
Rosenfeld
Agent for Applicant(s)
Reg. No. 38687

Date: 6/30/1999

0R-

OUR DOCKET NO. APPTIT-0(11

IN THE U.S. PATENT AND TRADEMARK OFFICE
Provisional Application Cover Sheet

nASSISTANT COMMISSIONER FOR PATENTS
c=o

0 Washington, D.C. 20231
Ca) ••••=m.

la

- IU This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53 (b)(2).

- O
INVENTOR(s)/APPLICANT(s)

Last Name
	

First Name, MI 	 Residence (City and Either State or Foreign Country)

Dietz 	 Russel S. 	 San Jose, CA
Maixner 	 Joseph R. 	 Santa Cruz, CA
Koppenhaver 	 Andrew A. 	 Vienna, VA
Additional inventors are being named on separately numbered sheets attached hereto.

TITLE OF THE INVENTION

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

CORRESPONDENCE ADDRESS

Dov Rosenfeld
5507 College Avenue
Suite 2
Oakland, CA 94618

ENCLOSED APPLICATION PARTS (check all that apply)

(X) Specification 	Number of Pages .. 	242
(X) Drawing(s) 	Number of Pages 	25
() Power of Attorney
(X) Additional inventors are being named on separately numbered sheets attached hereto.

METHOD OF PAYMENT

A check in the amount of $ 150.00 to cover the filing fee is enclosed.

If the check is insufficient, please charge any missing fees to Deposit Account 50-0292 .

Respectfully submitted,

'Express Mail" label no. EE516848835US

Date of Deposit: 6/30/1999

1 hereby certify that this is being deposited with the United States
Postal Service 'Express Mail Post Office to Addressee' service under
37 CFR 1.10 on the date indicated above and is addressed to the
Assistant Commissioner for Patents, Washington, D.C. 20231.

Telephone No.: +1-510-547-3378

By
Typed 	e: Dov Rosenfeld

NOAC Ex. 1014 Page 1

4
ATTORNEY DOCKET NO. APPTIT-001

Provisional Application Cover Sheet (cont.)

INVENTOR(s)/APPLICANT(s)

Last Name
	

First Name, MI 	 Residence (City and Either State or Foreign Country)

Bares 	 William H. 	 Germantown, Tennessee

Sarkissian 	 Haig A. 	 Bexar County, Texas

NOAC Ex. 1014 Page 2

PTO/SB/16 (2-98)
Approved for use through 01/31/2001. OMB 0651-0037

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a
valid OMB control number.

Please type a plus sign (+) inside this box —> 	El

PROVISIONAL APPLICATION FOR PATENT COVER SHEET
PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

• - 	-
INVENTOR(S)

Given Name (first and middle [if any)) Family Name or Surname
Residence

(City and either State or Foreign Country)

Russel S.
Joseph It
Andrew A.

Dietz
Maixner
Koppenhaver

San Jose, CA
Santa Cruz , CA
Vienna, VA

li 	Additional inventors are being named on the 1 	separately numbered sheets attached hereto

TITLE OF THE INVENTION (280 characters max)
METRODANDAPPARATISFORMONITORINGTRAWICINANZIWORK

Direct all correspondence to: 	CORRESPONCENCEADDRESS Place Customer Number

X Customer Number 21921
NV

Bar Code Label here

OR Type Customer Number here
X Firm or

Individual Name
Dov Rosenfeld

Address 5507 College Avenue, Suite 2

Address

City Oakland State CA ZIP 94618

Country USA Telephone +1-510-547-
3378

Fax +1-510-653-
7992

ENCLOSED APPLICATION PARTS (chock all that apply)

X Specification Number of Pages d-171 a. Small Entity Statement

X Drawing(s) Number of Sheets ac X Other (specify) check, postcard
METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (check one)

x A check or money order is enclosed to cover the filing fees 	 FILING FEE
AMOUNT ($)

X The Commissioner Is hereby authorized to charge any mising
fees or credit any overpayment to Deposit Account Number:

50-0292 $150.

The invention was made by an agency of the United States Government or under a contract with an agency of
the United States Government.

X No.
Yee, the name of the U.S. Government agency and the Government contract number are:

Respectfully submitted,

SIGNATURE

Date June 30,
1999

REGISTRATION NO.
(if appropriate)

38,687

TYPED or PRINTED NAME Dov Rosenfeld

TELEPHONE +1-510-547-3378 Docket Number: APPTIT-001

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT
This collection of information is required by 37 CFR 1.51. The Information is used by the public to file (and by the PTO to process) a
provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to
complete, including gathering, prepanng, and submitting the complete provisional application to the PTO. Time will vary depending upon the
individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should
be sent to the Chief Information Officer, U.S. Patent and Trademark Office. U.S. Department of Commerce, Washington, D.C., 20231. DO
NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box provisional Application, Assistant Commissioner for
Patents, Washington, D.C., 20231.

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as
Express Mail (Express Mail Label: EE516848835US in an envelope addressed to Box Provision a pplication,
Assistant Commissioner for Patents, Washington, D.C. 20231 on.

Date: 	 Pis et 6:11 	 Signed:

Name: 	enfeld, Reg. No. 38,687

NOAC Ex. 1014 Page 3

PROVISIONAL APPLICATION COVER SHEET
Additional Page

PTO/SB/16 (2-98)
Approved for use through 01/31/2001. OMB 0651-0037

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a

I Docket Number APPTITUDE-001
Type a plus sign(+)
inside this box 3

+

INVENTOR(S) /APPLICANT(S)

Given Name (first and middle[if any]) Family or Surname
Residence

(City and either State or Foreign Country)

William H.
Haig A.

Bares
Sarkissian

Germantown, Tennessee
Bexar County, Texas

Number 1 of 1 additional pages

NOAC Ex. 1014 Page 4

Our Ref./Docket No: APPTIT-001

METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

Inventor(s):

DIETZ, Russel S.

San Jose, CA

MAIXNER, Joseph R.

Santa Cruz, CA

KOPPENHAVER, Andrew A.

Vienna, VA

BARES, William H.

Germantown, Tennessee

SARKISSIAN, Haig A.

Bexar County, Texas

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as
Express Mail (Express Mail Label: EE516848835US in an envelope addressed to Box Provisional Application,
Assistant Commissioner for Patents, Washington, D.C. 20231 on.

Date: 	 Signed: 	

Name: Dov Rosenfeld, Reg. No. 38,687

NOAC Ex. 1014 Page 5

1

METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

FIELD OF INVENTION

The present invention relates to computer networks, and more specifically to the

5 	real-time elucidation of packets communicated within a data network, for example,

between a client and a server, the elucidation including classification by protocol and

application program.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is

10 	subject to copyright protection. The copyright owner has no objection to the facsimile

reproduction by anyone of the patent document or the patent disclosure, as it appears in

the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND TO THE PRESENT INVENTION

15 	 There has long been a need for network activity monitors. The popularity of

networks used as a collection of clients obtaining services from one or more servers on

the network, and especially the recent popularity of the Internet and other internets (an

"internet" is a plurality of interconnected networks to form a larger single network) has

made it increasingly important to be able to monitor the use of services offered on the

20 	network and rate those services accordingly. For example, objective information such as

which services (i.e., application programs) are being used, who is using them, how often

they have been accessed, when they are being accessed, how long accesses have been,

and so forth. Additionally, remote access by selected users to generate reports in real

time on network use is needed. Finally, an network monitor which can provide alarms in

25 	real-time to notify selected users of network or site problems is needed.

Selected network activities may be retrospectively analyzed by reviewing log

files. Log files are maintained by network servers and gateways. Log file monitors must

access this data and analyze ("mine") its contents to determine statistics about the server

or gateway. However, there exist several problems with this method. First, log file

NOAC Ex. 1014 Page 6

2

information does not provide any real-time usage map. Secondly, log file mining does

not supply complete information. The method relies on logs maintained by numerous

network devices and servers and the information in them must be subjected to refining

and correlation. Sometimes, for example in the case of information about NetMeeting®

	

5 	(Microsoft Corporation, Redmond, Washington) sessions where two computers connect

directly on the network and the data is never seen by a server or gateway, information is

simply not available to any server or gateway, in order to make a log file entry. Creating

log files requires data logging features of network elements to be enabled, placing a

substantial load on the device performance, thus reducing network performance. Log-

	

in 	files also require a substantial amount of maintenance (there is no standard way of

storing for log files), and grow rapidly.

NetFlow® (Cisco Systems, Inc., San Jose, California), RMON2, and other

network monitor devices are available for the real-time monitoring of networks, but

these lack visibility into application content and context and are therefore typically

	

15 	limited to providing network layer level information.

Pattern-matching parser techniques wherein a packet is parsed and pattern filters

are applied also are known. These too are limited in how deep into the protocol stack

they can examine packets.

What is needed, therefore, is a network monitor that makes it possible to

	

20 	continuously analyze all user sessions on a heavily trafficked network, remotely and in a

noninvasive manner. Such a monitor should enable non-intrusive, remote detection,

characterization, analysis and capture of all information passing through any point on the

network, i.e., of all packets and all packet streams passing through any location in the

network. Not only should all the packets be detected and analyzed, but for each of these

	

25 	packets, the network monitor should determine the protocol (e.g., http, ftp, H.323, VPN,

etc.,), the application/use within the protocol (e.g., voice, video, data, real-time data,

etc.,) and an end user's pattern of use within each application or the application context

(e.g., options selected, service level delivered, duration, time of day, data requested, and

so forth). The network monitor also should not be reliant upon server resident

	

30 	information such as log files. It should thus allows a user such as a network

administrator or an Internet service provider (ISP) the means to objectively measure and

NOAC Ex. 1014 Page 7

3

analyze network activity, customize the type of data that collected and analyzed,

undertake real time analysis and receive timely notification of network problems.

Some prior art packet monitors classify packets into connection flows. The term

connection flow is sometimes used to describe all the packets involved with a single

5 	connection. A conversational flow, on the other hand, is the sequence of packets that are

exchanged in any direction as a result of an activity, for example, the running of an

application on a server as requested by a client. It is desirable to be able to identify and

classify conversational flows.

Some conversational flows involve more than one connection, and some even

io 	involve more than one exchange of packets between a client and a server. This is a

particularly true when using client/server protocols, such as RPC, DCOMP, and SAP,

that enable a service to be set up or defined prior to any use of that service. For example,

SAP (Service Advertising Protocol) is a NetWare (Novell Systems, Provo, Utah)

protocol used to identify the services and addresses of servers attached to a network. In a

15 	first exchange, a client sends a SAP request to a server, for example, for print service.

The server sends a SAP reply that identifies a particular address, for example, SAP #5, as

the print service on that server. Such may be responses used to update a table, for

example in a router, known as the Server Information Table. A client who has

inadvertently seen this reply or who has access to the table (via the router that has the

20 	Server Information Table, for example) would know that SAP #5 for such this server is a

print service. Therefore, in order to print data on the server, such a client does not need

to make the request for a print service, but simply to send data to be printed specifying

SAP #5. This sending of data to be printed again involves an exchange of data between a

client and a server, disjoint from the previous exchange which was with a different client

25 	setting up that SAP #5 is a print service on this server is a second connection. It is

desirable for a network packet monitor to be able to "virtually concatenate" the first

exchange that defines SAP #5 as the print service on the server with the second exchange

that uses the print service. The two packet exchanges would then be correctly identified

as being part of the same flow if the clients were the same. They would even be

30 	recognized if the clients were not the same. One feature of the invention is to so correctly

identify the second exchange as being associated with a print service on the server.

NOAC Ex. 1014 Page 8

4

Other protocols that are similar in that they may lead to disjointed conversational

flows include DCOM (Distributed Component Object Model), formerly called Network

OLE (Microsoft Corporation, Redmond, Washington), which is Microsoft's technology

for distributed objects, RPC (Remote Procedure Call), and CORBA (Common Object

5 	Request Broker Architecture). RPC is a programming interface from Sun Microsystems

(Palo Alto, California) that allows one program to use the services of another program in

a remote machine. DCOM defines the remote procedure call which allows those objects

to be run remotely over the network. DCOM Microsoft's counterpart to CORBA, a

standard from the Object Management Group (OMG) for communicating between

to 	distributed objects (objects are self-contained software modules). CORBA provides a

way to execute programs (objects) written in different programming languages running

on different platforms no matter where they reside in the network.

Prior art network monitors do not presently have the ability to recognize such

disjointed flows as belonging to the same conversational flow.

15 	 The data value in monitoring network communications has been recognized by

many inventors. Chiu, et al., describe a method for collecting information at the session

level in a computer network in United States Patent 5,101,402, titled "APPARATUS

AND METHOD FOR REAL-TIME MONITORING OF NETWORK SESSIONS AND

A LOCAL AREA NETWORK." Phael describes a network activity monitor that

20 	processes only randomly selected packets in United States Patent 5,315,580, titled

"NETWORK MONITORING DEVICE AND SYSTEM." Nakamura teaches a network

monitoring system in United States Patent 4,891,639, titled "MONITORING SYSTEM

OF NETWORK." Ross, et al., teach a method and apparatus for analyzing and

monitoring network activity in United States Patent 5,247,517, titled "METHOD AND

25 	APPARATUS FOR ANALYSIS NETWORKS," McCreery, et al., describe an Internet

activity monitor that decodes packet data at the Internet protocol level layer in United

States Patent 5,787,253, titled "APPARATUS AND METHOD OF ANALYZING

INTERNET ACTIVITY,"

NOAC Ex. 1014 Page 9

5

SUMMARY

One aspect of the present invention is providing a network monitor that can

recognize and classify at all protocol layer levels conversational flows that pass in either

direction at a point in a network.

5 	 Another aspect of the present invention is providing a network monitor that can

recognize and classify at all packets that are exchanges between a client and a server into

respective client/server applications.

Another aspect of the present invention is providing a network monitor that can

determine the connection and flow progress between clients and servers by the individual

to 	packets exchanged over a network.

Another aspect of the present invention is providing a network monitor that can

determine the connection and flow progress between clients and servers by the individual

packets exchanged over a network.

Another aspect of the present invention is providing a network monitor that can

15 	be used to help tune the performance of a network according to the current mix of

client/server applications needing network resources.

A still further aspect of the present invention is providing a network monitor that

can maintain statistics relevant to the mix of client/server applications using network

resources.

20 	 Another aspect of the present invention is providing a network monitor that

reports on the occurrences of specific sequences of packets used by particular

applications for client/server network conversations.

Another aspect of an embodiment of the invention is properly analyzing each of

the packets exchanged between a client and a server and maintain information relevant to

25 	the current state of each of these conversations.

Another aspect of an embodiment of the invention is a flexible processing system

that can be tailored or adapted as new application entered the client/server market.

Another feature of an embodiment of the invention is maintaining statistics

NOAC Ex. 1014 Page 10

6

relevant to the conversations in a client/server network as their classified by an

individual application.

Another feature of an embodiment of the invention is reporting a specific

identifier, which may be used by other network, oriented devices to identify the series of

5 	packets with a specific application for a specific client/server network conversation.

Additional features and advantages of the invention will be clear from the

description which follows.

In general, the embodiments of the present invention overcome the problems and

disadvantages of the prior art.

to 	More aspects and advantages of the present invention are set forth in part in a

description that follows, and in part are obvious from a description, or may be learned by

practice of the present invention. The objects and advantages of the present invention

may be realized by the elements and combinations particularly pointed out in the

appended claims.

15 	 Embodiments of the present invention overcome the problems and disadvantages

of prior art and achieves the objects of the present invention by analyzing each of the

packets passing through any point in the network in either direction, extracting a

signature for th conversation which may then be used for identifying the conversational

flows. Another feature of the invention is forming and remembering the state of any

20 	conversational flow, which is deteti 	lined by the relationship between individual packets

of the conversational flow and the entire conversational flow over the network. By so

remembering the state of a flow, a feature of the invention is to the determine the context

of the conversational flow, including the application program it relates to and such

parameters as the time, length of conversation, data rate, etc.

25 	 A monitor embodiments of the present invention determine the identities of any

and all application programs executing on the network by evaluating each and every

packet conversing between clients and servers. In one embodiment, the monitor

comprises parser that includes a packet parsing module, and an identifying information

extracting module to faun a signature from a packet received by the parser. The monitor

30 	further comprises an analyzer which receives the signature from the parser and comprises

NOAC Ex. 1014 Page 11

7

a flow lookup/update engine, a flow insertion and deletion engine, a state processor, a

cache and a unified memory controller. Each of these analyzer elements work in parallel

to create and update flow recognition signatures. The monitor is scalable to handle more

protocols and applications. As a flow signature is examined by the monitor, the lookup

5 	engine attempts to find the signature in a flow-entry database. If the first part of the flow

matches an already identified signature that resides in the cache, the lookup engine

retrieves the flow from the cache, else if the first part of the flow matches an already

identified signature that is not in the cache, it retrieves the flow from a flow database.

The flow entry for previously encountered flows preferably includes state information,

10 	and this state information is used in the state processor to execute any operations defined

for the state, and to determine the next state. The flow entry is updated by adding values

to counters in the flow-entry database entry. If a flow does not exist, the protocol is

identified and the state processor starts executing whatever operations are defined for the

initial state. The state processor sends a flow signature to the flow insertion and deletion

15 	engine that adds the flow to the database as a new item. The state processor updates the

flow based on the current state and the flow-signature information. The state processor

processes single and multi packet protocol recognition. It may have to search through a

series of possible states to determine the flow's actual state. The result of this processing

is a consolidated flow entry. This enables the monitor to correctly determine disjointed

20 	flows. For example, a PointCast session (PointCast, Inc., Cupertino, CA) will open

multiple conversations packet-by-packet that might look like separate flows to prior art

monitors. However, each of these connections is merely a sub-flow under the PointCast

master flow, so a single flow that consolidates all of the information for the flow is

desired. The analyzer is able to so consolidate individual connections since the state of

25 	the overall flow is maintained by the monitor. The unified memory controller can be

setup to work with various memory device types and controls an SRAM tag memory for

shadowing of flow entries. The cache is used to optimize memory bandwidth. On a

typical network, the packets will have a certain amount of congruity so a cache

architecture can have a relatively high hit rate.

30 Invention Overview

A real-time traffic classification system, which has the ability to derive the

NOAC Ex. 1014 Page 12

8

application or service being used over the data communications network, comprises the

following modules found in Fig. 10 and Fig. 11. A pattern analysis and recognition

engine 1006, a pattern extraction engine 1007, a unique signature generation engine

(elements of 1007), a signature matching engine 1107, a protocol and layer identification

5 	engine (elements of 1107), the state oriented processing engine 1108, the derived set of

rules 1109 and a set of active and in process signatures and records (Fig. 3, 319). The

pattern analysis and recognition engine 1006 is used to derive and determine the type of

network packets that exist on the network. Once a pattern match has occurred, the pattern

is passed on to the pattern extraction engine 1007 for the generation of a signature. The

10 	pattern extraction engine extracts components from each of the packets required in the

formation of unique signature. Once these elements have been extracted from the

packets, the information is passed on to the unique signature generation engine 1007.

The signature generation engine then sequences and formats the extracted information

into a unique signature that will be used to identify other packets within the same

15 	conversation on the network. The contents of the unique signature are passed on to a

matching engine 1107, which looks up the signature from the database of currently

known conversations or flows. If the signature-matching engine determines an existing

conversation, information is passed on to update the contents of the record in the

database and processing is teiminated for this packets 1112. If either no match is found

20 	or a match is found with remaining state or rules to be processed, the protocol layer

identification engine 1107 is initiated to derive the layering involved in the packets. With

the layering information interpreted and understood, the system begins the process of

protocol application identification. This process is initiated by the state oriented

processing engine 1108. This processing engine uses a set of derive states or rules to

25 	apply to each of the individual packets 1109 and signature these to determine the extent

of the application used in the conversation. When the processing engine determines the

application component of a conversation, that information is updated in the conversation

record for this particular flow. In this way, multiple packets from a conversation can be

used to derive the application component of a particular set of packets exchanged

30 	between nodes in a network. In addition to maintaining the actual application

information relative to conversation in a network, the system maintains real-time

statistics relevant to these applications.

NOAC Ex. 1014 Page 13

9

Packet Parsing Sub-System

The packet parsing system consists of two main sub engines. These engines are

the pattern analysis and recognition engine (PAR) and the field extraction engine (FEE).

The pattern analysis and recognition engine interprets each packet that is seen

5 	entering the system. As individual fields from each packet enter the system the field

contents are analyzed for specific patterns. As more fields under the system fewer pattern

to remain to be analyzed and through the process of elimination particular pattern for

packet is found.

The patterns for this engine are stored in a special pattern database. The pattern

to 	database contains a sparsely populated three-dimensional array of patterns and links to

additional those beyond the patterns that are being currently analyzed. Because this is a

sparsely populated three-dimensional array, as patterns enter the system the depth of

nodes is eliminated rapidly. Once a node does not contain a link to a deeper level, the

pattern matching is complete. At that point, the field extraction engine instruction found

15 	at that node in the array is sent to the field extraction engine with this packet.

The field extraction engine takes the packet contents and the extraction

instructions from the pattern analysis and recognition engine to continue processing the

packet. Each of the elements found within the instructions of the field extraction engine

component are removed from the packet and inserted into a buffer for signature

20 	generation. Once all the operations requested of the field extraction engine are completed

for this packet, the signature is set as complete, and a hash key is generated to identify

this signature.

Packet Analysis Sub-System.

When the parsing system has successfully completed the task of deriving,

25 	determining and extracting the required information, the remaining pieces of the packet

and the generated signature for the packet are passed to the packet analysis system.

All of these elements from the packets are formulated into a flow signature and

stored in the unified flow key buffer of the packet analysis system. This buffer is

designed to maintain and hold multiple flow signature is from the packets being analyzed

30 	in a client/server network. While the flow signature of a packet exists in the unified flow

NOAC Ex. 1014 Page 14

10

key buffer, several operations are performed to further derive the application content of

the packet involved in the client/server conversation.

The first step in the process of packet analysis is to look up the instance in the

current database of known flow signature ease for packets. The look up/update engine

5 	accomplishes this task. This engine uses the hash key and remaining fields of the flow

signature from the packet to determine if this packet is flow record exists in the flow

database of the packet analysis system. Once the look up processing has been completed

the flag stating whether it was found or is new, will be set within the unified flow key

buffer structure for this packet flow signature.

10 	After the packet flow signature has been looked up and contents of the current

flow signature database tree, the state processor will begin analyzing the packet payload

to further derive the application component of this packet. The exact operation of the

state processor and functions performed by at will very depending on the current packet

seek once in the stream of a conversation. The state processor will performed the next

15 	logical operation that was stored from the previous packet seen with this same flow

signature. If any processing is required on this packet, the state processor will execute

state processor instructions from the state processor instruction database until they're

either are no more left for this packet or the instruction signifies and processing for this

packet.

20 	 Since the seek once love packet exchanges between client and server is crucial in

deriving the application component of a conversation, the state processor functions are

required to be variable and program. Each new application that exists on the network

may have different characteristics for identifying the components within packets. The

state processor functions take into consideration this variable method of communicating

25

	

	in a client/server network. The actual operations performed by the state processor are

described in the section under state processor instruction database operations.

If during the look up process for this particular packet flow signature, the flow is

required to be inserted into the active database, the flow insertion and deletion engine is

initiated. This engine operates independently from the other two engines within the

30 	analysis system. The look up update engine will determine whether the flow insertion

and deletion engine is required to operate for particular packet flow signature.

NOAC Ex. 1014 Page 15

11

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is more fully understood from the detailed preferred

embodiments of the present invention, and should not be taken to limit the present

invention to any specific embodiment because such are provided only for explanation

5 	and better understanding. The embodiments, in turn, are explained with the aid of the

following figures.

Fig. 1 is a functional block diagram of a network embodiment of the present

invention in that a monitor is connected to analyze packets passing at a connection point;

Fig. 2 is a diagram representing an example of some of the packets and some

10 	types of packet formats of the packets that might be exchanged in exchanged in starting

an illustrative example conversational flow between a client and server on a network

being monitored and analyzed. A pair of flow signatures particular to this example and to

embodiments of the present invention are also illustrated and represent the one or many

flow signatures that can be generated and used in the process of analyzing packets and

15 	recognizing the particular server applications that produce the discrete application packet

exchanges;

Fig. 3 is a functional block diagram of a process embodiment of the present

invention that can operate as the packet monitor shown in Fig. 1. This process may be

implemented in software or hardware;

20 	 Fig. 4 is a flowchart of a high-level protocol language compiling and

optimization process which in one embodiment may be used to generate data for

monitoring packets according to versions of the present invention;

Fig. 5 is a flowchart of a parsing system process embodiment of the present

invention that can form part of the parser in the inventive packet monitor;

25 	 Fig. 6 is a flowchart of a packet element extraction process embodiment of the

present invention that can form part of the parser in the inventive packet monitor;

Fig. 7 is a flowchart of a flow-signature building process embodiment of the

present invention that can form part of the parser in the inventive packet monitor;

NOAC Ex. 1014 Page 16

12

Fig. 8 is a flowchart of a monitor lookup and update process embodiment of the

present invention that can form part of the analyzer in the inventive packet monitor;

Fig. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor;

5 	Fig. 10 is a functional block diagram of a hardware parser sub-system including

the pattern recognizes and extractor that can form part of the parser module in the

inventive packet monitor;

Fig. 11 is a functional block diagram of a hardware analyzer including a state

processor can form part of the inventive packet monitor;

10 	 Fig. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in the inventive packet monitor;

Fig. 13 is a flowchart of a state processor embodiment of the present invention

that can form part of the analyzer in the inventive packet monitor;

Fig. 14 is a simple functional block diagram of a process embodiment of the

15 	present invention that can operate as the packet monitor shown in Fig. 1. This process

may be implemented in software;

Fig. 15 is a functional block diagram of how the packet monitor of Fig. 3 (and

Figs. 10 and 11) may operate on a network with a host processor.;

Fig. 16 is an example of the top (MAC) layer of a packet and some of the

20 	elements that may be extracted to form a signature according to one aspect of the

invention;

Fig. 17 is an example of the header of an Ethernet packet and some of the

elements that may be extracted to form a signature according to one aspect of the

invention;

25 	 Fig. 18 is an example of the IP header of in the Ethernet packet shown in Fig. 17

and some of the elements that may be extracted to form a signature according to one

aspect of the invention;

NOAC Ex. 1014 Page 17

13

Fig. 19 is functional block diagram of the Unified Flow Key Buffer component of

the Analyzer sub-system of Fig. 11;

Fig. 20 is top level block diagram of the state processor component of the

Analyzer sub-system of Fig. 11;

	

5 	Fig. 21 is data flow block diagram of the state processor component of the

Analyzer sub-system of Fig. 11;

Fig. 22 is top level block diagram of the search engine component of the

Analyzer sub-system of Fig. 11;

Fig. 23 is data flow block diagram of the search engine component of the

	

10 	Analyzer sub-system of Fig. 11;

Fig. 24 is a flow chart of the process of compiling high level language files

according to an aspect of the invention; and

Fig. 25 shows various PDL file modules to be compiled together by the

compiling process illustrated in Fig. 24 as an example, in accordance with a compiling

	

15 	aspect of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may

include signal names. In most cases, the names are sufficiently descriptive, in other cases

the signal names are not needed to understand the operation and practice of the

	

20 	invention. Also, the term MeterFlow is to be understood to mean the preferred

embodiment of the invention.

Fig. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a network 102 that

communicates packets (e.g., FP datagrams), between various computers, for example

	

25 	between the clients 104-107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shown in the interior of

the cloud. A monitor 108 examines the packets passing in either direction by its

connection point 121 and, according to one aspect of the invention, can elucidate what

application programs are associated with each packet passing by connection point 121.

NOAC Ex. 1014 Page 18

14

The monitor 108 is shown examining packets (i.e., datagrams) between the network

interface 116 of the server 110 and the network. The monitor can also be placed at other

points in the network, such as connection point 123 between network interface 118 of the

client 104, or some other location, as indicated schematically by connection point 125

5 	somewhere in network 102. Not shown is a network packet acquisition device at the

location 123 on the network for converting the physical information on the network into

packets for input into monitor 108, and such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communication, e.g., TCP/IP, etc. Any network activity, for example an

to 	application program run by the client 104 (CLIENT 1) communicating with another

running on the server 110 (SERVER 2) will produce an exchange of a sequence of

packets, called a conversational flow, over network 102 that is characteristic of the

respective programs and of the network protocols. Such characteristics may not be

completely revealing at the individual packet level. It may require the analyzing of many

15 	packets by the monitor 108 to have enough information needed to recognize particular

application programs. The packets may need to be parsed then analyzed in the context of

various protocols , for example, the transport through the application session layer

protocols for packets of a type conforming to the ISO layered network model.

Communication protocols are layered, which is also referred as a protocol stack.

20 	The ISO (International Standardization Organization) has defined a general model which

provides a framework for design of communication protocol layers. This model serves as

a basic reference for understanding the functionality of existing communication

protocols.

NOAC Ex. 1014 Page 19

15

ISO MODEL

Layer Functionality Example

7 Application Telnet, NFS, Novell NCP, HTTP,

H.323

6 Presentation XDR

5 Session RPC, NETBIOS, SNMP, etc.

4 Transport TCP, Novel SPX, UDP, etc.

3 Network IP, Novell IPX, VIP, AppleTalk, etc.

2 Data Link Network Interface Card (Hardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,

ATM, Ti (Hardware Connection)

Different communication protocols employ different levels of the ISO model or

may use a layered model which is similar to but does not exactly conform to the ISO

mode. A protocol in a certain layer may not be aware to protocols employed at other

	

5 	layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

Every packet passing the connection point 121 is looked at by the monitor 108

for analysis. But not every packet carries the same information useful for recognizing all

levels of the protocol, up to level 7, recognizing its associated application program. For

	

10 	example, in a conversational flow associated with a particular application, the

application will cause the server to send a type-A packet, but so will another. But if the

particular application program will always follow this up with the sending of a type-B

packet and the other application programs do not, then in order to recognize packets of

that application's conversational flow, the monitor can engage itself in a search for

	

15 	packets that match the type-B packet to associate with the type-A packet. If such is

spotted, then the particular application program's conversational flow has started to

NOAC Ex. 1014 Page 20

16

reveal itself to the monitor 108. Further packets may need to be examined before the

conversational flow can be identified as being associated with the application program.

Typically, monitor 108 is simultaneously also in partial completion of identifying other

conversations that are parts of conversational flows associated with other applications.

5 	One aspect of monitor 108 is its ability to maintain the state of a flow. The state of a

flow is an indication of all previous events in the flow that lead to recognition of the

content of all the protocol levels, e.g. the ISO model protocol levels. Another aspect if

forming a signature of extracted characteristic portions of the packet that can be used to

rapidly identify packets belonging to the same flow.

10 	 In real-world uses of the monitor 108, the number of packets on the network 102

passing by the monitor 108's connection point can exceed a million per second. In such

case, the monitor has very little time available to analyze and type each packet and

identify and maintain the state of the flows passing through the connection point. The

monitor 108 must therefore mask out all the unimportant parts of each packet that will

15 	not contribute to its classification. But the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of type of packet and eventually of the associated application

programs by the packets that their executions produce is a multistep process within the

monitor 108. At a first level, several application programs will all produce a first kind of

20 	packet, for example. A first "signature" is produced that will allow monitor 108 to

efficiently identify any packets that belong to the same conversational flow. In some

cases, that packet type may be sufficiently unique to enable the monitor to identify the

application that generated such a packet in the conversational flow. They signature can

then be used to efficiently identify all future packets generated in traffic related to that

25 	application. In other cases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated

application program. In such a case, a follow-on packet of a second packet type but

which may belong to the conversational flow is recognized, using the signature, then at

such a second level, only a few of those application programs will have conversational

30 	flows that can produce such a second packet type. At this level in the process of

application classification, all application programs that are not in the set of those that

NOAC Ex. 1014 Page 21

17

lead to such a second packet type following the first packet type may be excluded in the

process of classifying the conversational flow that includes these two packets. A

signature is produced that allows recognition of any future packets that may follow on in

the conversational flow according to the known patterns for the protocol and for the

	

5 	possible applications. It may be that the application is now recognized, or recognition

may need to proceed to a third level of analysis of those packets that are selected using

the second level signature. Therefore, for each packet, the monitor parses the packet,

generates a signature from the packet to determine if this signature identified a

previously encountered conversational flow or shall be used for to recognize future

	

10 	packets belonging to the same conversational flow, and in real time, the packet is further

analyzed in the context of the sequence of packets so far encountered (the state) and the

possible future sequences such a past sequence may generate in conversational flows

associated with different applications until the applications are identified. The signature

may then be used to efficiently recognize future packets associated with the same

	

15 	conversational flow. Such an arrangement makes it possible for the monitor 108 to cope

with millions of packets per second that must be inspected.

Another aspect of the invention is adding Eavesdropping. In alternative

embodiments of the present invention capable of eavesdropping, once the monitor 108

has recognized the particular application programs executing passing through some point

	

20 	in the network 102, for example because of execution of the applications by the client

105 or server 110, the monitor sends a message to some general purpose processor on the

network that can input the same packets from the same location on the network, and the

processor then loads its own executable copy of the application program and uses it to

read the content being exchanged over the network. In other words, once recognition of

	

25 	the application program has been accomplished by the monitor 108, eavesdropping can

commence.

Fig. 3 represents a network packet monitor 300, in an embodiment of the present

invention that can be implemented with computer hardware and/or software. The system

300 is similar to monitor 108 in Fig. 1. A packet 302 is examined, e.g., from a packet

	

30 	acquisition device at the location 121 in network 102 (Fig. 1), and the packet evaluated,

for example in an attempt to determine its characteristics, e.g., all the protocol

NOAC Ex. 1014 Page 22

18

information in a multilevel model, including what server application produced the

packet. The packet acquisition device is a common interface that converts the physical

signals and then decodes them into bits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

	

5 	the monitor 108 the type of network of the acquired packet or packets. A parser sub-

system 301 examines the packets using pattern recognition process 304 and recognizes

pattern information in the packet 302. A process 306 in parser sub-system 301 extracts

signature information from the packet 302. Both the pattern models for parsing and the

related extraction masks are supplied from a parsing pattern structures and extraction

	

10 	operations database 308 filled by a compiler and optimizer 310. In an alternate

embodiment, the contents of database 308 may be otherwise generated. A process 312 in

parser sub-system 301 builds a unique conversational flow signature from the extracted

information. The signature is then analyzed in analyzer sub-system 303. In analyzer sub-

system 303, a process 314 uses the newly built conversational flow signature in a lookup

	

15 	of preexisting conversational flow signatures in which the associated state of any

previously encountered flow is stored. Note that the lookup may be from a flow signature

buffer (called flow key buffer) or from a cache or from the externally kept database of

known flows 324. A process 316 steers control to a process 318 if the conversational

flow signature is a new one, after which the protocol is determined from the extracted

	

20 	information and with reference to a database 326 of state patterns and processes.

Otherwise, a process 320 determines, from the state in the looked-up conversational flow

signature information, if more classification by state processing of the conversational

flow signature is necessary. If no, a process 322 updates a flow-entry database 324 with

the new conversational flow signature, and otherwise, and also in the case of the new

	

25 	flow signature, a state processing process 328 is commenced.

The flow-entry database 324 stores flow entries with a 128-byte pattern for each,

which includes for updated flows the unique flow-signature, state information and

extracted information from the packet. Each entry completely describes a flow. Such

database is organized into buckets that each contain a number, denoted N, of flow

	

30 	entries, with N being 4 in the preferred embodiment. Buckets are accessed via a hash

data value created by the parser subsystem, i.e., by the parser/extraction engine/key

builder part of the system based on information in a packet. Such hash spreads the flows

NOAC Ex. 1014 Page 23

19

across the database and is preferably based on a hashing algorithm. Such technique

allows for fast lookups of entries, allowing shallower buckets. The designer selects the

bucket depth N based on the amount of memory attached to the monitor, and the number

of bits of the hash data value used. For example, for 128K flow entries, 16M bytes are

5 	required. Using a 16-bit hash gives two flow entries per bucket. Such has been

empirically shown to be more than adequate for the vast majority of cases.

Still in the analyzer sub-system 303, the process 318 identifies the protocol in use

that produced the original packet from the data extracted by the identifying information

extractor 306 and using a collection of state patterns and processes 326.

10 	 In both the case that the flow is a new one, and that it is one previously

encountered requiring further analysis, a state processor 328 carries out any state

operations specified for the state of the flow and updates the state to the next state

according to a set of state instructions obtained form the state pattern and processes

database 326.

15 	 The network traffic monitor 300 provides for single packet protocol recognition

of flows, and, by maintaining the state of the flows and also by knowing that for some

types of flows, new flows may be set up using the information from previously

encountered flows that were it not for the system knowing that this at first apparently

unassociated flows may be used to characterize other flows, the network traffic monitor

20 	300 allows for multiple packet protocol recognition of flows even with disjointed sub-

flows that occur in serve announcement type flows. In the case of a new flow, it further

provides for the new flow as identified by a flow signature to be sent to the flow

insertion and deletion engine to add the flow to the database as a new item. Again in the

case of a new flow, for some types of protocols, the new flow is associated with

25 	previously encountered flows. The analyzer sub-system 303 determines current state of a

flow, and further providing for a consolidated flow entry in the flow-entry database. The

state processor 328 analyzes both new and existing flows in order to analyze all levels of

the protocol stack, ultimately classifying the flows by application (level 7 in the ISO

model). It does this by proceeding from state-to-state based on predefined state transition

30 	rules and state operations. A state transition rule is a rule typically containing a test

followed by the next-state to proceed to if the test is true, and an operation is an

NOAC Ex. 1014 Page 24

20

operation to be performed while the state processor is in a particular state, for example in

order to evaluate a quantity needed to apply the state transition rule. The state processor

goes through each rule until the test is true, or there are no more tests to perform. The

state processor starts the process by using the last protocol recognized by the parser as an

	

5 	offset into a jump table. The jump table finds the state processor instructions to use for

that protocol in the state patterns and processes database 328. Most instructions test

something in a unified flow signature buffer, or the flow entry in the database of known

flows 324 if it exists. The state processor may have to test bits, do comparisons, add or

subtract to perform the test.

	

to 	In the preferred embodiment, a cache is used which intercepts all requests to the

flow database 324 to speed access.

In state processing, a process 330 decides if more operations are needed in order

to find a unique flow signature for the application. If not, a process 332 decides if there

are states to be analyzed for this type of flow according to the state of the flow and the

	

15 	protocol, in order to fully characterize the flow. If not, a process 334 finalizes the

classification of the conversational flow.

In the preferred embodiment, the database of parsing patterns and extraction

operations 308 and the database of state patterns and state processes are generated by an

optimizing compiler 310 from protocol description language 336 and a selection of

	

20 	packet layers 338.

Referring again to the compiler 310 (Fig. 3), the compilation process includes

creating the parsing patterns and operations needed in pattern recognition process 304

and the extraction operations needed in process 306, and information for the analyzer

subsystem 303 on identifying protocols and what state transitions and processes to carry

	

25 	out when a packet is determined to be in a particular state, in order maintain state to

enable analyzing flows beyond single-packet-type conversational flows. The compiler

and optimizer 310 uses as input files (336 and 338) that describe each of the particular

areas of a packet that require decoding for each protocol and application. Files 336 are

the protocol description files written in a high-level protocol description language (PDL)

	

30 	by a user who is familiar with protocols and packet structure. File 338 includes

NOAC Ex. 1014 Page 25

21

commands to indicate which of the protocols are to be converted into databases 308 and

326.

By maintaining the datagram layer selections and the protocols in a high level

language, the user, for example the network administrator or the Internet service

	

5 	provider, can include new protocols or new application programs as they become known,

or modify existing protocols and applications as their specifications are modified, thus

enabling network traffic monitor 300 to classify flows involving such protocols or

applications. The compiler implementation of the invention thus provides for ease of

maintenance.

	

10 	 For example, Ethernet packets can use several different information formats, but

one basic format recurs constantly. A starting Ethernet file of datagram layer selections

includes what patterns to look for and identifies what elements need to be parsed or

extracted. The parsing job includes decoding the frame, extracting the source and

destination address, and then determining the particular protocol from one of the fields.

	

15 	 The contents of the protocol field can cause one of several processing branches to

be taken. One branch is for an Ethernet version 2 packet. Another branch can cause the

protocol field to be looked at for IEEE-type Ethernet packet decoding. An Ethernet type-

2 packet branch directs the parser to check to see if the protocol type is within a certain

range.

	

20 	 Such parser checking instructions are described in a protocol language included

in embodiments of the present invention. All the possible daughter packets for a parent

packet are produced at a compiler output. Such daughter packets define the meaning of

specific values in the protocol type field, e.g., for a next node to be decoded. A next

node, or daughter packet, for an Ethernet type-2 packet may be an IP-type protocol. The

	

25 	data value extracted is hexadecimal 0800, and such would cause the parsing system to

decode IP.

Various included files are used to guide IP-packet decoding. The locations of

particular elements that need to be extracted from the packet header are predefined,

including the network layer addresses, protocol type, etc. Such files also include models

NOAC Ex. 1014 Page 26

22

of the possible daughter packets of the IP-protocol, according to the values found in the

protocol field for the IP-header.

If the particular IP-protocol is TCP, various file elements can be extracted that

will tell the compiler and organizer 310 that a connection is about to occur. For TCP/IP,

	

5 	the files have the port values in the connection identifier areas. The compiler and

organizer 310 then can evaluate the data transferred to those ports.

As an example, a particular daughter packet including a port data value is used in

Microsoft Exchange DCOMP/DCE-RPC. When a data value is found that is known to

correspond to DCE-RPC, for example, the compiler and organizer 310 will thereafter be

	

10 	able to evaluate the file as a Microsoft Exchange DCE-RPC file. During the exchange of

packets in a flow, the states that occur will follow a familiar sequence and are recorded

in a file earmarked for Microsoft Exchange DCOMP/DCE-RPC.

To continue with the illustrative example, a first state record can be used to

determine whether or not a particular flow is connecting. If it is, a sequence of operations

	

15 	can run on the incoming packets to determine if the application is running on top of

DCOMP. If one of the later daughter packets reaches a state that is described in a

DCOMP file, an application identifier is attached to the flow by the state processor. Once

an application identifier is attached, a removal or tear-down state is included for the

particular flow in case such flow may disappear, as is the case when a flow lives across

	

20 	multiple connections. If such flow is able to disappear, information is provided as to

what states will occur, and in what sequence the packets occur to tear down the flow.

In the example of Microsoft Exchange DCOMP, flows can live beyond multiple

connections or multiple sessions. So once a flow has been learned, it is saved in a flow

record. The flow signature is used to point to one of the three applications that can run

	

25 	on top of Microsoft Exchange. These are described in a DCOMP file accessible by the

compiler and organizer 310, and the information content of which is included in the

database 305 of pattern structures and operations.

The parser sub-system 301 extracts flow signature information at each level in a

flow hierarchy tree climb. Specific flow-signature elements at specific levels can be used

	

30 	to build a flow signature that is compact and efficient. At the base level, the packet

NOAC Ex. 1014 Page 27

23

acquisition device includes information on the type on network. For example, if it was

indicated to the parsing sub-system that an Ethernet frame has been received, then in the

parsing sub-system, in accordance with the contents of database 305, the source and

destination addresses, locations, and sizes, are commanded to be extracted. Ethernet

5 	frames have end-point addresses that are useful in building flow signatures.

If on the other hand, the packets were frame-relay type packets, as indicated by

the packet acquisition device and recognized by the parser, then, from information in

database 305, the parser knows that for a frame-relay base layer, there are no specific

end-point addresses that can help identify a flow. So for those types of packets, the

10 	database 305 instructs the parser sub-system 301 not to try to extract any end-point

addresses.

In the base layer, the parser needs some identifier where the values for the next

nodes are located. Ethernet has a protocol-type field. Frame relay has a protocol-like

field in a control header. Identifying fields are used to determine what the next layer will

15 	be. For Ethernet, there can be a network layer, some type of encapsulation, e.g., LLC

802.2, IEEE 802.3, V2-Ethernet, or even IP (a network layer).

The parsing sub-system, e.g., pattern recognition process 304, needs to be told

where to get the IP-destination and source addresses end-point data for a network layer to

build an improved flow signature. The size and location of such elements are specified in

20 	an IP-file. At the network layer, information is specified as to where to look for a next

possible node, and could be an end-point node as in ICMP.

The TCP connection protocol uses "connection identifiers" in every packet in a

flow, but not necessarily in the same location in every packet. Packets can therefore be

identified as being a part of a particular flow. And whether or not to apply states that deal

25 	with connections or disconnections that exist in the next layer up to these particular

packets. It tells what those connection identifiers are, where they are and what their

length is. In the TCP/IP-example, these are port numbers. It also tells us whether or not

states that apply to connections and disconnections apply to this particular packet. Also it

tells us what the possible daughter packets are. So at each of these levels, we are learning

30 	what there is in the packets that we can reapply over and over again to packets of this

particular flow.

NOAC Ex. 1014 Page 28

24

The compiler and organizer 310 will take all of the information that it gets from

the individual descriptions of all possible protocols and all possible levels, and it will

generate a series of elements, or instructions or operations that are stored in database 305

and that the parser then performs on every packet that it receives. Alternatively, a user

5 	can build the pattern structures and extraction operations for database 305 directly.

However, the non-compiler version clearly is not as flexible as the version that includes

the compiler.

Those operations, instructions or elements in database 305 not only tell the parser

subsystem 301 what to look for and what it is that it's looking at, but also tells the parser

10 	subsystem 301 whether there is specific information at an appropriate layer that needs to

be extracted to build up the flow signature. In addition, it also will let the parser

subsystem 301 know what the next element is that needs to come out and where the

offsets (pointers to location in the packet) of those elements are. It also will help the

parser set up the location of those elements in the signature in a way that is interpretable

15 	by the analyzer subsystem 303 even when the locations change from packet to packet in

the packets of the flow, depending, for example, on direction; or how they are evaluated,

and what it is that they look like; and how they are formatted. In the preferred

embodiment, for example, a source and destination address are always set up in the

signature with the lower value address appearing first. The location to look for elements

20 	related to these addresses are then changed in a consistent manner. In this way, the

signature for an exchange of packets between a server and a client will have the

addresses appearing in the same order so that the signature identifies the same or related

flows no matter what the direction of packets. Upon the parsing process 308 determining

that a particular element need to be extracted, it is then passed on to the extracting

25 	engine, together with the packet. The extracting engine then extracts all the elements to

determine the flow signature.

The locations and the information extracted from packets are adaptively

determined for particular packet types. There is no fixed definition of what to look for

and where in order to form a flow signature. In prior art systems, fixed locations are

30 	specified for particular types of packets. For example, in one prior art system, if a

DECnet packet appeared, six specific fields at six locations in the packet are looked at in

NOAC Ex. 1014 Page 29

25

order to identify the packet session. If an IP-packet appeared, six formatted into

differently located fields were specified for an IP-packet. In the present invention, the

number of levels is variable for any protocol. The number of layers is variable and is

whatever number is sufficient to uniquely identify as high up a level in the system as we

	

5 	wish to go, all the way to the application level in the so-called ISO-model.

With the proliferation of all the new network protocols that is occurring in the

world, it becomes more difficult to specify all the possible places to look at in a packet to

determine a session type. In embodiments of the present invention, a high-level language

is used for specifying new protocols and new levels, including new applications. The

	

10 	compiler and organizer 310 describes at a machine level what information is relevant in

packets that should be decoded. The parser and extraction systems (parser subsystem

301) use such in their instructions and operations, so they can adapt, and be adapted to a

variety of different kinds of headers, layers, and components and need to be extracted or

evaluated, for example, in order to build up a unique flow signature.

	

15 	 While the process steps shown in Fig. 3 can be implemented in software or

hardware, the preferred embodiment is a hardware embodiment shown in Figs. 10 and

11. An alternate simpler implementation is shown in Fig. 14, and this implementation is

easily implemented in software.

A type of prior art activity analysis is described by McCreery, et al. in United

	

20 	States Patent 5,787,253. A packet analyzer "324" is diagrammed in Fig. 4C of that

Patent. All packets coming off a wire are run through the analyzer "324". It begins by

decoding the IP-packet, and then passes the results through a set of known filters "344".

A select number of packets then trickle into a set of buffers "338". An application

protocol translator "346" takes an accumulation of all of the data buffers with all the

	

25 	packets collected, and then reconstructs them with a decoded packet recompiler "341".

The decoded elements are attributed to transactions, and packets that are similar to one

another are buffered up in data buffer "348". Packet analyzer "324" takes the

transactions themselves that they again buffer up, and then use data sorter "340" to say

"this is an application of some kind for this transaction."

30 	 Embodiments of the present invention look at sequences of packets over time,

and learn about the protocols and applications and maintain state, which results in simple

NOAC Ex. 1014 Page 30

26

criteria that then can be applied in real time with adequate processing time. The

McCreery, et al. method by buffering a number of patents provides only for "after the

fact" analysis technique. A certain number of packets must be available before any

analysis of those packets is possible. If the number of such packets is N- packets, then

	

5 	there is always a delay of Npackets before any results are possible. Also, a buffer of

Npackets must be maintained. When a new packet arrives, that packet and all the

previous (Npackets-1) packets must be re-analyzed.

The present invention automatically maintains flow records, which in one aspect

includes storing states, the invention also and generates sets of patterns that can be used

	

10 	recognize flows and then determining state in order to carry out state transition analysis

in real time for each different protocol and application so the incoming packet

information can be analyzed packet-by-packet. In a complex analysis, as more and more

packets are examined, state transitions are traversed. The parsing system, and state

operations build flow signatures that can easily be recognized and allow future packets

	

15 	that are part of the same flow to have their state analysis continued from the state easily

recognized from their flow signature. That is, these flow signatures are then used to

recognize various processing states in the flows examined by matching them to

previously constructed flow signatures. When enough packets related to an application of

interest have been processed, a final recognition state is ultimately reached. A simple

	

20 	flow signature can then be constructed for rapidly determining packet associations from

a single packet belonging to that flow.

Several state analyzers are preferably run in parallel so a large number of

protocols and application may be checked for. Every known protocol and application

will have at least one unique set of state transitions, and can therefore be uniquely

	

25 	identified by watching such transitions.

For every flow that has already been encountered, as indicated by a flow entry

being present in the flow database, there are various criteria for recognizing a packet's

particular state level. When each new flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the flow are encountered,

	

30 	signatures are updated and the states of the set of state transitions for any potential

NOAC Ex. 1014 Page 31

27

application are further traversed according to the state transition rules for the flow. The

new states for the flow, these states associated with a set of state transitions for the one

or more potential applications, are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered. One of

5 	the great advantages of the present invention is that once a particular set of state

transitions has been traversed for the first time and ends in a final state, a short-cut

recognition pattern can be generated that will key on every new incoming packet that

relates to the conversational flow. A simple match can be made that saves much

processing overhead, and allows high packet rates to be successfully monitored on the

to network.

In contrast, the prior art described in United States Patent 5,787,253, always has

to start up by decoding the IP-packets and then go through all the steps for every new

packet. Such system always has to go through every operation for each packet, and

therefore uses the processing overhead for recognized flows and not-yet-recognized

15 	flows.

Example of Packet Elucidation

One of the two major subsystems is the Analyzer sub-system 303. This

component is responsible for creating and maintaining classified traffic flows, processing

statistics for packets and flows, managing the traffic flow database and cache, and

20 	performing state-based analysis of traffic flows.

The processes required for recognizing and maintaining state information for

traffic flows are now described.

In order for the Analyzer 303 to successfully classify network traffic by

application, there are several data elements required from each packet to be analyzed.

25 	Prior to sending a packet of information to the Analyzer, all additional information must

be formatted and sent along with the appropriate packet content.

The Analyzer 303 must specifically receive each packets in a conversation in the

order which they are exchange between the client and the server for proper state based

classification.

NOAC Ex. 1014 Page 32

28

Many conversational flows on a network that are associated with application

have several states which must be remembered and maintained for proper traffic analysis

and for traffic to be classified by protocols and application.

In the embodiments of the invention, there are several different methods in place

	

5 	for the creation of states in client/server network traffic. Even though there are several

different methods for the creation of state. It is possible to isolate these different

approaches into two basic categories.

The first category is commonly referred to as "server announcement". In the

server announcement mode there are messages which are put out onto the network, in

	

10 	either a broadcast or multicast approach which, all stations in the network receive and

decode to derive the appropriate connection point for communicating for that particular

application, with the particular server. There are several examples for this type of server

announcement implementation with state based protocols. Using the server

announcement method, a particular application communicates using a service channel, in

	

15 	the form of a TCP or UDP socket or Port as in the IP protocol suite, or using a SAP as in

the Novell IPX protocol suite.

The second category is referred to as "in-stream analysis". This method is used

either as a primary or secondary recognition process. As a primary process, in-stream

analysis assists in extracting detailed information which will be used to further recognize

	

20 	both the specific application and application component. A good example of in-stream

analysis is any Web-based applications. The commonly used PointCast Web information

application can be recognized using this process. During the initial connection between a

PointCast server and client, specific key tokens exist in the data exchange that will result

in a signature for PointCast.

	

25 	 The in stream analysis process may also be combined with the server

announcement process. In many cases in stream analysis will augment other recognition

processes. An example of combining in stream analysis with server announcement can

be found in business applications such as SAP and BAAN.

One of the primary processes for tracking applications in the stream of the

	

30 	client/server packet exchange, is through session tracking. The process of tracking

NOAC Ex. 1014 Page 33

29

sessions requires an initial connection to a predefined socket or Port number. This

method of communication is used in a variety of transport layer protocols. It is most

commonly seen in the TCP and UDP transport protocols of the IP protocol.

During the process of session tracking, a client will make the request of a server

	

5 	using a specific Port or socket number. This initial request will cause the server to create

a TCP or UDP Port to exchange the remainder of the data between the client and the

server. The server then replies to the request of the client using this newly created Port.

The original Port used by the client to connect to server will never be used again during

this data exchange.

	

10 	 One of the best examples of session tracking is TFTP (Trivial File Transfer

Protocol), a version of the TCP/IP FTP protocol that has no directory or password

capability. During the client/server exchange process of TFTP, a specific Port (Port

number 69) is always used to initiate the conversation. Thus, when the client begins the

process of communicating, a request is made to UDP Port 69. Once the server receives

	

is 	this request, a new Port number is created on the server. The server then replies to the

client using the new Port. In this example, it is clear that in order to recognize TFTP a

network monitor must analyze the initial request from the client. Also, the reply from the

server with the key Port information must be analyzed and used to create a signature for

monitoring the remainder of this data exchange.

	

20 	 Another important capability for a network monitor in session tracking is the

understanding of the current state for particular connections in the network. Many of the

application protocols, which can be monitored, are transported via protocols that have

built-in state information. An example of such a transport protocol is the common TCP,

a transport protocol that provides a reliable means of sending information between a

	

25 	client and a server. When a data exchange is initiated, a TCP request for synchronization

message is sent. This message contains a specific sequence number that is used to track

an acknowledgement from the server. Once the server has acknowledged the

synchronization request, data may be exchanged between the client and the server. When

communication is no longer required, the client sends a finish or complete message to

	

30 	the server, and the server acknowledges this finish request with a reply containing the

sequence numbers from the request. Such a sequence of events is called a connection-

NOAC Ex. 1014 Page 34

30

oriented data exchange. Tracking the state is necessary to correctly analyze connection-

oriented exchanges, and the states relate to the various types of connection and

maintenance messages.

Server announcement is a process used to ease communications between a server

	

5 	with multiple applications that are all able to be simultaneously accessed from multiple

clients. Many applications use a server announcement process as a means of

multiplexing a single Port or socket into many applications and services. With server

announcements, messages which broadcast or otherwise sent out (e.g., muticast) on the

network, and all stations in the network receive and decode such messages to derive the

	

10 	appropriate connection point for communicating for that particular application, with the

particular server. Using the server announcement method, a particular application

communicates using a service channel, in the form of a TCP or UDP socket or Port as in

the IP protocol suite, or using a SAP as in the Novell IPX protocol suite. The individual

methods of server announcement protocols vary. However, the basic underlying process

	

is 	remains similar.

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto,

California) of the Remote Procedure Call (RPC), a programming interface that allows

one program to use the services of another in a remote machine. Sun-RPC is used as an

example of server announcement oriented communications processes.

	

20 	 A remote program or client that wishes to use a server or procedure must

establish a connection, and the RPC protocol can be used therefor.

Each server running the Sun-RPC protocol must maintain a process and database

called the Port Mapper. The Port Mapper creates a direct association between a Sun-RPC

program or application and a TCP or UDP socket or Port (for TCP or UDP

	

25 	implementations). An application or program number is a 32-bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), the successor to TANA (Internet Assigned Numbers Authority), which

manages Internet addresses, domain names and the huge number of parameters

associated with Internet protocols (port numbers, router protocols, multicast addresses,

	

30 	etc. Each Port Mapper on a Sun-RPC server can present the mappings between a unique

program number and a specific transport socket through the use of specific request or a

NOAC Ex. 1014 Page 35

31

directed announcement. According to IANA, Port number 111 is associated with Sun

RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in Fig. 1) makes

a specific request to the server (e.g., SERVER 2 of Fig. 1, shown as 110)on a predefined

5 	UDP or TCP socket. Once the Port Mapper process on the sun RPC server receives the

request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in Fig. 1) sends a TCP packet to SERVER 2

(110 in Fig. 1) on Port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

10 	 request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in Fig. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet came in the using the TCP transport and that no protocol was

15 	 specified, and thus will use the TCP protocol for its reply.

3. The server 110 sends a TCP packet to Port number 111, with an RPC

Bind Lookup Reply. The reply contains the specific Port number (e.g., Port

number 'port') on which future transactions will be accepted for the specific

RPC program identifier (e.g., Program 'program') and the protocol (UDP or

20 	 TCP) for use.

It is desired that from now on every time that port number 'port' is used, the

packet is associated with the application program 'program' until the number 'port' no

longer is to be associated with program 'program'. Therefore, any network monitor

should include a mechanism for remembering the exchange so that future packets that

25 	use the Port number 'port' be associated by the network monitor with the application

program 'program'.

In addition to the Sun RPC Bind Lookup request and reply, There are other ways

that a particular program, say 'program' might get to be associated with a particular port

number, for example number 'port'. One is by a broadcast announcement of a particular

30 	association between an application service and a Port number, called a Sun RPC

NOAC Ex. 1014 Page 36

32

Portmapper Announcement. Another, is when some server, say the same SERVER 2

replies to some client, say CLIENT 1 requesting some Portmapper assignment with a

RPC Portmapper Reply. Some other client, say CLIENT 2, might inadvertently see this

request, and thus know that for this particular server, SERVER 2, Port number 'port' is

	

5 	associated with the application service 'program'. It is desirable for the network monitor

300 to be able to associate any packets to SERVER 2 using Port number 'port' with the

application program 'program'.

The working of the present invention with some Sun RPC procedures is now

illustrated with the help of Fig. 9. Fig. 9 represents a dataflow 900 that occurs in the

	

10 	system of Fig. 3 for Sun Remote Procedure Call. Referring now to a data flow 900 in

Fig. 9, assume a client 106 (CLIENT 3 in Fig. 1) is communicating via its interface to

the network 118 to a server 110 (SERVER 2) via the server's interface to the network

116. Further assume that Remote Procedure Call is used to communicate with the server

110. The data flow 900 starts with a step 910 that a Remote Procedure Call bind lookup

	

15 	request is issued by client 106. Such RPC bind lookup request includes values for the

"program", "version" and "protocol" to use, e.g., TCP or UDP. The process for Sun RPC

analysis in the network monitor 300 proceeds as follows:

Process for Sun RPC Analysis

1. Decode Sun RPC by TCP or UDP Port 111

	

20 	 2. Check RPC type field for Id

3. If value is PortMapper, save paired socket (i.e. dest for dest, src for src)

4. Decode ports and mapping, save ports with socket/addr key

5. There may be more than one pairing per mapper packet

6. Saving is complete

	

25 	 Note that the server state creation step 904 can be reached not only from a Bind

Lookup Request/Reply pair, but also from a RPC Reply PortMapper packet shown as

901 or an RPC Announcement PortMapper shown as 902. The Remote Procedure Call

protocol can announce it is able to provide a particular application service. Embodiments

of the present invention preferably can analyze when an exchange occurs between a

NOAC Ex. 1014 Page 37

33

client and a server, and also can track those stations that have received the announcement

of a service in the network.

The RPC Announcement PortMapper announcement 902 is a broadcast. Such

causes various clients to execute a similar set of operations, for example, saving the

5 	information obtained from the announcement. The RPC Reply PortMapper step 901

could be in reply to a PortMapper request, and is also broadcast. It includes all the

service parameters.

The monitor of the invention creates and saves all such states for later

classification of flows that relate to the particular service 'program'.

10 	 Fig. 2 shows how a signature and flow states are built by the monitor 300 in the

example of Sun RPC. A plurality of packets 206-209 are exchanged, e.g., in an

exemplary Sun Microsystems Remote Procedure Call protocol. A method embodiment

of the present invention generates a pair of flow signatures, "signature-1" 210 and

"signature-2" 212, from information found in the packets 206 and 207 which correspond

15 	in the example to the Sun to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Packet 206 corresponds to such

a request sent from CLIENT 3 to SERVER 2. This packet contains important

information that is sued in building a signature according to an aspect of the invention. A

source and destination network address occupy the first two fields of each packet, and

20 	according to the patterns in pattern database 308, the flow signature (shown as KEY1

230 in Fig. 2) also will contain these two fields, so the parser subsystem 301 will include

these two fields in signature KEY 1 (230). Note that in Fig. 2, if an address identifies the

client 06 (shown also as 202), the label used in the drawing is "C1". If such address

identifies the server 110 (shown also as server 204), the label used in the drawing is

25 	"S1". The first two fields 214 and 215 in packet 206 are "S1" and C1" because packet

206 is provided from the server 110 and is destined for the client 106. Suppose for this

example, "S1" is an address numerically less than address "C1". A third field "p1" 216

identifies the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate

30 	port numbers that are used. The conversation direction determines where the Port

NOAC Ex. 1014 Page 38

34

number field is. The diagonal pattern in field 217 is used to identify a source-port

pattern, and the hash pattern in field 218 is used to identify the destination-port pattern.

The order indicates the client-server message direction. A sixth field denoted "it" 219 is

an element that is being requested by the client from the server. A seventh field denoted

	

5 	"s I a" 220 is the service requested by the client from server 110. The following eighth

field "QA" 221 (for question mark) indicates that the client 106 wants to know what to

use to access application "s la". A tenth field "QP" 223 is used to indicate that the client

wants the server to indicate what protocol to use for the particular application.

Packet 206 initiates the sequence of packet exchanges, e.g., a

	

10 	RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

packets, and is transmitted to the server 110 on a well-known service connection

identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the

RPC Bind Lookup Reply as a result of the request packet 206.

	

15 	 Packet 207 includes ten fields 224-233. The destination and source addresses are

carried in fields 224 and 225, e.g., indicated "C1" and "S1", respectively. Notice the

order is now reversed, since the client-server message direction is from the server 110 to

the client 106. The protocol "p1" is used as indicated in field 226. The request "it" is in

field 229. Values have been filled in for the application port number , e.g., in field 233

	

20 	and protocol ""p2"" in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor sees the request packet 206 from the client, a first

flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a

	

25 	source address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. In the

particular embodiment, the numerically lower address is always placed before the

numerically higher address. Such least to highest order is used to get the best spread of

signatures and hashes for the lookup operations. In this case, therefore, since we assume

	

30 	"S 1"<"C 1", the order is address "S1" followed by client address "C1". The next field

NOAC Ex. 1014 Page 39

35

used to build the signature is a protocol field 242 extracted from packet 206's field 216,

and thus is the protocol "p1". The next field used for the signature is field 243 contains

which contains the cross-hatched destination source Port number pattern from the field

218 of the packet 206 that will be recognized in the payload of packets to derive how this

5 	packet or sequence of packets exists as a flow. In practice, these may be TCP Port

numbers, or a combination of TCP Port numbers. I the case of the Sun RPC example, the

cross hatch represents a set of port numbers of UDS for p1 that will be used to recognize

this flow (e.g., Port 111). Port 111 indicates this is Sun RPC. Some applications are

directly determinable ("known") at the parser level, and the Sun RPC Bind Lookups are

10 	such applications. So in this case, the signature KEY1 points to a known application

denoted "al" (Sun RPC Bind Lookup), and a next-state that the state processor should

proceed to for more complex recognition jobs, denoted as state "stp" is placed in the

field 245 of the flow record.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built

15 	by the parser. This flow signature is identical to KEY-1. Hence, when the signature

enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow

record is obtained, and in this flow record indicates state "stip". The operations for state

"stp" in the state processor instruction database 326 instructs the state processor to build

and store a new flow signature, shown as KEY 2 (212) in Fig. 2. This flow signature

20 	built by the state processor also includes the destination and a source addresses 250 and

251, respectively, for server "S1 " followed by (the numerically higher address) client

"C1". A protocol field 252 defines the protocol to be used, e.g., "p2" which is obtained

from the reply packet. A field 253 contains a recognition pattern also obtained from the

reply packet. In this case, the application is Sun RPC, and field 254 indicates this

25 	application "a2". A next-state field 255 defines a next-state the state processor should

proceed to for more complex recognition jobs, e.g., a state "sti". In the particular

example, this is a final state. Thus KEY 2 may now be used to recognize packets that are

in any way associated with the application "a2". Two such packets 208 and 209 are

shown, the use the particular application service requested in the original Bind Lookup

30 	Request. Each will be recognized because the signature KEY-2 will be built in each case.

NOAC Ex. 1014 Page 40

36

The two flow signatures 210 and 212 always order the destination and a source

address fields with server "S1" followed by client "C1". Such values are automatically

filled in at the time that the addresses are first created in a particular flow signature.

Large collections of flow signatures are preferably kept in a lookup table in a least-to-

	

5 	highest order for the best spread of flow signatures and hashes.

The client and server thereafter exchange a number of packets, e.g., represented

by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address S1 and C1, in a pair of fields 260 and 261. A field

262 defines the protocol as "p2", and a field 263 defines the destination port number.

	

10 	 Some network-server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the

packet. Others require a sequence of state transitions to occur that match a known and

predefined climb from state-to-state.

Thus the flow signature for the recognition of application "a2" is automatically

	

15 	set up by predefining what packet-exchange sequences occur, e.g., when a relatively

simple Sun Microsystems Remote Procedure Call bind lookup request instruction

executes. More complicated exchanges than this may generate more than two flow

signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a "final" resting state such as

	

20 	"st1" in field 255 is reached. All these are used to build the final set of flow signatures

for recognizing a particular application in the future.

Embodiments of the present invention automatically generate flow signatures

with the necessary recognition patterns and state transition climb procedure. Such comes

from analyzing packets according to parsing rules, and also generating state transitions to

	

25 	search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Announcement Based Flows

There are two different types of specific operations that are required to be

performed by the state processor. The first sequence of operations is known as a learning

NOAC Ex. 1014 Page 41

37

sequence. In the learning sequence, each packet that is exchanged for single flow

contains all of the information required to interpret the final state, and therefore the final

application for that flow.

An example of a learning sequence in the state processor can be commonly seen

5 	in the HTTP protocol. In this protocol, a sequence of packets is exchanged between the

client and the server. In each of the packets, the header information and additional packet

payload combined to provide traffic signature. In specific frames or packets, there are

key elements of information, which are used to derive the actual application involved in

the flow. In other words, during the exchange of information between the client and

10 	server key elements of data are extracted by the parser system and evaluated as payload

by the analyzer system. This evaluation process occurs within the state processor. As

packets are exchanged between the client and server, specific key elements clause the

flow involved to move deeper into the set of states to protocol.

A well-known example of this type of exchange over HTTP can be found by

15 	evaluating the exchange of a GIF image. During the initial exchange, the flow signature

is derived from the specific packet headers. After the connection identifiers have been

determined, the payload of each HTTP message sent client to the server is evaluated for

a specific string. The first string that is attempted to be located key "Content — Type".

Once this key string is isolated in a message from the client to the server, and additional

20 	search is initiated. This next search is going to start after the location of the previous

search. A string search for the word "image", along with other strings starting at the

same location, is initiated. In this example, the word "image" is found after our last

string.

The system has now isolated the specific content-type in the exchange between

25 	the client and server. One last search needs to be accomplished in order to derive the

specific image type for this content. The system will begin searching for "gif ', along

with other strings at the same location. Once in this string has been located from our

example, the flow signature and record for this set of exchanges between the client and

server is updated. This updated flow record contains the application of a GIF image for

30 	this particular traffic flow.

NOAC Ex. 1014 Page 42

38

The second type of traffic flow analysis that is accomplished the analyzer

functions, is an association. In association, we typically find the use of a server

announcement message. A typical server announcement message is sent to one or more

clients in a network. This type of announcement message has specific content, which, in

	

5 	another aspect of the invention, is salvaged and maintained in the database of flow

records in the system. Because the announcement is sent to one or more stations, the

client involved in a future conversation to the server will make an assumption that the

information announced is known, and an aspect of the inventive monitor is that it too can

make the same assumption.

	

10 	 When a server announcement message is received by the traffic monitor, the

normal parsing operations and building of a flow signature and hash key are

accomplished as with any other packet. In addition, payload information from the packet

is sent along with signature and hash key for this flow. The flow will be recognized as

described below.

	

15 	 A specific example of such an announcement is a bind server announcement

message found in the Sun RPC protocol. An RPC server will make an announcement to

a group of stations (clients) on a network. This announcement contains all of the

different program identification numbers and the associated port numbers for both the

TCP and IMP transport services. The monitor saves these linkages found in the payload

	

20 	of this packet to generate future flow signatures and records that can be used for packets

exchange between clients of this server and the server.

Referring to 9, When the RPC bind announcement message enters the parsing

section of our system, all of the header elements are processed as normal and key

information is extracted to form the flow signature and key. In addition, the payload

	

25 	section of the RPC message is formatted and sent along with the signature and key to the

analyzer. Because the protocol has been identified as RPC, and the child of this protocol

has been identified as a bind announcement, the bind announcement state will be

initiated by the state processor. This will occur in addition to the normal processing of

this flow signature and record.

	

30 	 The state processor will be instructed to remove and review each of the

individual program identifiers found in the payload of this packet. For each of the

NOAC Ex. 1014 Page 43

39

individual program identifiers, the state processor will locate the specific protocol used

with the ports mapped to that protocol. To enable future flows that utilize mappings to be

properly classified, the state processor will generate a special flow record and inserted in

the flow database. This special flow record has specific flags set in the key match flags

	

5 	field. This enables the protocol identification process of the analyzer to locate the

application from a subset of the normal information used during the lookup process.

At some point after this additional announcement message has been received and

processed, message is utilizing these mappings will be correctly processed by the

inventive monitor system. When a message or packet enters the system it is processed

	

to 	normally. The significant difference will be found in that the transport port information

will not been known by the pattern recognition portions of the parser. This will cause the

flow signature sent to the analyzer to classify the packet for the specific transport

involved and include the data ports involved.

The lookup engine in the analyzer will attempt to isolate this flow record

	

15 	information to a specific flow found in the memory of our system. When a specific flow

cannot be found, the lookup engine will attempt and other lookup and remove the clients

address from the signature when key is generated. This will cause a match on multiple

buckets within the flow information stored in the system memory. The system then

validates this announcement by reviewing the key match flags field. If this field has a

	

20 	flag stating that the source address, or the client in this case, may be, then this signature

will be blended with the signature stored in the analyzer and the application identifier

will be set to the one found in the record.

At this point, this new flow is fully classified to the proper application. They are

other protocols that use similar types of announcement methods (Novell SAP, etc.) .

	

25 	Therefore, the monitor system performs special limited key analysis in order to handle

the maintenance of announcement oriented flow keys. Without this feature, flows that

utilize server announcements would not be able to be properly classified for the

application or service involved in the conversation.

The Overall Flow (Fig. 3)

	

30 	 Fig. 3 is a is a description of the overall flow of the invention and is now

NOAC Ex. 1014 Page 44

40

described in detail. The flow starts off at a number 301. There are two aspects of the

invention shown here. First is the flow that describes how to generate to operations that

occur on packets. The second aspect is the processing of the packets.

A flow is a stream of packets being exchanged between any two addresses in the

	

5 	network. Thus, for each protocol there are known to be several fields, such as the

destination (recipient), the source (the sender), and so forth, and these and other fields

are needed to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are discarded.

The PDL files describe what the system will be looking for in packets and what

	

10 	the sets of states and state transitions are for a sequence of packets that will determine

the application or service content of the packets at the particular location in the

communication network. 336 is the protocol description language files, and block 338 is

the set of packet layering selections. That is the specific selections of layers and patterns

of the set in 336 that the system will be evaluating.

	

15 	 Block 302 is a packet input into some buffer for analysis by the system. The

protocol description language files 336 describes both patterns and states to identify

applications and services, while the packet layer selections database 338 deals with the

layering involved in those patterns and states, so 336 and 338 combined describe how

one would decode, analyze and understand the information in packets, and how the

	

20 	information is layered. This information is input into compiler and optimizer 310. When

310 executes, it generates two sets of internal data structures. The first is block 308, the

set of pattern structures and extraction operations. The pattern structures are what will be

recognized in the packets and the extraction operations are what elements of a packet are

to be extracted from the packets based on the patterns that get matched, the extracted

	

25 	elements then being combined to build up a conversation flow signature that is used for

recognizing other relevant packets. The other internal data structure that is build by

compiler 310 consists of the state patterns and processes, and shown as block 326. The

state patterns and processes are state operations that have to occur and the patterns that

have to be analyzed within states and processes that need to be performed upon moving

	

30 	from one state to the next, that movement and related processes depending on the packet

NOAC Ex. 1014 Page 45

41

is being analyzed in sequence. The elements in 326 are used in part of the state

processing.

Once the compiling is complete, the system has all of the information that it

needs to begin processing packets. In 302 a packet or series of packets enter the system,

	

5 	and the a step that the packets go through is being analyzed for pattern recognition in

pattern analysis and recognition (PAR) engine 304. Once a pattern or a set of patterns

has been identified, the pattern(s) will be associated with a set of extraction operations,

and these extraction operations enter the extracting and information identifying (EII)

engine 306 which has access to the packet and where the identifying information that is

	

10 	required to recognize this packet as part of a flow is extracted from the packet, and put

into a particular sequence. The information in sequence (as well as the packet data) will

next be processed by block 312 in which a unique flow signature for this conversation is

built. For this purpose, a conversation signature typically includes the client and server

address pairs that will be used recognize further packets that are or may be part of this

	

15 	conversation. The informational and the packet will then pass onto lookup engine 314

which looks in an internal data store of records of known flows that the system already

has encountered, and decides whether or not this particular packets flow record a

"match" with a known flow. A record is associated with each flow. The lookup is in an

internal flow buffer and also includes a cache. If the flow is not in the buffer or cache, it

	

20 	may be in an external memory 324 (the database of flows). Block 316 determines

whether this is a new record or a record that already exists. If this is a new record, then

the data moves to protocol identification block 318, where the system further determines

from the patterns that were analyzed and from where in the packet's state sequence one

is, and from the type of protocol, whether there are any particular states and state

	

25 	operations that need to be executed on this packet or on any future packets that come in

for this sequence of conversations.

It is important understand that the process of pattern analysis and extracting of

identifying information is used to reduce the amount of information needs to be analyzed

to derive what flow any particular packet belongs. Once identification is complete, there

	

30 	is only a small amount of information that is required to identify whether or not a

particular packet is part of a flow or conversation. That information is extracted in block

NOAC Ex. 1014 Page 46

42

306 based on the pattern that is recognized in block 304, and only the information that's

needed to identify the packet as being part of a particular flow is extracted. Extraneous

information including the actual data blocks in the application protocol, the protocol data

unit ("PDU") or checksums, or routing fields, are all discarded because they are not

	

5 	required to uniquely identify the packet as part of a flow conversation.

In protocol identification block 318, it is decided what the states are, if any, that

need to be applied to this packet or to future packets belonging to this conversation or

flow. After this, in block 328, the first state operation for this particular flow record or

pattern or protocol is applied to the packet, and this is continued until there are no more

	

10 	operations left (block 330). Thus the systems continues looping between block 330 and

328 applying additional operations to this particular packet until all those operations are

completed, that is, there are no more operations for this packet. At this point, it is

determined in 332 whether nor not there are more state analysis is required in this state

sequence, no meaning we have reached a final identifying state. If we are in a final state,

	

15 	the process moves on to 334 for a classification finalization where we finish the process

of classifying the set of packets.

Protocol identification is used to create an identification of the actual application

or service that is involved by applying both state and patterns that have been derived

from this particular packet and those states and patterns are then used to decide what the

	

20 	final set of states are for this packet or following packets before we know exactly what

this is to be classified to a particular application.

A state operation may be one operation on one packet or it may be multiple

operations on a packet, and carrying out the operation or operations may leave one in a

state that causes exiting the system without really knowing everything about the

	

25 	conversation yet, but maybe knowing more about a state that is needed to execute next.

In 332 in the classification, the analyzer decides whether we are at an end state. If

not at an end state, the record is updated for this (now known) record in block 322. Since

this was a new record, we in fact record the record for the first time. If we reach a final

state, then after finalization in 334, we also update the record for this known flow, in this

	

30 	case, a new but now known flow. The updating (or, if new, recording) in block 322

includes updating the states information for the known record, and carry out any

NOAC Ex. 1014 Page 47

43

statistical operations for that record. We then move to block 324 where we keep the

record of this conversation together with the records of other conversations that we have

maintained in the conversation database 324. 324 the set of all the conversations that

have occurred. Information about all the packets that may have occurred for any

	

5 	conversation is included in a reduced form, such as a single element that includes what

service or application the packets were associated with, and a set of statistics

representing data that was exchanged, how that data was exchanged, the performance of

the exchange, for all of those packets that were part of the conversation. In the preferred

hardware implementation, database 324 is an external memory.

	

10 	 Note that in block 322, there is one record associated with each flow, but

typically there may be multiple flows associated with each conversation. That is, several

new flows records will be created before the final conversation is determined, and all the

packets that created those flows are then associated with the same conversation. Each

conversation record in 324 will therefore point to one or more flow records. For

	

15 	example, in the Sun RPC example used throughout this description, one could be

mounting a disk (NDISK) and have multiple files open on that disk, but in reality, all the

packets represent an NDISK set of transactions for that particular client and server.

If in block 316 the flow is determined not to be a new flow, but an existing flow,

then in 316 is detelinined whether more classification is required (in the form of state

	

20 	operations). If yes, the system performs the required state analysis in the loop consisting

of blocks 328 and 330. If we have reached a final state or there are further packets to be

analyzed (deteimination in block 320), we ultimately update the flow records of known

flows (in 322).

Note that the information created by block 306, i.e., the extracted information, as

	

25 	well as the actual packet payload move over into 312. Block 312 then builds a unique

signature from the extracted packet information, and the unique signature of and the

actual packet payload move into 314 where the information is looked up. That

information (the signature) and the packet payload flow through 314, 316, and into 318.

In 318 that information is used to determine the protocol.

30 	 One signature feature of the invention is the automatic generation of patterns to

search for and signatures for searching for such patterns from analyzing packets

NOAC Ex. 1014 Page 48

44

according to parsing rules, and also generating a states transitions to search for. Another

feature is recognizing applications (or protocols at any level) by carrying out state

analysis on a sequence of packets to recognize one or more applications. For example,

the DEC patent recognizes well known patterns in single packets.

	

5 	The compilation process

The compilation process includes creating the parsing patterns and operations,

extraction of identifying information, and the states that are required to analyze beyond

single packets.

The compiler starts off with a series of files which describe each of the particular

	

10 	areas of a frame that require decoding. Example, an Ethernet frame. Ethernet packets can

consist of several different formats of information, with a basic format that remains

substantially the same. The system therefore starts with a file. That basic Ethernet file

tells the system what to look for as far as a patterns is concerned, and where elements

need to be parsed or extracted. In the Ethernet case, the parsing will be: decode the frame

	

15 	extracting the source and destination address, and then evaluate a field for a particular

protocol. The protocol field is extracted and then evaluated. The contents of the protocol

field will cause one of several things to happen. Either there's a value there that says this

is an Ethernet version packet, or there's a value there which sends it off to find the

protocol field for IEEE type Ethernet packet decoding. As an example, consider the

	

20 	Ethernet type 2 packet. First there's a check to see if the protocol type is within a certain

range, the check being done by the parser (the compiler simply states it). Once the check

is described in the language, a listing of children are found in the language (compiler

output), and the children listing contains specific values of the protocol type field, and

what those values mean for the next node to be decoded. For example, a next node

	

25 	(child) for an Ethernet type 2 packet may be an IP type (i.e., Internet) protocol, and the

value that would be found is HEX 0800. That value would cause the parsing system to

want to decode IP. There is another file which describes the decoding of an IP packet.

That file describes what elements are to be extracted from an IP packet header, including

the network layer addresses that are used and other information, such as protocol type. In

	

30 	that particular file are also the children of the IP protocol, and depending on the values

found in the protocol field for the IP header. What values are found causes one of

NOAC Ex. 1014 Page 49

45

another set of operations to be performed on the packet, and those are described in

another set of files. Consider TCP as the particular IP protocol. Now within the TCP file,

there are described what and where are elements of information that, for example, tell the

compiler that this particular node gives us some information about the possibility of a

5 	connection happening. Because of this, the connection identifier or identifiers need to be

filled in, depending on the protocol, and those connection identifiers are described in the

language: where they are, how to evaluate them, and if there are any possibility of

children for those values. For TCP/IP, the example would be the Port values. The

compiler output instructs evaluating those Port number values. One of the possible

10 	children of the Port number value, for example, may be Microsoft Exchange's DCOMP

or DCERPC. When the value corresponding to DCERPC is found, that will cause the

compiler to evaluate the Microsoft Exchange's DCOMP/ DCERPC file. Within that file,

is a set of information describing the states from the actual packets that will occur during

the exchange of packets for a flow. The first state, of course, will be to determine

15 	whether or not this particular flow is in a connecting state, and if it is in a connecting

state, what sequence of operations are performed on which packets to determine if it

truly is an application running on top of DCOMP. If one of the children states which is

described in one or more operations in the DCOMP file causes a match, than that

particular application identifier will be loaded into the record for this particular flow by

20 	the state processor. Once this application identifier is loaded in, there is a state for

removal or tearing down of this particular flow in the case that this flow had the ability

also to disappear. If the flow does not have the ability to disappear — that is, there are no

tear-downs and it lives across multiple connections and disconnections. If it has the

ability to disappear, then we are given information as to what states will occur in what

25 	sequence of packets to tear this particular flow down and to relearn it. In the example of

Microsoft Exchange DCOMP, those particular flows live beyond multiple connections or

multiple sessions, so once the flow has been learned, it will be saved in the flow record,

and that flow signature will be used to always point to one of the three applications

known to run on top of Microsoft Exchange which are described in the DCOMP file of

30 	the compiler as either the mail transport adapter, the information store or the directory

look-up.

NOAC Ex. 1014 Page 50

46

The parsing system at each level extracts key information for building the

signature. There are specific key elements at specific levels that are used to help build a

flow signature that will more precisely identify the specific flow for a set of packets. At

the base level, for example, if we were to determine in the parsing system that we are

5 	dealing with an Ethernet frame, Ethernet frames have end-point addresses that are useful

in building a better flow signature, so the system is told to extract the source and

destination addresses, including where the locations and sizes of those addresses are. In a

frame-relay base layer, for example, there are no specific end point addresses that help

identify the flow better, so for those type of packets, the compiler instructs the parser not

10 	to extract the end-point addresses. Once we get into a base layer, there needs to be some

identifier that tells the parser where the children are — that is, where the next nodes

potentially are. For Ethernet, there's the type (protocol type) field. For frame relay,

there's a protocol- like field in the control header. We use those identifying fields to

determine what the next layer is. In the Ethernet example, there can be a network layer,

15 	or some other type of encapsulation of Ethernet, for example LLC 802.2 or IEEE 802.3

or it could be V2 Ethernet going right into IP. In the example of IP, that's another special

layer, where we now have a network layer. The parsing system needs to be told where to

get end-point data for the network layer to build a better flow signature. This is the IP

destination and source addresses, which are in every IP packet. The size and location of

20 	those would be specified in the IP file. At the IP (or other network layer), there is

information specified as to where to look for any possible next nodes. The next node

could be an end point node. For example, ICMP. That is, we know it's ICMP, and we're

done (that the last node), or it could be TCP, and if it's TCP, the TCP file will contain

information about that level.

25 	 TCP is an example of a protocol that can tell us about the connections. Whenever

we get to a protocol that tells about the possibility of a connection, connection identifiers

are needed. That is, something that is going to exist in every packet, perhaps not in the

same location in every packet, that the system can identify that this particular packet is

part of this particular flow, and whether or not to apply states that deal with connections

30 	or disconnections that exist in the next layer up to these particular packets. It tells are

what those connection identifiers are, where they are and what their length is. In th

TCP/IP example, these are port numbers. It also tells us whether or not states that apply

NOAC Ex. 1014 Page 51

47

to connections and disconnections apply to this particular packets, Also it tells us what

the possible children are. So at each of these levels, we are learning what there is in the

packets that we can reapply over and over again to packets of this particular flow.

The compiler will take all of the information that it gets from the individual

	

5 	descriptions of all possible protocols and all possible levels, and it will generate a series

of elements of elements or instructions or operations that the parser then performs on

every packet that it receives. Those operations or instructions or elements not only tell

the parser what to look for and what it is that it's looking at, but it also tell the parser

whether there's specific information at an appropriate layer that needs to be extracted to

	

io 	build up the flow signature. In addition, it also will let the parsing system know what the

next element is that needs to come out and where the offsets (pointers to location in the

packet) of those elements are, and also will help the parser understand how the location

of those elements may change from packet to packet, depending, for example, on

direction. How they are evaluated, and what it is that they look like, and how they are

	

15 	formatted. Upon the parser determining that a particular element (or elements) need to be

extracted, is then passed on to the extracting engine, together with the packet. The

extracting engine then extracts all the elements to determine the flow signature.

What is unique here is that locations and the information extracted from any

packet is adaptively determined for the particular type of packet. There is no fixed

	

20 	definition of what to look for where in order to form the flow signature. In prior art

systems, such as Chiu's DEC patent there were fixed locations specified for particular

types of packets. For example, if a DECnet packet appeared, the system looked at six

specific fields (at 6 locations) in the packet in order to identify the session of the packet.

If one the other hand, an IP packet appeared, six different locations were specified for an

	

25 	IP packet. The system was only able to recognize sessions. The physical layer, going

onto the network layer, than the protocol layer. There were fixed locations for each of

these. In the present invention, the number of levels is variable for any protocol. The

number of layers is variable and is whatever number is sufficient to uniquely identify as

high up the level system as we wish to go, all the way to the application level (in the OSI

	

30 	model). Clearly, with the proliferation of protocols, the specifying of all the possible

places to look at to determine the session becomes more and more difficult. Adding a

NOAC Ex. 1014 Page 52

48

new protocol or application likewise is difficult. In the present invention, a language

exists for specifying new protocols and new levels, including new applications. The

compiler is used to describe what information is relevant to packets and packets that

need to be decoded, and the parser and extraction systems function using those

	

5 	instructions and operations. So, they can adapt, and be adapted to a variety of different

kinds of headers, layers, and components and need to be extracted or evaluated, for

example, in order to build up a unique signature. The only thing that is fixed is that when

you build the language, you want to try to fill in the components that have end point

addresses at the lowest layer, components that have end point addresses that identify the

	

to 	actual workstations that are involved, and also something that identifies where the layers

that manage the connections or disconnections of particular communications occur. You

want to fill in those general areas, and where to look for the next layer. So the system can

adapt to new protocols. The prior art is very specific to specific types of packets that you

want to parse.

	

15 	 One feature of the analyzer 300 is the parsing and extracting system comprising

processes 304, 306 and database 308, together with the compiler 310 that generates the

pattern structures and patterns and extraction operations. This parsing system is designed

to be flexible in its implementation. The compiler system 310 uses as input descriptions

of protocols and applications written in a protocol description language (PDL), these

	

20 	PDL commands describe the patterns and extraction operations that will be required in a

manner that is independent of the different types of packets that will be used to carry the

information. The compiler creates from these a set of specific patterns in database 308 to

be analyzed by the parsing system (block 304) and then a set of extraction operations

(also in 308) that are dependent on the patterns that are analyzed. The elements that are

	

25 	parsed by the parser will cause specific elements to be extracted. As an illustrative

example of how this aspect of the invention provides for flexibility in extracting

information from any type of packet, it is known that the headers of Ethernet packets are

different from headers of frame relay network packets. By describing the structure of the

packets in the PDL, both header types can be accommodated by the system, and the

	

30 	parser will know how to parse each of these headers and how to extract identifying

information t build a unique flow signature at this level. The particular information

above the base layer also will differ depending on the network layers are involved in the

NOAC Ex. 1014 Page 53

49

conversational flow in our particular implementation the invention is set up such that the

network layer is not important in how things are extracted from the actual packet cannot

specifically defined in prior art such as the deck of patent the specific examples given

our eight DECnet packet with a DECnet transport headers with a DECnet session layer

	

5 	headers and there's even the specific example describing how to extract DECnet specific

elements out of the DECnet session layer patter and turn it into a DECnet specific hash

for key in the eight in the invention that we have described the elements better used to

make the signature are independent from the actual type of network layer transport layer

session layer and application involved out in the exchange of packets on the network the

	

10 	only requirements that we have our that at specific base layer such as Ethernet if you

have access to and point addresses they should be included in elements to be extracted by

the extraction engine to build the unique flow cake also information that tells you about

the children or protocols beyond the Ethernet layer need to be told love so the parsing

system can recognize them in the extraction in extract those components to be used in

	

15 	the flow signature to however from that point on the specific information is only relevant

to the type of layer you're apt once you're at the IP layer or the network layer for example

we also work last that information be extracted which shows the end points of the

workstations involved now that information does reside in the header of the IP frame

however the way that we request the extraction is independent of IP or DECnet or Novell

	

20 	or any other type of network layer protocol once we get to a particular a network layer

the next section that we're interested in of course is how the packet is being transported

to if the transport layer or whatever transport protocol is in place has information that

tells about the connection end points involved in the conversation or flow and also has

information relative to telling us whether this layer is causing a connection to occur or

	

25 	not.

In some communication arts, the term "frame" generally refers to encapsulated

data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

"packet" generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the

	

30 	term "datagram" also is used. In the present application, the term packet is intended to

encompass packets, datagrams, frames and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for

NOAC Ex. 1014 Page 54

50

transmission across a network. For example, a data packet typically includes an address

destination field, a length field, an error correcting code (ECC) field or cyclic

redundancy check (CRC) field, as well as headers and footers to identify the beginning

and end of the packet. The terms "packet format" and "frame format", also referred to as

	

5 	"cell format", are generally synonymous.

In order for an analyzer to be able to analyze different packet or frame formats,

the analyzer is required to perform a parsing to understand the data encapsulated in the

different fields. As the number of possible packet formats or types increases, the amount

of logic required to parse these different packet formats also increases.

	

to 	A network analyzer preferably can analyze many different protocols. At a base

level, there are a number of standards used in digital telecommunications, including

Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital Data Service, FDDI

(Fiber Distributed Data Interface), and T1, among others. Many of these standards

employ different packet and/or frame formats. For example, data is transmitted in ATM

	

15 	and frame-relay systems in the form of fixed length packets (called "cells") that are 53

octets (i.e., bytes) long and several such cells may be needed to make up the information

that might be included in the packet employed by some other protocol for the same

payload information, for example, for example in a conversational flow that uses the

frame-relay standard or in a conversational flow that uses the Ethernet protocol. Fig. 16

	

20 	shows the header 1600 (base level 1) of a complete frame of information and includes

information on the destination media access control (Dst MAC 1602) and the source

media access control (Src MAC 1604). Also shown in Fig. 16 is some (but not all) of the

information specified in the parsing structures and extraction operations database 308 to

be extracted at this level by extractor 306 with which to build the information used for

	

25 	further analysis. This includes all of the header information at this level in for form of 6

bytes of Dst MAC information 1606 and 6 bytes of Src MAC information 1610. In

addition, the hash key to be made from the Dst MAC (2 byte Dst Hash 1608) and from

the Src MAC (2 byte Src Hash 1612) which are part of the conversational flow key built

in block 312 for ease of recognition. Finally, information is included on where to find the

	

30 	next level's information. Fig. 17 now shows one of the possible levels-2 format, that of

an Ethernet packet 1700. The Ethernet packet 1700 includes a two-byte type field 1702

NOAC Ex. 1014 Page 55

51

for the type of protocol used for the next level and the remaining information 1704,

shown hatched because it is masked out by extractor 306 according to information in

pattern structures and extraction information database 308. Also shown is some of the

extracted part. That is, the extracted part 1702 is shown also as data 1706 which is part

	

5 	of the extracted information. Also included is the 1-byte Hash 1710 for this information

used in building the flow signature. Finally, an offset field 1710 which provides the

offset to use to obtain level 3 information is included, and for the Ethernet packet, this is

14 bytes for the start of the frame.

Other packet types also may be analyzed. For example, in an ATM system, each

	

10 	ATM packet comprises a five octet "header" segment followed by a forty-eight octet

"payload" segment. The header segment of an ATM cell contains information relating to

the routing of the data contained in the payload segment. The header segment also

contains traffic control information. Eight or twelve bits of the header segment contain

the Virtual Path Identifier (VPI), and sixteen bits of the header segment contain the

	

is 	Virtual Channel Identifier (VCI). Each ATM exchange translates the abstract routing

information represented by the VPI and VCI bits into the addresses of physical or logical

network links and routes each ATM cell appropriately.

At the next layer, there similarly are many different formats. There is the well

known IP (internet protocol), SNA, VINES VIP, APPLETALK, etc.

	

20 	 Fig. 4 diagrams an initialization system 400 that includes the compilation

process. That is, part of the initialization generates the pattern structures and extraction

operations database 308 and the state instructions database 328, and this part can occur

off-line or from a central location. A convenient high-level compiling language is input

by a user. High-level commands that describe the network applications and protocols to

	

25 	be used are interpreted during initialization for use by the parsing subsystem system 301.

In addition the state instruction database is generated. A starting point 401 inputs new

"source-code" information into a high-level compiler description file 402. A compiler

403 generates a program code 404 for packet parse-and-extract operations, and a

program code 405 for packet state instructions and operations. The program code 404 for

	

30 	packet parse-and-extract operations is organized into a pattern, parse, and extraction

database 406. The program code 405 for packet state instructions and operations is

NOAC Ex. 1014 Page 56

52

organized into a state-processor instruction database 407. Data files for each type of

application and protocol to be recognized by the analyzer are downloaded from the

pattern, parse, and extraction database 406 into the memory systems of the parser and

extraction engines. (See, the parsing process 500 description, and Fig. 5, and also the

	

5 	extraction process 600 description, and Fig. 6.). Data files for each type of application

and protocol to be recognized by the analyzer are also downloaded from the state-

processor instruction database 407 into the state processor. (See, the state processor 1108

description herein, and Fig. 11.) In a step 410, the analyzer has been initialized and is

ready to perform recognition.

	

10 	 The PDL Compiler is used to convert a set of PDL source files into a layered set

of specific protocol identifiers, patterns, extraction operations and states. The PDL

compiler uses the PDL source files and layer selections as the primary input for pattern

analysis, extraction operation, flow key generation and state operation details.

The compiling process is illustrated in Fig. 24. First the compiler must load all of

	

15 	the PDL source files listed at execution into a scratch pad memory (2403). Next the

compiler review the files for the correct syntax (2405). Once completed, the compiler

creates a set of patterns in the form for CPL (2407). CPL is the intermediary file form

that the PDL Compiler outputs to the CPL system to perform the final optimization.

After the patterns have been created, the compiler creates the extraction

	

20 	operations in CPL that are required at each level for each PDL module. This creates a set

of operations to perform for the building of the flow key and for links between layers

(2409).

With the flow key operations complete, the PDL compiler creates the operations

required to extract the payload elements from each PDL module. These payload elements

	

25 	are used by states in other PDL modules at higher layers in the processing (2411).

The last pass is to create the State CPL operations required by each PDL module.

The State operations are complied and CPL is created for later use (2413).

CPL stands for Compiled Protocol Language. This is the 'assembly code' form

for the Traffic Classification System. The PDL Compiler is designed to evaluate each

	

30 	PDL module, form the operations required and walk the tree of layers. The last operation

NOAC Ex. 1014 Page 57

53

performed by the PDL Compiler is to output the CPL instructions.

These CPL instructions have a fix layer format, they include all of the patterns,

extractions and states required for each layer and for the entire tree for a layer. This CPL

file is then run by the Optimizer to create the final output binary memory structures that

5 	will be used by the Traffic Classification system.

Fig. 33 shows the PDL files for a sample operation of the system.

Detailed operation

Fig. 5 shows a flowchart of how the actual parsing system functions. Starting at

501, the packet is input to the packet buffer in step 502 and set at the first packet

10 	component. Step 503 loads the next (initially the first) packet component from the actual

packet. The packet components are extracted from each packet one element at a time.

Then, in 504 a check is made if the load packet component operation completed

successfully. If not, this indicates no more packet components, and the system builds the

packet signature in step 512. If the operation succeeded as determined in step 504,the in

15 	505 are fetched the node and processes from the pattern database 406 according to the

node pattern in the packet. This gives us a set of patterns and processes defined for that

node to apply to that particular element in the packet. The system checks in 506 if the

fetch pattern node operation completed, indicating there was a pattern node that loaded

in 505. If yes, then the node and process are applied in 507 to the component extracted in

20 	503. If a pattern match is obtained in 507, as indicated by the test in 508, that means the

system has found a node in the parsing elements, and the system proceed to step 509 to

extract the elements. Step 509 if described in detail in a separate flow diagram (Fig. 6). If

applying the node process to the component does not produce a match, then from step

508, the system requests the next pattern from the pattern database (called "folding the

25 	pattern database") and the system returns to step 505 to apply the next node and process

and extract it and check, and thus the loop between 508 and 505, called the applying

pattern loop. Once the system either completes all the patterns and has either matched or

not, the system moves to step 511, which is the next packet component. This step tells

the system to move or ratchet itself to the next element of the packet that was input in

30 	502. Then again one loads the first packet component. The system then reapplies the

NOAC Ex. 1014 Page 58

54

pattern process and runs the 505 to 508 loop.

Once all the packet components have been the extracted from the input packet in

502, then in 504 the load more packet component operation is determined not to have

completed, and the system moves to build a packet signature which is described in Fig. 6

5 	 Fig. 6 describes in the form a flowchart the step extracting the information from

which to build the packet signature. The flow starts at 601 which is the exit point 513 of

Fig. 5. At this point the system has a completed packet component and a pattern node

that was received from the pattern engine and available loaded in a buffer at 602. The

first step is to load the packet component that the system received from the pattern

10 	analysis process of Fig. 5. Again, the system checks to see if the load completed, that is,

if there's more packet components. The first-time through there is, so at 605 the system

now takes the extraction and process elements that the system received from the pattern

node component in 602, and the system fetches those. The system checks in 606 if the

fetch was successful, indicating that there are extraction element that can be used, and

is 	the first time through the answers is yes, so then the system applies that extraction

process to the packet component based on the instruction received from a pattern node.

That process removal of the element from the packet component and cause that element

to be saved. In step 608, the system checks if there is more to extract out of this packet

component, and if the answer is no, the system moves back to 603 to load a new packet

20 	component. If the answer is yes, then the system moves to the next packet component

ratchet and move beyond the packet component that is at hand. That new packet

component is then loaded in step 603. As the system moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component

if there's a more to extract, or to a different packet component if there is no more to

25 extract.

The extraction process builds the signature. Once we cannot load a packet

component in 603, indicated by failure in the load successful test 604, all the

components have been extracted. The signature that has been built is loaded into the

signature buffer and the system proceeds to Fig. 7

30 	 Fig. 7 completes the signature building process. The system starts in 702 with the

signature buffer and the pattern node elements that the system received on exiting the

NOAC Ex. 1014 Page 59

55

extraction process of Fig. 6 and the system loads the pattern node element out of the

element database, the system the checks 704 if the load was successful, i.e., if there are

more nodes. The first-time through there are more, so the system in 705 hashes the

signature buffer element based on the hash elements that are found in the pattern node

5 	that in element database. That is, in 705, for each individual pattern node element there

is a sequence of instructions of how to build a signature, and these are followed. In 706

the resulting signature and the hash are packed. In 707 the system moves on to the next

packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more pattern no elements left.

to 	Once all the pattern of elements have been hashed, then at 708 reached from 704, the

system generates the output of Fig. 7's process for the analyzer and move to Fig. 8

Fig. 8 is a flow diagram describing the operation of the lookup/update engine.

The process starts at 801 from Fig. 7 with a signature including the hash and the key

elements of the packet. In 802 those elements have been loaded into what is called herein

15 	the unified flow key buffer (UFKB). An entire UFKB entry is removed from the buffer

in 803 and then the system computes a "record bin number" from the hash. That is we

apply any simple hashing model to the information that was extracted and that results in

a record bin number. In 804, the system requests that a bucket from that bin be loaded

into a cache. A bin may have one or more "buckets". The cache is described in more

20 	detail elsewhere herein. In 805 the system checks to see if operation 804 returned with a

bucket from the bin number, a yes indicating that there are more buckets in the bin. If

this is the first bucket for the requested bin, then this is the first-time through and the

bucket request 804 is successful and the system moves to 807 where it compares the

current bin and bucket record signature to the packet. That is, the system examines to see

25 	if this is the right packet, now that the hash has gotten the process this far. In 8 08 the

system checks to see if there is a match, and if so, 810 marks that record bin and bucket

as "in process" in the cache and a timestamp is put in the cache to indicate to the system

that this record bin bucket this time through. Step 811 sets the unified flow key buffer

element that the system extracted in 802 for this particular packet that is being processed

30 	as "found." The "found" indication allows the (other) state machines in the system to

begin processing this UFKB element. Then in 812 the system updates the statistics for

NOAC Ex. 1014 Page 60

56

the record in the cache based on the statistical and operations that received when the

system entered process at 801. The process exits at 813.

Regarding updating step 812, the system the system is designed so that when it

sees a packet, it goes through the process described above which collapses this packet

5 	into a flow which consists of multiple packets that went between the client and server for

this particular application. Hence, for every packet that the system sees, the system

performs a set of statistical operations those operations, which may be counting the

packets, obtaining a statistics on the size of the packet, or it could be counting

differences difference between this packet and one that was received in the opposite

10 	direction via the time stamp, so the system can display the frequency as to which packets

are being exchanged. The statistics might be an operation that takes this time stamp in

relation to ship to a packet going in the same direction so the system can see the

proximity of one packet to another flowing in the same direction. All of these statistics

may be used in combination with each other to analyze many different aspects of the date

15 	communication network's ability to transfer information for this application. This

analysis might include measuring the quality of service of a conversation, measuring

how well an application is performing in the network, measuring how much a an

application is consuming of the network resources, and so forth, and all such analyses

come this operation 812 of applying simple statistical calculations to each packet and

20 	rolling them up into these so-called flows that are being generated.

If at 808 the signature match does not succeed then in 809 the system requests the

next bucket for this bin can goes back to 804 to request that the cache make ready the

next bucket. If this operation 804 is not successful, indicating that there are no more

buckets in the bin. So the system goes through requesting bucket until either there is a

25 	match in 808 or 805 states there are no more buckets in the bin. If eventually no match

was obtained and there are no more buckets in the bin, then the system needs to set up a

new flow, since this flow has not previously been encountered, and in 806 the system

marks the flow in the unified flow key buffer for this packet as "new", and in 812, the

same statistical operations are performed for this packet in the cache, that the statistics

30 	for this packet of a new flow are captured. The operation exits at 813.

NOAC Ex. 1014 Page 61

57

The hardware system

Using Figs. 10 and 11, each of the individual hardware elements that the data

flows through in the system are now described. Note that while we are describing a

particular hardware implementation of the invention described in Fig. 3, it would be

5 	cleared to one in the art that the flow of Fig. 3 may be implemented alternatively, on a

general-purpose computer, or only partly implemented in hardware. Fig. 14 shows such

an implementation. The hardware embodiment easily meets the speed of over a million

packets per second, which the software system of Fig. 14 may be suitable for slower

networks. In the future as processors become faster, more and more of the system may be

10 	implemented in software has would be cleared to one in the art.

Fig. 10 is a description of the parsing and extracting system. The PAR system

includes the following items required to get the system started. Memory 1001 is the

pattern recognition database memory. This is where the patterns that are going to be

analyzed are stored. Memory 1002 is the extraction operation database memory and this

15 	is where the extraction instructions are stored. Both 1001 and 1002 correspond to

internal data structure 308 of Fig. 3. The system operation typically starts by an

initialization during which these database memories are loaded a through host interface

multiplexor and control registers 1005. The two memories are loaded through the

internal buses 1003 and 1004. Note that the elements in 1001 and 1002 are re compiled

20 	in operation 310 of Fig. 3 externally to the system shown in Fig. 10.

A packet enters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023 controlling an input buffer interface controller

1022. Interface is easily generated by a standard control logic as is well-known in the art.

The interface is to a packet acquisition device. How to generate the packet starts and next

25 	packet signals 1021 and 1023 also is known in the art to control the data flow into parser

input buffer memory 1008. Once a packet starts to load into parser input buffer memory

1008, pattern recognition engine 1006 carries out the operations on the input buffer

memory described in block 304 of Fig. 3. Once a pattern is recognized, the pattern

operation identifiers are sent to an extraction engine1007. The operations of the

30 	extraction engine are those carried out in blocks 306 and 312 of Fig. 3. Operation

identifiers rather than data is transferred allowing the extraction engine 1007 to perform

NOAC Ex. 1014 Page 62

58

extraction operation on data in input buffer 1008, say located in at 1009, while more

packet information is being pattern analyzed simultaneously by the pattern recognition

engine 1006. That is a pipeline is used to provide sufficient processing speed to

accommodate the high-speed of the packets passing in the network. The operation

	

5 	identifiers are in the form of extraction instruction pointers to tell the extraction engine

aware where to a find the instructions in the extraction operations database memory 1002

for extracting an element of the packet in the input buffer memory.

The extraction engine 1007 performs the extraction operations on the parser input

buffer memory 1008/9 and outputs the extracted elements in the form of a flow signature

	

10 	into a parser output buffer memory 1010. Any additional payload from the packet that is

required for further analysis also in included. Once information that is in the parser

output buffer memory 1010, the information is then pushed out (at 1013) into the unified

flow key buffer shown as item 1103 on Fig. 11 describing the analyzer. An analyzer

interface controller 1011 is used to manage the flow of data into the analyzer (Fig. 11),

	

15 	including to the unified flow key buffer 1103. The analyzer interface control 1011 tells

the unified flow key buffer section of the analyzer via 1025 when data is ready to be sent

by into the unified flow key buffer, and the analyzer is responsible to keep a ready signal

1027 high (or low, depending on implementation) when the analyzer can except the data

of from the parser output buffer memory 1010.

	

20 	 Fig. 11 shows the hardware components and dataflow for the analyzer subsystem.

Prior to the system starting, the information that is generated by the compiler is inserted

into a database memory for the state processing, called state processor instruction

database (SPID) memory 1109. The loading of SPID occurs through host bus interface

1122 which has direct access to analyzer host interface controller 1118 which in turn has

	

25 	access to cache system 1115 and the cache system has bi-directional access to and from

the state processor of the system 1108. State processor 1108 is responsible for

initializing the state processor instruction database memory 1109 from information given

into over the host bus interface 1122.

Once the state processor instruction databases memory 1109 is loaded, the system

	

30 	is ready for receiving packet flow signatures and payload that come from the parser (Fig

10), in particular units 1010 and 1011 via the parser interface 1101. The unified flow key

NOAC Ex. 1014 Page 63

59

buffer (UFKB) 1103 is a specially designed memory or sequence of memories that is set

up to maintain and hold flow signatures is to be processed or that are in process. The

flow key buffer 1103 also holds the payloads of those packets from which the flow

signatures were determined. The contents of unified flow key buffer 1103 include several

5 	state (or status) identification to allow different processes to run concurrently. There are

three finite state machines (FSMs) that can concurrently run: the lookup/update engine

1107, the state processor 1108, and the flow insertion and deletion engine 1110. Each

processes data from the UFKB 1103, the data used by state processor 1108 having first

been processed by lookup update engine 1107, and the data used by the flow

10 	insertion/deletion engine 1110 having first been processed by the state processor 1108.

Whether or not a particular engine has been applied to any unified flow key buffer entry

is deter 	nined by status fields set by the engines upon completion. Each entry may not

need to be processed by all three engines. The three finite state machine engines run

concurrently to allow lookups to occur while the state processor may be processing states

15 	for another item while yet another item is being inserted in engine 1110. Some entries

may need to be processed more than once by a particular engine. There is bi-directional

access between each of the finite state machines and the unified flow key buffer 1103.

Once an element exists in the flow key buffer 11013, the first engine to use the data is

the lookup/update engine 1107 which takes the flow signature that was generated by the

20 	parsing and extracting process and begins a lookup request to the cache system interface

1115. The lookup/update engine's operation is that of blocks 314 and 316 on Fig. 3. The

caching system 1115 is described below. Once an element has been looked up then

updated, or has not been found, the appropriate status for that element is updated in the

unified flow key buffer entry for that particular flow signature and packet. If there are

25 	any state operations to be executed, control is passed over to state processor 1108 for that

particular flow key buffer entry. State processor 1108 extracts from unified flow key

buffer 1103 the information that was updated by lookup engine 1107. One of the

elements stored in the flow key buffer as updated by the lookup/update engine 1107 is a

state processor instruction to be executed, in the form of a number, and state processor

30 	1108 extracts this element from the unified flow key buffer entry that is ready for the

state processor, sets the processor 1108's instruction system to run the program counter

based on the number stored in the flow key buffer entry by the lookup/update engine.

NOAC Ex. 1014 Page 64

60

That instruction causes a sequence of one or more state operations to be executed in state

processor 1108 to further analyze the payload that is in the flow key buffer entry for this

particular flow signature and packet. Once the final state operation for that particular

packet has been executed on the data in the unified flow key buffer 1103, that

5 	information is updated both in the cache system 1115 and in the unified flow key buffer

1103. Control is then passed on to the flow insertion/deletion engine 1110 for that flow

signature and packet entry if the flow needs to be inserted or deleted from a database of

flows. The flow insertion and deletion engine 1110 is responsible for creating new flows

in the flow database, and deleting flows from the database so that they can be reused.

10 	This is carried out in a process of bucketing and binning described hereinbelow with the

aid of Fig. 12 and carries out the operations of block 318 of Fig. 3. The flow

insertion/deletion engine recognizes that needs to be processing information based on a

status field in the unified flow key buffer 1103.

The cache and caching engine 1115 is designed to have information flowing in

15 	and out of it from five different points within the system. The lookup/update engine 1007

is able to request the cache system to pull a particular flow or "buckets" of flows from

the unified memory controller 1119 into the cache system for further processing. The

state processor 1108 can operate on information found in the cache system once they are

looked up through the lookup/update engine request, and the flow insertion/deletion

20 	engine 1110 can create new entries in the cache system if required based on information

in the unified flow key buffer 1103. The cache system 1115 is intelligent enough to

access to the flow database and to understand the data structures that exists on the other

side of memory interface 1123. The cache can retrieve information from the memory

through the member interface 1123 the unified memory controller 1119, and can also

25 	update information in the memory through the memory controller 1119. The cache

system can also be maintained, change and managed by the analyzer host interface and

control 1118, which, for example, allows for the direct insertion into the cache of

specific flow records and other elements from the flow database via the host bus

interface 1122.

30 	 Once a set of operations is performed on a unified flow key buffer entry by all of

the state machines required to access and manage a particular packet and its flow

NOAC Ex. 1014 Page 65

61

signature, the unified flow key buffer entry is marked as "completed." That element will

then be used by the parser interface for the next packet and flow signature coming in

from the parsing and extracting system.

There are several interfaces to components of the systems external to the module

	

5 	of Fig. 11 for the particular hardware implementation. These include host bus interface

1122, designed as a generic interface which can operate with any kind of external

processing system such as a microprocessor or a multiplexor (MUX) system so that one

can hook the overall a traffic classification system of Figs. 11 and 12 into some other

processing system to manage the classification system and to extract data gathered by the

	

to 	system. Another generic interface is memory interface 1123 designed to interface to any

of many types memory systems that one may want to use to store the flow records. The

unified memory controller 1119 deals with managing how memory is accessed and

maintained. Member interface 1123 is "generic" so one can use different types of

memory systems like regular dynamic random access memory (DRAM), synchronous

	

15 	DRAM, synchronous graphic memory (SGRAM), static random access memory

(SRAM), and so forth.

Fig. 10 also includes some "generic" interfaces. There is a packet input interface

1012, a general interface that works in tandem with the signals of the input buffer

interface control 1022. These are designed so that they can be used with any kind of

	

20 	generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 out and into host interface multiplexor

an control registers 1005. This enables the parsing system to be managed by an external

system, for example a general purpose processor or another kind of external logic, and

enables the external system to program and otherwise control the parser.

	

25 	 The preferred embodiment of this aspect of the invention the invention is

described in a hardware description language (HDL) such as VHDL or Verilog. It is

designed and created in an HDL so that it may be used as a single chip system or

integrated into another, say general-purpose system that is being a designed for purposes

related to creating and analyzing traffic within a network. Verilog or other HDL

	

30 	implementation is only one method of describing the hardware. Currently each of the

block diagrams shown in Figs. 10 and 11 are implemented in a set of six field

NOAC Ex. 1014 Page 66

62

programmable logic arrays (FPGAs). The boundaries these FPGAs are as follows:

Fig. 10 is implemented as two FPGAs. The parsing system that deals with pattern

recognition in one FPGA, and this includes in the input side blocks 1006, 1008 and

1012, and also parts of 1005, and memory 1001. The extraction system is in another

	

5 	FPGA which includes 1002, parts of 1005, 1007, 1013, and 1011. The memories in

Fig. 10 are included in the FPGAs as are the generic interfaces. Referring to Fig. 11, the

unified looking buffer 1103 is in a single FPGA. The fourth FPGA includes state

processor 1108 and the state processor instruction database memory 1109. In addition,

portions of the state processor instruction database memory 1109 are maintained in

	

10 	external SRAMs. The fifth FPGAs includes finite state machine engines 1107 (the

lookup/update engine) and 1110 (the flow insertion/deletion engine). The sixth FPGA

includes the cache system 1115, the unified memory tour 1119 and the analyzer host

interface and control 1118.

Note that rather than as a set of application specific integrated circuits (ASICs)

	

15 	such as FPGAs, one can implement the system as one or more VLSI devices. In the

future, it is anticipated that device densities will continue to increase, so that the

complete system may one day form a subunit (a "core") of a larger single chip unit.

The operation of the flow insertion and deletion engine 1110 is now described

with the aid of Fig. 12. The engine is entered at 1201 upon existence of a unified flow

	

20 	key buffer entry for packet having the status of "new". With the status being "new" in

the entry 1202, the next step if 1203, accessing a conversation record bin. This

information is already maintained in the unified flow key buffer 1103 for this flow

signature from a previous lookup that occurred using the lookup engine 1107. In 1204

the system requests that the record bin/bucket be maintained in the cache system 1115.

	

25 	As long as the cache system 1115 says that the bin/bucket is empty in 1205, step 1207

inserts the flow signature (with the hash) into the bucket and the bucket is marked "used"

in the cache engine using a time stamp that is maintained throughout the process. Then

in 1209 and the system compares the bin and bucket record flow signature to the packet

to verify that all the elements are in place to complete the record. In 1211 the system

	

30 	marks the record bin and bucket as "in process" and as "new" do in the cache system.

This allows the caching engine to understand do that it needs to actually push the record

NOAC Ex. 1014 Page 67

63

out through the unified memory controller 1119, into off chip memory. Finally in 1212,

the initial statistics for the record are set in the cache system so that they are either

cleared or, whatever set procedures the particular statistical operations require the system

to do for the first packet that is seen for a particular flow.

5 	 Back in step 1205, if the bucket is not empty, the system requests the next bucket

for this particular bin in the cache system. If that particular bucket is not valid than

control passes to 1207, repeating the processes of 1207, 1209, 1211 and 1212. If at 1208,

the bucket is seen to be in a valid state, the set the unified flow key buffer entry for the

packet is set as "drop", indicating that the system cannot process the particular packet

10 	because there are no buckets left in the system. The process exits at 1213.

The operation of the state processor 1108 is now described. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed which is marked

with status "new" or "found". This entry is retried from unified flow key buffer 1103 in

1301. In 1303, the state processor's instruction pointer the value found in the unified

is 	flow key buffer entry, and this instruction is fetched in 1304 from the state processor

instruction database memory. In 1305 the operation or set of operations fetched is carried

out by the state processor. The typical instructions include parsing operations to look up

and possible analyze a pattern from the packet in the unified flow key buffer 1103,

evaluate an offset in the payload of the packet, etc. The single state processor

20 	instructions are very primitive (e.g., moves, compares), therefore many such instructions

need to be performed on each unified flow key buffer entry. In 1307, a check is made to

determine if there are no more instructions to be performed. Each instruction performed

results in either another instruction that needs to be performed, or no more operations.

Therefore, if at 1307 it is determined that there are more instructions, then in 1308 the

25 	system sets the state processor instruction pointer to the value found as the next

instruction in the current state and the process moves to step 1304 where the next

instruction is fetched for execution. This loop between 1304 and 1307 continues until

there are no more instructions to be performed. In 1309, a check is made in 1309 if the

processing on this particular packet has resulted in a final state. That is, the system is

30 	done processing not only for this particular packet, for the whole flow that the packet is

part of. That is, at the end of processing this packet, there either is another state that

NOAC Ex. 1014 Page 68

64

another packet is needed for, or a final state has been reached. If there are no more states

to process, then in 1311 the processor sets and saves the "flow removal state" as a state

processor instruction in the current flow record that determines whether or not an

operation to remove this flow is set in place. Some final states may need to put a state in

	

5 	place which tells the system to remove a flow for example if a connection goes away

from a lower level connection identifier. In 1311 a flow removal state is set and saved in

the flow record. The flow removal state may be a NOP (no -op) instruction which means

there are no removal instructions, or it may be a set of operations that are needed to be

performed to evaluate whether or not this flow is going to get reset back to a state where

	

10 	it needs to be re-evaluated to make sure that it still the flow or end-result flow that the

system has temporarily determined that it is.

Once the appropriate flow removal instruction as specified for this flow (a NOP

or otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

	

15 	 If at 1309 it is determined that processing for this flow is not completed, then in

1316 the system saves the state processor instruction pointer in the current flow record in

the current flow record. That will be next operation that will be performed the next time

the lookup engine 1107 finds a match for this flow. Again, the processor now exits

processing this particular unified flow key buffer entry at 1313.

	

20 	The Parser Subsystem in More Detail

The preferred hardware implementation of the parser subsystem is now described

in more detail.

Highlights

The following are the highlights of the preferred hardware implementation of the

	

25 	parser subsystem which is shown in Fig. 10.

• Synthesizable modules written in both the Verilog and VHDL

• Scalable architecture for any size switch or probe

• Can recognize many (e.g., > 2000) different protocols

NOAC Ex. 1014 Page 69

65

• Extensible to new protocols

• Recognizes encapsulations

• Builds signature and payload data structure for analyzer (the flow signature)

• Scaleable protocol pattern recognition engine

5 	• 	At 62.5 MegaHertz can process up to 1.5 MegaPackets per second

• Accepts protocol database output from the compiler

Architectural Overview

The overall architecture is shown in Fig. 10. The parser module consist of two

main sub-modules. These are the pattern recognition engine (PRE) and the extractor. The

10 	PRE analyzes the packet and the extractor builds the flow signature from the packet and

instructions from the pattern recognition engine .The parser has been split into two parts

for several reasons. First and foremost, the split correctly partitions the functions to

allow maximum reuse of silicon across the over two thousand protocols that can be

supported. Another advantage of the split architecture is that the compiler can analyze

is 	the three dimensional space occupied by the offset, level, and pattern data of the

specified protocols and compact the databases used in the parser module. The set of

specified protocols defines a tree of linked nodes. Each protocol is either a parent node

or a terminal node. A protocol is a parent node if it links to other protocols that can be

contained in it. For example IP is a parent to UDP. Protocols can be the children of

20 	several parents. If a unique node was generated for each of the possible parent/child

trees, the database would explode exponentially. Instead, child nodes are shared among

multiple parents thus compacting the database.. Finally the PRE can be used on it's own

when only protocol recognition is required.

The parser module pouches the network data through the DataPort interface. The

25 	data is first processed by the pattern recognition engine. This engine consists of a

comparison engine and a database. The comparison engine has a first stage that checks

the protocol type field to determine if it is an 802.3 packet and the field should be treated

as a length. If it is not a length, the protocol is checked in the second stage. This is the

only protocol level that is not programmable. This is because the detection of the

NOAC Ex. 1014 Page 70

66

protocol at this level is simple and well defined. It is implemented with partial CAMs

that return a node identifier if hit. This second stage has two full sixteen bit CAMs

defined for future protocol additions. After this detection is completed the engine

initializes Current Offset Pointer (COP) to the next part of the packet that needs to be

	

5 	checked. The node identifier from the previous stage and the data pointed to by the COP

are used by the PRE to lookup an entry in the database. As each protocol is recognized,

the pattern recognition engine emits a unique protocol identifier. It also emits a process

code that the extractor uses to build the flow signature. This process is repeated until the

node identifier's Terminal bit is set. At that point the PRE has completely recognized the

	

to 	protocols in the packet and readies itself for the next packet.

The extractor extracts information from the packet to build the flow signature.

For example, it will extract the source and destination addresses from the packet and

pack them into the flow signature data structure. It may also process certain parts of the

packet to speed up flow processing performed by the analyzer. It will build a hash value

	

15 	from certain parts of the packet to speed looking up the flow in the analyzers' database.

The extractor transfers data from it's input Buffer to it's output Buffer based on the

sequence of instructions in it's instruction database. When the PRE recognizes a protocol

it outputs both the protocol identifier and a process code to the extractor. The protocol

identifier is added to the flow signature and the process code is used to fetch the first

	

20 	instruction from the instruction database. Instructions consist an operation code and

usually source and destination offsets as well as a length. The offsets and length are in

bytes. A typical operation is the MOVE instruction. This instruction tells the extractor to

copy n bytes data unmodified from the input Buffer to the output Buffer. The extractor

contains a byte-wise barrel shifter so that the bytes moved can be packed into the flow

	

25 	signature. The extractor contains another instruction called HASH. This instruction tells

the extractor to copy from the input Buffer to the HASH generator. The result from the

HASH generator is always written into the first two bytes of the flow signature. It is used

to accelerate the lookup of the flow in the analyzers flow database. Once the flow

signature is completed, the extractor transfers it to the analyzer for further processing.

30 	 The parser module databases can reside in ROM or RAM. If the databases are in

a RAM the parser can be programmed to recognize new protocols or a different set of

NOAC Ex. 1014 Page 71

67

protocols.

Bandwidth requirements

The target throughput for the traffic monitor hardware running at 62.5 Megahertz

is 1.5 million packets per second (PPS). This is the sustained maximum throughput of a

	

5 	single Gigabit channel. At this rate the parser module has 41.6 cycles to process each

packet. In order to reduce the need for front end buffering external to the parser module,

the architecture has been designed to complete the protocol recognition generation in no

more than 36 cycles. Since there could be up to 12 different protocols in each to be

processed, the parser module has been designed to average three cycles per protocol.

	

io 	This is the very worst case because a packet that has twelve levels of protocols in it will

most likely be much larger than the minimum packet size. This can be used as to

advantage again in the reduction of external buffering. The extractor must also complete

the flow signature generation within 36 cycles to keep the system in balance and

unstalled. This however can be extended if the payload copying instructions run to there

	

15 	maximum values.

The average packet will have between 4 and 5 levels of protocol with no

encapsulations. At three cycles per protocol the PRE will use only 15 cycles to complete

a packet. This means that the PRE has a typical sustained throughput of over three

million packets per second.

	

20 	Pattern Recognition Engine Sub-module — PRE

Highlights

The following are the highlights of the preferred implementation of the PRE:

• Scaleable protocol pattern recognition engine

• Supports from 1 to 2048 simultaneous unique protocol patterns

	

25 	• At 62.5 MegaHertz can process up to 1.5 MegaPackets per second

• Accepts protocol database, the database produced by the compiler

NOAC Ex. 1014 Page 72

68

Description

The Pattern Recognition Engine module searches it's database and the packet in

order to recognize the protocols the packet contains. The database consists of a series of

linked lookup tables. Each lookup table uses eight bits of addressing. The first lookup

	

5 	table is always at address zero. The Pattern Recognition Engine uses the BaseOffset

from the control register to start the comparison. It loads this value into the Current

Offset Pointer (COP). It then reads the byte at BaseOffset from the Parser Input Buffer

and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a

	

to 	terminal flag. If the lookup produces a recognition event the database also returns a

command for the Extractor. Finally it returns the value to add to the COP.

Database Word Definition

Bit Description

1:0 Opcode

00 Terminal Node found

01 Intermediate Node

10 Ending Terminal Node found

* Next Lookup table

* uses PAR_PRE_LU_WIDTH

* Extractor Command

* uses PARPRE_COM_WIDTH

* Mask

* uses PAR_PRE_MASK WIDTH

Extractor Sub-module

15 Description

The Extractor cuts up (slices) the packet to build the flow signature. The

Extractor module accepts commands from the Pattern Recognition Engine. Based on the

command received, the Extractor either transfers data from the Parser Input Buffer to the

NOAC Ex. 1014 Page 73

69

Parser Output Buffer or it transfers data from the Parser Input Buffer to it's internal hash

generator. It contains a buffer that FIFO's up the commands. When the Pattern

Recognition Engine asserts PREDone the Extractor completes any pending commands,

transfers the hash to the Parser Output Buffer and asserts SiDone.

5

Instruction Word Definition

Bit Description

1:o Opcode

00 Nop

01 Move

10 Hash

11 Done

* Source Address

* uses PAR P1B_AWIDTH

* Destination Address

* uses PAR_POB_AWIDTH

* Length

* uses PAR_SL_LEN_WIDTH

Implementation Information

The Extractor contains a byte wise barrel shifter that is used to pack data into the

flow signature. A Moore finite state machine controls the execution of commands. The

10 	command comes into the Extractor and is shifted to provide an address. The Extractor

uses this address to read the Extractor Instruction Database.

Extractor Instruction Database Sub-module -SID

Highlights

• Scaleable implementation

15 	• Wraps either RAM or ROM instantiation or can be synthesized latches

NOAC Ex. 1014 Page 74

70

Description

The Extractor Instruction Database module is a wrapper for the storage medium

used to hold the pattern recognition database. Only the CPU can write this memory.

Implementation Information

	

5 	The module can be synthesized or a RAM or ROM cell can be instantiated into

the wrapper.

CPU Interface MUX and Control Register Sub-module - CMC

Description

The CPU Interface MUX and Control Register module controls the

	

10 	communication between the external CPU and the Parser. The CMC contains a MUX for

the CPU read back. It also contains the control register for the Parser.

Parser Input Buffer Sub-module — PIB

Highlights

• Scaleable implementation

	

15 	• Asynchronous three ported RAM

• Can be build from three separate single port RAM cells

• Wraps either RAM instantiation or can be synthesized latches

• Separate dual read and a single write interfaces

Description

	

20 	The Parser Input Buffer is a wrapper for the buffer that is used to store the start of

the packet. It is three ported with separate dual read and a single write interfaces. The

data from the DataPort interface is stored in one of three logical or physical buffers

through the write port. The Pattern Recognition Engine uses one of the read ports and the

Extractor uses the other. The three interfaces never access the same third of the buffer at

	

25 	the same time. Each of the interfaces looks like a single buffer to the attached modules.

The Parser Input Buffer controls which of the three buffers the module is controlling.

NOAC Ex. 1014 Page 75

71

When the first packet comes in the DataPort Interface Control module writes the data

into one of the three buffers. It then increments a modulo three counter to point to the

next buffer. The Pattern Recognition Engine will then begin processing the packet.

Finally after the Pattern Recognition Engine is finished the Extractor will get access to

	

5 	the buffer. In this way each of the three processes have access to a buffer and each get

access to the packet in turn.

Implementation Information

The module can be synthesized or RAM cells can be instantiated into the

wrapper. The instantiated RAM can be either a single three ported cell or three separate

	

to 	RAM cells. The Parser Input Buffer can be three separate RAM cells because the control

logic will never try to read and write the same third of the buffer at the same time.

Parser Output Buffer Sub-module - POB

Highlights

• Scaleable implementation

	

15 	• Asynchronous dual ported RAM

• Can be build from two separate single port RAM cells

• Wraps either RAM instantiation or can be synthesized latches

• Separate read and write interfaces

Description

	

20 	The Parser Output Buffer is a wrapper for the buffer that is used to store the

output of the Extractor. It is dual ported with separate read and write interfaces. The

write interface is controlled by the Extractor. The read interface is controlled by the

Analyzer Interface Control logic. The Parser Output Buffer maintains a pointer to the

two buffers such that one buffer is controlled by the Extractor and one is controlled by

	

25 	the Analyzer Interface Control logic.

Implementation Information

The module can be synthesized or RAM cells can be instantiated into the

NOAC Ex. 1014 Page 76

72

wrapper. The instantiated RAM can be either a single dual ported cell or two separate

RAM cells. The Parser Output Buffer can be two separate RAM cells because the control

logic will never try to read and write the same half of the buffer at the same time.

DataPort Interface Control Sub-module - DPIC

5 Description

The DataPort Interface Control module handshakes with the external source of

packets. The external device starts sending the packet to the DataPort Interface Control

module by asserting DPPacketDelim. The transfer of data is coordinated by the

DPDataStb_N/DPReady_N pair. If the external device decides to about the packet it

to 	can assert DPKillPkt_N.

Implementation Information

The Analyzer Interface Control module is implemented as a Moore type finite

state machine. Each of the outputs of the state machine are registered to assure maximum

setup time for the external device.

15 	Analyzer Interface Control Sub-module -AIC

Description

The Analyzer Interface Control module handshakes with the Analyzer in order to

transfer the flow signature for further processing. The Analyzer Interface Control module

starts a transfer to the Analyzer by asserting ParserKeyDelim. It then transfers the data

20 	via the AnalyzerReady/ParserDataAvail handshake pair. The Analyzer Interface

Control module also sends the address of the data to be sent to the Parser Output Buffer.

Implementation Information

The Analyzer Interface Control module is implemented as a Moore type finite

state machine. Each of the outputs of the state machine are registered to assure maximum

25 	setup time for the Analyzer interface.

The Analyzer Module in Detail

The preferred embodiment hardware analyzer module illustrated in Fig. 11 is

NOAC Ex. 1014 Page 77

73

now described in more detail.

Highlights

Highlights of the preferred embodiment include:

• Flexible rule-based traffic classification;

5 	 • 	State-based tracking of traffic;

• Multiple packets for layer processing;

• Internal cache and memory controller;

• Direct high bandwidth (64 bit) memory interface;

• SGRAM/SDRAM support;

10 	• Programmable rules/state processor;

• Selectable protocols in flows;

• Future protocols support; and

• Scalable system design.

Architectural Overview

15 	 The analyzer module preferred embodiment includes five major sub-modules

with several supporting sub-modules. The major sub-modules as shown in Fig. 11 are the

flow lookup/update engine, the flow insertion and deletion engine, the state processor,

the cache, and the unified memory controller. Each of these sub-modules works in

parallel to create and update flows.

20 	 As a flow signature enters the analyzer, the lookup engine attempts to find it in

the flow database. If the flow exists, the lookup engine retrieves the flow from the cache.

It then makes a decision based on the state information included in the flow entry to

either send it to the state processor or not. In either case it updates the flow entry. This

updating consists of adding values to counters in the flow database entry. If a flow does

25 	not exist, the state processor sends the flow signature to the flow insertion and deletion

engine, which adds the flow to the database.

NOAC Ex. 1014 Page 78

74

The state processor updates the flow based on the current state and the flow

signature information. The state processor processes single and multi packet protocol

recognition. It may have to search through a series of possible states to determine the

flow's actual state. The result of the state processor's processing is a consolidated flow

	

5 	entry. For example, a PointCast session will open multiple conversations that on a packet

by packet basis look like separate flows. Since each conversation is merely a sub-flow

under the PointCast master flow, a single flow that consolidates all of the information for

the flow is desired.

The unified memory controller can be setup to work with various configurations

	

10 	of SDRAM or SGRAM. It also controls the SRAM tag memory for shadowing of flow

entries.

The cache is used to optimize memory bandwidth. On a typical network the

packets will have a certain amount of congruity. This means that the cache can have a

high hit rate.

	

15 	Flow Entry Database

The Flow Entry Database consists of a series of 128 byte entries. Each entry

completely describes a flow. The format and information contained in the flow is

described in the PDL files. The database is organized into buckets. Each bucket contains

N flow entries. N is determined by the designer. Buckets are accessed via a hash value

	

20 	created by the Parser based on information in the packet. This hash spreads the flows

across the database and is preferably based on a hashing algorithm that has the spreading

properties. This method allows fast look up of an entry while allowing for shallower

buckets. The designer selects the bucket depth based on the amount of memory attached

to the analyzer and the number of bits of the hash value used. For example, for 128k

	

25 	flow entries 16 Megabytes are required. Using a 16-bit hash gives two entries per bucket.

This has been empirically shown to be more than adequate for the vast majority of cases.

Unified Flow Key Buffer - UFKB

Highlights

• Scaleable implementation

NOAC Ex. 1014 Page 79

75

• Can be build from four separate dual port RAM cells

• Wraps either RAM instantiation or can be synthesized latches

• Separate read and write interfaces

Description

5 	 The Unified Flow Key Buffer is a wrapper for the buffers that are used to store

the flow signatures from the Parser and the modified flow signatures from the Lookup

and Update Engine and the State Processor. It is four ported with separate read and write

interfaces. The four connections are to the Parser Interface Control, the Lookup and

Update Engine, the State Processor and the Flow Insertion and Deletion Engine. In the

10 	Unified Flow Key Buffer logic hides from the interface which of the buffers is being

accessed.

When the first word of the flow signature arrives from the Parser, the Lookup and

Update Engine is notified. The Lookup and Update Engine places the first address it

wants on the LUEnUFKBAdd bus and asserts LUEnUFKBRdReq. If the address

15 	requested is in the buffer the Unified Flow Key Buffer asserts UFKBuLUERdy. If not it

waits for either the data to arrive or the transfer is terminated. Once the Lookup and

Update Engine finishes processing the flow signature it asserts LUEDone. At the same

time it will assert LUEHo1dBuf. LUEHoldBuf tells the system that the buffer is to be

sent to the State Processor.

20 	 The State Processor and Flow Insertion and Deletion Engine have similar

interfaces except that the data is assumed to be already in the buffer so no ready is

returned. Also Flow Insertion and Deletion Engine has no need to hold the buffer for

another process so that once FIDEDone is asserted the buffer is freed.

Implementation Information

25 	 The module can be synthesized or RAM cells can be instantiated into the

wrapper. The instantiated RAM should be four separate dual ported RAM cells.

The RAM must complete a write or read in a single cycle with simultaneous read

and write to SEPARATE locations.

NOAC Ex. 1014 Page 80

76

A block diagram of the UFKB is shown in Fig. 19.

Lookup and Update Engine - LUE

Highlights of the LUE

• Looks up flow entries

	

5 	• 	Compares flow signature from parser to flow entries

• Updates packet count and byte count tables

• 64 bit byte count adder with early out

• Checks flow state to see if processing by the state processor is required

Description

	

10 	 The Lookup and Update Engine begins processing as soon as a flow signature

arrives from the parser. The first transfer from the parser contains a hash value that is

used as an offset into the flow entry database. The LUE checks the entry to see if it

matches the flow signature by comparing the unique identification for that flow. If there

is a match, the LUE updates the counters for the flow entry. The LUE also check the

	

is 	entry's flow state to see if the flow signature needs to be sent to the state processor.

The Lookup and Update Engine also outputs on a special data bus, two 16 bit

values. One value is a word from the flow signature that can be a packet identifier or any

thing else the design wants. The other is the protocol identifier for the flow. This can be

programmed to output this data on every packet or only for packets that the

	

20 	corresponding flow is in the IDENTIFIED state.

Analyzer CPU Interface and Control - ACIC

Description

The Analyzer CPU Interface Control module controls the communication

between the external CPU and the Analyzer. The ACIC contains MUX's for the CPU

	

25 	read back path. It also contains the control register for the Analyzer.

NOAC Ex. 1014 Page 81

77

Flow Insertion and Deletion Engine - FIDE

Highlights

• Maintains flow entry database

• Deletes and inserts flows based on a LRU algorithm

5 	• 	Builds flows from flow signature and State Processor instructions

Description

The Flow Insertion and Deletion Engine maintains the flow entry database. Flows

are grouped into buckets by hash value. When a new flow needs to be inserted first the

FIDE sees which of the entries

10 	in the corresponding bucket is the oldest. It then builds the flow entry from the

flow signature and State Processor instructions. Finally it places the entry in the

database.

State Processor Instruction Database - SPID

Highlights

15 	• Scaleable implementation

• Wraps either RAM or ROM instantiation or can be synthesized latches

Description

The State Processor Instruction Database module is a wrapper for the storage

medium used to hold the State Processor Instruction database. Only the CPU can write

20 	this memory. The CPU interface is active if AnalyzerEn is active.

Implementation Information

The module can be synthesized or a RAM or ROM cell can be instantiated into

the wrapper.

NOAC Ex. 1014 Page 82

78

Unified Memory Controller - UMC

Highlights

• Supports Both SDRAM and SCRAM

• Maintains RAM refresh

5 Description

The Unified Memory Controller module controls the caches' access to the flow

database contained in external RAM. Synchronous DRAM is controlled through a series

of instructions feed to the RAM through the control pins. Synchronous DRAM requires

at startup a specific series of commands for initialization. The Unified Memory

10 	Controller handles both processes thorough a state machine. Since the nature of the flow

database requires random access, there is little use in attempting to keep multiple banks

open. Auto-refresh is continuous when memory is not being accessed by the cache.

Implementation Information

The Unified Memory Controller module is implemented as a Moore type finite

15 	state machine. Each of the outputs of the state machine are registered to assure maximum

setup time for the external device.

The Cache

Symbol

Highlights

20 	• Fully associative

• True least recently used cache updating

• Simultaneous one write and two reads.

Description

The Cache module contains a fully associative, true LRU cache memory. Full

25 	associatively is achieved through the use of a content addressable memory (CAM). The

need for a fully associative cache arises from the fact that the hash uses to generate the

NOAC Ex. 1014 Page 83

79

initial look up into the flow entry database spreads the entries pseudo randomly

throughout the memory. Each hash value corresponds to a bucket containing N flow

entries. N is set by the designer (see above).

The Cache can service two read transfers at one time. If there are more than two

5 	read requests active at one time the Cache services them in the order required (See

Priority below).

The CAM contains the hash value associated with the corresponding bucket in

the cache memory. When there is a cache hit, the CAM produces the most significant

bits of the address in cache memory where the bucket is stored. The cache then accesses

10 	the cache memory at the address indicated concatenating the lower address bits provided

by the requesting module. The cache then remembers that the requesting module had a

cache hit and the memory location returned. This allows a cache lookup for a requesting

module to occur only once per request. When the requesting module requires a different

bucket, it drops then again raises its request and another CAM cycle is initiated.

15 	 The least recently used algorithm requires the CAM to also be a stack. When

there is a cache hit the CAM location that produced the hit is put on the top of the stack.

The other locations above the hit location are shifted down to fill in the gap. If there is a

miss, the bottom location is read to determine the address in the cache memory to put the

new bucket. All the locations shifted down as normally. Finally the new hash value and

20 	cache memory address are put at the top of the stack.

Priority

The Cache processes requests from the attached modules in the following order:

1 - LRU dirty write back. The Cache writes back the least recently used bucket if

it is dirty so that there will always be a space for the fetching of cache misses.

25 	 2 — Lookup and Update Engine.

3 — State Processor.

4 — Flow Insertion and Deletion Engine.

5 — Analyzer CPU Interface and Control

NOAC Ex. 1014 Page 84

80

6 — Dirty write back from LRU —1 to MRU. When there is nothing else pending

the Cache writes dirty entries back to memory.

State Processor - SP

Highlights

s 	• 	Flexible Rule-based Traffic Classification

• State-based Tracking of Traffic

• Multiple Packets for Layer Processing

• Programmable Rules/State Processor

• Selectable Protocols in Flows

10 	• Future Protocols Support

Description

The State Processor module analyzes both new and existing flows in order to

classify them by application. It does this by proceeding from state to state based on rules

defined by the engineer. A rule is a test followed by the next state to proceed to if the test

15 	is true. The State Processor goes through each rule until the test is true or there are no

more tests to perform. The State Processor starts the process by using the last protocol

recognized by the Parser as an offset into a jump table. The jump table takes us to the

instructions to use for that protocol. Most instructions test something in the Unified Flow

Key Buffer or the flow entry if it exists. The State Processor may have to test bits, do

20 	comparisons, add or subtract to perform the test.

The State Processor Module in Detail

State Processor Top - Block Diagram

The overall top level view of the State processor is shown in Fig. 20.

Architecture

25 	 The State Processor executes its instructions from the State Processor Instruction

Database (SPID) which if filled by the host CPU. The SP contains several sub blocks

NOAC Ex. 1014 Page 85

81

including a Program Counter (SPPC) a Control Block (SPCB), an ALU (SPALU),

address generators and data bus Muxes to enable the movement of data from various

sources to various destinations.

The two address generators, are:

5 	 a) The SP Flow Key (i.e., flow signature) Address Generator that points to the

UFKB and

b) The SP Flow Entry Address Generator that points to the Cache.

In addition, the State Processor incorporates four Data Muxes as follows:

a) SP ALU Data Mux A

10 	b) SP ALU Data Mux B

c) SP UFKB Data Mux

d) SP Cache Data Mux

These muxes facilitate the movement of data within the various blocks of the

State Processor and to/from the UFKB and the Cache.

15 	 Since various sub-modules of the State Processor contain memory elements such

as the address generator ROMs and the Reference Memory RAM, the host must be given

read and write access to these memory blocks.

Architecture (Data Flow) Block Diagram

Fig. 21 illustrates the data flow paths between the various State Processor sub

20 	modules. Data flows based on the size of the source and destination.

The internal sub-modules of the State Processor are now described.

State Processor Control Block - SPCB

The SP Control Block decodes instructions coming out of the SPID and separates

them into various fields to control the State Processor. The main function of the SPCB is

25 	instruction decoding and control signal generation. There are two classes of instructions.

One that are executed completely by the SPCB and one that are passed along to the

NOAC Ex. 1014 Page 86

82

SPALU for partial or complete execution. The SP instructions are described herein

below in detail.

When an instruction needs to be passed to the SPALU, the SPCB decodes the

instruction and supplies the SPALU instruction code on the SPCBInst bus and asserts the

5 	SPALUGo signal.

When an instruction can be completely executed by the SPCB, the SPCB

generates the appropriate control signals to the SP Program Counter, SP Address

Generators and the SP Muxes in order to implement the specific move or jump

instruction.

10 	SPID Word Definition

The SPID word is a 40 bit word and is partitioned into various fields by the

SPCB depending on the instruction code. The most significant 7 bits are always the

SPCBInst Instruction word. The remaining 33 bits carry a different meaning based on the

SPCBInst word. In some implementations, the width of the SPID may be reduced by 12

15 	if there is no need to a move immediate instruction for 32 bit data.

SPCBData Word Definition

The SPCBData word (which is the remaining bits in the SPID word after we take

out the SPID Instruction field) is partitioned into various fields depending on the

accompanying SPCBInst word.

20 	 For example: The Jump, Call, Wait, WaitRJ instructions are followed by a

Condition Code and a Jump Address. The Move Immediate instruction is followed by

the constant value. The load Address Generator instructions are followed by the address

to be loaded.

Implementation Information

25 	 The SPCB primarily takes the SPID word and brakes it up into various fields.

Upon decoding the instruction field, it generates a combination of control signals from

its 24 bit decode PAL. These control signals select the various muxes hat facilitate data

movement and generate strobe signals that load values in various registers. New control

signals can be added by widening the decode field and rearranging the PAL. The

NOAC Ex. 1014 Page 87

83

SPCBInst is the only field that feeds into the PAL. The remaining fields of the SPID

work pass through the SPCB and are directed to the other sub-modules of the State

Processor.

State Processor Program Counter - SPPC

5 	The Program Counter generates the address to the State Processor Instruction

Database. It contained an Instruction Pointer (SPIP) which generates the SPID address.

The instruction pointer can be incremented or loaded from a Jump Vector Multiplexer

which facilitates conditional branching. The SPIP can be loaded from one of three

sources. 1) A protocol identifier from the UFKB, 2) an immediate jump vector form the

to 	currently decoded instruction or 3) a value provided by the SPALU.

After a Flow Signature is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

15 	 In order to facilitate JUMP immediate instructions, the Program Counter takes an

input field from the SPCB with the jump vector and loads the instruction pointer with the

Jump Vector. Also, the SPALU can supply a jump vector via the SPALUData bus which

in turn is loaded into the instruction pointer.

The State Processor supports "Call and Return Instructions" therefore the

20 	Program Counter block contains a two level stack. A two bit stack pointer points to the

top of the stack that the Instruction Pointer is pushed to or popped from.

The SP Program Counter block contains:

The Instruction Pointer, The Flag Register (containing several bits used for

conditional branching) and a Jump Vector MUX. It also contains a two level stack and a

25 	stack pointer.

The SPPC is N bits wide. This allows addressing of 211 words in the SPID. N is

defined in the AnalyzerConstants.v file by the AN_SPID_AWIDTH variable.

In addition, the Flag register holds a word supplied via the UFKB.

NOAC Ex. 1014 Page 88

84

Implementation Information

The State Processor Instruction Pointer (SPIP) is an n bit up counter with reset,

load, increment and add capability. It is clocked with the rising edge of MCLK and its

output supplies the address pointing to the SPID.

5 	Upon Reset, the SPIP is loaded with the Reset Vector.

When Instructions are executed, the SPIP is incremented at the rising edge of

MCLK.

When Jump or Wait instructions are executed, the SPIP is loaded with a Jump

Vector from the Jump Vector Mux.

to 	When WaitJR (Jump Relative) instructions are executed, the relative address is

added to the SPIP.

When Wait instructions are executed, the SPIP is halted until the condition code

is met.

State Processor ALU - SPALU

15 	 The State Processor ALU contains all the Arithmetic, Logical and String

Compare functions necessary to implement the State Processor instructions. The main

blocks of the SP ALU are: The A and B Registers, the Instruction Decode & State

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register.

20 	 The Search Engine in turn contains the Target Search Register set, the Reference

Search Register set, and a Compare block which compares two operands by exclusive-

or-ing them together.

Implementation Information

This block is implemented to be able to operate on multiple works and generates

25 	Increment and Decrement signals to the SPFK Address Generator in order to obtain new

data to process.

NOAC Ex. 1014 Page 89

85

State Processor Flow Key Address Generator - SPFKAG

The Flow Key Address Generator generates the address to where the State

Processor is accessing in the Unified Flow Key Buffer.

The main blocks of the SPFKAG are:

5 	 a) The Flow Key Address Pointer Register

b) The ROM decode that generates addresses (implemented but not used for

stage one)

To further illustrate the operation, consider the following example. If the UFKB

contains 360 bytes organized in 64 bit words, the memory would be 45 locations of 8

10 	bytes each (45X8=360). The address pointer needs to generate 45 addresses only. The

width of the address generator would be 2n=64 or n=6. Since we may only be interested

in certain starting points in the memory field, we may only need to access say 8 or 16

locations directly and then reach the other locations by incrementing OR

DECREMENTING the Address Pointer. The ROM would hold the values of these

15 	directly addressable fields. This way we save a few bits. The State Processor will be able

to load the full address into the address pointer register.

The Flow Key (i.e., flow signature) Pointer can perform both direct and indirect

addressing. Indirect addressing is used to offset into a protocol's header. (Stage2)

Implementation Information

20 	 The SPFKAG can be loaded, incremented and decremented by the SPCB.

It can be incremented and decremented by the SPALU.

State Processor Flow Entry Address Generator - SPFEAG

The Flow Entry Address Generator provides the address where the State

Processor is accessing the Flow Entry in the Cache. If a flow entry exists, the upper

25 	address bits come from the hash used to lookup the bucket in the Flow database. The

middle bits come from the bucket entry found. The lower bits come from the offset the

State Processor is using.

NOAC Ex. 1014 Page 90

86

The main blocks of the SPFKAG are:

a) The Flow Key Pointer Register

b) The ROM decode that generates addresses

Implementation Information

5 	 The SPFEAG can be loaded, incremented and decremented by the SPCB.

It can be incremented and decremented by the SPALU.

State Processor UFKB Data Mux - SPMUXUFKB

The State Processor UFKB Data Mux - SPMUXUFKB selects the data source

destined to the UFKB.

10 	Implementation Information

The SP MUX UFKB multiplexes one of three sources of data into the UFKB.

The three sources are: The ALU Output data bus, the lower Cache output data bus and

the 32 bit SPCB Data. The select signal is a 2 bit signal.

State Processor Cache Data Mux - SPMUXCA

15 	 The State Processor Cache Data Mux - SPMUXCA — selects the data source

destined to the Cache.

Implementation Information

The SP MuxCA multiplexes one of four sources of data into the Cache. The four

sources are: The ALU Output data bus, the lower 32 bits of the UFKB data bus, the

20 	upper 32 bits of the UFKB data bus and the 32 bit SPCB Data. The select signal is a 2 bit

signal. In order to allow for 16bit moves, the SPMUXCA incorporates two 16bit muxes

that supply information to the lower and upper 16bits of the Cache.

The State Processor ALU Data Mux A - SPMUXA

Th State Processor ALU Data Mux A - SPMUXA — selects the data source

25 	destined to the UFKB.

NOAC Ex. 1014 Page 91

87

Implementation Information

The SP ALU Mux A multiplexes one of three sources of 32 bit data into the A

side of the ALU. The three sources are: The Cache data bus, the lower 32 bits of the

UFKB data bus and the upper 32 bits of the UFKB data bus. The select signal is a 2 bit

5 	signal.

State Processor ALU Data Mux B - SPMUXB

The State Processor ALU Data Max B — SPMUXB —selects the data source

destined to the B side of the SP ALU.

Implementation Information

10 	 The SP ALU Mux B multiplexes one of two sources of 32 bit data into the B side

of the ALU. The two sources are: The Cache data bus, and the SPCBData word. The

select signal is a 1 bit signal.

State Processor Instruction Definitions

The following sections describe the instructions available in the State Processor.

15 	It should be noted that typically, no assembler is provided for the State Processor. This is

because the engineer typically need not write code for this processor. The Compiler

writes the code and loads it into the State Processor Instruction Database from the

protocols defined in the Protocol List (PDL files).

State Processor Instruction Definition

Instruction Description

STAGE1 Instructions (a simpler implementation)

In_Noop No Operation

In Wait Wait for a condition to occur, jump absolute based on the
condition

In Call Call a subroutine

In Return Return from a subroutine

In_WaitJR Wait for a condition to occur, jump relative based on the
condition

In_Jump Jump to an immediate jump vector based on a condition

NOAC Ex. 1014 Page 92

88

In Move Move Data from Location X, to Location Y

In_Load_FKAG Load the FK Address Generator

In_Inc_FKAG Increment the KF Address Generator

In_Dec_FKAG Decrement the KF Address Generator

In_Load_FEAG Load the FK Address Generator

In_Inc_FEAG Increment the KF Address Generator

In_Dec_FEAG Decrement the KF Address Generator

In_Set_SPDone Set the SP Done Bit

STAGE! ALU Instructions

In_INC Increment the value in the A Register

In_DEC Decrement the value in the A Register

In_ADD ADD Register A + Register B

In_SUB Subtract Register A - Register B

In AND Bitwise OR Register A, Register B

In_OR Bitwise OR Register A, Register B

In_XOR Bitwise XOR Register A , Register B

In_COM Bitwise Complement Register A

In_Simple_Compar
e

Compare Reg A, with Reg B. Returns a SPALU_MATCH if
equal

STAGE2 ALU Instructions (more complex implementation)

In_Compare See if the string at a fixed location matches one in a reference
string array

In_Compare_Conti
nue

In_Find Find a string (or a set of strings) in a range

In_FindContinue

In_AD2B Convert an ASCII Decimal character to Binary

In_AD2B Continue Convert an ASCII Decimal character to Binary

In_AH2B Convert an ASCII Hex character to Binary

NOAC Ex. 1014 Page 93

In_AH2B Continue Convert an ASCII Hex character to Binary

89

The instructions are now described in more detail.

Noop

This instruction is the No Operation Instruction. No control signals are generated

	

5 	nor any of the condition code flags are tested.

Jump

This instruction causes the Instruction Pointer to be loaded with the address in the

JumpAddress field of the State Processor Instruction Database word. This instruction is

always conditional. Whether the branch is taken or not depends on the ConditionCode

	

10 	field in the instruction and the state of the Flag Register. If the Condition is not met, the

Instruction Pointer is incremented.

Wait

This instruction causes the Instruction Pointer to be halted (loaded with the same

value as before) until the condition or event that we are waiting for occurs. When the

	

15 	event occurs, the Instruction pointer is loaded with the address provided by the source

causing the event. This instruction is always conditional.

In order to avoid being stuck at this instruction forever, one of the conditions can

be a timeout which can preload the Instruction pointer with the Reset Vector.

Call

	

20 	 This instruction causes the Instruction Pointer to be loaded with the address in the

JumpAddress field of the State Processor Instruction Database. At the same time the

current address in the Instruction Pointer is pushed onto the 2 level stack.

This instruction may be made conditional Whether the call is taken (made) or not

depends on the ConditionCode field in the instruction and the state of the flag register.

25 Return

This instruction causes the Instruction Pointer to be loaded with the address at the

NOAC Ex. 1014 Page 94

90

top of the stack. This instruction is always unconditional.

In_Set_SPDone

Set the SP Done Bit

Move

	

5 	 The move instruction in made up of a set of specific move instructions that deal

with moving different size words from a source to a destination. These set of Move

instructions have been developed to ensure the word sizes always match. There are 32 bit

and 16 bit Move instructions

The Move instruction moves data from:

	

10
	

Immediate Data 	to SP ALU B Register

Immediate Data 	to Cache

Immediate Data 	to UFKB

SP ALU Output 	to UFKB

SP ALU Output 	to Cache

	

15
	

Cache 	 to UFKB

Cache 	 to SP ALU A Register

Cache 	 to SP ALU B Register

UFKB 	 to Cache

UFKB 	 to SP ALU A Register

	

20 	 The execution of a MOVE instruction entails:

• The generation of the addresses to the sources and destinations (in the case of

Flow Signature and Cache)

• The selection of the appropriate destination MUX.

• The generation of the appropriate Load or Write signal to the destination

	

25 	 register or memory.

To continue the description of the instructions:

NOAC Ex. 1014 Page 95

91

Address Generator Control Instruction

Flags Affected: UFKB_Nend — Address Generator End Count

In_Load_FKAG 	Load the FK Address Generator

In_Inc_FKAG 	Increment the KF Address Generator

5 	In_Dec_FKAG 	Decrement the KF Address Generator

In Load_FEAG 	Load the FK Address Generator

In_Inc_FEAG 	Increment the KF Address Generator

In_Dec_FEAG 	Decrement the KF Address Generator

In_Set_SPDone 	Set the SP Done Bit

10 	STAGE 1 ALU Instructions (those in a simpler implementation)

15

Flags Affected: SPALU_Carry, SPALUMatch

In_INC 	Increment the value in the A Register. The Flags Affected:

SPALU_Carry

In_DEC 	Decrement the value in the A Register

Flags Affected: SPALU_Carry

In_ADD ADD Register A + Register B

Flags Affected: 	SPALU_Carry

In_SUB Subtract Register A - Register B

Flags Affected: 	SPALU_Carry

20 In_AND Bitwise OR Register A, Register BFlags Affected:

SPALU_Carry=0

In_OR Bitwise OR Register A, Register B

Flags Affected: 	SPALU_Carry=0

In_XOR Bitwise XOR Register A , Register B

25 Flags Affected: 	SPALU_Carry=0

NOAC Ex. 1014 Page 96

92

In_COM 	Bitwise Complement Register A

Flags Affected: 	SPALU_Carry=0

In_Simple_Compare

This instruction compares the contents of RegA with the contents of RegB and

5 	returns a MATCH if equal The instruction format is as follows:

STAGE 2 ALU Instructions (those in a more complex implementation)

The following is a list of the Stage2 ALU Instructions along with the instruction

formats and related information.

In_Compare

io 	This instruction provides information to the ALU-Search Engine to perform a

compare operation and return a MATCH along with the matched string information. A

Compare operation compares a WORD whose first character is located at a known

location in the UFKB, and a known Reference String in the Reference String memory.

Prior to executing this instruction, the SPUFKB address generator is loaded with the

15 	address pointing to the Target Character. Since the UFKB has multiple words in one

location, an additional offset is provided which points to the exact location of the Target

Character within a UFKB word. A location in the ALU Reference Memory will hold a

list of reference characters to compare.

In_Compare_Continue

20 In_Find

This instruction provides information to the ALU-Search Engine to perform a

Find operation and return a MATCH along with the matched string information and

the location at which the target string was found.

The instruction format is as follows:

25 	 In_Find [Reference String Array Address], [UFKB Byte Offset], [Range]

Instruction Word Definition

Bit
	

Description

In Find
	

OpCode

NOAC Ex. 1014 Page 97

93

N (size of
Abus)

Reference String Array Address in the ALU Reference Memory.

At this location, there is an array of one to four reference strings to
be found. A Reference String Data Structure of the array is defined
in the Reference Memory Data Structure section below.

(Default N = 16)

Offset (2:0) UFKB Byte Offset

This is the offset address pointing to a byte in the selected UFKB
word.

The offset is used to determine which byte within the selected
UFKB word is the first byte location to start the find operation. If the
UFKB is 64 bits (8 bytes) this field would be 3 bits wide and point
to the first target byte to start the find operation.

Range (7:0) The Range, in number of byte, in the UFKB area to be searched.

This means the number of bytes to search.

If a full MATCH does not result after comparing this range, the find
operation is concluded.

Reference String Memory Data Structure for FIND Operations

Bit Field Description

of Strings

(8 bits)

of Strings in Array indicates the total number of strings in this
array. Valid numbers are 0,1,2,3 for 1,2,3 or 4 strings.

8 bits are allocated for future expansion and to simplify the
implementation.

Size of 1st
String

(4 bits)

This parameter indicates the size of the 1st string in bytes. The value
placed here is N-1. Valid numbers are 0-F for a string as small as 1
character and as large as OxF characters.

Size of 2nd
String

(4 bits)

This parameter indicates the size of the 2nd string in bytes. The value
placed here is N-1. Valid numbers are 0-F for a string as small as 1
character and as large as OxF characters.

Size of 3rd

String

(4 bits)

This parameter indicates the size of the 3rd string in bytes. The value
placed here in N-1. Valid numbers are 0-F for a string as small as 1
character and as large as OxF characters.

Size of 4th
String

(4 bits)

This parameter indicates the size of the 4th string in bytes. The value
placed here in N-1. Valid numbers are 0-F for a string as small as 1
character and as large as OxF characters.

Stringl 1 to 16 characters of stringl.

String2 1 to 16 characters of string2.

NOAC Ex. 1014 Page 98

94

String3 1 to 16 characters of string3.

String4 1 to 16 characters of string4.

Vector

(16 bits)

This is a 16 bit vector returned to the Program Counter to point to an
area in the SPID that processes the result of the FIND.

Reference String Memory Data Structure for FIND Operations (Diagram)

Input

The Reference String Array Address in the SP ALU Reference Memory. This is

	

5 	always a WORD location.

There can be one or more (up to four) reference strings.

The offset is used to determine the first byte location in the UFKB memory for

starting the find operation.

The range specifies the field of search. I.e. how many bytes of the Flow Key (i.e.,

	

10 	flow signature) Buffer should be searched. This range is inclusive.

Output

When the search is complete, the Search Done bit is set.

The MATCH bit is set or reset based on the result of the search.

The ALU_DATA bus will hold the following information:

	

15 	 Jump_Vector[15:0] — this is a vector stored in the Reference String Array.

String Code[l :0] — this is the STRING CODE for the string that was

found. (i.e. 0,1,2,3)

The location at which the string was found in the Flow Key Buffer is maintained.

This is a combination of the UFKB word address + the byte location of the first character

	

20 	of the target found string.

The search is done if:

NOAC Ex. 1014 Page 99

95

a) the first occurrence of any of the reference strings is found OR

b) there is no MATCH in the entire search range.

Consider the following example. Assume we wish to FIND a reference string in

the payload area of the UFKB and search starting at byte location 5 of the payload and

stop searching at byte location 100. Assume the reference string is located at location

0050h. The instruction format for this example would be as follows:

In_Load_FKAG, payload address

In_Find, 0050h, 5, 60h

The range would be 100 — 5 + 1 = 96 = 60h

to 	Example 2

If we wish to search locations 12h to location 2Ah in the UFKB, the following

instructions will be issues:

In_Load_FKAG 02H

In_Find [Reference String Address],2,19h

15 	 2Ah — 12h +1 = 19h

In_Find_Continue

This instruction follows a FIND instruction and tells the ALU-Search Engine to

perform a Find operation starting from the location where the last string was found and

return a MATCH along with the matched string information and the location at which

20 	the target string was found. The purpose for this instruction is to facilitate searching for a

new reference string starting from the location where a previous search ended. Therefore,

an offset is not provided since the Search Engine will remember the location where it

finished its previous search.

The instruction format is as follows:

25 	 In_Find_Continue [Reference String Array Address], [0], [Range]

NOAC Ex. 1014 Page 100

96

Instruction Word Definition

Bit Description

In_Find Opcode

N (size of
Abus)

Reference String Array Address in the ALU Reference Memory.

At this location, there is an array of one to four reference strings to
be found. A Reference String Data Structure of the array is defined
in the Reference Memory Data Structure section below.

(Default N = 16)

Offset (2:0) UFKB Byte Offset

Always Zero.

Range (7:0) The Range, in number of byte, in the UFKB area to be searched.

This means the number of bytes to search.

If a full MATCH does not result after comparing this range, the find
operation is concluded.

As an example, assume we wish to FIND a string (String A) in the payload area

of the UFKB and search starting at byte location 5 of the payload and stop searching at

byte location 100. Assume the reference string (String A) is located at location 0050h.

5 	After finding the first reference string, assume we wish to continue searching for a new

string (String B) in the following 30h bytes. Assume String B is located at location

0080h.

The instruction format for this example would be as follows:

In_Load_FKAG, payload address

is 	In_Find, 0050h, 5, 60h

In_Find_Continue, 0080h, 5, 30h

The range would be 100 — 5 + 1 = 96 = 60h

NOAC Ex. 1014 Page 101

97

ASCII Decimal to Binary

This instruction passes the location of an ASCII code string representing a

decimal value. The result is the binary equivalent value.

ASCII Hex to Binary

5 	 This instruction passes the location of an ASCII code string representing a hex

value. The result is the binary equivalent value.

Search Engine -- Architectural Overview

Search Engine in the preferred embodiment executes the IN FIND and

10 	IN_FIND_CONTINUE instructions issued to the State Process ALU. The FIND

Instructions searches an area of the UFKB and looks for up to four possible reference

strings in the target (UFKB) area. The reference strings are stored in the ALU Reference

String Memory.

The Search Engine continuously monitors the SPMuxBOut bus and SPALUGo

15 	signal to detect the In_Find and In_Find_Continue instructions. The In-Find instruction

is a fresh search instruction (as explained elsewhere hereinabove in the State Processor

description) whereas the In_Find_Continue is the continuation search instruction which

continues a new search from the last UFKB location of the previously executed In_Find

instruction. On the falling (or rising in other implmentaions) edge of SPALUGo control

20 	signal, the search engine checks SPMuxBOut bus's [31:25] bits to determine if the

current command is In_Find or In_Find_Continue. The search engine assumes that the

SP_Data_UFKB is setup to receive data, in word size, from UFKB through SPMUXA

(see Architecture Block Diagram of the Search Engine SE_TOP in Fig. 21). Similarly,

port SP_Data_RMB is setup to receive the reference string from the appropriate address

25 	of Reference String Memory.

As shown in Fig. 22, the Search Engine interface with the following blocks:

• ALU String Reference Memory — Where the reference strings are stored

• SPAUL Data Mux A — Through which the Target data is supplied (64 bits at

NOAC Ex. 1014 Page 102

98

a time)

6 	SPALU Data Mux B — Through which the instruction Code is supplied

• Flow Key Address Generator — Used to increment and decrement the UFKB

address

5 	• 	State Processor Program Counter — Where the results are reported.

Search Engine Internal Block Diagram

Fig. 23 shows a block diagram of internal structure of the Search Engine.

Search Engine Sub Module Descriptions

The Instruction Decode Block — SE_INST

io 	The Instruction Decode Block — SE_INST — is the Instruction Decode block

which decodes the instruction code for In_Find and In_Find_Continue and starts the

Search Engine upon the activation of the SPAUL_GO signal.

The Search Engine Reference Load Block — SE_LOAD

The Search Engine Reference Load — SE_LOAD — module is responsible for

15 	"priming" the reference string registers once an In_Find or In_FindContinue instruction

is issued. It takes a Reference String Array from the Reference String memory and

interprets it and load the reference string registers with the information.

State Machine for the Reference Memory Data Structure

The SE_LOAD is implemented as a state machine consisting of three states, the

20 	reset, idle, and the proc state. The module remains in the idle state between the reset and

the issuing of the first In_Find instruction, and then between the completion of the

In_Find or In_Find_Continue instruction and the next In_Find or In_Find_Continue

instruction issue. When the desired instruction is issued, this module is placed in the

proc state upon the assertion of the SPALUGo signal. In the proc state it first loads the

25 	first word from the starting location of the reference memory buffer (RMB), the starting

location is assumed to be set up at the proper location prior to issuing of the instruction.

The first word contains the number of strings to be searched, the size of each string, and

NOAC Ex. 1014 Page 103

99

the first or subsequent strings as shown in the reference memory format diagram below.

Once the number of strings and the size of the strings are loaded, the loading process

continues loading all of the strings. During the loading of the strings, the

LOAD_KEY_DONE is negated. When the last word of the last reference string is being

5 	loaded, the LOAD_KEY signal is pulsed once indicating to the search_engine_module to

start searching from the next clock cycle. The LOAD_KEY_DONE signal is asserted

during the next clock cycle and the jump vector is loaded at the same time from String

Reference Memory.

The Search Engine Increment Control Block — SE_INCR_CONTROL

to 	The Search Engine Increment / Control module is responsible for incrementing

the Flow Key Address Generator in order to supply new words from the UFKB to the

Search Engine block. It monitors the found signals out of the Single Search Engine

modules and reports results. IT also is responsible for calculating true ending address and

determines the last byte to be checked in the last word based on the Range provided in

15 	the In_Find instruction. The true ending address is provided to the SE_4SEARCH

module, which subsequently provides the same, to all of the four underneath search

engines. This module also provides several signals, SPALU_Done, SPALU_Inc_FKAG,

SPALU_Dec,FKAG, SPALU_Match, and SPALU_Data, to the rest of the system. The

assertion of SPALU_Done signal indicates the search is completed. If the

20 	SPALU_Match signal is asserted at the same time then it is a successful search. The

successful search also results in the SPALU_Data bus carrying the jump vector along

with the search engine number which found the reference string. The longest time for the

SPALU_Done to be asserted from the time the instruction is issued is N+11 clock cycles

(N= number of words to be searched in the UFKB memory) +(11 clocks for pre-loading

25 	and pointer adjustment in case of successful search). In case of failed search, the UFKB

address pointer will be pointing two words beyond the range. Note that it is necessary for

the micro-sequencer to decrement the UFKB address pointer by two before another

In_Find instruction can be issued on the same buffer. In case of a successful search, the

address pointer does point to the proper word as it is adjusted before SPALU_Match is

30 	asserted. This module has three states; the reset, the idle, and the proc. Transition from

the idle state to the proc state occurs when the go_ahead signal is issued. During the

NOAC Ex. 1014 Page 104

100

transition, the module checks if the instruction is In_Find or In_Find_Continue and

accordingly computes the new true ending address. In case of In_Find instruction, it uses

byte offset (SPMuxBOut[10:8]) and the range to compute the new ending address. In

case of In_Find_Continue instruction, it uses the previous successful searches ending

5 	byte offset (foundx_byte[2:0]) and the range to compute the new ending address. The

module maintains a counter internally to determine when the search is exhausted.

The 4 Search Module Block — SE_4SEARCH

The 4 Search Module Block (SE_4SEARCH module) is a wrapper that

combines 4 Single Search modules in one. In the future, if more than 4 reference strings

10 	need to be compared simultaneously, this module can be easily extended. The block

diagram is shown in Fig. 24.

The Single Search Module Block — SE_SSEARCH

Each of the Search Engine Single Search (SE_SSEARCH) modules performs a

single reference string search. Using multiple copies of this module multiple distinct

15 	reference strings can be searched in a common source buffer. The module consists of a

comparator matrix and a state machine. The matrix is capable of comparing a target

string of three eight-byte words (loaded in three successive cycles, one word at a time)

with a reference string up to 16 bytes long. Each of the reference string bytes is appended

with a check bit, which indicates whether to check this byte, or not. If the check bit is set

20 	then the corresponding byte checking is disabled. As 64-bit words (8 bytes) are loaded

into three registers in a pipelined fashion, the comparison takes place two clock cycles

after they are fetched. Hence, the source (UFKB) address pointer needs to be adjusted if

the search is successful. If the search is successful, the match int signal becomes active

and the position of the first byte of the reference string is placed out on the position[2:0]

25 	bus. The state machine performs several tasks every clock cycle. It consists of three

states; the reset, the idle, and the process state. While in the idle state, the state machine

waits for the go pulse from the SE LOAD module. Once arrived, it switches to the

process state. During the first clock cycle in the process state, if a match occurs then the

position is checked against the byte offset. If the byte offset is greater then the position,

30 	then it is ignored, i.e. found is not asserted. Similarly, if it is the last word to be checked,

then the end offset byte is checked with the position and the found is ignored if the

NOAC Ex. 1014 Page 105

101

position is greater then last byte to be checked in the range. Otherwise, the found signal

is asserted when the match is found by the matrix module and the position is latched and

forwarded to the higher level's SE_INCR_CONTROL module.

Single Search Engine Control Block — SE_CONTROL

	

5 	 The Search Engine Matrix Block — SE_MATRIX Single Search Engine Control

Block is the state machine for the single search module.

Search Engine Matrix Block — SE_MATRIX
The Search Engine Matrix Block — SE_MATRIX is the core comparator matrix

of the Search Engine Module. It consists of a reference axis and a target axis. The

	

10 	reference axis holds the Reference String. The target axis holds three words coming from

the UFKB. When "searching starts", the matrix will resolve (or find) a reference string,

up to 16 bytes long, anywhere in the target word axis. If a target string happens to cross a

word boundary, the matrix will automatically find the word.

The State Processor Instructions — Discussion

	

15 	 In most common processing systems, the set of instructions implemented are

general purpose in nature. All processing systems have a typical set of instructions

related to the analysis and manipulation of the Instruction and Program Counters. These

instructions include Jump, Call and Return. In addition, these same processing systems

contain the appropriate instructions to analyze and manipulate registers and memory

	

20 	locations. These instructions include Increment, Decrement and Move, Compare and

Logical manipulation.

The state processor of the preferred embodiment also includes such a basic set of

standard instructions. All of the instructions and operations described above are found in

the core set of instructions for our system.

	

25 	 However, the preferred embodiment state processor has some very specific

functions that are required in order to evaluate the content of and data within packets on

networks. There are four specific functions performed by the preferred embodiment state

processor to meet these objectives. Two of these are specialized conversion instructions

designed to interpret and transpose text elements in a specific for into a mathematical

NOAC Ex. 1014 Page 106

102

and numerical format. These instructions are AH2B (ASCII Hexadecimal to Binary) and

AD2D (ASCII Decimal to Binary). These instructions are single cycle in nature. These

instructions are novel and included to provide for the time sensitive nature of the

functions performed by the preferred embodiment state processor.

	

5 	 In order to have the system make speed and meet the objective for classification,

there are several special functions provided in the inventive State Processor. These

functions primarily deal with seeking, locating, analyzing and evaluating sequences of

strings. These strings can be either formatted or unformatted.

The primary high level instructions are the FIND and IN_FIND_CONTINUE

	

10 	sub-systems. These high level systems are broken down into 4 specific microcode

functions. They include SE LOAD, SE_1NST, SE _INCR_CONTROL, and

SE_4SEARCH.

These functions and the total system have been designed to make the State

Processor capable of simultaneous searching of payload content from a packet send into

	

15 	the system. This enables the system to scale and meet any network speed requirements.

These functions are very specialized and novel, as is their implementation and

application..

The basic microcode for the instructions is implemented the following

operational codes for the system Compiler. The simple instructions are Find and Find-

	

20 	Continue. Using both of these instructions all required string and pattern searches can be

performed.

A simple example of these functions can be found in the review of the steps the

state processor must go through in order to determine the application level of an HTTP

stream.

	

25 	 A simple example of these functions can be found in the review of the steps the

state processor must go through in order to determine the application level of an HTTP

stream.

Once the state processor has gone through the first several packet exchanges, a

flow signature, key and payload will enter the UFKB for processing by the state

NOAC Ex. 1014 Page 107

103

processor. The instruction pointer in the Cache for the flow record will point to the entry

that contains the following set of CPL instructions in a binary form. Note that "--"

indicates what follows is a comment. See the PDL reference Guide hereinbelow for

details on syntax.
5 -- MSG Pending 1

0x8002 -- StateReferenceCode (look for URLs and User-Agents)
0x03 	-- StateObjectCount (3)
OxEE00 	-- StateObject (StringSearch - "LF-CR-LF") Early out LF-CR-LR
Ox00 	 StateObjectOperand (Case = sensitive)

10 	0x0384 	StateObjectOperand (Weighting = 900 of 1000 packets)
0x00 	 StateObjectOperand (Offset = 0)
Ox00 	 StateObjectOperand (LF Offset Flag = 0)
OxFF 	 StateObjectOperand (Range = 255)
Ox00 	 StateObjectOperand (LF Range Flag = 0)

15 	0x8003 	StateObjectOperand (state = Server Reply)
Ox01 	-- StateObjectOperand (process next state in NEXT packet)
OxEE01 	StateObject (StringSearch - "LF-LF") Early out LF-LF
Ox00 	 StateObjectOperand (Case = sensitive)
0x0384 	StateObjectOperand (Weighting = 900 of 1000 packets)

20 	Ox00 	 StateObjectOperand (Offset = 0)
Ox00 	-- StateObjectOperand (LF Offset Flag = 0)
OxFF 	 StateObjectOperand (Range = 255)
Ox00 	 StateObjectOperand (LF Range Flag = 0)
0x8003 	StateObjectOperand (state = Server Reply)

25 	Ox01 	 StateObjectOperand (process next state in NEXT packet)
OxE004 	StateObject (StringSearch = "PCN-The Poin")
Ox00 	-- StateObjectOperand (Case = sensitive)
Ox01F4 	-- StateObjectOperand (Weighting = 500 of 1000 packets)
0x04 	-- StateObjectOperand (Offset = 4)

30 	Ox01 	-- StateObjectOperand (LF Offset Flag = 1)
OxFF 	-- StateObjectOperand (Range = 255)
Ox00 	-- StateObjectOperand (LF Range Flag = 0)
0x61 	-- StateObjectOperand (child = PointCast)
Ox01 	-- StateObjectOperand (process next state in NEXT packet)

35 	0x8003 	-- StateChildOrNextState (go here when this state complete)
Ox001F -- StateChi1dOrNextStatePercent (how often does this occur)

In order to decrease the amount of storage and utilize the cache in an effective

manner, the string and byte fragments are associated with a specific hash location. In this

40 	example, the first two entries are specified by the OxEE00 and OxEE01 locations. These

string elements are used throughout the state processor string analysis functions. They

are actually incorporated into the logic of the system; they are only in the CPL for

reference by the optimization system in the compiler. These strings are used to locate an

early exit from a deep and complex string search.

45 	 In most HTTP messages, a specific end of line termination sequence can

terminate the string search. In this example, we are using standard UNIX and DOS end

of line terminators as early search termination strings. These are used in the current

example for completeness.

NOAC Ex. 1014 Page 108

104

Once a Flow Record enters the "MSG Pend 1" state, the next packet will cause

the state processor to perform a string search for a group of substrings. In our simple

example, the set of strings is reduced to the early termination sequences and the string

"PCN-The Poin".

5 	 Notice that these operations have several options to modify the features and

search types performed by the state processor search engine. Since the search system will

be reviewing several strings in the same pass, each string must be weighted. The

weighting is used to determine which content is loaded into the search engine

comparison memory systems. The heavy weighted strings will be loaded and review

io 	first.

Also notice that each search string has offsets, end of line offsets search ranges,

end of line search ranges and case sensitivity. All of these parameters are used to assist in

proper loading of the search engine memories and proper order execution of the

searches.

15 	 Last, notice that each search strings contains the next state to enter on a match

and a selection of searching on the current or next packet in the flow. This is used to

perform multiple states on the same packet in a flow or move to the next packet in the

flow.

Upon entering the "MSG Pend 1" state, the search state will be loaded into the

20 	program counter of the state processor. Once this occurs, the state processor will fetch

the required memory locations and begin the setup of each subsystem in the state engine.

The search engine has a large number of selection muxes in order to enable several

simultaneous loads of the primed memories for the search engine. In our example, the

memories will be loaded with the "PCN-The Poin" binary values.

25 	 At this point, the system will begin comparing 64 bit elements, stepping through

the memory by loading packet elements. This case of a packet that contains the string,

the initial 64-bit pattern will create a match event. Once that event has occurred, the next

64-bit element from the "PCN-The-Poin" search string will be loaded into the search

memory. The search engine will continue by review the next set of 64 bit elements

30 	within the payload of the packet memory. This process will continue until we have a

NOAC Ex. 1014 Page 109

105

match. In our case the packet will match the search string.

Once the match has occurred, the search engine has completed it's task and

indicates to the state processor that the match has occurred. This match will cause the

state processor to load the next state into the flow record via the cache system. Since the

	

5 	state is to occur on the next packet, the state processor marks the record in the cache and

the entry in the UFKB as complete. The state processor finishes and moves to the next

set of work without changing the actual flow signature or record pattern for a deeper

application.

	

10 	-- MSG Pend 2
0x8003 	StateReferenceCode (look for Content-Type and Servers)
0x04 	StateObjectCount (4)
OxEE00 	StateObject (StringSearch - "LF-CR-LF") Early out LF-CR-LR
Ox00 	 StateObjectOperand (Case = sensitive)

	

15 	0x0032 	StateObjectOperand (Weighting = 50 of 1000 packets)
Ox00 	 StateObjectOperand (Offset = 0)
Ox00 	 StateObjectOperand (LF Offset Flag = 0)
Ox00 	 StateObjectOperand (Range = 0)
Ox00 	 StateObjectOperand (LF Range Flag = 0)

	

20 	0x8003 	StateObjectOperand (state = Server Reply)
Ox01 	 StateObjectOperand (process next state in NEXT packet)
OxEE01 	StateObject (StringSearch - "LF-LF") Early out LF-LF
Ox00 	 StateObjectOperand (Case = sensitive)
0x0032 	StateObjectOperand (Weighting = 50 of 1000 packets)

	

25 	Ox00 	 StateObjectOperand (Offset = 0)
Ox00 	 StateObjectOperand (LF Offset Flag = 0)
Ox00 	 StateObjectOperand (Range = 0)
Ox00 	 StateObjectOperand (LF Range Flag = 0)
0x8003 	StateObjectOperand (state = Server Reply)

	

30 	Ox01 	 StateObjectOperand (process next state in NEXT packet)
OxE007 	StateObject (StringSearch = "Content-Type:")
Ox00 	 StateObjectOperand (Case = sensitive)
0x0320 	StateObjectOperand (Weighting = 800 of 1000 packets)
Ox00 	 StateObjectOperand (Offset = 0)

	

35 	Ox00 	 StateObjectOperand (LF Offset Flag = 0)
OxFF 	 StateObjectOperand (Range = 255)
Ox00 	 StateObjectOperand (LF Range Flag = 0)
0x63 	 StateObjectOperand (child = MIME)
Ox00 	 StateObjectOperand (process next state in THIS packet)

	

40 	OxE004 	StateObject (StringSearch = "PCN-The Poin")
Ox00 	 StateObjectOperand (Case = sensitive)
Ox01F4 	StateObjectOperand (Weighting = 500 of 1000 packets)
0x04 	 StateObjectOperand (Offset = 4)
Ox01 	 StateObjectOperand (LF Offset Flag = 1)

	

45 	OxFF 	 StateObjectOperand (Range = 255)
Ox00 	 StateObjectOperand (LF Range Flag = 0)
0x61 	 StateObjectOperand (child = PointCast)
Ox01 	 StateObjectOperand (process next state in NEXT packet)
Ox8000 	StateChildOrNextState (where to go when this state done)

	

50 	Ox001F 	StateChildOrNextStatePercent (how often does this occur)

The next state that occurs will be initiated by the state processor on the next

NOAC Ex. 1014 Page 110

106

packet that has a flow signature created in the UFKB. This packet will be an exchange

from the server to the client. The state processor will utilize the string search engine to,

again, review the content of the packet payload for key text. Once this has been

completed, the final state is set in the flow record for this UFKB signature. This sets the

5 	classification for the application of the flow to a value related to "PointCast". Now the

Flow is classified and no further classification is required. The state step is updated in

the flow record found in the cache. All state processing for this flow is complete related

to application classification.

The Cache memory

10 	 The cache memory is connected to keep a set of most-likely-to-be-accessed flow

entries in the flow-entry database. The cache memory contains a fully associative, true

least-recently-used cache memory. Full associatively is achieved through the use of a

content addressable memory (CAM). The need for a fully associative cache arises from

the fact that the hash used to generate the initial lookup into the flow-entry database

15 	spreads the flow entries pseudo-randomly throughout the memory. Each hash data value

corresponds to a bucket containing N flow entries.

The cache memory can service two read transfers at once. If there are more than

two read requests active at one time the cache memory services them in order. The

content-addressable memory contains a hash data value associated with the

20 	corresponding bucket in the cache memory. When there is a cache hit, the content-

addressable memory produces the most significant bits of the address in cache memory

where the bucket is stored. The cache then accesses the cache memory at the address

indicated after concatenating the lower address bits provided by the requesting module.

The cache remembers that the requesting module had a cache hit and the memory

25 	location returned. Such allows a cache lookup for a requesting module to occur only

once per request. When the requesting module requires a different bucket, it drops, then

again raises its request and another content-addressable memory cycle is initiated. A

least-recently-used (LRU) algorithm requires the content-addressable memory to also be

a stack. When there is a cache hit the content-addressable memory location that produced

30 	the hit is put on the top of the stack. The other locations above the hit location are shifted

down to fill in the gap. If there is a miss, the bottom location is read to determine the

NOAC Ex. 1014 Page 111

107

address in the cache memory to put in the new bucket. All locations shift down. The new

hash data value and cache memory address are put at the top of the stack.

Cache System - Detailed Description

Typical prior-art cache systems are used to support expediting memory accesses

	

5 	to and from microprocessor systems. Because microprocessors mainly access memory in

a sequential mode, a typical prior-art cache engine for these systems uses a very simple

association for blocks of memory that are currently stored in the cache and their current

state. This limited association enables such a prior-art cache system to aid the

microprocessor in both sequential and limit random access memory requests.

	

10 	 While a normal microprocessor system needs to have a cache assist in mainly

sequential memory accesses, the preferred hardware embodiment of the present

invention has very special memory access properties. These differing requirements

mainly are caused by, 1) the need to access memory by a specific hash for addressing

bins and buckets and, 2) due to the high random access on a large pool of off-chip

	

15 	memory structures tat are used for the flow database 324.

In one aspect, the invention uses the premise that the network data itself will

create the best signature and hash key in order to locate the proper flow record for

managing the state and updating the associated statistics. This enhances the overall

system performance. It also created an opportunity for including a novel method for

	

20 	rapidly accessing and managing the memory system.

The first major feature of the cache system of the preferred hardware embodiment

of monitor 300 is a full association between the cached item and the random memory

storage location. This type of cache, known as a fully associative cache, is novel.

This fully associative property of the inventive Cache system is achieved

	

25 	preferably by implementing CAMs (content addressable memories) as the core of the

Cache memory addressing subsystem. This provides a good matches the nature of the

information we are looking up from the Memory System. The CAM contains the hash

value associated with the corresponding bucket in the cache memory. When there is a

cache hit, the CAM produces the most significant bits of the address in cache memory

	

30 	where the bucket is stored. The CAMs are used to quickly access elements from the

NOAC Ex. 1014 Page 112

108

Cache memory via the Hash values used to manage memory lookup and access. In

addition, the hash value in the CAM and the related address create and association

between the bucket and the actual memory location in the off-chip memory subsystem.

In other words, the computed Hash can then be directly evaluated to see if the record is

	

5 	currently in the cache memory or not. If the cache does contain the value, then the

memory is reported as valid with in the same cycle. This is accomplished in the preferred

embodiment system by the use of fully associative cache systems that contain specialized

CAM elements to pinpoint the exact direct memory address in a randomly accessed

memory system.

	

10 	 The architecture of this Cache also enables simultaneous read by individual

systems in overlapping cycles. The Cache can service two read transfers at one time. If

there are more than two read requests active at one time the Cache services them in a

priority order related to the timeliness requirements of the other engines in the Analyzer

system. This is key to the architecture of the Analyze and creates the required

	

is 	environment for the system to make the speed required.

The least recently used (LRU) algorithm means that the CAM can

advantageously also be a stack. When there is a cache hit the CAM location that

produced the hit is put on the top of the stack. The other locations above the hit location

are shifted down to fill in the gap. If there is a miss, the bottom location is read to

	

20 	determine the address in the cache memory to put the new bucket. All the locations

shifted down as normally. Finally the new hash value and cache memory address are put

at the top of the stack. CAM is being used to shift the 'most recently accessed' to the top.

When an entry is in the cache, the CAM enables the system to automatically keep the

most recent randomly access information. If this system were to be implemented with

	

25 	standard memory cells the LRU system would not be able to maintain the associations

and meet speed using normal addressing methods.

The Pattern Parse and Extraction Database Format

A compressed 3-D representation is used to store the pattern parse and extraction

database 308 used by the parser and the identifying information extractor.

	

30 	 The three dimensions of the data structure are:

NOAC Ex. 1014 Page 113

109

I. 	Type identifier [0:M-1]. This is the identifier that identifies a type of

protocol at a particular level. For example, 0 indicates an Ethernet frame. 64

indicates IP, 16 indicates a that the Ethernet packet is an IEEE type Ethernet

packet, etc. M may be a large number, depending on how may protocols the

5
	 packet parser can handle, and M may grow over time as more protocols are

able to be recognized by the system.

2. Size [1:64]. The size of the field of interest within the packet, and

3. Location [1:512]. This is the offset location within the frame, expressed

as a number of octets (bytes).

10 	 At each location, when data is present, the data in the form of a length, or a value,

and when a value, also included are a list children (as type IDs) to search next, for each

of the IDs in the list, a list of values that need to be compared to determine which child

or children are to be searched, and the extraction operations to perform to build the

identifying signature. Note that the size of this matrix is M by 64 by 512, which large

15 	since M may extend up to 10,000. Also, at most dimensions, there are no entries. In other

words, this is a sparse matrix.

Virtual base layer is the entry point for the parser. There can be multiple entry

points. For every packet that is acquired into the system, there is a header provided by

the packet acquisition device that is supplying the packets into the parser, for example, a

20 	network interface card for an Ethernet LAN. The packet acquisition device would

receive the packet from the network, and a mechanism in the acquisition device would

know the type of network, e.g., an Ethernet, and would place a header indicating this

type of packet. This header is used to determine the virtual base layer entry point into the

parser. Thus, the parser in addition to the packet knows the type of packet at base layer.

25 	 The zero node of the 3D structure has all the children. The parser will start at the

virtual base, which may have one or more children. In the example script in virtual.pd1

included herein, there is only one child, 01, indicating the Ethernet.

Initially, the search starts at the child of the virtual base, as obtained in the header

supplied by the acquisition device, which in this case is ID value 01, as parsed out of the

30 	header. ID value 01 is Ethernet.

NOAC Ex. 1014 Page 114

110

We now search through the 3D structure. The parser looks for the first entry that

has a child in the location specified. The hardware supports 4 lengths searched at once in

parallel.

In our case, suppose we find something at 1, 2, 12

	

5 	 This states that the ID value 01 (which means virtual base, which for this case, is

Ethernet version 2, the only virtual child in virtual.pdl, one of the PDL files included

herein). This ID value needs to have a child (the type field) examined at offset 12 which

has length 2 bytes (octets).

The 2-byte "type" field is operated on by first checking to see if it is a length. It is

	

10 	a length if its value is less than or equal to 05DC16. This test is particular to the Ethernet

packet format because there are older types (V 2) and newer types (IEEE) of Ethernet

formats that differ. The system via the PDL files specifies two children — the Ethertypes,

and the LLC-check. The LLC check is macro that operates to set the type length check

function for this node, and to fill in a value of 05DC16 in the child of the node. While

	

15 	this capability is only used for Ethernet type packets, in the future other packets may end

up being modified, and so this capability in the form of a macro in the PDL files enables

such future packets to still be decoded. If it is a length, then we know that this is an IEEE

type Ethernet frame, else, if the LENGTH operation fails, we look at the 2 byte field

code, and it will be one of the codes shown in 1712 in Fig 17. For example, if the type is

	

20 	0800 (Hex), then the protocol is IP. If the code is OBAD (Hex) the protocol is VIP

(VINES). To follow the example, suppose the code at 2,12 is 0800, indicating IP.

Note that when the parser operates on the data structure, the search proceeds is

groups of four lengths, since the hardware presently searches up to four lengths

simultaneously. So starting at

25 (1, 1, 1) (1, 1, 2)

(1, 2, 1) (1, 2, 2)

(1, 3, 1) (1, 3, 2)

(1, 4, 1) (1, 4, 2)

NOAC Ex. 1014 Page 115

111

The parser eventually gets a match of either a length operation (in the form of a

maximum length) or a value. A match means the ID part of the of the matrix is

populated. At (0, 2, 12) where, in the example, the match is of a value 0800 (Hex)

indicating IP. The new ID (first dimension) for IP is 64. Note, the possible children are

5 	put in at compile time into the data structure. For each node, at compile time, the

following information is included in the 3-D location in the 3-D data structure stored in

pattern structures and extraction operations database:

a) a list children (as type IDs) to search next. For example, for an Ethernet

type 2, the children are Ethertype (IP, IPX, etc, as shown in 1712 of Fig.

10 	 17). These children are compiled into the type codes. The code for IP is 64,

that for IPX is 83, etc.

b) for each of the IDs in the list, a list of values that need to be compared.

For example, 64:080016 in the list indicates that the value to look for is

080016 for the child to be type ID 64 (which is the IP protocol). 83:813716 in

15 	 the list indicates that the value to look for is 813716 for the child to be type

ID 83 (which is the IPX protocol), etc.

c) the extraction operations to perform to build the identifying signature for

the flow. The format used is (offset, length,

flow_signature_value_identifier), the flow_signature_value_identifier

20 	 indicating where the extracted entry goes into in the signature, including

what operations (AND, ORs, etc.) may need to be carried out. For example,

if it is a hash key component, then operations need to be carried out to

evaluate the hash key component. For example, for a type 2 Ethernet packet,

the 2-byte type (1706 in Fig 17), a 1-byte hash (1708 in Fig. 17) of the type,

25 	 the offset (1710 in Fig. 17) in the packet for the next level are used to form

the signature, and the values for these in defining the extraction operations.

So at each stage of a search, the parser examines the packet and the 3-D structure

to see if there's match. If not, the size is incremented (to maximum of 4) and then the

offset is incremented. Note that in the preferred embodiment, the hardware parser is able

30 	to examine all four lengths simultaneously.

NOAC Ex. 1014 Page 116

112

To continue with the Ethernet type-2 example, once the parser matches one of the

possible children for the type, and in the example, the type is IP with a code 64, then the

parser continues the search for the next level. The ID is 64, the length is unknown, and

offset of known to be equal or larger than 14 bytes (12 offset for type, plus 2, the length

	

5 	of type), so the search of the 3-D structure commences as

(64, 1, 14)

(64, 2, 14)

and then there is a match (meaning a populated node).

Alternatively, suppose at (0, 2, 12) had a length 121110. Then this indicates this

	

10 	is an IEEE type Ethernet frame, which stores its type elsewhere. We now try for a new

ID (that of an IEEE type Ethernet frame, type 16) and continue the search, which in this

case starts at offset 14. so the search of the 3-D structure continues as

(16, 1, 14)

(16, 2, 14)

	

15 	and then there is a match at (16, 2, 14) of 0800, which indicates the IP protocol at the

next level, which is type 64, and the search continues, starting at (64, 1, 16).

Compression.

As noted above, the 3-D data structure is very large, and sparsely populated. For

example, if 32 bytes are stored at each location, then the length is M by 64 by 512 by 32

	

20 	bytes, which is M megabytes. If M = 10000, then this is about 10 gigabytes. A

compressed form of storing the data structure thus is required.

One compression scheme that may be used is a modification of multi-

dimensional run length encoding. An alternate is functionally equivalent: rather than

have one overall 3-D table of nodes, store many smaller tables. The second scheme is

	

25 	used in the preferred embodiment.

The process of compression is now described. The compression is carried out by

the optimizer component of the compiler. The building of the uncompressed table is first

described.

The compiler first builds a table of all the links between protocols. Links consist

NOAC Ex. 1014 Page 117

113

of the connection between parent and child protocols. Each protocol can have zero or

more children. If a protocol has children, a link is created that consists of the parent

protocol, the child protocol, the child recognition pattern and the child recognition

pattern size. The compiler first extracts child recognition patterns that are greater than

5 	two bytes long. Since there are a few of these they are handled separately. Next sub links

are created for each link that has a child recognition pattern size of two. All the links are

then formed into tables of 256 entries. The first step in the optimization is checking all

the tables against all the other tables to find out which tables can share a table. This

process creates the "folds". When a child recognition pattern is checked against a table

10 	there is always been expected fold. If the fold matches the information in the table, it is

used to decide what to do next. If the fold does not match, we are finished.

The next step in the optimization is to find a minimum size for each table. The

tables are then rearranged so that they fit in the minimum possible address space. At each

step in the process there's no break between the parent and child protocols. This means

15 	that we can update the final tables with the information required for the slicer.

The pattern recognition engines database consists of a series of tables. Each table

entry contains a node code. This node code can have four values. The first is a terminal

node. A terminal node when found tells the patte'rn recognition engine that a protocol has

been recognized. The second type of node is an intermediate node. An intermediate node

20 	means that a protocol has been partially recognized. The third type of node is a terminus

node. A terminus node is used for a recognized protocol that has no children. Finally

there is the null node. A null node is inserted in the table at each unused entry. That is,

the "null" type node is used as an 'invalid flag' at leach 3-D location which tells us

whether or the particular location (in 3D) has content, that is, a valid child recognition

25 	pattern (i.e., an ID code).

Other fields in the table entry are a next table pointer, a next table length, the

protocol and the fold. If the entry is a terminal or terminus node to protocol is used to

index into another table. This table contains the information necessary for further

processing. It contains the header length, offset, slicer command, and flags.

30 	 The slicer (also called extractor) instruction database consists of instruction,

source address, destination address, and length. The slicer receives a command from the

NOAC Ex. 1014 Page 118

114

pattern recognition engine. This command is used as offset into the slicer instruction

database. The instruction or Op code tells the slicer what to extract from the incoming

packet and where to put it in the flow signature. Writing into certain fields of the flow

signature automatically generates a hash. The instruction can also tell the slicer out to

5 	determine the connection status of certain protocols.

When a packet arrives at the parser, the virtual base has been prepended. The

virtual base entry tells the packet recognition engine where to find the child recognition

pattern. The pattern recognition engine then extracts child recognition patterns from

packet and uses it as an address into the virtual base table. If the entry looked up by this

10 	method matches the fold value in the virtual base entry the lookup is deemed valid. The

node code is then examined. If it is an intermediate node and next table field is used as

the most significant bits of the address. The new fold is also extracted from the entry.

The pattern recognition engine then extracts the next byte from the packet and uses it as

least significant bits of the address. There is actually a little more to it then that because

15 	the size of the tables can vary. Tables can be from 2 to 256 entries in powers of two. If

table is 256 bytes byte from the packet is unmodified. The table is 128 bytes the most

significant bit of byte from packet is ignored. This process continues until the entire set

of structures has been converted.

The system reduces the number of null nodes by first finding tables that can be

20 	shared. Tables that can be shared have no addresses in common. For example, if table 1

as entries up to address 16 and table 2 has no entries below 16 they can share a table. The

fold value is used to distinguish between two types of entries. When a lookup is

performed using that table, the parent protocols fold value is compared to the entries. If

they match the entry is valid that parent protocol. If they do not match the entry is

25 	invalid. The second way reduce the number of null nodes is by sizing the tables. If a

table has no more than 16 entries the table sizes four bits. Sixteen of these tables can be

condensed into a single 256-entry table. Depending on the number of protocols with

children and their child recognition patterns this method can reduce the number of

entries by up to 80 percent.

30 	 The pattern recognition database is split into two parts. One part contains a single

entry for each protocol. The entry consists of the slicer (extractor) command for that

NOAC Ex. 1014 Page 119

115

protocol, if there are children the first table to perform the lookup in, the size of that

table, the expected fold value, the header length, child recognition pattern offset, and

flags. To optimize the size of the memory areas for the data structures, the compiler sizes

these fields based on the number of protocols, the number of tables, the number of folds,

	

5 	the maximum header length and the maximum offset. The second part of the pattern

recognition database contains the tables (compressed 3-D structures) as described above.

Traffic Classification Capabilities

The invention allows for a very rich set of protocol classification and sub-

classification in the process of analyzing and interpreting network traffic. In the preferred

	

10 	embodiment, this is accomplished by combining the maintenance of state information

with a robust ability to interpret network data streams.

Without the ability to maintain state, an increasingly large amount of network

traffic will be mis-classified, partially classified, or not classified at all with prior art

traffic analysis and interpretation technologies. Pattern matching parser techniques used

	

15 	in many such technologies provide little help here given the growing complexity of

today's network traffic.

One method of classification is parsing each datagram followed by interpreting

assigned (or otherwise well-known) port/socket numbers to particular applications.

Misclassification would then be common because of the as ephemeral nature of such

	

20 	ports/sockets. This has become especially noteworthy with the increasing proliferation of

Web Browsers and the use of WinSock (Microsoft, Redmond, Washington). For

example, BackWeb push-technology and Streamworks or VDOLive multimedia clients

can use UDP ports that are either assigned to or used as defacto standards by other

network applications such as Citrix, H.323 Gatekeeper, RealAudio, etc.

	

25 	 When the scope of interpretation is limited to a single packet, partial

classification is a common limitation. For example, one could see TCP Port #1527

referenced in a network packet and know that is was an Oracle TNS Packet. Without

having interpreted the initial Oracle TNS protocol exchange spanning multiple packets,

one could not have known that it was indeed PeopleSoft running over SQL*Net running

	

30 	over Oracle TNS.

NOAC Ex. 1014 Page 120

116

Another example is of partial classification is simple "IP Fragmentation".

Decoding the first fragment of an IP Datagram could easily determine that it further

contained NFS over SunRPC over UDP. However, since subsequent fragments do not

contain the UDP or SunRPC headers, they cannot be sub-classified for these protocols

	

5 	without having retained state and decoding information from the original (or first)

fragment.

The inability to classify is becoming increasingly common as Network

Applications use dynamic mechanisms to allocate and assign resources to various

applications. There are a number of ways this can happen.

	

10 	• In many cases, connections are established on a "truly" well-known port/socket

of a server. The exchange on this connection serves to negotiate services

requested/available and the address/port at which those services can be accessed.

A second connection on the allocated/assigned address and port (almost always

ephemeral) carries the bulk or volume of the data in the overall Network Session.

	

15 	 Without the ability to interpret and analyze "data" in such allocation/assignment

protocols connections, the volume traffic on the secondary connections cannot be

distinguished from any other "un-interpretable" traffic. Microsoft's Endpoint-

Mapper, SunRPC's Portmapper, and Oracle TNS are examples of such protocols.

• In other cases, available services and their locations (addresses and ports/sockets)

	

20 	 are periodically announced. Without having interpreted and remembered the

content of such announcements, traffic to/from them cannot be classified. Novell

SAP and Apple's Name Binding Protocol (NBP) are examples of such

announcement-based approaches.

The art of traffic classification becomes further complicated when a multitude of

	

25 	the underlying challenges described above occurs for the same Network Data events. For

example, NFS version 1 is transferring one of its typical 32-Kbyte blocks of data in a

single IP Datagram and is hence fragmenting it (partial classification scenario). This

transfer is occurring on an "ephemeral" UDP port of the server that was allocated via an

initial exchange with the SunRPC Poi 	tinapper protocol (no classification scenario). Or,

	

30 	even worse, the "ephemeral" UDP port on the server turns out to be the same as one of

NOAC Ex. 1014 Page 121

117

the defacto standard UDP ports that "RealAudio" uses (mis-classification scenario).

Embodiments of the present invention surmount these challenges to provide

accurate and thorough network traffic classification. There are many traffic in-progress

traffic classification capabilities supported by aspects of the invention. The preferred

5 	embodiment of the invention also may be extended to support further sub-classifications.

Particular Protocols and Features supported

Each of the following protocols are supported. A set of PDL files may be built for

any of these protocols. After compiling (and optimization), the including of the resulting

databases is equivalent to having a separate "sub-engine" in the Parser/Extractor and in

to 	the Analyzer for the particular application/protocol, since when the databases

compiled/optimized by using set of such PDL files for the particular

application/protocol, when acting with the engine, are equivalent to a sub-engine being

present.

IP/IPIP/IPIP4 Fragmentation

15 	 Fragmentation considerations address the area of partial classification. The first

fragment of an IP Datagram can be decoded to determine further information on the

nature of the underlying traffic contained within the packet. However, since the

remaining fragments of the overall IP Datagram do not contain Transport, Session, and

Application layer headers, they cannot be classified for these protocol layers without

20 	having retained state and decoding information from the original (or first) fragment.

Internet fragmentation capabilities in the preferred implementation of the invention

address these traffic considerations.

The analyzer component includes support for state maintenance and sub-

classification retention for network packet fragments associated with the following

25 protocols:

IP 	- Internet Protocol Version 4 datagram fragments

IPIP - IPIP datagram fragments Tunneled over IP

IPIP4 - IPIP4 datagram fragments Tunneled over IP

NOAC Ex. 1014 Page 122

118

Key capabilities for these protocols include:

I. tracking fragments for their corresponding protocols;

2. passing on 1st fragments through normal decoding and state-based decoding;

3. retaining complete 1st fragment sub-classification information for datagrams

5
	 which are not further classified as state based (e.g. NFS Version 2 over UDP

on well-known port 2049) and applying this information to all subsequent

fragments components;

4. retaining flow references for 1st fragment sub-classifications that further

classify as state-based (e.g. Oracle TNS over TCP on a redirected, ephemeral

io 	 port) and updating such flows for all subsequent fragment components; and

5. supporting concurrent fragmentation of data across multiple layers of

Tunneling (e.g. IPIP4 fragments contained in IP fragments).

Sub-classifications: Note that these "sub-engines" don't really "classify" or "sub-

classify" underlying protocols contained in fragments beyond that normally done by

15 	the standard IP Version 4 decoding of the "protocol type". They do however retain

"sub-classification" information or flow references.

Support for IP Version 6 is easily added.

Microsoft Endpoint-Mapper

The Microsoft Endpoint-Mapper actually supports the Endpoint-Mapper

20 	protocol defined by the "Distributed Computing Environment (DCE) 1.1 — Remote

Procedure Call" specification. The key node point in the protocol directory for this

protocol, and related applications determined by its mappings, is "endpoint-mapper".

With "endpoint-mapper", connections are initially established on a well-known

service port. The DCE-RPC Endpoint Mapper protocol is used on this connection to

25 	identify the target application requested by the client and set-up a second connection on

an ephemeral port where the bulk of exchange and data transfer will occur with the target

application.

Key capabilities for Microsoft Endpoint-Mapper include:

NOAC Ex. 1014 Page 123

119

1. tracking connections to and exchange within the well-known Endpoint-

Mapper.

2. distinguishing such "mapping" traffic from traffic on application connections

subsequently "mapped".

	

5 	 3. detecting assignments of server application access assignments to various

hosts and/or ports and creating sub-classifications for these access points.

4. classifying traffic seen on these access points:

a) by the appropriate application under "endpoint-mapper", if the server

application identifier in the mapping exchange is a known sub-

	

10
	 application; or

b) Minimally as "endpoint-mapper", if the server application is

unknown.

5. allowing known sub-applications to be specified with respect to flow

reporting with two levels of identification

	

15 	 a) Level 1 — Endpoint Mapped "Application Group"

b) Level 2 — Sub-application within the Application Group

6. supporting the "connection-oriented" mode of Endpoint-Mapper operations.

Sub-classifications: Sub-classifications under "endpoint-mapper" include the following

in both the "tcp" and "udp" protocol subtrees:

20

endpoint-mapper 	dcerpc-mapper
ms-exchange -1 directory

4 information-store
- mta

(DCE RPC — Endpoint Mapping)
(MS-Exchange Directory)
(MS-Exhange Information Store)
(MS-Exchange MS-Mail MTA)

New sub-classifications are easily added as new entries in the DCE RPC Sub-

Engine's "Sub-Protocol Info" table, if the Universally Unique IDs (UUIDs) of the

corresponding applications are known.

25 	 Certainly there are more applications other than MS-EXCHANGE using DCE-

NOAC Ex. 1014 Page 124

120

RPC (also known as MS-RPC or Microsoft RPC since Microsoft adopted this RPC

standard as opposed to SunRPC). As more notable applications are identified along with

their assigned UUIDs, they may easily be added to the implementation, as would be clear

to those in the art.

5 	 Support for the "connection-less" mode of Endpoint Mapper operation could also

be implemented.

SunRPC PortMapper

The SunRPC PortMapper protocol is defined by the "RPC: Remote Procedure

Call Specification Version 2 (RFC 1831)" standard. The key node point in the protocol

10 	directory for this protocol, and related applications determined by its mappings, is

"sunrpc" .

With SunRPC PortMapper, exchanges are initially performed on a well-known

service port identify the target application requested by the client and set-up a subsequent

ephemeral port (for use by either a connection or datagram service) where the bulk of

15 	exchange and data transfer will occur with the target application.

Key capabilities of this sub-engine include:

1. tracking exchanges with the well-known SunRPC PortMapper;

2. distinguishing such "mapping" traffic from traffic on application connections

subsequently "mapped";

20 	 3. detecting assignments of server application access assignments to various

hosts and/or ports and creating sub-classifications for these access points;

4. classifying traffic seen on these access points:

a) by the appropriate application under "sunrpc", if the server

application identifier in the mapping exchange is a known sub-

25
	 application; or

b) minimally as "sunrpc", if the server application is unknown;

5. allowing known sub-applications to be specified with respect to flow

NOAC Ex. 1014 Page 125

121

reporting with a single levels of identification

a) Level 1— Portmapped "Application".

Sub-classifications: Sub-classifications under "sunrpc" include the following in both the

"tcp" and "udp" protocol subtrees:

sunrpc 	portmapper 	 (SunRPC — Port Mapping)
4 rstat 	 (remote statistics)
-9 nfs 	 (network file service)
4 ypsery 	 (yellow pages — server)

ypbind 	 (yellow pages — bindings)
ypupdated 	 (yellow pages — update daemon)

4 ypxferd 	 (yellow pages — transfer daemon)
4 mount 	 (remote file system mount)
4 3270-mapper 	 (3270 terminal session mapper)
4 rje-mapper 	 (remote job entry session mapper)

nis 	 (next generation yellow pages)
4 pcnfsd 	 (pcNFS daemon)

5

New sub-classifications are easily added as new entries in the SunRPC Sub-

Engine's "Sub-Protocol Info" table, if the SunRPC Program Number of the

corresponding applications are known.

Other applications also use SunRPC, and as more such applications are identified

to 	along with their assigned SunRPC Program Numbers, they may easily be added to the

implementation.

Enhancement of the SunRPC Sub-Engine to additionally support SET, UNSET,

DUMP, and/or CALLIT SunRPC Poi-Mapper primitives could be added to the

implementation.

15 	Oracle 6/7 Transparent Network Substrate (TNS)

The Transparent Network Substrate (TNS) protocol is defined by Oracle

Corporation and is used as the underlying networks access framework for its Oracle

Version 6 and Oracle Version 7 database product offerings. The key node points in the

protocol directory for this protocol and applications determined by its mappings are

20 	"oracl-tns","oracl-tns2","oracl-tns-srv". These three node points reflect the three

different "well-known" ports that serve to support initial access to Oracle TNS on Oracle

Database servers. The first is a defacto, Oracle standard use. The next two access points

NOAC Ex. 1014 Page 126

122

(TCP ports) are assigned to Oracle by IANA.

Oracle client applications initially connect to the database on a well-known,

Oracle TNS service port. On this connection, they identify themselves by client host,

user, and application. The Oracle Server may choose to accept the database session on

5 	this connection or "redirect" it to another ephemeral port. When redirected, a second

connection to the ephemeral port will be established and where the subsequent bulk of

exchange and data transfer with the database server will occur.

Key capabilities of for this application include:

1. tracking connections to and exchanges in well-known Oracle TNS port

10 	 traffic;

2. learning the client application attempting to access the Oracle Database (e.g.

PeopleSoft, Oracle Forms, etc.) to further classify traffic on the well-known

Oracle TNS connections;

3. detecting "redirections" of connections to various hosts and/or ports and

15 	 creating sub-classifications for these access points. Such "redirections"

inherit the sub-classifications of the initial connections to the well-known

Oracle TNS service;

4. classifying traffic to these access points is seen or when TNS sessions are

"accepted" on the well-known TNS service port:

20
	 a) by the appropriate client application under "oracle-tns" (or "oracl-

tns2" or "oracl-tns-srv), if the client application identifier is a known

sub-application; or

b) minimally as "oracle-tns" (or "oracl-tns2" or "oracl-tns-srv), if the

server application is unknown.

25 	 5. allowing known sub-applications to be specified with respect to flow

reporting with two levels of identification

a) Level 1— Oracle client's "Application Group"

b) Level 2 — Sub-application within the Application Group

NOAC Ex. 1014 Page 127

123

Sub-classifications: Sub-classifications under "oracle-tns" include the following in the

"tcp" subtree. Note that the same sub-classification occurs under the "oracl-tns2" and

"oracl-tns-srv" nodes as well.

5

oracle-tns ms-odbc 	 (Microsoft ODBC)
ms-ole 	 (Microsoft OLE)
oracle-sqlplus 	 (Oracle SQLPlus)

- 	oracle forms 	 (Oracle FORMS)
4 peoplesoft 	 (PeopleSoft)

New sub-classifications are easily added as new entries in the Oracle TNS Sub-

Engine's "Sub-Protocol Info" table, if the Program Names (or names of the client

programs' executables) of the corresponding client applications are known.

Further sub-classification of "PeopleSoft" may also be easily added, which would

10 	include breaking "peoplesoft" down into component applications.

There similarly are other native, client applications using Oracle TNS, and any

such applications may easily be added by identifying such applications along with their

assigned Program/Executable Names. For example, "SAP R/3" and "Baan", may be

added.

15 	 The Oracle TNS sub-engine may be extended by building upon the application

sub-classification capabilities presently supported. This will allow the "sub-engine" to

further delve into the SQL*Net content to determine the actual client applications riding

atop 4GL tools (such as Oracle FORMs) and access APIs (such as MS ODBC, and MS

OLE).

20 	H.323 Videoconferencing

H.323 is an umbrella standard, published by the International Telecommunication

Union (ITU, formerly CCITT), for videoconferencing. H.323 entails one of the most

complicated traffic classification challenges of today's networking protocols. This arises

from its inherent multi-tier connection/data-stream architecture.

25 	 The key node points in the protocol directory for this protocol, and related

applications determined by its mappings, are "h323-host-call" and "h323-host-control"

NOAC Ex. 1014 Page 128

124

for videoconference negotiation/set-up and "rtp" and "rtcp" for videoconference payload

data transfer.

In 11.323, connections are initially established on a well-known service port. The

Q.931 protocol is used on this "H.323 Call Setup" connection to set-up a second

5 	connection on an ephemeral port. The second "H.323 Call Control" connection uses the

H.245 protocol to negotiate audio and video capabilities (codecs) as well as to further

set-up RTP/RTCP audio and video data streams over ephemeral UDP ports.

Key capabilities for this service include:

1. tracking connections to and exchanges on well-known H.323-host-call port

to 	 (Q.931 protocol) traffic;

2. detecting assignments of H.245 access points to various hosts and/or ports

and creating H.245 sub-classifications for these access points;

3. tracking connections to and exchanges with such assigned H.245 access

points;

15 	 4. detecting the assignment of RTP/RTCP audio and video, UDP datastreams

access points as well as the audio and video "codecs" negotiated for use on

them and creating RTP/RTCP sub-classifications for these access points;

5. classifying traffic seen on these RTP/RTCP access points:

a) by the appropriate "codec" under "rtp" , if the negotiated codec is a

20 	 known audio/video stream type; or

b) minimally as "rtp", if the negotiated codec is unknown

6. allowing known sub-applications (audio/video datastreams) to be specified

with respect to flow reporting with three levels of identification

a) Level 1 — Datastream Class (e.g. audio, video, other...)

25 	 b) Level 2 — Datastream Type within the Datastream Class

c) Level 3 — Datastream Sub-Type within the Datastream Type

NOAC Ex. 1014 Page 129

125

7. supporting the Q.931 "normal mode" of operation for "H.323 Call Setup

connections".

Sub-classifications: "H.323 Call Setup" sub-classifications under "h323-host-call"

include the following in the "tcp" subtree.

5

h323-host-call
	

4g931
	 (H.323 Call Setup)

- q931-fast-start
	 (H.323 Combined Setup and Control)

"H.323 Call Control" sub-classifications under "h323-host-control" include the

following in the "tcp" subtree.

h323-host-control 	h245 	 (H.323 Call Control)

Audio and video datastream sub-classifications under "rtp" and "rtcp" include

the following in the "udp" subtree:

rtcp 	9 	 (Audio/Video Stream Control
sub-channel)

rtp[4 audio 	 4 G.71I 	 (Audio Transfer sub-channel)
- G.722
9G.728
9G.729
4 MPEG1-audio
4 G.723
- GSM

4 video 	 -9 H.261 	 9 QCIF 	(Video Transfer sub-channel)
9 CIF

4H.263 	 4 SQCIF
4 QCIF
4 CIF
4 4CIF

16C1F
MRV

10

Standards for the audio stream sub-classifications indicated above are:

G.711 - 64 Kbps, 8K samples/sec, 8-bit companded PCM (A-law or la -law),

high quality, low complexity. Required for H.320 and H.323.

G.722 - ADPCM audio encode/decode (64 kbit/s, 7 kHz) .

15 	G.723 - Speech coder at 6.3 and 5.3 Kbps data rate. Medium complexity.

Required for H.324; Optional for H.323.

NOAC Ex. 1014 Page 130

126

G.728 - 16 Kbps, LD-CELP, high quality speech coder, very high complexity.

Optional for H.320 and H.323.

G.729 - 8Kbps, LD-CELP, high quality speech coder, medium complexity.

G.DSVD is an interoperable subset.

5
	 GSM - Group Special Mobile -- European telephony standard, not ITU. Used by

ProShare Video Conferencing software versions 1.0-1.8. 13Kbps,

medium quality for voice only, low complexity.

Standards for the video stream sub-classifications indicated above are:

H.261 - Supports 352x288 (CIF or FCIF) and 176x144 (QCIF). DCT-based

10 	 algorithm tuned for 2B to 6B ISDN communication. Required for

H.320, H.323, and H.324.

H.263 - Much-improved derivative of 11.261, tuned for POTS data rates. Mostly

aimed at QCIF and Sub-QCIF (128x96 SQCIF). Optional for H.323

and H.324, although industry is focusing on it for POTS. Being added as

15 	 an option to H.261.

MRV - Intel Indeo® video compression technology tuned for ISDN and LAN

data rates.

Extensibility: New sub-classifications are easily added as new entries in the H.323 Sub-

Engine's "Sub-Protocol Info" table, if the Audio/Video Capability Identifiers of the

20 	corresponding audio/video datastream are known.

There are still more audio/video datastream formats that can easily be included.

There is a mode of H.323 operation defined called "Q.931 Fast Start". In this

mode, "H.323 Call Control" operations (normally performed under their own H.245

connection) are piggybacked over Q.931 in the "H.323 Call Setup" connection. The use

25 	of this mode of operation has historically been rare and infrequent in contemporary

videoconferencing products. The H.323 sub-engine can easily be enhanced to support

this mode of operation.

NOAC Ex. 1014 Page 131

127

HTTP

The HTTP Protocol is the basis of common, present-day Web Browsers and has

become a fundamental transport mechanism for many Internet applications. HTTP

operates over TCP connections. Traditional/typical use of HTTP involves the

5 	establishment/tear-down of an individual HTTP connection for each element of

exchange in a given user session activity (e.g. a web page will involve many TCP

connections to effect the transfer of the various components of the activity). The key

node points in the protocol directory for HTTP "www-http" and "alternate-http".

There are two ways to distinguish the nature of the higher-level, application

10 	information involved in on an HTTP connection:

• analyzing the HTTP content type; and

• interpreting of various fields in the HTTP command and responses

Key capabilities for this protocol include:

1. tracking connections to and exchanges in well-known HTTP Port traffic;

15 	 2. learning the nature of the application data being transferred or accessed to

further classify traffic on such well-known HTTP connections;

3. learning the nature of the application by virtue of analyzing selected HTTP

fields;

4. allowing known sub-applications to be specified with respect to flow

20 	 reporting with two levels of identification:

a) Level 1 — HTTP sub-application group (e.g. database, application,

video, etc.)

b) Level 2 — sub-application within the sub-application group

5. classifying HTTP traffic:

25 	 a) by the appropriate sub-application within the sub-application group, if

the sub-application identifier is known; or

b) minimally by the sub-application group, if the negotiated sub-

NOAC Ex. 1014 Page 132

128

application identifier is unknown.

Sub-classifications : Sub-classifications under "www-http" include the following in the

"tcp" subtree. Note that the same sub-classification occurs under the "alternate-http"

node as well.

www-http

odbc-bridge
ibm-db2
gupta-jdbc
sybase-jdbc

4 database 	- sybase-web-sql
- sybase-tunneled-
tds
4 jdbc

4 application 	9 pointcast
backweb
datawindow
edi-content
edi-x12

4 edifact
4 excel

macbinhex40
mp3
mspowerpoint

4 msword
4 news-message-id

4 news-
transmission
4 octet-stream
4 oda

pdf
4 postscript
4 powerbuilder

quattro-pro
4 IV'

sgml
4 vnd-framemaker
4 vnd-lotus-1-2-3
4 vnd-lotus-
approach

vnd-lotus-
freelance
4 vnd-lotus-
organizer
4 vnd-lotus-
wordpro
4 vnd-mif

4 vnd-ms-excel
vnd-ms-

powerpoint
4 vnd-ms-project
4 vnd-ms-word

(Sybase web.sql)
(Sybase jConnect)

(JDBC-ODBC Bridge)
(IBM DB2 JDBC)
(Gupta SQLBase JDBC)
(Sybase jConnect)
(Point Cast Network)
(BackWeb)
(Sybase PowerBuilder)
(EDI)
(EDI)
(EDI)
(Microsoft Excel)
(Macintosh BINHEX)
(MPEG-3 Audio)
(Microsoft Powerpoint)
(Microsoft Word)
(USENET News —
ifc1036)
(USENET News —
rfcl 036)
(raw data, Java Applets)
(Office Document
Architecture)
(Adobe Acrobat)
(Postscript)
(Sybase PowerBuilder)
(Lotus Quattro-Pro)
(Rich Text Format)
(SGML — rfc1874)
(Adobe FrameMaker)
(Lotus 1-2-3)
(Lotus Approach)

(Lotus Freelance
Graphics)
(Lotus Organizer)

(Lotus Word Pro)

(Adobe FrameMaker
MIF-Format)
(Microsoft Excel)
(Microsoft PowerPoint)

(Microsoft Project)
(Microsoft Word)

NOAC Ex. 1014 Page 133

129

vnd-powerbuilder 	 (Sybase PowerBuilder)
vnd-rn-realplyer 	 (RealAudio)

vnd-visio 	 (VISIO Graphics)

4 wordperfect 	 (Corel WordPerfect)

- x-bcpio 	 (Old Unix CPIO
Archive)

x-compress 	 (Compressed Data

x-cpio 	 (Posix-compliant CPIO
Archive)

4 x-csh 	 (`C' Shell Program)
x-director 	 (MacroMedia

Shockwave)
x-dvi 	 (TeX DVI Document)

4 x-gtar 	 (GNU Tape Archive)

4 x-gzip 	 (GNU Zip Compressed
Data)

x-javascrip 	 (Java Scripts)

x-latex 	 (LaTeX Document)
4 x-lotus-notes 	 (Lotus Notes)
4 x-macbinary 	 (Macintosh Binary)

4 x-mif 	 (Adobe FrameMaker
MIF-Format)

4 x-pncmd 	 (RealAudio)
4 x-pn-realaudio 	 (RealAudio)

- x-powerpoint 	 (Microsoft Powerpoint)
x-sh 	 (Bourne Shell Program)
x-stuffit 	 (Macintosh StuffIt)
x-tar 	 (Unix Tape Archive)

4 x-tex 	 (TeX Document)
4 x-troff 	 (TROFF Document)
- x-ustar 	 (Posix-compliant Tape

Archive)
4 x-zip-compressed 	 (ZIP Compressed Data)
4 xpp5 	 (Microsoft Powerpoint)
4 zip-archive 	 (ZIP Compressed

Archive)
x-netcdf 	 (Unidata netCDF)

4 audio

4 image

4 basic 	 (ULAW Audio Data)

4 midi 	 (MIDI Audio Data)
- mpeg 	 (MPEG-2 Audio Data)

vnd-rn-realaudio 	 (RealAudio)
9 way 	 (WAV Format Audio)
4 x-aiif 	 (Apple AIFF Format

Audio)
4 x-midi 	 (MIDI Audio Data)
4 x-mpeg 	 (MPEG-2 Audio Data)

x-mpgurl 	 (MPEG Audio Data)
4 x-pn-realaudio 	 (RealAudio)
4 x-wav 	 (WAV Format Audio)
4 cgm 	 (Computer Graphics

Metafile)
g3fax 	 (Group 3 FAX)

4 gif 	 (GIF Format Graphic)
4 ief 	 (Image Exchange

Format)
9 jpeg 	 (JPEG Format Graphic)

pict 	 (PICT Format Graphic)

NOAC Ex. 1014 Page 134

130

4 png 	 (Portable Network
Graphics)

- tiff 	 (Apple TIFF Format
Graphic)

- vnd-rn-realflash 	 (RealAudio)
vnd-m-realpix 	 (RealAudio)
x-bitmap 	 (X Bitmap)
x-pixmap 	 (X Pixmap)

4 x-quicktime 	 (Apple QuickTime)
4 x-windowdump 	 (X-Windows Dump

Image)
9 x-xbm 	 (X Bitmap)

9 text
	

9 enriched 	 (Enriched Text —
rfc1896)

html 	 (HTML — rfc1866)
9 plain 	 (Plain Text)

richtext 	 (RichText Format)
sgml 	 (SGML — rfc1874)

4 tab-separated- 	 (Text with Tab
value 	 Separations)

vnd-rn-text 	 (RealAudio)
9 css 	 (Cascading Style Sheet)

4 video 	4 avi 	 (AVI Video)
4 mpeg 	 (MPEG Video)
4 msvideo 	 (Microsoft Media Video)

ms-video 	 (Microsoft Media Video)
quicktime 	 (Apple QuickTime)
vnd-rn-realvideo 	 (RealAudio)

4 vnd-vivo 	 (Vivo Acrtive Streaming
Video)

x-ls-asf 	 (Microsoft Media Video)
x-ls-asx 	 (Microsoft Media Video)

4 x-mpeg 	 (MPEG-Video)
4 x-ms-asf 	 (Microsoft Media Video)
4 x-ms-asx 	 (Microsoft Media Video)

x-msvideo 	 (Microsoft Media Video)
x-sgi-movie 	 (SGI MoviePlayer)

-9 x-world 4 x-vrml 	 (VRML)

New sub-classifications may be added to the HTTP capabilities. The following

should be noted when doing so:

1. HTTP is a "text" based protocol

2. To support "minimum" execution overhead, when searching the HTTP Sub-

Engine's "Sub-Protocol Info" database, a rather robust set of sequentially

indexed, look-aside tables are employed.

(a) The challenge here is to take a string from an HTTP packet (e.g.

NOAC Ex. 1014 Page 135

131

Content Type) and match it with any one of approximately 110+ well

known (as is the case with Content Type)

(b) And to do so within an embedded environment that is trying to keep

up with the network packet rate at line speed.

5
	 (c) The supported search mechanism can identify a single match

candidate sub-string by looking at typically no more than 3 to 5

characters of the sub-string from the HTTP packet.

3. Adding a sub-classification to the HTTP "Sub-Protocol Info" Database is

simply a matter of adding a new entry if the "Content Type" or "JDBC URL

io 	 Component" is known.

4. Updating and/or extending the "look-aside" tables requires extreme caution

and accuracy.

Note that in these days, new "Content Types" are springing up almost every

week. One feature of the invention is that as new applications are identified along with

15 	their designated Content Types, they may easily be added to the implementation.

WebNFS from Sun Microsystems, Inc., tunnels NFS file access over HTTP and

is a good choice for inclusion into this sub-engine.

There are many other JDBC packages from various database manufactures and

technology suppliers that are integrated with WWW. Oracle's being the most noted at

20 	this time. As more are identified along with their designated JDBC URL Selectors, they

may easily be added to the implementation.

BackWeb

BackWeb (BackWeb Technologies, Inc.) is a news/broadcast application. It may

be configured to operate in either of 2 modes:

25 	• HTTP only (see Section 3.6 above)

• UDP for access to BackWeb Servers & HTTP to access to 3rd party channels

(polite mode)

NOAC Ex. 1014 Page 136

132

BackWeb operates over UDP in what it calls its "Polite Client" mode. In this

mode, BackWeb has an unusual mechanism of exchange that makes traffic in one

direction very easy to see (well-known), but difficult to classify in the other direction.

The BackWeb sub-engine has been implemented specifically for BackWeb's

5 	UDP (Polite Mode) access protocol. The key node points in the protocol directory for

BackWeb is "backweb".

Key capabilities for this protocol include:

1. tracking exchanges with BackWeb Servers in well-known BackWeb Server

port traffic;

10 	 2. remembering the access points of traffic from BackWeb Clients and creating

sub-classifications for these access points; and

3. classifying traffic seen on these access points:

a) as "backweb"

15 	Real-Time Streaming Protocol (RTSP)

The "Real-Time Streaming Protocol" is defined in RFC 2326. Like HTTP it is a

"text" based protocol. Unlike HTTP, its principle purpose is to enable the controlled, on-

demand delivery of real-time data, such as audio and video. The key node points in the

protocol directory for RTSP will be "rtsp".

20 	 In function it acts similar to H.323's "Call Setup" and "Call Control" services,

however, in a single connection on a well-known port. Ultimately, it serves to set up

RTP/RTCP datastreams over UDP.

Key capabilities for this protocol include:

1. tracking exchanges with the well-known RTSP server;

25 	 2. detecting the assignment of RTP/RTCP audio and video, UDP datastreams

access points as well as the audio and video "codecs" negotiated for use on

them and creating RTP/RTCP sub-classifications for these access points;

NOAC Ex. 1014 Page 137

133

3. classifying traffic seen on these RTP/RTCP access points:

a) by the appropriate "codec" under "rtp" , if the negotiated codec is a

known audio/video stream type; or

b) minimally as "rtp", if the negotiated codec is unknown.

5 	 4. allowing known sub-applications (audio/video datastreams) to be specified

with respect to flow reporting with three levels of identification

a) Level 1 — Datastream Class (e.g. audio, video, other...)

b) Level 2 — Datastream Type within the Datastream Class

c) Level 3 — Datastream Sub-Type within the Datastream Type

10

Sub-classifications: RTSP traffic is classified as "rtsp" in the "tcp" subtree. RTSP itself

does not sub-classify any further.

New audio and video datastream sub-classifications under "rtp" include the

following in the "udp" subtree.

15

rtp 	-9 audio

- video

4 1016
4 DVI4
4 L8
-9 L16
4 LPC
- MPA
-9 VDVI
- AIFF-C

-9 CeIB
- JPEG
4 MPV
-9 MP2T
-9 nv

(Audio Transfer sub-channel)

(Video Transfer sub-channel)

Standards for the audio stream sub-classifications indicated above are:

1016 - frame based encoding using code-excited linear prediction (CELP) and

is specified in Federal Standard FED-STD 1016

20 	 DVI4 - IMA ADPCM wave type, "IMA Recommended Practices for Enhancing

NOAC Ex. 1014 Page 138

134

Digital Audio Compatibility in Multimedia Systems (version 3.0)"

L8 - 	L8 denotes linear audio data, using 8-bits of precision with an offset of

128, that is, the most negative signal is encoded as zero.

L16 - L16 denotes uncompressed audio data, using 16-bit signed

5 	 representation with 65535 equally divided steps between minimum and

maximum signal level, ranging from -32768 to 32767. The value is

represented in two's complement notation and network byte order.

LPC - LPC designates an experimental linear predictive encoding contributed

by Ron Frederick, Xerox PARC, which is based on an implementation

io 	 written by Ron Zuckerman, Motorola, posted to the Usenet group

comp.dsp on June 26, 1992.

MPA - MPA denotes MPEG-I or MPEG-II audio encapsulated as elementary

streams. The encoding is defined in ISO standards ISO/IEC 11172-3 and

13818-3. The encapsulation is specified in work in progress.

15 	 VDVI - VDVI is a variable-rate version of DVI4, yielding speech bit rates of

between 10 and 25 kb/s. It is specified for single-channel operation only.

AIFF-c -Apple Computer, "Audio interchange file format Alf(1i-C," Aug. 1991.

(also ftp://ftp.sgi.com/sgi/aiff-c.9.26.91.ps.Z).

Standards for the video stream sub-classifications indicated above are:

20 	 CelB - The CELL-B encoding is a proprietary encoding proposed by Sun

Microsystems. "RTP payload format of Ce11B video encoding," Work in

Progress, Internet Engineering Task Force, Aug. 1995.

JPEG - The encoding is specified in ISO Standards 10918-1 and 10918-2.

MPV - Designates the use MPEG-I and MPEG-II video encoding elementary

25 	 streams as specified in ISO Standards ISO/IbC 11172 and 13818-2,

respectively.

MP2T - MP2T designates the use of MPEG-II transport streams, for either audio

or video.

NOAC Ex. 1014 Page 139

135

my - 	The encoding is implemented in the program 'nv', version 4, developed

at Xerox PARC

Extensibility New sub-classifications are easily added as new entries in the RTSP Sub-

Engine's "Sub-Protocol Info" table, if the Payload Types of the corresponding

5 	audio/video stream are known.

Novell Service Advertising Protocol (SAP)

The Novell Service Advertising Protocol (SAP) is a protocol similar in nature to

the "SUN RPC PortMapper" protocol. It is used to support the dynamic management and

locating of "services" with regards to their locations (network addresses) and port

10 	assignments. The key node points in the protocol directory for Novell SAP is "nov-sap".

SAP uses a completely different protocol than the SUN RPC protocol

PortMapper. Also, a fundamental difference from Sun RPC is that SAP periodically

broadcasts services that are in its advertising database.

Key capabilities for this service include:

15 	 1. tracking SAP announcements periodically broadcast by Novell Netware

servers;

2. distinguishing such "announcement" traffic from traffic on application

connections subsequently "mapped";

3. detecting assignments of server application access assignments to various

20 	 hosts and/or sockets and creating sub-classifications for these access points;

4. classifying traffic seen on these access points:

a) By the appropriate application under "nov-sap", if the server

application identifier in the announcement is a known sub-

application.

25
	 b) Minimally as "nov-sap", if the server application is unknown.

5. allowing known sub-applications to be specified with respect to flow

reporting with two levels of identification:

NOAC Ex. 1014 Page 140

136

a) Level 1 — SAP Mapped "Application Group"

b) Level 2 — Sub-application within the Application Group.

Sub-classifications under "nov-sap" will include the following in the "ipx/nov-

5 	pep" subtree.

nov-sap 	4 announce
ms-exchange

▪ sybase_sqlany
sybase_sqlenterprise

▪ gupta-sqlbase
4 ms-sna-server
4 ms-sql-server
4 citrix-app-server

citrix-app-server-nt
hp-laserjet
advertising-print-svr

4 netware-sql-server
-4 remote-bridge

bridge-server
-1 print-queue

(Novell SAP Announcements)
(Microsoft Exchange)
(Sybase SQL Anywhere)
(Sybase SQL Enterprise)
(Gupta SQLBase)
(Microsoft SNA Server)
(Microsoft SQL Server)
(Citrix Application Server)
(Citrix Application Server for NT)
(HP Laserjet Printer)
(Advertising Print Server)
(Novell Netware SQL Server)
(Remote Bridge Router Service)
(Bridge Server)
(Print Queue Server)

New sub-classifications are easily added as new entries in the Novell SAP Sub-

Engine's "Sub-Protocol Info" table, if the SAP IDs of the corresponding application are

known.

lo MS-Media

MS-Media is a audio/video streaming, multimedia application (similar to

RealAudio) from Microsoft. MS-Media may be configured to operate over UDP when

transferring its payload. In this configuration, MS-Media has an unusual mechanism to

allocate UDP resources for this purpose via an initial TCP connection.

is 	The MS-Media sub-engine will be implemented specifically for MS-Media's

access protocol.

Key capabilities for this service include:

1. tracking connections to and exchanges in well-known MS-Media port traffic;

2. detecting assignments of UDP access points to various hosts and/or ports and

20 	 creating MS-Media sub-classifications for these access points; and

NOAC Ex. 1014 Page 141

137

3. classifying traffic seen on these access points

a) as "ms-media".

Streamworks and VDOLive

Streamworks and VDOLive are multi-media, streaming applications, which

5 	transfer their payloads over UDP.

Like BackWeb, Streamworks and VDOLive employ unusual mechanisms of

exchange that makes traffic one direction very easy to see (well-known), but difficult to

classify in the other direction.

The BackWeb sub-engine may be expanded to further support Streamworks and

to 	VDOLive classification.

Re-using information from flows for maintaining statistics

It is advantageous to collect statistics rather than to count each and every packet.

The process used in the embodiments of the invention to accumulate statistics enables

specific metrics to be collected in real-time that otherwise would not be possible. Metrics

15 	related to bi-directional conversations must be maintained based on the entire flow for

each exchange in the conversation. There are also several metrics that can not be

acquired without a complete understanding of the state that the conversation is in when

the metric is captured.

Most prior-art systems related to network traffic when the use statistics collect

20 	only end-point and end-of-session related statistics. Examples of commonly used metrics

include packet counts, byte counts, session connection time, session timeouts, session

and transport response times and others. All of these deal with events that can be directly

related to an event in a single packet. These prior-art systems cannot collect some

important performance metrics that are related to a set and sequence of packets in a

25 	network.

In another aspect of the invention, the monitor 300 provides the ability to collect

metrics that are related to a sequence of events. A good example is relative jitter.

Measuring the time from the end of one packet in one direction to another packet with

the same signature in the same direction collects data that relates normal jitter. This type

NOAC Ex. 1014 Page 142

138

of jitter metric is good for measuring broad signal quality in a packet network. However,

it is not specific to the payload or data item being transported in a cluster of packets.

Using the state processing as described herein, monitor 300 can be programmed to

collect the same jitter metric for a group of packets in a flow that are all related to a

5 	specific data payload. This allows the inventive system to provide metrics more focused

on the type of quality related to a set of packets. This is much more useful when

evaluating the performance of a system in a network than metrics related to single

packets.

Specifically, the monitor system 300 can be programmed to maintain any type of

io 	metric at any point in a conversation. Also the system 300 can have the actual statistics

programmed into the state at any point. This enables the monitor system to collect the

standard metrics related to network usage and performance, as well as metrics related to

specific states or sequences.

Some of the specific metrics that can be collected only with states are events

15 	related to a group of traffic in one direction, events related to the status of a

communication sequence in one or both directions, events related to the exchange of

packets for a specific application in a specific sequence. This is only a small sample of

the metrics that requires an engine that can relate the state of a flow to a set of metrics.

In addition, because the monitor 300 provides greater visibility to the specific

20 	application in a conversation or flow, the monitor 300 can be programmed to collect

metrics that may be specific to that type of application or service. In other word, if a flow

is for an Oracle Database server, an embodiment of monitor 300 could collect the

number of packets required to complete a transaction. Only with both state and

application classification can this type of metric be derived from the network.

25 	 Because the monitor 300 can be programmed to collect a diverse set of metrics,

the system can be used as a data source for metrics required in a number of

environments. In particular, the metrics our system collects could be used to monitor and

analyze the quality and performance of traffic flows related to a specific set of

applications. Other implementation could include metrics related to bill and charge-back

30 	for specific traffic flow and events with the traffic flows. These are important for

charging within a network system. Also, troubleshooting and capacity planning related

NOAC Ex. 1014 Page 143

139

directly to a focused application and service. The monitor system can be programmed to

collect all of this type of metrics due to the ability to relate traffic to a specific point in

time or point in a sequence of events.

Fig. 15 describes how the monitor system can be set up with a host processor.

5 	The host processor would do part of the analysis.

This following section describes how the monitor of the invention can be used to

monitor the Quality of Service (QOS) by providing QOS Metrics.

Quality of Service Traffic Statistics (Metrics)

This next section defines the common structure that may be applied for the

to 	Quality of Service (QOS) Metrics according to one aspect of the invention. It also

defines the original (or base) set of metrics that may be implemented in an embodiment

of the invention to support QOS.

In summary, the QOS Metrics defined in this part of the description are broken

into the following Metrics Groups:

15 	 Traffic Metrics

CSTraffic

SCTraffic

Jitter Metrics

CSJitter

20 	 SCJitter

Exchange Response Metrics

CSExchangeResponseTimeS tartToS tart

CSExchangeResponseTimeEndToS tart

CSExchangeResponseTimeStartToEnd

25 	 SCExchangeResponseTimeStartToStart

SCExchangeResponseTimeEndToStart

SCExchangeResponseTimeStartToEnd

Transaction Response Metrics

CSTransactionResponseTimeStartToStart

NOAC Ex. 1014 Page 144

140

CSApplicationResponseTimeEndToStart

CSApplicationResponseTimeStartToEnd

SCTransactionResponseTimeStartToStart

SCApplicationResponseTimeEndToStart

5
	 SCApplicationResponseTimeStartToEnd

Connection Metrics

ConnectionEstablishment

ConnectionGracefulTermination

ConnectionTimeoutTermination

10 	 Connection Sequence Metrics

CSConnectionRetransmissions

SCConnectionRetransmissions

CSConnectionOutOfOrders

SCConnectionOut0fOrders

15 	 Connection Window Metrics

CSConnectionWindow

SCConnectionWindow

CSConnectionFrozenWindows

SCConnectionFrozenWindows

20

	

	 CS ConnectionClosedWindows

SCConnectionClosedWindows

QOS Metric Structure and Methods

Metrics Perspective

When dealing with time based metrics on application data packets ideally if all

25

	

	the timestamps and related data could 	be stored and forwarded for later analysis.

However when faced with thousands of conversations per second on ever faster

networks, storing all the data, even if compressed, would take too much processing,

memory, and manager down load time to be practical.

In one aspect of the invention, statistical analysis may advantageously be applied

NOAC Ex. 1014 Page 145

141

to time based metrics for traffic analysis.

Network data is modeled as a population and not a sample. In collecting data fror

processing, a population, i.e., all the data, must be processed. Because of the nature of

application protocols, just sampling some of the packets will not give good results.

	

5 	Missing just one critical packet, such as one the specified an additional port that data will

be transmitted on, or what application will be run, can cause much valid data to be lost.

The time-based metrics, the statistical metrics process collects will come from

examining the entire group of data, i.e., the population. The population is finite. The

statistical metrics process seeks only to provide information that will describe the actual

	

10 	data. Analysis of that data is preferably left to the management station that may run on a

host (see Fig. 15).

The simplest form of representing a group of data is by frequency distributions in

sub-ranges. Statistics provides inventive advantageous ways of analyzing this type of

data. In the preferred embodiment, there are some rules in creating the sub-ranges. First

	

15 	the range needs to be known. Second a sub-range size needs to be determined. Fixed

sub-range sizes are best, variable may be used if needed, however the statistics texts tend

to only refer to operations of fixed size sub-ranges. This method of describing data is

expensive for a statistical metrics process to implement. First the statistical metrics

process is processing a great amount of data at a time, storing the data and determining

	

20 	the range, then the sub-ranges and then filling in the data after the fact takes too much

storage and too much time. Fixing the range and sub-range sizes in the beginning can be

problematical as the statistical metrics process may have to adjust the values for each of

the applications it collects data on. That number can be in the thousands. Additional

complexity arises in adding new protocols and even in describing the sub-ranges

	

25 	themselves to the management application.

In addition to frequency distribution, statistical analysis provides for

measurements such a mean and standard deviation that can be obtained by summation

functions on the individual data elements in a population. Also note that frequency

distributions using sub-ranges, by their very nature, may introduce error that is not

	

30 	present by directly analysis via summation type formulas.

NOAC Ex. 1014 Page 146

142

The metric provided by the statistical metrics process will provide data that can

be used to calculate the most basic and useful statistical measurements. In the preferred

embodiment, the statistical metrics process will not perform the calculations and provide

the statistical measurement directly, while in other embodiments, direct measurement is

	

5 	provided. There are several reason why this is not preferred. First is that to find the final

measurement can be expensive in terms of computation and representation. There are

divisions and square roots and the measurements are expressed as floating point values.

Second is that by providing the variables to the statistical functions, those variables are

scaleable. It is possible to combine smaller intervals into larger ones.

	

to 	An example is the arithmetic mean or average. This is the sum of the data divided

by the number of data elements.

= x

N

The metric provided by the statistical metrics process will provide 2 OIDs, the

first the sum of the x, the second the number of elements N. The management station can

	

15 	perform the division to obtain the average. Given two samples, they can be combined by

adding the sum of the x's and by adding the number of elements to get a combined sum

and number of elements. The average formula then works just the same. Also the sum of

the x and the number of element variables are used in calculating other statistical

measurement values as well.

	

20 	Metric Structure

The data structure elements of the metric have been chosen to maximize the

amount of data available while minimizing the amount of memory needed to store the

metric and minimizing the CPU processing requirement needed to generate the metric.

The metric data structure contains five unsigned integer datum.

	

25 	• N 	count of the number of data points for the metric

• X X 	sum of all the data point values for the metric

• X (X2) 	sum of all the data point values squared for the metric

NOAC Ex. 1014 Page 147

143

• Xmax maximum data point value for the metric

• Xmin minimum data point value for the metric

• Trend An enumerated type { increasing, flat, decreasing, unknown}

A performance metric is used to describe events over a time interval. The events,

	

5 	data points, can be processed immediately into the metric and do not have to be stored

for later processing. For example to count the number of events in a time interval it is

sufficient to increment a counter for each event, it is not necessary to cache all the events

and then count them at the end of the interval. The metric is also designed to be easily

scaleable in terms of combining adjacent intervals. For example if an statistical metrics

	

10 	process created a specific metric every 30 seconds and a user table interval was set to 60

seconds, the 60 second metric could be obtained by combining the two 30 second

metrics. The following rules will be applied when combining adjacent metrics.

• N 	EN

• EX 	/,(X (X))

	

15 	• I (X2) 	(X2))

• Xmax 	MAX(Xmax)

• Xmin 	MIN(Xmin)

• Trend 	Implementation specific

The following approximates the CPU processing requirements needed to update a

	

20 	specific metric.

• 3 to 4 additions

• 1 multiplication

• 2 comparisons

• 3 to 6 assignments.

	

25 	The metric structure gives a generic framework upon which the actual

performance metrics will be defined. Each specific performance metric definition must

NOAC Ex. 1014 Page 148

144

address the specific significance, if any, given to each of the metric datum. While a

specific metric definition should try to conform to the generic framework, it is ok for a

metric datum to not be used, and to have no meaning, for a specific metric. In such cases

the datum will default to a 0 value, or unknown in the case of the trend variable.

5 	 Trend is unique in that it is an enumerated type rather than a directly updated

integer value. The reason for this is that the recommended method of generating this

information is to subtract the first value of the interval from the last value of the interval.

The number calculated has little value other than examining its sign to determine a crude

indication of trend. It cannot be interpreted as a slope of a line fitted to the data points.

io 	Metric Analysis

The actual meaning of a specific metric structure is determined by the definition

of the specific metric. The following is a discussion of the operations and observations

that can be performed on a generic metric. This means that the following may or may not

apply and/or have meaning when applied to any specific metric.

15 	 The following observations and analysis techniques are not all inclusive. Rather

these are the ones we have come up with at the time of writing this document.

• Number.

N

• Frequency.

N
20

Timelnterval

The time interval is the time interval specified in the control table. It is not a

metric datum, but it is associated with the metric.

• Maximum

Xmax

25 • Minimum

NOAC Ex. 1014 Page 149

145

• Range

R = 	— X min

• Arithmetic Mean

k_ = E X

N

5 	• Root Mean Square

RMS =
V N

• Variance

2 	E(X — 	2)-2X(EX)+ N(r)
= 	

• Standard Deviation

E((x-xy) ill(x1-2-g(Ex)+N(2)
N N

10 	 CT =

• Trend

There are two types of trending information. The trend between polled

intervals and the trend within an interval. Trending between polled intervals is a

management application function. Typically the management station would trend on

15 	the average of the reported interval. The trend within an interval is presented as an

enumerated type and can easily be generated by subtracting the first value in the

interval from the last and assigning trend based on the sign value.

Alternate Embodiments

One or more of the following different data elements may be included in various

20 	implementation of the metric. The following is what was considered but did not make it

into the metric.

• Sum of the deltas. The trend enumeration can be based on this easy

calculation. It didn't make it because it could be negative, which would have

meant another mib variable to specify sign information. And the number is

25 	 an ambiguous measure of slope as seen by comparing the following two

series of values. The sum of the delta in both cases is 6-2 = 4.

1,(X2)

NOAC Ex. 1014 Page 150

146

• Series A: 2, 6, 10, 6, 6, 6, 6, 6, 6, 6

• Series B: 2, 2, 2, 2, 6, 10, 10, 10, 10, 6

• Sum of the absolute values of the delta values. This would provide a

measurement of the overall movement within an interval. A value for the

5 	 average change could be calculated. This measurement gives no indication

of trend or grouping of data within the interval.

• Sum of positive delta values and sum of the negative delta values. These

may not give much more useful information than the sum of the deltas and

require 2 data elements to represent. Expanding each of these with an

10 	 associated count and maximum would give nice information, but at a total of

6 data elements for this data alone. It is potentially expensive in terms of

memory.

• The statistical measurement of skew can be obtained by adding E(X3) to the

existing metric. This requires an additional multiply, and additional mib

15 	 variable, and possibly overflow problems if X is sufficiently large.

• The statistical measurement of kurtosis can be obtained by adding E(X3)

and E(X4) to the existing metric. This would require two additional

multiplies, 2 additional mib variables, and an even larger chance of overflow

is X is sufficiently large. And in this case large is really not so large.

20 	 • Data to calculate a slope of a least-squares line through the data would have

taken 3 additional data elements, and two multiplies. Also in order to be

scaleable to a control table interval would have required the sum of squaring

of a potentially large time values causing overflow within the metric data

element.

25 	 Various metrics are now described

NOAC Ex. 1014 Page 151

147

Traffic Metrics

CSTraffic

Definition

This metric contains information about the volume of traffic measured for a

5 	given application and either a specific Client-Server Pair or a specific Server and all of

its clients.

This information duplicates, somewhat, that which may be found in the standard,

RMON II, AL/NL Matrix Tables. It has been included here for convenience to

applications and the associated benefit of improved performance by avoiding the need to

to 	access different functional RMON areas when performing QOS Analysis.

Metric Specification

Metric Applicability Units Description

N Applicable Packets Count of the # of Packets from the Client(s) to
the Server

E Applicable Octets Sum total of the # of Octets in these packets
from the Client(s) to the Server.

Maximum Not Applicable

Minimum Not Applicable

SCTraffic

15 Definition

This metric contains information about the volume of traffic measured for a

given application and either a specific Client-Server Pair or a specific Server and all of

its clients.

This information duplicates, somewhat, that which may be found in the standard,

20 	RMON II, AL/NL Matrix Tables. It has been included here for convenience to

applications and the associated benefit of improved performance by avoiding the need to

access different functional RMON areas when performing QOS Analysis.

NOAC Ex. 1014 Page 152

148

Jitter Metrics

CSJitter

Definition

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured

5 	for data packets for a given application and either a specific Client-Server Pair or a

specific Server and all of its clients. Specifically, CSJitter measures the Jitter for Data

Messages from the Client to the Server.

A Data Message starts with the 1st Transport Protocol Data Packet/Unit (TPDU)

from the Client to the Server and is demarcated (or terminated) by 1st subsequent Data

10 	Packet in the other direction. Client to Server Inter-packet Gaps are measured between

Data packets within the Message. Note that ACKnowledgements are not considered

within the measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets. The interval between the last packet in a Data Message from the

15 	Client to the Server and the 15t packet of the Next Message in the same direction is not

interpreted as an Inter-Packet Gap.

Cheat Server Data Message

Chest -> Server Data Msg

20

Server-> Client Data Message
iL

Data Data Data Data Data

Data Data Data Data

Chent->Server Inter-pkt Gaps

NOAC Ex. 1014 Page 153

148

Jitter Metrics

CSJitter

Definition

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured

5 	for data packets for a given application and either a specific Client-Server Pair or a

specific Server and all of its clients. Specifically, CSJitter measures the Jitter for Data

Messages from the Client to the Server.

A Data Message starts with the 1st Transport Protocol Data Packet/Unit (TPDU)

from the Client to the Server and is demarcated (or terminated) by 1st subsequent Data

10 	Packet in the other direction. Client to Server Inter-packet Gaps are measured between

Data packets within the Message. Note that ACKnowledgements are not considered

within the measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets. The interval between the last packet in a Data Message from the

is 	Client to the Server and the 1st packet of the Next Message in the same direction is not

interpreted as an Inter-Packet Gap.

Client -> Server Data Message

Data Data

Data Data

Server -> Cheat Data Message

20 N / Data Data Data Data

Client->Seiver Inter-pkt Gaps

Client -> Server Data Msg

Data

NOAC Ex. 1014 Page 154

Server -> Client Data Message

Data Data Data Data

Data Data Data Data Data

N I /

148

Jitter Metrics

CSJitter

Definition

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured

5 	for data packets for a given application and either a specific Client-Server Pair or a

specific Server and all of its clients. Specifically, CSJitter measures the Jitter for Data

Messages from the Client to the Server.

A Data Message starts with the 1st Transport Protocol Data Packet/Unit (TPDU)

from the Client to the Server and is demarcated (or terminated) by 1St subsequent Data

10 	Packet in the other direction. Client to Server Inter-packet Gaps are measured between

Data packets within the Message. Note that ACKnowledgements are not considered

within the measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets. The interval between the last packet in a Data Message from the

15 	Client to the Server and the 1st packet of the Next Message in the same direction is not

interpreted as an Inter-Packet Gap.

Client -> Server Data Message

Client -> Server Data Msg

20

Client->Server Inter-pkt Gaps

NOAC Ex. 1014 Page 155

Data

N 	1 7
Data Data Data

Data

149

Metric Specification

Metric Applicability Units Description

N Applicable Inter-
Packet
Gaps

Count of the # of Inter-Packet Gaps measured
for Data from the Client(s) to the Server

I Applicable uSeconds Sum total of the Delta Times in these Inter-
Packet Gaps

Maximum Applicable uSeconds The maximum Delta Time of Inter-Packet
Gaps measured

Minimum Applicable uSeconds The minimum Delta Time of Inter-Packet
Gaps measured.

SCJitter

5 	Definition

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured

for data packets for a given application and either a specific Client-Server Pair or a

specific Server and all of its clients. Specifically, SCJitter measures the Jitter for Data

Messages from the Client to the Server.

io 	A Data Message starts with the 1St Transport Protocol Data Packet/Unit (TPDU)

from the Server to the Client and is demarcated (or terminated) by 1st subsequent Data

Packet in the other direction. Server to Client Inter-packet Gaps are measured between

Data packets within the Message. Note that ACKnowledgements are not considered

within the measurement of this metric.

15 	Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets. The interval between the last packet in a Data Message from the

Client -a Server Data Message

r"—

Data Data Data Data

20
	 Server -a Client Data Message

Sever -a Client Data Msg

Server->Client I nter-pkt Gaps

NOAC Ex. 1014 Page 156

150

Server to the Client and the 1st packet of the Next Message in the same direction is not

interpreted as an Inter-Packet Gap.

Metric Specification

Metric Applicability Units Description

N Applicable Inter-
Packet
Gaps

Count of the # of Inter-Packet Gaps measured
for Data from the Server to the Client(s).

1 Applicable uSeconds Sum total of the Delta Times in these Inter-
Packet Gaps.

Maximum Applicable uSeconds The maximum Delta Time of Inter-Packet
Gaps measured

Minimum Applicable uSeconds The minimum Delta Time of Inter-Packet
Gaps measured.

5

Exchange Response Metrics

CSExchangeResponseTimeStartToStart

Definition

This metric contains information about the Transport-level response time

10 	measured for data packets for a given application and either a specific Client-Server Pair

or a specific Server and all of its clients. Specifically,

CSExchangeResponseTimeStartToStart measures the response time between start of

Data Messages from the Client to the Server and the start of their subsequent response

Data Messages from the Server to the Client.

15 	 A Client->Server Data Message starts with the 1st Transport Protocol Data

Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by

1St subsequent Data Packet in the other direction. The total time between the start of the

Client->Server Data Message and the start of the Server->Client Data Message is

measured with this metric. Note that ACKnowledgements are not considered within the

20 	measurement of this metric.

NOAC Ex. 1014 Page 157

5

Ctent -> Server Data Message

151

Data Data Data Data

Server -> Client Data Message

Data Data Data Data

Client->Server Start-Start

Exchange Response Time

to 	Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

Metric Specification

Metric Applicability Units Description

N Applicable Client->
Server
Messages

Count of the # Client->Server Messages
measured for Data Exchanges from the
Client(s) to the Server

X Applicable uSeconds Sum total of the Start-to-Start Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of
these Exchange Response Times

Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of
these Exchange Response Times

15 CSExchangeResponseTimeEndToStart

Definition

This metric contains information about the Transport-level response time

measured for data packets for a given application and either a specific Client-Server Pair

or a specific Server and all of its clients. Specifically,

20 	CSExchangeResponseTimeEndToStart measures the response time between end of Data

Messages from the Client to the Server and the start of their subsequent response Data

Messages from the Server to the Client.

A Client->Server Data Message starts with the 1st Transport Protocol Data

Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by

NOAC Ex. 1014 Page 158

Server -> Client Data Message

Client->Server End-Start 	10

Exchange Response Time

Data Data Data Data

Data Data Data Data

152

1st subsequent Data Packet in the other direction. The total time between the end of the

Client->Server Data Message and the start of the Server->Client Data Message is

measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.

5

10

Client -> Server Data Message

Also, there is no consideration in the measurement for retransmissions or out-of-

15 	order data packets.

Metric Specification

Metric Applicability Units Description

N Applicable Client->
Server
Messages

Count of the # Client->Server Messages
measured for Data Exchanges from the
Client(s) to the Server

I Applicable uSeconds Sum total of the End-to-Start Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of
these Exchange Response Times

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of
these Exchange Response Times

CSExchangeResponseTimeStartToEnd

20 Definition

This metric contains information about the Transport-level response time

measured for data packets for a given application and either a specific Client-Server Pair

or a specific Server and all of its clients. Specifically,

CSExchangeResponseTimeEndToStart measures the response time between Start of

NOAC Ex. 1014 Page 159

Client -> Server Data Message

Server -> Client Data Message

4-
Client-›Server Start-End
Exchange Response Time

15

20

25

Data Data Data Data

Data Data Data Data

153

Data Messages from the Client to the Server and the End of their subsequent response

Data Messages from the Server to the Client.

A Client->Server Data Message starts with the 1st Transport Protocol Data

Packet/Unit (TPDU) from the Client to the Server and is demarcated (or teiminated) by

5 	1St subsequent Data Packet in the other direction. The end of the Response Message in

the other direction (e.g. from the Server to the Client) is demarcated by the last data of

the Message prior to the 1st data packet of the next Client to Server Message. The total

time between the start of the Client->Server Data Message and the end of the Server-

>Client Data Message is measured with this metric. Note that ACKnowledgements are

lo 	not considered within the measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

Next
Client -> Server Data Message

Data

NOAC Ex. 1014 Page 160

154

Metric Specification

Metric Applicability Units Description

N Applicable Client->
Server
Message
Exchanges

Count of the # Client->Server and Server->
Client Exchange message pairs measured for
Data Exchanges from the Client(s) to the
Server

E Applicable uSeconds Sum total of the Start-to-End Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of
these Exchange Response Times

Minimum Applicable uSeconds The minimum Start-to-End Delta Time of
these Exchange Response Times

SCExchangeResponseTimeStartToStart

5 	Definition

This metric contains information about the Transport-level response time

measured for data packets for a given application and either a specific Client-Server Pair

or a specific Server and all of its clients. Specifically,

SCExchangeResponseTimeStartToStart measures the response time between start of

10 	Data Messages from the Server to the Client and the start of their subsequent response

Data Messages from the Client to the Server.

A Server->Client Data Message starts with the 1st Transport Protocol Data

Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by

1st subsequent Data Packet in the other direction. The total time between the start of the

15 	Server->Client Data Message and the start of the Client->Sever Data Message is

measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

20

NOAC Ex. 1014 Page 161

Data

Server -> Client Data Message

Data Data Data
5

10

Data Data Data Data

Serve r->Clie nt Start-Start
Exchange Response Time

155

Client -> Server Data Message

s'-

Metric Specification

Metric Applicability Units Description

N Applicable Server->
Client
Messages

Count of the # Server->Client Messages
measured for Data Exchanges from the
Client(s) to the Server

I Applicable uSeconds Sum total of the Start-to-Start Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of
these Exchange Response Times

Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of
these Exchange Response Times

15

SCExchangeResponseTimeEndToStart

Definition

This metric contains information about the Transport-level response time

measured for data packets for a given application and either a specific Client-Server Pair

20 	or a specific Server and all of its clients. Specifically,

SCExchangeResponseTimeEndToStart measures the response time between end of Data

Messages from the Server to the Client and the start of their subsequent response Data

Messages from the Client to the Server.

A Server->Client Data Message starts with the 1st Transport Protocol Data

25 	Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by

Si 3

NOAC Ex. 1014 Page 162

5

156

1st subsequent Data Packet in the other direction. The total time between the end of the

Server->Client Data Message and the start of the Client->Server Data Message is

measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.
Client -> Server Data Message

Server -> Client Data Message

Data Data Data Data

4

10 Data Data Data Data

.01

Serve r->Client End-Start

15 	 Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

Metric Specification

Metric Applicability Units Description

N Applicable Server->
Client
Messages

Count of the # Server->Client Messages
measured for Data Exchanges from the
Client(s) to the Server

1 Applicable uSeconds Sum total of the End-to-Start Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of
these Exchange Response Times

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of
these Exchange Response Times

20 SCExchangeResponseTimeStartToEnd

Definition

This metric contains information about the Transport-level response time

measured for data packets for a given application and either a specific Client-Server Pair

Exchange Response Time

NOAC Ex. 1014 Page 163

Data Data Data Data

Server -> Client Data Message
20

Data Data Data Data

157

or a specific Server and all of its clients. Specifically,

SCExchangeResponseTimeEndToStart measures the response time between Start of

Data Messages from the Server to the Client and the End of their subsequent response

Data Messages from the Client to the Server.

5 	 A Server->Client Data Message starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by

1st subsequent Data Packet in the other direction. The end of the Response Message in

the other direction (e.g. from the Server to the Client) is demarcated by the last data of

the Message prior to the 1st data packet of the next Server to Client Message. The total

io 	time between the start of the Server->Client Data Message and the end of the Client-

>Server Data Message is measured with this metric. Note that ACKnowledgements are

not considered within the measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

15

fn.

ik 3

Client -> Server Data Message

Next
Server -> Client Data Message

Data

Server->Client Start-End
Exchange Response Time

NOAC Ex. 1014 Page 164

161

Metric Specification

Metric Applicability Units Description

N Applicable Client->Svr
Transaction
Requests

Count of the # Client->Server Transaction
Requests measured for Application requests
from the Client(s) to the Server

/ Applicable uSeconds Sum total of the End-to-Start Delta Times in
these Application Response Times

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of
these Application Response Times

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of
these Application Response Times

CSApplicationResponseTimeStartToEnd

Definition

5 	 This metric contains information about the Application-level response time

measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically,

CSTransactionResponseTimeStartToEnd measures the response time between Start of

an application transaction from the Client to the Server and the End of their subsequent

o 	transaction response from the Server to the Client.

A Client->Server transaction starts with the 1st Transport Protocol Data

Packet/Unit (TPDU) a transaction request from the Client to the Server and is

demarcated (or terminated) by 1st subsequent data packet of the response to the

transaction request. The end of the Transaction Response in the other direction (e.g. from

15 	the Server to the Client) is demarcated by the last data of the transaction response prior

to the 1St data of the next Client to Server Transaction Request. The total time between

the start of the Client->Server transaction request and the end of the Server->Client

transaction response is measured with this metric.

20

NOAC Ex. 1014 Page 165

158

Metric Specification

Metric Applicability Units Description

N Applicable Client-
Server
Message

Exchanges

Count of the # Server->Client and Client->
Server Exchange message pairs measured for
Data Exchanges from the Server to the
Client(s)

E Applicable uSeconds Sum total of the Start-to-End Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of
these Exchange Response Times

Minimum Applicable uSeconds The minimum Start-to-End Delta Time of
these Exchange Response Times

Transaction Response Metrics

5 CSTransactionResponseTimeStartToStart

Definition

This metric contains information about the Application-level response time

measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically,

10 	CSTransactionResponseTimeStartToStart measures the response time between start of

an application transaction from the Client to the Server and the start of their subsequent

transaction response from the Server to the Client.

A Client->Server transaction starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) of a transaction request from the Client to the Server and is

15 	demarcated (or terminated) by 1st subsequent data packet of the response to the

transaction request. The total time between the start of the Client->Server transaction

request and the start of the actual transaction response from the Server->Client is

measured with this metric.

This metric is considered a "best-effort" measurement. Systems implementing

20 	this metric should make a "best-effort" to demarcate the start and end of requests and

responses with the specific application's definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

CSExchangeResponseTimeStartToStart.

NOAC Ex. 1014 Page 166

Data Data

5 Data Data Data Data Data Data

10
4

15

Data Data

159

Client -, Server Transaction Request
	

Server -> Client Misc. Control Dates

Server Client Misc. Control Dates
Server Client Transaction Response

Data Data

Client->Server Start-Start
Transaction Response Time

Metric Specification

Metric Applicability Units Description

N Applicable Client->Svr
Transaction
Requests

Count of the # Client->Server Transaction
Requests measured for Application requests
from the Client(s) to the Server

1 Applicable uSeconds Sum total of the Start-to-Start Delta Times in
these Application Response Times

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of
these Application Response Times

Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of
these Application Response Times

CSApplicationResponseTimeEndToStart

Definition

This metric contains information about the Application-level response time

20 	measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically,

CSApplicationResponseTimeEndToStart measures the response time between end of an

application transaction from the Client to the Server and the start of their subsequent

NOAC Ex. 1014 Page 167

Data Data

Client->Server End-Start 	4,

Application Response Time

Data Data Data

20

Data

160

transaction response from the Server to the Client.

A Client->Server transaction starts with the 1st Transport Protocol Data

Packet/Unit (TPDU) of a transaction request from the Client to the Server and is

demarcated (or terminated) by 1st subsequent data packet of the response to the

5 	transaction request The total time between the end of the Client->Server transaction

request and the start of the actual transaction response from the Server->Client is

measured with this metric

This metric is considered a "best-effort" measurement. Systems implementing

this metric should make a "best-effort" to demarcate the start and end of requests and

io 	responses with the specific application's definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

CSExchangeResponseTimeEndToStart.

15
Client -> Server Transaction Request

Server -> Client Misc. Control Datas

Data Data

Data Data Data Data

Server -> Client Misc. Control Dates
	 Server -> Client Transaction Response

NOAC Ex. 1014 Page 168

Data Data

4-
Server-›Client Start-End
Transaction Response Time

Server -5. Client Misc Control Dates
c____---A----Th

Server . Client Transaction Response

Data Data Data Data

162

Client -> Server Transaction Request Server -> Client Misc. Control Dates

(..-----A---.\

Next Client -> Server
Transaction Request

5

Data Data Data Data Data Data Data

This metric is considered a "best-effort" measurement. Systems implementing

this metric should make a "best-effort" to demarcate the start and end of requests and

10 	responses with the specific application's definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

CSExchangeResponseTimeStartToEnd.

Metric Specification

Metric Applicability Units Description

N Applicable Client->
Server
Transactions

Count of the # Client<->Server
request/response pairs measured for
transactions from the Client(s) to the Server

I Applicable uSeconds Sum total of the Start-to-End Delta Times in
these Application Response Times

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of
these Application Response Times

Minimum Applicable uSeconds The minimum Start-to-End Delta Time of
these Application Response Times

15
SCTransactionResponseTimeStartToStart

Definition

This metric contains information about the Application-level response time

measured for application transactions for a given application and either a specific Client-

20 	Server Pair or a specific Server and all of its clients. Specifically,

SCTransactionResponseTimeStartToStart measures the response time between start of

an application transaction from the Server to the Client and the start of their subsequent

transaction response from the Client to the Server.

NOAC Ex. 1014 Page 169

20 Data Data Data Data Data Data

Data Data Data Data

Server->Client Start-Start
Transaction Response Time

163

A Server->Client transaction starts with the 1st Transport Protocol Data

Packet/Unit (TPDU) of a transaction request from the Server to the Client and is

demarcated (or terminated) by 1st subsequent data packet of the response to the

transaction request. The total time between the start of the Server->Client transaction

5 	request and the start of the actual transaction response from the Client->Server is

measured with this metric.

This metric is considered a "best-effort" measurement. Systems implementing

this metric should make a "best-effort" to demarcate the start and end of requests and

responses with the specific application's definition of a logical transaction. The lowest

io 	level of support for this metric would make this metric the equivalent of

SCExchangeResponseTimeStartToStart.

15

Client -> Server Transaction Response
Server -> Client Misc. Control Dates

Server -> Client Transaction Request Server -> Client Misc. Control Dates

Data Data

NOAC Ex. 1014 Page 170

164

Metric Specification

Metric Applicability Units Description

N Applicable Svr->Client
Transaction
Requests

Count of the # Server->Client Transaction
Requests measured for Application requests
from the Server to the Client(s)

E Applicable uSeconds Sum total of the Start-to-Start Delta Times in
these Application Response Times

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of
these Application Response Times

Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of
these Application Response Times

SCApplicationResponseTimeEndToStart

5 	Definition

This metric contains information about the Application-level response time

measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically,

SCApplicationResponseTimeEndToStart measures the response time between end of an

to 	application transaction from the Server to the Client and the start of their subsequent

transaction response from the Client to the Server.

A Server->Client transaction starts with the 1st Transport Protocol Data

Packet/Unit (TPDU) of a transaction request from the Server to the Client and is

demarcated (or terminated) by 1st subsequent data packet of the response to the

15 	transaction request The total time between the end of the Server->Client transaction

request and the start of the actual transaction response from the Client->Server is

measured with this metric

This metric is considered a "best-effort" measurement. Systems implementing

this metric should make a "best-effort" to demarcate the start and end of requests and

20 	responses with the specific application's definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

SCExchangeResponseTimeEndToStart.

NOAC Ex. 1014 Page 171

5 Data Data Data Data Data Data

Data

4

165

Server -> Client Misc. Control Dates

Client -> Server Transacton Response

Server -> Client Transacton Request Server -> Chent Misc. Control Dates

Data

10

Data Data

Server->Client End-Start
Applicaton Response Time

Data Data

15

Metric Specification

Metric Applicability Units Description

N Applicable Svr->Client
Transaction
Requests

Count of the # Server->Client Transaction
Requests measured for Application requests
from the Server to the Client(s)

I Applicable uSeconds Sum total of the End-to-Start Delta Times in
these Application Response Times

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of
these Application Response Times

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of
these Application Response Times

SCApplicationResponseTimeStartToEnd

Definition

This metric contains information about the Application-level response time

20 	measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically,

SCTransactionResponseTimeStartToEnd measures the response time between Start of

an application transaction from the Server to the Client and the End of their subsequent

transaction response from the Client to the Server.

kr)

NOAC Ex. 1014 Page 172

166

A Server->Client transaction starts with the 1St Transport Protocol Data

Packet/Unit (TPDU) a transaction request from the Server to the Client and is

demarcated (or terminated) by 1st subsequent data packet of the response to the

transaction request. The end of the Transaction Response in the other direction (e.g. from

5 	the Client to the Server) is demarcated by the last data of the transaction response prior

to the 1st data of the next Server to Client Transaction Request. The total time between

the start of the Server->Client transaction request and the end of the Client->Server

transaction response is measured with this metric.

This metric is considered a "best-effort" measurement. Systems implementing

to 	this metric should make a "best-effort" to demarcate the start and end of requests and

responses with the specific application's definition of a logical transaction. The lowest

level of support for this metric would make this metric the equivalent of

SCExchangeResponseTimeStartToEnd.

15

Server Client Misc. Control Dates
Client -> Server Transaction Response

Data Data

Data Data Data Data

Server -> Client Transaction Request Server -> Client Misc. Control Dates
Next Server -> Client

Transaction Request

20

Data Data

Data Data Data Data Data

Server->Client Start-End

Transaction Response Time
i

NOAC Ex. 1014 Page 173

167

Metric Applicability Units Description

N Applicable Server->
Client
Transactions

Count of the # Server<->Client
requestiresponse pairs measured for
transactions from the Server to the Client(s)

E Applicable uSeconds Sum total of the Start-to-End Delta Times in
these Application Response Times

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of
these Application Response Times

Minimum Applicable uSeconds The minimum Start-to-End Delta Time of
these Application Response Times

Connection Metrics

ConnectionEstablishment

5 	Definition

This metric contains information about the transport-level connection

establishment for a given application and either a specific Client-Server Pair or a specific

Server and all of its clients. Specifically, ConnectionsEstablishment measures number of

connections established the Client(s) to the Server. The information contain, in essence,

to 	includes:

• # Transport Connections Successfully established

• Set-up Times of the established connections

• Max. # of Simultaneous established connections.

• # Failed Connection establishment attempts (due to either timeout or

15 	 rejection)

Note that the "# of CURRENT Established Transport Connections" may be

derived from this metric along with the ConnectionGracefulTermination and

ConnectionTimeoutTermination metrics, as follows:

# current connections :== 	"# successfully established"

20 	 - "# terminated gracefully"

- "# terminated by time-out"

Met

NOAC Ex. 1014 Page 174

168

The set-up time of a connection is defined to be the delta time between the first

transport-level, Connection Establishment Request (i.e., SYN, CR-TPDU, etc.) and the

first Data Packet exchanged on the connection.

Metric Specification
5

Metric Applicability Units Description

N Applicable Connections Count of the # Connections Established
from the Client(s) to the Server

I Applicable uSeconds Sum total of the Connection Set-up Times in
these Established connections

Maximum Applicable Connections Count of the MAXIMUM simultaneous #
Connections Established from the Client(s)
to the Server

Minimum Not Applicable Connections Count of the Failed simultaneous #
Connections Established from the Client(s)
to the Server

ConnectionGracefulTermination

Definition

This metric contains information about the transport-level connections terminated

to 	gracefully for a given application and either a specific Client-Server Pair or a specific

Server and all of its clients. Specifically, ConnectionsGracefulTennination measures

gracefully terminated connections both in volume and summary connection duration.

The information contain, in essence, includes:

• # Gracefully terminated Transport Connections

15 	• Durations (lifetimes) of gracefully terminated connections.

NOAC Ex. 1014 Page 175

169

Metric Specification

Metric Applicability Units Description

N Applicable Connections Count of the # Connections Gracefully
Terminated between Client(s) to the Server

I Applicable mSeconds Sum total of the Connection Durations
(Lifetimes) of these terminated connections

Maximum Not Applicable

Minimum Not Applicable

ConnectionTimeoutTermination

5 	Definition

This metric contains information about the transport-level connections terminated

non-gracefully (e.g. Timed-Out) for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically,

ConnectionsTimeoutTermination measures previously established and timed-out

to 	connections both in volume and summary connection duration. The information contain,

in essence, includes:

• # Timed-out Transport Connections

• Durations (lifetimes) of timed-out terminated connections.

The duration factor of this metric is considered a "best-effort" measurement.

15 	Independent network monitoring devices cannot really know when network entities

actually detect connection timeout conditions and hence may need to extrapolate or

estimate when connection timeouts actually occur.

NOAC Ex. 1014 Page 176

170

Metric Specification

Metric Applicability Units Description

N Applicable Connections Count of the # Connections Timed-out
between Client(s) to the Server

I Applicable mSeconds Sum total of the Connection Durations
(Lifetimes) of these terminated connections

Maximum Not Applicable

Minimum Not Applicable

Connection Sequence Metrics

5 CSConnectionRetransmissions

Definition

This metric contains information about the transport-level connection health for a

given application and either a specific Client-Server Pair or a specific Server and all of

its clients. Specifically, CSConnectionRetransmissions measures number of actual

to 	events within established connection lifetimes in which Transport, data-bearing PDUs

(packets) from the Client->Server were retransmitted.

Note that retransmission events as seen by the Network Monitoring device

indicate the "duplicate" presence of a TPDU as observed on the network.

Metric Specification
15

Metric Applicability Units Description

N Applicable Events Count of the # Data TPDU retransmissions
from the Client(s) to the Server

I Not Applicable

Maximum Not Applicable

Minimum Not Applicable

SCConnectionRetransmissions

Definition

This metric contains information about the transport-level connection health for a

20 	given application and either a specific Client-Server Pair or a specific Server and all of

NOAC Ex. 1014 Page 177

171

its clients. Specifically, SCConnectionRetransmissions measures number of actual

events within established connection lifetimes in which Transport, data-bearing PDUs

(packets) from the Server->Client were retransmitted.

Note that retransmission events as seen by the Network Monitoring device

5 	indicate the "duplicate" presence of a TPDU as observed on the network.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # Data TPDU retransmissions
from the Server to the Client(s)

I Not Applicable

Maximum Not Applicable

Minimum Not Applicable

CSConnectionOutOfOrders

10 Definition

This metric contains information about the transport-level connection health for a

given application and either a specific Client-Server Pair or a specific Server and all of

its clients. Specifically, CSConnectionOutOfOrders measures number of actual events

within established connection lifetimes in which Transport, data-bearing PDUs (packets)

15 	from the Client->Server were detected as being out of sequential order.

Note that retransmissions (or duplicates) are considered to be different than out-

of-order events and are tracked separately in the CSConnectionRetransmissions metric.

NOAC Ex. 1014 Page 178

172

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # Out-of-Order TPDU events
from the Client(s) to the Server

1, Not Applicable

Maximum Not Applicable

Minimum Not Applicable

SCConnectionOutOfOrders

5 	Definition

This metric contains information about the transport-level connection health for a

given application and either a specific Client-Server Pair or a specific Server and all of

its clients. Specifically, SCConnectionOutOfOrders measures number of actual events

within established connection lifetimes in which Transport, data-bearing PDUs (packets)

10 	from the Server->Client were detected as being out of sequential order.

Note that retransmissions (or duplicates) are considered to be different than out-

of-order events and are tracked separately in the SCConnectionRetransmissions metric.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # Out-of-Order TPDU events
from the Server to the Client(s)

E Not Applicable

Maximum Not Applicable

Minimum Not Applicable

15

NOAC Ex. 1014 Page 179

173

Connection Window Metrics

CSConnectionWindow

Definition

This metric contains information about the transport-level connection windows

5 	for a given application and either a specific Client-Server Pair or a specific Server and all

of its clients. Specifically, CS Connection Window measures number of Transport-level

Acknowledges within established connection lifetimes and their relative sizes from the

Client->Server.

Note that the number of DATA TPDUs (packets) may be estimated by

10 	differencing the Acknowledge count of this metric and the overall traffic from the Client

to the Server (see CSTraffic above). A slight error in this calculation may occur due to

Connection Establishment and Termination TPDUS, but it should not be significant.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACK TPDU retransmissions
from the Client(s) to the Server

I Not Applicable Increments Sum total of the Window Sizes of the
Acknowledges

Maximum Not Applicable Increments The maximum Window Size of these
Acknowledges

Minimum Not Applicable Increments The minimum Window Size of these
Acknowledges

15

SC Connection Window

Definition

This metric contains information about the transport-level connection windows

for a given application and either a specific Client-Server Pair or a specific Server and all

20 	of its clients. Specifically, SSConnectionWindow measures number of Transport-level

Acknowledges within established connection lifetimes and their relative sizes from the

Server->Client.

NOAC Ex. 1014 Page 180

174

Note that the number of DATA TPDUs (packets) may be estimated by

differencing the Acknowledge count of this metric and the overall traffic from the Client

to the Server (see SCTraffic above).. A slight error in this calculation may occur due to

Connection Establishment and Termination TPDUS, but it should not be significant.

5 	Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACK TPDU retransmissions
from the Server to the Client(s)

E Applicable Increments Sum total of the Window Sizes of the
Acknowledges

Maximum Applicable Increments The maximum Window Size of these
Acknowledges

Minimum Applicable Increments The minimum Window Size of these
Acknowledges

CSConnectionFrozenWindows

Definition

10 	 This metric contains information about the transport-level connection windows

for a given application and either a specific Client-Server Pair or a specific Server and all

of its clients. Specifically, CS Connection Window measures number of Transport-level

Acknowledges from Client->Server within established connection lifetimes which

validly acknowledge data, but either

15 	 • failed to increase the upper window edge,

• reduced the upper window edge

NOAC Ex. 1014 Page 181

175

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACK TPDU with
frozen/reduced windows from the Client(s)
to the Server

I Not Applicable

Maximum Not Applicable

Minimum Not Applicable

SCConnectionFrozenWindows

	

5 	Definition

This metric contains information about the transport-level connection windows

for a given application and either a specific Client-Server Pair or a specific Server and all

of its clients. Specifically, SCConnectionWindow measures number of Transport-level

Acknowledges from Server->Client within established connection lifetimes which

	

10 	validly acknowledge data, but either

• failed to increase the upper window edge,

• reduced the upper window edge

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACK TPDU with
frozen/reduced windows from the Client(s)
to the Server

E Not Applicable

Maximum Not Applicable

Minimum Not Applicable

15

CSConnectionClosed Windows

Definition

This metric contains information about the transport-level connection windows

NOAC Ex. 1014 Page 182

176

for a given application and either a specific Client-Server Pair or a specific Server and all

of its clients. Specifically, CS Connection Window measures number of Transport-level

Acknowledges from Client->Server within established connection lifetimes which fully

closed the acknowledge/sequence window.

5 	Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACK TPDU with Closed
windows from the Client(s) to the Server

E Not Applicable

Maximum Not Applicable

Minimum Not Applicable

SCConnectionClosedWindows

Definition

to 	This metric contains information about the transport-level connection windows

for a given application and either a specific Client-Server Pair or a specific Server and all

of its clients. Specifically, SCConnectionWindow measures number of Transport-level

Acknowledges from Server->Client within established connection lifetimes which fully

closed the acknowledge/sequence window.

15 	Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACK TPDU with Closed
windows from the Client(s) to the Server

E Not Applicable

Maximum Not Applicable

Minimum Not Applicable

Some common definitions

The definitions below are of terms that would be well-known to those of ordinary

20 	skill in the art, and are only presented here for completeness so that people less

NOAC Ex. 1014 Page 183

177

acquainted with the art also may be able to understand the description.

The term RMON derives from a standard that was first developed in 1992 by the

Internet Engineering Task Force (IETF) as an extension to the Simple Network

Management Protocol (SNMP) Management Information Base (MI6). These MD3

5 	extensions are referred to as the Remote MONitoring M1B; which is commonly

abbreviated to RMON. The IETF defines 10 RMON Groups for the gathering of

information on Ethernet and Token Ring networks, and in 1997 a second RFC was

adopted that allowed the gathering of information at all 7 layers. There is no IETF

definition for RMON on FDDI networks or Wide Area Networks, such as Frame Relay,

io 	but the probes follow the same structures and conventions as the original RMON

definitions, providing this capability over many network types.

Tunneling is understood to mean transmitting data structured in one protocol

format within the format of another protocol. Tunneling allows other types of

transmission streams to be carried within the prevailing protocol. For example, IP

15 	tunneling is carrying a foreign protocol within a TCP/IP packet. For example, IPX can be

encapsulated and transmitted via TCP/IP. 2TP (Layer 2 Tunneling Protocol) A protocol

from the Internet Engineering Task Force (IETF) for creating virtual private networks

(VPNs) over the Internet. It supports non-IP protocols such as AppleTalk and IPX as

well as the IPSec security protocol. It is a combination of the Point-to-Point Tunneling

20 	Protocol (Microsoft Corporation, Redmond, Washington) and Layer 2 Forwarding (L2F)

technology (Cisco Systems, San Jose, California).

DCOM (Distributed Component Object Model), formerly called Network OLE

(Microsoft Corporation, Redmond, Washington), is Microsoft's technology for

distributed objects. DCOM is based on COM, Microsoft's component software

25 	architecture, which defines the object interfaces. DCOM defines the remote procedure

call which allows those objects to be run remotely over the network. DCOM began

shipping with Windows NT 4.0 and is Microsoft's counterpart to CORBA (Common

Object Request Broker Architecture), a standard from the Object Management Group

(OMG) for communicating between distributed objects (objects are self-contained

30 	software modules). CORBA provides a way to execute programs (objects) written in

different programming languages running on different platforms no matter where they

NOAC Ex. 1014 Page 184

178

reside in the network.

Sun-RPC (Sun's Remote Procedure Call) is a programming interface from Sun

Microsystems (Palo Alto, California) that allows one program to use the services of

another program in a remote machine. The calling programming sends a message and

	

5 	data to the remote program, which is executed, and results are passed back to the calling

program. This type of interface is designed to allow programs to communicate with each

another while freeing the programmer from the networking details. Microsoft's DCOM

was modeled after the RPC in DCE. CORBA also provides this capability.

CAM is the same as associative storage. associative storage This is storage that is

	

to 	accessed by comparing the content of the data stored in it rather than by addressing

predetermined locations.

UDP (User Datagram Protocol) A protocol within the TCP/IP protocol suite that

is used in place of TCP when a reliable delivery is not required. For example, UDP is

used for realtime audio and video traffic where lost packets are simply ignored, because

	

15 	there is no time to retransmit. If UDP is used and a reliable delivery is required, packet

sequence checking and error notification must be written into the applications.

RTP (Realtime Transport Protocol) An IP protocol that supports realtime

transmission of voice and video. An RTP packet rides on top of UDP and includes

timestamping and synchronization information in its header for proper reassembly at the

	

20 	receiving end. Realtime Control Protocol (RTCP) is a companion protocol that is used to

maintain QoS. RTP nodes analyzes network conditions and periodically send each other

RTCP packets that report on network congestion.

RTP Packet. In a UDP/IP stack, the RTP header is created first and then the

packet is moved down the stack to UDP and IP. This shows the RTP packet within an

	

25 	Ethernet frame ready for transmission over the network.

Port number. In a TCP/IP-based network such as the Internet, it is a number

assigned to an application program running in the computer. The number is used to link

the incoming data to the correct service. Well-known ports are standard port numbers

used by everyone; for example, port 80 is used for HTTP traffic (Web traffic).

NOAC Ex. 1014 Page 185

179

Binding. In a communications network, to establish a software connection

between one protocol and another. Data flows from the application to the transport

protocol to the network protocol to the data link protocol and then onto the network.

Binding the protocols creates the internal pathway.

5 	 Frame relay. A high-speed packet switching protocol used in wide area

networks (WANs). It has become popular for LAN to LAN connections across remote

distances, and services are provided by all the major carriers. Frame relay is faster than

traditional X.25 networks, because it was designed for today's reliable circuits and

performs less rigorous error detection. Frame relay provides for a granular service up to

io 	DS3 rates of 44.736 Mbps and is suited for data and image transfer. Because of its

variable-length packet architecture, it is not the most efficient technology for realtime

voice and video.

A connection oriented communications architecture is one that requires an

establishment of the session between two nodes before transmission can begin. When the

15 	communications is completed, the session is ended (torn down). All circuit-switched

networks are connection oriented because they require a dedicated channel for the

duration of the session. In addition, packet-switched X.25, frame relay and ATM

networks are also considered connection oriented, because they require receiving nodes

to acknowledge their ability to support the transmission before data can be sent.

20 	 A connectionless communications architecture, on the other hand, is one that

does not require the establishment of a session between two nodes before transmission

can begin. The transmission of frames within a local area network (LAN), such as

Ethernet, Token Ring and FDDI, is connectionless. The terms connection-oriented and

connectionless oriented also apply to the different protocol levels. For example, common

25 	TCP/IP is composed of TCP (Transmission Control Protocol), a connection-oriented

protocol that passes its data to the next lower layer, IP (Internet Protocol), a

connectionless protocol. TCP sets up a connection at both ends and guarantees reliable

delivery of the full message sent. TCP tests for errors and requests retransmission if

necessary, because IP does not. UDP packets within a TCP/IP network are also

30 connectionless.

NOAC Ex. 1014 Page 186

180

Some PDL Files.

The following pages include some PDL files as examples. Included herein are the

PDL contents of the following files. A reference to PDL is also included herein. Note

that any contents on any line following two hyphen () are ignored by the compiler.

5 	That is, they are comments.

common.pd1;

flows.pd1;

virtual.pd1;

ethernet.pd1;

10 	IEEE8032.pd1 and IEEE8033.pd1 (ethertype files);

IP.pd1;

TCP.pd1 and UDP.pd1;

RPC.pd1;

NFS.pd1; and

15 	 1-ITTP.pdl.

NOAC Ex. 1014 Page 187

181

Common.pd1 - Common protocol definitions

5
	

Description:
This file contains some field definitions for commonly used fields
in various network protocols.

Copyright:
10 	 Copyright (c) 1996-1999 Apptitude, Inc.

(formerly Technically Elite, Inc.)
All rights reserved.

RCS:
15 	 $Id: Common.pdl,v 1.7 1999/04/13 15:47:56 skip Exp $

Int4 FIELD
SYNTAX INT (4)

20
Int8 FIELD

SYNTAX INT(8)

Int16 FIELD
25 	 SYNTAX INT(16)

Int24 FIELD
SYNTAX INT(24)

30 Int32 FIELD
SYNTAX INT(32)

Int64 FIELD
SYNTAX INT (64)

35
UInt8 FIELD

SYNTAX UNSIGNED INT(8)

UInt16 FIELD
40 	 SYNTAX UNSIGNED INT (16)

UInt24 FIELD
SYNTAX UNSIGNED INT(24)

45 	UInt32 FIELD
SYNTAX UNSIGNED INT(32)

UInt64 FIELD
SYNTAX UNSIGNED INT (64)

50
SInt16 FIELD

SYNTAX INT(16)
FLAGS SWAPPED

55 SUInt16 FIELD
SYNTAX UNSIGNED INT(16)
FLAGS SWAPPED

SInt32 FIELD
60 	 SYNTAX INT(32)

FLAGS SWAPPED

ByteStrl 	FIELD
SYNTAX BYTESTRING(1)

65
ByteStr2 	FIELD

SYNTAX BYTESTRING(2)

ByteStr4 	FIELD
70 	 SYNTAX BYTESTRING(4)

NOAC Ex. 1014 Page 188

182

Padl FIELD
SYNTAX BYTESTRING(1)
FLAGS NOSHOW

5 Pad2 FIELD
SYNTAX BYTESTRING(2)
FLAGS NOSHOW

Pad3 FIELD

10 SYNTAX BYTESTRING(3)
FLAGS NOSHOW

Pad4 FIELD
SYNTAX BYTESTRING(4)

15 FLAGS NOSHOW

Pad5 FIELD
SYNTAX BYTESTRING (5)
FLAGS NOSHOW

20
macAddress 	FIELD

SYNTAX 	BYTESTRING(6)
DISPLAY-HINT "lx:"
LOOKUP 	MACADDRESS

25 	 DESCRIPTION
"MAC layer physical address"

ipAddress 	FIELD
SYNTAX 	BYTESTRING(4)

30 	 DISPLAY-HINT "ld."
LOOKUP 	HOSTNAME
DESCRIPTION

"IP address"

35 ipv6Address FIELD
SYNTAX 	BYTESTRING(16)
DISPLAY-HINT "ld."
DESCRIPTION

"IPV6 address"

NOAC Ex. 1014 Page 189

183

Flows.pd1 - General FLOW definitions

5 	Description:
This file contains general flow definitions.

Copyright:
Copyright (c) 1998-1999 Apptitude, Inc.

10 	 (formerly Technically Elite, Inc.)
All rights reserved.

RCS:
$Id: Flows.pdl,v 1.12 1999/04/13 15:47:57 skip Exp $

15

chaosnet FLOW

20 	spanningTree FLOW

sna 	FLOW

oracleTNS FLOW
25 	 PAYLOAD { INCLUDE-HEADER, LENGTH=256 }

ciscoOUI FLOW

30 	-- IP Protocols

igmp 	FLOW

35 GGP FLOW

ST 	FLOW

UCL 	FLOW
40

egp 	FLOW

igp 	FLOW

45 EBN-RCC-MON FLOW

NVP2 FLOW

PUP 	FLOW
50

ARGUS FLOW

EMCON FLOW

55 XNET FLOW

MUX FLOW

DCN-MEAS FLOW
60

HMP 	FLOW

PRM FLOW

65 TRUNK1 FLOW

TRUNK2 FLOW

LEAF1 FLOW
70

LEAF2 FLOW

NOAC Ex. 1014 Page 190

184

RDP 	FLOW

IRTP FLOW
5

ISO-TP4 	FLOW

NETBLT FLOW

10 MFE-NSP 	FLOW

MERIT- INP 	FLOW

SEP 	FLOW
15

pc 3 	FLOW

IDPR FLOW

20 XTP FLOW

DDP 	FLOW

IDPR-CMTP 	FLOW

TPPlus FLOW

IL 	FLOW

30 SIP FLOW

SDRP FLOW

SIP-SR FLOW

S I P-FRAG FLOW

IDRP FLOW

40 RSVP FLOW

MHRP FLOW

BNA FLOW

SIPP-ESP FLOW

s IPP-AH 	FLOW

50 INLSP FLOW

SWIPE FLOW

NHRP FLOW

CFTP FLOW

SAT-EXPAK 	FLOW

60 KRYPTOLAN FLOW

RVD 	FLOW

I PPC 	FLOW
65

SAT-MON 	FLOW

VISA FLOW

70 	I PCV 	FLOW

25

35

45

55

NOAC Ex. 1014 Page 191

185

CPNX FLOW

CPHB FLOW

5 WSN FLOW

PVP 	FLOW

BR-SAT-MON FLOW
10

SUN-ND FLOW

WB-MON FLOW

15 	WB-EXPAK FLOW

ISO-IP FLOW

VMTP FLOW
20

SECURE-VMTP FLOW

TTP 	FLOW

25 NSFNET-IGP FLOW

DGP 	FLOW

TCF 	FLOW
30

IGRP FLOW

OSPFIGP 	FLOW

35 Sprite-RPC FLOW

LARP FLOW

MTP 	FLOW
40

AX25 FLOW

IPIP FLOW

45 MICP FLOW

SCC-SP FLOW

ETHERIP 	FLOW
50

encap FLOW

GMTP FLOW

55

UDP Protocols

compressnet FLOW
60

rje FLOW

echo FLOW

65 discard FLOW

systat FLOW

daytime 	FLOW
70

clotd FLOW

NOAC Ex. 1014 Page 192

msp 	FLOW

chargen 	FLOW
5

biff FLOW

who FLOW

10 	sys log FLOW

loadav FLOW

notify FLOW
15

acmaint_dbd FLOW

acmainttransd

20 	puparp FLOW

applix FLOW

ock FLOW
25

TCP Protocols

30 	tcpmux FLOW

telnet FLOW
CONNECTION { INHERITED }

35 privMail FLOW

nsw-fe FLOW

msg-icp 	FLOW
40

msg-auth 	FLOW

dsp FLOW

45 privPrint FLOW

50

time 	FLOW

rap 	FLOW

rlp 	FLOW

graphics FLOW

55 nameserver FLOW

nicname FLOW

mpm-flags FLOW
60

mpm 	FLOW

'Rpm- snd FLOW

65 ni - f tp FLOW

auditd. FLOW

finger FLOW
70

re-mail-ck FLOW

186

FLOW

NOAC Ex. 1014 Page 193

187

la-maint 	FLOW

xns-time 	FLOW
5

xns-ch FLOW

isi-gl FLOW

10 xns-auth FLOW

privTerm 	FLOW

xns-mail 	FLOW
15

privFile 	FLOW

ni-mail 	FLOW

20 acas 	FLOW

covia 	FLOW

tacacs-ds FLOW
25

sqlnet FLOW

gopher FLOW

30 netrjs-1 FLOW

netrjs-2 FLOW

netrjs-3 FLOW
35

netrjs-4 FLOW

privDial FLOW

40 deos 	FLOW

privRJE

vettcp FLOW

FLOW

45
hosts2-ns

xfer 	FLOW

FLOW

50 ctf 	FLOW

mit-ml-dev FLOW

mfcobol 	FLOW
55

kerberos 	FLOW

su-mit-tg 	FLOW

60 dnsix FLOW

mit-dov 	FLOW

npp FLOW
65

dcp FLOW

objcall 	FLOW

70 	supdup FLOW

NOAC Ex. 1014 Page 194

dixie FLOW

	

swift-rvf 	FLOW

5 tacnews FLOW

metagram 	FLOW

newacct 	FLOW

10
hostname 	FLOW

	

iso-tsap 	FLOW

15 gppitnp FLOW

	

csnet-ns 	FLOW

threeCom-tsmux
	

FLOW

20
rtelnet 	FLOW

snagas FLOW

25 	mcidas FLOW

auth FLOW

audionews 	FLOW

30
sftp FLOW

ansanotify FLOW

35 uucp-path FLOW

	

sqlsery 	FLOW

	

cfdptkt 	FLOW

40
erpc FLOW

	

smakynet 	FLOW

45 ntp FLOW

ansatrader FLOW

locus-map 	FLOW

50

	

unitary 	FLOW

	

locus-con 	FLOW

55 gss-xlicen FLOW

pwdgen FLOW

	

cisco-fna 	FLOW
60

	

cisco-tna 	FLOW

	

cisco-sys 	FLOW

65 statsry FLOW

ingres-net FLOW

	

loc-sry 	FLOW

70

	

profile 	FLOW

188

NOAC Ex. 1014 Page 195

5

emfis-data FLOW

emfis-cntl 	FLOW

bl-idm FLOW

imap2 FLOW

10 news FLOW

uaac FLOW

iso-tp0 	FLOW

15
iso-ip FLOW

cronus FLOW

20 aed-512 FLOW

sql-net 	FLOW

hems FLOW

bftp FLOW

sgmp FLOW

30 netsc-prod FLOW

netsc-dev 	FLOW

sqlsry FLOW
35

knet-cmp 	FLOW

pcmail-sry FLOW

40 nss-routing FLOW

sgmp-traps FLOW

cmip-man 	FLOW

cmip-agent FLOW

xns-courier FLOW

50 s-net FLOW

namp FLOW

rsvd FLOW

send FLOW

print-sry 	FLOW

60 multiplex FLOW

c1-1 FLOW

xyplex-mux FLOW
65

mailq FLOW

vmnet FLOW

70 genrad-mux FLOW

189

25

45

55

NOAC Ex. 1014 Page 196

50

60

70

xdmcp FLOW

nextstep 	FLOW

5 bgp FLOW

ris FLOW

unify FLOW
10

audit FLOW

ocbinder FLOW

15 ocserver FLOW

remote-kis

kis 	FLOW

FLOW

20
aci 	FLOW

mumps FLOW

25 qft 	FLOW

gacp 	FLOW

prospero FLOW
30

osu-nms FLOW

srmp FLOW

35 irc FLOW

dn6-nlm-aud FLOW

dn6-smm-red FLOW
40

dls FLOW

dls-mon 	FLOW

45 smux FLOW

src FLOW

at-rtmp 	FLOW

at-nbp FLOW

at-3 FLOW

55 at-echo FLOW

at-5 FLOW

at-zis FLOW

at-7 FLOW

at-8 FLOW

65 tam FLOW

z39-50 FLOW

anet FLOW

vmpwscs

190

FLOW

NOAC Ex. 1014 Page 197

softpc FLOW

atls FLOW
5

dbase FLOW

mpp FLOW

10 uarps FLOW

imap3 FLOW

15
fln-spx

rsh-spx

cdc 	FLOW

FLOW

FLOW

20 sur-meas

link 	FLOW

FLOW

dsp3270 FLOW
25

pdap 	FLOW

pawsery FLOW

30 zsery FLOW

fatsery FLOW

csi-sgwp FLOW
35

clearcase FLOW

ulistsery FLOW

40 legent-1 FLOW

legent-2

hassle FLOW

FLOW

45
nip 	FLOW

tnETOS FLOW

50 dsETOS FLOW

is99c 	FLOW

is99s 	FLOW
55

hp-collector FLOW

hp-managed-node 	FLOW

60 hp-alarm-mgr

arns 	FLOW

FLOW

ibm-app FLOW
65

asa 	FLOW

aurp 	FLOW

70 unidata-ldm FLOW

191

NOAC Ex. 1014 Page 198

ldap FLOW

uis 	FLOW

5 synotics-relay 	FLOW

synotics-broker 	FLOW

dis 	FLOW
10

embl-ndt

netcp 	FLOW

FLOW

15 netware-ip

mptn 	FLOW

FLOW

kryptolan FLOW
20

work-sol

ups 	FLOW

FLOW

25 genie 	FLOW

decap 	FLOW

nced 	FLOW
30

ncld 	FLOW

imsp 	FLOW

35 timbuktu

prm-sm FLOW

prm-nm FLOW

FLOW

40
decladebug

rmt 	FLOW

FLOW

45 synoptics-trap FLOW

smsp FLOW

infoseek 	FLOW
50

bnet FLOW

silverplatter FLOW

55 onmux FLOW

hyper-g 	FLOW

ariell FLOW
60

smpte FLOW

ariel2 FLOW

65 	ariel3 FLOW

opc-job-start FLOW

opc-job-trackFLOW
70

icad-el 	FLOW

192

NOAC Ex. 1014 Page 199

193

smartsdp 	FLOW

svrloc FLOW
5

ocs_cmu 	FLOW

ocs_amu 	FLOW

10 utmpsd FLOW

utmpcd FLOW

iasd 	FLOW
15

nnsp 	FLOW

mobileip-agent FLOW

20 mobilip-mn 	FLOW

dna-cml 	FLOW

comscm FLOW
25

dsfgw FLOW

dasp 	FLOW

30 sgcp 	FLOW

decvms-sysmgt FLOW

cvc_hostd 	FLOW
35

https 	FLOW

CONNECTION {
snpp 	FLOW

INHERITED }

40
microsoft-ds FLOW

%13 ddm-rdb 	FLOW
9r a

45 ddm-dfm 	FLOW

ddm-byte 	FLOW

as-servermap FLOW
50

tserver 	FLOW

exec 	FLOW

55 CONNECTION f
login FLOW

INHERITED)

CONNECTION {
cmd 	FLOW

INHERITED 1

60
CONNECTION {

printer 	FLOW
INHERITED 1

CONNECTION { INHERITED 1
65 talk 	FLOW

CONNECTION {
ntalk FLOW

INHERITED)

70 CONNECTION {
utime 	FLOW

INHERITED

NOAC Ex. 1014 Page 200

5

efs 	FLOW

timed FLOW

tempo 	FLOW

courier FLOW

10 conference FLOW

netnews FLOW

netwall FLOW
15

apertus-ldp

uucp 	FLOW

FLOW

20 uucp-rlogin

klogin FLOW

kshell FLOW

FLOW

25
new-rwho

dsf 	FLOW

FLOW

30 remotefs FLOW

rmonitor FLOW

monitor FLOW
35

chshell

p9fs 	FLOW

FLOW

40 whoami FLOW

meter FLOW

ipcserver FLOW
45

urm FLOW

nqs 	FLOW

50 sift-uft FLOW

npmp-trap FLOW

npmp-local FLOW
55

npmp-gui 	FLOW

ginad FLOW

60 doom FLOW

mdqs FLOW

elcsd FLOW
65

entrustmanager 	FLOW

netviewdml FLOW

70 netviewdm2 FLOW

194

NOAC Ex. 1014 Page 201

20

netviewdm3 FLOW

netgw FLOW

	

5 	netrcs FLOW

flexlm FLOW

fujitsu-dev FLOW
10

ris-cm FLOW

kerberos-adm FLOW

	

15 	rf i le FLOW

pump FLOW

qrh 	FLOW

rrh FLOW

tell FLOW

	

25 	nlogin FLOW

con FLOW

ns 	FLOW
30

rxe FLOW

quotad FLOW

35 cyclesery FLOW

omsery FLOW

webs ter 	FLOW
40

phonebook FLOW

vid FLOW

45 cadlock FLOW

rtip FLOW

cyc 1 es erv2 	FLOW
50

submit FLOW

rpasswd. 	FLOW

	

55 	entomb FLOW

wpages FLOW

wpgs FLOW
60

concert 	FLOW

mdbs_daemon FLOW

	

65 	device FLOW

xtreelic 	FLOW

maitrd FLOW
70

busboy FLOW

195

NOAC Ex. 1014 Page 202

5

garcon FLOW

puprouter 	FLOW

socks FLOW

196

m

..,

NOAC Ex. 1014 Page 203

197

Virtual.pd1 - Virtual Layer definition

5
	

Description:
This file contains the definition for the VirtualBase layer used
by the embodiment.

Copyright:
10 	 Copyright (c) 1998-1999 Apptitude, Inc.

(formerly Technically Elite, Inc.)
All rights reserved.

RCS:
15 	 $Id: Virtual.pdl,v 1.13 1999/04/13 15:48:03 skip Exp $

-- This includes two things: the flow signature (called FLOWKEY) that the
-- system that is going to use.

20
-- note that not all elements are in the HASH. Reason is that these non-HASHED
-- elements may be varied without the HASH changing, whihc allows the system
-- to look up multiple buckets with a single HASH. That is, the MeyMatchFlag,
- StateStatus Flag and MuliPacketlD may be varied.

25

FLOWKEY {
KeyMatchFlags, -- to tell the system which of the in-HASH elements have to
match for the this particular flow record.

30 	 -- Flows for which complete signatures may not yet have
-- been generated may then be stored in the system

StateStatusFlags,

35 	Groupldl
	

IN-HASH, -- user defined
Groupld2
	 IN-HASH, -- user defined

DLCProtocol 	 IN-HASH, 	-- data link protocol - lowest level we
-- evaluate. It is the type for the

40 	Ethernet V 2
NetworkProtocol 	IN-HASH, 	-- IP, etc.
TunnelProtocol 	IN-HASH, 	-- IP over IPX, etc.
TunnelTransport 	IN-HASH,
TransportProtocol 	IN-HASH,

45 	ApplicationProtocol IN-HASH,

DLCAddresses(8) 	IN-HASH, 	lowest level address
NetworkAddresses(16) IN-HASH,
TunnelAddresses(16) IN-HASH,

50 	Connectionlds 	IN-HASH,

MultiPacketld 	 -- used for fragmentaion purposes
}

now define all of the children. In this example, only one virtual
55 	child - Ethernet.

virtualChildren 	FIELD
SYNTAX INT(8) { ethernet(1) }

60 	now define the base for the children. In this case, it is the same as
for the overall system. There may be multiples.

VirtualBase PROTOCOL
65 	::= { VirtualChildren=virtualChildren }

-- - The following is the header that every packet has to have and
-- that is placed into the system by the packet acquisition system.

70

NOAC Ex. 1014 Page 204

198

VirtualBase FLOW
HEADER { LENGTH=8 }
CHILDREN { DESTINATION=VirtualChildren

5 	-- Ethernet for this example.

the virtualBAse will be 01 for these packets.

} -- this will be

NOAC Ex. 1014 Page 205

199

Ethernet.pd1 - Ethernet frame definition

5 	Description:
This file contains the definition for the Ethernet frame. In this

PDL file, the decision on EtherType vs. IEEE is made. If this is
EtherType, the selection is made from this file. It would be possible
to move the EtherType selection to another file, if that would assist

10 	in the modularity.

Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Technically Elite, Inc.)

15 	 All rights reserved.

RCS:
$Id: Ethernet.pdl,v 1.13 1999/01/26 15:15:57 skip Exp $

20

a 16 bit integer that contains all of the
interest in the etherType field of an

INT(16) { xns(0x0600), ip(0x0800),
chaosnet(0x0804), arp(0x0806),
vines(Oxbad),
vinesLoop(Ox0bae), vinesLoop(0x80c4),
vinesEcho(Oxbaf), vinesEcho(0x80c5),
netbios(0x3c00), netbios(0x3c01),

Enumerated type of
possible values of

25 	Ethernet V2 packet

etherType FIELD
SYNTAX

30

35
netbios(0x3c02),
netbios(0x3c04),
netbios(0x3c06),
netbios(0x3c08),
netbios(Ox3cOa),
netbios(0x3c0c),

netbios(0x3c03),
netbios(0x3c05),
netbios(0x3c07),
netbios(0x3c09),
netbios(0x3c0b),
netbios(0x3c0d),

40
	

dec(0x6000), mop(0x6001), mop2(0x6002),
drp(0x6003), lat(0x6004), decDiag(0x6005),
lavc(0x6007), rarp(0x8035), appleTalk(0x809b),
sna(0x80d5), aarp(0x80f3), ipx(0x8137),
snmp(Ox814c), ipv6(0x86dd), loopback(0x9000)

45
	

DISPLAY-HINT "lx:"
LOOKUP 	FILE "EtherType.cf"
DESCRIPTION

"Ethernet type field"

50 	
-- - The unformatted data field in and Ethernet V2 type frame

etherData 	FIELD
SYNTAX 	BYTESTRING(46..1500)

55 	 ENCAP 	etherType
DISPLAY-HINT "HexDump"
DESCRIPTION

"Ethernet data"

60 	
-- - The layout and structure of an Ethernet V2 type frame with
-- the address and protocol fields in the correct offset position

ethernet 	PROTOCOL
65 	 DESCRIPTION

"Protocol format for an Ethernet frame"
REFERENCE 	"RFC 894-

MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,
Data=etherData }

70

NOAC Ex. 1014 Page 206

200

The elements from this Ethernet frame used to build a flow key
to classify and track the traffic. Notice that the total length
of the header for this type of packet is fixed and at 14 bytes or
octets in length. The special field, LLC-CHECK, is specific to

	

5 	Ethernet frames for the decoding of the base Ethernet type value.
If it is NOT LLC, the protocol field in the flow is set to the
EtherType value decoded from the packet.

ethernet 	FLOW

	

10 	 HEADER { LENGTH=14
DLC-LAYER {

SOURCE=MacSrc,
DESTINATION=MacDest,
TUNNELING,

	

15 	 PROTOCOL

CHILDREN { DESTINATION=EtherType, LLC-CHECK=11c }

NOAC Ex. 1014 Page 207

201

- IEEE8022.pd1 - IEEE 802.2 frame definitions

5
	

Description:
This file contains the definition for the IEEE 802.2 Link Layer
protocols including the SNAP (Sub-network Access Protocol).

Copyright:
10 	 Copyright (c) 1994-1998 Apptitude, Inc.

(formerly Technically Elite, Inc.)
All rights reserved.

-- - RCS:
15 	 $Id: IEEE8022.pdl,v 1.18 1999/01/26 15:15:58 skip Exp $

20 	-- IEEE 802.2 LLC

llcSap FIELD
SYNTAX 	INT(16) { ipx(OxFFFF), ipx(OxE0E0), isoNet(OxFEFE),

netbios(OxF0F0), vsnap(OxAAAA), ip(0x0606),
25 	 vines(OxECBC), xns(0x8080), spanningTree(0x4242),

sna(0x0c0c), sna(0x0808), sna(0x0404) }
DISPLAY-HINT "lx:"
DESCRIPTION

"Service Access Point"
30

11cControl FIELD
-- This is a special field. When the decoder encounters this field, it
-- invokes the hard-coded LLC decoder to decode the rest of the packet.
-- This is necessary because LLC decoding requires the ability to

35 	 -- handle forward references which the current PDL format does not
-- support at this time.
SYNTAX 	UNSIGNED INT(8)
DESCRIPTION

"Control field"
40

11cPduType FIELD
SYNTAX BITSTRING(2) { 11cInformation(0), 11cSupervisory(1),

11cInformation(2), 11cUnnumbererd(3)

45 11cData FIELD
SYNTAX 	BYTESTRING(38..1492)
ENCAP 	11cPduType
FLAGS 	SAMELAYER
DISPLAY-HINT "HexDump"

50
11c PROTOCOL

SUMMARIZE
"$11cPduType == 11cUnnumbered" :

"LLC ($SAP) $Modifier"
55 	 "$11cPduType == 11cSupervisory" :

"LLC ($SAP) $Function N(R)=$NR"
"$11cPduType == 012" :

"LLC ($SAP) N(R)=$NR N(S)=$NS"
"Default" :

60 	 "LLC ($SAP) $11cPduType"
DESCRIPTION

"IEEE 802.2 LLC frame format"
::= { SAP=llcSap, Control=llcControl, Data=llcData

65 11c FLOW
HEADER { LENGTH=3 }
DLC-LAYER { PROTOCOL }
CHILDREN { DESTINATION=SAP }

70 	11cUnnumberedData FIELD
SYNTAX 	BYTESTRING(0..1500)

NOAC Ex. 1014 Page 208

202

ENCAP 	11cSap
DISPLAY-HINT "HexDump"

11cUnnumberedPROTOCOL
5 	 SUMMARIZE

"Default" :
"LLC ($SAP) $Modifier"

= { Data=11cUnnuMberedData }

10 11cSupervisoryData FIELD
SYNTAX 	BYTESTRING(0..1500)
DISPLAY-HINT "HexDump"

11cSupervisory 	PROTOCOL
15 	 SUMMARIZE

"Default" :
"LLC ($SAP) $Function N(R)=$NR"

= { Data=llcSupervisoryData }

20 11cInformationData FIELD
SYNTAX 	BYTESTRING(0..1500)
ENCAP 	11cSap
DISPLAY-HINT "HexDump"

25 11cInformation PROTOCOL
SUMMARIZE

"Default" :
"LLC ($SAP) N(R)=$NR N(S)=$NS"

{ Data=llclnformationData }
30

-- SNAP

snapOrgCode FIELD
35 	 SYNTAX 	BYTESTRING(3) { snap('00:00:00"), ciscoOUl("00:00:OC"),

appleOUI("08:00:07") }
DESCRIPTION

"Protocol ID or Organizational Code"

40 vsnapData FIELD
SYNTAX 	BYTESTRING(46-1500)
ENCAP 	snapOrgCode
FLAGS 	SAMELAYER
DISPLAY-HINT "HexDump"

45 	 DESCRIPTION
"SNAP LLC data"

vsnap PROTOCOL
DESCRIPTION

50 	 "SNAP LLC Frame"
{ OrgCode=snapOrgCode, Data=vsnapData }

vsnap 	FLOW
HEADER { LENGTH=3 }

55 	 DLC-LAYER (PROTOCOL }
CHILDREN { DESTINATION=OrgCode }

snapType 	FIELD
SYNTAX INT(16) { xns(0x0600), ip(Ox0800), arp(0x0806),

60 	 vines(Oxbad),
mop(Ox6001), mop2(0x6002), drp(Ox6003),
lat(0x6004), decDiag(0x6005), lavc(0x6007),
rarp(Ox8035), appleTalk(0x809B), sna(0x80d5),
aarp(0x80F3), ipx(0x8137), snmp(Ox814c), ipv6(0x86dd) }

65 	 DISPLAY-HINT "lx:"
LOOKUP 	FILE "EtherType.cf"
DESCRIPTION
"SNAP type field"

70 snapData FIELD
SYNTAX 	BYTESTRING(46..1500)

NOAC Ex. 1014 Page 209

203

ENCAP 	snapType
DISPLAY-HINT "HexDump"
DESCRIPTION

"SNAP data"
5

snap PROTOCOL
SUMMARIZE

"$OrgCode == 00:00:00" :
"SNAP Type=$SnapType"

10 	 "Default" :
"VSNAP Org=$OrgCode Type=$SnapType"

DESCRIPTION
"SNAP Frame"

::={ SnapType=snapType, Data=snapData }
15

snap FLOW
HEADER LENGTH=2 1
DLC-LAYER (PROTOCOL
CHILDREN DESTINATION=SnapType)

NOAC Ex. 1014 Page 210

204

- IEEE8023.pd1 - IEEE 802.3 frame definitions

5
	

Description:
This file contains the definition for the IEEE 802.3 (Ethernet)
protocols.

Copyright:
10 	 Copyright (c) 1994-1998 Apptitude, Inc.

(formerly Technically Elite, Inc.)
All rights reserved.

-- - RCS:
15 	 $1d: IEEE8023.pdl,v 1.7 1999/01/26 15:15:58 skip Exp $

20 	-- - IEEE 802.3

ieee8023Length
	

FIELD
SYNTAX UNSIGNED INT (16)

25 	ieee8023Data FIELD
SYNTAX 	BYTESTRING(38..1492)
ENCAP 	=11c
LENGTH 	"Sieee8023Length"
DISPLAY-HINT "HexDump"

30
ieee8023 	PROTOCOL

DESCRIPTION
"IEEE 802.3 (Ethernet) frame"

REFERENCE 	"RFC 1042"
35 	::= MacDest=macAddress, MacSrc=macAddress, Length=ieee8023Length,

Data=ieee8023Data

NOAC Ex. 1014 Page 211

205

- IP.pd1 - Internet Protocol (IP) definitions

Description:
This file contains the packet definitions for the Internet
Protocol. These elements are all of the fields, templates and

processes required to recognize, decode and classify IP datagrams
found within packets.

Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Technically Elite, Inc.)

All rights reserved.

-- RCS:
- $Id: IP.pdl,v 1.14 1999/01/26 15:15:58 skip Exp $

-- The following are the fields that make up an IP datagram.
-- Some of these fields are used to recognize datagram elements, build
-- flow signatures and determine the next layer in the decode process.

ipversion 	FIELD
SYNTAX INT(4)
DEFAULT

30 ipHeaderLength FIELD
SYNTAX INT(4)

ipTypeOfService 	FIELD
SYNTAX BITSTRING(8) {

35 	 maxThruput(3),
minCost(1), maxReliability(2),
minDelay(4)

ipLength 	FIELD
SYNTAX UNSIGNED INT (16)

40 	
-- - This field will tell us if we need to do special processing to support
-- the payload of the datagram existing in multiple packets.

5

10

15

20

25

ipFlags 	 FIELD
45
	

SYNTAX BITSTRING(3) { moreFrags(0), dontFrag(1) }

ipFragmentOffset FIELD
SYMIAXINT(13)

50
This field is used to determine the children or next layer of the
datagram.

55
i- pProtocol FIELD

SYNTAX INT (8)
LOOKUP FILE " IpProtocol.cf"

ipData 	FIELD
SYNTAX
	

BYTESTRING(0..1500)
60
	

ENCAP
	

ipProtocol
DISPLAY-HINT "HexDump"

Detailed packet layout for the IP datagram. This includes all fields
65 	and format. All offsets are relative to the beginning of the header.

ip 	PROTOCOL
SUMMARIZE

"$FragmentOffset != 0":
70 	 "IPFragment ID=$Identification Offset=$FragmentOffset"

"Default" :

NOAC Ex. 1014 Page 212

206

"IP Protocol=$Protocol"
DESCRIPTION

"Protocol format for the Internet Protocol"
REFERENCE 	"RFC 791"

	

5 	::= { Version=ipVersion, HeaderLength=ipHeaderLength,
TypeOfService=ipTypeOfService, Length=ipLength,
Identification=UInt16, IpFlags=ipFlags,
FragmentOffset=ipFragmentOffset, TimeToLive=Int8,
Protocol=ipProtocol, Checksum=ByteStr2,

	

10 	 IpSrc=ipAddress, IpDest=ipAddress, Options=ipOptions,
Fragment=ipFragment, Data=ipData }

This is the description of the signature elements required to build a flow

	

15
	

that includes the IP network layer protocol. Notice that the flow builds on
the lower layers. Only the fields required to complete IP are included.
This flow requires the support of the fragmentation engine as well as the
potential of having a tunnel. The child field is found from the IP
protocol field.

20
ip 	FLOW

HEADER { LENGTH=HeaderLength, IN-WORDS }
NET-LAYER {

SOURCE=IpSrc,

	

25 	 DESTINATION=IpDest,
FRAGMENTATION=IPV4,
TUNNELING

}
CHILDREN { DESTINATION=Protocol }

30
ipFragData FIELD

SYNTAX 	BYTESTRING(1..1500)
LENGTH 	"$ipLength - $ipHeaderLength * 4"
DISPLAY-HINT "HexDump"

35
ipFragment GROUP

OPTIONAL 	"$FragmentOffset != 0"
{ Data=ipFragData }

	

40 	ipOptionCode FIELD
SYNTAX INT(8) { ipRR(0x07), ipTimestapp(0x44),

ipLSRR(0x83), ipSSRR(0x89))
DESCRIPTION

"IP option code"
45

ipOptionLength 	FIELD
SYNTAX UNSIGNED INT(8)
DESCRIPTION

"Length of IP option"
50

ipOptionData FIELD
SYNTAX 	BYTESTRING(0..1500)
ENCAP 	ipOptionCode
DISPLAY-HINT "HexDump"

55
ipOptions 	GROUP

LENGTH 	"($ipHeaderLength * 4) - 20"
{ Code=ipOptionCode, Length=ipOptionLength, Pointer=UIntB,

Data=ipOptionData }

NOAC Ex. 1014 Page 213

207

TCP.pd1 - Transmission Control Protocol (TCP) definitions

	

5 	Description:
This file contains the packet definitions for the Transmission
Control Protocol. This protocol is a transport service for

the IP protocol. In addition to extracting the protocol information
the TCP protocol assists in the process of identification of connections

	

10 	for the processing of states.

Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Technically Elite, Inc.)

	

15 	 All rights reserved.

-- - RCS:
$Id: TCP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp $

20

-- - This is the 16 bit field where the child protocol is located for
-- the next layer beyond TCP.

	

25 	tcpPort FIELD
SYNTAX UNSIGNED INT (16)
LOOKUP FILE "TcpPort.cf"

tcpHeaderLen FIELD

	

30 	 SYNTAX INT (4)

tcpFlags FIELD
SYNTAX BITSTRING(12) { fin(0), syn(1), rst(2), psh(3), ack(4), urg(5) }

	

35 	tcpData FIELD
SYNTAX 	BYTESTRING(0..1564)
LENGTH 	"($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen * 4)"
ENCAP 	tcpPort
DISPLAY-HINT "HexDump"

40

-- - The layout of the TCP datagram found in a packet. Offset based on the
-- beginning of the header for TCP.

	

45 	tcp PROTOCOL
SUMMARIZE

"Default" :
"TCP ACK=$Ack WIN=SWindowSize"

DESCRIPTION

	

50 	 "Protocol format for the Transmission Control Protocol"
REFERENCE 	"RFC 793"

{ SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,
Ack=UInt32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags,
WindowSize=UInt16, Checksum=ByteStr2,

	

55 	 UrgentPointer=UInt16, Options=tcpOptions, Data=tcpData }

-- - The flow elements required to build a key for a TCP datagram.
-- Noticed that this FLOW description has a CONNECTION section. This is

	

60 	-- used to describe what connection state is reached for each setting
-- of the TcpFlags field.

tcp 	FLOW
HEADER { LENGTH=HeaderLength, IN-WORDS }

	

65 	 CONNECTION {
IDENTIFIER=SequenceNum,
CONNECT-START="TcpFlags:1",
CONNECT-COMPLETE="TcpFlags : 4" ,
DISCONNECT-START="TcpFlags:0",

	

70 	 DISCONNECT-COMPLETE="TcpFlags:4"

NOAC Ex. 1014 Page 214

208

PAYLOAD { INCLUDE-HEADER)
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort

tcpOptionKind FIELD
5 	 SYNTAX UNSIGNED INT(8) { tcpOptEnd(0), tcpNop(1), tcpMSS(2),

tcpWscale(3), tcpTimestamp(4))
DESCRIPTION

"Type of TCP option"

10 	tcpOptionData FIELD
SYNTAX 	BYTESTRING(0-1500)
ENCAP 	tcpOptionKind
FLAGS 	SAMELAYER
DISPLAY-HINT "HexDump"

15
tcpOptions GROUP

LENGTH 	"($tcpHeaderLen * 4) - 20"
SUMMARIZE

"Default"
20 	 "Option=$Option, Len=$OptionLength, $OptionData"

{ Option=tcpOptionKind, optionLength=uint8, OptionData=tcpOptionData }

tcpMSS 	PROTOCOL
= { MaxSegmentSize=UInt16 }

NOAC Ex. 1014 Page 215

209

UDP.pd1 - User Datagram Protocol (UDP) definitions

5
	

Description:
This file contains the packet definitions for the User Datagram
Protocol.

Copyright:
10 	 Copyright (c) 1994-1998 Apptitude, Inc.

(formerly Technically Elite, Inc.)
All rights reserved.

RCS:
15 	 $Id: UDP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp $

udpPort 	FIELD
SYNTAX UNSIGNED INT(16)

20 	 LOOKUP FILE "UdpPort.cf"

udpLength FIELD
SYNTAX 	UNSIGNED INT(16)

25 	udpData FIELD
SYNTAX 	BYTESTRING(0..1500)
ENCAP 	udpPort
DISPLAY-HINT "HexDump"

30 udp PROTOCOL
SUMMARIZE

"Default" :
"UDP Dest=$DestPort Src=$SrcPort"

DESCRIPTION
35 	 -Protocol format for the User Datagram Protocol."

REFERENCE 	"RFC 768"
::= { SrcPort=udpPort, DestPort=udpPort, Length=udpLength,

Checksum=ByteStr2, Data=udpData }

40 udp FLOW
HEADER { LENGTH=8 }
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort }

144

NOAC Ex. 1014 Page 216

210

RPC.pd1 - Remote Procedure Calls (RPC) definitions

5
	

Description:
This file contains the packet definitions for Remote Procedure
Calls.

Copyright:
10 	 Copyright (c) 1994-1999 Apptitude, Inc.

(formerly Technically Elite, Inc.)
All rights reserved.

-- - RCS:
15 	 RPC.pdl,v 1.7 1999/01/26 15:16:01 skip Exp $

rpcType 	FIELD
SYNTAX UNSIGNED INT(32) { rpcCall(0), rpcReply(1))

20
rpcData 	FIELD

SYNTAX 	BYTESTRING(0..100)
ENCAP 	rpcType
FLAGS 	SAMELAYER

25 	 DISPLAY-HINT "HexDump"

rpc PROTOCOL
SUMMARIZE

"$Type == rpcCall" :
30 	 "RPC $Program"

"$ReplyStatus == rpcAcceptedReply" :
"RPC Reply Status=$Status"

"$ReplyStatus == rpcDeniedReply" :
"RPC Reply Status=$Status, AuthStatus=$AuthStatus"

35 	 "Default" :
"RPC $Program"

DESCRIPTION
"Protocol format for RPC"

REFERENCE
40 	 "RFC 1057"

::= { XID=UInt32, Type=rpcType, Data=rpcData }

rpc FLOW
HEADER { LENGTH=0 }

45 	 PAYLOAD { DATA=XID, LENGTH=256 }

RPC Call

50 	rpcProgram FIELD
SYNTAX UNSIGNED INT(32) { portMapper(100000), nfs(100003),

mount(100005), lockManager(100021), statusMonitor(100024) }

rpcProcedure GROUP
55 	 SUMMARIZE

-Default" :
"Program=$Program, Version=$Version, Procedure=$Procedure"

{ Program=rpcProgram, Version=UInt32, Procedure=UInt32

60 	rpcAuthFlavor FIELD
SYNTAX UNSIGNED INT(32) { null(0), unix(1), short(2))

rpcMachine FIELD
SYNTAX LSTRING (4)

65
rpcGroup 	GROUP

LENGTH "$NumGroups * 4"
{ Gid=Int32 }

70 rpcCredentials GROUP
LENGTH "SCredentialLength"

NOAC Ex. 1014 Page 217

211

{ Stamp=UInt32, Machine=rpcMachine, Uid=Int32, Gid=Int32,
NumGroups=UInt32, Groups=rpcGroup

rpcVerifierData 	FIELD

	

5 	 SYNTAX 	BYTESTRING(0..400)
LENGTH 	"$VerifierLength"

rpcEncap 	FIELD
SYNTAX COMBO Program Procedure

	

10 	 LOOKUP FILE "RPC.cf"

rpcCallData FIELD
SYNTAX 	BYTESTRING(0..100)
ENCAP 	rpcEncap

	

15 	 DISPLAY-HINT "HexDump"

rpcCall 	PROTOCOL
DESCRIPTION

"Protocol format for RPC call"

	

20 	{ RPCVersion=UInt32, Procedure=rpcProcedure,
CredentialAuthFlavor=rpcAuthFlavor, CredentialLength=UInt32,
Credentials=rpcCredentials,
VerifierAuthFlavor=rpcAuthFlavor, VerifierLength=UInt32,
Verifier=rpcVerifierData, Encap=rpcEncap, Data=rpcCallData }

25

RPC Reply

rpcReplyStatus 	FIELD
30 	 SYNTAX INT(32) { rpcAcceptedReply(0), rpcDeniedReply(1) }

rpcReplyData FIELD
SYNTAX 	BYTESTRING(0..40000)
ENCAP 	rpcReplyStatus

35 	 FLAGS 	SAMELAYER
DISPLAY-HINT "HexDump"

rpcReply 	PROTOCOL
DESCRIPTION

40 	 "Protocol format for RPC reply"
{ ReplyStatus=rpcReplyStatus, Data=rpcReplyData

rpcAcceptStatus 	FIELD
SYNTAX INT(32) { Success(0), ProgUnavail(1), ProgMismatch(2),

45 	 ProcUnavail(3), GarbageArgs(4), SystemError(5))

rpcAcceptEncap 	FIELD
SYNTAX BYTESTRING (0)
FLAGS NOSHOW

rpcAcceptData FIELD
SYNTAX 	BYTESTRING(0..40000)
ENCAP 	rpcAcceptEncap
DISPLAY-HINT "HexDump"

rpcAcceptedReply PROTOCOL
{ VerifierAuthFlavor=rpcAuthFlavor, VerifierLength=UInt32,

Verifier=rpcVerifierData, Status=rpcAcceptStatus,
Encap=rpcAcceptEncap, Data=rpcAcceptData }

rpcDeniedStatus 	FIELD
SYNTAX INT(32) { rpcVersionmismatch(0), rpcAuthError(1)

rpcAuthStatus FIELD
65 	 SYNTAX INT(32) 	Okay(0), BadCredential(1), RejectedCredential(2),

BadVerifier(3), RejectedVerifier(4), TooWeak(5),
InvalidResponse(6), Failed(7)

rpcDeniedReply 	PROTOCOL
70 	::= { Status=rpcDeniedStatus, AuthStatus=rpcAuthStatus }

50

55

60

NOAC Ex. 1014 Page 218

212

RPC Transactions

rpcBindLookup PROTOCOL

	

5 	 SUMMARIZE
"Default" :

"RPC GetPort Prog=$Prog, Ver=$Ver, Proto=$Protocol"
{ Prog=rpcProgram, Ver=UInt32, Protoco1=UInt32)

	

10 	rpcBindLookupReply PROTOCOL
SUMMARIZE

"Default" :
"RPC GetPortReply Port=$Port"

{ Port=UInt32 }

NOAC Ex. 1014 Page 219

213

NFS.pd1 - Network File System (NFS) definitions

5
	

Description:
This file contains the packet definitions for the Network File
System.

Copyright:
10 	 Copyright (c) 1994-1998 Apptitude, Inc.

(formerly Technically Elite, Inc.)
All rights reserved.

RCS:
15 	 $Id: NFS.pdl,v 1.3 1999/01/26 15:15:59 skip Exp $

nfsString 	FIELD
SYNTAX LSTRING (4)

20
nfsHandle 	FIELD

SYNTAX 	BYTESTRING(32)
DISPLAY-HINT "16x\n

25 nfsData 	 FIELD
SYNTAX 	BYTESTRING(0..100)
DISPLAY-HINT "HexDump"

nfsAccess 	PROTOCOL
30 	 SUMMARIZE

"Default" :
"NFS Access $Filename"

::= { Handle=nfsHandle, Filename=nfsString

35 nfsStatus FIELD
SYNTAX INT(32) { OK(0), NoSuchFile(2) }

nfsAccessReply 	PROTOCOL
SUMMARIZE

40 	 "Default" :
"NFS AccessReply $Status"

{ Status=nfsStatus

nfsMode 	 FIELD
45 	 SYNTAX UNSIGNED INT(32)

DISPLAY-HINT "4o"

nfsCreate 	PROTOCOL
SUMMARIZE

50 	 "Default" :
"NFS Create $Filename"

{ Handle=nfsHandle, Filename=nfsString, Filler=Int8, Mode=nfsMode,
uid=int32, Gid=int32, Size=Int32, AccessTime=Int64, ModTime=Int64 }

55 nfsFileType FIELD
SYNTAX INT(32) { Regular(1), Directory(2) 1

nfsCreateReply 	PROTOCOL
SUMMARIZE

60 	 "Default" :
"NFS CreateReply $Status"

{ Status=nfsStatus, Handle=nfsHandle, FileType=nfsFileType,
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,

65 	 AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64

nfsRead 	PROTOCOL
SUMMARIZE

"Default" :
70 	 "NFS Read Offset=$Offset Length=$Length"

::= { Length=Int32, Handle=nfsHandle, Offset=UInt64, Count=Int32 }

NOAC Ex. 1014 Page 220

214

nfsReadReply PROTOCOL
SUMMARIZE

"Default" :

	

5 	 "NFS ReadReply $Status"
Status=nfsStatus, FileType=nfsFileType,
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64

10
nfsWrite PROTOCOL

SUMMARIZE
"Default"

"NFS Write Offset=$Offset"

	

15 	::= { Handle=nfsHandle, Offset=Int32, Data=nfsData }

nfsWriteReply PROTOCOL
SUMMARIZE

"Default" :

	

20 	 "NFS WriteReply $Status"
{ Status=nfsStatus, FileType=nfsFileType,

Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Int64, FileSysld=UInt32, FileId=UInt32,
ACCessTim.e=Int64, ModTime=Int64, InodeChangeTime=Int64

25
nfsReadDir PROTOCOL

SUMMARIZE
"Default" :

"NFS ReadDir"

	

30 	::= { Handle=nfsHandle, Cookie=Int32, Count=1nt32 }

nfsReadDirReply 	PROTOCOL
SUMMARIZE

"Default" :

	

35 	 "NFS ReadDirReply $Status"
{ Status=nfsStatus, Data=nfsData

nfsGetFileAttr 	PROTOCOL
SUMMARIZE

	

40 	 "Default" :
"NFS GetAttr"

{ Handle=nfsHandle }

nfsGetFileAttrReply PROTOCOL

	

45 	 SUMMARIZE
"Default" :

"NFS GetAttrReply $Status $FileType"
= { Status=nfsStatus, FileType=nfsFileType,

Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,

	

50 	 BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64

nfsReadLink PROTOCOL
SUMMARIZE

	

55 	 "Default" :
"NFS ReadLink"

{ Handle=nfsHandle }

nfsReadLinkReply PROTOCOL

	

60 	 SUMMARIZE
"Default"

"NFS ReadLinkReply Path=$Path"
{ Status=nfsStatus, Path=nfsString

65 nfsMount PROTOCOL
SUMMARIZE

"Default" :
"NFS Mount $Path"

{ Path=nfsString }
70

nfsMountReply PROTOCOL

NOAC Ex. 1014 Page 221

215

SUMMARIZE
"Default" :

"NFS MountReply $MountStatus"
{ MountStatus=nfsStatus, Handle=nfsHandle }

5
nfsStatFs 	PROTOCOL

SUMMARIZE
"Default" :

"NFS StatFs"
10 	::= { Handle=nfsHandle

nfsStatFsReply 	PROTOCOL
SUMMARIZE

"Default" :
15 	 "NFS StatFsReply $Status"

{ Status=nfsStatus, TransferSize=UInt32, BlockSize=UInt32,
TotalBlocks=UInt32, FreeBlocks=UInt32, AvailBlocks=UInt32 }

nfsRemoveDir PROTOCOL
20 	 SUMMARIZE

"Default" :
"NFS RmDir $Name"

{ Handle=nfsHandle, Name=nfsString }

25 	nfsRemoveDirReply PROTOCOL
SUMMARIZE

"Default" :
"NFS RmDirReply $Status"

{ Status=nfsStatus }
30

nfsMakeDir PROTOCOL
SUMMARIZE

"Default" :
"NFS MkDir $Name"

35 	::= { Handle=nfsHandle, Name=nfsString

nfsMakeDirReply PROTOCOL
SUMMARIZE

"Default" :
40

	

	 "NFS MkDirReply $Status"
{ Status=nfsStatus

nfsRemove 	PROTOCOL
SUMMARIZE

45 	 "Default" :
"NFS Remove $Name"

{ Handle=nfsHandle, Name=nfsString

nfsRemoveReply PROTOCOL
50 	 SUMMARIZE

"Default" :
"NFS RemoveReply $Status"

::= { Status=nfsStatus }

NOAC Ex. 1014 Page 222

216

HTTP.pd1 - Hypertext Transfer Protocol (HTTP) definitions

5
	

Description:
This file contains the packet definitions for the Hypertext Transfer
Protocol.

Copyright:
10 	 Copyright (c) 1994-1999 Apptitude, Inc.

(formerly Technically Elite, Inc.)
All rights reserved.

-- - RCS:
15 	 $Id: HTTP.pdl,v 1.13 1999/04/13 15:47:57 skip Exp $

httpData FIELD
SYNTAX

20 	 LENGTH
DISPLAY-HINT
FLAGS

BYTESTRING(1..1500)
"($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen * 4)"

"Text"
NOLABEL

http PROTOCOL
25 	 SUMMARIZE

"$httpData m/^GETI^HTTPI^HEADI^POST/" :
"HTTP $httpData"

"$httpData m/^[Dd]ate ^[Ss]erver1^[Ll]ast-[Mm]odified/"
"HTTP $httpData"

30 	 "$httpData m/^[Cc]ontent-/" :
"HTTP $httpData"

"$httpData m/^<HTML>7"
"HTTP [HTML document]"

"$httpData m/^GIFP :
35 	 "HTTP [GIF image]"

"Default" :
"HTTP [Data]"

DESCRIPTION
"Protocol format for HTTP."

40 	::= { Data=httpData }

http FLOW
CONNECTION { INHERITED }
PAYLOAD { INCLUDE-HEADER, DATA=Data, LENGTH=256

45 	 STATES
"SO: CHECKCONNECT, GOTO S1

DEFAULT NEXT SO

50
Si:

S2:

WAIT 2, GOTO S2, NEXT S1
DEFAULT NEXT SO

MATCH
'\n\r\n' 900 0 0 255 0, NEXT S3
'\n\n' 900 0 0 255 0, NEXT S3

55 'POST /tds?' 50 0 0 127 1, CHILD sybaseWebsql
'.hts HTTP/1.0' 50 4 0 127 1, CHILD sybaseJdbc
'jdbc:sybase:Tds' 50 4 0 127 1, CHILD sybaseTds
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast
't: 	BW-C-' 100 4 1 255 0, CHILD backweb

60 DEFAULT NEXT S3

S3: MATCH
'\n\r\n' 50 0 0 0 0, NEXT S3
'\n\n' 50 0 0 0 0, NEXT S3

65 'Content-Type:' 800 0 0 255 0, CHILD mime
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast
't: 	BW-C-' 100 4 1 255 0, CHILD backweb
DEFAULT NEXT SO"

70 sybasewebscil FLOW
STATE-BASED

NOAC Ex. 1014 Page 223

217

sybaseJdbc FLOW
STATE-BASED

5 sybaseTds FLOW
STATE-BASED

pointcast FLOW
STATE-BASED

10
backweb FLOW

STATE-BASED

mime FLOW
15 STATE-BASED

STATES
"SO: MATCH

'application' 900 0 0 1 0, CHILD mimeApplication
'audio' 900 0 0 1 0, CHILD mimeAudio

20 'image' 50 0 0 1 0, CHILD mimeImage
'text' 50 0 0 1 0, CHILD mimeText
'video' 50 0 0 1 0, CHILD mimeVideo
'x-world'

DEFAULT GOTO SO"
500 4 1 255 0, CHILD mimeXworld

25
mimeApplication FLOW

STATE-BASED

mimeAudio FLOW
30 	 STATE-BASED

STATES
"SO: MATCH

'basic' 100 0 0 1 0, CHILD pdBasicAudio
'midi' 100 0 0 1 0, CHILD pdMidi

35 'mpeg' 100 0 0 1 0, CHILD pdmpeg2Audio
'vnd.rn-realaudio. 100 0 0 1 0, CHILD pdRealAudio
'way' 100 0 0 1 0, CHILD pdWav
'x-aiff' 100 0 0 1 0, CHILD pdAiff
'x-midi' 100 0 0 1 0, CHILD pdMidi

40 'x-mpeg' 100 0 0 1 0, CHILD pdMpeg2Audio
'x-mpgurl' 100 0 0 1 0, CHILD pdMpeg3Audio
'x-pn-realaudio' 100 0 0 1 0, CHILD pdRealAudio
'x-way.
DEFAULT GOTO SO"

100 0 0 1 0, CHILD pdWav

45
mimeImage FLOW

mimeText

STATE-BASED

FLOW
50

mimeVideo

STATE-BASED

FLOW
STATE-BASED

55 	mimeXworld FLOW
STATE-BASED

pdBasicAudio FLOW
STATE-BASED

60
pdMidi FLOW

STATE-BASED

pdMpeg2Audio FLOW
65 	 STATE-BASED

pdMpeg3Audio FLOW
STATE-BASED

70 pdRealAudio FLOW
STATE-BASED

NOAC Ex. 1014 Page 224

218

p dWav
	 FLOW

STATE-BASED

5 	pdAi f f FLOW
STATE-BASED

NOAC Ex. 1014 Page 225

219

Traffic Classification System

Protocol Definition Language (PDL)
Reference Guide

5

Version A0.02

VERSION A0.02
10

Included herein is this reference on the page description laguage (PDL) whihc, in one
aspect of the invention, permits the automatic generation of the databases used by the
parser and analyzer sub-systems, and also allows for including new and modified

15 	protocols and applications to the capabliity of the monitor.

NOAC Ex. 1014 Page 226

220

COPYRIGHT NOTICE

A portion of this of this document included with the patent contains material

which is subject to copyright protection. The copyright owner (Apptitude, Inc., of San

Jose, California, formerly Technically Elite, Inc.) has no objection to the facsimile

5 	reproduction by anyone of the patent document or the patent disclosure or this document,

as it appears in the Patent and Trademark Office patent file or records, but otherwise

reserves all copyright rights whatsoever.

Copyright © 1997-1999 by Apptitude, Inc. (formerly Technically Elite, Inc.)

10 	 All Rights Reserved.

NOAC Ex. 1014 Page 227

221

1. INTRODUCTION

The inventive Protocol Definition Language (PDL) is a special purpose language
used to describe network protocols and all the fields within the protocol headers.

Within this document, protocol descriptions (PDL files) are referred to as PDL or
5 	 rules when there in no risk of confusion with other types of descriptions.

PDL uses both form and organization similar to the data structure definition part
of the C programming language and the PERL scripting language. Since PDL
was derived from a language used to decode network packet contact, the authors
have mixed the language format with the requirements of packet decoding. This

io 	results in an expressive language that is very familiar and comfortable for
describing packet content and the details required representing a flow.

1.1 Summary

The PDL is a non-procedural Forth Generation language (4GL). This means is
describes what needs to be done without describing how to do it. The details of

15 	 how are hidden in the compiler and the Compiled Protocol Layout (CPL)
optimization utility.

In addition, it is used to describe network flows by defining which fields are the
address fields, which are the protocol type fields, etc.

Once a PDL file is written, it is compiled using the Netscope compiler (nsc),
20 	 which produces the MeterFlow database (MeterFlow.db) and the Netscope

database (Netscope.db). The MeterFlow database contains the flow definitions
and the Netscope database contains the protocol header definitions.

These databases are used by programs like: mfkeys, which produces flow keys
(also called flow signatures); mfcpl, which produces flow definitions in CPL

25 	 format; mfpkts which produces sample packets of all known protocols; and
netscope, which decodes SnifferTM and tcpdump files.

Due to its size, electronic media copies of the documentation are not provided but
can be made available if necessary.

1.2 	Document Conventions

30 	 The following conventions will be used throughout this document:

Small courier typeface indicates C code examples or function names.
Functions are written with parentheses after them [function ()], variables are
written just as their names [variables], and structure names are written
prefixed with "struct" [struct packet].

35 	 Italics indicate a filename (for instance, mworks/base/h/base.h). Filenames will
usually be written relative to the root directory of the distribution.

NOAC Ex. 1014 Page 228

222

Constants are expressed in decimal, unless written "ox...", the C language
notation for hexadecimal numbers.

	

2. 	PROGRAM STRUCTURE

A MeterFlow PDL decodes and flow set is a non-empty sequence of statements.

5
	There are four basic types of statements or definitions available in MeterFlow

PDL:

FIELD,
GROUP,
PROTOCOL and

10 	FLOW.

	

2.1 	FIELD Definitions

The FIELD definition is used to define a specific string of bits or bytes in the
packet. The FIELD definition has the following format:

15 	 Name FIELD
SYNTAX Type [{ Enums }]
DISPLAY-HINT "FormatString"
LENGTH "Expression"
FLAGS FieldFlags

20 	 ENCAP FieldName [, FieldName2]
LOOKUP LookupType [Filename]
ENCODING EncodingType
DEFAULT "value"
DESCRIPTION "Description"

25 	Where only the FIELD and SYNTAX lines are required. All the other lines are
attribute lines, which define special characteristics about the FIELD. Attribute
lines are optional and may appear in any order. Each of the attribute lines are
described in detail below:

2.1.1 SYNTAX Type [{ Enums]

30 	This attribute defines the type and, if the type is an INT, BYTESTRING,
BITSTRING, or SNMPSEQUENCE type, the enumerated values for the FIELD.
The currently defined tunes are:

INT(numBits) Integer that is numBits bits long.

UNSIGNED INT(numBits) Unsigned integer that is numBits bits long.

BYTESTRING(numBytes) String that is numBytes bytes long.

BYTESTRING(R/..R2) String that ranges in size from R1 to R2 bytes.

BITSTRING(numBits) String that is numBits bits long.

NOAC Ex. 1014 Page 229

223

LSTRING(lenBytes) String with lenBytes header.

NSTRING Null terminated string.

DNSSTRING DNS encoded string.

SNMPOID SNMP Object Identifier.

SNMPSEQUENCE SNMP Sequence.

SNMPTIMETICKS SNMP TimeTicks.

COMBO fieldl field2 Combination pseudo field.

2.1.2 DISPLAY-HINT "FormatString"

This attribute is for specifying how the value of the FIELD is displayed. The
formats are:

Numx Print as a num byte hexidecimal number.

Numd Print as a num byte decimal number.

Numo Print as a num byte octal number.

Numb Print as a num byte binary number.

Numa Print num bytes in ASCII format.

Text Print as ASCII text.

HexDump Print in hexdump format.

5

2.1.3 LENGTH "Expression"

This attribute defines an expression for determining the FIELD's length.
Expressions are arithmetic and can refer to the value of other FIELD' s in the
packet by adding a $ to the referenced field's name. For example,

10 	"($tcpHeaderLen *4) — 20" is a valid expression if tcpHeaderLen is another field
defined for the current packet.

2.1.4 FLAGS FieldFlags

The attribute defines some special flags for a FIELD. The currently supported
FieldFla s are:

SAMELA
YER

Display field on the same layer as the previous field.

NOLABEL Don't display the field name with the value.

NOAC Ex. 1014 Page 230

224

NOSHOW Decode the field but don't display it.

SWAPPED The integer value is swapped.

2.1.5 ENCAP FieldName [,FieldName2]

This attribute defines how one packet is encapsulated inside another. Which
packet is determined by the value of the FieldName field. If no packet is found

5
	 using FieldName then FieldName2 is tried.

2.1.6 LOOKUP LookupType [Filename]

This attribute defines how to lookup the name for a particular FIELD value. The
currently supported Looku T es are: -

SERVICE 	 Use getservbyport().

HOSTNAME 	 Use gethostbyaddr().

MACADDRESS 	 Use $METERFLOW/conf/mac2ip.cf.

FILE file 	 Use file to lookup value.

10 	2.1.7 ENCODING EncodingType

This attribute defines how a FIELD is encoded. Currently, the only supported
EncodingType is BER (for Basic Encoding Rules defined by ASN.1).

2.1.8 DEFAULT "value"

This attribute defines the default value to be used for this field when generating
15 	 sample packets of this protocol.

2.1.9 DESCRIPTION "Description"

This attribute defines the description of the HELD. It is used for informational
purposes only.

2.2 	GROUP Definitions

20 	 The GROUP definition is used to tie several related FIELDs together. The
GROUP definition has the following format:

Name GROUP
LENGTH "Expression"
OPTIONAL "Condition"

25 	 SUMMARIZE "Condition" : "FormatString" [
"Condition" : "FormatString"... 3

NOAC Ex. 1014 Page 231

225

DESCRIPTION "Description"
::= { Name=FieldOrGroup [I

Name=FieldOrGroup...] }

Where only the GROUP and ::= lines are required. All the other lines are
5
	 attribute lines, which define special characteristics for the GROUP. Attribute

lines are optional and may appear in any order. Each attribute line is described in
detail below:

2.2.1 LENGTH "Expression"

This attribute defines an expression for determining the GROUP's length.
io 	Expressions are arithmetic and can refer to the value of other HELD's in the

packet by adding a $ to the referenced field's name. For example,
"($tcpHeaderLen *4) — 20" is a valid expression if tcpHeaderLen is another field
defined for the current packet.

2.2.2 OPTIONAL "Condition"

15 	 This attribute defines a condition for determining whether a GROUP is present or
not. Valid conditions are defined in the Conditions section below.

2.2.3 SUMMARIZE "Condition" : "FormatString" ["Condition" :
"FormatString"... I

This attribute defines how a GROUP will be displayed in Detail mode. A
20 	 different format (FormatString) can be specified for each condition (Condition).

Valid conditions are defined in the Conditions section below. Any FIELD's value
can be referenced within the FormatString by proceeding the FIELD's name with
a $. In addition to FIELD names there are several other special $ keywords:

$LAYER Displays the current protocol layer.

$GROUP Displays the entire GROUP as a table.

$LABEL Displays the GROUP label.

$field Displays the field value (use enumerated name if available).

$:field Displays the field value (in raw format).

25 	2.2.4 DESCRIPTION "Description"

This attribute defines the description of the GROUP. It is used for informational
purposes only.

2.2.5 ::= Name=FieldOrGroup , Name=FieldOrGroup...

This defines the order of the fields and subgroups within the GROUP.

NOAC Ex. 1014 Page 232

226

2.3 PROTOCOL Definitions

The PROTOCOL definition is used to define the order of the FIELDs and
GROUPs within the protocol header. The PROTOCOL definition has the
following format:

	

5 	 Name PROTOCOL
SUMMARIZE "Condition" : "FormatString" [
"Condition" : "FormatString"...]
DESCRIPTION "Description"
REFERENCE "Reference"

	

10 	 ::= { Name=FieldOrGroup [,
Name=FieldOrGroup...] }

Where only the PROTOCOL and ::= lines are required. All the other lines are
attribute lines, which define special characteristics for the PROTOCOL. Attribute
lines are optional and may appear in any order. Each attribute line is described in

	

15 	 detail below:

2.3.1 SUMMARIZE "Condition" : "FormatString" ["Condition" :
"FormatString"... [

This attribute defines how a PROTOCOL will be displayed in Summary mode. A
different format (FormatString) can be specified for each condition (Condition).

	

20 	 Valid conditions are defined in the Conditions section below. Any FIELD's value
can be referenced within the FormatString by proceeding the FIELD's name with
a $. In addition to FIELD names there are several other special $ keywords:

$LAYER Displays the current protocol layer.

$VARBIND Displays the entire SNMP VarBind list.

$field Displays the field value (use enumerated name if available).

$:field Displays the field value (in raw format).

Weld Counts all occurrences of field.

$*field Lists all occurrences of field.

2.3.2 DESCRIPTION "Description"

25 	 This attribute defines the description of the PROTOCOL. It is used for
infoiniational purposes only.

2.3.3 REFERENCE "Reference"

This attribute defines the reference material used to determine the protocol
format. It is used for informational purposes only.

NOAC Ex. 1014 Page 233

227

2.3.4 ::= { Name=FieldOrGroup [, Name=FieldOrGroup...] }

This defines the order of the 1-,IELDs and GROUPs within the PROTOCOL.

2.4 	FLOW Definitions

The FLOW definition is used to define a network flow by describing where the

	

5 	 address, protocol type, and port numbers are in a packet. The FLOW definition
has the following format:
Name FLOW

HEADER { Option [, Option...] }
DLC-LAYER { Option E, Option...] }

	

10 	 NET-LAYER { Option [, Option...] }
CONNECTION { Option [, Option...] }
PAYLOAD { Option I, Option...] }
CHILDREN { Option [, Option...] }
STATE-BASED

	

15 	 STATES "Definitions"

Where only the FLOW line is required. All the other lines are attribute lines,
which define special characteristics for the FLOW. Attribute lines are optional
and may appear in any order. However, at least one attribute line must be present.
Each attribute line is described in detail below:

	

20 	2.4.1 HEADER { Option [, Option...] }

This attribute is used to describe the length of the protocol header. The currently
supported Options are:

LENGTH=num
ber

Header is a fixed length of size number.

LENGTH=fie/
d

Header is variable length determined by value of field.

IN-WORDS The units of the header length are in 32-bit words rather than
bytes.

2.4.2 DLC-LAYER { Option [, Option...] }

25 	 If the protocol is a data link layer protocol, this attribute describes it. The
currently supported Options are:

DESTINATION=fi
eld

Indicates which field is the DLC destination address.

SOURCE field Indicates which field is the DLC source address.

PROTOCOL Indicates this is a data link layer protocol.

NOAC Ex. 1014 Page 234

228

TUNNELING Indicates this is a tunneling protocol.

2.4.3 NET-LAYER { Option [, Option...] }

If the protocol is a network layer protocol, then this attribute describes it. The
currently supported Options are:

DESTINATION field Indicates which field is the network destination address.

SOURCE=field Indicates which field is the network source address.

TUNNELING Indicates this is a tunneling protocol.

FRAGMENTATION=t
ype

Indicates this protocol supports fragmentation. There
are currently two fragmentation types: IPV4 and IPV6.

5

2.4.4 CONNECTION { Option [, Option...] }

If the protocol is a connection-oriented protocol, then this attribute describes how
connections are established and torn down. The currently supported Options are:

Indicates the connection identifier field. IDENTIPIER=fie/d

CONNECT-START="flag" Indicates when a connection is being
initiated.

CONNECT-COMPLETE=2:flag" Indicates when a connection has been
established.

DISCONNECT-START="flag" Indicates when a connection is being torn
down.

DISCONNECT-
COMPLETE="flag"

Indicates when a connection has been torn
down.

INHERITED Indicates this is a connection-oriented
protocol but the parent protocol is where the
connection is established.

10 	2.4.5 PAYLOAD { Option [, Option...] }

This attribute describes how much of the payload from a packet of this type
should be stored for later use during analysis. The currently supported Options
are:

INCLUDE- Indicates that the protocol header should be included.

NOAC Ex. 1014 Page 235

229

HEADER

LENGTH=numbe
r

Indicates how many bytes of the payload should be stored.

DATA field Indicates which field contains the payload.

2.4.6 CHILDREN { Option r, Option...] }

This attribute describes how children protocols are determined. The currently
tions are: . 	. 	.

DESTINATION=fi
eld

Indicates which field is the destination port.

SOURCE field Indicates which field is the source port.

LLCCHECK=flow Indicates that if the DESTINATION field is less than
Ox05DC then use flow instead of the current flow definition.

5

2.4.7 STATE-BASED

This attribute indicates that the flow is a state-based flow.

2.4.8 STATES "Definitions"

This attribute describes how children flows of this protocol are determined using
10 	states. See the State Definitions section below for how these states are defined.

2.5 CONDITIONS

Conditions are used with the OPTIONAL and SUMMARIZE attributes and may
consist of the following:

Valuel ==
Value2

Valuel equals Value2. Works with string values.

Valuel !=
Value2

Valuel does not equal Value2. Works with string values.

Valuel <=
Value2

Valuel is less than or equal to Value2.

Valuel >=
Value2

Valuel is greater than or equal to Value2.

Valuel <
Value2

Valuel is less than Value2.

NOAC Ex. 1014 Page 236

230

Valuel >
Value2

Value] is greater than Value2.

Field m/regex/ Field matches the regular expression regex.

Where Value] and Value2 can be either FIELD references (field names preceded
by a $) or constant values. Note that compound conditional statements (using
AND and OR) are not currently supported.

2.6 STATE DEFINITIONS

5
	 Many applications running over data networks utilize complex methods of

classifying traffic through the use of multiple states. State definitions are used for
managing and maintaining learned states from traffic derived from the network.

The basic format of a state definition is:
StateName: Operand Parameters [Operand Parameters...]

to 	The various states of a particular flow are described using the following
operands:

2.6.1 CHECKCONNECT, operand

Checks for connection. Once connected executes operand.

2.6.2 GOTO state

15 	 Goes to state, using the current packet.

2.6.3 NEXT state

Goes to state, using the next packet.

2.6.4 DEFAULT operand

Executes operand when all other operands fail.

20 	2.6.5 CHILD protocol

Jump to child protocol and perform state-based processing (if any) in the child.

2.6.6 WAIT numPackets, operandi, operand2

Waits the specified number of packets. Executes operand] when the specified
number of packets have been received. Executes operand2 when a packet is

25 	 received but it is less than the number of specified packets.

2.6.7 MATCH 'string' weight offset LF-offset range LF-range, operand

Searches for a string in the packet, executes operand if found.

NOAC Ex. 1014 Page 237

231

2.6.8 CONSTANT number offset range, operand

Checks for a constant in a packet, executes operand if found.

2.6.9 EXTRACTIP offset destination, operand

Extracts an IP address from the packet and then executes operand.

5 	2.6.10 EXTRACTPORT offset destination, operand

Extracts a port number from the packet and then executes operand.

2.6.11 CREATEREDIRECTEDFLOW, operand

Creates a redirected flow and then executes operand.

NOAC Ex. 1014 Page 238

232

3. 	EXAMPLE PDL RULES

The following section contains several examples of PDL Rule files.

3.1 Ethernet

The following is an example of the PDL for Ethernet:

5
MacAddress FIELD

SYNTAX 	BYTESTRING(6)
DISPLAY-HINT "lx:"
LOOKUP 	MACADDRESS

10 	 DESCRIPTION
"MAC layer physical address"

etherType 	FIELD
SYNTAX 	INT(16)

15 	 DISPLAY-HINT "lx:"
LOOKUP 	FILE "EtherType.cf"
DESCRIPTION

"Ethernet type field"

20 etherData FIELD
SYNTAX 	BYTESTRING(46..1500)
ENCAP 	 etherType
DISPLAY-HINT "HexDump"
DESCRIPTION

25 	 "Ethernet data"

ethernet 	PROTOCOL
DESCRIPTION

"Protocol format for an Ethernet frame"
30 	 REFERENCE 	"RFC 894"

{ MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,
Data=etherData }

ethernet 	FLOW
35 	 HEADER LENGTH=14

DLC-LAYER {
SOURCE=MacSrc,
DESTINATION=MacDest,
TUNNELING,

40 	 PROTOCOL

CHILDREN { DESTINATION=EtherType, LLC-CHECK=11c }

NOAC Ex. 1014 Page 239

233

3.2 IP Version 4

Here is an example of the PDL for the IP protocol:

ipAddress 	FIELD
5 	 SYNTAX 	BYTESTRING(4)

DISPLAY-HINT "ld."
LOOKUP 	HOSTNAME
DESCRIPTION

"IP address"
10

ipVersion 	FIELD
SYNTAX INT(4)
DEFAULT

15 ipHeaderLength FIELD
SYNTAX INT(4)

ipTypeOfService 	FIELD
SYNTAX 	BITSTRING(8) { minCost(1),

20 	 maxReliability(2), maxThruput(3), minDelay(4)
)

ipLength 	 FIELD
SYNTAX UNSIGNED INT(16)

25
ipFlags 	 FIELD

SYNTAX BITSTRING(3) { moreFrags(0), dontFrag(1))

IpFragmentOffset 	 FIELD
30 	 SYNTAX INT (13)

ipProtocol FIELD
SYNTAX INT(8)
LOOKUP FILE "IpProtocol.cf"

35
ipData FIELD

SYNTAX 	BYTEsTRING(0..1500)
ENCAP 	 ipProtocol
DISPLAY-HINT "HexDump"

40
ip 	PROTOCOL

SUMMARIZE
"$FragmentOffset != 0":

"IPFragment ID=$Identification Offset=$FragmentOffset"
45 	 "Default" :

"IP Protocol=$Protocol"
DESCRIPTION

"Protocol format for the Internet Protocol"
REFERENCE 	"RFC 791"

50 	{ Version=ipVersion, HeaderLength=ipHeaderLength,
TypeOfService=ipTypeOfService, Length=ipLength,
Identification=UInt16, IpFlags=ipFlags,
FragmentOffset=ipFragmentOffset, TimeToLive=Int8,
Protocol=ipProtocol, Checksum=ByteStr2,

55 	 IpSrc=ipAddress, IpDest=ipAddress, Options=ipOptions,
Fragment=ipFragment, Data=ipData }

ip 	FLOW
HEADER { LENGTH=HeaderLength, IN-WORDS }

60 	 NET-LAYER
SOURCE=IpSrc,
DESTINATION=IpDest,
FRAGMENTATION=IPV4,
TUNNELING

NOAC Ex. 1014 Page 240

234

}
CHILDREN { DESTINATION=Protocol }

ipFragData FIELD
5 	 SYNTAX 	BYTESTRING(1..1500)

LENGTH 	"ipLength - ipHeaderLength * 4"
DISPLAY-HINT "HexDump"

ipFragment GROUP
10

	

	 OPTIONAL 	"$FragmentOffset != 0"
f Data=ipFragData }

15

ipOptionCode FIELD
SYNTAX INT(8) { ipRR(0x07), ipTimestamp(0x44),

ipLSRR(0x83), ipSSRR(0x89) }
DESCRIPTION

"IP option code"

ipOptionLength 	FIELD
20 	 SYNTAX UNSIGNED INT(8)

DESCRIPTION
"Length of IP option"

25
	ipOptionData FIELD SYNTAX
	EYTESTRING(0..1500)

ENCAP 	 ipOptionCode
DISPLAY-HINT "HexDump"

ipOptions 	GROUP
30 	 LENGTH 	"(ipHeaderLength * 4) - 20"

{ Code=ipOptionCode, Length=ipOptionLength, Pointer=UIntB,
Data=ipOptionData }

2. 2

NOAC Ex. 1014 Page 241

235

3.3 TCP

Here is an example of the PDL for the TCP protocol:

tcpPort FIELD
5 	 SYNTAX UNSIGNED INT (16)

LOOKUP FILE "TcpPort.cf"

tcpHeaderLen FIELD
SYNTAX INT(4)

10
tcpFlags FIELD

SYNTAX BITSTRING(12) { fin(0), syn(1), rst(2), psh(3),
ack(4), urg(5))

15 	tcpData FIELD
SYNTAX BYTESTRING(0 . 1564)
LENGTH "($ipLength-($ipHeaderLength*4))-($tcpHeaderLen*4)"

ENCAP 	tcpPort
DISPLAY-HINT "HexDump"

20
tcp PROTOCOL

SUMMARIZE
"Default" :

"TCP ACK=$Ack WIN=$WindowSize"
25 	 DESCRIPTION

"Protocol format for the Transmission Control Protocol"
REFERENCE 	"RFC 793"

::= { SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,
Ack=UInt32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags,

30 	 WindowSize=UInt16, Checksum=ByteStr2,
UrgentPointer=uInt16, Options=tcpOptions, Data=tcpData }

tcp FLOW
HEADER { LENGTH=HeaderLength, IN-WORDS

35 	 CONNECTION {
IDENTIFIER=SequenceNum,
CONNECT-START="TcpFlags:1",
CONNECT-COMPLETE="TcpFlags:4",
DISCONNECT-START="TcpFlags:0",

40 	 DISCONNECT-COMPLETE="TcpFlags:4"
}
PAYLOAD { INCLUDE-HEADER
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort

45 	tcpOptionKind FIELD
SYNTAX UNSIGNED INT(8) { tcpOptEnd(0), tcpNop(1),

tcpMSS(2), tcpWscale(3), tcpTimestamp(4)
DESCRIPTION

"Type of TCP option"
50

tcpOptionData FIELD
SYNTAXBYTESTRING(0..1500)
ENCAP 	tcpOptionKind
FLAGS 	SAMELAYER

55 	 DISPLAY-HINT "HexDump"

tcpOptions GROUP
LENGTH 	"($tcpHeaderLen * 4) - 20"

::= { Option=tcpOptionKind, OptionLength=UInt8,
60 	 OptionData=tcpOptionData }

tcpMSS PROTOCOL
::= { MaxSegmentSize=UInt16

NOAC Ex. 1014 Page 242

236

3.4 HTTP (with State)

Here is an example of the PDL for the HTTP protocol:

httpData FIELD

	

5 	SYNTAX BYTESTRING(1..1500)
LENGTH 	"($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen * 4)"
DISPLAY-HINT 	"Text"
FLAGS 	 NOLABEL

10 http PROTOCOL
SUMMARIZE

"$httpData m/AGETI-HTTPI-HEADI^POST/" :
"HTTP $httpData"

"$httpData m/A[Dd]atel^[Ss]erverl^[Ll]ast-[Mm]odified/"

	

15 	 "HTTP $httpData"
"$httpData m/^[Cc]ontent-/" :

"HTTP $httpData"
"$httpData m/^<HTmL>/" :

"HTTP [HTML document]"

	

20 	 "$httpData m/^GIFP :
"HTTP [GIF image]"

"Default" :
"HTTP [Data]"

DESCRIPTION

	

25 	 "Protocol format for HTTP."
{ Data=httpData }

http FLOW
HEADER { LENGTH=0 }

30

35

CONNECTION { INHERITED }
PAYLOAD { INCLUDE-HEADER, DATA=Data,
STATES

"SO: CHECKCONNECT, GOTO S1
DEFAULT NEXT SO

Si: WAIT 2, GOTO S2, NEXT S1
DEFAULT NEXT SO

LENGTH=256 }

S2: MATCH
40 '\n\r\n' 900 0 0 255 0, NEXT S3

'\n\n' 900 0 0 255 0, NEXT S3
'POST /tds?' 50 0 0 127 1, CHILD sybaseWebsql
'.hts HTTP/1.0' 50 4 0 127 1, CHILD sybaseJdbc
'jdbc:sybase:Tds' 50 4 0 127 1, CHILD sybaseTds

45 'PCN-The Poin' 500 4 1 255 0, CHILD pointcast
't: 	BW-C-'
DEFAULT NEXT S3

100 4 1 255 0, CHILD backweb

S3: MATCH
50 '\n\r\n' 50 0 0 0 0, NEXT S3

'\n\n' 50 0 0 0 0, NEXT S3
'Content-Type:' 800 0 0 255 0, CHILD mime
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast
't: 	BW-C-' 100 4 1 255 0, CHILD backweb

55

sybasewebsql

DEFAULT NEXT SO"

FLOW
STATE-BASED

60 sybaseJdbc FLOW

sybaseTds

STATE-BASED

FLOW
STATE-BASED

NOAC Ex. 1014 Page 243

237

pointcast 	FLOW
STATE-BASED

5 backweb 	FLOW
STATE-BASED

mime 	 FLOW
STATE-BASED

10 	 STATES
"SO: 	MATCH

'application' 900 0 0 1 0, CHILD mimeApplication
'audio' 900 0 0 1 0, CHILD mimeAudio
'image' 50 0 0 1 0, CHILD mimeImage

15 'text' 50 0 0 1 0, CHILD mimeText
'video' 50 0 0 1 0, CHILD mimeVideo
'x-world'

DEFAULT GOTO SO"
500 4 1 255 0, CHILD mimeXworld

20 mimeApplication FLOW
STATE-BASED

mimeAudio 	FLOW
STATE-BASED

25 STATES
"SO: MATCH

'basic' 100 0 0 1 0, CHILD pdBasicAudio
'midi' 100 0 0 1 0, CHILD pdMidi
'mpeg' 100 0 0 1 0, CHILD pdMpeg2Audio

30 'vnd.rn-realaudio' 100 0 0 1 0, CHILD pdRealAudio
'way' 100 0 0 1 0, CHILD pdWav
'x-aiff' 100 0 0 1 0, CHILD pdAiff
'x-midi' 100 0 0 1 0, CHILD pdMidi
'x-mpeg' 100 0 0 1 0, CHILD pdMpeg2Audio

35 'x-mpgurl' 100 0 0 1 0, CHILD pdMpeg3Audio
'x-pn-realaudio' 100 0 0 1 0, CHILD pdRealAudio
'x-way.

DEFAULT GOTO SO"
100 0 0 1 0, CHILD pdWav

40 mimeImage FLOW

mimeText

STATE-BASED

FLOW
STATE-BASED

45
mimeVideo FLOW

STATE-BASED

mimeXworld FLOW
50 	 STATE-BASED

pdBasicAudio FLOW
STATE-BASED

55 pdMidi 	FLOW
STATE-BASED

pdMpeg2Audio FLOW
STATE-BASED

60
pdMpeg3Audio FLOW

STATE-BASED

pdRealAudio FLOW
65 	 STATE-BASED

pdWav FLOW
STATE-BASED

FLOW
STATE-BASED

70 pdAiff

NOAC Ex. 1014 Page 244

238

As described herein, in order to derive the actual application used to

communicate between a client and a server, all of the opening connection packets must

be decoded, analyzed and interpreted. There could be several simultaneous and

5 	overlapping applications executing over the network that are independent and

asynchronous.

Real-time application traffic classification thus includes several major challenges.

First is to successfully classify each of the individual packets as they are seen on the

network. The contents of the packets must be assembled into a unique flow signature to

to 	retrieve future information about the conversational flow. A flexible and intelligent

processing system must analyze the content of each and every packet exchanged between

the client and server in the network.

Parallel systems must operate together and simultaneously in order to meet the

speed requirements of today's client/server networks. In addition, the design must be

15 	flexible enough to adapt to future applications developed for client/server networks.

Embodiments of the present invention are preferably completely implemented in

application-specific integrated circuits (ASIC) or field programmable gate arrays

(FPGA). A packet acquisition device is needed, such as a media access controller

(MAC), or a segmentation and reassemble module. Such acquisition device is directly

20 	connected to the pattern analysis and recognition engine and is the sole input data stream

for all of the packets that are analyzed and classified to the application used.

The packet parsing system preferably comprises two sub-parts, the pattern

analysis and recognition engine (PAR), and the field extraction engine (FEE). The

pattern analysis and recognition engine interprets each packet that is seen. Individual

25 	fields in each packet are analyzed for specific patterns through a process of elimination

until a particular pattern for the packet is found.

The recognition patterns are stored in a pattern database that includes a sparsely

populated three-dimensional array of patterns and links in the nodes. If a node does not

include a link to a deeper level, pattern matching is declared complete. An instruction

NOAC Ex. 1014 Page 245

239

will be found at that last node in the array, and it is sent to the field extraction engine

along with the packet.

The field extraction engine works on the packet contents using the extraction

instructions from the pattern analysis and recognition engine. Each of the important

5 	packet elements are removed and written into a flow signature generation buffer. Once

all the operations requested of the field extraction engine are completed for this packet,

the flow signature is set as complete, and a hash is generated to identify this flow

signature.

When the parsing system has successfully completed the task of deriving,

io 	determining and extracting the required information, the remaining pieces of the packet

and the generated flow signature for the packet are passed to the packet analysis system.

All of the extracted packet elements are formulated into flow signatures that are

stored in a unified flow signature buffer. Multiple flow signatures from all the packets

being analyzed in parallel can be held in the one unified flow signature buffer. While a

15 	packet flow signature exists in the unified flow signature buffer, many operations can be

performed to further elucidate the identity of the application program content of the

packet involved in the client/server conversational flow.

The first step in the packet analysis process is to lookup the instance in the

current database of known packet flow signatures. The lookup/update engine

20 	accomplishes this task. Such engine uses the hash and remaining fields of the flow

signature from the packet to determine if this packet flow record exists in the flow-entry

database of the packet analysis system. Once the lookup processing has been completed

the flag stating whether it is found or is new, is set within the unified flow signature

buffer structure for this packet flow signature.

25 	 After the packet flow signature has been looked up and contents of the current

flow signature are in the database, the state processor can begin analyzing the packet

payload to further elucidate the identity of the application program component of this

packet. The exact operation of the state processor and functions performed by it will vary

depending on the current packet sequence in the stream of a conversational flow. The

30 	state processor moves to the next logical operation stored from the previous packet seen

NOAC Ex. 1014 Page 246

240

with this same flow signature. If any processing is required on this packet, the state

processor will execute instructions from it's database until there are either no more left or

the instruction signifies processing.

Since the sequence of packet exchanges between client and server is crucial in

	

5 	deriving the application component of a conversational flow, the state processor

functions must be programmable. Each new application on the network may have

different characteristics for identifying the components within packets. The state

processor functions take into consideration this variable method of communicating in a

client/server network. If during the lookup process for this particular packet flow

	

10 	signature, the flow is required to be inserted into the active database, the flow insertion

and deletion engine is initiated. Such engine operates independently from the other two

engines within the analysis system. The lookup update engine will determine whether the

flow insertion and deletion engine is required to operate for a particular packet flow

signature.

	

15 	 Monitor embodiments of the present invention create and maintain classified

traffic flows, process statistics for packets and flows, manage the traffic flow-entry

database and cache, and perform state-based analysis of traffic flows. In order for the

monitor to successfully classify traffic by application, there are several data elements

required from each packet to be analyzed. Prior to sending a packet of information to the

	

20 	monitor, all information must be formatted and sent along with the appropriate packet

content. The monitor must specifically receive each packets in a conversational flow in

the order that they are exchanged between the client and the server. The order is crucial

for proper state based classification. More applications running over data networks use

complex methods of classifying traffic through the creation of multiple states. The

	

25 	creation of the state based traffic classification causes the need for managing and

maintaining learned states from traffic deduced in the network.

In preferred embodiments of the present invention, the flow lookup/update

engine, flow insertion and deletion engine, state processor, cache, and unified memory

controller all operate in parallel.

30 	 Fig. 15 shows how an embodiment of the network monitor 300 might be used to

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets

NOAC Ex. 1014 Page 247

241

from a connection point 121 on network 102 so that all packets passing point 121 in

either direction are supplied to monitor 300. Monitor 300 comprises the parser sub-

system 301 which determines flow signatures and analyzer sub-system 303 which

analyzes the flow signature of each packet. A memory 324 is used to store the database

5 	of flows which are determined and updated by monitor 300. A host processor 1504,

which might be any processor, for example, a general purpose processor, is used to

analyze the flows in memory 324, these flows obtained via a host interface in the

analyzer subsystem, (see Fig. 11). As is conventional, host processor 1504 includes a

memory, say RAM, shown as host memory 1506. In addition, the host might contain a

10 	disk. In one application, the system can operate as an RMON probe, in which case the

host processor is coupled to a network interface card 1510 that is connected to the

network 102.

The preferred embodiment of the invention is supported by an optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one

15 	would, for example, implement an RMON probe, where a network interface card is used

to send RMON information to the network. Commercial SNMP implementations also

are available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MD3 Compilers are available. An MD3 Compiler is a tool that greatly

20 	simplifies the creation and maintenance of proprietary MIB extensions.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted

as limiting. Various alterations and modifications will no doubt become apparent to

those or ordinary skill in the art after having read the above disclosure. Accordingly, it is

25 	intended that the claims be interpreted as covering all alterations and modifications as

fall within the true spirit and scope of the present invention.

NOAC Ex. 1014 Page 248

CLIENT 4

116

CLIENT 3

DATA COMMUNICATIONS NETWORK

SERVER 2
CLIENT 2

Fig. 1

100

NOAC Ex. 1014 Page 249

01:=
00
01=1

" 1 i

CI=
00
=1=1
0

c
U)

CV
CC

CC

4.
u) 	

Z
\i 0

0
a _

CO

N
cj

CO
O

CV O
CV

-J

c
0

ept

1=

NOAC Ex. 1014 Page 250

moN

Eng-EH
_____-HflflvawmoNaNQN’V_.®N¢ome

EH

NV/W...,Wx

mmm¢mmmFNNommarmwwmvnrmQFNVmFNfirm

morvmom
.........

NOAC EX. 1014 Page 250

,:t.
cm—
CO \ 1

1 _
i

I

I 1 1 I 1
1 1

A
I- — —

	ilo

CO

n CV
CO --...._..

CO
CV
CO

Li j Z
m 0 >-
0 H LIJ
2 (1)
D CC
jil a 0 _I z - 5 12_

co 0 -
)

1 1
1
1

1 1
1 I 1 1 ._ I 1

1 I
1 1 1

CO
0
CO

1 1 1
I
1

1 1
i —41

1
111 I

-.1- o
co

CC CC
W W
_I 0 N
ID- Z M

< i=
0 CL
0 0

I

1
1 1 1 1 1

0
co

NOAC Ex. 1014 Page 251

r- 407

-,,
	_-,
	---'''

406 - PATTERN, PARSE
AND

EXTRACTION
DATABASE

N......_ 	 ---'

	IP.

c 408

LOAD PARSING
SYSTEM
MEMORY

409 D
LOAD STATE

INSTRUCTION
DATABASE
MEMORY

STATE
PROCESSOR \.
INSTRUCTION

DATABASE

400

410

Or----\ 	401

HIGH LEVEL
PACKET

DECODING
DESCRIPTIONS

402

405 404

GENERATE
PACKET
STATE

INSTRUCTIONS
AND

OPERATIONS

COMPILE
DESCRIPTIONS

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

0403

Fig. 4

NOAC Ex. 1014 Page 252

501

/INPUT PACKET 	 502

503

512

BUILD
PACKET

KEY
504

YES
v

01 FETCH NODE AND
 	PROCESS FROM

PATTERNS -.---- 505

513

liol 	
NEXT

NO PACKET
COMPONENT 506

A

YES
V

507 -

APPLY NODE AND
PROCESS TO
COMPONENT

500

508

YES
V

EXTRACT
ELEMENTS

Fig. 5

509

NEXT NEXT Hi
PATTERN NO

NODE

510

NOAC Ex. 1014 Page 253

FETCH EXTRACTION
AND PROCESS FROM

PATTERNS

APPLY EXTRACTION
PROCESS TO
COMPONENT

V

/ PACKET
COMPONENT AND
PATTERN NODE

)
LOAD KEY
BUFFER

NEXT
NOS1 PACKET

COMPONENT

Fig. 6

\600

602

601

NOAC Ex. 1014 Page 254

703 --_,,,,

OUTPUT TO
ANALYZER 704

V

705

709

YES
*

HASH KEY BUFFER
ELEMENT FROM
PATTERN NODE

PACK KEY AND HASH

706

V
NEXT PACKET
COMPONENT

707

Fig. 7

V

/KEY BUFFER AND
PATTERN NODES

701

702

\.700

NOAC Ex. 1014 Page 255

REQUEST RECORD BIN/ \f___ 804
BUCKET FROM CACHE

NO_0.1 SET UFKB FOR
PACKET AS 'NEW'

806

YES
V

801

V

/UFKB ENTRY FOR
PACKET

800

COMPUTE CONVERSATION
RECORD BIN FROM HASH

YES
V

COMPARE CURRENT BIN
	

807
AND BUCKET RECORD KEY

TO PACKET

802

803

808

MARK RECORD BIN AND 	810
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

•

SET UFKB FOR PACKET
AS 'FOUND'

V

UPDATE STATISTICS FOR
RECORD IN CACHE

813

Fig. 8

NOAC Ex. 1014 Page 256

I RPC
BIND

LOOKUP
REPLY

(---- 905

900 ')(

903

904 ----

908

906 --

EXTRACT
PROGRAM

GET 'PORT' AND
'PROTOCOL (TCP

OR UDP)'.

..i

907

LOOKUP REQUEST

FIND 'PROGRAM'
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION', 'PORT' AND
'PROTOCOL (TCP OR

UDP)

CREATE SERVER STATE

SAVE 'PROGRAM',
'VERSION', 'PORT AND
'PROTOCOL (TCP OR

UDP)' WITH NETWORK
ADDRESS IN SERVER

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

EXTRACT PORT

GET 'PROGRAM',
'VERSION' AND

'PROTOCOL (TCP OR
UDP)'

SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND

'PROTOCOL (TCP OR
UDP)' WITH

DESTINATION
NETWORK ADDRESS.

BOTH MAKE A KEY.

I

901 	

(---RPC
REPLY

7APPER

c_ 	902

I'r---RPC
ANNOUNCMENT
PORTMAPPER

909

Fig. 9

NOAC Ex. 1014 Page 257

1002

1001

EXTRACTION
OPERATIONS

DATABASE MEMORY
SLICER INSTRUCTION DB

1006
PATTERN

RECOGNITION
ENGINE

1008 --_____

DPData
PACKET
INPUT

PARSER INPUT BUFFER
MEMORY

1000 ---A

PATTERN
RECOGNITION

DATABASE MEMORY

1003
1005 -\-1004

`,-......-....

HOST INTERFACE MULTIPLEXOR AND CONTROL REGISTERS

	 CPUDataln
INFORMATION

t

CPUDataOut
CONTROL IN

EXTRACTION ENGINE
(SLICER)

j--1007

1013

1 PARSER I ParserData
OUTPUT 	PACKET SIGN T.
BUFFER 	AND PAYLOAD
MEMORY I 	

g

1012

DPDataStb N
1

1009

1010

1011 INPUT BUFFER
INTERFACE
CONTROL

ANALYZER
INTERFACE
CONTROL

PACKET
START /

PACKET

Elo

NEXT

Ready_N

1012

Fig. 10

ParserD aAvail

DATA READY

IAN 	 ANALYZER
READY
AnalyzerReady

NOAC Ex. 1014 Page 258

1100 --,A,

3-1118 1122

o
HOST
BUS

O' INTER-
FACE
(HIB)

ANALYZER
HOST

INTERFACE
AND

CONTROL
(ACIC)

1101 1103

1109

PARSER
INTER-
FACE

UNIFIED
FLOW
KEY

BUFFER
(UFKB)

\i-V

/

STATE
PROCESSOR

(SP)

L
--1119 1123-

CACHE

FLOW
INSERTION/
DELETION

ENGINE (FIDE)

UNIFIED

0 CONTROLLR
MEMORY

(UMC)

'''ElINIII\ 	."11111111

1115

1107

1108

MEMORY
INTER-
FACE

LOOKUP/
UPDATE

ENGINE (LUE)

STATE
PROCESSOR
INSTRUCTIO
N DATABASE

(SPID)

NOAC Ex. 1014 Page 259

1202

1200 --A /
UFKB ENTRY FOR

PACKET WITH
STATUS 'NEW'

1201

1210---_ SET UFKB FOR
PACKET AS

'DROP'

4
ACCESS

CONVERSATION
RECORD BIN

,, j-1203

V

REQUEST RECORD BIN/ .../-1204
BUCKET FROM CACHE

N
1206

YES
v

INSERT KEY AND HASH
NO 	IN BUCKET, MARK 'USED'

WITH TIMESTAMP

1207

1208

1205

+
COMPARE CURRENT BIN
AND BUCKET RECORD

KEY TO PACKET

4,
MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

_f--1209

N j--1211

1213

Fig. 12

1212

YES

4

V

SET INITIAL STATISTICS
FOR RECORD IN CACHE

NOAC Ex. 1014 Page 260

/
UFKB ENTRY FOR

PACKET WITH STATUS
'NEW' OR 'FOUND'

V
SET STATE PROCESSOR

INSTRUCTION POINTER TO
VALUE FOUND IN UFKB ENTRY

4.

1301

1300 ------A

1302

v----1303

1304 ol FETCH INSTRUCTION FROM
STATE PROCESSOR

INSTRUCTION MEMORY

V
PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

____,---1305

*NO
ONE PROCESSING
STATES FOR THIS

PACKET?

1307

SET STATE
PROCESSOR
INSTRUCTION
POINTER TO

VALUE FOUND IN
CURRENT STATE

---------1310

1308
YES

SAVE STATE
PROCESSOR
INSTRUCTION

POINTER IN
A-NO

DONE PROCESSING 	 1309
STATES FOR THIS FLOW?

CURRENT FLOW
RECORD

YES
V

SET AND SAVE FLOW REMOVAL
STATE PROCESSOR 1311

INSTRUCTION IN CURRENT
FLOW RECORD

1313

Fig. 13

NOAC Ex. 1014 Page 261

z I

Cn u_i
>-

•
•

I
II
I I

I-

vJ
Z

w
>- < 1— a cc
Z w
<00

O O
41-

O

•er
O

O w
Z N CC
< — Z

0
Z < LLI

N U 2 } 0 — fr —J
< uj 	;7'
Z CC

0
CL

NOAC Ex. 1014 Page 262

mZO_._.<Im_n_Om_w>._<z<m:.<._.m

OZ

ZO_l_.<N_I_<Z_n_ZO_._.<O_u=mm<._O

.NVF

mOhOm—Jm—wm_Z_Io<_>_m.._.<._.w

QmOOmmZ>>OZv_=§OI—l=

«ZO_._.<0_H=wm<._OmEOZ

mDmOomEZ>>OZv_EOE“.E6504

>mx__>>O._n_._ZOF<m¢m>zOoMDQZD0.55

<‘“.0mmm<._.<DoDmOomm
__>>O._n_._>>m_Z

mmmm<m

_mzofiémmo_zo_5<Exm_oz<

no:

meEmehmZEmeE

 ZO_.r<_>_mOn_z_2mm._.._.<n“m_N_ZOOOm_r_QZ<MN>._<Z<

wZOF<_>_EO“_Z_OZ_>n__._.Zm_o_._.O<r_._.Xm_

NOAC EX. 1014 Page 262

CD 	U) CO 	
co< Li_ 0
< 0
I— 	—I LLI
C:1

-
I— CC
cr) 0
O2

We

A

V

0
(i)

O W
(/)

(-)
0

co
0
U)

CO
0
U)
T-

0
LU

LL
0

cpi
z
0 C."
2

O

O
LU

A

NOAC Ex. 1014 Page 263

Frame Header

k— 1600

	/ 1604
Dst MAC

offset 0 - 11

1 Src MAC

0 - 3 Bytes 1602

Src MAC Dst MAC

)
Y

1608

__Dst Hash (2)
1612

____Src Hash (2)
1614 	

L2 Offs

Dst MAC (6)

Src MAC (6)

Fig. 16

et = 12

NOAC Ex. 1014 Page 264

EtherType parts extracted

1702

offset 12 - 13 1 	Type

K 	
V

1704

) 1L--- 1700

	A 	 1706

1708 	Type (2)

Hash t1) t1)
1710 	

,_.L.3 04ect 14 1712

Type IDP = 0x0600*
IP = 0x0800*

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OxOBAD*

VLOOP = OxOBAE
VECHO = OxOBAF

NETBIOS-3COM = Ox3C00 -
0x3C0D#

DEC-MOP = 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003*
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP = 0x8035
ATALK = Ox8096*

VLOOP = 0x80C4
VECHO = 0x8005
SNA-TH = 0x80D5*

ATALKARP = Ox80F3
IPX = 0x8137*

SNMP = 0x814C#
IPv6 = Ox86DD*

LOOPBACK = 0x9000

* L3 Decoding
L5 Decoding

Vendor OUI 	Apple = 0x080007

Fig. 17

NOAC Ex. 1014 Page 265

1,50

Protocol

ICMP = 1
IGMP = 2
GGP = 3
TCP = 6*
EGP = 8
IGRP = 9
PUP = 12

CHAOS = 16
UDP = 17*
IDP = 22#

ISO-TP4 = 29
DDP = 37#

ISO-IP = 80
VIP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

Some of IP parts extracted
(TCP/IP)

1818
1802 	1804 	1806

Src Address

Dst Address

MEM

1810
1816

L3 to L3 +
(IHL/ 4) - 1

in MEW= r 	(P-
M. 	17Z7 	FATA

1820

1822

1824

826

1812 	1808

1814

1800

1830 Dst Address

st Hash (2)

1834 Src Address
N rc Hash (2)

1836
N Protocol (1)

1840
L4 Off et = L3 + (IHL/4)

Fig. 18

NOAC Ex. 1014 Page 266

dS

co
co
C

45*
	o•

°,.//

	1...•

3M

U) c

3 CI I A
co
U)

2

<-0

dS

U !

i•

U)
U)

2 -0 -0

3n1
A

/xn IN \
AAAA

3CIld

NOAC Ex. 1014 Page 267

as

co
0

•

as

0
I

U)
cn
a)

.c7)
0

a)

ct
CD

0
I

a)

A
na

H
os

tD
at

a

V V V V

U
cU

a)

as
Z
11.1 •

75 Z >
I

__, 	
a) 	"0
N <
, al

co 0 -cTI 0
CC M < C/)

V V

• A
LT >"

-Ccil

oE
a_ EL
ci)

CL CU CU
CO 0 0

N

0)

isok

'5 co 	BleCialcIS
N L-1 c
0 0 a
2 ,

CL 	(r)
a) 1=
r s
cf) 	PPVCIldSidS

S
P

F
Io

w
K

ey
A

v

cL

V V V

UFKB

CU

CL
U)

CO

U-

S
P

rU
F

K
B

D
at

a

S
P

rU
F

K
B
A

d d

NOAC Ex. 1014 Page 268

0-*

O co
Cl)
00
a)
U c

EC
o_ti E.
a) 	u)

111 2
co—

/xnw elea\
/ Noe° dS

-10

0<
D X

Zti
a.
(/)

-0.

S
ta

te
 P

ro
ce

ss
o
r A

L
U

`SP UFKB
Data MU

UFKB

NOAC Ex. 1014 Page 269

SPMuxAOut

SPALUIncFKAG 4
4SPALUDecFKAG

SPCBIns
SPMuxBOu SPALUGo

SP ALU Data MUX B
(SPMUXB)

SP_Data RMB

SPALUIncRM

Search Engine
(SE_TOP)

I
CD

>
C")
CD c

0

Reset_N
CD

MCLK
	

CD
ST)

SPALUMatch

SPALUDone SPAL UData

SPPC

Fig. 22
State Processor ALU

Search Engine TOP Level Diagram
(SPALU_SE)

NOAC Ex. 1014 Page 270

S
P

 D
a

ta

R
M

 B
[E

_ 	
_

AL
U

 D
AT

A
 =

 [
JU

M
P

_V
E

C T
O

R
[1

5:
0]

,
fo

u
nd

[1
:0

]]

CC1
C
C C

<7,

9V

S
P
A

L
U

 In
c

R
M

B

_
_

0
—t

ts)

S
E

_
IN

C
R

 C
O

N
T

R
O

L

S
P

M
ux

B
O

uQ
1

0:
0
]

SPMuxBOut[7:0] (Range)

out4[3:0](key_size4)._

lo
a
d

 ke
y_

d
o

n
d

In_Find

- 	 4111eso- 01ACI Pie

positionl [2:0]

position2[2:0]

position3[2:0]

position4[2:0]

foundi

found2

found3

found4

les4o—pue

S
P

M
ux

B
O

ut
[l
 0
:8

]

In_Find_Continue

go_ahead

In_Find

In_Find_Continue

o_ahead

SP M uxBOut[i 0:8] (Offset)

S
P

_
D

at
a_

U
F

K
B

[6
3:

01

V V

41
—

S
P

A
LU

In
c
F

K
A

G
—

,

4
—

S
P

A
LU

D
e
c

F
K

A
G
—

out3[3:01(key_size3)

out2[3:0](key_size2)1111

outl [3:0](key_sizel)W

ai

0

V

JMP Vector[l 5:0]

load_key_done

S
P
A

 L
U

M
a t

c
h

S
 P
A

 L
U

D
o

ne

SP ALU
Data MUX A
(SPMUXA)

SP FK
Address Gen

NOAC Ex. 1014 Page 271

2421-1-0

Fig. 24

2419Ay
OUTPUT CPL

INTERMEDIATE FILE

2413

2415

2417

2409-\/ SECOND PASS, BUILD FLOW
SIGNATURE ELEMENTS

2401

FIRST PASS, CREATE ALL
PARSE ELEMENTS

i-- 2403

.N. j-- 2405

\ j-- 2407

•

V

READ IN PDL SOURCE
MODULES

PARSE MODULES FOR
SYNTAX

THIRD PASS, CREATE
PAYLOAD ELEMENTS

j--- 2411

V
FORTH PASS, BUILD

STATES FOR EACH LINK

READ IN LAYERING SOURCE
MODULES

V
WALK LAYERING LINKS FOR

EACH PDL

NOAC Ex. 1014 Page 272

IP.PDL

TCP.PDL

2501

COMMON.PDL _r--

\
j--

\ 7-

2503

2505

2507

FLOWS.PDL

VIRTUAL.PDL

2511--\ j 	ETHERNET.PDL

.... j---- 2513

ETHERTYPE

RPC.PDL

\j
-- 2515

\ j--- 2517

, j-- 2519

2521----_y
	NFS.PDL

2523-10

Fig. 25

NOAC Ex. 1014 Page 273

