In this embodiment of the invention, where each

NOAC EX. 1015 Page 303



NOAC Ex. 1015 Page 304

US 6,483,804 B1
73

bufler is eight kilobytes in size and entries in the header
bufler are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buifer.
The bufler is considered full when thirty-two entries are
stored.

If the bufler is full, in state 1620 the header bufier is
invalidated to ensure that it is not used again. lllustratively,
this involves setting the header bufler table’s validity indi-
cator to an invalid state and communicating this status to the
host computer. In this embodiment of the invention, a
release header flag in the descriptor is set. The illustrated
procedure then ends with end state 1699.

If the header buffer is not full, then in state 1622 the next
address field of header buffer table 1006 is updated to
indicate the address or cell boundary at which to store the
next header or small packet. The illustrated procedure then
ends with end state 1699.

1n state 1630 (reached from state 1608), it has been
determined that the packet is not a small packet or a jumbo
packet. The packet may, therefore, be stored in a non-re-
assembly bufier (e.g., an MTU bufi'er) used to store packets
that are up to MTU in size (e.g., 1522 bytes). Thus, in state
1630 DMA engine 120 determines whether a valid (e.g.,
active) MTU bufier exists. lllustratively, this determination
is made by examining validity indicator 1126 of MTU buifer
table 1008, which manages an active MTU bufier. If the
validity indicator is set, then there is an MTU buffer ready
to receive this packet and the prowdure continues at state
1634.

Otherwise, in state 1632 a new MTU buifer is prepared or
initialized for storing non-roassembleable packets up to
1522 bytes in size. lllustratively, this initialization process
involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buifer (e.g., a butler identifier). If the
cache is empty, new descriptors may be retrieved from the
free descriptor ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring. the buifer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in the
free buifer array. The bufler's initial address or some other
indication of the first storage location in the butfer is placed
in next addres field 1124 of MTU buffer table 1008. Further,
the position of the buifer identifier within the free buffer
array is stored in MTU bufler index 112 and validity
indicator 1126 is set to a valid state.

In state 1634 the packet is copied or transferred (e.g., via
a DMA operation) into the MTU bufiz‘er at the address or
location specified in the next address field. As described
above, in one embodiment of the invention pad bytes may be
inserted before the header in order to align the beginning of
the packet’s layer three protocol (e.g., IP) header with a
sixteen-byte boundary. In another embodiment of the inven—
tion packets may be aligned in an MTU buflt'er in cells of
predefined size (e.g., two kilobytes), similar to entries in a
header buifer.

In state 1636, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter (e.g., a software driver) for procesing the packet. In
particular, the MTU bufier index (e.g. the free bufl‘er array
element that contains the buifer identifier for the MTU

bufl‘er) and olIset (e.g., the offset of the first byte of this
packet within the MTU bufl‘er) are placed in the descriptor
in data index and data offset fields, respectively. The size of
the packet is also stored in the descriptor, illustratively
within a data size field. A header size field within the

descriptor is set to zero to indicate that the entire packet was

10

15

35

45

50

55

60

65

74

placed in the MTU bufler (e.g., no separate header portion
was stored in a header buffer). Arelease data flag is set in the
descriptor if the MTU buifer is full. However, the MTU
bufi'er may not be tested to see if it is full until a later state
of this procedure. In such an embodiment of the invention,
the release data flag may be set (or cleared) at that time. A
release header flag is cleared (e.g., set to zero), because there
is no separate header portion being conveyed to the host
computer.

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. Also, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In a present embodiment of the
invention the ownership field is not set until end state 1699
below. In one alternative embodiment of the invention,
DMA engine 120 issues an interrupt or other signal to alert
the host computer that a descriptor is being released, or
communicates this event to the host computer through the
descriptor type field.

In state 1638, it is determined whether the MTU bufler is
full. In this embodiment of the invention, where each buifer
is eight kilobytes in size and entries in the MTU bufler are
allotted two kilobytes, a counter may be used to keep track
of entries placed into each new header buifer. The buffer
may be considered full when a predetermined number of
entries (e.g., four) are stored. In an alternative embodiment
of the invention DMA engine 120 determines how much
storage space within the buffer has yet to be used. If no space
remains, or if less than a predetermined amount of space is
still available, the bufler may be considered full.

Ifthe MTU buifer is full, in state 1640 it is invalidated to
ensure that it is not used again. lllustratively, this involves
setting the MTU buifer table’s validity indicator to invalid
and communicating this status to the host computer. In this
embodiment of the invention, a release data flag in the
descriptor is set. The illustrated procedure then ends with
end state 1699.

If the MTU buifer is not full, then in state 1642 the next
address field ofMTU butfer table 1008 is updated to indicate
the address or location (e.g., cell boundary) at which to store
the next packet. The illustrated procedure then ends with end
state 1699.

In state 1650 (reached from state 1608), it has been
determined that the packet is a jumbo packet (e.g., that it is
greater than 1522 bytes in size). In this embodiment of the
invention jumbo packets are stored in jumbo bufl’ers and, if
splitting of jumbo packets is enabled (e.g., as determined in
state 1654 below), headers of jumbo packets are stored in a
header buffer. DMA engine 120 determines whether a valid
(e.g., active) jumbo buffer exists. lllustratively, this deter-
mination is made by examining validity indicator 1136 of
jumbo buffer table 1010, which manages the active jumbo
buifer. If the validity indicator is set, then there is a jumbo
buffer ready to receive this packet and the procedure con-
tinues at state 1654. As explained above, a jumbo bufier
table may not be used in an embodiment of the invention in
which a jumbo buifer is used only once (e.g., to store just
one, or just part of one, jumbo packet).

Otherwise, in state 1652 a new jumbo bufier is prepared
or initialized for storing a non-re-assembleable packet that is
larger than 1522 bytes. This initialization proces may
involve obtaining a free ring descriptor fi'om a cache main-
tained by free ring manager 1012 and retrieving its reference
to an empty bufier (e.g., a bufier identifier). 1f the cache is

NOAC EX. 1015 Page 304



NOAC Ex. 1015 Page 305

 

US 6,483,804 B1
75

empty, new descriptors may be retrieved from the free
descriptor ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, its butfer identifier (e.g., pointer,
address, index) is stored in a free butfer array (or other data
structure). The bufi‘er’s initial address or other indication of
the first storage location in the butfer is placed in next
address field 1134 of jumbo bufler table 1010. Also, the
location of the butfer identifier within the free buffer array
is stored in jumbo butfer index 1132 and validity indicator
1136 is set to a valid state.

Then, in state 1654 DMA engine 120 determines whether
splitting of jumbo bulfers is enabled. If enabled, the header
of a jumbo packet is stored in a header bufi‘er while the
packet’s data is stored in one or more jumbo buflfers. If not
enabled, the entire packet will be stored in one or more
jumbo butfers. Illustratively, splitting of jumbo packets is
enabled or disabled awording to the configuration of a
programmable indicator (e.g., flag, bit, register) that may be
set by software operating on the host computer (e.g., a
device driver). If splitting is enabled, the illustrated proce-
dure continues at state 1670. Otherwise, the procedure
continues with state 1656.

In state 1656, DMA engine 120 determines whether the
packet will fit into one jumbo butfer. For example, in an
embodiment of the invention using eight kilobyte pages, if
the packet is larger than eight kilobytes a second jumbo
butfer will be needed to store the additional contents. If the

packet is too large, the illustrated procedure continues at
state 1662.

In state 1658, the packet is copied or transferred (e.g., via
a DMA operation) into the current jumbo buffer, at the
location specified in the next address field 1134 of jumbo
buifer table 1010. When the packet is transferred intact like
this, padding may be added to align a header portion of the
packet with a sixteen—byte boundary. One skilled in the art
will appreciate that the next address field may not need to be
updated to account for this new packet because the jumbo
buifer will be released. In other words, in one embodiment
of the invention a jumbo buifer may be used just once (e.g.,
to store one packet or a portion of one packet).

In state 1660, a completion descriptor is written or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
jumbo butfer index (e.g., the position within the free buifcr
array of the butfer identifier for the jumbo butfer) and the
olfset of the packet within the jumbo butfer are placed in the
descriptor. Illustratively, these values are stored in data
index and data ofl'set fields, respectively. The size of the
packet (e.g., the packet length) may be stored in a data size
field.

A header size field is cleared (e.g., a zero is stored) to
indicate that the header buffer was not used (e.g., the header
was not stored separately from the packet’s data). Because
there is no separate packet header, header index and header
ofl'set fields are not used or are set to zero (e.g., the values
stored in their fields do not matter). Arelease header flag is
cleared and a release data flag is set to indicate that no more
data will be placed in this jumbo bulfer (e.g., because it is
being released).

Also, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. And, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In an alternative embodiment,

10

15

30

4s

50

55

60

65

76

the descriptor may be released by isuing an interrupt or
other alert. In yet another embodiment, changing the
descriptor type field (e.g., to a non-zero value) may signal
the release of the descriptor. In one embodiment of the
invention the ownership indicator is not set until end state
1699 below. After state 1660, the illustrated procedure
resumes at state 1668.

In state 1662, a first portion of the packet is stored in the
present (e.g., valid) jumbo buffer, at the location identified in
the butfer’s next address field 1134. Then, because the full
packet will not fit into this bulfer, in state 1664 a new jumbo
bufler is prepared and the remainder of the packet is stored
in that butfer.

In state 1666, a completion descriptor is written or con-
figured. The contents are similar to those described in state
1660 but this descriptor must reflect that two jumbo bufi‘ers
were used to store the packet.

Thus, the jumbo buifer index (e.g., the index, within the
free buffer array, of the buffer identifier that identifies the
header buflfer) and the ofi'set of the packet within the first
jumbo butfer are placed in the descriptor, as above. The size
of the packet (e .g., the packet length) is stored in a data size
field.

A header size field is cleared (e.g., a zero is stored) to
indicate that the header buffer was not used (e.g., the header
was not stored separately from the packet’s data). Because
there is no separate packet header, header index and header
offset fields are not used (e.g., the values stored in their fields
do not matter).

A release header flag is cleared and a release data flag is
set to indicate that no more data will be placed in these
jumbo buffers (e.g., because they are being released).
Further, a split packet flag is set to reflect the use of a second
jumbo butfer, and the index (within the free buifer array) of
the buffer identifier for the second butfer is stored in a next
index field.

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re—
ammbleable packet into host memory. Finally, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field, or some other mechanism is
employed, to indicate that DMA engine 120 is releasing a
packet to the host computer and turning over ownership of
the descriptor. In one embodiment of the invention, the
descriptor is not released to the host computer until end state
1699 below.

In state 1668, the jumbo buffer entry or entries in jumbo
butfer table 1010 are invalidated (e.g., validity indicator
1136 is set to invalid) to ensure that they are not used again.
In the procedure described above a jumbo packet was stored
in, at most, two jumbo buffers. In an alternative embodiment
of the invention a jumbo buffer may be stored across any
number of buffers. The descriptor(s) configured to report the
transfer of such a packet is/are constructed accordingly, as
will be obvious to one skilled in the art.

After state 1668, the illustrated procedure ends with end
state 1699.

In state 1670 (reached from state 1654), it has been
determined that the present jumbo packet will be split to
store the packet header in a header bufler and the packet data
in one or more jumbo buflers. Therefore, DMA engine 120
(e.g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buifer. Illustratively, this determi-
nation is made by examining validity indicator 1116 of
header butfer table 1006, which manages the active header
butfer. If the validity indicator is set, then there is a header
butfer ready to receive this paclnet and the procedure con-
tinues at state 1674.

NOAC EX. 1015 Page 305



NOAC Ex. 1015 Page 306

 

US 6,483,804 B1

77

Otherwise, in state 1672 a new header buffer is prepared
or initialized for storing small packets and headers of other
packets. Illustratively, this initialization process involves
obtaining a flee ring descriptor from a cache maintained by
flee ring manager 1012 and retrieving its reference to an
empty buffer. If the cache is empty, new descriptors may be
retrieved from the flee descriptor ring in host memory to
replenish the cache.

When a new descriptor is obtained from the cache or from
the flee descriptor ring, the bufl'er identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a flee
bufler array. The bufler’s initial address or some other
indication of the first storage location or cell in the bufier is
placed in next address field 1114 of header bufler table 1006.
Also, the index of the bufler identifier within the flee bufier
array is stored in header bufl'er index 1112 and validity
indicator 1116 is set to a valid state.

In state 1674 the packet’s header is copied or transferred
(e.g., via a DMA operation) into the header buffer at the
address or location specified in the next address field of
header bufler table 1006. As described above, in one
embodiment of the invention pad bytes are inserted before
the header in order to align the beginning of the packet's
layer three protocol (e.g., IP) header with a sixteen-byte
boundary. In addition, the packet’s header may be positioned
within a cell of predetermined size (e.g., 256 bytes) within
the bufler.

In state 1676, DMA engine 120 determines whether the
packet’s data (e.g., the TCP payload) will fit into one jumbo
bufler. If the packet is too large, the illustrated procedure
continues at state 1682.

In state 1678, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the current jumbo buffer, at
the location spedfied in the next address field 1134 ofjumbo
bufier table 1010. One skilled in the art will appreciate that
the next address field may not need to be updated to account
for this new packet because the jumbo butfer will be
released. In other words, in one embodiment of the invention

a jumbo bufler may be used just once (e.g., to store one
packet or a portion of one packet).

In state 1680, a completion descriptor is written or con-
figured to release the jumbo bufler and to provide informa-
tion to the host computer for processing the packet. The
header bufler index (e.g. the index of the header buflfer’s
bufier identifier within the free bufler array) and offset of the
packet’s header within the bufler are placed in the descriptor
in header index and header olfset fields, respectively.
Illustratively, this ofi’sct may serve to identify the first byte
of the header, the first pad byte before the header or the
location of the cell in which the header is stored. The jumbo
bufler index (e .g., the position or index within the flee bulfer
array of the bufler identifier that identifies the jumbo bufler)
and the offset of the first byte of the packet’s data within the
jumbo bufler are placed in data index and data oflset fields,
respectively. Header size and data size fields are used to
store the size of the packet’s header (e.g., the oEset of the
payload within the packet) and data (e.g., payload size),
respectively.

Arelease header flag is set in the descriptor if the header
bufler is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. Arelease data flag is also set,
because no more data will be placed in the jumbo buffer
(e.g., it is being released to the host computer).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assemblcable

10

15

35

45

50

55

60

65

78

packet into host memory. Also, a predetermined value (e.g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120 is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not changed until end state 1699 below. In an alternative
embodiment, the descriptor may be released by issuing an
interrupt or other alert. In yet another alternative
embodiment, changing the descriptor type value may signal
the release of the descriptor.

After state 1680, the illustrated procedure proceeds to
state 1688.

In state 1682, a first portion of the packet’s data is stored
in the present (e.g., valid) jumbo bulfer, at the location
identified in the buflfer’s next address field 1134.

Because all of the packet’s data will not fit into this bufl'er,
in state 1684 a new jumbo bufl'er is prepared and the
remainder of the packet is stored in that bufler.

In state 1686, a completion descriptor is written or con-
figured. The contents are similar to those described in states
1680 but this descriptor must reflect that two jumbo butfers
were used to store the packet. The header bufler index (e.g.
the index of the flee bufler array element containing the
header buffer’s bufier identifier) and offset (e.g., the location
of this packet’s header within the header bufler) are placed
in the descriptor in header index and header ofiset fields,
respectively. The jumbo bufler index (e.g., the index, within
the flee bufier array, of the bufler identifier that references
the jumbo bufier) and the offset of the first byte of the
packet’s data within the jumbo bufler are placed in data
index and data oEset fields, respectively. Header size and
data size fields are used to store the size of the packet’s
header (e.g., as measured by the offset of the padret’s
payload from the start of the packet) and data (e.g., payload
size), respectively.

A release header flag is set in the descriptor if the header
bufier is full. However, the header bufier may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. Arelease data flag is also set,
because no more data will be placed in the jumbo buflfer
(e.g., it is being released to the host computer). Further, a
split packet flag is set to indicate that a secondjumbo bufier
was used, and the location (within the free butfer array or
other data structure) of the second buflfer’s buflfer identifier
is stored in a next index field

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non~re-assembleable
packet into host memory. Finally, a predetermined value
(e.g., zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and turning over ownership of the
descriptor. In one embodiment of the invention the owner-
ship indicator is not changed until end state 1699 below.

In state 1688, the jumbo buflfer’s entry in jumbo bufler
table 1010 is invalidated (e.g., validity indicator 1136 is set
to invalid) to ensure that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buflfers. In an alternative embodiment of the invention
a jumbo packet may be stored across any number of bufiers.
The descriptor that is configured to report the transfer of
such a packet is constructed accordingly, as will be obvious
to one skilled in the art.

In state 1690, it is determined whether the header bufler
is full. In this embodiment of the invention, where each
bufler is eight kilobytes in size and entries in the header
bufler are no larger than 256 bytes, a counter may be used

NOAC EX. 1015 Page 306



NOAC Ex. 1015 Page 307

 

US 6,483,804 B1
79

to keep track of entries placed into each new header butter.
The buffer may be considered full when thirty-two entries
are stored.

If the butfer is full, in state 1692 the header butfer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header butfer table’s validity indi—
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
header flag in the descriptor is set. The illustrated procedure
then ends with end state 1699.

If the header buifer is not full, then in state 1694 the next
address field of header bulfer table 1006 is updated to
indicate the address at which to store the next header or

small packet. The illustrated procedure then ends with end
state 1699.

In end state 1699, a descriptor may be turned over to the
host computer by changing a value in the descriptor’s
descriptor type field (e.g., from one to zero), as described
above. Illustratively, the host computer (or software operat—
ing on the host computer) detects the change and under-
stands that DMA engine 120 is returning ownership of the
descriptor to the host computer.
A Method of Transferring a Packet with Operation Code 3

FIGS. 17A—17C illustrate one procedure in which DMA
engine 120 transfers apacket associated with operation code
3 to a host memory butfer. As reflected in TABLE 1,
operation code 3 may indicate that the packet is compatible
with a protocol that can be parsed by MC 100 and that it
carries a final portion of data for its flow. No new flow is set
up, but a flow should already exist and is to be torn down.
The packet’s data is to be re-asembled with data from
previous flow packets. Because the packet is to be
re-assembled, the packet’s header should be stored in a
header bufler and its data in the fiow’s re-assembly bufi'er.
The flow’s active re-assembly buffer may be identified by
the fiow’s entry in flow re-assembly bulfer table 1004.

In state 1700, DMA engine 120 (e.g., DMA manager
1002) determines whether there is a valid (e.g., active)
header buffer. Illustratively, this determination is made by
examining validity indicator 1116 of header butfer table
1006, which manages the active header bufi’er. If the validity
indicator is set (e.g., equal to one), then it is assumed that
there is a header bufl'er ready to receive this packet and the
procedure continues at state 1704.

Otherwise, in state 1702 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. This initialization process may
involve obtaining a free ring descriptor fi'om a cache main-
tained by free ring manager 1012 and retrieving its bufler
identifier (e.g., a reference to an available memory bufier).
If the cache is empty, new descriptors may be retrieved from
the free descriptor ring in host memory to replenish the
cache.

Illustratively, when a new descriptor is obtained from the
cache or from the free descriptor ring, the bulfer identifier
(e.g., pointer, address, index) contained in the descriptor is
stored in a free buffer array. The bufi’er’s initial addres or
some other indication of the first storage location or cell in
the butfer is placed in next address field 1114 of header
butfer table 1006. Further, the index of the butfer identifier
within the free butfer array is stored in header buffer index
1112 and validity indicator 1116 is set to a valid state.

In state 1704 the packet’s header is copied or transferred
into the header buffer at the address or location specified in
the next addres field of header butfer table 1006. As
described above, in one embodiment of the invention pad
bytes may be inserted before the header in order to align the

10

15

30

35

45

50

55

60

65

80

beginning of the packet’s layer three protocol (e.g., IP)
header with a sixteen-byte boundary. In addition, the header
may be positioned within a cell of predetermined size (e.g.,
256 bytes) within the header bufler.

In the illustrated embodiment, operation code 3 indicates
that an existing flow is to be torn down (e.g., the flow
re-assembly bufler is to be invalidated and released to the
host computer). Thus, in state 1706 it is determined whether
a flow re-assembly buffer is valid (e.g., active) for this flow
by examining the validity indicator in the fiow’s entry in
flow re-assembly butfer table 1004. Illustratively, if the
indicator is Valid then there should be an active bufier

storing data fi'om one or more packets in this flow. If there
is a valid flow re-assembly bufler for this flow, the illustrated
procedure continues at state 1712. Otherwise, the procedure
proceeds to state 1708.

In state 1708, a new flow re-assembly buffer is prepared
to store this packet’s data. Illustratively, a fi'ee ring descrip-
tor is obtained from a cache maintained by free ring manager
1012 and its reference to an empty buffer is retrieved. If the
cache is empty, new descriptors may be retrieved from the
fi'ee descriptor ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The butfer’s initial address or other indication
of its first storage location is placed in next addres field
1104 of the flow’s entry in flow re-assembly hufi'er table
1004. The fiow’s entry in the re-assembly bulfer table may
be recognized by its flow number. The location within the
free buffer array of the butter identifier is stored in
reassembly bufler index 1102, and validity indicator 1106 is
set to a valid state.

In state 1710, the packet's data is copied or transferred
(e.g., via a DMA operation) into the address or location
specified in the next address field of the fiow’s entry in flow
re—assembly bufi'er table 1004.

In state 1712, a completion descriptor is written or con—
figured to release the flow’s re-assernbly buffer and to
provide information to the host computer for processing the
packet. In particular, the header butfer index (e.g., the index,
within the free buffer array, of the header bufler's identifier)
and the ofiset of the packet’s header within the header buffer
are placed in the descriptor. Illustratively, this ofl'set serves
to identify the first byte of the header, the first pad byte
preceding the header or the cell in which the header is stored.
The flow re-asembly bufi’er index (e.g., the index, within
the free bufier array, of the flow re-assembly butfer’s
identifier) and the offset of the packet’s data within that
buffer are also stored in the descriptor.

The size of the packet’s data (e.g., the size of the packet’s
TCP payload) and header (e.g., the offset of the TCP payload
within the packet) portions are stored in data size and header
size fields, respectively. The descriptor type field is given a
value that indicates that a flow packet has been transferred
to host memory. A release header flag may be set if the
header bulfer is full and a release data flag may be set to
indicate that no more data will be placed in this flow
re—assembly buffer (e.g., because it is being released). In
addition, a release flow flag is set to indicate that DMA
engine 120 is tearing down the packet’s flow. The header
buffer may not be tested to see if it is full until a later state
of this procedure. In such an embodiment, the release header
flag may be set (or cleared) at that time.

Then, in state 1714, the flow re-assembly buffer is invali-
dated by modifying validity indicator 1106 in the fiow’s
entry in flow re-assembly buffer table 1004 appropriately.
After state 1714, the procedure continues at state 1730.

NOAC EX. 1015 Page 307



NOAC Ex. 1015 Page 308

US 6,483,804 BI
81

In state 1716, DMA engine 120 determines whether the
packet’s TCP payload (e.g., the packet’s data portion) will fit
into the valid flow re—assembly bufler. If not, the illustrated
procedure continues at state 1722.

In state 1718, the packet data is copied or transferred (e.g.,
via a DMA operation) into the flow’s re-assembly bulTer, at
the location specified in the next address field 1104 of the
flow’s entry in flow re-assembly table 1004. One skilled in
the art will appreciate that the next address field may or may
not be updated to account for this new packet because the
re-assembly butfer is being released.

In state 1720, a completion descriptor is written or con~
figured to release the fiow’s re-assembly bulfer and to
provide information to the host computer for procesing the
packet. The header bulfer index (e.g., the location or index,
within the free buffer array, of the header buffer’s identifier)
and the ofiset of the packet’s header within the header buffer
are placed in the descriptor. The flow re-asembly buffer
index (e.g., the location or index within the free butfer array
of the flow re-assembly bufier’s identifier) and the oifset of
the packet’s data within that buffer are also stored in the
descriptor.

The size of the packet’s data (e.g., the size of the packet’s
'I'CPpayload) and header (e.g., the ofi‘set of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
that indicates that a flow packet has been tramferred to host
memory. A release header flag is set if the header bulfer is
full and a release data flag is set to indicate that no more data
will be placed in this flow re-assembly buffer (e.g., because
it is being released). As explained above, the header buffer
may not be tested to see if it is full until a later state of this
procedure, at which time the release header flag may be set.
Finally, a release flow flag is set to indicate that DMAengine
120 is tearing down the packet‘s flow. After state 1720, the
illustrated procedure resumes at state 1728.

In state 1722, a first portion of the packet’s payload (e.g.,
data) is stored in the flow’s present (e.g., valid) re-assembly
bulfer, at the location identified in the bulfer’s next address
field 1104.

Because the full payload will not fit into this bulTer, in
state 1724 a new flow re-assembly buffer is prepared and the
remainder of the payload is stored in that bulTer. In one
embodiment of the invention information concerning the
first buffer is stored in a completion descriptor. This infor-
mation may include the position within the free buifer array
of the first bulfer’s buffer identifier and the olfset of the first

portion of data within the bulfer. The flow’s entry in flow
re-assembly butfer table 1004 may then be updated for the
second butfer (e.g., store a first address in next address field
1104 and the location of buffer’s identifier in the free buffer

array in re-assembly buffer index 1102).
In state 1726, a completion descriptor is written or con-

figured. The contents are similar to those described for states
1712 and 1720 but this descriptor must reflect that two
re—assembly buffers were used.

Thus, the header bufier index (e.g., the position within the
free bulfer array of the bufler identifier corresponding to the
header buffer) and the oflset of the packet’s header within
the header bufier are placed in the descriptor, as above. The
first flow re-assernbly buflfer index (e.g., the position, within
the free buffer array, of the buffer identifier corresponding to
the first flow re-assembly buffer used to store this packet’s
payload) and the offset of the packet’s first portion of data
within that buffer are also stored in the descriptor.

The size of the packet's data (e.g., the size of the packet’s
TCP payload) and header (e.g., the oifset of the TCP payload

10

15

20

30

35

45

50

55

60

65

82

within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
that indicates that a flow packet has been transferred to host
memory. A release header flag is set if the header buffer is
full and a release data flag is set to indicate that no more data
will be placed in this flow re-assembly bulfer. A release flow
flag is set to indicate that DMA engine 120 is tearing down
the packet’s flow.

Because two re-assembly bullets were used, a split packet
flag is set and the index, within the free bulfer array, of the
re-assembly bulfer’s bulfer identifier is stored in a next index
field. Additionally, because the packet contains the final
portion of data for the flow, a release next data bufi'er flag
may also be set to indicate that the second flow re-assembly
bulfer is being released.

In state 1728, the flow’s entry in flow re—assembly butfer
table 1004 is invalidated to ensure that it is not used again.

In state 1730, it is determined whether the header bulfer
is full. In this embodiment of the invention, where each
bufier is eight kilobytes in size and entries in the header
bufier are no larger than 256 bytes, a counter is used to keep
track of entries placed into each new header buffer. The
bufier is considered full when thirty-two entries are stored.

If the buffer is full, in state 1732 the header butfer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header bufier table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
header flag in the descriptor is set.

If the header bulfer is not full, then in state 1734 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet.
The processing associated with a packet having operation

code 3 then ends with end state 1799. In this end state, the
descriptor used for this packet is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero). Alternatively, some other mechanism may
be used, such as isuing an interrupt or changing the
descriptor’ descriptor type field. Illustratively, the descriptor
type field would be changed to a value indicating that DMA
engine 120 transferred a flow packet into host memory.

In one alternative embodiment of the invention an opti-
mization may be performed when procesing a packet with
operation code 3. This optimization takes advantage of the
knowledge that the packet contains the last portion of data
for its flow. In particular, instead of loading a descriptor into
flow re-assembly buifer table 1004 the descriptor may be
used where it is—in a descriptor cache maintained by free
ring manager 1012.

For example, instead of retrieving a bulfer identifier from
a descriptor and storing it in an array in state 1708 above,
only to store one padret’s data in the identified bufier before
releasing it, it may be more etficient to use the descriptor
without removing it from the cache. In this embodiment,
when a completion descriptor is written the values stored in
its data index and data olfset fields are retrieved from a

descriptor in the descriptor cache. Similarly, when the first
portion of a code 3 packet’s data fits into the flow’s active
buffer but a new one is needed just for the remaining data,
a descriptor in the descriptor cache may again be used
without first loading it into a free bulfer array and the flow
re-assembly buffer table. In this situation, the completion
descriptor’s next index field is retrier from the descriptor
in the descriptor cache.
A Method of Transferring a Packet with Operation Code 4

FIGS. 18A—18D depict an illustrative procedure in which
DMA engine 120 transfers a packet associated with opera~

NOAC EX. 1015 Page 308



NOAC Ex. 1015 Page 309

US 6,483,804 B1
83

tion code 4 to a host memory buffer. As reflected in TABLE
1, operation code 4 in this embodiment indicates that the
packet is compatible with the protocols that may be parsed
by MC 100 and continues a flow that is already established.
No new flow is set up, the existing flow is not to be torn
down, and the packet’s data is to be re—assembled with data
from other flow packets. Because the packet is to be
re-assembled, the packet’s header should be stored in a
header buffer and its data in the flow’s re—assembly butfer.

In state 1800, DMA engine 120 determines whether there
is a valid (e.g., active) header bufier. Illustratively, this
determination is made by examining validity indicator 1116
of header buifer table 1006, which manages the active
header buffer. If the validity indicator is set, then there
should be a header buffer ready to receive this packet and the
procedure continues at state 1804.

Otherwise, in state 1802 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buifer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The bufi'er’s initial address or some other
indication of the first storage location in the buffer is place
in next address field 1114 of header buffer table 1006. Also,
the position or index of the buffer identifier within the free
butfer array is stored in headerbulfer index 1112 and validity
indicator 1116 is set to a valid state.

In state 1804 the packet’s header is copied or transferred
into the header bufier at the address or location specified in
the next address field of header butfer table 1006. As

described above, in one embodiment of the invention pad
bytes are inserted before the header in order to align the
beginning of the packet’s layer three protocol (e.g., IP)
header with a sixteen-byte boundary. In addition, the pack-
et’s header may be positioned within a cell of predetermined
size (e.g., 256 bytes) within the buffer.

In the illustrated embodiment, operation code 4 indicates
that an existing flow is to be continued. Thus, in state 1806
it is determined whether a flow re-assembly buffer is valid
(e.g., active) for this flow by examining the validity indicator
in the fiow’s entry in flow re-asembly butfer table 1004.
Illustrativer, if the indicator is valid then there is an active
butfer storing data from one or more packets in this flow. If
there is a valid flow re-assembly buffer for this flow, the
illustrated procedure continues at state 1808. Otherwise, the
procedure proceeds to state 1810.

In state 1808, it is determined whether the packet’s data
(e.g., its TCP payload) portion is too large for the current
flow re-asembly buffer. If the data portion is too large, two
flow re—assembly buffers will be used and the illustrated
procedure proceeds to state 1830. Otherwise, the procedure
continues at state 1820.

In state 1810, because it was found (in state 1806) that
there was no valid flow re-assembly buffer for this packet,
a new flow re-assembly butfer is prepared. lllustratively, a
free ring descriptor is obtained from a cache maintained by
free ring manager 1012 and its reference to an empty buffer
is retrieved. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buficr identifier (e.g., pointer,

10

15

35

45

50

55

60

65

84

address, index) contained in the descriptor is stored in a free
bufl'er array. The butfer’s initial address or other indicator of
its first storage location is placed in next address field 1104
of the flow’s entry in flow re-assembly buffer table 1004.
The flow’s entry in the table may be recognized by its flow
number. The location of the buffer identifier in the free buffer

array is stored in re-assernbly buffer index 1102, and validity
indicator 1106 is set to a valid state.

In state 1812, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the address or location
specified in the next address field of the flow’s entry in flow
re—assembly buffer table 1004.

In state 1814, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header bufi'er index
(e.g., the index within the free buffer array of the buffer
identifier that identifies the header buffer) and the offset of
the packet’s header within the header bufi'er are placed in the
descriptor. lllustratively, this ofiset may serve to identify the
first byte of the header, the first pad byte preceding the
header or the header’5 cell within the header buffer. The flow

re-assembly buffer index (e.g., the index within the free
buffer array of the butfer identifier that identifies the flow
re-assembly buffer) and the offset of the packet’s data within
that buifer are also stored in the descriptor.

The size of the packet’s data (e.g., the size of the packet’s
TCPpayload) and header (e.g., the otfset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
indicating that a flow packet has been transferred to host
memory. A release header flag is set if the header buffer is
fit] but a release data flag is not set, because more data will
be placed in this flow re-assernbly buffer. The header buffer
may not be tested to see if it is full until a later state of this
procedure. In such an embodiment, the release header flag
may be set (or cleared) at that time.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determines that another packet in the same flow will soon be
transferred to the host computer, the release flow flag will be
cleared (e.g., a zero will be stored). This indicates that the
host computer should await the next flow packet before
processing this one. By collectively processing multiple
packets from a single flow, the packets can be processed
more efficiently and less processor time is required. If,
however, no other packets in the same flow are identified, the
release flow flag may be set (e.g., a one is stored) to indicate
that the host computer should process the flow packets it has
received so far, without waiting for more.

In state 1816, the flow’s entry in flow re-assembly butfer
table 1004 is updated. In particular, next address field 1104
is updated to identify the location in the re-assembly bufier
at which the next flow packet’s data should be stored. After
state 1816, the illustrated procedure continues at state 1838.

In state 1820 (reached from state 1808), it is known that
the packet’s data, or TCP payload, will fit within the fiow’s
current re-assernbly buffer. Thus, the packet data is copied or
transferred into the buffer at the location identified in next

address field 1104 of the fiow’s entry in flow re-assernbly
buffer table 1004.

In state 1822, a completion descriptor is written or con—
figured to provide information to the host computer for
processing the packet. In particular, the header bufi'er index
(e.g., the index within the free butter array of the buffer
identifier that identifies the header buffer) and the ofiset of
the packet’s header within the header bufl'er are placed in the

NOAC EX. 1015 Page 309



NOAC Ex. 1015 Page 310

US 6,483,804 B1

85

descriptor. The flow re-assembly bufier index (e.g., the
index within the fi'ee buffer array of the buffer identifier that
identifies the flow re-assembly bulIer) and the ofiset of the
packet’s data within that bufler are also stored in the
descriptor.

The size of the packet’s data (e.g., the size of the packet’s
TCPpayload) and header (e.g., the otfset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
indicating that a flow packet has been transferred to host
memory. A release header flag is set if the header bufiFer is
full but a release data flag is set only if the flow re~assembly
buffer is now full. The header and flow re-assembly bufiEers
may not be tested to see if they are full until a later state of
this procedure. In such an embodiment, the flags may be set
(or cleared) at that time.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determines that another packet in the same flow will soon be
transferred to the host computer, the release flow flag will be
cleared. This indicates that the host computer should await
the next flow packet before processing this one. By collec-
tively processing multiple packets from a single flow, the
packets can be processed more efficiently and less processor
time is required. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so far, without waiting for more.

In state 1824, the flow rte-assembly bulIer is examined to
determine if it is fall. In the presently described embodiment
of the invention this test is conducted by first determining
how much data (e.g., how many bytes) has been stored in the
buffer. Illustratively, the fiow’s next address field and the
amount of data stored from this packet are summed. Then,
the initial buffer address (e.g., before any data was stored in
it) is subtracted from this sum. This value, representing how
much data is now stored in the buffer, is then compared to
the size of the bulfer (e.g., eight kilobytes).

If the amount of data currently stored in the bufi'er equals
the size of the bufi'er, then it is full. In the presently described
embodiment of the invention it is desirable to completely fill
flow re-assembly buifers. Thus, a flow re~assembly butter is
not considered full until its storage space is completely
populated with flow data. This scheme enables the efficient
process‘ng of network packets.

If the flow re-assembly buffer is full, in state 1826 the
bufler is invalidated to ensure it is not used again.
Illustratively, this involves setting the header butter table’s
validity indicator to invalid and communicating this status to
the host computer. In this embodiment of the invention, a
release data flag in the descriptor is set After state 1826, the
procedure continues at state 1838.

If the flow re-assembly buffer is not full, then in state 1828
next address field 1104 in the fiow’s entry in flow
re—assembly buffer table 1004 is updated to indicate the
address at which to store the next portion of flow data. After
state 1828, the procedure continues at state 1838.

In state 1830 (reached from state 1808), it is known that
the packet’s data will not fit into the flow’s current
re-assembly buffer. Therefore, some of the data is stored in
the current buffer and the remainder in a new bulfer. In

particular, in state 1830 a first portion of data (e.g., an
amount sufiicient to fill the bufier) is copied or transferred
into the current flow re-assembly bufi‘er.

In state 1832, a new descriptor is loaded from a descriptor
cache maintained by free ring manager 1012. Its identifier of

10

15

30

35

45

50

55

65

86

a new buffer is retrieved and the remaining data from the
packet is stored in the new buffer. In one embodiment of the
invention, after the first portion of data is stored information
from the flow’s entry in flow re-assembly table 1004 is
stored in a completion descriptor. Illustratively, this infor-
mation includes re-assembly bufier index 1102 and the ofi‘set
of the first portion of data within the full buffer. Then the
new descriptor can be loaded—its index is stored in
re-asembly bufler index 1102 and an initial addres is stored
in next address 1104.

In state 1834, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header bufier index
(e.g., the location of the header bufier’s bufler identifier
within the free buffer array) and the ofi'set of the packet’s
header within the header buffer are placed in the descriptor.
The flow re—assembly butfer index (e.g., the location of the
flow re-assembly bufier’s butter identifier within the free
bufier array) and the oflset of the packet’s data within that
bufier are also stored in the descriptor.

The size of the packet’s data (e.g., the size of the packet’s
TCP payload) and header (e .g., the otfset of the TCP payload
within the packet) are stored in data size and header size
fielcb, respectively. The descriptor type field is given a value
indicating that a flow packet has been transferred to host
memory. A release header flag is set if the header buffer is
full and a release data flag is set because the first flow
re-assembly butter is being released. The header bufler may
not be tested to see if it is full until a later state of this

procedure. In such an embodiment, the release header flag
may be set (or cleared) at that time.

Because two re-assembly butfers were used, a split packet
flag in the descriptor is set and the index, within the free
descriptor ring, of the descriptor that references the second
re-assembly buffer is stored in a next index field.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determines that another packet in the same flow will soon be
transferred to the host computer, the release fiow flag will be
cleared. This indicates that the host computer should await
the next flow packet before processing this one. By collec-
tively processing multiple packets fi'om a single flow, the
packets can be processed more efficiently and le$ processor
time is required. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so far, without waiting for more.

In state 1836, next address field 1104 in the fiow’s entry
in flow re-assembly bufier table 1004 is updated to indicate
the address in the new bufier at which to store the next

portion of flow data.
In state 1838, it is determined whether the header bufier

is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
bufler are no larger than 56 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The buffer is considered full when thirty-two enhies are
stored.

If the bufier is full, in state 1840 the header butter is
invalidated to ensure that it is not used again. lllustratively,
this involves setting the header bufler table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
header flag in the descriptor is set.

If the header bufier is not full, then in state 1842 the next
address field of header bufler table 1006 is updated to
indicate the address at which to store the next header or

small packet.

NOAC EX. 1015 Page 310



NOAC Ex. 1015 Page 311

US 6,483,804 B1
87

The processing associated with a packet having operation
code 4 then ends with end state 1899. In this end state, the
descriptor used for this packet is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero). In one alternative embodiment of the
invention, DMA engine 120 issues an interrupt or uses other
means to alert the host computer that a descriptor is being
released.

In one alternative embodiment of the invention the opti-
mization described above for packets associated with opera-
tion code 3 may be performed when processing a packet
with operation code 4. This optimization is useful, for
example, when a code 4 packet's data is too large to fit in the
current flow re-asembly buffer. Instead of loading a new
descriptor for the second portion of data, the descriptor may
be used where it is—in a descriptor cache maintained by flee
ring manager 1012. This allows DMA engine 120 to finish
transferring the packet and turn over the completion descrip-
tor before adjusting flow re-assembly bufl‘er table 1004 to
reflect a new bufi'er.

In particular, instead of loading information from a new
descriptor in state 1832 above, it may be more eflicient to
use the descriptor without removing it flom the cache. In this
embodiment a new buffer for storing a remainder of the
packet’s data is accessed by retrieving its bufler identifier
from a descriptor in the free ring manager’s descriptor
cache. The data is stored in the bufl‘er and, after the packet’s
completion descriptor is configured and released, the nec-
essary information is loaded into the flow re-membly table
as described above. Illustratively, re—assembly bufl‘er index
1102 stores the butfer identifier’s index within the free bufler

array, and an initial memory address of the bufler, taking into
account the newly stored data, is placed in next address
1104.

A Method of Transferring a Packet with Operation Code 5
FIGS. 19A—19E depict a procedure in Which DMAengine

120 transfers a packet associated with operation code 5 to a
host memory butfer. As reflected in TABLE 1, operation
code 5 in one embodiment of the invention may indicate that
a packet is incompatible with the protocols that may be
parsed by MC 100. It may also indicate that a packet
contains all of the data for a new flow (e.g., no more datawill
be received for the packet’s flow). Therefore, for operation
code 5, no new flow is set up and there should not be any
flow to tear down. The packet’s data, if there is any, is not
to be re-assembled.

In state 1900, it is determined whether the present packet
is a small packet (e.g., les than or equal to 256 bytes in size)
suitable for storage in a header bufl‘er. If so, the illustrated
procedure proceeds to state 1920.

Otherwise, in state 1902 it is determined whether the
present packet is a jumbo packet (e.g., greater than 1522
bytes in size), such that it should be stored in a jumbo buffer.
If so, the illustrated procedure proceeds to state 1940. If not,
the procedure continues at state 1904.

In state 1904, it has been determined that the packet is not
a small packet or a jumbo packet. The packet may, therefore,
be stored in a non-re-assembly buffer used to store packets
that are no greater in size than MTU (Maximum Transfer
Unit) in size, which is 1522 bytes in a present embodimmt.
This bufier may be called an MI‘U bufler. Therefore, DMA
engine 120 determines whether a valid (e.g., active) MTU
bufi'er exists. Illustratively, this determination is made by
examining validity indicator 1126 of MI‘U bufler table 1008,
which manages the active MTU bufler. If the validity
indicator is set, then there should be a MTU bufier ready to
receive this packet and the procedure continues at state
1908.

10

15

30

35

45

50

55

60

88

Otherwise, in state 1906 a new MTU bufier is prepared or
initialized for storing non—re-asembleable packets up to
1522 bytes in size. Illustratively, this initialization process
involves obtaining a flee ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
bufler identifier (e.g., a reference to an empty host memory
bufl’er). If the cache is empty, new descriptors may be
retrieved flom the flee descriptor ring in host memory to
replenish the cache.

When a new descriptor is obtained flom the cache or flom
the flee descriptor ring, the bufier identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a flee
bufler array. The bufier’s initial address or some other
indication of the first storage location in the buffer is placed
in next address field 1124 of MTU buffer table 1008. The

bufier identifier’s index or position within the free buffer
array is stored in MTU butfer index 1122, and validity
indicator 1126 is set to a valid state.

In state 1908 the packet is copied or transferred (e.g., via
a DMA operation) into the MTU bufler at the addres or
location specified in the next address field of MTU bulfer
table 1008. As described above, in one embodiment of the
invention pad bytes may be imerted before the header in
order to align the beginning of the packet’s layer three
protocol (e.g., lP) header with a sixteen-byte boundary. In
addition, the packet may be positioned within a cell of
predetermined size (e.g., two kilobytes) within the MTU
bufier.

In state 1910, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter for processing the packet. In particular, the MTU
bufler index (e.g. the location within the flee buffer array of
the butler identifier for the MTU buffer) and offset (e.g., the
offset to the packet or the packet’s cell within the buffer) are
placed in the descriptor in data index and data ofl'set fields,
respectively. The size of the packet is stored in a data size
field. A header size field within the descriptor may be set to
zero to indicate that the entire packet was placed in the MTU
bufler (e.g., no separate header portion was stored in a
header bufl’er). Arelease data flag is set in the descriptor if
the MTU buifer is full. The MTU buifer may not, however,
be tested to see ifit is full until a later state ofthisprocedure.
In such an embodiment of the invention, the release data flag
may be set (or cleared) at that time. A release header flag
may be cleared (e.g., not set), because there is no separate
header portion being conveyed to the host computer.

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. Also, a predeter-
mined value (e.g., zero) is stored in the descriptor's own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In one embodiment of the
invention, the ownership indicator is not set until end state
1999 below. In an alternative embodiment of the invention,
the descriptor may be released by isuing an interrupt or
other alert. In yet another alternative embodiment, changing
the descriptor’s descriptor type field may Signal the descrip-
tor’s release.

In state 1912, DMA engine 120 determines whether the
MTU bufl‘er is full. In this embodiment of the invention,
where each bufl‘er is eight ldlobytes in size, each entry in the
MTU buffer may be allotted two kilobytes of space and a
counter may be used to keep track of entries placed into an
MTU buffer. The bufler may be considered full when a

predetermined number of entries (e.g., four) are stored. In an
alternative embodiment of the invention entries in an MTU

NOAC EX. 1015 Page 311



NOAC Ex. 1015 Page 312

US 6,483,804 B1

89

buffer may or may not be allocated a certain amount of
space, in which case DMA engine 120 may calculate how
much storage space within the buffer has yet to be used. If
no space remains, or if les than a predetermined amount of
space is still available, the buffer may be considered full.

If the MTU buffer is full, in state 1914 the buffer is
invalidated to ensure that it is not used again. lllustratively,
this involves setting the MTU buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release data
flag in the descriptor is set. The illustrated procedure then
ends with end state 1999.

If the MTU buffer is not full, then in state 1916 the next
address field of MTU buffer table 1008 is updated to indicate
the address at which to store the next packet. The illustrated
procedure then ends with end state 1999.

In state 1920 (reached from state 1900), it has been
determined that the present packet is a small packet suitable
for storage in a header bufier. Therefore, DMA engine 120
(e.g., DMA manager 1002) determines whether there is a
valid (e.g., active) header bulfer. Illustratively, this determi-
nation is made by examining validity indicator 1116 of
header butfer table 1006, which manages the active header
butfer, If the validity indicator is set, then there is a header
bufier ready to receive this packet and the procedure con-
tinues at state 1924.

Otherwise, in state 1922 a new header bulfer is prepared
or initialized for storing small packets and headers of
re-assembled packets. lllustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty bulfer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or fi‘om
the free descriptor ring, the bufler identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
bulfer array. The butfer’s initial addrem or some other
indicator of the first storage location or cell in the bulfer is
placed in next address field 1114 of header bulfer table 1006.
Further, the bufi'er identifier’s position within the free bulfer
array is stored in header bulfer index 1112 and validity
indicator 1116 is set to a valid state.

In state 1924 the packet is copied or transferred (e.g., via
a DMA operation) into the header bulfer at the address or
location specified in the next address field of header bufi'er
table 1006. As described above, in one embodiment of the
invention pad bytes may be inserted before the header in
order to align the beginning of the packet’s layer three
protocol (e.g., IP) header with a sixteen-byte boundary. In
addition, the packet may be positioned within a cell of
predetermined size (e.g., 256 bytes) within the butfer.

In state 1926, a completion descriptor is written or con—
figured to provide necessary information to the host com-
puter (e.g., a software driver) for processing the packet. In
particular, the header butfer index (e.g. the index of the free
buifer array element that contains the header buifer’s
identifier) and ofi'set are placed in the descriptor, in header
index and header ofiSet fields, respectively. lllustratively,
this offset serves to identify the first byte of the packet, the
first pad byte preceding the packet or the location of the
packet’s cell within the bulfer. The size of the packet is also
stored in the descriptor, illustratively within a header size
field. A data size field within the descriptor may be set to
zero to indicate that the entire packet was placed in the
header bulfer (e.g., no separate data portion was stored in
another bulfer). A release header flag may be set in the

10

15

35

45

50

55

60

65

90

descriptor if the header buffer is full. However, the header
buffer may not be tested to see if it is full until a later state
of this procedure. In such an embodiment of the invention,
the release header flag may be set (or cleared) at that time.
A release data flag may be cleared (e.g., not set), because
there is no separate data portion being conveyed to the host
computer.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Also, a predetermined value (e.g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120 is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not set until end state 1999 below.

In state 1928 it is determined whether the header buffer is

full. In this embodiment of the invention, where each buffer
is eight kilobytes in size and entries in the header bufi’er are
no larger than 256 bytes, a counter is used to keep track of
entries placed into each new header buffer. The bulfer is
considered full when thirty-two entries are stored.

If the bulfer is full, in state 1930 the header bulfer is
invalidated to ensure that it is not used again. lllustratively,
this involves setting the header bulfer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
header flag in the descriptor is set. The illustrated procedure
then ends with end state 1999.

If the header bufi’er is not fill, then in state 1932 the next
address field of header bufier table 1006 is updated to
indicate the address at which to store the next header or

small packet The illustrated procedure then ends with end
state 1999.

In state 1940 (reached from state 1902), it has been
determined that the packet is a jumbo packet (e.g., that it is
greater than 1522 bytes in size). In this embodiment of the
invention a jumbo packet’s data portion is stored in a jumbo
buifer. Its header is also stored in the jumbo buifer unless
splitting of jumbo packets is enabled, in which case its
header is stored in a header bulfer. DMA engine 120 thus
determines whether a valid (e.g., active) jumbo bulfer exists.
lllustratively, this determination is made by examining
validity indicator 1136 of jumbo buffer table 1010, which
manages an active jumbo bulfer. If the validity indicator is
set, then there is a jumbo bufier ready to receive this packet
and the procedure continues at state 1944.

Otherwise, in state 1942 a new jumbo bulfer is prepared
or initialized for storing a non-re-assembleable packet that is
larger than 1522 bytes. lllustratively, this initialization pro-
cess involves obtaining a free ring desaiptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty bulfer. If the cache is empty, new
descriptors may be retrieved fi'om the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the bulfer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial address or other indication
of the first storage location within the bulfer is placed in next
address field 1134 of jumbo buffer table 1010. The position
of the bufler identifier within the her. buifer array is stored
in jumbo bulfer index 1132, and validity indicator 1136 is set
to a valid state.

Then, in state 1944, DMA engine 120 determines whether
splitting of jumbo butfers is enabled. If enabled, the header
of a jumbo packet is stored in a header butfer while the
packet’s data is stored in one or more jumbo bulfers. If not

NOAC EX. 1015 Page 312



NOAC Ex. 1015 Page 313

US 6,483,804 B1

91

enabled, the entire packet will be stored in one or more
jumbo bufiers. Illustratively, splitting of jumbo packets is
enabled or disabled according to the configuration of a
programmable indicator (e.g., flag, bit, register) that is set by
software operating on the host computer (e.g., a device
driver). If splitting is enabled, the illustrated procedure
continues at state 1960. Otherwise, the procedure proceeds
to state 1946.

In state 1946, DMA engine 120 determines whether the
packet will fit into one jumbo bufi‘er. For example, in an
embodiment of the invention using eight kilobyte pages, if
the packet is larger than eight kilobytes a second jumbo
bufier will be needed to store the additional contents. If the

packet is too large, the illustrated procedure continues at
state 1952.

Otherwise, in state 1948 the packet is copied or trans-
ferred (e.g., via a DMA operation) into the current jumbo
buffer, at the location specified in the next addres field 1134
of jumbo bufi'er table 1010. When the packet is transferred
intact like this, padding may be added to align a header
portion of the packet with a sixteen-byte boundary. One
skilled in the art will appreciate that the next addres field
may not need to be updated to account for this new packet
because the jumbo buffer will be released. In other words, in
one embodiment of the invention a jumbo butfer is only used
once (e.g., to store one packet or a portion ofone packet). In
an alternative embodiment of the invention a jumbo buffer
may store portions of two or more packets, in which case
next addrem field 1134 may need to be updated.

In state 1950, a completion descriptor is written or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
jumbo buffer index (e.g., the index, within the free buffer
array, of the buifer identifier that corresponds to the jumbo
bufier) and the ofl’set of the first byte of the packet within the
jumbo bufi'er are placed in the descriptor, in data index and
data size fields, respectively. The size of the packet (e.g., the
packet length) is stored in a data size field.

Aheader size field may be cleared (e.g., a zero is stored)
to indicate that the header buffer was not used (e.g., the
header was not stored separately from the packet's data).
Because the packet was stored intact, header index and
header otfset fields may or may not be used (e.g., the values
stored in their fields do not matter). Arelease header flag is
cleared and a release data flag is set to indicate that no more
data will be placed in this jumbo buffer (e.g., because it is
being released).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(e.g., zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and turning over ownership of the
descriptor. In one embodiment of the invention, the owner-
ship indicator is not changed until end state 1999 below.
After state 1950, the illustrated procedure resumes at state
1958. In one alternative embodiment of the invention, DMA
engine 120 issues an interrupt or uses some other means,
posrbly not until end state 1999, to alert the host computer
that a descriptor is being released.

In state 1952, a first portion of the packet is stored in the
present (e .g., valid) jumbo bufler, at the location identified in
the bufi'er’s next address field 1134. Because the whole

packet will not fit into this buffer, in state 1954 a new jumbo
buffer is prepared and the remainder of the packet is stored
in that buffer.

In state 1956, a completion descriptor is written or con-
figured. The contents are similar to those described in state

92

1950 but this descriptor must reflect that two jumbo buffers
were used to store the packet. Thus, the jumbo buffer index
(e.g., the index, within the free bufier array, of the array
element containing the header bufler's buffer identifier) and

5 the ofiset of the first byte of the packet within the first jumbo
bufier are placed in the descriptor, as above. The size of the
packet (e.g., the packet length) is stored in a data size field.

Aheader size field may be cleared (e.g., a zero is stored)
to indicate that the header bufier was not used (e.g., the

10 header was not stored separately from the packet’s data).
Because there is no separate packet header, header index and
header ofl’set fields may or may not be used (e.g., the values
stored in their fields do not matter).

A release header flag is cleared and a release data flag is
15 set to indicate that no more data will be placed in these

jumbo buifers (e.g., because they are being released).
Further, a split packet flag is set to indicate that a second
jumbo buffer was used, and the index (within the free bulfer
array) of the butter identifier for the second bufi’er is stored

20 in a next index field.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re‘assembleable
packet into host memory. And, a predetermined value (e.g.,
zero) is stored in the descriptor’s ownership indicator field

25 to indicate that DMA engine 120 is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not changed until end state 1999 below.

In state 1958, the jumbo buffer’s entry in jumbo bufier
30 table 1010 is invalidated (e.g., validity indicator 11.36 is set

to invalid) to ensure that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buffers. In an alternative embodiment of the
invention, a jumbo buffer may be stored across any number

35 of butters. The descriptor that is configured to report the
transfer of such a packet is constructed accordingly, as will
be obvious to one filled in the art.

After state 1958, the illustrated procedure ends at end
state 1999.

40 In state 1960 (reached from state 1944), it has been
determined that the present jumbo packet will be split to
store the packet header in a header buifer and the packet data
in one or more jumbo buflers. Therefore, DMA engine 120
(e.g., DMA manager 1002) first determines whether there is

45 a valid (e.g., active) header buffer. Illustratively, this deter-
mination is made by examining validity indicator 1116 of
header buffer table 1006, which manages the active header
buffer. If the validity indicator is set, then there is a header
buffer ready to receive this packet and the procedure con-

50 tinues at state 1964.

Otherwise, in state 1962 a new header buffer is prepared
or initialized for storing small packets and headers of other
packets. Illustratively, this initialization process involves
obtaining a free ring descriptor from a cache maintained by

55 free ring manager 1012 and retrieving its reference to an
empty buffer. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

When a new descriptor is obtained from the cache or from
60 the free descriptor ring, the bufler identifier (e.g., pointer,

address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial addres or some other
indication of the first storage location or cell in the buffer is
placed in next address field 1114 of header buffer table 1006.

65 The index or position of the buffer identifier within the free
bufier array is stored in header bufi‘er index 1112, and
validity indicator 1116 is set to a valid state.

NOAC EX. 1015 Page 313



NOAC Ex. 1015 Page 314

US 6,483,804 B1

93

In state 1964 the packet’s header is copied or transferred
(e.g., via a DMA operation) into the header buffer at the
address or location specified in the next address field of
header butfer table 1006. As described above, in one
embodiment of the invention pad bytes may be inserted
before the header in order to align the beginning of the
packet’s layer three protocol (e.g., 1P) header with a sixteen-
byte boundary. In addition, the header may be positioned
within a cell of predetermined size (e.g., 256 bytes) in the
bufler.

In state 1966, DMA engine 120 determines whether the
packet’s data (e.g., the TCP payload) will fit into one jumbo
butfer. If the packet is too large to fit into one (e.g., the
current jumbo bufier), the illustrated procedure continues at
state 1972.

In state 1968, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the current jumbo buffer, at
the location specified in the next addre$ field 1134 of jumbo
bufler table 1010. One skilled in the art will appreciate that
the next address field may not need to be updated to account
for this new packet because the jumbo bufier will be
released. In other words, in one embodiment of the invention
a jumbo buffer is only used once (e.g., to store one packet
or a portion of one packet).

In state 1970, a completion descriptor is written or con-
figured to release the jumbo buffer and to provide informa—
tion to the host computer for processing the packet. The
header bufler index (e.g. the free bufier array position of the
bufler identifier corresponding to the header bufler) and
ofiset of the packet's header are placed in the descriptor in
header index and header otfset fields, respectively.
Illustratively, this ofiset serves to identify the first byte of the
header, the first pad byte preceding the header or the cell in
which the header is stored. The jumbo buffer index (e.g., the
index within the free buffer array of the buffer identifier that
references the jumbo bufler) and the offset of the first byte
of the packet’s data within the jumbo buffer are placed in
data index and data ofi‘set fields, respectively. Header size
and data size fields are used to store the size of the packet’s
header (e.g., the ofiset of the payload within the packet) and
data (e.g., payload size), respectively.

A release header flag may be set in the descriptor if the
header buffer is full. However, the header bulfer may not be
tested to see if it is full until a later state of this pmdure.
In such an embodiment of the invention, the release header
flag may be set (or cleared) at that time. A release data flag
is also set, because no more data will be placedin the jumbo
buffer (e.g., it is being released to the host computer).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Also, a predetermined value (e .g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120 is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not set until end state 1999 below.

After state 1970, the illustrated procedure proceeds to
state 1978.

In state 1972, a first portion of the packet’s data is stored
in the present (e.g., valid) jumbo bufi‘er, at the location
identified in the bufler’s next address field 1134. Because all

of the packet’s data will not fit into this bulfer, in state 1974
a new jumbo buffer is prepared and the remainder of the
packet is stored in that butfer.

In state 1976, a completion descriptor is written or con-
figured. The contents are similar to those described in states
1970 but this descriptor must reflect that two jumbo bulfers

10

15

35

45

50

55

60

65

94

were used to store the packet. The header buffer index (e.g.
the free buffer array element that contains the header buffer’s
identifier) and ofi'set of the header are placed in the descrip-
tor in header index and header otfset fields, respectively. The
jumbo butfer index (e.g., the free buffer array element
containing the jumbo bufler‘s buffer identifier) and the otfset
of the first byte of the packet’s data within the jumbo bufler
are placed in data index and data offset fields, respectively.
Header size and data size fields are used to store the size of

the packet’s header (e.g., the ofl'set of the payload within the
packet) and data (e.g., payload size), respectively.

A release header flag is set in the descriptor if the header
butfer is full. However, the header butfer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. A release data flag is also set,
because no more data will be placed in the jumbo buffer
(e.g., it is being released to the host computer). Further, a
split packet flag is set to indicate that a second jumbo buffer
was used, and the position or index within the free buffer
array of the second bulfer’s buffer identifier is stored in a
next index field.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(e.g., zero) is stored in the descriptor‘s ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and turning over ownership of the
descriptor. In one embodiment of the invention the owner-
ship indicator is not set until end state 1999 below. In an
alternative embodiment of the invention DMA engine 120
issues an interrupt or uses some other signal to alert the host
computer that a descriptor is being released.

In state 1978, the jumbo bufler's enlry in jumbo butfer
table 1010 is invalidated (e.g., validity indicator 1136 is set
to invalid) to ensure that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buflers. In an alternative embodiment of the invention
a jumbo buffer may be stored across any mmrber of buflers.
'Ihe descriptor that is configured to report the transfer of
such a packet is constructed accordingly, as will be obvious
to one skilled in the art.

In state 1980, it is determined whether the header bufler
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 756 bytes, a counter may be used
to keep track of entries placed into each new header butfer.
The butfer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1982 the header buffer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header buffer table’s validity indi—
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
header flag in the descriptor is set. The illustrated procedure
then ends with end state 1999.

If the header buffer is not full, then in state 1984 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet. The illustrated procedure then ends with end
state 1999.

In end state 1999, a descriptor may be turned over to the
host computer by storing a particular value (e.g., zero) in the
descriptor’s ownership indicator field as described above.
Illustratively, the host computer (or software operating on
the host computer) detects the change and understands that
DMAengine 120 is returning ownership of the descriptor to
the host computer.

NOAC EX. 1015 Page 314



NOAC Ex. 1015 Page 315

“Mn...“
US 6,483,804 B1

95

A Method of Transferring a Packet with Operation Code 6
or Operation Code 7

FIGS. 20A—20B depict an illustrative procedure in which
DMA engine 120 transfers a packet associated with opera-
tion code 6 or 7 to a host memory bufier. As reflected in
TABLE 1, operation codes 6 and 7 may indicate that a
packet is compatible with the protocols pre-selected for MC
100 and is the first packet of a new flow. The difference
between these operation codes in this embodiment of the
invention is that operation code 7 is used when an existing
flow is to be replaced (e.g., in flow database 110 and/or flow
re-assembly butIer table 1004) by the new flow. With
operation code 6, in contrast, no flow needs to be torn down.
For both codes, however, a new flow is set up and the
asociated packet’s data may be re-assembled with data
fi'om other packets in the newly established flow. Because
the packet data is to be re—assembled, the packet’s header
should be stored in a header buffer and its data in a new flow

re-assembly buffer.
As described in a previous section, the flow that is torn

down to make room for a new flow (in the case of operation
code 7) may be the least recently used flow. Because flow
database 110 and flow re-assembly bufier table 1004 contain
only a limited number of entries in the presently described
embodiment of the invention, when they are full and a new
flow arrives an old one must be torn down. Choosing the
least recently active flow for replacement is likely to have
the least impact on network traffic through NIC 100. In one
embodiment of the invention DMA engine 120 tears down
the flow in flow re-assembly bufier table 1004 that has the
same flow number as the flow that has been replaced in flow
database 110.

In state 2000, DMA engine 120 determines whether there
is a valid (e.g., active) header bufier. Illustratively, this
determination is made by examining validity indicator 1116
of header bulIer table 1006, which manages the active
header buiIer. If the validity indicator is set, then there is a
header bulIer ready to receive this packet and the procedure
continues at state 2004.

Otherwise, in state 2002 a new header butfer is prepared
or initialized for storing small packets and headers of
re-asembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty bulIer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the butIer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
bufier array. The bufier’s initial address or some other
indication of the first storage location or cell in the buffer is
placed in next address field 1114 of header bufier table 1006.
The position or index of the bulIer identifier within the free
bufier array is stored in header bufier index 1112, and
validity indicator 1116 is set to a valid state.

In state 2004 the packet’s header is copied or transferred
into the header buffer at the addres or location specified in
the next address field of header bufl’er table 1006. As
described above, in one embodiment of the invention pad
bytes may be inserted before the header in order to align the
beginning of the packet’s layer three protocol (e.g., IP)
header with a sixteen—byte boundary. In addition, the pack-
et’s header may be positioned in a cell of predetermined size
(e.g., 256 bytes) within the buffer.

As discussed above, operation code 7 indicates that an old
flow is to be torn down in flow re-ammbly buffer table 1004

10

15

35

45

50

55

60

65

96

to make room for a new flow. This requires the release of any
flow rte-assembly bulIer that may be associated with the flow
being torn down.

Thus, in state 2006 it is determined whether a flow
re-assembly bufier is valid (e.g., active) for a flow having the
flow number that was read from control queue 118 for this
packet. As explained in a previous section, for operation
code 7 the flow number represents the entry in flow database
110 (and flow re-assembly bufier table 1004) that is being
replaced with the new flow. DMAengine 120 thus examines
the validity indicator in the flow's entry in flow re-assembly
butfer table 1004. Illustratively, if the indicator is valid then
there is an active bufier storing data from one or more
packets in the flow that is being replaced If there is a valid
flow re-assembly bufier for this flow, the illustrated proce
dure continues at state 2008. Otherwise, the procedure
proceeds to state 2010. It will be understood that the
illustrated procedure will normally proceed to state 2008 for
operation code 7 and state 2010 for operation code 6.

In state 2008, a completion descriptor is written or con-
figured to release the replaced flow's rte-assembly buifer. In
particular, the flow re-ammbly butfer index (e.g., the index
within the free bufier array of the flow re-asembly butIer’s
bufier identifier) is written to the descriptor. In this embodi-
ment of the invention, no offset needs to be stored in the
descriptor’s data ofi'set field and the data size field is set to
zero because no new data was stored in the butIer that is

being released. Similarly, the header buifer is not yet being
released, and therefore the header index and header otfset
fields of the descriptor need not be used and a zero may be
stored in the header size field.

The descriptors release header flag is cleared (e.g., a zero
is stored in the flag) because the header bufier is not being
released. The release data flag is set (e.g., a one is stored in
the flag), however, because no more data will be placed in
the released flow re-assembly buiIer. Further, a release flow
flag in the descriptor is set to indicate that the flow associ-
ated with the released flow re-assembly buifer is being torn
down.

The descriptor type field is changed to a value indicating
that DMA engine 120 is releasing a stale flow buifer (e.g.,
a flow re-assembly buifer that has not been used for some
time). Finally, the descriptor used to release the replaced
flow’s re-assembly buffer and terminate the associated flow
is turned over to the host computer by changing its owner-
ship indicator field (e.g., from one to zero). In one alternative
embodiment of the invention, DMA engine 120 issues an
interrupt or employs some other means of alerting the host
computer that a descriptor is being released.

In state 2010, a new flow re-assembly butfer is prepared
for the flow that is being set up. Illustratively, a fi-ee ring
descriptor is obtained from a cache maintained by free ring
manager 1012 and its butfer identifier (e.g., a reference to an
empty memory bujIer) is retrieved. If the cache is empty,
new descriptors may be retrieved from the fi-ee descriptor
ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
butfer array. The buifer’s initial address or other indication
of the first storage location in the butfer is placed in next
addreS field 1104 of the flow’s entry in flow re-assembly
butfer table 1004. The flow's entry in the table may be
recognized by its flow number. The position or index of the
bufier identifier within the free bufl’er array is stored in
re-assembly bufler index 1102, and validity indicator 1106 is
set to a valid state.

NOAC EX. 1015 Page 315



NOAC Ex. 1015 Page 316

US 6,483,804 B1
97

In state 2012, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the address or location
specified in the next address field of the flow’s entry in flow
re-assembly butfer table 1004.

In state 2014, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header bufier index
(e.g., the location or position within the free hufler array of
the bufier identifier that references the header buffer) and the
offset of the packet’s header within the header bufier are
placed in the descriptor. Illustratively, the oifset identifies
the first byte of the header, the first pad byte preceding the
header or the location of the header’s cell in the header
butfer.

The flow re-assembly buffer index (e.g., the location or
position, within the free bufler array, of the bufler identifier
that references the flow re-assembly buifer) and the ofl‘set of
the packet’s data within that bufier are also stored in the
descriptor. It will be recognized, however, that the offset
reported for this packet’s data may be zero, because the
packet data is stored at the very beginning of the new flow
re-assembly butter.

The size of the packet's data (e.g., the size of the packet’s
TCP payload) and header (e.g., the offset of the TCPpayload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is changed to a
value indicating that DMA engine 120 transferred a flow
packet into host memory. A release header flag is set if the
header bulfer is full but a release data flag is not set, because
more data will be placed in this flow re-assembly buffer. The
header bufler may not be tested to see if it is full until a later
state of this procedure. In such an embodiment, the release
header flag may be set (or cleared) at that time.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic padret batching
module 122. For example, if the packet batching module
determines that another packet in the same flow will soon be
transferred to the host computer, the release flow flagwill be
cleared (e.g., a zero will be stored). This indicates that the
host computer should await the next flow packet before
processing this one. By collectively processing multiple
packets from a single flow, the packets can be processed
more efliciently and less procesor time will be required for
network trafic. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so far, without waiting for more.

In state 2016, the flow’s entry in flow re-assembly buffer
table 1004 is updated. In particular, next address field 1104
is updated to identify the location in the re-asembly butfer
at which the next flow packet’s data should be stored.

In state 2018, it is determined whether the header butfer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
bufler are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header bufier.
The bufler is considered full when thirty~two entries are
stored.

If the buffer is full, in state 2020 the header bufier is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header buffer table’s validity indi—
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
header flag in the descriptor is set.

If the header buffer is not full, then in state 2022 the next
address field of header bufier table 1006 is updated to
indicate the address at which to store the next header or
small packet.

10

15

35

45

50

55

60

65

98

The processing associated with a packet having operation
codes 6 and 7 then ends with end state 2099. In this end state,
the descriptor used for fliis packet (e.g., the descriptor that
was configured in state 2014) is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero). In one alternative embodiment of the
invention, DMA engine 120 issues an interrupt or employs
other means (e.g., such as the dcscriptor’s descriptor type
field) to alert the host computer that a descriptor is being
released.

One Embodiment of a Packet Batching Module
FIG. 21 is a diagram of dynamic packet batching module

122 in one embodiment of the invention. In this

embodiment, packet batching module 122 alerts a host
computer to the transfer, or impending transfer, of multiple
packets from one communication flow. The related packets
may then be processed through an appropriate protocol stack
collectively, rather than processing one at a time. As one
skilled in the art will recognize, this increases the efiiciency
with which network traflic may be handled by the host
computer.

In the illustrated embodiment, a packet is transferred from
NIC 100 to the host computer by DMA engine 120 (e.g., by
cepying its payload into an appropriate buffer). When a
packet is transferred, packet batching module 122 deter-
mines whether a related packet (e.g., a packet in the same
flow) will soon be transferred as well. In particular, packet
batching module 122 examines packets that are to be trans-
ferred after the present packet. One skilled in the art will
appreciate that the higher the rate of packet arrival at NIC
100, the more padrets that are likely to await transfer to a
host computer at a given time. The more packets that await
transfer, the more packets that may be examined by the
dynamic packet batching module and the greater the benefit
it may provide. In particular, as the number of packets
awaiting transfer increases, packet batching module 122
may identify a greater number of related packets for collec-
tive processing. As the number of packets processed
together increases, the amount of host processor time
required to process each packet decreases

Thus, if a related packet is found the packet batching
module alerts the host computer so that the packets may be
processed as a group. As described in a previous section, in
one embodiment of the invention dynamic packet batching
module 122 alerts the host computer to the availability of a
related packet by clearing a release flow flag in a completion
descriptor associated with a transferred packet. The flag
may, for example, be cleared by DMA engine 120 in
response to a signal or alert from dynamic packet batching
module 122.

In contrast, in an alternative embodiment of the invention
dynamic packet batching module 122 or DMA engine 120
may alert the host computer when no related packets are
found or when, for some other reason, the host processor
should not delay processing a transferred packet. In
particular, a release flow flag may be set when the host
computer is not expected to receive a packet related to a
transferred packet in the near future (e.g., thus indicating
that the associated flow is being released or torn down). For
example, it may be determined that the transferred packet is
the last packet in its flow or that a particular packet doesn’t
even belong to a flow (e.g., this may be reflected in the
packet’s associated operation code).

With reference now to FIG. 21, packet batching module
122 in one embodiment of the invention includes memory
2102 and controller 2104. Illustratively, each entry in
memory 2102, such as entry 2106, comprises two fields:

NOAC Ex. 1015 Page 316



NOAC Ex. 1015 Page 317

US 6,483,804 B1
99

flow number 2108 and validity indicator 2110. In alternative
embodiments of the invention, other information may be
stored in memory 2102. Read pointer 2112 and write pointer
2114 serve as indices into memory 2102.

In the illustrated embodiment, memory 2102 is an asso-
ciative memory (e.g., a CAM) configured to store up to 256
entries. Each entry corresponds to and represents a packet
stored in packet queue 116. As described in a previous
section, packet queue 1.16 may also contain up to 256
packets in one embodiment of the invention. When a padret
is, or is about to be transferred, by DMA engine 120 fiom
packet queue 116 to the host computer, memory 2102 may
be searched for an entry having a flow number that matches
the flow number of the transferred packet. Because memory
2102 is a CAM in this embodiment, all entries in the
memory may be searched simultaneously or nearly simul-
taneously. In this embodiment, memory 2102 is imple-
mented in hardware, with the entries logically arranged as a
ring. In alternative embodiments, memory 2102 may be
virtually any type of data structure (e.g., array, table, list,
queue) implemented in hardware or software. In one par-
ticular alternative embodiment, memory 2102 is imple-
mented as a RAM, in which case the entries may be
examined in a serial manner.

The maximum of 756 entries in the illustrated embodi-

ment matches the maximum number of packets that may be
stored in a packet queue. Because the depth of memory 2102
matches the depth of the packet queue, when a packet is
stored in the packet queue its flow number may be auto-
matically stored in memory 2102. Although the same num-
ber of entries are provided for in this embodiment, in an
alternative embodiment of the invention memory 2102 may
be configured to hold a smaller or greater number of entries
than the padret queue. And, as discussed in a previous
section, for each packet stored in the packet queue, related
information may also be stored in the control queue.

In the illustrated embodiment of the invention, flow
number 2108 is the index into flow database 110 of the flow

comprising the conesponding packet. As described above, in
one embodiment of the invention a flow includes packets
carrying data from one datagram sent from a source entity to
a destination entity. Illustratively, each related packet has the
same flow key and the same flow number. Flow number
2108 may comprise the index of the packet’s flow key in
flow database 110.

Validity indicator 2110 indicates whether the information
stored in the entry is valid or current. In this embodiment,
validity indicator 2110 may store a first value (e.g., one)
when the entry contains valid data, and a second value (e.g.,
zero) when the data is invalid For example, validity indi-
cator 2110 in entry 2106 may be set to a valid state when the
corresponding entry in packet queue 116 contains a packet
awaiting transfer to the host computer and belong to a flow
(e.g., which may be indicated by the packet’s operation
code). Similarly, validity indicator 2110 may be set to an
invalid state when the entry is no longer needed (e.g., when
the corresponding packet is transferred to the host
computer).

Flow validity indicator 2110 may also be set to an invalid
state when a corresponding packet’s operation code indi-
cates that the packet does not belong to a flow. It may also
be set to an invalid state when the corresponding packet is
a control packet (e.g., contains no data) or is otherwise
non-re-assembleable (e.g., because it is out of sequence,
incompatible with a pre-selected protocol, has an unex-
pected control flag set). Validity indicator 2110 may be
managed by controller 2104 during operation of the packet
batching module.

10

15

45

50

55

60

65

100

In the illustrated embodiment of the invention, an entry’s
flow number is recein from a register in which it was
placed for temporary storage. Apacket’s flow number may
be temporarily stored in a register, or other data structure, in
order to facilitate its timely delivery to packet batching
module 122. Temporary storage of the flow number also
allows the flow database manager to turn its attention to a
later packet. Aflow number may, for example, be provided
to dynamic packet batching module 122 at nearly the same
time that the asociated packet is stored in packet queue 116.
Illustratively, the flow number may be stored in the register
by flow database manager 108 or by IPP module 104. In an
alternative embodiment, the flow number is received from
control queue 118 or some other module of MC 100.

In the illustrated embodiment of the invention, memory
2102 contains an entry corresponding to each packet in
packet queue 116. When a packet in the packet queue is
transferred to a host computer (e.g., when it is written to a
re-assembly buffer), controller 2104 invalidates the memory
entry that corresponds to that packet. Memory 2102 is then
searched for another entry having the same flow number as
the transferred packet. Afterwards, when a new packet is
stored in packet queue 116, perhaps in place of the trans-
ferred packet, a new entry is stored in memory 2102.

In an alternative embodiment of the invention, memory
2102 may be configured to hold entries for only a subset of
the maximum number of packets stored in packet queue 116
(e.g., just re-asembleable packets). Entries in memory 2102
may still be populated when a packet is stored in the packet
queue. However, if memory 2102 is full when a new packet
is received, then creation of an entry for the new packet must
wait until a packet is transferred and its entry in memory
2102 invalidated. Therefore, in this alternative embodiment
entries in memory 2102 may be created by extracting
information from entries in control queue 118 rather than
packet queue 116. Controller 2104 would therefore continu-
ally attempt to copy information from entries in control
queue 118 into memory 2102. The function of populating
memory 2102 may be performed independently or semi-
independently of the function of actually comparing the flow
numbers of memory entries to the flow number of a packet
being transferred to the host computer.

In this alternative embodiment a second read pointer may
be used to index control queue 118 to asist in the population
of memory 2102. In particular, the second read pointer may
be used by packet batching module 122 to find and fetch
entries for memory 2102. Illustratively, if the second, or
“lookahead" read pointer references the same entry as the
control queue's write pointer, then it could be determined
that no new entries were added to control queue 118 since
the last check by controller 2104. Otherwise, as long as there
is an empty (e.g., invalid) entry in memory 2102, the
necessary information (e.g., flow number) may be copied
into memory 2102 for the packet conesponding to the entry
referenced by the lookahead read pointer. The lookahead
read pointer would then be incremented.

Returning now to FIG. 21, read pointer 2112 of dynamic
packet batching module 122 identifies the current entry in
memory 2102 (e.g., the entry conesponding to the packet at
the front of the packet queue or the next packet to be
transferred). Illustratively, this pointer is incremented each
time a packet is transferred to the host computer. Write
pointer 2114 identifies the position at which the next entry
in memory 2102 is to be stored. Illustratively, the write
pointer is incremented each time an entry is added to
memory 2102. One manner of collectively procesing head-
ers from related packets is to form them into one “super-

NOAC EX. 1015 Page 317



NOAC Ex. 1015 Page 318

US 6,483,804 B1

101

”header. In this method, the packets’ data portions are stored
separately (e.g., in a separate memory page or bufier) from
the super-header.

Illustratively, a super-header comprises one combined
header for each layer of the packets’ associated protocol
stack (e.g., one TCP header and one IP header). To form each
layer’s portion of a super-header, the packet's individual
headers may be merged to make a regularvsized header
whose fields accurately reflect the assembled data and
combined headers. For example, merged header fields relat-
ing to payload or header length would indicate the size of the
aggregated data or aggregated headers, the sequence number
of a merged TCP header would be set appropriately, etc. The
super-header portion may then be prode through its
protocol stack similar to the manner in which a single
packet’s header is processed.

This method of collectively processing related packets’
headers (e.g., with “super-”headers) may require modifica-
tion of the instructions for processing packets (e.g., a device
driver). For example, because multiple headers are merged
for each layer of the protocol stack, the software may require
modification to recognize and handle the super-headers. In
one embodiment of the invention the number of headers

folded or merged into a super-header may be limited In an
alternative embodiment of the invention the headers of all

the aggregated packets, regardless of number, may be com-
bined.

In another method of collectively procesing related pack-
ets' header portions, packet data and headers may again be
stored separately (e.g., in separate memory pages). But,
instead of combining the packets’ headers for each layer of
the appropriate protocol stack to form a super-header, they
may be submitted for individual procesing in quick suc-
cession. For example, all of the packets’ layer two headers
may be processed in a rapid sequence—one after the other—
then all of the layer three headers, etc. In this manner, packet
processing instructions need not be modified, but headers
are still procesed more efficiently. In particular, a set of
instructions (e.g., for each protocol layer) may be loaded
once for all related packets rather than being separately
loaded and executed for each packet.

As discussed in a previous section, data portions of related
packets may be transferred into storage areas of predeter-
mined size (e.g., memory pages) for efficient transfer from
the host computer’s kernel space into application or user
space. Where the transferred data is of memory page size,
the data may be transferred using highly efficient “page-
flipping,” wherein a full page of data is provided to appli—
cation or user memory space.

FIGS. 22A—22B present one method of dynamic packet
batching with packet batching module 122. In the illustrated
method, memory 2102 is populated with flow numbers of
packets stored in packet queue 116. In particular, a packet’s
flow number and operation code are retrieved from control
queue 118, IPP module 104, flow database manager 108 or
other module(s) of NIC 100. The packet’s flow number is
stored in the flow number portion of an entry in memory
2102, and validity indicator 2110 is set in accordance with
the operation code. For example, if the packet is not
re-assembleable (e.g., codes 2 and 5 in TABLE 1), the
validity indicator may be set to zero; otherwise it may be setto one.

The illustrated method may operate in parauel to the
operation of DMA engine 120. In other words, dynamic
packet batching module 122 may search for packets related
to a packet in the process of being transferred to a host
memory bufier. Alternatively, a search may be conducted

10

15

30

35

45

50

55

60

65

102

shortly after or before the packet is transferred. Because
memory 2102 may be associative in nature, the search
operation may be conducted quickly, thus introducing little,
if any, delay into the transfer process.

FIG. 2A may be considered a method of searching for a
related packet, while FIG. 2213 may be considered a method
of populating the dynamic packet batching module's
memory.

FIGS. 22A—2213 each reflect one “cycle" of a dynamic
packet batching operation (e.g., one search and creation of
one new memory entry). Illustratively, however, the opera-
tion of packet batching module 122 runs continuously. That
is, at the end of one cycle of operation another cycle
immediately begins. In this manner, controller 2104 strives
to ensure memory 2102 is populated with entries for packets
as they are stored in packet queue 116. If memory 2102 is
not large enough to store an entry for each packet in packet
queue 1.16, then controller 2104 attempts to keep the
memory as full as possible and to quickly replace an
invalidated entry with a new one.

State 2200 is a start state for a memory search cycle. In
state 2202, it is determined whether a packet (e.g., the packet
at the front of the packet queue) is being transferred to the
host computer. This determination may, for example, be
based on the operation of DMA engine 120 or the status of
a pointer in packet queue 1.16 or control queue 1.18.
Illustratively, state 2202 is initiated by DMA engine 120 as
a packet is copied into a bulfer in the host computer. One
purpose of state 2202 is simply to determine whether
memory 2102 should be searched for a packet related to one
that was, will be, or is being transferred. Until a packet is
transferred, or about to be transferred, the illustrated proce-
dure continues in state 2202.

When, however, it is time for a search to be conducted
(e.g., a packet is being transferred), the method continues at
state 2204. In state 2204, the entry in memory 2102 cone—
spending to the packet being transferred is invalidated.
Illustratively, this consists of storing a predetermined value
(e.g., zero) in validity indicator 2110 for the packet's entry.
In a present embodiment of the invention read pointer 2112
identifies the entry corresponding to the packet to be trans-
ferred. As one skilled in the art will recognize, one reason for
invalidating a transferred packet’s entry is so that when
memory 2102 is searched for an entry associated with a
packet related to the transferred packet, the transferred
packet’s own entry will not be identified.

In one embodiment of the invention the transferred pack-
et’s flow number is copied into a register (e.g., a hardware
register) when dynamic packet batching module 122 is to
search for a related packet. This may be particularly helpful
(e.g., to asist in comparing the flow number to flow
numbers of other packets) if memory 2102 is implemented
asaRAMinsteadofaCAM.

In state 2206, read pointer 2112 is incremented to point to
the next entry in memory 2102. [15 read pointer is incre—
mented to the same entry that is referenced by write pointer
2114, and that entry is also invalid (as indicated by validity
indicator 21.10), it may be determined that memory 2102 is
now empty.

Then, in state 2208, memory 2102 is searched for a packet
related to the packet being transferred (e.g., the memory is
searched for an entry having the same flow number). As
described above, entries in memory 2102 are searched
associatively in one embodiment of the invention. Thus, the
result of the search operation may be a single signal indi~
eating whether or not a match was found.

In the illustrated embodiment of the invention, only valid
entries (e.g., those having a value of one in their validity

NOAC EX. 1015 Page 318



NOAC Ex. 1015 Page 319

US 6,483,804 B1
103

indicators) are searched. As explained above, an entry may
be marked invalid (e.g., its validity indicator stores a value
of zero) if the amociated packet is consider incompatible.
Entries for incompatible packets may be disregarded
because their data is not ordinarily re-assembled and their
headers are not normally batched. In an alternative embodi—
ment of the invention, all entries may be searched but a
match is reported only if a matching entry is valid.

In state 2210, the host computer is alerted to the avail~
ability or non-availability of a related packet. In this embodi-
ment of the invention, the host computer is alerted by storing
a predetermined value in a specific field of the transferred
packet's completion descriptor (described in a previous
section). As discussed in the previous section, when a packet
is transferred a descriptor in a descriptor ring in host
memory is populated with information concerning the
packet (e.g., an identifier of its location in host memory, its
size, an identifier of a processor to process the packet’s
headers). In particular, a release flow flag or indicator is set
to a first value (e.g., zero) if a related packet is found, and
a second value if no related packet is found. Illustratively,
DMA engine 120 i$ues the alert or stores the necessary
information to indicate the existence of a related packet in
response to notification from dynamic packet batching mod-
ule 122. Other methods of notifying the host computer of the
presence of a related packet are also suitable (e.g., an
indicator, flag, key), as will be appreciated by one skilled in
the art.

In FIG. 22B, state 2220 is a start state for a memory
population cycle.

In state 2222, it is determined whether a new packet has
been received at the network interface. Illustratively, a new
entry is made in the packet batching module’s memory for
each packet received from the network. The receipt of a new
packet may be signaled by IPP module 104. For example,
the receipt of a new packet may be indicated by the storage
of the paeket’s fiow number, by IPP module 104, in a
temporary location (e.g., a register). Until a new packet is
received, the illusuated procedure waits. When a packet is
received, the procedure continues at state 2224.

In state m4, if memory 2102 is configured to store fewer
entries than packet queue 116 (and, possrbly, control queue
118), memory 2102 is examined to determine if it is full.

In one embodiment of the invention memOry 2102 may be
considered full if the validity indicator is set (e.g., equal to
one) for each entry or for the entry referenced by write
pointer 2114. If the memory is full, the illustrated procedure
waits until the memory is not full. As one skilled in the art
will recognize, memory 2102 and other data structures in
NIC 100 may be tested for saturation (e.g., whether they are
filled) by comparing their read and write pointers.

In state 2226, a new packet is represented in memory
2102 by storing its flow number in the entry identified by
write pointer 2114 and storing an appropriate value in the
entry’s validity indicator field. If, for example, the packet is
not re-assembleable (e.g., as indicated by its operation
code), the entry’s validity indicator may be set to an invalid
state. For purposes of the operation of dynamic packet
batching module 122, a TCP control packet may or may not
be considered re-assembleable. Thus, depending upon the
implementation of a particular embodiment the validity
indicator for a packet that is a TCP control packet may be set
to a valid or invalid state.

In an alternative embodiment of the invention an entry in
memory 2102 is populated with information from the con-
trol queue entry identified by the second read pointer
described above. This pointer may then be incremented to
the next entry in control queue 118.

10

15

30

35

45

50

55

60

65

104

In state 2228, write pointer 2114 is incremented to the
next entry of memory 2102, after which the illustrated
method ends at end state 2230. If write pointer 2114 refer-
ences the same entry as read pointer 2112, it may be
determined that memory 2102 is full. One skilled in the art
will recognize that many other suitable methods of manag-
ing pointers for memory 2102 may be employed.

As mentioned above, in one embodiment of the invention
one or both of the memory search and memory population
operations run continuously. Thus, end state 2230 may be
removed from the procedure illustrated in FIG. 22B, in
which case the procedure would return to state 2222 after
state 2228.

Advantageously, in the illusnated embodiment of the
invention the benefits provided to the host computer by
dynamic packet batching module 122 increase as the host
computer becomes increasingly busy. In particular, the
greater the load placed on a host processor, the more delay
that will be incurred until a packet received from NIC 100
may be prooesed. As a result, packets may queue up in
packet queue 116 and, the more packets in the packet queue,
the more entries that can be maintained in memory 2102.

The more entries that are stored in memory 2102, the
further ahead dynamic packet batching module can look for
a related packet. The further ahead it scans, the more likely
it is that a related packet will be found. As more related
packets are found and identified to the host computer for
collective processing, the amount ofprocessor time spent on
network haffic decreases and overall processor utilization
increases.

One skilled in the art will appreciate that other systems
and methods may be employed to identify multiple packets
from a single communication flow or connection without
exceeding the scope of the present invention.
Early Random Packet Discard in One Embodiment of the
Invention

Padrets may arrive at a network interface from a network
at a rate faster than they can be transferred to a host
computer. When such a situation exists, the network inter-
face must ofien drop, or discard, one or more packets.
Therefore, in one embodiment of the present invention a
system and method for randomly discarding a packet are
provided. Systems and methods discussed in this section
may be applicable to other communication devices as well,
such as gateways, routers, bridges, modems, etc.

As one skilled in the art will recognize, one reason that a
packet may be dropped is that a network interface is already
storing the maximum mrmber of packets that it can store for
transfer to a host computer. In particular, a queue that holds
packets to be transferred to a host computer, such as packet
queue 116 (shown in FIG. 1A), may be frilly populated when
another packet is received from a network. Either the new
packet or a packet already stored in the queue may be
dropped.

Partly because of the bursty nature of much network
traffic, multiple packets may often be dropped when a
network interface is congested. And, in some network
interfaces, if successive packets are dropped one particular
network connection or flow (e.g., a connection or flow that
includes all of the dropped packets) may be penalized even
if it is not rewonsrble for the high rate of packet arrival. If
a network connection or flow is penalized too heavily, the
network entity generating the trailic in that connection or
flow may tear it down in the belief that a “broken pipe” has
been encountered. As one skilled in the art will recognize, a
broken pipe occurs when a network entity interprets a
communication problem as indicating that a connection has
been severed.

NOAC EX. 1015 Page 319



NOAC Ex. 1015 Page 320

US 6,483,804 B1
105

For certain network traflic (e.g., TCP traflic), the dropping
of a packet may initiate a method of flow control in which
a network entity’s window (e.g., number of packets it
transmits before waiting for an acknowledgement) shrinks
or is reset to a very low number. Thus, every time a packet
from a TCP communicant is dropped by a network interface
at a receiving entity, the communicant must re-synchronize
its connection with the receiving entity. If one or a subset of
communicants are responsible for a large percentage of
network traflic received at the entity, then it seems fair that
those communicants should be penalized in proportion to the
amount of traffic that it is responsible for.

In addition, it may be wise to prevent certain packets or
types of packets from being discarded. For example, dis-
carding a small control packet may do very little to alleviate
congestion in a network interface and yet have a drastic and
negative etfect upon a network connection or flow. Further,
if a network interface is optimized for packets adhering to a
particular protocol, it may be more eflicient to avoid drop-
ping such packets. Even further, particular connections,
flows or applications may be prioritized, in which case
higher priority traflic should not be dropped.

Thus, in one embodiment of a network interface accord-
ing to the present invention, a method is provided for
randomly discarding a packet when a communication
device’s packet queue is full or is filled to some threshold
level. Intelligence may be added to such a method by
selecting certain types of packets for discard (e.g., packets
fi'om a particular flow, connection or application) or except-
ing certain types of packets from being discarded (e.g.,
control packets, packets conforming to a particular protocol
or set of protocols).

A provided method is random in that discarded packets
are selected randomly from those packets that are considered
discardable. Applying a random discard policy may be
suflicient to avoid broken pipes by distributing the impact of
dropped packets among multiple connections or flows. In
addition, if a small number of transmitfing entities are
responsrble for a majority of the traffic received at a network
interface, dropping packets randomly may ensure that the
oifending entities are penalized proportionately. Difi'erent
embodiments of the invention that are discussed below

provide various combinations of randomness and
intelligence, and one of these attributes may be omitted in
one or more embodiments.

FIG. 24 depicts a system and method for randomly
discarding packets in a present embodiment of the invention.
In this embodiment, packet queue 2400 is a hardware FIFO
(e.g., first-in first—out) queue that is 16 KB in size. In other
embodiments of the invention the packet queue may be
smaller or larger or may comprise another type of data
structure (e.g., list, array, table, heap) implemented in hard-
ware or software.

Similar to packet queue 116 discussed in a previous
section, packet queue 2400 receives packets fiom a network
and holds them for transfer to a host computer. Packets
arriving fi'om a network may arrive from the network at a
high rate and may be processed or examined by one or more
modules (e.g., header parser 106, flow database manager
108) prior to being stored in packet queue 2400. For
example, where the network is capable of transmitting one
gigabit of traffic per second, packets conforming to one set
ofprotocols (e.g., Ethernet, [P and TCP) may be received at
a rate of approximately 1.48 million packets per second.
After being stored in packet queue 2400, packets are trans-
ferred to a host computer at a rate partially dependent upon
events and conditions internal to the host computer. Thus,

10

15

30

45

50

55

60

65

106

the network interface may not be able to control the rate of
packet transmittal to the host computer.

In the illustrated embodiment, packet queue 2400 is
divided into a plurality of zones or regions, any of which
may overlap or share a common boundary. Packet queue
2400 may be divided into any number of regions, and the
invention is not limited to the three regions depicted in FIG.
24. Illustratively, region zero (represented by the numeral
2402) encompasses the portion of packet queue 2400 from
0 KB (e.g., no packets are stored in the queue) to 8 I03 (e.g.,
half full). Region one (represented by the numeral 2404)
encompasses the portion of the packet queue fi'om 8 KB to
12 KB. Region two (represented by the numeral 2406)
encompasses the remaining portion of the packet queue,
from 12 KB to 16 KB. In an alternative embodiment, regions
may only be defined for a portion of packet queue 2400. For
example, only the upper half (e.g., above 8 KB) may be
divided into one or more regions.

The number and size of the dilferent regions and the
location of boundaries betWeen the regions may vary
according to several factors. Among the factors are the type
of packets received at the network interface (e.g., the pro-
tocols awarding to which the packets are configured), the
size of the packets, the rate of packet arrival (e.g., expected
rate, average rate, peak rate), the rate of packet transfer to the
host computer, the size of the packet queue, etc. For
example, in another embodiment of the invention, packet
queue 2400 is divided into five regions. A first region
extends from 0 KB to 8 KB; a second region ranges from 8
KBtolOKB;athirdfi'0m 10KBt012KB;afourthfmm
12 KB to 14 KB; and a final region extends from 14 103 to
16 KB.

During operation of a network interface according to a
present embodiment, trailic indicator 2408 indicates how
full packet queue 2400 is. Traflic indicator 2408, in one
embodiment of the invention, comprises read pointer 810
and/or write pointer 812 (shown in FIG. 8). In the presently
discussed embodiment in which packet queue 2400 is fully
partitioned, trafiic indicator 2408 will generally be located in
one of the regions into which the packet queue was divided
or at a dividing boundary. Thus, during operation of a
network interface appropriate action may be taken, as
described below, depending upon how full the packet queue
is (e.g., depending upon which region is identified by traffic
indicator 2408).

In FIG. 24, counter 2410 is incremented as packets arrive
at packet queue 2400. In the illustrated embodiment, counter
2410 continuously cycles through a limited range of values,
such as zero through seven. In one embodiment of the
invention, each time a new packet is received the counter is
incremented by one. In an alternative embodiment, counter
2410 may not be incremented when certain “non—
discardable” packets are received. Various illustrative crite-
ria for identifying non-discardable packets are presented
below.

For one or more regions of packet queue 2400, an
associated programmable probability indicator indicates the
probability that a packet will be dropped when trailic indi-
cator 2408 indicates that the level of traffic in the packet
queue has reached the associated region. Therefore, in the
illustrated embodiment probability indicator 2412 indicates
the probability that a packet will be dropped while the packet
queue is less than half full (e.g., when traflic indicator 2408
is located in region zero). Similarly, probability indicators
2414 and 2416 specify the probability that a new packet will
be dropped when traffic indicator 2408 identifies regions one
and two, respectively.

NOAC EX. 1015 Page 320



NOAC Ex. 1015 Page 321

US 6,483,804 B1

105

For certain network traflic (e.g., TCP traflic), the dropping
of a packet may initiate a method of flow control in which
a network entity’s window (e.g., number of packets it
transmits before waiting for an acknowledgement) shrinks
or is reset to a very low number. Thus, every time a packet
from a TCP communicant is dropped by a network interface
at a receiving entity, the communicant must re-synchronize
its connection with the receiving entity. If one or a subset of
communicants are responsible for a large percentage of
network traflic received at the entity, then it seems fair that
those communicants should be penalized in proportion to the
amount of traflic that it is responsible for.

In addition, it may be wise to prevent certain packets or
types of packets from being discarded. For example, dis-
carding a small control packet may do very little to alleviate
congestion in a network interface and yet have a drastic and
negative elfect upon a network connection or flow. Further,
if a network interface is optimized for packets adhering to a
particular protocol, it may be more eflicient to avoid drop-
ping such packets. Even further, particular connections,
flows or applications may be prioritized, in which case
higher priority trafic should not be dropped.

Thus, in one embodiment of a netWork interface accord-
ing to the present invention, a method is provided for
randomly discarding a packet when a communication
device’s packet queue is full or is filled to some threshold
level. Intelligence may be added to such a method by
selecting certain types of packets for discard (e.g., packets
from a particular flow, connection or application) or except-
ing certain types of packets from being discarded (e.g.,
control packets, packets conforming to a particular protocol
or set of protocols).

A provided method is random in that discarded packets
are selected randomly from those packets that are considered
discardable. Applying a random discard policy may be
sufficient to avoid broken pipes by distributing the impact of
dropped packets among multiple connections or flows. In
addition, if a mall number of transmitting entities are
responsrble for a majority of the trafiic received at a network
interface, dropping packets randomly may ensure that the
otfending entities are penalized proportionately. Difierent
embodiments of the invention that are dismissed below

provide various combinations of randomness and
intelligence, and one of these attributes may be omitted in
one or more embodiments.

FIG. 24 depicts a system and method for randomly
discarding packets in a present embodiment of the invention.
In this embodiment, packet queue 2400 is a hardware FIFO
(e.g., first-in first-out) queue that is 16 103 in size. In other
embodiments of the invention the packet queue may be
smaller or larger or may comprise another type of data
structure (e.g., list, array, table, heap) implemented in hard-
ware or software.

Similar to packet queue 116 discussed in a previous
section, packet queue 2400 receives packets from a network
and holds them for transfer to a host computer. Packets
arriving from a network may arrive from the network at a
high rate and may be processed or examined by one or more
modules (e.g., header parser 106, flow database manager
108) prior to being stored in packet queue 2400. For
example, where the network is capable of trammitting one
gigabit of traffic per second, packets conforming to one set
ofprotocols (e.g., Ethernet, [P and TCP) may be received at
a rate of approximately 1.48 million packets per second.
After being stored in packet queue 2400, packets are trans-
fened to a host computer at a rate partially dependent upon
events and conditions internal to the host computer. Thus,

10

15

20

35

45

50

55

60

65

106

the network interface may not be able to control the rate of
packet transmittal to the host computer.

In the illustrated embodiment, packet queue 2400 is
divided into a plurality of zones or regions, any of which
may overlap or share a common boundary. Packet queue
2400 may be divided into any number of regions and the
invention is not limited to the three regions depicted in FIG.
24. Illustratively, region zero (represented by the numeral
2402) encompasses the portion of packet queue 2400 from
0 KB (e.g., no packets are stored in the queue) to 8 KB (e.g.,
half full). Region one (represented by the numeral 2404)
encompasses the portion of the packet queue from 8 KB to
12 KB. Region two (represented by the numeral 2406)
encompasses the remaining portion of the packet queue,
from 12 KB to 16 KB. In an alternative embodiment, regions
may only be defined for a portion of packet queue 2400. For
example, only the upper half (e.g., above 8 KB) may be
divided into one or more regions.

The number and size of the diflerent regions and the
location of boundaries between the regions may vary
according to several factors. Among the factors are the type
of packets received at the network interface (e.g., the pro-
tocols awarding to which the packets are configlued), the
size of the packets, the rate of packet arrival (e.g., expected
rate, average rate, peak rate), the rate ofpacket transfer to the
host computer, the size of the packet queue, etc. For
example, in another embodiment of the invention, packet
queue 2400 is divided into five regions. A first region
extends from 0 KB to 8 KB; a second region ranges from 8
KBto 10KB;athirdfrom 10KBt012KB; afourthfrom
12 103 to 14 KB; and a final region extends from 14 KB to
16 103.

During operation of a network interface according to a
present embodiment, traflic indicator 2408 indicates how
full packet queue 2400 is. Trafiic indicator 2408, in one
embodiment of the invention, comprises read pointer 810
and/or write pointer 812 (shown in FIG. 8). In the presently
discussed embodiment in which packet queue 2400 is fully
partitioned, traflic indicator 2408 will generally be located in
one of the regions into which the packet queue was divided
or at a dividing boundary. Thus, during operation of a
network interface appropriate action may be taken, as
described below, depending upon how full the packet queue
is (e.g., depending upon which region is identified by traflic
indicator 2408).

In FIG. 24, counter 2410 is incremented as packets arrive
at packet queue 2400. In the illustrated embodiment, counter
2410 continuously cycles through a limited range of values,
such as zero through seven. In one embodiment of the
invention, each time a new packet is received the counter is
incremented by one. In an alternative embodiment, counter
2410 may not be incremented when certain “non-
discardable" packets are received. Various illustrative crite—
ria for identifying non-discardable packets are presented
below.

For one or more regions of packet queue 2400, an
asociated programmable probability indicator indicates the
probability that a packet will be dropped when tr'alfic indi-
cator 2408 indicates that the level of lraflic in the packet
queue has reached the associated region. Therefore, in the
illustrated embodiment probability indicator 2412 indicates
the probability that a packet will be dropped while the packet
queue is les than half full (e.g., when traflic indicator 2408
is located in region zero). Similarly, probability indicators
2414 and 2416 specify the probability that a new packet will
be dropped when traflic indicator 2408 identifies regions one
and two, respectively.

NOAC EX. 1015 Page 321



NOAC Ex. 1015 Page 322

US 6,483,804 B1

107

In the illustrated embodiment, probability indicators
2412, 2414 and 2416 each comprise a set, or mask, of
sub-indicators such as bits or flags. Illustratively, the number
of sub—indicators in a probability indicator matches the range
of counter values—in this case, eight. In one embodiment of
the invention, each sub-indicator may have one of two
values (e.g., zero or one) indicating whether a packet is
dropped. Thus, the sub-elements of a probability indicator
may be numbered from zero to seven (illustratively, from
right to left) to correspond to the eight possible values of
counter 2410. For each position in a probability indicator
that stores a first value (e.g., one), when the value of counter
2410 matches the number of that bit, the next discardable
packet received for packet queue 2400 will be dropped. As
discussed above, certain types of packets (e.g., control
packets) may not be dropped. Illustratively, counter 2410 is
only incremented for discardable packets.

In FIG. 24, probability indicator 2412 (e.g., 00000000)
indicates that no packets are to be dropped as long as the
packet queue is les than half full (e.g., as long as traflic
indicator 2408 is in region zero). Probability indicator 2414
(e.g., 00000001) indicates that every eighth packet is to be
dropped when there is at least 8 KB stored in the packet
queue. In other words, when trajfic indicator 2408 is located
in region one, there is a 125% probability that a discardable
packet will be dropped. In particular, when counter 2410
equals zero the next discardable packet, or a packet already
stored in the packet queue, is discarded. Probability indica-
tor 2416 (e.g., 01010101) specifies that every other discard-
able packet is to be dropped. There is thus a 50% probability
that a discardable packet will be dropped when the queue is
more than three-quarters full. Illustratively, when a packet is
dropped, counter 2410 is still incremented.

As another example, in the alternative embodiment
described above in which the packet queue is divided into
five regions, suitable probability indicators may include the
following. For regions zero and one, 00000000; for region
two, 00000001; for region three, 00000101; and for region
four, 01111111. Thus, in this alternative embodiment, region
one is treated as an extension to region zero. Further, the
probability of dropping a packet has a wider range, from 0%
to 87.5%.

In one alternative embodiment described above, only a
portion of a packet queue is partitioned into regions. In this
alternative embodiment, a default probability or null prob-
ability (e.g., 00000000) of dropping a packet may be asso-
ciated with the un—partitioned portion. Illustratively, this
ensures that no packets are dropped before the level of traflic
stored in the queue reaches a first threshold. Even in an
embodiment where the entire queue is partitioned, a default
or null probability may be associated with a region that
encompasses or borders a 0 KB threshold.

Just as a packet queue may be divided into any number of
regions for purposes of the present invention, probability
indicators may comprise bit masks of any size or magnitude,
and need not be of equal size or magnitude. Further, prob-
ability indicators are programmable in a present
embodiment, thus allowing them to be altered even during
the operation of a network interface.

One skilled in the art will recognize that discarding
packets on the basis of a probability indicator injects ran-
domness into the discard process. A random early discard
policy may be sufficient to avoid the problem of broken
pipes discussed above. In particular, in one embodiment of
the invention, all packets are considered discardable, such
that all packets are counted by counter 2410 and all are
candidates for being dropped. As already discussed,

10

15

35

45

50

55

65

108
however, in another embodiment of the invention intelli-
gence is added in the proce& of excluding certain types of
packets from being discarded.

It will be understood that probability indicators and a
counter simply constitute one system for enabling the ran-
dom discard of packets in a network interface. Other mecha-
nisms are also suitable. In one alternative embodiment, a
random number generator may be employed in place of a
counter and/or probability indicators to enable a random
discard policy. For example, when a random number is
generated, such as M, the Mth packet (or every Mth packet)
after the number is generated may be dropped. Or, the
random number may specify a probability of dropping a
packet. The random number may thus be limited to (e.g.,
bashed into) a certain range of values or probabilities. As
another alternative, a random number generator may be used
in tandem with multiple regions or thresholds within a
packet queue. In this alternative embodiment a program-
mable value, represented here as N, may be associated with
a region or queue threshold. Then, when a traflic indicator
reaches that threshold or region, the Nth packet (or every
Nth packet) may be dropped until another threshold or
boundary is reached.

In yet another alternative embodiment of the invention,
the probability of dropping a packet is expressed as a binary
fraction.Asoneslrilledinthe artwillrccognize,abinary
fraction consists of a series of bits in which each bit

represents one half of the magnitude of its more significant
neighbor. For example, a binary fraction may use four digits
in one embodiment of the invention. From left to right, the
bits may represent 05, 0.75, 0.125 and 0.0625, respectively.
Thus, a binary fraction of 1010 would be interpreted as
indicating a 62.5% probability of dropping a packet (e.g.,
50% plus 125%). The more positions (e.g., bits) used in a
binary fraction, the greater precision that may be attained.

In one implementation of this alternative embodiment a
separate packet counter is associated with each digit. The
counter for the leftmost bit increments at twice the rate of the
next counter, which increments twice as fast as the next
counter, etc. In other words, when the counter for the most
significant (e.g., left) bit increments from 0 to 1 the other
counters do not change. When the most significant counter
increments again, from 1 back to 0, then the next counter
increments from 0 to 1. Likewise, the counter for the third
bit does not increment from 0 to 1 until the second counter

returns to 0. In summary, the counter for the most significant
bit changes (i.e., increments) each time a packet is received.
The counter for the next most significant bit maintains each
value (i.e., 0 or 1) for two packets before incrementing.
Similarly, the counter for the third most significant bit
maintains each counter value for four packets before incre-
menting and the counter for the least significant bit main-
tains its values for eight packets before incrementing.

Each time a packet is received or a counter is incremented
the counters are compared to the probability indicator (e.g.,
the specified binary fraction). In one embodiment the deter-
mination of whether a packet is dropped depends upon
which of the fraction’s bits are equal to one. Illustratively,
for each fraction bit equal to one a random packet is dropped
if the corresponding counter is equal to one and the counters
for any bits of higher significance are equal to zero. Thus for
the example fraction 1010, whenever the most significant
bit’s counter is equal to one a random packet is dropped. In
addition, a random packet is also dropped whenever the
counter for the third bit is equal to one and the counters for
the first two bits are equal to zero.

Aperson skilled in the art may also derive other suitable
mechanisms for specifying and enforcing a probability of

NOAC EX. 1015 Page 322



NOAC Ex. 1015 Page 323

US 6,483,804 B1
109

dropping a packet received at a network interface without
exceeding the scope of the present invention.

As already mentioned, intelligence may be imparted to a
random discard policy in order to avoid discarding certain
types of packets. In a previous section, methods of parsing
a packet received from a network were described. In
particular, in a present embodiment of the invention a packet
received from a network is parsed before it is placed into a
packet queue such as packet queue 2400. During the parsing
procedure various information concerning the packet may be
gleaned. This information may be used to inject intelligence
into a random discard policy. In particular, one or more fields
of a packet header may be copied, an originating or desti-
nation entity of the packet may be identified, a protocol may
be identified, etc.

Thus, in various embodiments of the invention, certain
packets or types of packets may be immune from being
discarded In the embodiment illustrated in FIG. 24, for
example, control packets are immune. As one sldlled in the
art will appreciate, control packets ofien contain information
esential to the establishment, re-establishment or mainte—
nance of a communication connection. Dropping a control
packet may thus have a more serious and damaging effect
than dropping a packet that is not a control packet. In
addition, because control packets generally do not contain
data, dropping a control packet may save very little space in
the packet queue.

Many other criteria for immunizing packets are possible.
For example, when a packet is parsed according to a
procedure described in a previous section, a No_Assist flag
or signal may be associated with the packet to indicate
whether the packet is compatible with a set of pre-selected
communication protocols. Illustratively, if the flag is set to
a first value (e.g., one) or the signal is raised, the packet is
considered incompatible and is therefore ineligible for cer-
tain processing enhancements (e.g., re-asembly of packet
data, batch processing of packet headers, load-balancing).
Because a packet for which a N0_A$ist flag is set to the
first value may be a packet conforming to an unexpected
protocol or unique format, it may be better not to drop such
packets. For example, a network manager may want to
ensure receipt of all such packets in order to determine
whether a parsing procedure should be augmented with the
ability to parse additional protocols.

Another reason for immunizing a No_Assist packet (e.g.,
packets that are incompatible with a set of selected
protocols) from being discarded concerns the reaction to
dropping the packet. Because the packet’s protocols were
not identified, it may not be known how the packet’s
protocols respond to the loss of a packet. In particular, if the
sender of the packet does not lower its transmission rate in
response to the dropped packet (e.g., as a form of congestion
control), then there is no benefit to dropping it.

Apacket’s flow number may be used to immunize certain
packets in another alternative embodiment of the invention.
As discumed in a previous section, a network interface may
include a flow database and flow database manager to
maintain a record of multiple communication flows received
by the network interface. It may be eflicacious to prevent
packets from one or more certain flows from being dis-
carded. Immunized flows may include a flow involving a
high-priority network entity, a flow involving a particular
application, etc. For example, it may be considered rela-
tively leg damaging to discard packets from an animated or
streaming graphics application in which a packet, or a few
packets, may be lost without seriously affecting the desti-
nation entity and the packets may not even need to be

10

15

20

35

45

50

55

65

110

retransmitted. In contrast, the consequences may be more
severe if a few packets are dropped from a file transfer
connection. The packets will likely need to be retransmitted,
and the transmitting entity’s window may be shrunk as a
result—thus decreasing the rate of file transfer.

In yet another alternative embodiment of the invention, a
probability indicator may comprise a bit mask in which each
bit conesponds to a separate, specific flow through the
network interface. In particular, the bits may correspond to
the flows maintained in the flow database described in a

previous section.
Although embodiments of the invention discussed thus

far in this section involve discarding packets as they arrive
at a packet queue, in an alternative embodiment packets may
be discarded from within the packet queue. In particular, as
the packet queue is filled (e.g., as a traflic indicator reaches
pro—defined regions or thresholds), packets already stored in
the queue may be discarded at random according to one or
more probability indicators. In the embodiment illustrated in
FIG. 24, for example, when traffic indicator 2408 reaches a
certain threshold, such as the boundary between regions one
and two or the end of the queue, packets may be deleted in
one or more regions according to related probability indi-
cators. Such probability indicators would likely have differ-
ent values than those indicated in FIG. 24.

In a present embodiment of the invention, probability
indicators and/or the specifications (e.g., boundaries) into
which a packet queue is partitioned are programmable and
may be adjusted by software operating on a host computer
(e.g., a device driver). Criteria for immunizing packets may
also be programmable. Methods of discarding packets in a
network interface or other communication device may thus
be altered in awordance with the embodiments described in

this section, even during continued operation of such a
device. Various other embodiments and criteria for ran—

domly discarding packets and/or applying criteria for the
intelligent discard of packets will be apparent to those
slcilled in the art.

FIGS. 25A—25B comprise a flow chart demonstrating one
method of implementing a policy for randomly discarding
packets in a network interface according to the embodiment
of the invention substantially similar to the embodiment
illustrated in FIG. 24. In this embodiment, a packet is
received while packet queue 2400 is not yet full. As one
skilled in the will appreciate, this embodiment provides a
method of determining whether to discard the packet. Once
packet queue 2400 is full, when another packet is received
the network interface generally must drop a packet—either
the one just received or one already stored in the queue—in
which case the only decision is which packet to drop.

In FIG. 25A, state 2500 is a start state. State 2500 may
reflect the initialization of the network interface (and packet
queue 2400) or may reflect a point in the operation of the
network interface at which one or more parameters or
aspects concerning the packet queue and the random discard
policy are to be modified.

In state 2502, one or more regions are identified in packet
queue 2400, perhaps by specifying boundaries such as the 8
KB and 12 KB boundaries depicted in FIG. 24. Although the
regions depicted in FIG. 24 fully encompass packet queue
2400 when viewed in unison, regions in an alternative
embodiment of the invention may encompass less than the
entire queue.

In state 2504, one or more probability indicators are
assigned and mnfigured. In the illustrated embodiment, one
probability indicator is associated with each region.
Alternatively, multiple regions may be associated with one

NOAC EX. 1015 Page 323



NOAC Ex. 1015 Page 324

US 6,483,804 B1
111

probability indicator. Even further, one or more regions may
not be explicitly associated with a probability indicator, in
which case a default or null probability indicator may be
asumed. As described above, a probability indicator may
take the form of a multi-bit mask, whereby the number of
bits in the mask reflect the range of possible values main-
tained by a packet counter. In another embodiment of the
invention, a probability indicator may take the form of a
random number or a threshold value against which a ran-
domly generated number is compared when a decision must
be whether to discard a packet.

In state 2506, if certain types of packets are to be
prevented from being discarded, criteria are expressed to
identify the exempt packets. Some packets that may be
exempted are control packets, packets conforming to
unknown or certain known protocols, packets belonging to
a particular network connection or flow, etc. In one embodi—
ment of the invention, no packets are exempt from being
discarded.

In state 2508, a packet or tralfic counter is initialized. As
described above, the counter may be incremented, possibly
through a limited range ofvalues, when a discardable packet
is received for storage in packet queue 2400. The limited
range of counter values may correspond to the number of
bits in a mask form of a probability indicator. Alternatively,
the counter may be configured to increment through a
greater range, in which case a counter value may be filtered
through a modulus or hash function prior to being compared
to a probability indicator as described below.

In state 2510, a packet is received from a network and
may be processed through one or more modules (e.g., a
header parser, an IPP module) prior to its arrival at packet
queue 2400. Thus, in state 2510 the packet is ready to be
stored in the packet queue. One or more packets may already
be stored in the packet queue and a traflic indicator (e.g., a
pointer or index) identifies the level of traffic stored in the
queue (e.g., by a storage location and/or region in the
queue).

In state 2512, it may be determined whether the received
packet is discardable. For example, if the random discard
policy that is in elfect allows for the exemption of some
packets from being discarded, in state 2512 it is determined
whether the received packet meets any of the exemption
criteria. If so, the illustrated procedure continues at state
2522. Otherwise, the procedure continues at state 2514.

In state 2514, an active region of packet queue 7/400 is
identified. In particular, the region of the packet queue to
which the queue is presently populated with tralfic is deter—
mined. The level of traflic stored in the queue depends upon
the number and size of packets that have been stored in the
queue to await transfer to a host computer. The slower the
transfer prm, the higher the level of traffic may reach in
the queue. Although the level of trafiic stored in the queue
rises and falls as packets are stored and transferred, the level
may be identified at a given time by examining the traffic
indicator. The traffic indicator may comprise a pointer
identifying the position of the last or next packet to be stored
in the queue. Such a pointer may be compared to another
pointer that identifies the next packet to be transferred to the
host computer in order to reveal how much trafiic is stored
in the queue.

In state 2516, the counter value (e .g., a value between zero
and seven in the embodiment of FIG. 24) is compared to the
probability indicator associated with the active region. As
previously described, the counter is incremented as discard-
able packets are received at the queue. This comparison is
conducted so as to determine whether the received packet

5

10

15

20

3O

35

45

50

55

60

65

112

should be discarded.As explained above, in the embodiment
of FIG. 24 the setting of the probability indicator bit
corresponding to the counter value is examined. For
example, if the counter has a value of N, then bit number N
of the probability indicator mask is examined. If the bit is set
to a first state (e.g., one) the packet is to be discarded;
otherwise it is not to be discarded.

In state 2518, the counter is incremented to reflect the
receipt of a discardable packet, whether or not the packet is
to be discarded. In the presently discussed embodiment of
the invention, if the counter contains its maximum value
(e.g., seven) prior to being incremented, incrementing it
entails resetting it to its minimum value (e.g., zero).

In state 2520, if the packet is to be discarded the illustrated
procedure continues at state 2524. Otherwise, the procedure
continues at state 2522. In state 2522, the packet is stored in
packet queue 2400 and the illustrated procedure ends with
end state 2526. In state 2524, the packet is discarded and the
illustrated procedure ends with end state 2526.

Sun, Sun Microsystems, SPARC and Solaris are trade-
marks or registered trademarks of Sun Microsystems, Incor-
porated in the United States and other countries.

The foregoing descriptions of embodiments of the inven-
tion have been presented for purposes of illustration and
description only. They are not intended to be exhaustive or
to limit the invention to the forms disclosed. Many modi-
fications and variations will be apparent to practitioners
skilled in the art. Accordingly, the above disclosure is not
intended to limit the invention; the scope of the invention is
defined by the appended claims.

What is claimed is:

1. A method of identifying multiple packets in a commu-
nication flow between a source entity and a destination
entity, comprising:

storing a first flow identifier of a first packet received from
a source entity for a destination entity, wherein said first
flow identifier comprises an identifier of the source
entity and an identifier of the destination entity;

storing said first packet in a packet memory for transfer
toward the destination entity;

storing a second flow identifier of a second packet;
storing said second packet in said packet memory;
determining whether said first flow identifier matches said

second flow identifier;

storing a first indicator in the destination entity if a first
communication flow identified by said first flow iden-
tifier comprises said second packet; and

storing a second indicator in the destination entity if said
first packet is the only packet stored in the packet
memory that is part of said first communication flow.

2. The method of claim 1, further comprising, prior to said
storing a first flow identifier, parsing said first packet to
retrieve said identifier of the source entity and said identifier
of the destination entity.

3. A method of identifying one or more packets in a
communication flow between a source entity and a destina-
tion entity, comprising:

receiving a first packet at a communication device;
identifying a first communication flow comprising said

first packet with a first flow identifier configured to
identify both the source entity and the destination
entity;

determining whether said first communication flow also
comprises a second packet received at said communi-
cation device after said first packet was received at said
communication device; and

NOAC EX. 1015 Page 324



NOAC Ex. 1015 Page 325

US 6,483,804 B1

113

transferring said first packet to a host computer for
processing in accordance with a communication pro-
tocol associated with said first packet.

4. The method of claim 3, further comprising:
transferring said second packet to said host computer;
wherein said host computer is configured to collectively

process a header portion of said first packet and a
header portion of said second packet in accordance
with said communication protocol.

5. The method of claim 3, wherein said identifying
comprises:

receiving a flow key generated by concatenating an iden-
tifier of the source entity and an identifier of the
destination entity;

wherein said first flow identifier comprises said flow key.
6. The method of claim 3, wherein said identifying

comprises:
receiving an index of said first communication flow in a

flow database;

wherein said first flow identifier comprises said index.
7. The method of claim 3, wherein said determining

comprises comparing said first flow identifier with a second
flow identifier associated with a second packet received at
said communication device.

8. The method of claim 7, wherein said determining
further comprises:

storing said first flow identifier in a flow memory; and
storing said second flow identifier in said flow memory;

and

comparing said stored first flow identifier and said stored
second flow identifier.

9. The method of claim 8, wherein said flow memory is
an asociative memory in said communication device.

10. The method of claim 3, further comprising storing said
first packet in a packet memory.

11. The method of claim 10, wherein said determining
comprises comparing said first flow identifier configured to
identify said first communication flow with a second flow
identifier configured to identify a second communication
flow comprising a packet stored in said packet memory.

12. The method of claim 3, further comprising informing
said host computer of said transfer of said first packet.

13. The method of claim 12, wherein said informing
comprises configuring an indicator in a host memory.

14. The method of claim 13, wherein said indicator is
configured to indicate that said host computer should delay
proce$ing said first packet until said second packet is
transferred to said host computer.

15. The method of claim 13, wherein said indicator
indicates that said host computer should not delay process-
ing said first packet.

16. A method of transferring a packet from a network
interface to a host computer, comprising:

receiving a first packet at a network interface;
storing said first packet in a packet memory;

receiving a first flow identifier configured to identify a
communication flow comprising said first packet;

storing said first flow identifier in a flow memory;
searching said flow memory for a second packet in said

communication flow received at the network interface

after said first packet;
transferring said first packet to said host computer; and
configuring an indicator in a host memory to indicate

whether processing of said first packet by said host

10

15

30

35

45

50

55

60

65

114

computer should be delayed to await transfer of said
second packet to said host memory.

17. The method of claim 16, wherein said generating
comprrses:

receiving an index of said communication flow in a flow
database;

wherein said flow identifier comprises said index.
18. The method of claim 16, wherein said receiving

comprises:
receiving a flow key comprising an identifier of a source

of said first packet and an identifier of a destination of
said first packet;

wherein said flow identifier comprises said flow key.
19. The method of claim 16, wherein said packet memory

comprises said flow memory.
20. The method of claim 16, wherein said configuring

comprises:
storing a first indicator in a host memory if said commu-

nication flow comprises said second packet; and
storing a second indicator in said host memory if said first

packet is the only packet in said packet memory that is
part of said communication flow.

21. A computer system for processing a packet received
from a network interface, comprising:

a network interface configured to receive a first packet
from a network and transfer said first packet to a host
computer memory, said network interface comprising:
a packet memory configured to store said first packet;
a flow memory for storing a first flow number associ-

ated with said first packet, wherein said first flow
number is configured to identify a communication
flow comprising said first packet;

a packet batcher configured to determine whether the
communication flow includes a second packet stored
in said packet memory after said first packet; and

a notifier configured to:
store a first code in a host indicator if said packet

memory includes the second packet; and
store a second code in said host indicator if said

packet memory does not include the second
packet; and

a processor for processing a header portion of said first
packet.

22. A computer readable storage medium storing instruc-
tions that, when executed by a computer, cause the computer
to perform a method of transferring a packet fiom a network
interface to a host computer, the method comprising:

receiving a first packet at a communication device;
identifying a first communication flow comprising said

first packet with a first flow identifier configured to
identify both the source entity and the destination
entity;

determining whether said first communication flow also
comprises a second packet received at said communi-
cation device after said first packet was received at said
communication device; and

transferring said first packet to a host computer for
processing in accordance with a communication pro-
tocol a$ociated with said first packet.

23. A processor readable storage medium containing a
data structure configured to store information concerning a
packet to be transferred from a network interface to a host
computer, the data stnrcture including one or more entries,
each entry comprising:

a flow number configured to identify a communication
flow comprising a first packet received at the network

NOAC EX. 1015 Page 325



NOAC Ex. 1015 Page 326

US 6,483,804 B1

115

interface from a source entity for a destination entity
mociated with the host computer; and

a validity indicator configured to provide:
a first indication if said first packet is ready for transfer

to the host computer; and
a second indication if said first packet is a control

packet;
wherein said data structure is searched for a second entry

containing said flow number when said first packet is
transferred to the host computer to determine if said
communication flow also comprises a second packet
received at the network interface after said first packet.

24. The method of claim 3, wherein said identifying
comprises:

parsing said first packet to retrieve an identifier of the
source entity and an identifier of the destination entity;
and

combining said source entity identifier and said destina-
tion entity identifier to form said first flow identifier.

25. A communication interface, comprising:

a header parser configured to parse a header of a first
packet received at the communication interface,
wherein the first packet was i$ued from a source entity
for a destination entity;

a flow database configured to facilitate management of a
communication flow comprising the first packet, the
flow database comprising:
a flow key configured to identify the communication

flow using identifiers of the source entity and the
destination entity;

an activity indicator configured to indicate a recency
with which a packet in the communication flow has
been received; and

a validity indicator for indicating whether the commu-
nication flow is valid;

a code generator configured to generate an operation code
for the first packet, to facilitate forwarding of the first
packet toward the destination entity; and

116

a packet batching module configured to determine
whether a second packet received at the communication
interface is part of the communication flow.

26. A method of processing a packet through a commu-
5 nication interface, the method comprising:

10

15

30

35

receiving a first packet from a network, wherein the first
packet is part of a communication flow between a
source entity and a destination entity;

determining whether a header portion of the first packet
conforms to one of a set of communication protocols;

assembling a flow identifier to identify the communica-
tion flow, wherein said flow identifier comprises a
source entity identifier and a destination entity identi—
fier;

updating a flow database configured to facilitate manage-
ment of communication flows through the communi-
cation interface, wherein said updating comprises:
configuring a flow activity indicator associated with the

communication flow to reflect receipt of the first
packet; and

configuring a flow validity indicator associated with the
communication flow to indicate that the communi-
cation flow is valid;

assigning an operation code to the first packet, said
operation code indicating whether a portion of data in
the first packet is reasembleable with another portion
of data in another packet in the communication flow;
and

determining whether a second packet received at the
communication interface is part of the communication
flow.

27. The method of claim 3, further comprising:
storing a first indicator in the host computer if said first

communication flow comprises said second packet; and
storing a second indicator in the host computer if said first

packet is the only packet stored in the communication
device that is part of said communication flow.

3 i i i .

NOAC EX. 1015 Page 326



NOAC Ex. 1015 Page 327

  

 1W 7656177
    

  

 
, ' , ~ ll H \ Hu 1 l [m Hm HI '. '

\ w [x a m u on wI u I I _ ‘l , . , ,

mmwwmrm51;;_ a Nm‘gawgommg

 
   

 
                 

(9c.

 
UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office 

Ln.

l .v.

r

v
‘. \u

'm
fl4.5l

 

 

 
 
 
 

 
 

 

 
 

 

 

October 17, 2018'1,

.4944

7

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 09/608,237

FILING DATE: June 30, 2000

PATENT NUMBER: 6,651,099

ISSUE DATE: November 18, 2003

 

 By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

75%

   
 
 

 
 

                        

P. R. GRANT

Certifying Officer

PART 93 OF (‘9).PART(S)

' .3)

ill/“A'— Eli; “ ‘lnfi9.. mm ‘.>. _ .. ._ » .2 v» "3‘ $5} @Mmm;a?” _ ‘e ~ a;g Minimum":nrrnmummumnnnmlmunmi III l mu: m 1'11“!
3 _ _. ,V _ , ,



NOAC Ex. 1015 Page 328

 

1
{

 

(12) United States Patent
Hegde

llllllllllllllllllllll|||l|IllllIlllllllll||||ll|||ll|||lIlllllllllllllllll
U5006570875B

US 6,570,875 B1

May 27, 2003

(10) Patent N0.:

(45) Date of Patent: 

(54) AUTOMATIC FILTERING AND CREATION
OF VIRTUAL LANS AMONG A PLURALITY
OF SWITCH PORTS

(75) Inventor: Gopal D. Hegde, San Jose, CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(') Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) App1.No.: 09/172,723

(22) Filed: On. 13, 1998

(51) Int. 0.7 .......................... H04L 12/28; H04L 12/56
(52) us. Cl. .................. 370/389; 370/392; 370395.53;

370/39532

(58) Field of Search ................................. 370/389, 352,
370/353, 354, 356, 360, 390, 392, 396,

398, 3953, 39531, 395.42, 3955, 39553,
401, 413, 415, 417, 422, 428, 395.32, 432

(56) References Cited
U.S. PATENT DOCUNEEN'I‘S

5,715,250 A
5,920,699 A

2/1998 Watanabe ................... 370/395
7/1999 Bare ..................... 395/20055

(List continued on next page.)
OTHER PUBLICATIONS

Douglas E. Corner and David L. Stevens, Adress Discovery
and Binding (ARP'), Internetworking with TCP/IP, vol. II:
Design, Implementation, and Internals, Chapter 4, 1994,
pp39—59.

(List continued on next page.)

Primary Examiner—Douglas Olms
Assistant Examiner—Phirin Sam

(74) Attorney, Agent, or Fork-Pillsbury Winthrop LLP

(57) ABSTRACT

In a method and apparatus for performing multiprotocol
switching and routing, incoming data packets are examined
and the flow (i.e., source and destination) with which they
are associated is determined. Afiow table contains forward-

ing information that can be applied to all the packets
belonging to the flow. If an entry is not present in the table
for the particular flow, the packet is forwarded to the CPU
to be processed. The CPU can then update the table with new
forwarding information to be applied to all future packets of
the same flow. When the forwarding information is already
present in the table, packets can be forwarded at Wire-speed.
A dedicated ASIC is preferably employed to contain the
table, as well as the engine for examining the packets and
forwarding them according to the stored information.
Decision~making tasks are thus more efficiently partitioned
between the switch and the CPU so as to minimize process-
ing overhead. Processes executing on the CPU maintain
information regarding filters, mirrors, priorities, and
VLANs. Such information is further integrated with the flow
table forwarding information when flows corresponding to
the established filters, mirrors, priorities and VLANs are
detected.Accordingly, filters, mirrors, priorities and VLANs
can be automatically implemented when forwarding deci-
sions are made, which implementation is done at wire
speeds. According to another aspect, VLANs are automati-
cally created and updated based on the automatic detection
of multicast groups existing among the hosts connected to
the ports of the switch. After such VLANs are established,
broadcast packets destined for the detected multieast groups
are forwarded only along ports whose hosts are members
thereof, thereby preventing needless and burdensome traffic
from congesting other network segments and host connec-
tion.

14 Claims, 14 Drawing Sheets

 
 

  
| IJ

L____________________________
 

NOAC EX. 1015 Page 328



NOAC Ex. 1015 Page 329

US 6,570,875 B1
 Page 2

US. PATENT DOCUMENTS 6,335,935 B2 1 1r2002 Kndambi et a1. 370/396

6,005,863 A ° 12/1999 Deng et a]. ................. 370/392 OTHER PUBLICATIONS
6,047,375 A 4/3000 Jain et a1. ..... . 709n27

 
 

 
  
 

6,091,775 A ‘ 7/2000 Cheriton eta]. .
6,094,435 A ‘ 7/2000 Hoffman eta]. .
6,128,298 A 10/2000 Wootton eta]. .
6,216,167 B1 ‘ 4/Z)01 Momirov .....
6,243,758 B1 ’ 6/Z)01 Okanoue ..
6,246,680 B1 ’ 6/2001 Mulleret a]. .C

.I
3

- 370/392 Douglas E. Comer and David L. Stevens, RIP:Active Route
. 370/414 Pmpagation and PassiveAcqwb-itian, Inter-networking with
1 370/392 TCP/IP, vol. II: Design, Implementation, and Internals,. 709

409% Chapter 18, 1994, pp. 355—379.
, 370/389 Keith Tumor, Is It a Switch or I: It a Router, PC Magazine,

6,256,306 B1 7/2001 Bellenger .370r389 Nov. 18, 1997.
6,272,134 131 8/2001 Bass et a1. . 370/390
6,331,9K5 Bl 12/2001 Haggerty et a]. ........... 370/400 * cited by examiner

.H‘mmm—w‘'

NOAC EX. 1015 Page 329

 



NOAC Ex. 1015 Page 330

US 6,570,875 B1Sheet 1 of 14May 27, 2003U.S. Patent

WAN

Multiprotocol 1:{4tun!“.53!  
FIG. 1

NOAC EX. 1015 Page 330

  

 



NOAC Ex. 1015 Page 331

US 6,570,875 B1Sheet 2 of 14May 27, 2003US. Patent

No:

 
 .lllllllllllllllllllllllllllllllllllI”

_

_

"IE3_uI;Rn___HuI:a:__I32:saw____Imag”_Iz==om_
_

_5mg.3&0_n2855328“___mmE5:825:38_uso:u_on__2...-_"\‘-:-,,n107-5,,0Oa.Ox"__Illlllllllll.AHllllll[IIIIWWHWWIl\\IIIII“J,

3

NOAC EX. 1015 Page 331

 



NOAC Ex. 1015 Page 332

US 6,570,875 B1Sheet 3 of 14May 27, 2003U.S. Patent

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Mn.

n07,

NOAC EX. 1015 Page 332

FIG. 3

-~-_—c._.--—--_---—--o----.---u-.u_-—.—-_.—._..a.---~_v__u...___._.-_—__u_.

 
8



NOAC Ex. 1015 Page 333

US. Patent May 27, 2003 Sheet 4 of 14 Us 6,570,875 B1

 
 
 

so

I

\\

r —————— —‘ ————————————————————— “I

I we :
I I

To 7OI Inc

TO 75: sw H ENG'NE ,— ———————————— 1 {To 50
| 0 QUEUE PORT INIBIFACE I

I , u - I,
|

| I 0 OUEUE PORT INTERFACE 2 I

I . / 2 - ,I
I ADDR-c REGISTERS ‘ 1,

I DOMAIN REGISTERS I """ I:
| (my Ec I/o OUEUE PORT INTERFACE

I ' W— "

To 30' CPU INTERFACE L____"____T _____ .1:
I , I
I \120 I

i 110 I
l 130 MEMORY INTERFACE I
| I
| I
| I
| I

L ___________________________ _I

; T0 90

NOAC EX. 1015 Page 333

 



NOAC Ex. 1015 Page 334

 
 
   
 

 

 

Timed'sn‘40 ‘50 BASE RECORD

ADDRESS ( ADDRESS )FROM 105

EHTERNET ADDRESS $3wa RECORD OFFSET
,i AREA Pawn 5 A (FROM 140)

_

\ m= (FROM ”0) 190 *3
; __— :3,

IPX AREA BASE ADDRESS PRIORTTY TAG “’: - (FROM 105) — §
7 ‘60 PRIORrTY TAG

”mg?“ 170 ADDRESS m
(FROM 105) (Fm 15°) _ g

PROTOCOL EN1RY BASE NETWORK 3'

PROTOCOL OFFSET“ TABLE A NEWIORK ENTRY ADDRESS a
(FROM 150) TABLE (FROM 105) g

PROTOCOL INCREMENT - 4

«PM 150) --i ”W55?BASE ADDRESS—-—_ 7‘ BASE ADDRESS
(FROM ‘05) (FROM 105)

“m TAGS MIRROR TAGS t:
FLTR ADDR k 21° W

(FROM 15°)_'— 200 ”'RROR ADDR 5"— (”W ‘6‘” FIG 5 ‘fi
' ‘60\l

U]

c:T—L

NOAC EX. 1015 Page 334



NOAC Ex. 1015 Page 335

US. Patent May 27, 2003 Sheet 6 of 14 US 6,570,875 B1

32

 
Membership

5‘zr
i!

 

FIG. 6

NOAC EX. 1015 Page 335

 



NOAC Ex. 1015 Page 336

US. Patent May 27, 2003 Sheet 7 of 14 US 6,570,875 B1

 

 

  
  
  

 

Update VLAN

(Fig. 14)

$20 522k.“H.m<u~w"A<W~WDHw

EWMiMWMM.WM”onA‘
Process Packet at

Layer 3+

(Fig. 8)

FIG. 7

NOAC EX. 1015 Page 336

 



NOAC Ex. 1015 Page 337

.4Na”...un‘

US. Patent May 27, 2003 Sheet 8 of 14 US 6,570,875 B1

 
 

  
  

 
  

 

 

S40

Get Source and Best.
, Info from Packet
i1 Header

S42 Check Flow Table
for Entries for

a Source and Desi.
% (Fig. ll)
5.

2: K 546
Entries in Flow Forward Packet

i‘ Table for Source According to
and Best? Y Flow Table

(Fig. 12)

550
S48

Forward Packet on

Only Deer. Pox-Ks) Indicated

Unresolved? Y by Source Flow
Table Entry

N
5

SS4 S 6
Forward to CPU

Only Source for Processing

Unresolved? Y (Fig. 9)

N

SS8

S60

Forward Packet

According to
Default Broadcast

Enable for Protocol

 
FIG. 8

NOAC EX. 1015 Page 337

 



NOAC Ex. 1015 Page 338

uu‘wu'
US. Patent May 27, 2003 Sheet 9 of 14 US 6,570,875 B17rawaya».

Source Crate Source
Unresolved? Entry and Uh" ‘0

Huh (Fig 10)

s7 72
N

 

 

E . .m
Unmsolved or

Broadcast? N

s7

Y
57

Packet Places and
Addremd to Form --------------------------------------

Switch? Y :

E
S7 .4 :

N s

38: g
5

mm mm a
[P IIPX? Request on Pats .

I'm“; v n, arm Roma; E
586 Dom 5

ss [PX : E
N 590 : 5I

GaEthunet cum i
Addrusfor [PX response ----------'Saver/Clint

SM 8

394

S96

Prom
FIG. 9 Dut Swap

Field

-2

NOAC EX. 1015 Page 338

 



NOAC Ex. 1015 Page 339

U.S. Patent May 27, 2003 Sheet 10 of 14 US 6,570,875 B1

 

  
 

   
 

 

 

, CET LAST TWELVE BITS
I OF UNRESOLVED

S100 ADDRESS

5104

3102

VALID BITRY EXIST CREATE VAUD HASH

FOR THIS HASH? ENTRY

i
3 S106 INCREIIENT NUMBER
E OF RECORDS IN HASH
3 ENTRY

S108 CREATE ADDRESS

RESOLUHON 5114
$1 12 RECORD BURY

$110

SORT ADDRESS

STORE ADDRESS NUMBER OF RESOLUTION RECORD
RESOLUIION RECORD RECORDS > 1? ENTRIES ASSOCIATED

ENTRY IIIITH HASH

S120

  S1 1 6

ANY FILTERS. M|RRORS,  
  
  
 

  
  

 

 

CREATE PROTOCOL Y PRIORITIES 0R VIANS N
ENIRY ASSOCIATED WITH THIS

UNRESOLVED ADDRESS

5122 DR PORI?

STORE PROTOCOL ENTRY IN 5124
PROTOCOL ENTRY TABLE AT CREATE NETIIIORK 5113
INCREIIENT ACCORDING TO ENTRY

PROTOCOL CARRIED BY PACKET

LINK ADDRESS  
  

  
 

swag MEMORK RESOLURON RECORD To

ENTRY AND UNK To DEFAULT PROTOCOL AND
5126 PROTOCOL ENTRY NETIIIORK ENTRIES 

FIG.1O

NOAC EX. 1015 Page 339

 



NOAC Ex. 1015 Page 340

U.S. Patent ‘ May 27, 2003 Sheet 11 of 14 US 6,570,875 B1

 

 

§ S 130

3 Extract last twelve
bits of address

8132

Hash onto address

resolution hash using
last twelve bits

1
8134 S 36

Sl38

Get address resolution

record entry for this
address pointed to by

hash entry 
$144

$140

 

  
  

 

Get Protocol Ofi'set
for this address and

Y pointed to by address
resolution record

entry

 Address
resolution record

entry exist?

8146
$142

Get Protocol Entry by
incrementing from

Protocol Ofi'set

according to protocol
carried by packet

  
8148

Get Network Entry
pointed to by

Protocol Entry
  
 

FIG. 11

NOAC EX. 1015 Page 340

 



NOAC Ex. 1015 Page 341

US. Patent May 27, 2003 Sheet 12 of 14 US 6,570,875 B1

 
5‘50 5152

Dmp
y Picket

FIG. 12 SI“ N

Damian Ms)
mined With

Destinfion

 
NOAC EX. 1015 Page 341

 



NOAC Ex. 1015 Page 342

US. Patent May 27, 2003 Sheet 13 of 14 Us 6,570,875 B1

5180

Get Source and Best.
lnfo fi‘om Packet

Header

 
 
 

  
 
  

 

$182
Check Flow Table

for Entries for
Source and Best.

(Fig. l l)

S l 84

K 5186. . Forwnrd Packet

Enmes m Flow According to
Table for Source Flow Table

and Dam? V (Fig. 12)

N 81908188

Forward Packet

D951. t0 P011 Indicated

Unresolved? N by 03"— “W
Table Entry

Y Sl94$192

Fomard Packet on

Source Pom Indicated by

Unresolved? N

Y 5193$196

Notify CPU

$200  
Forward Packet

on All Ports 

FIG. 13

’wfv‘,‘

NOAC EX. 1015 Page 342

 



NOAC Ex. 1015 Page 343

US. Patent May 27, 2003 Sheet 14 of 14 Us 6,570,875 B1

FROM FIG]

$22 $214-

  
 

 

 
 

CREATE FLOW

 

   
WINDOWS—95”“ FIRST TABLE ENTRIES FOR

MULTICAST GROUP? Y Y ADDRESS AND
  RECORD PORT IN

BROADCAST ENABLE

FIELD

 
  
 

N 3210 N 3212
 

$216 $222 
 
 

  
 

CREATE FLOW

TABLE ENTRIES FOR

ADDRESS AND

RECORD PORT IN

BROADCAST ENABLE

 

 
 

    APPLETALK

MULTTCAST GROUP?
ENTRIES EXIST

FOR THIS ZONE?   
      N 5218 Y 8220 “ED

UPDATE

IP MULTICAST BROIAEDCIfTGROUP 3225 ENAD ELD
NTTH PORT 5224

 
 

 CREATE FLOW

     
 

 

   
 

 

  

LEAVE ENTRIES EXIST TABALEDRmEgEngOR
Rm”? FOR ““5 N RECORD PORT IN

GROUP?
BROADCAST ENABLE   
 FIELD

  S232

NOAC EX. 1015 Page 343 

 



NOAC Ex. 1015 Page 344

US 6,570,875 B1
1

AUTOMATIC FILTERING AND CREATION
OF VIRTUAL LANS AMONG A PLURALITY

0F SWITCH PORTS

RELATED APPLICATION

This application is related to co-pending US. application
Ser. No. 09/058,335, filed Apr. 10, 1998, and entitled,
“Method And Apparatus For Multiprotocol Switching And
Routing,” commonly owned by the asignee of the present
application, the contents ofwhich are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to packet switches and
routers, and more particularly, to a switching and routing
method and apparatus capable of automatically filtering
flows of packets between switch ports allowing for creation
of a high performance hardware assisted firewall for Intranet
applications and automatically creating virtual LANs among
switch ports. In addition, the present invention describes a
mechanism to reserve bandwidth for end to end applications
and provide guaranteed quality of service (008) for them.

2. Description of the Related Art

Packet switches and routers forward data packets between
nodes in a network. However, securing machines and data
from unauthorized access is fast becoming a very important
issue for corporate networks. According to industry experts,
more than 70% of breaking are internal (i.c. employees
stealing sensitive information from their own company).
Also HR department in a company would not want engi-
neers to get access to payroll data. This has created a need
for a high performance firewall to secure and separate
different networks. In conventional routers, this is done by
software which inspects every packet that is being routed
and determines whether any filters have been configured for
that session. This information is typically manually config-
ured by a system administrator. However, the procesing
required to inspect packets and apply the appropriate filter
significantly reduces the packets rate through the router. The
rate further reduces if a large number of filters have been
configured.

Multimedia networking (voice and video on LAN/WAN)
requires Quality of Service guarantees. Protocols such as
Resource Reservation Protocol (RSVP), Real Time Protocol
(RTP), Real Time Control Protocol (RTCP) have been
defined to provide these services on LANs/WANs. Under-
lying hardware however needs to support prioritization of
traflic and bandwidth reservation for these protocols to
operate. Network traffic contains normal and high priority
data Agood switch should be able to prioritize traffic in such
a way that while high priority traflic gets its share of
bandwidth, low priority traflic does not starve completely.
This Is called Weighted Fair Queuing (WFQ). This invention
describes mechanisms to provide these services in hardware.

Likewise, virtual LANs (VLANs) are often desired for
controlling broadcast and multicast packet flows in com-
Puter networks. Broadcast and multith packets are typi-
cally forwarded on all ports of a switch and each node
Connected to the switch will have to process such packets.
Some switches allow system administrators to manually set
“P V_LANS among groups of nodes such that broadcasts and
multicasts from nodes belonging to one group are confined
'0 that group. This reduces the number of packets that nodes
on the swrtched network must process. However, much

10

15

20

30

35

45

50

55

60

65

2

administrative overhead is required to create and maintain
VLAN groups, and to assign and update memberships in the
groups.

Accordingly, there remains a need in the art for a switch-
ing device that can support prioritization and QoS guaran-
tees of network trafiic and/or create VLANs automatically
without any administrator intervention. The present inven-
tion fiilfills this need.

SUMMARY OF THE INVENTION

An object of the invention is to provide a method and
apparatus that can forward packets to their destination at
high throughput rates without requiring substantial proceg-
ing overhead.

Another object of the invention is to provide a method and
apparatus that can both switch and route packets with the
same minimal processing overhead.

Another object of the invention is to provide a method and
apparatus that is capable of both switching and routing
packets at wire speed.

Another object of the invention is to provide a method and
apparatus that is capable of wire—speed switching and rout-
ing of packets that are associated with all possible Layer 2
and Layer 3 traflic protocols.

Another object of the invention is to provide a method and
apparatus that provides wire~specd switching and routing
functionality in a switched internetwork, but does not
require reconfiguration of existing end stations or network
infrastructure.

Another object of the invention is to provide a method and
apparatus that provides wire-speed application of filters of
flows between nodes in a switched intemetwork.

Another object of the invention is to provide a method and
apparatus that provides wire—speed application of mirrors of
flows between nodes in a switched internetwork.

Another object of the invention is to provide a method and
apparatus that provides wire—speed application of priorities
for flows between nodes in a switched intemetwork.

Another object of the invention is to provide a method and
apparatus that enhances network security.

Another object of the invention is to provide a method an
apparatus that reduces unnecessary network traffic.

Another object of the invention is to provide a method and
apparatus that provides wire-speed switch and routing flinc-
tionality while supporting application or network level filters
for intranet security applications.

Another object of the invention is to provide a method and
apparatus that provides wire-speed witch and routing func-
tionality while supporting VLANs that are created automati—
cally with no administrator intervention.

Another object of the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting bandwidth reservation.

Another object of the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting multilevel priority queueing.

Another object of the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting weighted fair queueing.

The present invention fulfills these objects, among others,
by providing a method and apparatus for performing mul-
tiprotocol switching and routing. Incoming data packets are
examined and the flow (i.e., source and destination) with
which they are associated is determined. A flow table

NOAC EX. 1015 Page 344

 



NOAC Ex. 1015 Page 345

US 6,570,875 B1
3

contains forwarding information that can be applied to the
flow. If an entry is not present in the table for the particular
flow, the packet is forwarded to the CPU to be processed.
The CPU can then update the table with new forwarding
information to be applied to all future packets of the same
flow. When the forwarding information is already present in
the table, packets can thus be forwarded at wire-speed. A
high speed static memory is preferably used to contain the
table. Adedicated ASIC is preferably used to implement the
engine for examining individual packets and forwarding
them according to the stored information. Decision-making
tasks are thus more efliciently partitioned between the
switch and the CPU so as to minimize processing overhead.

Information regarding filters, priorities, and VLANs is
maintained by processes executing on the CPU and are
programmed into the forwarding table for the hardware to
apply when it detects a matching flow.

According to another aspect of the invention, Internet
Group Management Protocol (IGMP) packets (for [P mul-
ticast control), Zone Information Protocol (ZIP) packets (for
AppleTalk) and NetBios & DLC/LLC packets with multi-
cast addresses are forwarded to the CPU by the hardware.
The CPU can then create and update VLANs automatically
for those multicast groups in the forwarding table with no
administrator intervention. Once such VLANs are

established, packets destined for the detected multicast
groups are forwarded only on the ports whose hosts are
members thereof, preventing needless and burdensome traf-
fic from congesting other network segments and host con-
nections.

Afurther aspect of the invention provides mechanisms for
administrators to reserve bandwidths and asign priorities to
trafl‘ic flows. Protocols such as RSVP can then be used to

automatically reserve bandwidth for certain flows. This
provides Quality of Service guarantees for traflic being
switched.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and advantages of the present
invention will become apparent to those skilled in the art
after considering the following detailed specification,
together with the accompanying drawings wherein:

FIG. 1 is a block diagram illustrating a packet switching
architecture in accordance with the present invention;

FIG. 2 is a block diagram illustrating a multiprotocol
switch of the present invention in an architecture such as that
illustrated in FIG. 1;

FIG. 3 is ablock diagram illustrating a configuration table
of the present invention in a multiprotocol switch such as
that illustrated in FIG. 2;

FIG. 4 is a block diagram illustrating a switch module of
the present iDVention in a multiprotocol switch such as that
illustrated in FIG. 2;

FIG. 5 is a block diagram illustrating a flow table of the
Present invention in a multiprotocol switch such as that
illustrated in FIG. 2;

FIG. 6 is a flowchart illustrating a method used during
operation of a multiprotocol switch according to the present
InVention;

FIG. 7 is a flowchart illustrating a method used to process
data packets received in a multiprotocol switch according to
“1C present invention;

FIG. 8 is a flowchart illustrating a method used to process
data packets according to Layer 3+ protocols in a multipro-
tocol switch according to the present invention;

 

 

10

15

20

30

35

45

50

55

60

65

4

FIG. 9 is a flowchart illustrating a method used to process
unresolved Layer 3+ data packets received in a multiproto-
col switch according to the present invention;

FIG. 10 is a flowchart illustrating a method used to create
flow processing entries in a multiprotocol switch according
to the present invention;

FIG. 11 is a flowchart illustrating a method used to resolve
flow processing information according to flow identification
information contained in data packets processed in a mul—
tiprotocol switch according to the present invention;

FIG. 12 is a flowchart illustrating a method used to
forward data packets according to flow processing informa-
tion programmed for the particular flow with which the data
packets are associated in a multiprotocol switch according to
the present invention;

FIG. 13 is a flowchart illustrating a method used to
process data packets according to Layer 2 protocols in a
multiprotocol switch according to the present invention; and

FIG. 14 is a flOWchart illustrating a method used to
automatically configure and update VLAN information in a
multiprotocol switch built according to the present inven-
tion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

A device and method capable of performing wire-speed
multiprotocol switching and routing of data packets between
nodes in a network is described in the aforementioned

related co-pending US. application Ser. No. 09/058,335.
FIG. 1 is a block diagram illustrating a switch architecture
in accordance with the present invention, which switch
architecture is more fully described in the co-pending appli-
cation. It includes a multiprotocol switch 40 having N
input/output ports 50-1 . . . 50—N. The input/output ports can
be attached to nodes in a local area network (LAN) or they
can be attached to different network segments or difierent
networks in a wide area network (WAN) directly or via
routers. As explained in more detail in the co-pending
application, the multiprotocol switch has the ability to
forward packets among and between local nodes and exter-
nal networks attached to it at wire weeds, and in accordance
with a plurality of Layer 2 and Layer 3 protocols.

FIG. 2 further illustrates a multiprotocol switch 40 in
accordance with the principles of the invention. In addition
to input/output ports 50, it includes a switch module 60 and
a flow table 70. Switch module 60 further communicates

with a packet buffer 75, a CPU 80 and a shared memory 90.
Flow table 70 and shared memory 90 are mapped memory
spaces that an: accessible by both switch module 60 and
CPU 80. CPU 80 also communicates with a routing table 65,
a configuration table 85 and a system administrator 45.

Although shown separately for clarity, switch module 60
and flow table 70 are preferably implemented together as an
application specific integrated circuit (ASIC). Such an
implementation permits data packets to be switched between
ports 50 at wire speed in accordance with flows, filters and
priorities specified in flow table 70. However, other wecific
implementations of switch module 60 and flow table 70 in
accordance with the invention will be apparent to those
skilled in the art after being taught by the following disclo-
sures of their logical functions and data structures, for
example.

CPU 80 can be implemented by a MIPS microprocessor
made by IDT Inc. of Santa Clara, Calif., and shared memory
90 can be implemented by a fast static RAM (SRAM) such

NOAC EX. 1015 Page 345

a-



NOAC Ex. 1015 Page 346

US 6,570,875 B1
5

as that manufactured by 1881. Packet buffer 75 for storing
packets can be implemented using Synchronous DRAM
(SDRAM) such as that manufactured by Samsung, Inc. CPU
80 partitions packet buffer 75 on a periport basis. The
amount of memory allocated to each partition depends on
port speed. So, for example, a gigabit port is allocated more
memory than a 10/100 Mbps port.

Although not shown for clarity, it should be understood
that CPU 80 includes program and data memory for storing
programs that are executed by CPU 80 and data needed by
those programs. Such data can include routing tables and the
like. Programs executed by CPU 80 can include conven-
tional routing update and costing functions implemented
with known protocols such as Routing Information Protocol
(RIP) for setting and maintaining conventional routing table
information in routing tables 65, as well as processes for
setting and maintaining system configuration information
for the network in configuration table 85 in accordance with
commands by system administrator 45, which system con-
figuration information can include routing domains for
example. Such conventional routing processes are in addi—
tion to the novel processes performed by the multiprotocol
switch of the present invention that will be described in more
detail below. However, a detailed description of such con-
ventional processes will not be given so as not to obscure the
invention.

Ports 50 are preferably R145 10/100 Mb ports, and can
include port modules such as, for example, a 8x10/100 Mb
port module (100 Base TX), a 1-Gigabit port module, or a
4x100 Base FX port module.

The term “routing domain” is used in this document to
describe multiple ports (50-1 . . . 50—N) that belong to the
same IP or IPX network. All the ports that belong to a
routing domain have the same IP addres and subnet mask
or same IPX address. Each routing domain represents a
virtual router port on the switch.

In the architecture shown in FIG. 2, data packets arrive at
ports 50-1 . . . 50-N. As will be described in more detail
below, switch module 60 continually monitors each of the
ports for incoming traflic. When a data packet arrives, it
checks the packet header for information that identifies the
flow to which the packet belongs. For example, a flow of
packets between two hosts in the network can be identified
by the Ethernet and/or IP/IPX addresses of the hosts, and
perhaps further by IP/IPX sockets and the protocol by which
the hosts are communicating. This flow identification infor-
mation is extracted from the header of each packet that
traverses the network through the multiprotocol switch.
IP/[PX data packets are buffered in packet buffer 75 While
flow identification and forwarding processing is performed.

Software processes executing on CPU 80 handle inter-
facing with a system administrator 45 to retrieve, store and
manage configuration information in configuration table 85.
The software processes and interfaces can be implemented
in many ways known to those skilled in the art, and so they
Will not be described in detail here so as not to obscure the

invention. However, some of the contents of configuration
table 85 should be noted. In addition to conventional system
configuration information such as routing domains, this
table includes information relating to filters, priorities, band-
Width reservations for applications and VLANs established
between ports and hosts of the network.

AS further illustrated in FIG. 3, in addition to routing
domain settings 81-1 . . . 81-R, sets of filters 76-1 . . . 76-F,
Priorities 77-1 . . . 77-P, and mirrors 78-1 . . . 78-M, are
mlintained in configuration table 85. Also maintained in

10

15

20

30

35

45

50

55

65

6

configuration table 85 is a list of VLANs 79-1 . . . 79-V,
which list includes each established VLAN and the members

thereof. Filters, priorities, mirrors and can be port-specific,
host-specific, application-specific, or protocol-specific. That
is, for example, a filter may be established between two ports
of the switch (e.g. forbid any communication between ports
A and B), between two hosts connected to ports of the switch
(e.g. forbid any communication between host A having
Ethernet address X, and host B having Ethernet address Y),
between two applications running on hosts connected to
ports of the switch (e.g. forbid any telnet sessions between
hostsA and B), or between two hosts using a certain protocol
(e.g. forbid ICMP communications between 1P hosts A and
B). When a priority level is migned to a port, host,
application or protocol, packets associated therewith are
forwarded via a selected one of multiple priority queues, as
will be described in more detail below. A mirror permits
packets destined for one port, host or application to be
duplicated and forwarded on one or more ports.

In addition to the VLANs automatically created and
maintained by the present invention, as will be described in
more detail below, the list of VLANS 79—1 . . . 79-V allows
system adminish’ators to manually create and maintain
VLANs, or to disable automatic creation of VLANs, by the
switch.

Routing domains 81—1 . . . 81~R contain the lists of routing
domains established for the network and the members

thereof. For example, a typical routing domain configuration
for IP networks involves migning ports to routing domains
and specifying a separate IP addres and subnet mask for
each routing domain. For IPX networks, administrators need
to configure an [PX network address and a frame type for the
routing domain in addition to specifying ports that belong to
the routing domain. Such configuration information for IP
and IPX networks are maintained and updated by processes
executing on CPU 80 and stored as routing domains 81—1 . . .
81-R in configuration table 85. Each individual port can
belong to only one routing domain. In accordance with an
aspect of the invention that will be described in more detail
below, the routing domain configurations are used to auto-
matically configure rules in flow table 70 such that IP and
IPX flows of packets from nodes belonging to the same
routing domain are switched at Layer 3+ at wire speed,
while IP and [PK flows of packets from communicating
nodes on different routing domains are routed at wire speed
at Layer 3+.

FIG. 4 further illustrates a switch module 60 in accor-
dance with the architecture illustrated in FIG. 3. As can be

seen, it includes switch engine 100, address registers 105,
domain configuration registers 115, priority level configu-
ration registers 125, CPU interface 110, port interfaces
120—1 . . . 120-N with associated I/O queues, and memory
interface 130. As is further apparent from the figure, switch
engine 100 accesses information contained in flow table 70,
address registers 105, domain configuration registers 115
and priority level configuration registers 125, and manages
packets buffered in packet buffer 75. CPU interface 110
communicates with CPU 80, thereby providing communi-
cation means between CPU 80 and switch engine 100,
address registers 105, domain configuration registers 115,
priority level configuration registers 125, port interfaces
120-1 . . . 120-N, and memory interface 130. Port interfaces
120-1 . . . 120—N respectively communicate with ports
50-1 . . . 50-N, and memory interface 130 manages access
to shared memory 90. It should be noted that in this

configuration, both switch engine 100 and CPU 80 (via CPU
interface 110 and memory interface 130) can forward pack-

NOAC EX. 1015 Page 346

 



NOAC Ex. 1015 Page 347

US 6,570,875 B1
7

ets on poms 50—1 . . . 50-N via port interfaces 120-1 . . .
120—N and their amciated U0 queues, although in the
preferred embodiment, switch engine 100 can forward pack-
ets at wire speeds with no intervention from CPU 80.

Switch engine 100 performs the flow identification and
processing operations for forwarding packets received via
port interfaces 120—1 . . . 120-N. It acce$es flow table 70 to
look up the forwarding information associated with the
flows. Address registers 105 provide addre$ information to
assist switch engine 100 in locating appropriate flow pro-
cessing information in flow table 70. The contents of these
registers can be configured by CPU 80 via CPU interface
110, and include the base Ethernet address of poms 50-1 . . .
50—N.

Domain configuration registers 115 provide routing
domain configuration information in accordance with rout-
ing domains 81-1 . . . 81-R established in configuration table
85. For each port, separate IP and IPX routing domain
identifiers associated therewith are stored in domain con-

figuration registers 115, which registers are configured by
CPU 80 via interface 110. Routing domain configuration
information for IP and IPX networks is maintained and

updated by processes executing on CPU 80 and stored as
routing domains 81-1 . . . 81-R in configuration table 85.
CPU 80 then uses this configuration information to config-
ure domain configuration registers 115 via interface 110.

Although shown singly for clarity, the I/O queue associ-
ated with each of port interfaces 120—1 . . . 120-N includes
several queues, each having a corresponding priority level
that can be configured by the software running on CPU 80.
Switch engine 100 forwards packets destined for one of
ports 50—1 . . . 50-N using the appropriate queue, in accor—
dance with priority rules configured in the flow table. The
number of times in a service interval packets in each queue
will be proce$ed is programmed such that higher priority
queues get serviced more frequently than lower priority
queues. Each flow can be asigied aparticular priority level,
and thus have a desired 008, as will be explained in more
detail below. Priority level configuration registers 125 pro-
vide service level settings for each respective level of
priority corresponding to the I/O queues amociated with port
interfaces 1204 . . . 120«N.

FIG. 5 further illustrates the contents of flow table 70. In

this example, flow table 70 includes addE$ resolution hash
140, address resolution record table 150, protocol entry table
160 and network entry table 170. Flow table 70 further
includes priority tags 190, filter tags 200 and mirror tags
210. The contents of these tables, and their interrelations,
will be described in more detail below in connection with the

creation and maintenance of flow table entries according to
the invention. Switch engine 100 has read access of the
tables in flow table 70, and CPU 80 has read and write access
to the tables.

The operation of the multiprotocol switch of the present
invention will now be described in more detail with refer-
ence to FIGS. 6 to 14.

After powerup (step 82), and before any packets are
received, flow table 70 is empty. Configuration table 85
contains routing domain, filter, mirror, priority, and VLAN
cOnfigurations that have been established already for the
Rework, and can be updated at any time by a system
adruinistrator via software processes executing on CPU 80.

In addition to switching and routing packets, the multi-
Pmtocol switch of the present invention performs tasks that
are performed by conventional switches and routers such as
“Mlle determination, routing table updates, and the like.

10

15

20

30

35

45

50

55

60

65

8
Such tasks are well known to those stalled in the art and are

not depicted in the overall operation of the switch, as
illustrated in FIG. 6, so as not to obscure the invention. Of
note, however, are the unique capabilities of the multipro-
toeol switch with respect to multicast group management for
IP, AppleTalk and NetBios networks.

In accordance with an object of the invention, virtual
LANS are automatically created for every IP multicast group
associated with nodes and segments attached to the switch.
Upon powerup (step 52), software processes executing on
CPU 80 cause the multiprotocol switch to send out host
membership query messages (IGMP me$ages addressed to
2240.0.1) (step S4). Hosts attached to the switch that belong
to multicast groups send IGMP host membership report
mesages. The switch can thus determine all the multicast
groups to which nodes attached to it belong and forward IP
multicast packets within multicast groups appropriately.

The switch then enters into an operational state wherein
switch engine 100 continually monitors for data packets
arriving on each of ports 50 via port interfaces 120-1 . . .
120-N (step 86). When a packet is received (step S8), it is
processed in accordance with the algorithm further illus-
trated in FIG. 7 (step 810). CPU 80 also periodically sends
out IGMP queries (step 812 and step 814) to determine all
active IP multicast groups to which hosts attached to the
poms of the switch belong and keeps its multicast group table
updated. Moreover, hosts send IGMP packets to join and
leave [P multicast groups. These IGMP packets are inter-
cepted by switch engine 100 and sent to CPU 80. CPU 80
can therefore have up to date information about IP multicast
group membership.

Packet processing and switching in the multiprotocol
switch of the invention, that can be included in step 810 of
FIG. 6 for example, is further illustrated in FIG. 7.

When a packet is received, switch engine 100 first exam—
ines the packet header and if the packet is a multicast packet
(step 822), the padret is forwarded to CPU 80 for special
procesing to automatically create and/or update VLAN
information (step 824). Whether or not it is a multicast
packet, switch engine 100 keeps the packet for further
processing.

Layer 3+ writching and routing can be disabled for the
system by setting a flag in configuration table 85, for
example. In that event, each packet traversing through the
port is processed and switched as a Layer 2 packet, regard-
less of the protocol carried by the packet. Accordingly, if
Layer 3+ switching and routing is disabled (as determined in
step 324), processing branches to step 826.

All data packet headers include the source and destination
Ethernet addresses of the packets. The protocol used by the
communicating hosts can also be determined from the
Ethernet data packet header. For example, Ethernet Type II
packets contain a type field that explicitly indicates the
protocol (such as IP, IPX, ARP, RARP and LAT) that packet
belongs to. Moreover, it is known that diiferent protocols use
different Ethernet frame formats. For example, IP uses
Ethernet II or SNAP packet formats. [PX can use all four
Ethernet formats (depending on configuration),AppleTalk (a
trademark ofApple Computer Corp., Cupertino, Calif.) uses
the SNAP packet format and NetBios typically uses the
Ethernet 802.2 LLC format. The protocol carried by the
packet thus can be learned either explicitly or implicitly
from the padret header.

Layer 4 protocols such as Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP) are built on top
of the Layer 3 IP protocol. In addition to the information

NOAC EX. 1015 Page 347

 



NOAC Ex. 1015 Page 348

was.

 

 

US 6,570,875 B1
9

above, the headers for these protocols further contain source
and destination socket numbers, which can identify indi-
vidual applications such as P'I‘P, Telnet, e-mail and HTTP,
running on IP hosts. Specifically, the protocol carried field in
the IP header identifies the protocol carried by the IP
datagram. For example, if the protocol carried field has a
value of 6, this indicates that the IP datagram carries a TCP
packet, whereas a value of 17 indicates that a UDP packet
follows the IP header.

The IPX protocol is also at Layer 3 of the OSI model.
Most Novell NetWare (trademark of Novell, Inc. of Provo,
Utah) applications run on top of IPX. [PX headers contain
source and destination socket numbers which identify appli-
cations running on the hosts, in addition to IPX source and
destination network and [PX source and destination node

addresses, which identify end-to-end IPX hosts. Ditferent
Novell Netware Layer 4 protocols use the IPX datagram to
send and receive packets. The protocol field in the IPX
header indicates which protocol (SAP or RIP) the IPX
datagram is carrying.

As evident from the foregoing, flows of packets associ-
ated with IP and IPX protocols can thus be identified by their
IP/IPX source and destination node and/or socket
information, and those amiated with other protocols can
be identified by their source and destination Ethernet
addresses. In this example of the invention, flows ofpackets
associated with IP and IPX protocols, as well as ARP and
RARP packets, are procescd by the multiprotocol switch to
support special Layer 3+ processing and/or routing across
diiferent networks. Accordingly, as shown in FIG. 7, switch
engine 100 determines the protocol type from the packet
(step 528). As shown above, this may be explicitly defined
in the header as in the Ethernet Type I] type field or may be
implicitly derived from other information in the IP or IPX
header. If the packet is not an IP/IPX or ARP/RARP packet
(determined in step S30), processing branches to step 826
and it is processed and switched as a Layer 2 packet,
regardless of the protocol carried by the packet. Otherwise,
processing advances to step 832 and the packet is processed
in accordance with Layer 3+ protocols.

FIG. 8 further illustrates switch engine processing of
Layer 3+ packets, which processing can be included in step
S32 of FIG. 7 for example.

Switch engine 100 first extracts the address information
for both the source and destination ends of the flow with

which the packet is associated (step S40). As shown above,
headers of packets a$ociated with IP and IPX protocols
include IP/IPX source and destination node addresses and
may further include socket numbers.

Switch engine 100 then checks to see whether entries
exist in the flow table for both ends of the flow (step S42).
If entries exists for both ends of the flow (determined in step
544), the packet is forwarded at wire speed in accordance
With any filters, mirrors, priorities or VLANs established in
the flow table entry (step S46).

lfflow table entries do not exist for both ends of the flow,
the packet is “unresolved.” For unresolved IP/[PX and
ARP/RARP packets, switch engine 100 forwards or broad—
casts the packet as best it can under the circumstances. If
only the destination end of the flow was unresolved

(dctCTmined in step S48), a flow table entry exists for the
Source end of the flow, containing a broadcast enable entry
for the source. Accordingly, switch engine 100 forwards the
Packet on the port(s) indicated by the broadcast enable entry
lsociated with the source (step 556).

If only the source end of the flow is unresolved, a flow
“bk t=nt1'y exists for the destination. In this situation, switch

10

15

20

30

35

45

50

55

60

65

10

engine 100 notifies CPU 80 via CPU interface 110 that the
packet is unresolved (step 856). The message to the CPU
contains the source and destination addresses (and possibly
socket numbers), the port on which the packet arrived, and
an indication that the’scurce end of the flow was unresolved.

As will be described in more detail below, CPU 80 will
process the packet, and if appropriate, will create entries in
flow table 70 containing forwarding information and links to
information relating to any previously-configured filters,
priorities, mirrors or VLANs corresponding to the unre-
solved ends of the flow.

If both the source and destination ends of the flow are

unresolved, switch engine 100 notifies CPU 80 via CPU
interfaw 110 that the both ends of the flow were unresolved

(step S58). Moreover, switch engine 100 forwards the packet
on all ports indicated by the default broadcast enable entry
for this protocol. As will be explained in more detail below,
default entries exist for IP, IPX, and non-IP/IPX types of
flows. Switch engine 100 can determine which ports on
which to forward the packet according to the default broad-
cast enable entry, and causes the packet to be forwarded to
a default I/O queue (typically one with lowest priority)
asociated with each of the indicated ports (step 860).

After the unresolved packet is broadcast or forwarded in
steps SSO or $60, the destination node, if attached to the
switch, will respond. The response packet will be processed
as described above and a flow table entry for the responding
node will be created by the CPU as in step 856. At that point,
flow table entries for both ends of the flow will have been

created so that any subsequent packets belonging to that
flow will be forwarded by switch engine 100 at wire speed.

CPU processing for unresolved IP/IPX or ARP/RARP
packets, as initiated in step S48 of FIG. 8 for example, is
further illustrated in FIG. 9.

First, CPU 80 determines whether the source of the flow
is unresolved, from the message sent by switch engine 100
for example (step S70). If so, processing advances to step
S72, where a flow table entry for the source of the flow is
created by software executing in CPU 80, in accordance
with any filters, mirrors, and priorities associated with the
source node (that may have been configured by the network
administrator) in flow table 70.

Processing then advanws to step S74, where CPU 80
determines whether the destination of the flow is unresolved,
from the mesage sent by switch engine 100 for example. If
not, then the source was the only unresolved portion of the
flow, and so the packet can be forwarded in accordance with
the flow table information (step S76).

If the destination of the flow is unresolved, as determined
in step S74, processing continues to step S78, where CPU 80
determines whether the packet is addressed to the switch.
Such packets can include, for example, ARP packets from
hosts that are attempting to get the Ethernet address of their
IP gateway. Since the IP address of the gateway is actually
associated with a port of the switch, suchARP requests must
be processed by the switch and responded to appropriately
by, for example, sending an ARP response back to the
requesting host containing the Ethernet address of the gate-
way interface (step 880). Such packets can also include
responses toARP requests sent by CPU 80 to determine the
Ethernet address of the host for programming the swap fields
of a flow table entry, as will be described in more detail

below in connection with the processing of steps S88 and
S90. The dashed line connecting steps 880 and S90 in FIG.
9 thus represents the logical processing flow when an ARP
request sent by CPU 80 in step 888 is responded to by the

NOAC EX. 1015 Page 348



NOAC Ex. 1015 Page 349

US 6,570,875 B1
11

host at the requested IP node, which processing will be
further described below.

If the destination of the flow is unresolved and the packet
is not addressed to the switch, a flow table entry needs to be
created for the destination of the flow. First, it must be
determined whether the flow requires switching or routing.
This is determined in step S62. If the destination Ethernet
address of the packet is the Ethernet address of the port of
the switch on which the packet arrived (as determined from
address registers 105) and the destination IP or [PX address
is not the IP/[PX address of the switch, then the packet needs
to be routed. If the destination Ethernet address is not the
Ethernet address of the port of the switch, CPU 80 further
looks up the routing domains configured in tables 81-1 . . .
81-R in configuration table 85. If a packet is going from
aport in one routing domain to a port in another routing
domain, then the packet will require routing. Otherwise, it is
switched. This is required to support [P multicast routing, as
will be described even fur1her below.

If it is determined in step 862 that the unresolved desti—
nation is in another network, the Ethernet address of the
destination needs to be determined to perform routing. That
is, during routing, switch engine 100 needs to replace the
source Ethernet address in the packet with the Ethernet
address of the switch port on which the packet is being
forwarded, and the destination Ethernet address of the
packet needs to be replaced by the Ethernet address of the
destination node or the router en route to the destination. It
is this destination Ethernet address that needs to be deter-
mined.

If the packet is an IP packet (as determined in step S86),
CPU 80 determines the IP network that the destination

belongs to and determines the port(s) that connect to or
,, ,r; belong to that network. CPU 80 can do this, for example, by
‘ ‘ cross-referencing the destination IP address with the con—

' 1:, tents of routing table 65 (created statically by an adminis—
trator or dynamically learned using routing protocols such as

9‘ ‘ RIP and OSPF). If no such network exists, CPU 80 sends an
ICMP redirect message to the host indicating that the
network was unreachable. If it finds an entry in routing table
65 for the network, CPU 80 sends an ARP request packet on
all the ports belonging to that network (step 588). The
destination or next hop sends an ARP response containing its
Ethernet addres. Switch engine 100 sends this response to
CPU 80 (step S48 in FIG. 8). CPU 80 extracts the Ethernet
address contained in the response packet, and records the
port on which the packet arrived (step 880 and step S90). For

2 further information regarding binding machine level
: 'uflrcsses with network level addresses using ARP, see
~. generally Douglas E. Comer and David L. Stevens, Inter-
fi‘mmhng with TCP/IP—Vol. 11: Design, Implementation,
” ' Internals, 1994, Chapter 4, pp. 39—59.

If the packet is an IPX packet that needs to be routed and
, \l destination address is unresolved (as determined in steps

€41“? 385), the Ethernet address of the destination is
‘ " , ‘ ed “Sing IPX RIP information in routing tables 65

, tuned by CPU 80 (if the destination is a Netware
. )-_If the destination is a Netware client, then the

3" tron Ethernet address is already known. In either
.2' the Ethernet addres associated with the [PX desti-

‘ddlcssus determined in step S92. For further infor-
, ' “finding route determination and updating using
“is“ generally IPX Routing Guide, published by Novel]

*0

 

 
 

 
 

 
 

 
 

 
 

 

w. t

80 then creates
‘ n a flow table entry for the destination

‘ °W (step s94) and programs the Ethernet address

10

15

20

30

35

45

50

55

60

65

12

swap field of the entry with the Ethernet address information
determined in the preceding steps (step S96).

Processing for creating flow table entries for unresolved
packets, as performed in steps S72 and S94 of FIG. 9 for
example, is further illustrated in FIG. 10.

First, in step 5100, CPU 80 extracts the last twelve (least
significant) bits (0—11) of the Ethernet or IP/[PX address that
could not be resolved by switch engine 100. CPU 80 uses
these twelve bits as a hash into flow table 70 to determine

whether an address resolution hash entry exists in address
resolution hash table 140 for the unresolved address (step
8102). The address resolution hash entry isused as a starting
link for all forwarding and other packet processing infor-
mation associated with the node corresponding to the unre-
solved address,

Separate hash areas are maintained for Ethernet, [P and
IPX address tables. Each hash entry is 32 bits long and has
a format as shown below (bit positions of each field shown
in parentheses):

 
Huh Ac-

cured (31)
Record Ofl'ret

(27—10)
Number of

Record: (9—2)
Record link No Entries

Vhlid (1) “lid (0)

The flash Accessed field indicates whether this hash has

been amassed by switch engine 100. This field can thus be
used to age out hashes using the Least Recently Used (LRU)
algorithm, for example. Aging software executing on CPU
80 initially sets this bit on all the hash entries. When a node
associated with this hash entry sends data on the network,
switch engine 100 clears this bit. The aging software can
later and/or periodically delete hash entries that do not have
the Hash Accessed bit cleared.

The Record Ofisct field contains the address offset from
the Base Record Address of address resolution record table

150 at which the first record entry for the group of addresses
that map to this hash is stored. The first address resolution
record entry associated with this hash will thus reside at
location (Base Record Address+Record Ofisct). The Base
Record Address is stored in a register within addre§ regis-
ters 105. The Record Ofi'set field is originally set to zero, but
CPU 80 updates it with the offset of the address resolution
record entry for this flow, after such entry is stored in address
resolution record table 150, so as to link it to this hash entry.

The Number of Records field indicates the number of

addresses (minus one) that the switch has learned map to this
hash. This field is originally set to zero, but is updated when
CPU 80 creates additional address resolution record entries
that are linked to this hash.

The Record Link Valid field, when set, indicates that the
data stored at location (Base Record Address+Record
Ofliset+(Number of Recordsx2)+2) is actually a Link Entry.
Since each hash can only point to 128 addrm resolution
record entries (7 bit field), this bit can be used to increase the
number of records for this hash value. If this bit is not set,
and the No Entries Valid bit is also not set, then the data
stored at (Base Record Address+Record Oifset+(Number of
Recordsx2)) is the last possible addres resolution record for
this particular hash entry.

The No Entries Valid bit indicates that there are no valid

addresses that map to this hash. This bit is originally set, but
is cleared when CPU 80 creates an address resolution record

corresponding to this hash entry.
Accordingly, in step 5102, when CPU 80 next determines

whether a valid hash entry ein'sts in addres resolution hash

NOAC EX. 1015 Page 349



NOAC Ex. 1015 Page 350

US 6,570,875 B1

13

140 at the position corresponding to the twelve bits of the
unresolved address, it inspects the No Entries Valid field of
the entry. If the bit is set, CPU 80 clears it and all other bits
in the entry, thereby creating a valid hash entry at the

position in address resolution hash 140 corresponding to the
unresolved address (step 8104).

CPU 80 next increments the Number of Records field in
the hash entry to indicate that an additional address resolu-
tion record entry for this hash will be created (step $106). If
the number of records that will exist for this hash exceeds
the field size of the Number of Records field, that field is
decremented and the Record Link Valid field bit is set.

Processing advances to step 5108, where CPU 80 creates
an entry in address resolution record table 150 for the host
corresponding to the unresolved address. The format of an
address resolution record entry is shown below.

 

Protoml Ofiet (31—18) Ethernet Addresl hit: 15—12,
73—16, 31—26 (17—0)OR

a lP/[PX Address bits 15—12,
it e . 73—16, 31—26 (17—0)

,v ‘ e . Port Priority Mirror Ethernet Address bit: 25—24,
‘ " ' Number 'I‘ag Addr Enable 39—32, 47—40 (17—0)

(31—23) (22—19) (18) 0R
5 rP/rpx Addreu bin 25—24 and
3 Socket bits 0—15 (17—0) 

CPU 80 fills the Address fields with the remaining 36 bits
of the unresolved addres that were not used as the initial

‘. 4. hash. For non-IP/IPX packets, CPU fills these fields with the
3 . remaining most significant bits of the Ethernet address

contained in the unresolved entry message from switch
engine 100. ForIP and [PX packets, CPU 80 fills these fields

‘ with the remaining most significant bits of the IP/[PX
‘ mm and the host application socket number. If no special

_ Leonfigurations (filter, mirror or priority) have been config-
fund for the host application, CPU 80 inserts a “don’t care”

{pine of hex 0xtIfE for the socket number to indicate that the
- t number is not used to identify the IP/[PX flow with

‘ ich this entry is asociated. Moreover, if the protocol
n IS ICMP, IGMP)carrying the packet does not use

1 “ H et numbers a “don’t care” value is used for the sockett “G.

‘ -e_Port Number field indicates the port (50-1 . . . 54m)
- d1 this Ethernet (or IP or IPX) addres resides. CPU

.4," this field with the port number contained in the
-solved entry message from switch engine 100.
fj- Protocol Otfset field indicates the offset from the

.ePtotocol Address at which the entries in the Protocol
f 'fDl’ each protocol associated with this flow are stored.

.,. ’ " P1010001 Address is stored in a register in address
, " 105- The protocol the packet belongs to is used as

- _Incnt fi'om the Protocol Offset to point to the
’ “1313’. The increments for each protocol are
2"“ ‘ “=95!“ in address registers 105. The addres of‘1

..~ 's m the Protocol Table for the flow associated with
(”Wu resolution record will thus be Base Protocol
. Protocol Oifset+Protocol Increment. If and when

, , “ales l PIOtocol table entry for this flow, explained
. daml below, CPU so fills the Protocol Offset field
a“ . protocol cml')’ ‘0 this address resolution record.

4 .' PW T‘s Addr field provides the address to one of
i 1’an tags 199. The Base Address for priority

510M “1 l register in address registers 105.
“ a u” 1(1de to the priority tag field for this flow

 
 
 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

10

15

20

30

35

45

50

55

60

65

14

is located at Base Addre$+Priority Tag Addr. CPU 80
initially sets the Priority Tag Addr field to zero. If priorities
are configured for this flow, as will be explained below, a
priority tag will be configured, priority processing will be
enabled by setting a bit in the Protocol Ofiset entry, and the
address to the configured priority tag will be programmed in
this field to link the priority tag to the address resolution
record entry.

The Minor Enable field qualifies the mirror tag (tag
address found in the protocol entry). If this bit is set, mirror
processing is enabled for this flow. CPU 80 initially sets this
bit to zero. If mirrors are configured for the flow, as
explained in more detail below, a mirror tag will be
configured, and the mirrors will be enabled by setting this
bit.

After creating the address resolution record for the unre-
solved portion of the flow, procesing advances to step 5100,
where CPU 80 determines how many addres resolution
records now exist for this hash by examin'mg the Number of
Records field in the hash entry. If this is the first address
resolution record entry created for this hash, CPU 80 simply
stores the address resolution record entry it created in
addres resolution record table 150 at the addres corre—

sponding to Base Record Address+Record Ofiset (step
$112). It then links this entry to the address resolution hash
entry by storing the address offset from the Base Record
Address where the entry is stored in the Record Oifset field
of the hash.

If it is determined in step 8110 that there are more than
one address resolution record entries for this hash, CPU 80
sorts the existing entries with the newly created entry in
order of the remaining address bits of the unresolved flow
address, and stores them accordingly (step $114). The
entries are already linked to the address resolution hash
entry by the previous programming of the Record Ofi‘set
field.

Processing then advances to step 8116, where CPU 80
determines whetherany special processing has been config—
ured or is otherwise required for this flow. This includes
determining whether any filters, mirrors, priorities or
VLANs are associated with this flow. CPU 80 does this, by
mos—referencing the flow identification information in the
unresolved packet with the entries in configuration table 85.

If it is determined in step $116 that no filters, mirrors,
priorities, VLANs or swap addresses need to be pro-
grammed for this flow (i.e. routing is not configured for the
switch), the address resolution record is linked to a default
set ofprotocol entries which are all linked in turn to a default
network entry (step $118). If this is a TCP, UDP or IPX
packet with a socket number, the socket number portion of
the remaining address bits in the address resolution record
entry for this flow will be set to the “don’t care" value of
Oxfiflf. The default network entry will be described in more
detail below.

Otherwise, if it is determined in step $116 that this flow
requires special handling, unique entries in protocol table
160 and network table 170 for the flow must be created, and
processing by CPU 80 continues by first creating a protocol
entry (step $120).

The address pointed to by the Protocol Ofiset field of the
address resolution record indexes a list ofentries in protocol
table 160. Different filters, mirrors and priorities can be
established between two nodes and/or processes depending
on the particular protocol used for communication between
them. The protocol increment for the particular protocol
(provided by address registers 105) points to the appropriate

NOAC EX. 1015 Page 350



NOAC Ex. 1015 Page 351

15

set of filters, etc. for the flow, as indicated by a 32-bit entry
in the protocol table, having the following format: 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  

 
 
 

 
 
 
 
 
 
 
 
 
 
  
 

 

 

Flt: Mirror Filter Priority B/W Priority Network
Addr Addr Enable Queue (18—15) Enable Olfset

(31—27) (26-73) (22) (21—19) (14) (13—0) 

The Fltr Addr field provides the address to one of the 32
32-bit filter tags 200. The Base Address for filter tags 200 is
stored in a register in address registers 105. Accordingly, the
address to the filter tag for this flow is located at Base
Address+Fltr Addr. CPU 80 initially sets the Fltr Addr field
to zero. If filters are configured for this flow, CPU 80 will
create a filter tag in filter tags 200 and program the address
of the tag within filter tags 200 in this field to link the
configured filter tag to the protocol entry. CPU 80 deter-
mines whether any filters are configured for this flow by
cr0$-referencing the filter tables 76-1 . . . 76-F in configu-
ration table 85 with the flow identification information for
this side of the flow.

Each 32-bit filter tag contains 8 bits of veto information
and 24 bits of match information. CPU 80 configures filter
tags for each side (source and destination) of the flow to be
filtered. lfpackets belonging to the flow are to be blocked (as
in firewalling), CPU 80 configures the filter tags for the
source and destination sides of the flow so that their veto bits

do not match and their match bits do match. For example, if
a firewall is established between a first network having
nodesA, B and C and a second network having nodes D, E
and F, CPU 80 may configure the filter tags for nodes A, B
and C such that they have match bits of 0x000001 and veto
bits of 0x02, while nodes D, E and F are configured with
filter tags having match bits of 0x000001 and veto bits of
0x03. Accordingly, nodes A, B and C will be able to
communicate with each other, but not with nodes D, E and
F, who are also able to communicate with each other. Now
assume that node C in the first network is to be given the
privilege of communicating with nodes in the second net—
work. This can be done by changing its match bits to
0x000002. Now node C will be able to communicate with all
nodes in both networks.

The Mirror Addr field provides the address to one of the
16 16-bit mirror tags 210. If the mirror enable bit in the
lddress resolution record linked to this protocol entry is set,
mirroring is enabled for flows to which this node belongs.
11116 Base Address for minor tags 210 is stored in a register
In address registers 105. Accordingly, the address to the

2315;)! tag for this node is located at Base Address+Mirror
CPU 80 determines whether any mirrors are configured

1 5;: this flow by cross-referencing the mirror tables 78-1 . . .
1 ‘M 111.configuration table 85 with the flow identification
,, in€01’matron for this side of the flow. If any of the established

. ’ .lmrrors correspond to this flow, one of the 16 16-bit minor
; “35 #0 Will be configured for it. Each mirror tag field
. co{films 1 bit of match information. CPU 80 initially sets the

,2 to be “film“ field to zero. If traflic belonging to the flow is
‘ enablefllljlrlored on another port(s), CPU 80 sets the mirror

5. w 1! m the address resolution entry for each end of the
z, of t1:c‘xttinfigunas a tag in mirror tags 210, and links both ends
*of both 0W to the same tag by filling the Mirror Addr field
1m l"Riptfictly'e protocol entries with the address of the
’2“ I! ggfdshg 1n mirror tags 210 (offset from the Base

énmb’ . - Witch engine 100 can thereafter locate the tag by. ’ Inmg the Mirror Addr field with the Base Address for

5

10

15

35

45

50

55

60

65

US 6,570,875 B1
16

mirror tags 210 which is stored in a register in address
registers 105. The port(s) on which the flow is to be mirrored
is configured in the Mirror Entry of the network entry linked
to this protocol entry (described below).

The Priority Enable field qualifies the priority tag
(addressed by the Priority Tag Addr in the address resolution
record entry corresponding to this flow). If this bit is set, the
flow is processed at a higher priority. CPU 80 initially sets
this bit to zero. If priorities are configured for this flow, a
priority tag will be configured, priority processing will be
enabled by setting this bit, and the address to the configured
priority tag within priority tags 190 will be programmed in
the Priority Tag Addr field of the address resolution record
entry linked to this protocol entry to link the priority tag to
the address resolution record entry.

CPU 80 determines whether any priorities are configured
for this flow by cross-referencing the priority tables 77-1 . . .
77—P in configuration table 85 with the flow identification
information for this side of the flow. If any of the established
priorities correspond to this flow, a priority tag will be
configured for it. Each priority tag contains 1 bit of match
information. If packets belonging to the flow are to be
forwarded with priority, CPU 80 enables priority by setting
the Priority Enable field in the protocol entries of both ends
of the flow, configures a priority tag in priority tags 190, and
links the address resolution records of both ends of the flow

to the same configured priority tag. The level of priority
associated with this flow is determined by the Priority Queue
field and the service level for that queue programmed in
priority configuration registers 125.

The Priority Queue field is valid if the Priority Enable bit
is set for the flow. CPU 80 initially sets this field to zero. If
a priority is configured for this flow, CPU fills this field with
the priority level with which all packets belonging to this
flow will be forwarded by the switch. For example, if eight
levels of priority are supported, there will be eight I/O
queues associated with each port 50-1 . . . 50-N, and this
field will indicate which one of the queues into which
packets belonging to this flow will be placed.

Each queue’s corresponding priority level is user config-
urable. That is, a system administrator can program the
number of times per service interval a queue having that
priority level should be serviced on a system wide basis.
This configuration is stored in priority level configuration
registers 125. One such register exists for each priority
level/queue. For example, if a value of 5 is programmed into
priority configuration register for priority level 4, the queue
corresponding to that priority level will be serviced 5 times
in a service interval. The service interval is determined by
adding together all the priority level values programmed into
each priority configuration register. Weighted Fair Queueing
is implemented by servicing the queues with equal priority
after servicing the queues in accordance with established
priorities (i.e. after all the queues are serviced per the
priorities in priority level configuration registers 125, ser-
vice queue 1, once, queue 2 once and so on until all the
queues are serviced). This ensures that even the lowest
priority queues are serviced once every service interval.

After creating the protocol entry for this unresolved
portion of the flow, CPU 80 stores the entry in protocol entry
table 160 at the Protocol Increment associated with the

protocol used by the hosts of this flow, which increment is
referenced to the Protocol Ofiset for this flow. Then CPU 80

links the protocol entry with the address resolution record
entry for this flow by writing the Protocol Ofiset from the
Base Protocol Address where this record is stored in the

Protocol Ofl'set field in the address resolution record entry
(step 812)-

NOAC EX. 1015 Page 351

 



NOAC Ex. 1015 Page 352



NOAC Ex. 1015 Page 353



NOAC Ex. 1015 Page 354



NOAC Ex. 1015 Page 355



NOAC Ex. 1015 Page 356



NOAC Ex. 1015 Page 357



NOAC Ex. 1015 Page 358



NOAC Ex. 1015 Page 359



NOAC Ex. 1015 Page 360



NOAC Ex. 1015 Page 361



NOAC Ex. 1015 Page 362



NOAC Ex. 1015 Page 363



NOAC Ex. 1015 Page 364



NOAC Ex. 1015 Page 365



NOAC Ex. 1015 Page 366



NOAC Ex. 1015 Page 367



NOAC Ex. 1015 Page 368



NOAC Ex. 1015 Page 369



NOAC Ex. 1015 Page 370



NOAC Ex. 1015 Page 371



NOAC Ex. 1015 Page 372



NOAC Ex. 1015 Page 373



NOAC Ex. 1015 Page 374



NOAC Ex. 1015 Page 375



NOAC Ex. 1015 Page 376



NOAC Ex. 1015 Page 377



NOAC Ex. 1015 Page 378



NOAC Ex. 1015 Page 379



NOAC Ex. 1015 Page 380



NOAC Ex. 1015 Page 381



NOAC Ex. 1015 Page 382



NOAC Ex. 1015 Page 383



NOAC Ex. 1015 Page 384



NOAC Ex. 1015 Page 385



NOAC Ex. 1015 Page 386



NOAC Ex. 1015 Page 387



NOAC Ex. 1015 Page 388



NOAC Ex. 1015 Page 389



NOAC Ex. 1015 Page 390



NOAC Ex. 1015 Page 391



NOAC Ex. 1015 Page 392



NOAC Ex. 1015 Page 393



NOAC Ex. 1015 Page 394



NOAC Ex. 1015 Page 395



NOAC Ex. 1015 Page 396



NOAC Ex. 1015 Page 397



NOAC Ex. 1015 Page 398



NOAC Ex. 1015 Page 399



NOAC Ex. 1015 Page 400



NOAC Ex. 1015 Page 401



NOAC Ex. 1015 Page 402



NOAC Ex. 1015 Page 403



NOAC Ex. 1015 Page 404



NOAC Ex. 1015 Page 405



NOAC Ex. 1015 Page 406



NOAC Ex. 1015 Page 407



NOAC Ex. 1015 Page 408



NOAC Ex. 1015 Page 409



NOAC Ex. 1015 Page 410



NOAC Ex. 1015 Page 411



NOAC Ex. 1015 Page 412



NOAC Ex. 1015 Page 413



NOAC Ex. 1015 Page 414



NOAC Ex. 1015 Page 415



NOAC Ex. 1015 Page 416



NOAC Ex. 1015 Page 417



NOAC Ex. 1015 Page 418



NOAC Ex. 1015 Page 419



NOAC Ex. 1015 Page 420



NOAC Ex. 1015 Page 421



NOAC Ex. 1015 Page 422



NOAC Ex. 1015 Page 423



NOAC Ex. 1015 Page 424



NOAC Ex. 1015 Page 425



NOAC Ex. 1015 Page 426



NOAC Ex. 1015 Page 427



NOAC Ex. 1015 Page 428



NOAC Ex. 1015 Page 429



NOAC Ex. 1015 Page 430



NOAC Ex. 1015 Page 431



NOAC Ex. 1015 Page 432



NOAC Ex. 1015 Page 433



NOAC Ex. 1015 Page 434



NOAC Ex. 1015 Page 435



NOAC Ex. 1015 Page 436



NOAC Ex. 1015 Page 437



NOAC Ex. 1015 Page 438



NOAC Ex. 1015 Page 439



NOAC Ex. 1015 Page 440



NOAC Ex. 1015 Page 441



NOAC Ex. 1015 Page 442



NOAC Ex. 1015 Page 443



NOAC Ex. 1015 Page 444



NOAC Ex. 1015 Page 445



NOAC Ex. 1015 Page 446



NOAC Ex. 1015 Page 447



NOAC Ex. 1015 Page 448



NOAC Ex. 1015 Page 449



NOAC Ex. 1015 Page 450



NOAC Ex. 1015 Page 451



NOAC Ex. 1015 Page 452



NOAC Ex. 1015 Page 453



NOAC Ex. 1015 Page 454



NOAC Ex. 1015 Page 455



NOAC Ex. 1015 Page 456



NOAC Ex. 1015 Page 457



NOAC Ex. 1015 Page 458



NOAC Ex. 1015 Page 459



NOAC Ex. 1015 Page 460



NOAC Ex. 1015 Page 461



NOAC Ex. 1015 Page 462



NOAC Ex. 1015 Page 463



NOAC Ex. 1015 Page 464



NOAC Ex. 1015 Page 465



NOAC Ex. 1015 Page 466



NOAC Ex. 1015 Page 467



NOAC Ex. 1015 Page 468



NOAC Ex. 1015 Page 469



NOAC Ex. 1015 Page 470



NOAC Ex. 1015 Page 471



NOAC Ex. 1015 Page 472



NOAC Ex. 1015 Page 473



NOAC Ex. 1015 Page 474



NOAC Ex. 1015 Page 475



NOAC Ex. 1015 Page 476



NOAC Ex. 1015 Page 477



NOAC Ex. 1015 Page 478



NOAC Ex. 1015 Page 479



NOAC Ex. 1015 Page 480



NOAC Ex. 1015 Page 481



NOAC Ex. 1015 Page 482



NOAC Ex. 1015 Page 483



NOAC Ex. 1015 Page 484



NOAC Ex. 1015 Page 485



NOAC Ex. 1015 Page 486



NOAC Ex. 1015 Page 487



NOAC Ex. 1015 Page 488



NOAC Ex. 1015 Page 489



NOAC Ex. 1015 Page 490



NOAC Ex. 1015 Page 491



NOAC Ex. 1015 Page 492



NOAC Ex. 1015 Page 493



NOAC Ex. 1015 Page 494



NOAC Ex. 1015 Page 495



NOAC Ex. 1015 Page 496



NOAC Ex. 1015 Page 497



NOAC Ex. 1015 Page 498



NOAC Ex. 1015 Page 499



NOAC Ex. 1015 Page 500



NOAC Ex. 1015 Page 501



NOAC Ex. 1015 Page 502



NOAC Ex. 1015 Page 503



NOAC Ex. 1015 Page 504



NOAC Ex. 1015 Page 505



NOAC Ex. 1015 Page 506



NOAC Ex. 1015 Page 507



NOAC Ex. 1015 Page 508



NOAC Ex. 1015 Page 509



NOAC Ex. 1015 Page 510



NOAC Ex. 1015 Page 511



NOAC Ex. 1015 Page 512



NOAC Ex. 1015 Page 513



NOAC Ex. 1015 Page 514



NOAC Ex. 1015 Page 515



NOAC Ex. 1015 Page 516



NOAC Ex. 1015 Page 517



NOAC Ex. 1015 Page 518



NOAC Ex. 1015 Page 519



NOAC Ex. 1015 Page 520



NOAC Ex. 1015 Page 521



NOAC Ex. 1015 Page 522



NOAC Ex. 1015 Page 523



NOAC Ex. 1015 Page 524



NOAC Ex. 1015 Page 525



NOAC Ex. 1015 Page 526



NOAC Ex. 1015 Page 527



NOAC Ex. 1015 Page 528



NOAC Ex. 1015 Page 529



NOAC Ex. 1015 Page 530



NOAC Ex. 1015 Page 531



NOAC Ex. 1015 Page 532



NOAC Ex. 1015 Page 533



NOAC Ex. 1015 Page 534



NOAC Ex. 1015 Page 535



NOAC Ex. 1015 Page 536



NOAC Ex. 1015 Page 537



NOAC Ex. 1015 Page 538



NOAC Ex. 1015 Page 539



NOAC Ex. 1015 Page 540



NOAC Ex. 1015 Page 541



NOAC Ex. 1015 Page 542



NOAC Ex. 1015 Page 543



NOAC Ex. 1015 Page 544



NOAC Ex. 1015 Page 545



NOAC Ex. 1015 Page 546



NOAC Ex. 1015 Page 547



NOAC Ex. 1015 Page 548



NOAC Ex. 1015 Page 549



NOAC Ex. 1015 Page 550



NOAC Ex. 1015 Page 551



NOAC Ex. 1015 Page 552



NOAC Ex. 1015 Page 553



NOAC Ex. 1015 Page 554



NOAC Ex. 1015 Page 555



NOAC Ex. 1015 Page 556



NOAC Ex. 1015 Page 557



NOAC Ex. 1015 Page 558



NOAC Ex. 1015 Page 559



NOAC Ex. 1015 Page 560



NOAC Ex. 1015 Page 561



NOAC Ex. 1015 Page 562



NOAC Ex. 1015 Page 563



NOAC Ex. 1015 Page 564



NOAC Ex. 1015 Page 565



NOAC Ex. 1015 Page 566



NOAC Ex. 1015 Page 567



NOAC Ex. 1015 Page 568



NOAC Ex. 1015 Page 569



NOAC Ex. 1015 Page 570



NOAC Ex. 1015 Page 571



NOAC Ex. 1015 Page 572



NOAC Ex. 1015 Page 573



NOAC Ex. 1015 Page 574



NOAC Ex. 1015 Page 575



NOAC Ex. 1015 Page 576



NOAC Ex. 1015 Page 577



NOAC Ex. 1015 Page 578



NOAC Ex. 1015 Page 579



NOAC Ex. 1015 Page 580



NOAC Ex. 1015 Page 581



NOAC Ex. 1015 Page 582



NOAC Ex. 1015 Page 583



NOAC Ex. 1015 Page 584



NOAC Ex. 1015 Page 585



NOAC Ex. 1015 Page 586



NOAC Ex. 1015 Page 587



NOAC Ex. 1015 Page 588



NOAC Ex. 1015 Page 589



NOAC Ex. 1015 Page 590



NOAC Ex. 1015 Page 591



NOAC Ex. 1015 Page 592



NOAC Ex. 1015 Page 593



NOAC Ex. 1015 Page 594



NOAC Ex. 1015 Page 595



NOAC Ex. 1015 Page 596



NOAC Ex. 1015 Page 597



NOAC Ex. 1015 Page 598



NOAC Ex. 1015 Page 599



NOAC Ex. 1015 Page 600



NOAC Ex. 1015 Page 601



NOAC Ex. 1015 Page 602



NOAC Ex. 1015 Page 603



NOAC Ex. 1015 Page 604



NOAC Ex. 1015 Page 605



NOAC Ex. 1015 Page 606



NOAC Ex. 1015 Page 607



NOAC Ex. 1015 Page 608



NOAC Ex. 1015 Page 609



NOAC Ex. 1015 Page 610



NOAC Ex. 1015 Page 611



NOAC Ex. 1015 Page 612



NOAC Ex. 1015 Page 613



NOAC Ex. 1015 Page 614



NOAC Ex. 1015 Page 615



NOAC Ex. 1015 Page 616



NOAC Ex. 1015 Page 617



NOAC Ex. 1015 Page 618



NOAC Ex. 1015 Page 619



NOAC Ex. 1015 Page 620



NOAC Ex. 1015 Page 621



NOAC Ex. 1015 Page 622



NOAC Ex. 1015 Page 623



NOAC Ex. 1015 Page 624



NOAC Ex. 1015 Page 625



NOAC Ex. 1015 Page 626



NOAC Ex. 1015 Page 627



NOAC Ex. 1015 Page 628



NOAC Ex. 1015 Page 629



NOAC Ex. 1015 Page 630



NOAC Ex. 1015 Page 631



NOAC Ex. 1015 Page 632



NOAC Ex. 1015 Page 633



NOAC Ex. 1015 Page 634



NOAC Ex. 1015 Page 635



NOAC Ex. 1015 Page 636



NOAC Ex. 1015 Page 637



NOAC Ex. 1015 Page 638



NOAC Ex. 1015 Page 639



NOAC Ex. 1015 Page 640



NOAC Ex. 1015 Page 641



NOAC Ex. 1015 Page 642



NOAC Ex. 1015 Page 643



NOAC Ex. 1015 Page 644



NOAC Ex. 1015 Page 645



NOAC Ex. 1015 Page 646



NOAC Ex. 1015 Page 647



NOAC Ex. 1015 Page 648



NOAC Ex. 1015 Page 649



NOAC Ex. 1015 Page 650



NOAC Ex. 1015 Page 651



NOAC Ex. 1015 Page 652



NOAC Ex. 1015 Page 653



NOAC Ex. 1015 Page 654



NOAC Ex. 1015 Page 655



NOAC Ex. 1015 Page 656



NOAC Ex. 1015 Page 657



NOAC Ex. 1015 Page 658



NOAC Ex. 1015 Page 659



NOAC Ex. 1015 Page 660



NOAC Ex. 1015 Page 661



NOAC Ex. 1015 Page 662



NOAC Ex. 1015 Page 663



NOAC Ex. 1015 Page 664



NOAC Ex. 1015 Page 665



NOAC Ex. 1015 Page 666



NOAC Ex. 1015 Page 667



NOAC Ex. 1015 Page 668



NOAC Ex. 1015 Page 669



NOAC Ex. 1015 Page 670



NOAC Ex. 1015 Page 671



NOAC Ex. 1015 Page 672



NOAC Ex. 1015 Page 673



NOAC Ex. 1015 Page 674



NOAC Ex. 1015 Page 675



NOAC Ex. 1015 Page 676



NOAC Ex. 1015 Page 677



NOAC Ex. 1015 Page 678



NOAC Ex. 1015 Page 679



NOAC Ex. 1015 Page 680



NOAC Ex. 1015 Page 681



NOAC Ex. 1015 Page 682



NOAC Ex. 1015 Page 683



NOAC Ex. 1015 Page 684



NOAC Ex. 1015 Page 685



NOAC Ex. 1015 Page 686



NOAC Ex. 1015 Page 687



NOAC Ex. 1015 Page 688



NOAC Ex. 1015 Page 689



NOAC Ex. 1015 Page 690



NOAC Ex. 1015 Page 691


