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METHOD AND APPARATUS FOR MONITORING 
TRAFFIC IN A NETWORK 

FIELD OF INVENTION 

The present invention relates to computer networks, and more specifically to the 

5 	real-time elucidation of packets communicated within a data network, for example, 

between a client and a server, the elucidation including classification by protocol and 

application program. 

COPYRIGHT NOTICE 

A portion of the disclosure of this patent document contains material which is 

10 	subject to copyright protection. The copyright owner has no objection to the facsimile 

reproduction by anyone of the patent document or the patent disclosure, as it appears in 

the Patent and Trademark Office patent file or records, but otherwise reserves all 

copyright rights whatsoever. 

BACKGROUND TO THE PRESENT INVENTION 

15 	 There has long been a need for network activity monitors. The popularity of 

networks used as a collection of clients obtaining services from one or more servers on 

the network, and especially the recent popularity of the Internet and other internets (an 

"internet" is a plurality of interconnected networks to form a larger single network) has 

made it increasingly important to be able to monitor the use of services offered on the 

20 	network and rate those services accordingly. For example, objective information such as 

which services (i.e., application programs) are being used, who is using them, how often 

they have been accessed, when they are being accessed, how long accesses have been, 

and so forth. Additionally, remote access by selected users to generate reports in real 

time on network use is needed. Finally, an network monitor which can provide alarms in 

25 	real-time to notify selected users of network or site problems is needed. 

Selected network activities may be retrospectively analyzed by reviewing log 

files. Log files are maintained by network servers and gateways. Log file monitors must 

access this data and analyze ("mine") its contents to determine statistics about the server 

or gateway. However, there exist several problems with this method. First, log file 
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information does not provide any real-time usage map. Secondly, log file mining does 

not supply complete information. The method relies on logs maintained by numerous 

network devices and servers and the information in them must be subjected to refining 

and correlation. Sometimes, for example in the case of information about NetMeeting® 

	

5 	(Microsoft Corporation, Redmond, Washington) sessions where two computers connect 

directly on the network and the data is never seen by a server or gateway, information is 

simply not available to any server or gateway, in order to make a log file entry. Creating 

log files requires data logging features of network elements to be enabled, placing a 

substantial load on the device performance, thus reducing network performance. Log- 

	

in 	files also require a substantial amount of maintenance (there is no standard way of 

storing for log files), and grow rapidly. 

NetFlow® (Cisco Systems, Inc., San Jose, California), RMON2, and other 

network monitor devices are available for the real-time monitoring of networks, but 

these lack visibility into application content and context and are therefore typically 

	

15 	limited to providing network layer level information. 

Pattern-matching parser techniques wherein a packet is parsed and pattern filters 

are applied also are known. These too are limited in how deep into the protocol stack 

they can examine packets. 

What is needed, therefore, is a network monitor that makes it possible to 

	

20 	continuously analyze all user sessions on a heavily trafficked network, remotely and in a 

noninvasive manner. Such a monitor should enable non-intrusive, remote detection, 

characterization, analysis and capture of all information passing through any point on the 

network, i.e., of all packets and all packet streams passing through any location in the 

network. Not only should all the packets be detected and analyzed, but for each of these 

	

25 	packets, the network monitor should determine the protocol (e.g., http, ftp, H.323, VPN, 

etc.,), the application/use within the protocol (e.g., voice, video, data, real-time data, 

etc.,) and an end user's pattern of use within each application or the application context 

(e.g., options selected, service level delivered, duration, time of day, data requested, and 

so forth). The network monitor also should not be reliant upon server resident 

	

30 	information such as log files. It should thus allows a user such as a network 

administrator or an Internet service provider (ISP) the means to objectively measure and 
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analyze network activity, customize the type of data that collected and analyzed, 

undertake real time analysis and receive timely notification of network problems. 

Some prior art packet monitors classify packets into connection flows. The term 

connection flow is sometimes used to describe all the packets involved with a single 

5 	connection. A conversational flow, on the other hand, is the sequence of packets that are 

exchanged in any direction as a result of an activity, for example, the running of an 

application on a server as requested by a client. It is desirable to be able to identify and 

classify conversational flows. 

Some conversational flows involve more than one connection, and some even 

io 	involve more than one exchange of packets between a client and a server. This is a 

particularly true when using client/server protocols, such as RPC, DCOMP, and SAP, 

that enable a service to be set up or defined prior to any use of that service. For example, 

SAP (Service Advertising Protocol) is a NetWare (Novell Systems, Provo, Utah) 

protocol used to identify the services and addresses of servers attached to a network. In a 

15 	first exchange, a client sends a SAP request to a server, for example, for print service. 

The server sends a SAP reply that identifies a particular address, for example, SAP #5, as 

the print service on that server. Such may be responses used to update a table, for 

example in a router, known as the Server Information Table. A client who has 

inadvertently seen this reply or who has access to the table (via the router that has the 

20 	Server Information Table, for example) would know that SAP #5 for such this server is a 

print service. Therefore, in order to print data on the server, such a client does not need 

to make the request for a print service, but simply to send data to be printed specifying 

SAP #5. This sending of data to be printed again involves an exchange of data between a 

client and a server, disjoint from the previous exchange which was with a different client 

25 	setting up that SAP #5 is a print service on this server is a second connection. It is 

desirable for a network packet monitor to be able to "virtually concatenate" the first 

exchange that defines SAP #5 as the print service on the server with the second exchange 

that uses the print service. The two packet exchanges would then be correctly identified 

as being part of the same flow if the clients were the same. They would even be 

30 	recognized if the clients were not the same. One feature of the invention is to so correctly 

identify the second exchange as being associated with a print service on the server. 
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Other protocols that are similar in that they may lead to disjointed conversational 

flows include DCOM (Distributed Component Object Model), formerly called Network 

OLE (Microsoft Corporation, Redmond, Washington), which is Microsoft's technology 

for distributed objects, RPC (Remote Procedure Call), and CORBA (Common Object 

5 	Request Broker Architecture). RPC is a programming interface from Sun Microsystems 

(Palo Alto, California) that allows one program to use the services of another program in 

a remote machine. DCOM defines the remote procedure call which allows those objects 

to be run remotely over the network. DCOM Microsoft's counterpart to CORBA, a 

standard from the Object Management Group (OMG) for communicating between 

to 	distributed objects (objects are self-contained software modules). CORBA provides a 

way to execute programs (objects) written in different programming languages running 

on different platforms no matter where they reside in the network. 

Prior art network monitors do not presently have the ability to recognize such 

disjointed flows as belonging to the same conversational flow. 

15 	 The data value in monitoring network communications has been recognized by 

many inventors. Chiu, et al., describe a method for collecting information at the session 

level in a computer network in United States Patent 5,101,402, titled "APPARATUS 

AND METHOD FOR REAL-TIME MONITORING OF NETWORK SESSIONS AND 

A LOCAL AREA NETWORK." Phael describes a network activity monitor that 

20 	processes only randomly selected packets in United States Patent 5,315,580, titled 

"NETWORK MONITORING DEVICE AND SYSTEM." Nakamura teaches a network 

monitoring system in United States Patent 4,891,639, titled "MONITORING SYSTEM 

OF NETWORK." Ross, et al., teach a method and apparatus for analyzing and 

monitoring network activity in United States Patent 5,247,517, titled "METHOD AND 

25 	APPARATUS FOR ANALYSIS NETWORKS," McCreery, et al., describe an Internet 

activity monitor that decodes packet data at the Internet protocol level layer in United 

States Patent 5,787,253, titled "APPARATUS AND METHOD OF ANALYZING 

INTERNET ACTIVITY," 
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SUMMARY 

One aspect of the present invention is providing a network monitor that can 

recognize and classify at all protocol layer levels conversational flows that pass in either 

direction at a point in a network. 

5 	 Another aspect of the present invention is providing a network monitor that can 

recognize and classify at all packets that are exchanges between a client and a server into 

respective client/server applications. 

Another aspect of the present invention is providing a network monitor that can 

determine the connection and flow progress between clients and servers by the individual 

to 	packets exchanged over a network. 

Another aspect of the present invention is providing a network monitor that can 

determine the connection and flow progress between clients and servers by the individual 

packets exchanged over a network. 

Another aspect of the present invention is providing a network monitor that can 

15 	be used to help tune the performance of a network according to the current mix of 

client/server applications needing network resources. 

A still further aspect of the present invention is providing a network monitor that 

can maintain statistics relevant to the mix of client/server applications using network 

resources. 

20 	 Another aspect of the present invention is providing a network monitor that 

reports on the occurrences of specific sequences of packets used by particular 

applications for client/server network conversations. 

Another aspect of an embodiment of the invention is properly analyzing each of 

the packets exchanged between a client and a server and maintain information relevant to 

25 	the current state of each of these conversations. 

Another aspect of an embodiment of the invention is a flexible processing system 

that can be tailored or adapted as new application entered the client/server market. 

Another feature of an embodiment of the invention is maintaining statistics 
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relevant to the conversations in a client/server network as their classified by an 

individual application. 

Another feature of an embodiment of the invention is reporting a specific 

identifier, which may be used by other network, oriented devices to identify the series of 

5 	packets with a specific application for a specific client/server network conversation. 

Additional features and advantages of the invention will be clear from the 

description which follows. 

In general, the embodiments of the present invention overcome the problems and 

disadvantages of the prior art. 

to 	More aspects and advantages of the present invention are set forth in part in a 

description that follows, and in part are obvious from a description, or may be learned by 

practice of the present invention. The objects and advantages of the present invention 

may be realized by the elements and combinations particularly pointed out in the 

appended claims. 

15 	 Embodiments of the present invention overcome the problems and disadvantages 

of prior art and achieves the objects of the present invention by analyzing each of the 

packets passing through any point in the network in either direction, extracting a 

signature for th conversation which may then be used for identifying the conversational 

flows. Another feature of the invention is forming and remembering the state of any 

20 	conversational flow, which is deteti 	lined by the relationship between individual packets 

of the conversational flow and the entire conversational flow over the network. By so 

remembering the state of a flow, a feature of the invention is to the determine the context 

of the conversational flow, including the application program it relates to and such 

parameters as the time, length of conversation, data rate, etc. 

25 	 A monitor embodiments of the present invention determine the identities of any 

and all application programs executing on the network by evaluating each and every 

packet conversing between clients and servers. In one embodiment, the monitor 

comprises parser that includes a packet parsing module, and an identifying information 

extracting module to faun a signature from a packet received by the parser. The monitor 

30 	further comprises an analyzer which receives the signature from the parser and comprises 
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a flow lookup/update engine, a flow insertion and deletion engine, a state processor, a 

cache and a unified memory controller. Each of these analyzer elements work in parallel 

to create and update flow recognition signatures. The monitor is scalable to handle more 

protocols and applications. As a flow signature is examined by the monitor, the lookup 

5 	engine attempts to find the signature in a flow-entry database. If the first part of the flow 

matches an already identified signature that resides in the cache, the lookup engine 

retrieves the flow from the cache, else if the first part of the flow matches an already 

identified signature that is not in the cache, it retrieves the flow from a flow database. 

The flow entry for previously encountered flows preferably includes state information, 

10 	and this state information is used in the state processor to execute any operations defined 

for the state, and to determine the next state. The flow entry is updated by adding values 

to counters in the flow-entry database entry. If a flow does not exist, the protocol is 

identified and the state processor starts executing whatever operations are defined for the 

initial state. The state processor sends a flow signature to the flow insertion and deletion 

15 	engine that adds the flow to the database as a new item. The state processor updates the 

flow based on the current state and the flow-signature information. The state processor 

processes single and multi packet protocol recognition. It may have to search through a 

series of possible states to determine the flow's actual state. The result of this processing 

is a consolidated flow entry. This enables the monitor to correctly determine disjointed 

20 	flows. For example, a PointCast session (PointCast, Inc., Cupertino, CA) will open 

multiple conversations packet-by-packet that might look like separate flows to prior art 

monitors. However, each of these connections is merely a sub-flow under the PointCast 

master flow, so a single flow that consolidates all of the information for the flow is 

desired. The analyzer is able to so consolidate individual connections since the state of 

25 	the overall flow is maintained by the monitor. The unified memory controller can be 

setup to work with various memory device types and controls an SRAM tag memory for 

shadowing of flow entries. The cache is used to optimize memory bandwidth. On a 

typical network, the packets will have a certain amount of congruity so a cache 

architecture can have a relatively high hit rate. 

30 Invention Overview 

A real-time traffic classification system, which has the ability to derive the 
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application or service being used over the data communications network, comprises the 

following modules found in Fig. 10 and Fig. 11. A pattern analysis and recognition 

engine 1006, a pattern extraction engine 1007, a unique signature generation engine 

(elements of 1007), a signature matching engine 1107, a protocol and layer identification 

5 	engine (elements of 1107), the state oriented processing engine 1108, the derived set of 

rules 1109 and a set of active and in process signatures and records (Fig. 3, 319). The 

pattern analysis and recognition engine 1006 is used to derive and determine the type of 

network packets that exist on the network. Once a pattern match has occurred, the pattern 

is passed on to the pattern extraction engine 1007 for the generation of a signature. The 

10 	pattern extraction engine extracts components from each of the packets required in the 

formation of unique signature. Once these elements have been extracted from the 

packets, the information is passed on to the unique signature generation engine 1007. 

The signature generation engine then sequences and formats the extracted information 

into a unique signature that will be used to identify other packets within the same 

15 	conversation on the network. The contents of the unique signature are passed on to a 

matching engine 1107, which looks up the signature from the database of currently 

known conversations or flows. If the signature-matching engine determines an existing 

conversation, information is passed on to update the contents of the record in the 

database and processing is teiminated for this packets 1112. If either no match is found 

20 	or a match is found with remaining state or rules to be processed, the protocol layer 

identification engine 1107 is initiated to derive the layering involved in the packets. With 

the layering information interpreted and understood, the system begins the process of 

protocol application identification. This process is initiated by the state oriented 

processing engine 1108. This processing engine uses a set of derive states or rules to 

25 	apply to each of the individual packets 1109 and signature these to determine the extent 

of the application used in the conversation. When the processing engine determines the 

application component of a conversation, that information is updated in the conversation 

record for this particular flow. In this way, multiple packets from a conversation can be 

used to derive the application component of a particular set of packets exchanged 

30 	between nodes in a network. In addition to maintaining the actual application 

information relative to conversation in a network, the system maintains real-time 

statistics relevant to these applications. 
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Packet Parsing Sub-System 

The packet parsing system consists of two main sub engines. These engines are 

the pattern analysis and recognition engine (PAR) and the field extraction engine (FEE). 

The pattern analysis and recognition engine interprets each packet that is seen 

5 	entering the system. As individual fields from each packet enter the system the field 

contents are analyzed for specific patterns. As more fields under the system fewer pattern 

to remain to be analyzed and through the process of elimination particular pattern for 

packet is found. 

The patterns for this engine are stored in a special pattern database. The pattern 

to 	database contains a sparsely populated three-dimensional array of patterns and links to 

additional those beyond the patterns that are being currently analyzed. Because this is a 

sparsely populated three-dimensional array, as patterns enter the system the depth of 

nodes is eliminated rapidly. Once a node does not contain a link to a deeper level, the 

pattern matching is complete. At that point, the field extraction engine instruction found 

15 	at that node in the array is sent to the field extraction engine with this packet. 

The field extraction engine takes the packet contents and the extraction 

instructions from the pattern analysis and recognition engine to continue processing the 

packet. Each of the elements found within the instructions of the field extraction engine 

component are removed from the packet and inserted into a buffer for signature 

20 	generation. Once all the operations requested of the field extraction engine are completed 

for this packet, the signature is set as complete, and a hash key is generated to identify 

this signature. 

Packet Analysis Sub-System. 

When the parsing system has successfully completed the task of deriving, 

25 	determining and extracting the required information, the remaining pieces of the packet 

and the generated signature for the packet are passed to the packet analysis system. 

All of these elements from the packets are formulated into a flow signature and 

stored in the unified flow key buffer of the packet analysis system. This buffer is 

designed to maintain and hold multiple flow signature is from the packets being analyzed 

30 	in a client/server network. While the flow signature of a packet exists in the unified flow 
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key buffer, several operations are performed to further derive the application content of 

the packet involved in the client/server conversation. 

The first step in the process of packet analysis is to look up the instance in the 

current database of known flow signature ease for packets. The look up/update engine 

5 	accomplishes this task. This engine uses the hash key and remaining fields of the flow 

signature from the packet to determine if this packet is flow record exists in the flow 

database of the packet analysis system. Once the look up processing has been completed 

the flag stating whether it was found or is new, will be set within the unified flow key 

buffer structure for this packet flow signature. 

10 	After the packet flow signature has been looked up and contents of the current 

flow signature database tree, the state processor will begin analyzing the packet payload 

to further derive the application component of this packet. The exact operation of the 

state processor and functions performed by at will very depending on the current packet 

seek once in the stream of a conversation. The state processor will performed the next 

15 	logical operation that was stored from the previous packet seen with this same flow 

signature. If any processing is required on this packet, the state processor will execute 

state processor instructions from the state processor instruction database until they're 

either are no more left for this packet or the instruction signifies and processing for this 

packet. 

20 	 Since the seek once love packet exchanges between client and server is crucial in 

deriving the application component of a conversation, the state processor functions are 

required to be variable and program. Each new application that exists on the network 

may have different characteristics for identifying the components within packets. The 

state processor functions take into consideration this variable method of communicating 

25 

	

	in a client/server network. The actual operations performed by the state processor are 

described in the section under state processor instruction database operations. 

If during the look up process for this particular packet flow signature, the flow is 

required to be inserted into the active database, the flow insertion and deletion engine is 

initiated. This engine operates independently from the other two engines within the 

30 	analysis system. The look up update engine will determine whether the flow insertion 

and deletion engine is required to operate for particular packet flow signature. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is more fully understood from the detailed preferred 

embodiments of the present invention, and should not be taken to limit the present 

invention to any specific embodiment because such are provided only for explanation 

5 	and better understanding. The embodiments, in turn, are explained with the aid of the 

following figures. 

Fig. 1 is a functional block diagram of a network embodiment of the present 

invention in that a monitor is connected to analyze packets passing at a connection point; 

Fig. 2 is a diagram representing an example of some of the packets and some 

10 	types of packet formats of the packets that might be exchanged in exchanged in starting 

an illustrative example conversational flow between a client and server on a network 

being monitored and analyzed. A pair of flow signatures particular to this example and to 

embodiments of the present invention are also illustrated and represent the one or many 

flow signatures that can be generated and used in the process of analyzing packets and 

15 	recognizing the particular server applications that produce the discrete application packet 

exchanges; 

Fig. 3 is a functional block diagram of a process embodiment of the present 

invention that can operate as the packet monitor shown in Fig. 1. This process may be 

implemented in software or hardware; 

20 	 Fig. 4 is a flowchart of a high-level protocol language compiling and 

optimization process which in one embodiment may be used to generate data for 

monitoring packets according to versions of the present invention; 

Fig. 5 is a flowchart of a parsing system process embodiment of the present 

invention that can form part of the parser in the inventive packet monitor; 

25 	 Fig. 6 is a flowchart of a packet element extraction process embodiment of the 

present invention that can form part of the parser in the inventive packet monitor; 

Fig. 7 is a flowchart of a flow-signature building process embodiment of the 

present invention that can form part of the parser in the inventive packet monitor; 
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Fig. 8 is a flowchart of a monitor lookup and update process embodiment of the 

present invention that can form part of the analyzer in the inventive packet monitor; 

Fig. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call 

application than may be recognized by the inventive packet monitor; 

5 	Fig. 10 is a functional block diagram of a hardware parser sub-system including 

the pattern recognizes and extractor that can form part of the parser module in the 

inventive packet monitor; 

Fig. 11 is a functional block diagram of a hardware analyzer including a state 

processor can form part of the inventive packet monitor; 

10 	 Fig. 12 is a functional block diagram of a flow insertion and deletion engine 

process that can form part of the analyzer in the inventive packet monitor; 

Fig. 13 is a flowchart of a state processor embodiment of the present invention 

that can form part of the analyzer in the inventive packet monitor; 

Fig. 14 is a simple functional block diagram of a process embodiment of the 

15 	present invention that can operate as the packet monitor shown in Fig. 1. This process 

may be implemented in software; 

Fig. 15 is a functional block diagram of how the packet monitor of Fig. 3 (and 

Figs. 10 and 11) may operate on a network with a host processor.; 

Fig. 16 is an example of the top (MAC) layer of a packet and some of the 

20 	elements that may be extracted to form a signature according to one aspect of the 

invention; 

Fig. 17 is an example of the header of an Ethernet packet and some of the 

elements that may be extracted to form a signature according to one aspect of the 

invention; 

25 	 Fig. 18 is an example of the IP header of in the Ethernet packet shown in Fig. 17 

and some of the elements that may be extracted to form a signature according to one 

aspect of the invention; 
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Fig. 19 is functional block diagram of the Unified Flow Key Buffer component of 

the Analyzer sub-system of Fig. 11; 

Fig. 20 is top level block diagram of the state processor component of the 

Analyzer sub-system of Fig. 11; 

	

5 	Fig. 21 is data flow block diagram of the state processor component of the 

Analyzer sub-system of Fig. 11; 

Fig. 22 is top level block diagram of the search engine component of the 

Analyzer sub-system of Fig. 11; 

Fig. 23 is data flow block diagram of the search engine component of the 

	

10 	Analyzer sub-system of Fig. 11; 

Fig. 24 is a flow chart of the process of compiling high level language files 

according to an aspect of the invention; and 

Fig. 25 shows various PDL file modules to be compiled together by the 

compiling process illustrated in Fig. 24 as an example, in accordance with a compiling 

	

15 	aspect of the invention. 

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 

Note that this document includes hardware diagrams and descriptions that may 

include signal names. In most cases, the names are sufficiently descriptive, in other cases 

the signal names are not needed to understand the operation and practice of the 

	

20 	invention. Also, the term MeterFlow is to be understood to mean the preferred 

embodiment of the invention. 

Fig. 1 represents a system embodiment of the present invention that is referred to 

herein by the general reference numeral 100. The system 100 has a network 102 that 

communicates packets (e.g., FP datagrams), between various computers, for example 

	

25 	between the clients 104-107 and servers 110 and 112. The network is shown 

schematically as a cloud with several network nodes and links shown in the interior of 

the cloud. A monitor 108 examines the packets passing in either direction by its 

connection point 121 and, according to one aspect of the invention, can elucidate what 

application programs are associated with each packet passing by connection point 121. 
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The monitor 108 is shown examining packets (i.e., datagrams) between the network 

interface 116 of the server 110 and the network. The monitor can also be placed at other 

points in the network, such as connection point 123 between network interface 118 of the 

client 104, or some other location, as indicated schematically by connection point 125 

5 	somewhere in network 102. Not shown is a network packet acquisition device at the 

location 123 on the network for converting the physical information on the network into 

packets for input into monitor 108, and such packet acquisition devices are common. 

Various protocols may be employed by the network to establish and maintain the 

required communication, e.g., TCP/IP, etc. Any network activity, for example an 

to 	application program run by the client 104 (CLIENT 1) communicating with another 

running on the server 110 (SERVER 2) will produce an exchange of a sequence of 

packets, called a conversational flow, over network 102 that is characteristic of the 

respective programs and of the network protocols. Such characteristics may not be 

completely revealing at the individual packet level. It may require the analyzing of many 

15 	packets by the monitor 108 to have enough information needed to recognize particular 

application programs. The packets may need to be parsed then analyzed in the context of 

various protocols , for example, the transport through the application session layer 

protocols for packets of a type conforming to the ISO layered network model. 

Communication protocols are layered, which is also referred as a protocol stack. 

20 	The ISO (International Standardization Organization) has defined a general model which 

provides a framework for design of communication protocol layers. This model serves as 

a basic reference for understanding the functionality of existing communication 

protocols. 
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ISO MODEL 

Layer Functionality Example 

7 Application Telnet, NFS, Novell NCP, HTTP, 

H.323 

6 Presentation XDR 

5 Session RPC, NETBIOS, SNMP, etc. 

4 Transport TCP, Novel SPX, UDP, etc. 

3 Network IP, Novell IPX, VIP, AppleTalk, etc. 

2 Data Link Network Interface Card (Hardware 

Interface). MAC layer 

1 Physical Ethernet, Token Ring, Frame Relay, 

ATM, Ti (Hardware Connection) 

Different communication protocols employ different levels of the ISO model or 

may use a layered model which is similar to but does not exactly conform to the ISO 

mode. A protocol in a certain layer may not be aware to protocols employed at other 

	

5 	layers. For example, an application (Level 7) may not be able to identify the source 

computer for a communication attempt (Levels 2-3). 

Every packet passing the connection point 121 is looked at by the monitor 108 

for analysis. But not every packet carries the same information useful for recognizing all 

levels of the protocol, up to level 7, recognizing its associated application program. For 

	

10 	example, in a conversational flow associated with a particular application, the 

application will cause the server to send a type-A packet, but so will another. But if the 

particular application program will always follow this up with the sending of a type-B 

packet and the other application programs do not, then in order to recognize packets of 

that application's conversational flow, the monitor can engage itself in a search for 

	

15 	packets that match the type-B packet to associate with the type-A packet. If such is 

spotted, then the particular application program's conversational flow has started to 
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reveal itself to the monitor 108. Further packets may need to be examined before the 

conversational flow can be identified as being associated with the application program. 

Typically, monitor 108 is simultaneously also in partial completion of identifying other 

conversations that are parts of conversational flows associated with other applications. 

5 	One aspect of monitor 108 is its ability to maintain the state of a flow. The state of a 

flow is an indication of all previous events in the flow that lead to recognition of the 

content of all the protocol levels, e.g. the ISO model protocol levels. Another aspect if 

forming a signature of extracted characteristic portions of the packet that can be used to 

rapidly identify packets belonging to the same flow. 

10 	 In real-world uses of the monitor 108, the number of packets on the network 102 

passing by the monitor 108's connection point can exceed a million per second. In such 

case, the monitor has very little time available to analyze and type each packet and 

identify and maintain the state of the flows passing through the connection point. The 

monitor 108 must therefore mask out all the unimportant parts of each packet that will 

15 	not contribute to its classification. But the parts to mask-out will change with each 

packet depending on which flow it belongs to and depending on the state of the flow. 

The recognition of type of packet and eventually of the associated application 

programs by the packets that their executions produce is a multistep process within the 

monitor 108. At a first level, several application programs will all produce a first kind of 

20 	packet, for example. A first "signature" is produced that will allow monitor 108 to 

efficiently identify any packets that belong to the same conversational flow. In some 

cases, that packet type may be sufficiently unique to enable the monitor to identify the 

application that generated such a packet in the conversational flow. They signature can 

then be used to efficiently identify all future packets generated in traffic related to that 

25 	application. In other cases, that first packet only starts the process of analyzing the 

conversational flow, and more packets are necessary to identify the associated 

application program. In such a case, a follow-on packet of a second packet type but 

which may belong to the conversational flow is recognized, using the signature, then at 

such a second level, only a few of those application programs will have conversational 

30 	flows that can produce such a second packet type. At this level in the process of 

application classification, all application programs that are not in the set of those that 
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lead to such a second packet type following the first packet type may be excluded in the 

process of classifying the conversational flow that includes these two packets. A 

signature is produced that allows recognition of any future packets that may follow on in 

the conversational flow according to the known patterns for the protocol and for the 

	

5 	possible applications. It may be that the application is now recognized, or recognition 

may need to proceed to a third level of analysis of those packets that are selected using 

the second level signature. Therefore, for each packet, the monitor parses the packet, 

generates a signature from the packet to determine if this signature identified a 

previously encountered conversational flow or shall be used for to recognize future 

	

10 	packets belonging to the same conversational flow, and in real time, the packet is further 

analyzed in the context of the sequence of packets so far encountered (the state) and the 

possible future sequences such a past sequence may generate in conversational flows 

associated with different applications until the applications are identified. The signature 

may then be used to efficiently recognize future packets associated with the same 

	

15 	conversational flow. Such an arrangement makes it possible for the monitor 108 to cope 

with millions of packets per second that must be inspected. 

Another aspect of the invention is adding Eavesdropping. In alternative 

embodiments of the present invention capable of eavesdropping, once the monitor 108 

has recognized the particular application programs executing passing through some point 

	

20 	in the network 102, for example because of execution of the applications by the client 

105 or server 110, the monitor sends a message to some general purpose processor on the 

network that can input the same packets from the same location on the network, and the 

processor then loads its own executable copy of the application program and uses it to 

read the content being exchanged over the network. In other words, once recognition of 

	

25 	the application program has been accomplished by the monitor 108, eavesdropping can 

commence. 

Fig. 3 represents a network packet monitor 300, in an embodiment of the present 

invention that can be implemented with computer hardware and/or software. The system 

300 is similar to monitor 108 in Fig. 1. A packet 302 is examined, e.g., from a packet 

	

30 	acquisition device at the location 121 in network 102 (Fig. 1), and the packet evaluated, 

for example in an attempt to determine its characteristics, e.g., all the protocol 
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information in a multilevel model, including what server application produced the 

packet. The packet acquisition device is a common interface that converts the physical 

signals and then decodes them into bits, and into packets, in accordance with the 

particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to 

	

5 	the monitor 108 the type of network of the acquired packet or packets. A parser sub- 

system 301 examines the packets using pattern recognition process 304 and recognizes 

pattern information in the packet 302. A process 306 in parser sub-system 301 extracts 

signature information from the packet 302. Both the pattern models for parsing and the 

related extraction masks are supplied from a parsing pattern structures and extraction 

	

10 	operations database 308 filled by a compiler and optimizer 310. In an alternate 

embodiment, the contents of database 308 may be otherwise generated. A process 312 in 

parser sub-system 301 builds a unique conversational flow signature from the extracted 

information. The signature is then analyzed in analyzer sub-system 303. In analyzer sub-

system 303, a process 314 uses the newly built conversational flow signature in a lookup 

	

15 	of preexisting conversational flow signatures in which the associated state of any 

previously encountered flow is stored. Note that the lookup may be from a flow signature 

buffer (called flow key buffer) or from a cache or from the externally kept database of 

known flows 324. A process 316 steers control to a process 318 if the conversational 

flow signature is a new one, after which the protocol is determined from the extracted 

	

20 	information and with reference to a database 326 of state patterns and processes. 

Otherwise, a process 320 determines, from the state in the looked-up conversational flow 

signature information, if more classification by state processing of the conversational 

flow signature is necessary. If no, a process 322 updates a flow-entry database 324 with 

the new conversational flow signature, and otherwise, and also in the case of the new 

	

25 	flow signature, a state processing process 328 is commenced. 

The flow-entry database 324 stores flow entries with a 128-byte pattern for each, 

which includes for updated flows the unique flow-signature, state information and 

extracted information from the packet. Each entry completely describes a flow. Such 

database is organized into buckets that each contain a number, denoted N, of flow 

	

30 	entries, with N being 4 in the preferred embodiment. Buckets are accessed via a hash 

data value created by the parser subsystem, i.e., by the parser/extraction engine/key 

builder part of the system based on information in a packet. Such hash spreads the flows 
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across the database and is preferably based on a hashing algorithm. Such technique 

allows for fast lookups of entries, allowing shallower buckets. The designer selects the 

bucket depth N based on the amount of memory attached to the monitor, and the number 

of bits of the hash data value used. For example, for 128K flow entries, 16M bytes are 

5 	required. Using a 16-bit hash gives two flow entries per bucket. Such has been 

empirically shown to be more than adequate for the vast majority of cases. 

Still in the analyzer sub-system 303, the process 318 identifies the protocol in use 

that produced the original packet from the data extracted by the identifying information 

extractor 306 and using a collection of state patterns and processes 326. 

10 	 In both the case that the flow is a new one, and that it is one previously 

encountered requiring further analysis, a state processor 328 carries out any state 

operations specified for the state of the flow and updates the state to the next state 

according to a set of state instructions obtained form the state pattern and processes 

database 326. 

15 	 The network traffic monitor 300 provides for single packet protocol recognition 

of flows, and, by maintaining the state of the flows and also by knowing that for some 

types of flows, new flows may be set up using the information from previously 

encountered flows that were it not for the system knowing that this at first apparently 

unassociated flows may be used to characterize other flows, the network traffic monitor 

20 	300 allows for multiple packet protocol recognition of flows even with disjointed sub- 

flows that occur in serve announcement type flows. In the case of a new flow, it further 

provides for the new flow as identified by a flow signature to be sent to the flow 

insertion and deletion engine to add the flow to the database as a new item. Again in the 

case of a new flow, for some types of protocols, the new flow is associated with 

25 	previously encountered flows. The analyzer sub-system 303 determines current state of a 

flow, and further providing for a consolidated flow entry in the flow-entry database. The 

state processor 328 analyzes both new and existing flows in order to analyze all levels of 

the protocol stack, ultimately classifying the flows by application (level 7 in the ISO 

model). It does this by proceeding from state-to-state based on predefined state transition 

30 	rules and state operations. A state transition rule is a rule typically containing a test 

followed by the next-state to proceed to if the test is true, and an operation is an 
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operation to be performed while the state processor is in a particular state, for example in 

order to evaluate a quantity needed to apply the state transition rule. The state processor 

goes through each rule until the test is true, or there are no more tests to perform. The 

state processor starts the process by using the last protocol recognized by the parser as an 

	

5 	offset into a jump table. The jump table finds the state processor instructions to use for 

that protocol in the state patterns and processes database 328. Most instructions test 

something in a unified flow signature buffer, or the flow entry in the database of known 

flows 324 if it exists. The state processor may have to test bits, do comparisons, add or 

subtract to perform the test. 

	

to 	In the preferred embodiment, a cache is used which intercepts all requests to the 

flow database 324 to speed access. 

In state processing, a process 330 decides if more operations are needed in order 

to find a unique flow signature for the application. If not, a process 332 decides if there 

are states to be analyzed for this type of flow according to the state of the flow and the 

	

15 	protocol, in order to fully characterize the flow. If not, a process 334 finalizes the 

classification of the conversational flow. 

In the preferred embodiment, the database of parsing patterns and extraction 

operations 308 and the database of state patterns and state processes are generated by an 

optimizing compiler 310 from protocol description language 336 and a selection of 

	

20 	packet layers 338. 

Referring again to the compiler 310 (Fig. 3), the compilation process includes 

creating the parsing patterns and operations needed in pattern recognition process 304 

and the extraction operations needed in process 306, and information for the analyzer 

subsystem 303 on identifying protocols and what state transitions and processes to carry 

	

25 	out when a packet is determined to be in a particular state, in order maintain state to 

enable analyzing flows beyond single-packet-type conversational flows. The compiler 

and optimizer 310 uses as input files (336 and 338) that describe each of the particular 

areas of a packet that require decoding for each protocol and application. Files 336 are 

the protocol description files written in a high-level protocol description language (PDL) 

	

30 	by a user who is familiar with protocols and packet structure. File 338 includes 
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commands to indicate which of the protocols are to be converted into databases 308 and 

326. 

By maintaining the datagram layer selections and the protocols in a high level 

language, the user, for example the network administrator or the Internet service 

	

5 	provider, can include new protocols or new application programs as they become known, 

or modify existing protocols and applications as their specifications are modified, thus 

enabling network traffic monitor 300 to classify flows involving such protocols or 

applications. The compiler implementation of the invention thus provides for ease of 

maintenance. 

	

10 	 For example, Ethernet packets can use several different information formats, but 

one basic format recurs constantly. A starting Ethernet file of datagram layer selections 

includes what patterns to look for and identifies what elements need to be parsed or 

extracted. The parsing job includes decoding the frame, extracting the source and 

destination address, and then determining the particular protocol from one of the fields. 

	

15 	 The contents of the protocol field can cause one of several processing branches to 

be taken. One branch is for an Ethernet version 2 packet. Another branch can cause the 

protocol field to be looked at for IEEE-type Ethernet packet decoding. An Ethernet type-

2 packet branch directs the parser to check to see if the protocol type is within a certain 

range. 

	

20 	 Such parser checking instructions are described in a protocol language included 

in embodiments of the present invention. All the possible daughter packets for a parent 

packet are produced at a compiler output. Such daughter packets define the meaning of 

specific values in the protocol type field, e.g., for a next node to be decoded. A next 

node, or daughter packet, for an Ethernet type-2 packet may be an IP-type protocol. The 

	

25 	data value extracted is hexadecimal 0800, and such would cause the parsing system to 

decode IP. 

Various included files are used to guide IP-packet decoding. The locations of 

particular elements that need to be extracted from the packet header are predefined, 

including the network layer addresses, protocol type, etc. Such files also include models 
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of the possible daughter packets of the IP-protocol, according to the values found in the 

protocol field for the IP-header. 

If the particular IP-protocol is TCP, various file elements can be extracted that 

will tell the compiler and organizer 310 that a connection is about to occur. For TCP/IP, 

	

5 	the files have the port values in the connection identifier areas. The compiler and 

organizer 310 then can evaluate the data transferred to those ports. 

As an example, a particular daughter packet including a port data value is used in 

Microsoft Exchange DCOMP/DCE-RPC. When a data value is found that is known to 

correspond to DCE-RPC, for example, the compiler and organizer 310 will thereafter be 

	

10 	able to evaluate the file as a Microsoft Exchange DCE-RPC file. During the exchange of 

packets in a flow, the states that occur will follow a familiar sequence and are recorded 

in a file earmarked for Microsoft Exchange DCOMP/DCE-RPC. 

To continue with the illustrative example, a first state record can be used to 

determine whether or not a particular flow is connecting. If it is, a sequence of operations 

	

15 	can run on the incoming packets to determine if the application is running on top of 

DCOMP. If one of the later daughter packets reaches a state that is described in a 

DCOMP file, an application identifier is attached to the flow by the state processor. Once 

an application identifier is attached, a removal or tear-down state is included for the 

particular flow in case such flow may disappear, as is the case when a flow lives across 

	

20 	multiple connections. If such flow is able to disappear, information is provided as to 

what states will occur, and in what sequence the packets occur to tear down the flow. 

In the example of Microsoft Exchange DCOMP, flows can live beyond multiple 

connections or multiple sessions. So once a flow has been learned, it is saved in a flow 

record. The flow signature is used to point to one of the three applications that can run 

	

25 	on top of Microsoft Exchange. These are described in a DCOMP file accessible by the 

compiler and organizer 310, and the information content of which is included in the 

database 305 of pattern structures and operations. 

The parser sub-system 301 extracts flow signature information at each level in a 

flow hierarchy tree climb. Specific flow-signature elements at specific levels can be used 

	

30 	to build a flow signature that is compact and efficient. At the base level, the packet 
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acquisition device includes information on the type on network. For example, if it was 

indicated to the parsing sub-system that an Ethernet frame has been received, then in the 

parsing sub-system, in accordance with the contents of database 305, the source and 

destination addresses, locations, and sizes, are commanded to be extracted. Ethernet 

5 	frames have end-point addresses that are useful in building flow signatures. 

If on the other hand, the packets were frame-relay type packets, as indicated by 

the packet acquisition device and recognized by the parser, then, from information in 

database 305, the parser knows that for a frame-relay base layer, there are no specific 

end-point addresses that can help identify a flow. So for those types of packets, the 

10 	database 305 instructs the parser sub-system 301 not to try to extract any end-point 

addresses. 

In the base layer, the parser needs some identifier where the values for the next 

nodes are located. Ethernet has a protocol-type field. Frame relay has a protocol-like 

field in a control header. Identifying fields are used to determine what the next layer will 

15 	be. For Ethernet, there can be a network layer, some type of encapsulation, e.g., LLC 

802.2, IEEE 802.3, V2-Ethernet, or even IP (a network layer). 

The parsing sub-system, e.g., pattern recognition process 304, needs to be told 

where to get the IP-destination and source addresses end-point data for a network layer to 

build an improved flow signature. The size and location of such elements are specified in 

20 	an IP-file. At the network layer, information is specified as to where to look for a next 

possible node, and could be an end-point node as in ICMP. 

The TCP connection protocol uses "connection identifiers" in every packet in a 

flow, but not necessarily in the same location in every packet. Packets can therefore be 

identified as being a part of a particular flow. And whether or not to apply states that deal 

25 	with connections or disconnections that exist in the next layer up to these particular 

packets. It tells what those connection identifiers are, where they are and what their 

length is. In the TCP/IP-example, these are port numbers. It also tells us whether or not 

states that apply to connections and disconnections apply to this particular packet. Also it 

tells us what the possible daughter packets are. So at each of these levels, we are learning 

30 	what there is in the packets that we can reapply over and over again to packets of this 

particular flow. 
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The compiler and organizer 310 will take all of the information that it gets from 

the individual descriptions of all possible protocols and all possible levels, and it will 

generate a series of elements, or instructions or operations that are stored in database 305 

and that the parser then performs on every packet that it receives. Alternatively, a user 

5 	can build the pattern structures and extraction operations for database 305 directly. 

However, the non-compiler version clearly is not as flexible as the version that includes 

the compiler. 

Those operations, instructions or elements in database 305 not only tell the parser 

subsystem 301 what to look for and what it is that it's looking at, but also tells the parser 

10 	subsystem 301 whether there is specific information at an appropriate layer that needs to 

be extracted to build up the flow signature. In addition, it also will let the parser 

subsystem 301 know what the next element is that needs to come out and where the 

offsets (pointers to location in the packet) of those elements are. It also will help the 

parser set up the location of those elements in the signature in a way that is interpretable 

15 	by the analyzer subsystem 303 even when the locations change from packet to packet in 

the packets of the flow, depending, for example, on direction; or how they are evaluated, 

and what it is that they look like; and how they are formatted. In the preferred 

embodiment, for example, a source and destination address are always set up in the 

signature with the lower value address appearing first. The location to look for elements 

20 	related to these addresses are then changed in a consistent manner. In this way, the 

signature for an exchange of packets between a server and a client will have the 

addresses appearing in the same order so that the signature identifies the same or related 

flows no matter what the direction of packets. Upon the parsing process 308 determining 

that a particular element need to be extracted, it is then passed on to the extracting 

25 	engine, together with the packet. The extracting engine then extracts all the elements to 

determine the flow signature. 

The locations and the information extracted from packets are adaptively 

determined for particular packet types. There is no fixed definition of what to look for 

and where in order to form a flow signature. In prior art systems, fixed locations are 

30 	specified for particular types of packets. For example, in one prior art system, if a 

DECnet packet appeared, six specific fields at six locations in the packet are looked at in 
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order to identify the packet session. If an IP-packet appeared, six formatted into 

differently located fields were specified for an IP-packet. In the present invention, the 

number of levels is variable for any protocol. The number of layers is variable and is 

whatever number is sufficient to uniquely identify as high up a level in the system as we 

	

5 	wish to go, all the way to the application level in the so-called ISO-model. 

With the proliferation of all the new network protocols that is occurring in the 

world, it becomes more difficult to specify all the possible places to look at in a packet to 

determine a session type. In embodiments of the present invention, a high-level language 

is used for specifying new protocols and new levels, including new applications. The 

	

10 	compiler and organizer 310 describes at a machine level what information is relevant in 

packets that should be decoded. The parser and extraction systems (parser subsystem 

301) use such in their instructions and operations, so they can adapt, and be adapted to a 

variety of different kinds of headers, layers, and components and need to be extracted or 

evaluated, for example, in order to build up a unique flow signature. 

	

15 	 While the process steps shown in Fig. 3 can be implemented in software or 

hardware, the preferred embodiment is a hardware embodiment shown in Figs. 10 and 

11. An alternate simpler implementation is shown in Fig. 14, and this implementation is 

easily implemented in software. 

A type of prior art activity analysis is described by McCreery, et al. in United 

	

20 	States Patent 5,787,253. A packet analyzer "324" is diagrammed in Fig. 4C of that 

Patent. All packets coming off a wire are run through the analyzer "324". It begins by 

decoding the IP-packet, and then passes the results through a set of known filters "344". 

A select number of packets then trickle into a set of buffers "338". An application 

protocol translator "346" takes an accumulation of all of the data buffers with all the 

	

25 	packets collected, and then reconstructs them with a decoded packet recompiler "341". 

The decoded elements are attributed to transactions, and packets that are similar to one 

another are buffered up in data buffer "348". Packet analyzer "324" takes the 

transactions themselves that they again buffer up, and then use data sorter "340" to say 

"this is an application of some kind for this transaction." 

30 	 Embodiments of the present invention look at sequences of packets over time, 

and learn about the protocols and applications and maintain state, which results in simple 
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criteria that then can be applied in real time with adequate processing time. The 

McCreery, et al. method by buffering a number of patents provides only for "after the 

fact" analysis technique. A certain number of packets must be available before any 

analysis of those packets is possible. If the number of such packets is N- packets, then 

	

5 	there is always a delay of Npackets  before any results are possible. Also, a buffer of 

Npackets must be maintained. When a new packet arrives, that packet and all the 

previous (Npackets-1)  packets must be re-analyzed. 

The present invention automatically maintains flow records, which in one aspect 

includes storing states, the invention also and generates sets of patterns that can be used 

	

10 	recognize flows and then determining state in order to carry out state transition analysis 

in real time for each different protocol and application so the incoming packet 

information can be analyzed packet-by-packet. In a complex analysis, as more and more 

packets are examined, state transitions are traversed. The parsing system, and state 

operations build flow signatures that can easily be recognized and allow future packets 

	

15 	that are part of the same flow to have their state analysis continued from the state easily 

recognized from their flow signature. That is, these flow signatures are then used to 

recognize various processing states in the flows examined by matching them to 

previously constructed flow signatures. When enough packets related to an application of 

interest have been processed, a final recognition state is ultimately reached. A simple 

	

20 	flow signature can then be constructed for rapidly determining packet associations from 

a single packet belonging to that flow. 

Several state analyzers are preferably run in parallel so a large number of 

protocols and application may be checked for. Every known protocol and application 

will have at least one unique set of state transitions, and can therefore be uniquely 

	

25 	identified by watching such transitions. 

For every flow that has already been encountered, as indicated by a flow entry 

being present in the flow database, there are various criteria for recognizing a packet's 

particular state level. When each new flow starts, signatures that recognize the flow are 

automatically generated on-the-fly, and as further packets in the flow are encountered, 

	

30 	signatures are updated and the states of the set of state transitions for any potential 
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application are further traversed according to the state transition rules for the flow. The 

new states for the flow, these states associated with a set of state transitions for the one 

or more potential applications, are added to the records of previously encountered states 

for easy recognition and retrieval when a new packet in the flow is encountered. One of 

5 	the great advantages of the present invention is that once a particular set of state 

transitions has been traversed for the first time and ends in a final state, a short-cut 

recognition pattern can be generated that will key on every new incoming packet that 

relates to the conversational flow. A simple match can be made that saves much 

processing overhead, and allows high packet rates to be successfully monitored on the 

to network. 

In contrast, the prior art described in United States Patent 5,787,253, always has 

to start up by decoding the IP-packets and then go through all the steps for every new 

packet. Such system always has to go through every operation for each packet, and 

therefore uses the processing overhead for recognized flows and not-yet-recognized 

15 	flows. 

Example of Packet Elucidation 

One of the two major subsystems is the Analyzer sub-system 303. This 

component is responsible for creating and maintaining classified traffic flows, processing 

statistics for packets and flows, managing the traffic flow database and cache, and 

20 	performing state-based analysis of traffic flows. 

The processes required for recognizing and maintaining state information for 

traffic flows are now described. 

In order for the Analyzer 303 to successfully classify network traffic by 

application, there are several data elements required from each packet to be analyzed. 

25 	Prior to sending a packet of information to the Analyzer, all additional information must 

be formatted and sent along with the appropriate packet content. 

The Analyzer 303 must specifically receive each packets in a conversation in the 

order which they are exchange between the client and the server for proper state based 

classification. 
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Many conversational flows on a network that are associated with application 

have several states which must be remembered and maintained for proper traffic analysis 

and for traffic to be classified by protocols and application. 

In the embodiments of the invention, there are several different methods in place 

	

5 	for the creation of states in client/server network traffic. Even though there are several 

different methods for the creation of state. It is possible to isolate these different 

approaches into two basic categories. 

The first category is commonly referred to as "server announcement". In the 

server announcement mode there are messages which are put out onto the network, in 

	

10 	either a broadcast or multicast approach which, all stations in the network receive and 

decode to derive the appropriate connection point for communicating for that particular 

application, with the particular server. There are several examples for this type of server 

announcement implementation with state based protocols. Using the server 

announcement method, a particular application communicates using a service channel, in 

	

15 	the form of a TCP or UDP socket or Port as in the IP protocol suite, or using a SAP as in 

the Novell IPX protocol suite. 

The second category is referred to as "in-stream analysis". This method is used 

either as a primary or secondary recognition process. As a primary process, in-stream 

analysis assists in extracting detailed information which will be used to further recognize 

	

20 	both the specific application and application component. A good example of in-stream 

analysis is any Web-based applications. The commonly used PointCast Web information 

application can be recognized using this process. During the initial connection between a 

PointCast server and client, specific key tokens exist in the data exchange that will result 

in a signature for PointCast. 

	

25 	 The in stream analysis process may also be combined with the server 

announcement process. In many cases in stream analysis will augment other recognition 

processes. An example of combining in stream analysis with server announcement can 

be found in business applications such as SAP and BAAN. 

One of the primary processes for tracking applications in the stream of the 

	

30 	client/server packet exchange, is through session tracking. The process of tracking 
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sessions requires an initial connection to a predefined socket or Port number. This 

method of communication is used in a variety of transport layer protocols. It is most 

commonly seen in the TCP and UDP transport protocols of the IP protocol. 

During the process of session tracking, a client will make the request of a server 

	

5 	using a specific Port or socket number. This initial request will cause the server to create 

a TCP or UDP Port to exchange the remainder of the data between the client and the 

server. The server then replies to the request of the client using this newly created Port. 

The original Port used by the client to connect to server will never be used again during 

this data exchange. 

	

10 	 One of the best examples of session tracking is TFTP (Trivial File Transfer 

Protocol), a version of the TCP/IP FTP protocol that has no directory or password 

capability. During the client/server exchange process of TFTP, a specific Port (Port 

number 69) is always used to initiate the conversation. Thus, when the client begins the 

process of communicating, a request is made to UDP Port 69. Once the server receives 

	

is 	this request, a new Port number is created on the server. The server then replies to the 

client using the new Port. In this example, it is clear that in order to recognize TFTP a 

network monitor must analyze the initial request from the client. Also, the reply from the 

server with the key Port information must be analyzed and used to create a signature for 

monitoring the remainder of this data exchange. 

	

20 	 Another important capability for a network monitor in session tracking is the 

understanding of the current state for particular connections in the network. Many of the 

application protocols, which can be monitored, are transported via protocols that have 

built-in state information. An example of such a transport protocol is the common TCP, 

a transport protocol that provides a reliable means of sending information between a 

	

25 	client and a server. When a data exchange is initiated, a TCP request for synchronization 

message is sent. This message contains a specific sequence number that is used to track 

an acknowledgement from the server. Once the server has acknowledged the 

synchronization request, data may be exchanged between the client and the server. When 

communication is no longer required, the client sends a finish or complete message to 

	

30 	the server, and the server acknowledges this finish request with a reply containing the 

sequence numbers from the request. Such a sequence of events is called a connection- 
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oriented data exchange. Tracking the state is necessary to correctly analyze connection-

oriented exchanges, and the states relate to the various types of connection and 

maintenance messages. 

Server announcement is a process used to ease communications between a server 

	

5 	with multiple applications that are all able to be simultaneously accessed from multiple 

clients. Many applications use a server announcement process as a means of 

multiplexing a single Port or socket into many applications and services. With server 

announcements, messages which broadcast or otherwise sent out (e.g., muticast) on the 

network, and all stations in the network receive and decode such messages to derive the 

	

10 	appropriate connection point for communicating for that particular application, with the 

particular server. Using the server announcement method, a particular application 

communicates using a service channel, in the form of a TCP or UDP socket or Port as in 

the IP protocol suite, or using a SAP as in the Novell IPX protocol suite. The individual 

methods of server announcement protocols vary. However, the basic underlying process 

	

is 	remains similar. 

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto, 

California) of the Remote Procedure Call (RPC), a programming interface that allows 

one program to use the services of another in a remote machine. Sun-RPC is used as an 

example of server announcement oriented communications processes. 

	

20 	 A remote program or client that wishes to use a server or procedure must 

establish a connection, and the RPC protocol can be used therefor. 

Each server running the Sun-RPC protocol must maintain a process and database 

called the Port Mapper. The Port Mapper creates a direct association between a Sun-RPC 

program or application and a TCP or UDP socket or Port (for TCP or UDP 

	

25 	implementations). An application or program number is a 32-bit unique identifier 

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers, 

www.icann.org), the successor to TANA (Internet Assigned Numbers Authority), which 

manages Internet addresses, domain names and the huge number of parameters 

associated with Internet protocols (port numbers, router protocols, multicast addresses, 

	

30 	etc. Each Port Mapper on a Sun-RPC server can present the mappings between a unique 

program number and a specific transport socket through the use of specific request or a 
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directed announcement. According to IANA, Port number 111 is associated with Sun 

RPC. 

As an example, consider a client (e.g., CLIENT 3 shown as 106 in Fig. 1) makes 

a specific request to the server (e.g., SERVER 2 of Fig. 1, shown as 110)on a predefined 

5 	UDP or TCP socket. Once the Port Mapper process on the sun RPC server receives the 

request, the specific mapping is returned in a directed reply to the client. 

1. A client (CLIENT 3, 106 in Fig. 1) sends a TCP packet to SERVER 2 

(110 in Fig. 1) on Port 111, with an RPC Bind Lookup Request 

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This 

10 	 request specifies the program (as a program identifier), version, and might 

specify the protocol (UDP or TCP). 

2. The server SERVER 2 (110 in Fig. 1) extracts the program identifier and 

version identifier from the request. The server also uses the fact that this 

packet came in the using the TCP transport and that no protocol was 

15 	 specified, and thus will use the TCP protocol for its reply. 

3. The server 110 sends a TCP packet to Port number 111, with an RPC 

Bind Lookup Reply. The reply contains the specific Port number (e.g., Port 

number 'port') on which future transactions will be accepted for the specific 

RPC program identifier (e.g., Program 'program') and the protocol (UDP or 

20 	 TCP) for use. 

It is desired that from now on every time that port number 'port' is used, the 

packet is associated with the application program 'program' until the number 'port' no 

longer is to be associated with program 'program'. Therefore, any network monitor 

should include a mechanism for remembering the exchange so that future packets that 

25 	use the Port number 'port' be associated by the network monitor with the application 

program 'program'. 

In addition to the Sun RPC Bind Lookup request and reply, There are other ways 

that a particular program, say 'program' might get to be associated with a particular port 

number, for example number 'port'. One is by a broadcast announcement of a particular 

30 	association between an application service and a Port number, called a Sun RPC 
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Portmapper Announcement. Another, is when some server, say the same SERVER 2 

replies to some client, say CLIENT 1 requesting some Portmapper assignment with a 

RPC Portmapper Reply. Some other client, say CLIENT 2, might inadvertently see this 

request, and thus know that for this particular server, SERVER 2, Port number 'port' is 

	

5 	associated with the application service 'program'. It is desirable for the network monitor 

300 to be able to associate any packets to SERVER 2 using Port number 'port' with the 

application program 'program'. 

The working of the present invention with some Sun RPC procedures is now 

illustrated with the help of Fig. 9. Fig. 9 represents a dataflow 900 that occurs in the 

	

10 	system of Fig. 3 for Sun Remote Procedure Call. Referring now to a data flow 900 in 

Fig. 9, assume a client 106 (CLIENT 3 in Fig. 1) is communicating via its interface to 

the network 118 to a server 110 (SERVER 2) via the server's interface to the network 

116. Further assume that Remote Procedure Call is used to communicate with the server 

110. The data flow 900 starts with a step 910 that a Remote Procedure Call bind lookup 

	

15 	request is issued by client 106. Such RPC bind lookup request includes values for the 

"program", "version" and "protocol" to use, e.g., TCP or UDP. The process for Sun RPC 

analysis in the network monitor 300 proceeds as follows: 

Process for Sun RPC Analysis 

1. Decode Sun RPC by TCP or UDP Port 111 

	

20 	 2. Check RPC type field for Id 

3. If value is PortMapper, save paired socket (i.e. dest for dest, src for src) 

4. Decode ports and mapping, save ports with socket/addr key 

5. There may be more than one pairing per mapper packet 

6. Saving is complete 

	

25 	 Note that the server state creation step 904 can be reached not only from a Bind 

Lookup Request/Reply pair, but also from a RPC Reply PortMapper packet shown as 

901 or an RPC Announcement PortMapper shown as 902. The Remote Procedure Call 

protocol can announce it is able to provide a particular application service. Embodiments 

of the present invention preferably can analyze when an exchange occurs between a 
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client and a server, and also can track those stations that have received the announcement 

of a service in the network. 

The RPC Announcement PortMapper announcement 902 is a broadcast. Such 

causes various clients to execute a similar set of operations, for example, saving the 

5 	information obtained from the announcement. The RPC Reply PortMapper step 901 

could be in reply to a PortMapper request, and is also broadcast. It includes all the 

service parameters. 

The monitor of the invention creates and saves all such states for later 

classification of flows that relate to the particular service 'program'. 

10 	 Fig. 2 shows how a signature and flow states are built by the monitor 300 in the 

example of Sun RPC. A plurality of packets 206-209 are exchanged, e.g., in an 

exemplary Sun Microsystems Remote Procedure Call protocol. A method embodiment 

of the present invention generates a pair of flow signatures, "signature-1" 210 and 

"signature-2" 212, from information found in the packets 206 and 207 which correspond 

15 	in the example to the Sun to a Sun RPC Bind Lookup request and reply, respectively. 

Consider first the Sun RPC Bind Lookup request. Packet 206 corresponds to such 

a request sent from CLIENT 3 to SERVER 2. This packet contains important 

information that is sued in building a signature according to an aspect of the invention. A 

source and destination network address occupy the first two fields of each packet, and 

20 	according to the patterns in pattern database 308, the flow signature (shown as KEY1 

230 in Fig. 2) also will contain these two fields, so the parser subsystem 301 will include 

these two fields in signature KEY 1 (230). Note that in Fig. 2, if an address identifies the 

client 06 (shown also as 202), the label used in the drawing is "C1". If such address 

identifies the server 110 (shown also as server 204), the label used in the drawing is 

25 	"S1". The first two fields 214 and 215 in packet 206 are "S1" and C1" because packet 

206 is provided from the server 110 and is destined for the client 106. Suppose for this 

example, "S1" is an address numerically less than address "C1". A third field "p1" 216 

identifies the particular protocol being used, e.g., TCP, UDP, etc. 

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate 

30 	port numbers that are used. The conversation direction determines where the Port 
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number field is. The diagonal pattern in field 217 is used to identify a source-port 

pattern, and the hash pattern in field 218 is used to identify the destination-port pattern. 

The order indicates the client-server message direction. A sixth field denoted "it" 219 is 

an element that is being requested by the client from the server. A seventh field denoted 

	

5 	"s I  a" 220 is the service requested by the client from server 110. The following eighth 

field "QA" 221 (for question mark) indicates that the client 106 wants to know what to 

use to access application "s la". A tenth field "QP" 223 is used to indicate that the client 

wants the server to indicate what protocol to use for the particular application. 

Packet 206 initiates the sequence of packet exchanges, e.g., a 

	

10 	RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the 

packets, and is transmitted to the server 110 on a well-known service connection 

identifier (port 111 indicating Sun RPC). 

Packet 207 is the first sent in reply to the client 106 from the server. It is the 

RPC Bind Lookup Reply as a result of the request packet 206. 

	

15 	 Packet 207 includes ten fields 224-233. The destination and source addresses are 

carried in fields 224 and 225, e.g., indicated "C1" and "S1", respectively. Notice the 

order is now reversed, since the client-server message direction is from the server 110 to 

the client 106. The protocol "p1" is used as indicated in field 226. The request "it" is in 

field 229. Values have been filled in for the application port number , e.g., in field 233 

	

20 	and protocol ""p2"" in field 233. 

The flow signature and flow states built up as a result of this exchange are now 

described. When the packet monitor sees the request packet 206 from the client, a first 

flow signature 210 is built in the parser subsystem 301 according to the pattern and 

extraction operations database 308. This signature 210 includes a destination and a 

	

25 	source address 240 and 241. One aspect of the invention is that the flow keys are built 

consistently in a particular order no matter what the direction of conversation. In the 

particular embodiment, the numerically lower address is always placed before the 

numerically higher address. Such least to highest order is used to get the best spread of 

signatures and hashes for the lookup operations. In this case, therefore, since we assume 

	

30 	"S 1"<"C 1", the order is address "S1" followed by client address "C1". The next field 
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used to build the signature is a protocol field 242 extracted from packet 206's field 216, 

and thus is the protocol "p1". The next field used for the signature is field 243 contains 

which contains the cross-hatched destination source Port number pattern from the field 

218 of the packet 206 that will be recognized in the payload of packets to derive how this 

5 	packet or sequence of packets exists as a flow. In practice, these may be TCP Port 

numbers, or a combination of TCP Port numbers. I the case of the Sun RPC example, the 

cross hatch represents a set of port numbers of UDS for p1 that will be used to recognize 

this flow (e.g., Port 111). Port 111 indicates this is Sun RPC. Some applications are 

directly determinable ("known") at the parser level, and the Sun RPC Bind Lookups are 

10 	such applications. So in this case, the signature KEY1 points to a known application 

denoted "al" (Sun RPC Bind Lookup), and a next-state that the state processor should 

proceed to for more complex recognition jobs, denoted as state "stp" is placed in the 

field 245 of the flow record. 

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built 

15 	by the parser. This flow signature is identical to KEY-1. Hence, when the signature 

enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow 

record is obtained, and in this flow record indicates state "stip". The operations for state 

"stp" in the state processor instruction database 326 instructs the state processor to build 

and store a new flow signature, shown as KEY 2 (212) in Fig. 2. This flow signature 

20 	built by the state processor also includes the destination and a source addresses 250 and 

251, respectively, for server "S1 " followed by (the numerically higher address) client 

"C1". A protocol field 252 defines the protocol to be used, e.g., "p2" which is obtained 

from the reply packet. A field 253 contains a recognition pattern also obtained from the 

reply packet. In this case, the application is Sun RPC, and field 254 indicates this 

25 	application "a2". A next-state field 255 defines a next-state the state processor should 

proceed to for more complex recognition jobs, e.g., a state "sti". In the particular 

example, this is a final state. Thus KEY 2 may now be used to recognize packets that are 

in any way associated with the application "a2". Two such packets 208 and 209 are 

shown, the use the particular application service requested in the original Bind Lookup 

30 	Request. Each will be recognized because the signature KEY-2 will be built in each case. 
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The two flow signatures 210 and 212 always order the destination and a source 

address fields with server "S1" followed by client "C1". Such values are automatically 

filled in at the time that the addresses are first created in a particular flow signature. 

Large collections of flow signatures are preferably kept in a lookup table in a least-to- 

	

5 	highest order for the best spread of flow signatures and hashes. 

The client and server thereafter exchange a number of packets, e.g., represented 

by request packet 208 and response packet 209. The client 106 sends packets 208 that 

have a destination and source address S1  and C1, in a pair of fields 260 and 261. A field 

262 defines the protocol as "p2", and a field 263 defines the destination port number. 

	

10 	 Some network-server application recognition jobs are so simple that only a single 

state transition has to occur to be able to pinpoint the application that produced the 

packet. Others require a sequence of state transitions to occur that match a known and 

predefined climb from state-to-state. 

Thus the flow signature for the recognition of application "a2" is automatically 

	

15 	set up by predefining what packet-exchange sequences occur, e.g., when a relatively 

simple Sun Microsystems Remote Procedure Call bind lookup request instruction 

executes. More complicated exchanges than this may generate more than two flow 

signatures and their corresponding states. Each recognition may involve setting up a 

complex state transition diagram to be traversed before a "final" resting state such as 

	

20 	"st1" in field 255 is reached. All these are used to build the final set of flow signatures 

for recognizing a particular application in the future. 

Embodiments of the present invention automatically generate flow signatures 

with the necessary recognition patterns and state transition climb procedure. Such comes 

from analyzing packets according to parsing rules, and also generating state transitions to 

	

25 	search for. Applications and protocols, at any level, are recognized through state analysis 

of sequences of packets. 

Announcement Based Flows 

There are two different types of specific operations that are required to be 

performed by the state processor. The first sequence of operations is known as a learning 
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sequence. In the learning sequence, each packet that is exchanged for single flow 

contains all of the information required to interpret the final state, and therefore the final 

application for that flow. 

An example of a learning sequence in the state processor can be commonly seen 

5 	in the HTTP protocol. In this protocol, a sequence of packets is exchanged between the 

client and the server. In each of the packets, the header information and additional packet 

payload combined to provide traffic signature. In specific frames or packets, there are 

key elements of information, which are used to derive the actual application involved in 

the flow. In other words, during the exchange of information between the client and 

10 	server key elements of data are extracted by the parser system and evaluated as payload 

by the analyzer system. This evaluation process occurs within the state processor. As 

packets are exchanged between the client and server, specific key elements clause the 

flow involved to move deeper into the set of states to protocol. 

A well-known example of this type of exchange over HTTP can be found by 

15 	evaluating the exchange of a GIF image. During the initial exchange, the flow signature 

is derived from the specific packet headers. After the connection identifiers have been 

determined, the payload of each HTTP message sent client to the server is evaluated for 

a specific string. The first string that is attempted to be located key "Content — Type". 

Once this key string is isolated in a message from the client to the server, and additional 

20 	search is initiated. This next search is going to start after the location of the previous 

search. A string search for the word "image", along with other strings starting at the 

same location, is initiated. In this example, the word "image" is found after our last 

string. 

The system has now isolated the specific content-type in the exchange between 

25 	the client and server. One last search needs to be accomplished in order to derive the 

specific image type for this content. The system will begin searching for "gif ', along 

with other strings at the same location. Once in this string has been located from our 

example, the flow signature and record for this set of exchanges between the client and 

server is updated. This updated flow record contains the application of a GIF image for 

30 	this particular traffic flow. 
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The second type of traffic flow analysis that is accomplished the analyzer 

functions, is an association. In association, we typically find the use of a server 

announcement message. A typical server announcement message is sent to one or more 

clients in a network. This type of announcement message has specific content, which, in 

	

5 	another aspect of the invention, is salvaged and maintained in the database of flow 

records in the system. Because the announcement is sent to one or more stations, the 

client involved in a future conversation to the server will make an assumption that the 

information announced is known, and an aspect of the inventive monitor is that it too can 

make the same assumption. 

	

10 	 When a server announcement message is received by the traffic monitor, the 

normal parsing operations and building of a flow signature and hash key are 

accomplished as with any other packet. In addition, payload information from the packet 

is sent along with signature and hash key for this flow. The flow will be recognized as 

described below. 

	

15 	 A specific example of such an announcement is a bind server announcement 

message found in the Sun RPC protocol. An RPC server will make an announcement to 

a group of stations (clients) on a network. This announcement contains all of the 

different program identification numbers and the associated port numbers for both the 

TCP and IMP transport services. The monitor saves these linkages found in the payload 

	

20 	of this packet to generate future flow signatures and records that can be used for packets 

exchange between clients of this server and the server. 

Referring to 9, When the RPC bind announcement message enters the parsing 

section of our system, all of the header elements are processed as normal and key 

information is extracted to form the flow signature and key. In addition, the payload 

	

25 	section of the RPC message is formatted and sent along with the signature and key to the 

analyzer. Because the protocol has been identified as RPC, and the child of this protocol 

has been identified as a bind announcement, the bind announcement state will be 

initiated by the state processor. This will occur in addition to the normal processing of 

this flow signature and record. 

	

30 	 The state processor will be instructed to remove and review each of the 

individual program identifiers found in the payload of this packet. For each of the 
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individual program identifiers, the state processor will locate the specific protocol used 

with the ports mapped to that protocol. To enable future flows that utilize mappings to be 

properly classified, the state processor will generate a special flow record and inserted in 

the flow database. This special flow record has specific flags set in the key match flags 

	

5 	field. This enables the protocol identification process of the analyzer to locate the 

application from a subset of the normal information used during the lookup process. 

At some point after this additional announcement message has been received and 

processed, message is utilizing these mappings will be correctly processed by the 

inventive monitor system. When a message or packet enters the system it is processed 

	

to 	normally. The significant difference will be found in that the transport port information 

will not been known by the pattern recognition portions of the parser. This will cause the 

flow signature sent to the analyzer to classify the packet for the specific transport 

involved and include the data ports involved. 

The lookup engine in the analyzer will attempt to isolate this flow record 

	

15 	information to a specific flow found in the memory of our system. When a specific flow 

cannot be found, the lookup engine will attempt and other lookup and remove the clients 

address from the signature when key is generated. This will cause a match on multiple 

buckets within the flow information stored in the system memory. The system then 

validates this announcement by reviewing the key match flags field. If this field has a 

	

20 	flag stating that the source address, or the client in this case, may be, then this signature 

will be blended with the signature stored in the analyzer and the application identifier 

will be set to the one found in the record. 

At this point, this new flow is fully classified to the proper application. They are 

other protocols that use similar types of announcement methods (Novell SAP, etc.) . 

	

25 	Therefore, the monitor system performs special limited key analysis in order to handle 

the maintenance of announcement oriented flow keys. Without this feature, flows that 

utilize server announcements would not be able to be properly classified for the 

application or service involved in the conversation. 

The Overall Flow (Fig. 3) 

	

30 	 Fig. 3 is a is a description of the overall flow of the invention and is now 
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described in detail. The flow starts off at a number 301. There are two aspects of the 

invention shown here. First is the flow that describes how to generate to operations that 

occur on packets. The second aspect is the processing of the packets. 

A flow is a stream of packets being exchanged between any two addresses in the 

	

5 	network. Thus, for each protocol there are known to be several fields, such as the 

destination (recipient), the source (the sender), and so forth, and these and other fields 

are needed to identify the flow. There are other fields not important for identifying the 

flow, such as checksums, and those parts are discarded. 

The PDL files describe what the system will be looking for in packets and what 

	

10 	the sets of states and state transitions are for a sequence of packets that will determine 

the application or service content of the packets at the particular location in the 

communication network. 336 is the protocol description language files, and block 338 is 

the set of packet layering selections. That is the specific selections of layers and patterns 

of the set in 336 that the system will be evaluating. 

	

15 	 Block 302 is a packet input into some buffer for analysis by the system. The 

protocol description language files 336 describes both patterns and states to identify 

applications and services, while the packet layer selections database 338 deals with the 

layering involved in those patterns and states, so 336 and 338 combined describe how 

one would decode, analyze and understand the information in packets, and how the 

	

20 	information is layered. This information is input into compiler and optimizer 310. When 

310 executes, it generates two sets of internal data structures. The first is block 308, the 

set of pattern structures and extraction operations. The pattern structures are what will be 

recognized in the packets and the extraction operations are what elements of a packet are 

to be extracted from the packets based on the patterns that get matched, the extracted 

	

25 	elements then being combined to build up a conversation flow signature that is used for 

recognizing other relevant packets. The other internal data structure that is build by 

compiler 310 consists of the state patterns and processes, and shown as block 326. The 

state patterns and processes are state operations that have to occur and the patterns that 

have to be analyzed within states and processes that need to be performed upon moving 

	

30 	from one state to the next, that movement and related processes depending on the packet 
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is being analyzed in sequence. The elements in 326 are used in part of the state 

processing. 

Once the compiling is complete, the system has all of the information that it 

needs to begin processing packets. In 302 a packet or series of packets enter the system, 

	

5 	and the a step that the packets go through is being analyzed for pattern recognition in 

pattern analysis and recognition (PAR) engine 304. Once a pattern or a set of patterns 

has been identified, the pattern(s) will be associated with a set of extraction operations, 

and these extraction operations enter the extracting and information identifying (EII) 

engine 306 which has access to the packet and where the identifying information that is 

	

10 	required to recognize this packet as part of a flow is extracted from the packet, and put 

into a particular sequence. The information in sequence (as well as the packet data) will 

next be processed by block 312 in which a unique flow signature for this conversation is 

built. For this purpose, a conversation signature typically includes the client and server 

address pairs that will be used recognize further packets that are or may be part of this 

	

15 	conversation. The informational and the packet will then pass onto lookup engine 314 

which looks in an internal data store of records of known flows that the system already 

has encountered, and decides whether or not this particular packets flow record a 

"match" with a known flow. A record is associated with each flow. The lookup is in an 

internal flow buffer and also includes a cache. If the flow is not in the buffer or cache, it 

	

20 	may be in an external memory 324 (the database of flows). Block 316 determines 

whether this is a new record or a record that already exists. If this is a new record, then 

the data moves to protocol identification block 318, where the system further determines 

from the patterns that were analyzed and from where in the packet's state sequence one 

is, and from the type of protocol, whether there are any particular states and state 

	

25 	operations that need to be executed on this packet or on any future packets that come in 

for this sequence of conversations. 

It is important understand that the process of pattern analysis and extracting of 

identifying information is used to reduce the amount of information needs to be analyzed 

to derive what flow any particular packet belongs. Once identification is complete, there 

	

30 	is only a small amount of information that is required to identify whether or not a 

particular packet is part of a flow or conversation. That information is extracted in block 
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306 based on the pattern that is recognized in block 304, and only the information that's 

needed to identify the packet as being part of a particular flow is extracted. Extraneous 

information including the actual data blocks in the application protocol, the protocol data 

unit ("PDU") or checksums, or routing fields, are all discarded because they are not 

	

5 	required to uniquely identify the packet as part of a flow conversation. 

In protocol identification block 318, it is decided what the states are, if any, that 

need to be applied to this packet or to future packets belonging to this conversation or 

flow. After this, in block 328, the first state operation for this particular flow record or 

pattern or protocol is applied to the packet, and this is continued until there are no more 

	

10 	operations left (block 330). Thus the systems continues looping between block 330 and 

328 applying additional operations to this particular packet until all those operations are 

completed, that is, there are no more operations for this packet. At this point, it is 

determined in 332 whether nor not there are more state analysis is required in this state 

sequence, no meaning we have reached a final identifying state. If we are in a final state, 

	

15 	the process moves on to 334 for a classification finalization where we finish the process 

of classifying the set of packets. 

Protocol identification is used to create an identification of the actual application 

or service that is involved by applying both state and patterns that have been derived 

from this particular packet and those states and patterns are then used to decide what the 

	

20 	final set of states are for this packet or following packets before we know exactly what 

this is to be classified to a particular application. 

A state operation may be one operation on one packet or it may be multiple 

operations on a packet, and carrying out the operation or operations may leave one in a 

state that causes exiting the system without really knowing everything about the 

	

25 	conversation yet, but maybe knowing more about a state that is needed to execute next. 

In 332 in the classification, the analyzer decides whether we are at an end state. If 

not at an end state, the record is updated for this (now known) record in block 322. Since 

this was a new record, we in fact record the record for the first time. If we reach a final 

state, then after finalization in 334, we also update the record for this known flow, in this 

	

30 	case, a new but now known flow. The updating (or, if new, recording) in block 322 

includes updating the states information for the known record, and carry out any 
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statistical operations for that record. We then move to block 324 where we keep the 

record of this conversation together with the records of other conversations that we have 

maintained in the conversation database 324. 324 the set of all the conversations that 

have occurred. Information about all the packets that may have occurred for any 

	

5 	conversation is included in a reduced form, such as a single element that includes what 

service or application the packets were associated with, and a set of statistics 

representing data that was exchanged, how that data was exchanged, the performance of 

the exchange, for all of those packets that were part of the conversation. In the preferred 

hardware implementation, database 324 is an external memory. 

	

10 	 Note that in block 322, there is one record associated with each flow, but 

typically there may be multiple flows associated with each conversation. That is, several 

new flows records will be created before the final conversation is determined, and all the 

packets that created those flows are then associated with the same conversation. Each 

conversation record in 324 will therefore point to one or more flow records. For 

	

15 	example, in the Sun RPC example used throughout this description, one could be 

mounting a disk (NDISK) and have multiple files open on that disk, but in reality, all the 

packets represent an NDISK set of transactions for that particular client and server. 

If in block 316 the flow is determined not to be a new flow, but an existing flow, 

then in 316 is detelinined whether more classification is required (in the form of state 

	

20 	operations). If yes, the system performs the required state analysis in the loop consisting 

of blocks 328 and 330. If we have reached a final state or there are further packets to be 

analyzed (deteimination in block 320), we ultimately update the flow records of known 

flows (in 322). 

Note that the information created by block 306, i.e., the extracted information, as 

	

25 	well as the actual packet payload move over into 312. Block 312 then builds a unique 

signature from the extracted packet information, and the unique signature of and the 

actual packet payload move into 314 where the information is looked up. That 

information (the signature) and the packet payload flow through 314, 316, and into 318. 

In 318 that information is used to determine the protocol. 

30 	 One signature feature of the invention is the automatic generation of patterns to 

search for and signatures for searching for such patterns from analyzing packets 
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according to parsing rules, and also generating a states transitions to search for. Another 

feature is recognizing applications (or protocols at any level) by carrying out state 

analysis on a sequence of packets to recognize one or more applications. For example, 

the DEC patent recognizes well known patterns in single packets. 

	

5 	The compilation process 

The compilation process includes creating the parsing patterns and operations, 

extraction of identifying information, and the states that are required to analyze beyond 

single packets. 

The compiler starts off with a series of files which describe each of the particular 

	

10 	areas of a frame that require decoding. Example, an Ethernet frame. Ethernet packets can 

consist of several different formats of information, with a basic format that remains 

substantially the same. The system therefore starts with a file. That basic Ethernet file 

tells the system what to look for as far as a patterns is concerned, and where elements 

need to be parsed or extracted. In the Ethernet case, the parsing will be: decode the frame 

	

15 	extracting the source and destination address, and then evaluate a field for a particular 

protocol. The protocol field is extracted and then evaluated. The contents of the protocol 

field will cause one of several things to happen. Either there's a value there that says this 

is an Ethernet version packet, or there's a value there which sends it off to find the 

protocol field for IEEE type Ethernet packet decoding. As an example, consider the 

	

20 	Ethernet type 2 packet. First there's a check to see if the protocol type is within a certain 

range, the check being done by the parser (the compiler simply states it). Once the check 

is described in the language, a listing of children are found in the language (compiler 

output), and the children listing contains specific values of the protocol type field, and 

what those values mean for the next node to be decoded. For example, a next node 

	

25 	(child) for an Ethernet type 2 packet may be an IP type (i.e., Internet) protocol, and the 

value that would be found is HEX 0800. That value would cause the parsing system to 

want to decode IP. There is another file which describes the decoding of an IP packet. 

That file describes what elements are to be extracted from an IP packet header, including 

the network layer addresses that are used and other information, such as protocol type. In 

	

30 	that particular file are also the children of the IP protocol, and depending on the values 

found in the protocol field for the IP header. What values are found causes one of 
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another set of operations to be performed on the packet, and those are described in 

another set of files. Consider TCP as the particular IP protocol. Now within the TCP file, 

there are described what and where are elements of information that, for example, tell the 

compiler that this particular node gives us some information about the possibility of a 

5 	connection happening. Because of this, the connection identifier or identifiers need to be 

filled in, depending on the protocol, and those connection identifiers are described in the 

language: where they are, how to evaluate them, and if there are any possibility of 

children for those values. For TCP/IP, the example would be the Port values. The 

compiler output instructs evaluating those Port number values. One of the possible 

10 	children of the Port number value, for example, may be Microsoft Exchange's DCOMP 

or DCERPC. When the value corresponding to DCERPC is found, that will cause the 

compiler to evaluate the Microsoft Exchange's DCOMP/ DCERPC file. Within that file, 

is a set of information describing the states from the actual packets that will occur during 

the exchange of packets for a flow. The first state, of course, will be to determine 

15 	whether or not this particular flow is in a connecting state, and if it is in a connecting 

state, what sequence of operations are performed on which packets to determine if it 

truly is an application running on top of DCOMP. If one of the children states which is 

described in one or more operations in the DCOMP file causes a match, than that 

particular application identifier will be loaded into the record for this particular flow by 

20 	the state processor. Once this application identifier is loaded in, there is a state for 

removal or tearing down of this particular flow in the case that this flow had the ability 

also to disappear. If the flow does not have the ability to disappear — that is, there are no 

tear-downs and it lives across multiple connections and disconnections. If it has the 

ability to disappear, then we are given information as to what states will occur in what 

25 	sequence of packets to tear this particular flow down and to relearn it. In the example of 

Microsoft Exchange DCOMP, those particular flows live beyond multiple connections or 

multiple sessions, so once the flow has been learned, it will be saved in the flow record, 

and that flow signature will be used to always point to one of the three applications 

known to run on top of Microsoft Exchange which are described in the DCOMP file of 

30 	the compiler as either the mail transport adapter, the information store or the directory 

look-up. 

NOAC Ex. 1014 Page 50



46 

The parsing system at each level extracts key information for building the 

signature. There are specific key elements at specific levels that are used to help build a 

flow signature that will more precisely identify the specific flow for a set of packets. At 

the base level, for example, if we were to determine in the parsing system that we are 

5 	dealing with an Ethernet frame, Ethernet frames have end-point addresses that are useful 

in building a better flow signature, so the system is told to extract the source and 

destination addresses, including where the locations and sizes of those addresses are. In a 

frame-relay base layer, for example, there are no specific end point addresses that help 

identify the flow better, so for those type of packets, the compiler instructs the parser not 

10 	to extract the end-point addresses. Once we get into a base layer, there needs to be some 

identifier that tells the parser where the children are — that is, where the next nodes 

potentially are. For Ethernet, there's the type (protocol type) field. For frame relay, 

there's a protocol- like field in the control header. We use those identifying fields to 

determine what the next layer is. In the Ethernet example, there can be a network layer, 

15 	or some other type of encapsulation of Ethernet, for example LLC 802.2 or IEEE 802.3 

or it could be V2 Ethernet going right into IP. In the example of IP, that's another special 

layer, where we now have a network layer. The parsing system needs to be told where to 

get end-point data for the network layer to build a better flow signature. This is the IP 

destination and source addresses, which are in every IP packet. The size and location of 

20 	those would be specified in the IP file. At the IP (or other network layer), there is 

information specified as to where to look for any possible next nodes. The next node 

could be an end point node. For example, ICMP. That is, we know it's ICMP, and we're 

done (that the last node), or it could be TCP, and if it's TCP, the TCP file will contain 

information about that level. 

25 	 TCP is an example of a protocol that can tell us about the connections. Whenever 

we get to a protocol that tells about the possibility of a connection, connection identifiers 

are needed. That is, something that is going to exist in every packet, perhaps not in the 

same location in every packet, that the system can identify that this particular packet is 

part of this particular flow, and whether or not to apply states that deal with connections 

30 	or disconnections that exist in the next layer up to these particular packets. It tells are 

what those connection identifiers are, where they are and what their length is. In th 

TCP/IP example, these are port numbers. It also tells us whether or not states that apply 
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to connections and disconnections apply to this particular packets, Also it tells us what 

the possible children are. So at each of these levels, we are learning what there is in the 

packets that we can reapply over and over again to packets of this particular flow. 

The compiler will take all of the information that it gets from the individual 

	

5 	descriptions of all possible protocols and all possible levels, and it will generate a series 

of elements of elements or instructions or operations that the parser then performs on 

every packet that it receives. Those operations or instructions or elements not only tell 

the parser what to look for and what it is that it's looking at, but it also tell the parser 

whether there's specific information at an appropriate layer that needs to be extracted to 

	

io 	build up the flow signature. In addition, it also will let the parsing system know what the 

next element is that needs to come out and where the offsets (pointers to location in the 

packet) of those elements are, and also will help the parser understand how the location 

of those elements may change from packet to packet, depending, for example, on 

direction. How they are evaluated, and what it is that they look like, and how they are 

	

15 	formatted. Upon the parser determining that a particular element (or elements) need to be 

extracted, is then passed on to the extracting engine, together with the packet. The 

extracting engine then extracts all the elements to determine the flow signature. 

What is unique here is that locations and the information extracted from any 

packet is adaptively determined for the particular type of packet. There is no fixed 

	

20 	definition of what to look for where in order to form the flow signature. In prior art 

systems, such as Chiu's DEC patent there were fixed locations specified for particular 

types of packets. For example, if a DECnet packet appeared, the system looked at six 

specific fields (at 6 locations) in the packet in order to identify the session of the packet. 

If one the other hand, an IP packet appeared, six different locations were specified for an 

	

25 	IP packet. The system was only able to recognize sessions. The physical layer, going 

onto the network layer, than the protocol layer. There were fixed locations for each of 

these. In the present invention, the number of levels is variable for any protocol. The 

number of layers is variable and is whatever number is sufficient to uniquely identify as 

high up the level system as we wish to go, all the way to the application level (in the OSI 

	

30 	model). Clearly, with the proliferation of protocols, the specifying of all the possible 

places to look at to determine the session becomes more and more difficult. Adding a 

NOAC Ex. 1014 Page 52



48 

new protocol or application likewise is difficult. In the present invention, a language 

exists for specifying new protocols and new levels, including new applications. The 

compiler is used to describe what information is relevant to packets and packets that 

need to be decoded, and the parser and extraction systems function using those 

	

5 	instructions and operations. So, they can adapt, and be adapted to a variety of different 

kinds of headers, layers, and components and need to be extracted or evaluated, for 

example, in order to build up a unique signature. The only thing that is fixed is that when 

you build the language, you want to try to fill in the components that have end point 

addresses at the lowest layer, components that have end point addresses that identify the 

	

to 	actual workstations that are involved, and also something that identifies where the layers 

that manage the connections or disconnections of particular communications occur. You 

want to fill in those general areas, and where to look for the next layer. So the system can 

adapt to new protocols. The prior art is very specific to specific types of packets that you 

want to parse. 

	

15 	 One feature of the analyzer 300 is the parsing and extracting system comprising 

processes 304, 306 and database 308, together with the compiler 310 that generates the 

pattern structures and patterns and extraction operations. This parsing system is designed 

to be flexible in its implementation. The compiler system 310 uses as input descriptions 

of protocols and applications written in a protocol description language (PDL), these 

	

20 	PDL commands describe the patterns and extraction operations that will be required in a 

manner that is independent of the different types of packets that will be used to carry the 

information. The compiler creates from these a set of specific patterns in database 308 to 

be analyzed by the parsing system (block 304) and then a set of extraction operations 

(also in 308) that are dependent on the patterns that are analyzed. The elements that are 

	

25 	parsed by the parser will cause specific elements to be extracted. As an illustrative 

example of how this aspect of the invention provides for flexibility in extracting 

information from any type of packet, it is known that the headers of Ethernet packets are 

different from headers of frame relay network packets. By describing the structure of the 

packets in the PDL, both header types can be accommodated by the system, and the 

	

30 	parser will know how to parse each of these headers and how to extract identifying 

information t build a unique flow signature at this level. The particular information 

above the base layer also will differ depending on the network layers are involved in the 
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conversational flow in our particular implementation the invention is set up such that the 

network layer is not important in how things are extracted from the actual packet cannot 

specifically defined in prior art such as the deck of patent the specific examples given 

our eight DECnet packet with a DECnet transport headers with a DECnet session layer 

	

5 	headers and there's even the specific example describing how to extract DECnet specific 

elements out of the DECnet session layer patter and turn it into a DECnet specific hash 

for key in the eight in the invention that we have described the elements better used to 

make the signature are independent from the actual type of network layer transport layer 

session layer and application involved out in the exchange of packets on the network the 

	

10 	only requirements that we have our that at specific base layer such as Ethernet if you 

have access to and point addresses they should be included in elements to be extracted by 

the extraction engine to build the unique flow cake also information that tells you about 

the children or protocols beyond the Ethernet layer need to be told love so the parsing 

system can recognize them in the extraction in extract those components to be used in 

	

15 	the flow signature to however from that point on the specific information is only relevant 

to the type of layer you're apt once you're at the IP layer or the network layer for example 

we also work last that information be extracted which shows the end points of the 

workstations involved now that information does reside in the header of the IP frame 

however the way that we request the extraction is independent of IP or DECnet or Novell 

	

20 	or any other type of network layer protocol once we get to a particular a network layer 

the next section that we're interested in of course is how the packet is being transported 

to if the transport layer or whatever transport protocol is in place has information that 

tells about the connection end points involved in the conversation or flow and also has 

information relative to telling us whether this layer is causing a connection to occur or 

	

25 	not. 

In some communication arts, the term "frame" generally refers to encapsulated 

data at OSI layer 2, including a destination address, control bits for flow control, the data 

or payload, and CRC (cyclic redundancy check) data for error checking. The term 

"packet" generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the 

	

30 	term "datagram" also is used. In the present application, the term packet is intended to 

encompass packets, datagrams, frames and cells. In general, a packet format or frame 

format refers to how data is encapsulated with various fields and headers for 
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transmission across a network. For example, a data packet typically includes an address 

destination field, a length field, an error correcting code (ECC) field or cyclic 

redundancy check (CRC) field, as well as headers and footers to identify the beginning 

and end of the packet. The terms "packet format" and "frame format", also referred to as 

	

5 	"cell format", are generally synonymous. 

In order for an analyzer to be able to analyze different packet or frame formats, 

the analyzer is required to perform a parsing to understand the data encapsulated in the 

different fields. As the number of possible packet formats or types increases, the amount 

of logic required to parse these different packet formats also increases. 

	

to 	A network analyzer preferably can analyze many different protocols. At a base 

level, there are a number of standards used in digital telecommunications, including 

Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital Data Service, FDDI 

(Fiber Distributed Data Interface), and T1, among others. Many of these standards 

employ different packet and/or frame formats. For example, data is transmitted in ATM 

	

15 	and frame-relay systems in the form of fixed length packets (called "cells") that are 53 

octets (i.e., bytes) long and several such cells may be needed to make up the information 

that might be included in the packet employed by some other protocol for the same 

payload information, for example, for example in a conversational flow that uses the 

frame-relay standard or in a conversational flow that uses the Ethernet protocol. Fig. 16 

	

20 	shows the header 1600 (base level 1) of a complete frame of information and includes 

information on the destination media access control (Dst MAC 1602) and the source 

media access control (Src MAC 1604). Also shown in Fig. 16 is some (but not all) of the 

information specified in the parsing structures and extraction operations database 308 to 

be extracted at this level by extractor 306 with which to build the information used for 

	

25 	further analysis. This includes all of the header information at this level in for form of 6 

bytes of Dst MAC information 1606 and 6 bytes of Src MAC information 1610. In 

addition, the hash key to be made from the Dst MAC (2 byte Dst Hash 1608) and from 

the Src MAC (2 byte Src Hash 1612) which are part of the conversational flow key built 

in block 312 for ease of recognition. Finally, information is included on where to find the 

	

30 	next level's information. Fig. 17 now shows one of the possible levels-2 format, that of 

an Ethernet packet 1700. The Ethernet packet 1700 includes a two-byte type field 1702 
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for the type of protocol used for the next level and the remaining information 1704, 

shown hatched because it is masked out by extractor 306 according to information in 

pattern structures and extraction information database 308. Also shown is some of the 

extracted part. That is, the extracted part 1702 is shown also as data 1706 which is part 

	

5 	of the extracted information. Also included is the 1-byte Hash 1710 for this information 

used in building the flow signature. Finally, an offset field 1710 which provides the 

offset to use to obtain level 3 information is included, and for the Ethernet packet, this is 

14 bytes for the start of the frame. 

Other packet types also may be analyzed. For example, in an ATM system, each 

	

10 	ATM packet comprises a five octet "header" segment followed by a forty-eight octet 

"payload" segment. The header segment of an ATM cell contains information relating to 

the routing of the data contained in the payload segment. The header segment also 

contains traffic control information. Eight or twelve bits of the header segment contain 

the Virtual Path Identifier (VPI), and sixteen bits of the header segment contain the 

	

is 	Virtual Channel Identifier (VCI). Each ATM exchange translates the abstract routing 

information represented by the VPI and VCI bits into the addresses of physical or logical 

network links and routes each ATM cell appropriately. 

At the next layer, there similarly are many different formats. There is the well 

known IP (internet protocol), SNA, VINES VIP, APPLETALK, etc. 

	

20 	 Fig. 4 diagrams an initialization system 400 that includes the compilation 

process. That is, part of the initialization generates the pattern structures and extraction 

operations database 308 and the state instructions database 328, and this part can occur 

off-line or from a central location. A convenient high-level compiling language is input 

by a user. High-level commands that describe the network applications and protocols to 

	

25 	be used are interpreted during initialization for use by the parsing subsystem system 301. 

In addition the state instruction database is generated. A starting point 401 inputs new 

"source-code" information into a high-level compiler description file 402. A compiler 

403 generates a program code 404 for packet parse-and-extract operations, and a 

program code 405 for packet state instructions and operations. The program code 404 for 

	

30 	packet parse-and-extract operations is organized into a pattern, parse, and extraction 

database 406. The program code 405 for packet state instructions and operations is 
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organized into a state-processor instruction database 407. Data files for each type of 

application and protocol to be recognized by the analyzer are downloaded from the 

pattern, parse, and extraction database 406 into the memory systems of the parser and 

extraction engines. (See, the parsing process 500 description, and Fig. 5, and also the 

	

5 	extraction process 600 description, and Fig. 6.). Data files for each type of application 

and protocol to be recognized by the analyzer are also downloaded from the state-

processor instruction database 407 into the state processor. (See, the state processor 1108 

description herein, and Fig. 11.) In a step 410, the analyzer has been initialized and is 

ready to perform recognition. 

	

10 	 The PDL Compiler is used to convert a set of PDL source files into a layered set 

of specific protocol identifiers, patterns, extraction operations and states. The PDL 

compiler uses the PDL source files and layer selections as the primary input for pattern 

analysis, extraction operation, flow key generation and state operation details. 

The compiling process is illustrated in Fig. 24. First the compiler must load all of 

	

15 	the PDL source files listed at execution into a scratch pad memory (2403). Next the 

compiler review the files for the correct syntax (2405). Once completed, the compiler 

creates a set of patterns in the form for CPL (2407). CPL is the intermediary file form 

that the PDL Compiler outputs to the CPL system to perform the final optimization. 

After the patterns have been created, the compiler creates the extraction 

	

20 	operations in CPL that are required at each level for each PDL module. This creates a set 

of operations to perform for the building of the flow key and for links between layers 

(2409). 

With the flow key operations complete, the PDL compiler creates the operations 

required to extract the payload elements from each PDL module. These payload elements 

	

25 	are used by states in other PDL modules at higher layers in the processing (2411). 

The last pass is to create the State CPL operations required by each PDL module. 

The State operations are complied and CPL is created for later use (2413). 

CPL stands for Compiled Protocol Language. This is the 'assembly code' form 

for the Traffic Classification System. The PDL Compiler is designed to evaluate each 

	

30 	PDL module, form the operations required and walk the tree of layers. The last operation 
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performed by the PDL Compiler is to output the CPL instructions. 

These CPL instructions have a fix layer format, they include all of the patterns, 

extractions and states required for each layer and for the entire tree for a layer. This CPL 

file is then run by the Optimizer to create the final output binary memory structures that 

5 	will be used by the Traffic Classification system. 

Fig. 33 shows the PDL files for a sample operation of the system. 

Detailed operation 

Fig. 5 shows a flowchart of how the actual parsing system functions. Starting at 

501, the packet is input to the packet buffer in step 502 and set at the first packet 

10 	component. Step 503 loads the next (initially the first) packet component from the actual 

packet. The packet components are extracted from each packet one element at a time. 

Then, in 504 a check is made if the load packet component operation completed 

successfully. If not, this indicates no more packet components, and the system builds the 

packet signature in step 512. If the operation succeeded as determined in step 504,the in 

15 	505 are fetched the node and processes from the pattern database 406 according to the 

node pattern in the packet. This gives us a set of patterns and processes defined for that 

node to apply to that particular element in the packet. The system checks in 506 if the 

fetch pattern node operation completed, indicating there was a pattern node that loaded 

in 505. If yes, then the node and process are applied in 507 to the component extracted in 

20 	503. If a pattern match is obtained in 507, as indicated by the test in 508, that means the 

system has found a node in the parsing elements, and the system proceed to step 509 to 

extract the elements. Step 509 if described in detail in a separate flow diagram (Fig. 6). If 

applying the node process to the component does not produce a match, then from step 

508, the system requests the next pattern from the pattern database (called "folding the 

25 	pattern database") and the system returns to step 505 to apply the next node and process 

and extract it and check, and thus the loop between 508 and 505, called the applying 

pattern loop. Once the system either completes all the patterns and has either matched or 

not, the system moves to step 511, which is the next packet component. This step tells 

the system to move or ratchet itself to the next element of the packet that was input in 

30 	502. Then again one loads the first packet component. The system then reapplies the 
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pattern process and runs the 505 to 508 loop. 

Once all the packet components have been the extracted from the input packet in 

502, then in 504 the load more packet component operation is determined not to have 

completed, and the system moves to build a packet signature which is described in Fig. 6 

5 	 Fig. 6 describes in the form a flowchart the step extracting the information from 

which to build the packet signature. The flow starts at 601 which is the exit point 513 of 

Fig. 5. At this point the system has a completed packet component and a pattern node 

that was received from the pattern engine and available loaded in a buffer at 602. The 

first step is to load the packet component that the system received from the pattern 

10 	analysis process of Fig. 5. Again, the system checks to see if the load completed, that is, 

if there's more packet components. The first-time through there is, so at 605 the system 

now takes the extraction and process elements that the system received from the pattern 

node component in 602, and the system fetches those. The system checks in 606 if the 

fetch was successful, indicating that there are extraction element that can be used, and 

is 	the first time through the answers is yes, so then the system applies that extraction 

process to the packet component based on the instruction received from a pattern node. 

That process removal of the element from the packet component and cause that element 

to be saved. In step 608, the system checks if there is more to extract out of this packet 

component, and if the answer is no, the system moves back to 603 to load a new packet 

20 	component. If the answer is yes, then the system moves to the next packet component 

ratchet and move beyond the packet component that is at hand. That new packet 

component is then loaded in step 603. As the system moved through the loop between 

608 and 603, extra extraction processes are applied either to the same packet component 

if there's a more to extract, or to a different packet component if there is no more to 

25 extract. 

The extraction process builds the signature. Once we cannot load a packet 

component in 603, indicated by failure in the load successful test 604, all the 

components have been extracted. The signature that has been built is loaded into the 

signature buffer and the system proceeds to Fig. 7 

30 	 Fig. 7 completes the signature building process. The system starts in 702 with the 

signature buffer and the pattern node elements that the system received on exiting the 
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extraction process of Fig. 6 and the system loads the pattern node element out of the 

element database, the system the checks 704 if the load was successful, i.e., if there are 

more nodes. The first-time through there are more, so the system in 705 hashes the 

signature buffer element based on the hash elements that are found in the pattern node 

5 	that in element database. That is, in 705, for each individual pattern node element there 

is a sequence of instructions of how to build a signature, and these are followed. In 706 

the resulting signature and the hash are packed. In 707 the system moves on to the next 

packet component which is loaded in 703. 

The 703 to 707 loop continues until there are no more pattern no elements left. 

to 	Once all the pattern of elements have been hashed, then at 708 reached from 704, the 

system generates the output of Fig. 7's process for the analyzer and move to Fig. 8 

Fig. 8 is a flow diagram describing the operation of the lookup/update engine. 

The process starts at 801 from Fig. 7 with a signature including the hash and the key 

elements of the packet. In 802 those elements have been loaded into what is called herein 

15 	the unified flow key buffer (UFKB). An entire UFKB entry is removed from the buffer 

in 803 and then the system computes a "record bin number" from the hash. That is we 

apply any simple hashing model to the information that was extracted and that results in 

a record bin number. In 804, the system requests that a bucket from that bin be loaded 

into a cache. A bin may have one or more "buckets". The cache is described in more 

20 	detail elsewhere herein. In 805 the system checks to see if operation 804 returned with a 

bucket from the bin number, a yes indicating that there are more buckets in the bin. If 

this is the first bucket for the requested bin, then this is the first-time through and the 

bucket request 804 is successful and the system moves to 807 where it compares the 

current bin and bucket record signature to the packet. That is, the system examines to see 

25 	if this is the right packet, now that the hash has gotten the process this far. In 8 08 the 

system checks to see if there is a match, and if so, 810 marks that record bin and bucket 

as "in process" in the cache and a timestamp is put in the cache to indicate to the system 

that this record bin bucket this time through. Step 811 sets the unified flow key buffer 

element that the system extracted in 802 for this particular packet that is being processed 

30 	as "found." The "found" indication allows the (other) state machines in the system to 

begin processing this UFKB element. Then in 812 the system updates the statistics for 

NOAC Ex. 1014 Page 60



56 

the record in the cache based on the statistical and operations that received when the 

system entered process at 801. The process exits at 813. 

Regarding updating step 812, the system the system is designed so that when it 

sees a packet, it goes through the process described above which collapses this packet 

5 	into a flow which consists of multiple packets that went between the client and server for 

this particular application. Hence, for every packet that the system sees, the system 

performs a set of statistical operations those operations, which may be counting the 

packets, obtaining a statistics on the size of the packet, or it could be counting 

differences difference between this packet and one that was received in the opposite 

10 	direction via the time stamp, so the system can display the frequency as to which packets 

are being exchanged. The statistics might be an operation that takes this time stamp in 

relation to ship to a packet going in the same direction so the system can see the 

proximity of one packet to another flowing in the same direction. All of these statistics 

may be used in combination with each other to analyze many different aspects of the date 

15 	communication network's ability to transfer information for this application. This 

analysis might include measuring the quality of service of a conversation, measuring 

how well an application is performing in the network, measuring how much a an 

application is consuming of the network resources, and so forth, and all such analyses 

come this operation 812 of applying simple statistical calculations to each packet and 

20 	rolling them up into these so-called flows that are being generated. 

If at 808 the signature match does not succeed then in 809 the system requests the 

next bucket for this bin can goes back to 804 to request that the cache make ready the 

next bucket. If this operation 804 is not successful, indicating that there are no more 

buckets in the bin. So the system goes through requesting bucket until either there is a 

25 	match in 808 or 805 states there are no more buckets in the bin. If eventually no match 

was obtained and there are no more buckets in the bin, then the system needs to set up a 

new flow, since this flow has not previously been encountered, and in 806 the system 

marks the flow in the unified flow key buffer for this packet as "new", and in 812, the 

same statistical operations are performed for this packet in the cache, that the statistics 

30 	for this packet of a new flow are captured. The operation exits at 813. 
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The hardware system 

Using Figs. 10 and 11, each of the individual hardware elements that the data 

flows through in the system are now described. Note that while we are describing a 

particular hardware implementation of the invention described in Fig. 3, it would be 

5 	cleared to one in the art that the flow of Fig. 3 may be implemented alternatively, on a 

general-purpose computer, or only partly implemented in hardware. Fig. 14 shows such 

an implementation. The hardware embodiment easily meets the speed of over a million 

packets per second, which the software system of Fig. 14 may be suitable for slower 

networks. In the future as processors become faster, more and more of the system may be 

10 	implemented in software has would be cleared to one in the art. 

Fig. 10 is a description of the parsing and extracting system. The PAR system 

includes the following items required to get the system started. Memory 1001 is the 

pattern recognition database memory. This is where the patterns that are going to be 

analyzed are stored. Memory 1002 is the extraction operation database memory and this 

15 	is where the extraction instructions are stored. Both 1001 and 1002 correspond to 

internal data structure 308 of Fig. 3. The system operation typically starts by an 

initialization during which these database memories are loaded a through host interface 

multiplexor and control registers 1005. The two memories are loaded through the 

internal buses 1003 and 1004. Note that the elements in 1001 and 1002 are re compiled 

20 	in operation 310 of Fig. 3 externally to the system shown in Fig. 10. 

A packet enters the parsing system via 1012 into a parser input buffer memory 

1008 using control signals 1021 and 1023 controlling an input buffer interface controller 

1022. Interface is easily generated by a standard control logic as is well-known in the art. 

The interface is to a packet acquisition device. How to generate the packet starts and next 

25 	packet signals 1021 and 1023 also is known in the art to control the data flow into parser 

input buffer memory 1008. Once a packet starts to load into parser input buffer memory 

1008, pattern recognition engine 1006 carries out the operations on the input buffer 

memory described in block 304 of Fig. 3. Once a pattern is recognized, the pattern 

operation identifiers are sent to an extraction engine1007. The operations of the 

30 	extraction engine are those carried out in blocks 306 and 312 of Fig. 3. Operation 

identifiers rather than data is transferred allowing the extraction engine 1007 to perform 
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extraction operation on data in input buffer 1008, say located in at 1009, while more 

packet information is being pattern analyzed simultaneously by the pattern recognition 

engine 1006. That is a pipeline is used to provide sufficient processing speed to 

accommodate the high-speed of the packets passing in the network. The operation 

	

5 	identifiers are in the form of extraction instruction pointers to tell the extraction engine 

aware where to a find the instructions in the extraction operations database memory 1002 

for extracting an element of the packet in the input buffer memory. 

The extraction engine 1007 performs the extraction operations on the parser input 

buffer memory 1008/9 and outputs the extracted elements in the form of a flow signature 

	

10 	into a parser output buffer memory 1010. Any additional payload from the packet that is 

required for further analysis also in included. Once information that is in the parser 

output buffer memory 1010, the information is then pushed out (at 1013) into the unified 

flow key buffer shown as item 1103 on Fig. 11 describing the analyzer. An analyzer 

interface controller 1011 is used to manage the flow of data into the analyzer (Fig. 11), 

	

15 	including to the unified flow key buffer 1103. The analyzer interface control 1011 tells 

the unified flow key buffer section of the analyzer via 1025 when data is ready to be sent 

by into the unified flow key buffer, and the analyzer is responsible to keep a ready signal 

1027 high (or low, depending on implementation) when the analyzer can except the data 

of from the parser output buffer memory 1010. 

	

20 	 Fig. 11 shows the hardware components and dataflow for the analyzer subsystem. 

Prior to the system starting, the information that is generated by the compiler is inserted 

into a database memory for the state processing, called state processor instruction 

database (SPID) memory 1109. The loading of SPID occurs through host bus interface 

1122 which has direct access to analyzer host interface controller 1118 which in turn has 

	

25 	access to cache system 1115 and the cache system has bi-directional access to and from 

the state processor of the system 1108. State processor 1108 is responsible for 

initializing the state processor instruction database memory 1109 from information given 

into over the host bus interface 1122. 

Once the state processor instruction databases memory 1109 is loaded, the system 

	

30 	is ready for receiving packet flow signatures and payload that come from the parser (Fig 

10), in particular units 1010 and 1011 via the parser interface 1101. The unified flow key 
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buffer (UFKB) 1103 is a specially designed memory or sequence of memories that is set 

up to maintain and hold flow signatures is to be processed or that are in process. The 

flow key buffer 1103 also holds the payloads of those packets from which the flow 

signatures were determined. The contents of unified flow key buffer 1103 include several 

5 	state (or status) identification to allow different processes to run concurrently. There are 

three finite state machines (FSMs) that can concurrently run: the lookup/update engine 

1107, the state processor 1108, and the flow insertion and deletion engine 1110. Each 

processes data from the UFKB 1103, the data used by state processor 1108 having first 

been processed by lookup update engine 1107, and the data used by the flow 

10 	insertion/deletion engine 1110 having first been processed by the state processor 1108. 

Whether or not a particular engine has been applied to any unified flow key buffer entry 

is deter 	nined by status fields set by the engines upon completion. Each entry may not 

need to be processed by all three engines. The three finite state machine engines run 

concurrently to allow lookups to occur while the state processor may be processing states 

15 	for another item while yet another item is being inserted in engine 1110. Some entries 

may need to be processed more than once by a particular engine. There is bi-directional 

access between each of the finite state machines and the unified flow key buffer 1103. 

Once an element exists in the flow key buffer 11013, the first engine to use the data is 

the lookup/update engine 1107 which takes the flow signature that was generated by the 

20 	parsing and extracting process and begins a lookup request to the cache system interface 

1115. The lookup/update engine's operation is that of blocks 314 and 316 on Fig. 3. The 

caching system 1115 is described below. Once an element has been looked up then 

updated, or has not been found, the appropriate status for that element is updated in the 

unified flow key buffer entry for that particular flow signature and packet. If there are 

25 	any state operations to be executed, control is passed over to state processor 1108 for that 

particular flow key buffer entry. State processor 1108 extracts from unified flow key 

buffer 1103 the information that was updated by lookup engine 1107. One of the 

elements stored in the flow key buffer as updated by the lookup/update engine 1107 is a 

state processor instruction to be executed, in the form of a number, and state processor 

30 	1108 extracts this element from the unified flow key buffer entry that is ready for the 

state processor, sets the processor 1108's instruction system to run the program counter 

based on the number stored in the flow key buffer entry by the lookup/update engine. 
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That instruction causes a sequence of one or more state operations to be executed in state 

processor 1108 to further analyze the payload that is in the flow key buffer entry for this 

particular flow signature and packet. Once the final state operation for that particular 

packet has been executed on the data in the unified flow key buffer 1103, that 

5 	information is updated both in the cache system 1115 and in the unified flow key buffer 

1103. Control is then passed on to the flow insertion/deletion engine 1110 for that flow 

signature and packet entry if the flow needs to be inserted or deleted from a database of 

flows. The flow insertion and deletion engine 1110 is responsible for creating new flows 

in the flow database, and deleting flows from the database so that they can be reused. 

10 	This is carried out in a process of bucketing and binning described hereinbelow with the 

aid of Fig. 12 and carries out the operations of block 318 of Fig. 3. The flow 

insertion/deletion engine recognizes that needs to be processing information based on a 

status field in the unified flow key buffer 1103. 

The cache and caching engine 1115 is designed to have information flowing in 

15 	and out of it from five different points within the system. The lookup/update engine 1007 

is able to request the cache system to pull a particular flow or "buckets" of flows from 

the unified memory controller 1119 into the cache system for further processing. The 

state processor 1108 can operate on information found in the cache system once they are 

looked up through the lookup/update engine request, and the flow insertion/deletion 

20 	engine 1110 can create new entries in the cache system if required based on information 

in the unified flow key buffer 1103. The cache system 1115 is intelligent enough to 

access to the flow database and to understand the data structures that exists on the other 

side of memory interface 1123. The cache can retrieve information from the memory 

through the member interface 1123 the unified memory controller 1119, and can also 

25 	update information in the memory through the memory controller 1119. The cache 

system can also be maintained, change and managed by the analyzer host interface and 

control 1118, which, for example, allows for the direct insertion into the cache of 

specific flow records and other elements from the flow database via the host bus 

interface 1122. 

30 	 Once a set of operations is performed on a unified flow key buffer entry by all of 

the state machines required to access and manage a particular packet and its flow 

NOAC Ex. 1014 Page 65



61 

signature, the unified flow key buffer entry is marked as "completed." That element will 

then be used by the parser interface for the next packet and flow signature coming in 

from the parsing and extracting system. 

There are several interfaces to components of the systems external to the module 

	

5 	of Fig. 11 for the particular hardware implementation. These include host bus interface 

1122, designed as a generic interface which can operate with any kind of external 

processing system such as a microprocessor or a multiplexor (MUX) system so that one 

can hook the overall a traffic classification system of Figs. 11 and 12 into some other 

processing system to manage the classification system and to extract data gathered by the 

	

to 	system. Another generic interface is memory interface 1123 designed to interface to any 

of many types memory systems that one may want to use to store the flow records. The 

unified memory controller 1119 deals with managing how memory is accessed and 

maintained. Member interface 1123 is "generic" so one can use different types of 

memory systems like regular dynamic random access memory (DRAM), synchronous 

	

15 	DRAM, synchronous graphic memory (SGRAM), static random access memory 

(SRAM), and so forth. 

Fig. 10 also includes some "generic" interfaces. There is a packet input interface 

1012, a general interface that works in tandem with the signals of the input buffer 

interface control 1022. These are designed so that they can be used with any kind of 

	

20 	generic systems that can then feed packet information into the parser. Another generic 

interface is the interface of pipes 1031 and 1033 out and into host interface multiplexor 

an control registers 1005. This enables the parsing system to be managed by an external 

system, for example a general purpose processor or another kind of external logic, and 

enables the external system to program and otherwise control the parser. 

	

25 	 The preferred embodiment of this aspect of the invention the invention is 

described in a hardware description language (HDL) such as VHDL or Verilog. It is 

designed and created in an HDL so that it may be used as a single chip system or 

integrated into another, say general-purpose system that is being a designed for purposes 

related to creating and analyzing traffic within a network. Verilog or other HDL 

	

30 	implementation is only one method of describing the hardware. Currently each of the 

block diagrams shown in Figs. 10 and 11 are implemented in a set of six field 
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programmable logic arrays (FPGAs). The boundaries these FPGAs are as follows: 

Fig. 10 is implemented as two FPGAs. The parsing system that deals with pattern 

recognition in one FPGA, and this includes in the input side blocks 1006, 1008 and 

1012, and also parts of 1005, and memory 1001. The extraction system is in another 

	

5 	FPGA which includes 1002, parts of 1005, 1007, 1013, and 1011. The memories in 

Fig. 10 are included in the FPGAs as are the generic interfaces. Referring to Fig. 11, the 

unified looking buffer 1103 is in a single FPGA. The fourth FPGA includes state 

processor 1108 and the state processor instruction database memory 1109. In addition, 

portions of the state processor instruction database memory 1109 are maintained in 

	

10 	external SRAMs. The fifth FPGAs includes finite state machine engines 1107 (the 

lookup/update engine) and 1110 (the flow insertion/deletion engine). The sixth FPGA 

includes the cache system 1115, the unified memory tour 1119 and the analyzer host 

interface and control 1118. 

Note that rather than as a set of application specific integrated circuits (ASICs) 

	

15 	such as FPGAs, one can implement the system as one or more VLSI devices. In the 

future, it is anticipated that device densities will continue to increase, so that the 

complete system may one day form a subunit (a "core") of a larger single chip unit. 

The operation of the flow insertion and deletion engine 1110 is now described 

with the aid of Fig. 12. The engine is entered at 1201 upon existence of a unified flow 

	

20 	key buffer entry for packet having the status of "new". With the status being "new" in 

the entry 1202, the next step if 1203, accessing a conversation record bin. This 

information is already maintained in the unified flow key buffer 1103 for this flow 

signature from a previous lookup that occurred using the lookup engine 1107. In 1204 

the system requests that the record bin/bucket be maintained in the cache system 1115. 

	

25 	As long as the cache system 1115 says that the bin/bucket is empty in 1205, step 1207 

inserts the flow signature (with the hash) into the bucket and the bucket is marked "used" 

in the cache engine using a time stamp that is maintained throughout the process. Then 

in 1209 and the system compares the bin and bucket record flow signature to the packet 

to verify that all the elements are in place to complete the record. In 1211 the system 

	

30 	marks the record bin and bucket as "in process" and as "new" do in the cache system. 

This allows the caching engine to understand do that it needs to actually push the record 
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out through the unified memory controller 1119, into off chip memory. Finally in 1212, 

the initial statistics for the record are set in the cache system so that they are either 

cleared or, whatever set procedures the particular statistical operations require the system 

to do for the first packet that is seen for a particular flow. 

5 	 Back in step 1205, if the bucket is not empty, the system requests the next bucket 

for this particular bin in the cache system. If that particular bucket is not valid than 

control passes to 1207, repeating the processes of 1207, 1209, 1211 and 1212. If at 1208, 

the bucket is seen to be in a valid state, the set the unified flow key buffer entry for the 

packet is set as "drop", indicating that the system cannot process the particular packet 

10 	because there are no buckets left in the system. The process exits at 1213. 

The operation of the state processor 1108 is now described. The state processor is 

entered at 1301 with a unified flow key buffer entry to be processed which is marked 

with status "new" or "found". This entry is retried from unified flow key buffer 1103 in 

1301. In 1303, the state processor's instruction pointer the value found in the unified 

is 	flow key buffer entry, and this instruction is fetched in 1304 from the state processor 

instruction database memory. In 1305 the operation or set of operations fetched is carried 

out by the state processor. The typical instructions include parsing operations to look up 

and possible analyze a pattern from the packet in the unified flow key buffer 1103, 

evaluate an offset in the payload of the packet, etc. The single state processor 

20 	instructions are very primitive (e.g., moves, compares), therefore many such instructions 

need to be performed on each unified flow key buffer entry. In 1307, a check is made to 

determine if there are no more instructions to be performed. Each instruction performed 

results in either another instruction that needs to be performed, or no more operations. 

Therefore, if at 1307 it is determined that there are more instructions, then in 1308 the 

25 	system sets the state processor instruction pointer to the value found as the next 

instruction in the current state and the process moves to step 1304 where the next 

instruction is fetched for execution. This loop between 1304 and 1307 continues until 

there are no more instructions to be performed. In 1309, a check is made in 1309 if the 

processing on this particular packet has resulted in a final state. That is, the system is 

30 	done processing not only for this particular packet, for the whole flow that the packet is 

part of. That is, at the end of processing this packet, there either is another state that 
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another packet is needed for, or a final state has been reached. If there are no more states 

to process, then in 1311 the processor sets and saves the "flow removal state" as a state 

processor instruction in the current flow record that determines whether or not an 

operation to remove this flow is set in place. Some final states may need to put a state in 

	

5 	place which tells the system to remove a flow for example if a connection goes away 

from a lower level connection identifier. In 1311 a flow removal state is set and saved in 

the flow record. The flow removal state may be a NOP (no -op) instruction which means 

there are no removal instructions, or it may be a set of operations that are needed to be 

performed to evaluate whether or not this flow is going to get reset back to a state where 

	

10 	it needs to be re-evaluated to make sure that it still the flow or end-result flow that the 

system has temporarily determined that it is. 

Once the appropriate flow removal instruction as specified for this flow (a NOP 

or otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can 

now obtain another unified flow key buffer entry to process. 

	

15 	 If at 1309 it is determined that processing for this flow is not completed, then in 

1316 the system saves the state processor instruction pointer in the current flow record in 

the current flow record. That will be next operation that will be performed the next time 

the lookup engine 1107 finds a match for this flow. Again, the processor now exits 

processing this particular unified flow key buffer entry at 1313. 

	

20 	The Parser Subsystem in More Detail 

The preferred hardware implementation of the parser subsystem is now described 

in more detail. 

Highlights 

The following are the highlights of the preferred hardware implementation of the 

	

25 	parser subsystem which is shown in Fig. 10. 

• Synthesizable modules written in both the Verilog and VHDL 

• Scalable architecture for any size switch or probe 

• Can recognize many (e.g., > 2000) different protocols 
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• Extensible to new protocols 

• Recognizes encapsulations 

• Builds signature and payload data structure for analyzer (the flow signature) 

• Scaleable protocol pattern recognition engine 

5 	• 	At 62.5 MegaHertz can process up to 1.5 MegaPackets per second 

• Accepts protocol database output from the compiler 

Architectural Overview 

The overall architecture is shown in Fig. 10. The parser module consist of two 

main sub-modules. These are the pattern recognition engine (PRE) and the extractor. The 

10 	PRE analyzes the packet and the extractor builds the flow signature from the packet and 

instructions from the pattern recognition engine .The parser has been split into two parts 

for several reasons. First and foremost, the split correctly partitions the functions to 

allow maximum reuse of silicon across the over two thousand protocols that can be 

supported. Another advantage of the split architecture is that the compiler can analyze 

is 	the three dimensional space occupied by the offset, level, and pattern data of the 

specified protocols and compact the databases used in the parser module. The set of 

specified protocols defines a tree of linked nodes. Each protocol is either a parent node 

or a terminal node. A protocol is a parent node if it links to other protocols that can be 

contained in it. For example IP is a parent to UDP. Protocols can be the children of 

20 	several parents. If a unique node was generated for each of the possible parent/child 

trees, the database would explode exponentially. Instead, child nodes are shared among 

multiple parents thus compacting the database.. Finally the PRE can be used on it's own 

when only protocol recognition is required. 

The parser module pouches the network data through the DataPort interface. The 

25 	data is first processed by the pattern recognition engine. This engine consists of a 

comparison engine and a database. The comparison engine has a first stage that checks 

the protocol type field to determine if it is an 802.3 packet and the field should be treated 

as a length. If it is not a length, the protocol is checked in the second stage. This is the 

only protocol level that is not programmable. This is because the detection of the 
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protocol at this level is simple and well defined. It is implemented with partial CAMs 

that return a node identifier if hit. This second stage has two full sixteen bit CAMs 

defined for future protocol additions. After this detection is completed the engine 

initializes Current Offset Pointer (COP) to the next part of the packet that needs to be 

	

5 	checked. The node identifier from the previous stage and the data pointed to by the COP 

are used by the PRE to lookup an entry in the database. As each protocol is recognized, 

the pattern recognition engine emits a unique protocol identifier. It also emits a process 

code that the extractor uses to build the flow signature. This process is repeated until the 

node identifier's Terminal bit is set. At that point the PRE has completely recognized the 

	

to 	protocols in the packet and readies itself for the next packet. 

The extractor extracts information from the packet to build the flow signature. 

For example, it will extract the source and destination addresses from the packet and 

pack them into the flow signature data structure. It may also process certain parts of the 

packet to speed up flow processing performed by the analyzer. It will build a hash value 

	

15 	from certain parts of the packet to speed looking up the flow in the analyzers' database. 

The extractor transfers data from it's input Buffer to it's output Buffer based on the 

sequence of instructions in it's instruction database. When the PRE recognizes a protocol 

it outputs both the protocol identifier and a process code to the extractor. The protocol 

identifier is added to the flow signature and the process code is used to fetch the first 

	

20 	instruction from the instruction database. Instructions consist an operation code and 

usually source and destination offsets as well as a length. The offsets and length are in 

bytes. A typical operation is the MOVE instruction. This instruction tells the extractor to 

copy n bytes data unmodified from the input Buffer to the output Buffer. The extractor 

contains a byte-wise barrel shifter so that the bytes moved can be packed into the flow 

	

25 	signature. The extractor contains another instruction called HASH. This instruction tells 

the extractor to copy from the input Buffer to the HASH generator. The result from the 

HASH generator is always written into the first two bytes of the flow signature. It is used 

to accelerate the lookup of the flow in the analyzers flow database. Once the flow 

signature is completed, the extractor transfers it to the analyzer for further processing. 

30 	 The parser module databases can reside in ROM or RAM. If the databases are in 

a RAM the parser can be programmed to recognize new protocols or a different set of 
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protocols. 

Bandwidth requirements 

The target throughput for the traffic monitor hardware running at 62.5 Megahertz 

is 1.5 million packets per second (PPS). This is the sustained maximum throughput of a 

	

5 	single Gigabit channel. At this rate the parser module has 41.6 cycles to process each 

packet. In order to reduce the need for front end buffering external to the parser module, 

the architecture has been designed to complete the protocol recognition generation in no 

more than 36 cycles. Since there could be up to 12 different protocols in each to be 

processed, the parser module has been designed to average three cycles per protocol. 

	

io 	This is the very worst case because a packet that has twelve levels of protocols in it will 

most likely be much larger than the minimum packet size. This can be used as to 

advantage again in the reduction of external buffering. The extractor must also complete 

the flow signature generation within 36 cycles to keep the system in balance and 

unstalled. This however can be extended if the payload copying instructions run to there 

	

15 	maximum values. 

The average packet will have between 4 and 5 levels of protocol with no 

encapsulations. At three cycles per protocol the PRE will use only 15 cycles to complete 

a packet. This means that the PRE has a typical sustained throughput of over three 

million packets per second. 

	

20 	Pattern Recognition Engine Sub-module — PRE 

Highlights 

The following are the highlights of the preferred implementation of the PRE: 

• Scaleable protocol pattern recognition engine 

• Supports from 1 to 2048 simultaneous unique protocol patterns 

	

25 	• At 62.5 MegaHertz can process up to 1.5 MegaPackets per second 

• Accepts protocol database, the database produced by the compiler 
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Description 

The Pattern Recognition Engine module searches it's database and the packet in 

order to recognize the protocols the packet contains. The database consists of a series of 

linked lookup tables. Each lookup table uses eight bits of addressing. The first lookup 

	

5 	table is always at address zero. The Pattern Recognition Engine uses the BaseOffset 

from the control register to start the comparison. It loads this value into the Current 

Offset Pointer (COP). It then reads the byte at BaseOffset from the Parser Input Buffer 

and uses it as an address into the first lookup table. 

Each lookup table returns a word that links to another lookup table or it returns a 

	

to 	terminal flag. If the lookup produces a recognition event the database also returns a 

command for the Extractor. Finally it returns the value to add to the COP. 

Database Word Definition 

Bit Description 

1:0 Opcode 

00 Terminal Node found 

01 Intermediate Node 

10 Ending Terminal Node found 

* Next Lookup table 

* uses PAR_PRE_LU_WIDTH 

* Extractor Command 

* uses PARPRE_COM_WIDTH 

* Mask 

* uses PAR_PRE_MASK WIDTH 

Extractor Sub-module 

15 Description 

The Extractor cuts up (slices) the packet to build the flow signature. The 

Extractor module accepts commands from the Pattern Recognition Engine. Based on the 

command received, the Extractor either transfers data from the Parser Input Buffer to the 
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Parser Output Buffer or it transfers data from the Parser Input Buffer to it's internal hash 

generator. It contains a buffer that FIFO's up the commands. When the Pattern 

Recognition Engine asserts PREDone the Extractor completes any pending commands, 

transfers the hash to the Parser Output Buffer and asserts SiDone. 

5 

Instruction Word Definition 

Bit Description 

1:o Opcode 

00 Nop 

01 Move 

10 Hash 

11 Done 

* Source Address 

* uses PAR P1B_AWIDTH 

* Destination Address 

* uses PAR_POB_AWIDTH 

* Length 

* uses PAR_SL_LEN_WIDTH 

Implementation Information 

The Extractor contains a byte wise barrel shifter that is used to pack data into the 

flow signature. A Moore finite state machine controls the execution of commands. The 

10 	command comes into the Extractor and is shifted to provide an address. The Extractor 

uses this address to read the Extractor Instruction Database. 

Extractor Instruction Database Sub-module -SID 

Highlights 

• Scaleable implementation 

15 	• Wraps either RAM or ROM instantiation or can be synthesized latches 
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Description 

The Extractor Instruction Database module is a wrapper for the storage medium 

used to hold the pattern recognition database. Only the CPU can write this memory. 

Implementation Information 

	

5 	The module can be synthesized or a RAM or ROM cell can be instantiated into 

the wrapper. 

CPU Interface MUX and Control Register Sub-module - CMC 

Description 

The CPU Interface MUX and Control Register module controls the 

	

10 	communication between the external CPU and the Parser. The CMC contains a MUX for 

the CPU read back. It also contains the control register for the Parser. 

Parser Input Buffer Sub-module — PIB 

Highlights 

• Scaleable implementation 

	

15 	• Asynchronous three ported RAM 

• Can be build from three separate single port RAM cells 

• Wraps either RAM instantiation or can be synthesized latches 

• Separate dual read and a single write interfaces 

Description 

	

20 	The Parser Input Buffer is a wrapper for the buffer that is used to store the start of 

the packet. It is three ported with separate dual read and a single write interfaces. The 

data from the DataPort interface is stored in one of three logical or physical buffers 

through the write port. The Pattern Recognition Engine uses one of the read ports and the 

Extractor uses the other. The three interfaces never access the same third of the buffer at 

	

25 	the same time. Each of the interfaces looks like a single buffer to the attached modules. 

The Parser Input Buffer controls which of the three buffers the module is controlling. 
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When the first packet comes in the DataPort Interface Control module writes the data 

into one of the three buffers. It then increments a modulo three counter to point to the 

next buffer. The Pattern Recognition Engine will then begin processing the packet. 

Finally after the Pattern Recognition Engine is finished the Extractor will get access to 

	

5 	the buffer. In this way each of the three processes have access to a buffer and each get 

access to the packet in turn. 

Implementation Information 

The module can be synthesized or RAM cells can be instantiated into the 

wrapper. The instantiated RAM can be either a single three ported cell or three separate 

	

to 	RAM cells. The Parser Input Buffer can be three separate RAM cells because the control 

logic will never try to read and write the same third of the buffer at the same time. 

Parser Output Buffer Sub-module - POB 

Highlights 

• Scaleable implementation 

	

15 	• Asynchronous dual ported RAM 

• Can be build from two separate single port RAM cells 

• Wraps either RAM instantiation or can be synthesized latches 

• Separate read and write interfaces 

Description 

	

20 	The Parser Output Buffer is a wrapper for the buffer that is used to store the 

output of the Extractor. It is dual ported with separate read and write interfaces. The 

write interface is controlled by the Extractor. The read interface is controlled by the 

Analyzer Interface Control logic. The Parser Output Buffer maintains a pointer to the 

two buffers such that one buffer is controlled by the Extractor and one is controlled by 

	

25 	the Analyzer Interface Control logic. 

Implementation Information 

The module can be synthesized or RAM cells can be instantiated into the 
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wrapper. The instantiated RAM can be either a single dual ported cell or two separate 

RAM cells. The Parser Output Buffer can be two separate RAM cells because the control 

logic will never try to read and write the same half of the buffer at the same time. 

DataPort Interface Control Sub-module - DPIC 

5 Description 

The DataPort Interface Control module handshakes with the external source of 

packets. The external device starts sending the packet to the DataPort Interface Control 

module by asserting DPPacketDelim. The transfer of data is coordinated by the 

DPDataStb_N/DPReady_N pair. If the external device decides to about the packet it 

to 	can assert DPKillPkt_N. 

Implementation Information 

The Analyzer Interface Control module is implemented as a Moore type finite 

state machine. Each of the outputs of the state machine are registered to assure maximum 

setup time for the external device. 

15 	Analyzer Interface Control Sub-module -AIC 

Description 

The Analyzer Interface Control module handshakes with the Analyzer in order to 

transfer the flow signature for further processing. The Analyzer Interface Control module 

starts a transfer to the Analyzer by asserting ParserKeyDelim. It then transfers the data 

20 	via the AnalyzerReady/ParserDataAvail handshake pair. The Analyzer Interface 

Control module also sends the address of the data to be sent to the Parser Output Buffer. 

Implementation Information 

The Analyzer Interface Control module is implemented as a Moore type finite 

state machine. Each of the outputs of the state machine are registered to assure maximum 

25 	setup time for the Analyzer interface. 

The Analyzer Module in Detail 

The preferred embodiment hardware analyzer module illustrated in Fig. 11 is 
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now described in more detail. 

Highlights 

Highlights of the preferred embodiment include: 

• Flexible rule-based traffic classification; 

5 	 • 	State-based tracking of traffic; 

• Multiple packets for layer processing; 

• Internal cache and memory controller; 

• Direct high bandwidth (64 bit) memory interface; 

• SGRAM/SDRAM support; 

10 	• Programmable rules/state processor; 

• Selectable protocols in flows; 

• Future protocols support; and 

• Scalable system design. 

Architectural Overview 

15 	 The analyzer module preferred embodiment includes five major sub-modules 

with several supporting sub-modules. The major sub-modules as shown in Fig. 11 are the 

flow lookup/update engine, the flow insertion and deletion engine, the state processor, 

the cache, and the unified memory controller. Each of these sub-modules works in 

parallel to create and update flows. 

20 	 As a flow signature enters the analyzer, the lookup engine attempts to find it in 

the flow database. If the flow exists, the lookup engine retrieves the flow from the cache. 

It then makes a decision based on the state information included in the flow entry to 

either send it to the state processor or not. In either case it updates the flow entry. This 

updating consists of adding values to counters in the flow database entry. If a flow does 

25 	not exist, the state processor sends the flow signature to the flow insertion and deletion 

engine, which adds the flow to the database. 
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The state processor updates the flow based on the current state and the flow 

signature information. The state processor processes single and multi packet protocol 

recognition. It may have to search through a series of possible states to determine the 

flow's actual state. The result of the state processor's processing is a consolidated flow 

	

5 	entry. For example, a PointCast session will open multiple conversations that on a packet 

by packet basis look like separate flows. Since each conversation is merely a sub-flow 

under the PointCast master flow, a single flow that consolidates all of the information for 

the flow is desired. 

The unified memory controller can be setup to work with various configurations 

	

10 	of SDRAM or SGRAM. It also controls the SRAM tag memory for shadowing of flow 

entries. 

The cache is used to optimize memory bandwidth. On a typical network the 

packets will have a certain amount of congruity. This means that the cache can have a 

high hit rate. 

	

15 	Flow Entry Database 

The Flow Entry Database consists of a series of 128 byte entries. Each entry 

completely describes a flow. The format and information contained in the flow is 

described in the PDL files. The database is organized into buckets. Each bucket contains 

N flow entries. N is determined by the designer. Buckets are accessed via a hash value 

	

20 	created by the Parser based on information in the packet. This hash spreads the flows 

across the database and is preferably based on a hashing algorithm that has the spreading 

properties. This method allows fast look up of an entry while allowing for shallower 

buckets. The designer selects the bucket depth based on the amount of memory attached 

to the analyzer and the number of bits of the hash value used. For example, for 128k 

	

25 	flow entries 16 Megabytes are required. Using a 16-bit hash gives two entries per bucket. 

This has been empirically shown to be more than adequate for the vast majority of cases. 

Unified Flow Key Buffer - UFKB 

Highlights 

• Scaleable implementation 
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• Can be build from four separate dual port RAM cells 

• Wraps either RAM instantiation or can be synthesized latches 

• Separate read and write interfaces 

Description 

5 	 The Unified Flow Key Buffer is a wrapper for the buffers that are used to store 

the flow signatures from the Parser and the modified flow signatures from the Lookup 

and Update Engine and the State Processor. It is four ported with separate read and write 

interfaces. The four connections are to the Parser Interface Control, the Lookup and 

Update Engine, the State Processor and the Flow Insertion and Deletion Engine. In the 

10 	Unified Flow Key Buffer logic hides from the interface which of the buffers is being 

accessed. 

When the first word of the flow signature arrives from the Parser, the Lookup and 

Update Engine is notified. The Lookup and Update Engine places the first address it 

wants on the LUEnUFKBAdd bus and asserts LUEnUFKBRdReq. If the address 

15 	requested is in the buffer the Unified Flow Key Buffer asserts UFKBuLUERdy. If not it 

waits for either the data to arrive or the transfer is terminated. Once the Lookup and 

Update Engine finishes processing the flow signature it asserts LUEDone. At the same 

time it will assert LUEHo1dBuf. LUEHoldBuf tells the system that the buffer is to be 

sent to the State Processor. 

20 	 The State Processor and Flow Insertion and Deletion Engine have similar 

interfaces except that the data is assumed to be already in the buffer so no ready is 

returned. Also Flow Insertion and Deletion Engine has no need to hold the buffer for 

another process so that once FIDEDone is asserted the buffer is freed. 

Implementation Information 

25 	 The module can be synthesized or RAM cells can be instantiated into the 

wrapper. The instantiated RAM should be four separate dual ported RAM cells. 

The RAM must complete a write or read in a single cycle with simultaneous read 

and write to SEPARATE locations. 
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A block diagram of the UFKB is shown in Fig. 19. 

Lookup and Update Engine - LUE 

Highlights of the LUE 

• Looks up flow entries 

	

5 	• 	Compares flow signature from parser to flow entries 

• Updates packet count and byte count tables 

• 64 bit byte count adder with early out 

• Checks flow state to see if processing by the state processor is required 

Description 

	

10 	 The Lookup and Update Engine begins processing as soon as a flow signature 

arrives from the parser. The first transfer from the parser contains a hash value that is 

used as an offset into the flow entry database. The LUE checks the entry to see if it 

matches the flow signature by comparing the unique identification for that flow. If there 

is a match, the LUE updates the counters for the flow entry. The LUE also check the 

	

is 	entry's flow state to see if the flow signature needs to be sent to the state processor. 

The Lookup and Update Engine also outputs on a special data bus, two 16 bit 

values. One value is a word from the flow signature that can be a packet identifier or any 

thing else the design wants. The other is the protocol identifier for the flow. This can be 

programmed to output this data on every packet or only for packets that the 

	

20 	corresponding flow is in the IDENTIFIED state. 

Analyzer CPU Interface and Control - ACIC 

Description 

The Analyzer CPU Interface Control module controls the communication 

between the external CPU and the Analyzer. The ACIC contains MUX's for the CPU 

	

25 	read back path. It also contains the control register for the Analyzer. 
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Flow Insertion and Deletion Engine - FIDE 

Highlights 

• Maintains flow entry database 

• Deletes and inserts flows based on a LRU algorithm 

5 	• 	Builds flows from flow signature and State Processor instructions 

Description 

The Flow Insertion and Deletion Engine maintains the flow entry database. Flows 

are grouped into buckets by hash value. When a new flow needs to be inserted first the 

FIDE sees which of the entries 

10 	in the corresponding bucket is the oldest. It then builds the flow entry from the 

flow signature and State Processor instructions. Finally it places the entry in the 

database. 

State Processor Instruction Database - SPID 

Highlights 

15 	• Scaleable implementation 

• Wraps either RAM or ROM instantiation or can be synthesized latches 

Description 

The State Processor Instruction Database module is a wrapper for the storage 

medium used to hold the State Processor Instruction database. Only the CPU can write 

20 	this memory. The CPU interface is active if AnalyzerEn is active. 

Implementation Information 

The module can be synthesized or a RAM or ROM cell can be instantiated into 

the wrapper. 
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Unified Memory Controller - UMC 

Highlights 

• Supports Both SDRAM and SCRAM 

• Maintains RAM refresh 

5 Description 

The Unified Memory Controller module controls the caches' access to the flow 

database contained in external RAM. Synchronous DRAM is controlled through a series 

of instructions feed to the RAM through the control pins. Synchronous DRAM requires 

at startup a specific series of commands for initialization. The Unified Memory 

10 	Controller handles both processes thorough a state machine. Since the nature of the flow 

database requires random access, there is little use in attempting to keep multiple banks 

open. Auto-refresh is continuous when memory is not being accessed by the cache. 

Implementation Information 

The Unified Memory Controller module is implemented as a Moore type finite 

15 	state machine. Each of the outputs of the state machine are registered to assure maximum 

setup time for the external device. 

The Cache 

Symbol 

Highlights 

20 	• Fully associative 

• True least recently used cache updating 

• Simultaneous one write and two reads. 

Description 

The Cache module contains a fully associative, true LRU cache memory. Full 

25 	associatively is achieved through the use of a content addressable memory (CAM). The 

need for a fully associative cache arises from the fact that the hash uses to generate the 
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initial look up into the flow entry database spreads the entries pseudo randomly 

throughout the memory. Each hash value corresponds to a bucket containing N flow 

entries. N is set by the designer (see above). 

The Cache can service two read transfers at one time. If there are more than two 

5 	read requests active at one time the Cache services them in the order required (See 

Priority below). 

The CAM contains the hash value associated with the corresponding bucket in 

the cache memory. When there is a cache hit, the CAM produces the most significant 

bits of the address in cache memory where the bucket is stored. The cache then accesses 

10 	the cache memory at the address indicated concatenating the lower address bits provided 

by the requesting module. The cache then remembers that the requesting module had a 

cache hit and the memory location returned. This allows a cache lookup for a requesting 

module to occur only once per request. When the requesting module requires a different 

bucket, it drops then again raises its request and another CAM cycle is initiated. 

15 	 The least recently used algorithm requires the CAM to also be a stack. When 

there is a cache hit the CAM location that produced the hit is put on the top of the stack. 

The other locations above the hit location are shifted down to fill in the gap. If there is a 

miss, the bottom location is read to determine the address in the cache memory to put the 

new bucket. All the locations shifted down as normally. Finally the new hash value and 

20 	cache memory address are put at the top of the stack. 

Priority 

The Cache processes requests from the attached modules in the following order: 

1 - LRU dirty write back. The Cache writes back the least recently used bucket if 

it is dirty so that there will always be a space for the fetching of cache misses. 

25 	 2 — Lookup and Update Engine. 

3 — State Processor. 

4 — Flow Insertion and Deletion Engine. 

5 — Analyzer CPU Interface and Control 
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6 — Dirty write back from LRU —1 to MRU. When there is nothing else pending 

the Cache writes dirty entries back to memory. 

State Processor - SP 

Highlights 

s 	• 	Flexible Rule-based Traffic Classification 

• State-based Tracking of Traffic 

• Multiple Packets for Layer Processing 

• Programmable Rules/State Processor 

• Selectable Protocols in Flows 

10 	• Future Protocols Support 

Description 

The State Processor module analyzes both new and existing flows in order to 

classify them by application. It does this by proceeding from state to state based on rules 

defined by the engineer. A rule is a test followed by the next state to proceed to if the test 

15 	is true. The State Processor goes through each rule until the test is true or there are no 

more tests to perform. The State Processor starts the process by using the last protocol 

recognized by the Parser as an offset into a jump table. The jump table takes us to the 

instructions to use for that protocol. Most instructions test something in the Unified Flow 

Key Buffer or the flow entry if it exists. The State Processor may have to test bits, do 

20 	comparisons, add or subtract to perform the test. 

The State Processor Module in Detail 

State Processor Top - Block Diagram 

The overall top level view of the State processor is shown in Fig. 20. 

Architecture 

25 	 The State Processor executes its instructions from the State Processor Instruction 

Database (SPID) which if filled by the host CPU. The SP contains several sub blocks 
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including a Program Counter (SPPC) a Control Block (SPCB), an ALU (SPALU), 

address generators and data bus Muxes to enable the movement of data from various 

sources to various destinations. 

The two address generators, are: 

5 	 a) The SP Flow Key (i.e., flow signature) Address Generator that points to the 

UFKB and 

b) The SP Flow Entry Address Generator that points to the Cache. 

In addition, the State Processor incorporates four Data Muxes as follows: 

a) SP ALU Data Mux A 

10 	b) SP ALU Data Mux B 

c) SP UFKB Data Mux 

d) SP Cache Data Mux 

These muxes facilitate the movement of data within the various blocks of the 

State Processor and to/from the UFKB and the Cache. 

15 	 Since various sub-modules of the State Processor contain memory elements such 

as the address generator ROMs and the Reference Memory RAM, the host must be given 

read and write access to these memory blocks. 

Architecture (Data Flow) Block Diagram 

Fig. 21 illustrates the data flow paths between the various State Processor sub 

20 	modules. Data flows based on the size of the source and destination. 

The internal sub-modules of the State Processor are now described. 

State Processor Control Block - SPCB 

The SP Control Block decodes instructions coming out of the SPID and separates 

them into various fields to control the State Processor. The main function of the SPCB is 

25 	instruction decoding and control signal generation. There are two classes of instructions. 

One that are executed completely by the SPCB and one that are passed along to the 
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SPALU for partial or complete execution. The SP instructions are described herein 

below in detail. 

When an instruction needs to be passed to the SPALU, the SPCB decodes the 

instruction and supplies the SPALU instruction code on the SPCBInst bus and asserts the 

5 	SPALUGo signal. 

When an instruction can be completely executed by the SPCB, the SPCB 

generates the appropriate control signals to the SP Program Counter, SP Address 

Generators and the SP Muxes in order to implement the specific move or jump 

instruction. 

10 	SPID Word Definition 

The SPID word is a 40 bit word and is partitioned into various fields by the 

SPCB depending on the instruction code. The most significant 7 bits are always the 

SPCBInst Instruction word. The remaining 33 bits carry a different meaning based on the 

SPCBInst word. In some implementations, the width of the SPID may be reduced by 12 

15 	if there is no need to a move immediate instruction for 32 bit data. 

SPCBData Word Definition 

The SPCBData word (which is the remaining bits in the SPID word after we take 

out the SPID Instruction field) is partitioned into various fields depending on the 

accompanying SPCBInst word. 

20 	 For example: The Jump, Call, Wait, WaitRJ instructions are followed by a 

Condition Code and a Jump Address. The Move Immediate instruction is followed by 

the constant value. The load Address Generator instructions are followed by the address 

to be loaded. 

Implementation Information 

25 	 The SPCB primarily takes the SPID word and brakes it up into various fields. 

Upon decoding the instruction field, it generates a combination of control signals from 

its 24 bit decode PAL. These control signals select the various muxes hat facilitate data 

movement and generate strobe signals that load values in various registers. New control 

signals can be added by widening the decode field and rearranging the PAL. The 
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SPCBInst is the only field that feeds into the PAL. The remaining fields of the SPID 

work pass through the SPCB and are directed to the other sub-modules of the State 

Processor. 

State Processor Program Counter - SPPC 

5 	The Program Counter generates the address to the State Processor Instruction 

Database. It contained an Instruction Pointer (SPIP) which generates the SPID address. 

The instruction pointer can be incremented or loaded from a Jump Vector Multiplexer 

which facilitates conditional branching. The SPIP can be loaded from one of three 

sources. 1) A protocol identifier from the UFKB, 2) an immediate jump vector form the 

to 	currently decoded instruction or 3) a value provided by the SPALU. 

After a Flow Signature is placed in the UFKB by the LUE with a known protocol 

identifier, the Program Counter is initialized with the last protocol recognized by the 

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that 

was decoded. 

15 	 In order to facilitate JUMP immediate instructions, the Program Counter takes an 

input field from the SPCB with the jump vector and loads the instruction pointer with the 

Jump Vector. Also, the SPALU can supply a jump vector via the SPALUData bus which 

in turn is loaded into the instruction pointer. 

The State Processor supports "Call and Return Instructions" therefore the 

20 	Program Counter block contains a two level stack. A two bit stack pointer points to the 

top of the stack that the Instruction Pointer is pushed to or popped from. 

The SP Program Counter block contains: 

The Instruction Pointer, The Flag Register (containing several bits used for 

conditional branching) and a Jump Vector MUX. It also contains a two level stack and a 

25 	stack pointer. 

The SPPC is N bits wide. This allows addressing of 211  words in the SPID. N is 

defined in the AnalyzerConstants.v file by the AN_SPID_AWIDTH variable. 

In addition, the Flag register holds a word supplied via the UFKB. 
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Implementation Information 

The State Processor Instruction Pointer (SPIP) is an n bit up counter with reset, 

load, increment and add capability. It is clocked with the rising edge of MCLK and its 

output supplies the address pointing to the SPID. 

5 	Upon Reset, the SPIP is loaded with the Reset Vector. 

When Instructions are executed, the SPIP is incremented at the rising edge of 

MCLK. 

When Jump or Wait instructions are executed, the SPIP is loaded with a Jump 

Vector from the Jump Vector Mux. 

to 	When WaitJR (Jump Relative) instructions are executed, the relative address is 

added to the SPIP. 

When Wait instructions are executed, the SPIP is halted until the condition code 

is met. 

State Processor ALU - SPALU 

15 	 The State Processor ALU contains all the Arithmetic, Logical and String 

Compare functions necessary to implement the State Processor instructions. The main 

blocks of the SP ALU are: The A and B Registers, the Instruction Decode & State 

Machines, the String Reference Memory the Search Engine, an Output Data Register and 

an Output Control Register. 

20 	 The Search Engine in turn contains the Target Search Register set, the Reference 

Search Register set, and a Compare block which compares two operands by exclusive-

or-ing them together. 

Implementation Information 

This block is implemented to be able to operate on multiple works and generates 

25 	Increment and Decrement signals to the SPFK Address Generator in order to obtain new 

data to process. 
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State Processor Flow Key Address Generator - SPFKAG 

The Flow Key Address Generator generates the address to where the State 

Processor is accessing in the Unified Flow Key Buffer. 

The main blocks of the SPFKAG are: 

5 	 a) The Flow Key Address Pointer Register 

b) The ROM decode that generates addresses (implemented but not used for 

stage one) 

To further illustrate the operation, consider the following example. If the UFKB 

contains 360 bytes organized in 64 bit words, the memory would be 45 locations of 8 

10 	bytes each (45X8=360). The address pointer needs to generate 45 addresses only. The 

width of the address generator would be 2n=64 or n=6. Since we may only be interested 

in certain starting points in the memory field, we may only need to access say 8 or 16 

locations directly and then reach the other locations by incrementing OR 

DECREMENTING the Address Pointer. The ROM would hold the values of these 

15 	directly addressable fields. This way we save a few bits. The State Processor will be able 

to load the full address into the address pointer register. 

The Flow Key (i.e., flow signature) Pointer can perform both direct and indirect 

addressing. Indirect addressing is used to offset into a protocol's header. (Stage2) 

Implementation Information 

20 	 The SPFKAG can be loaded, incremented and decremented by the SPCB. 

It can be incremented and decremented by the SPALU. 

State Processor Flow Entry Address Generator - SPFEAG 

The Flow Entry Address Generator provides the address where the State 

Processor is accessing the Flow Entry in the Cache. If a flow entry exists, the upper 

25 	address bits come from the hash used to lookup the bucket in the Flow database. The 

middle bits come from the bucket entry found. The lower bits come from the offset the 

State Processor is using. 
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The main blocks of the SPFKAG are: 

a) The Flow Key Pointer Register 

b) The ROM decode that generates addresses 

Implementation Information 

5 	 The SPFEAG can be loaded, incremented and decremented by the SPCB. 

It can be incremented and decremented by the SPALU. 

State Processor UFKB Data Mux - SPMUXUFKB 

The State Processor UFKB Data Mux - SPMUXUFKB selects the data source 

destined to the UFKB. 

10 	Implementation Information 

The SP MUX UFKB multiplexes one of three sources of data into the UFKB. 

The three sources are: The ALU Output data bus, the lower Cache output data bus and 

the 32 bit SPCB Data. The select signal is a 2 bit signal. 

State Processor Cache Data Mux - SPMUXCA 

15 	 The State Processor Cache Data Mux - SPMUXCA — selects the data source 

destined to the Cache. 

Implementation Information 

The SP MuxCA multiplexes one of four sources of data into the Cache. The four 

sources are: The ALU Output data bus, the lower 32 bits of the UFKB data bus, the 

20 	upper 32 bits of the UFKB data bus and the 32 bit SPCB Data. The select signal is a 2 bit 

signal. In order to allow for 16bit moves, the SPMUXCA incorporates two 16bit muxes 

that supply information to the lower and upper 16bits of the Cache. 

The State Processor ALU Data Mux A - SPMUXA 

Th State Processor ALU Data Mux A - SPMUXA — selects the data source 

25 	destined to the UFKB. 
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Implementation Information 

The SP ALU Mux A multiplexes one of three sources of 32 bit data into the A 

side of the ALU. The three sources are: The Cache data bus, the lower 32 bits of the 

UFKB data bus and the upper 32 bits of the UFKB data bus. The select signal is a 2 bit 

5 	signal. 

State Processor ALU Data Mux B - SPMUXB 

The State Processor ALU Data Max B — SPMUXB —selects the data source 

destined to the B side of the SP ALU. 

Implementation Information 

10 	 The SP ALU Mux B multiplexes one of two sources of 32 bit data into the B side 

of the ALU. The two sources are: The Cache data bus, and the SPCBData word. The 

select signal is a 1 bit signal. 

State Processor Instruction Definitions 

The following sections describe the instructions available in the State Processor. 

15 	It should be noted that typically, no assembler is provided for the State Processor. This is 

because the engineer typically need not write code for this processor. The Compiler 

writes the code and loads it into the State Processor Instruction Database from the 

protocols defined in the Protocol List (PDL files). 

State Processor Instruction Definition 

Instruction Description 

STAGE1 Instructions (a simpler implementation) 

In_Noop No Operation 

In Wait Wait for a condition to occur, jump absolute based on the 
condition 

In Call Call a subroutine 

In Return Return from a subroutine 

In_WaitJR Wait for a condition to occur, jump relative based on the 
condition 

In_Jump Jump to an immediate jump vector based on a condition 
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In Move Move Data from Location X, to Location Y 

In_Load_FKAG Load the FK Address Generator 

In_Inc_FKAG Increment the KF Address Generator 

In_Dec_FKAG Decrement the KF Address Generator 

In_Load_FEAG Load the FK Address Generator 

In_Inc_FEAG Increment the KF Address Generator 

In_Dec_FEAG Decrement the KF Address Generator 

In_Set_SPDone Set the SP Done Bit 

STAGE! ALU Instructions 

In_INC Increment the value in the A Register 

In_DEC Decrement the value in the A Register 

In_ADD ADD Register A + Register B 

In_SUB Subtract Register A - Register B 

In AND Bitwise OR Register A, Register B 

In_OR Bitwise OR Register A, Register B 

In_XOR Bitwise XOR Register A , Register B 

In_COM Bitwise Complement Register A 

In_Simple_Compar 
e 

Compare Reg A, with Reg B. Returns a SPALU_MATCH if 
equal 

STAGE2 ALU Instructions (more complex implementation) 

In_Compare See if the string at a fixed location matches one in a reference 
string array 

In_Compare_Conti 
nue 

In_Find Find a string (or a set of strings) in a range 

In_FindContinue 

In_AD2B Convert an ASCII Decimal character to Binary 

In_AD2B Continue Convert an ASCII Decimal character to Binary 

In_AH2B Convert an ASCII Hex character to Binary 
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The instructions are now described in more detail. 

Noop 

This instruction is the No Operation Instruction. No control signals are generated 

	

5 	nor any of the condition code flags are tested. 

Jump 

This instruction causes the Instruction Pointer to be loaded with the address in the 

JumpAddress field of the State Processor Instruction Database word. This instruction is 

always conditional. Whether the branch is taken or not depends on the ConditionCode 

	

10 	field in the instruction and the state of the Flag Register. If the Condition is not met, the 

Instruction Pointer is incremented. 

Wait 

This instruction causes the Instruction Pointer to be halted (loaded with the same 

value as before) until the condition or event that we are waiting for occurs. When the 

	

15 	event occurs, the Instruction pointer is loaded with the address provided by the source 

causing the event. This instruction is always conditional. 

In order to avoid being stuck at this instruction forever, one of the conditions can 

be a timeout which can preload the Instruction pointer with the Reset Vector. 

Call 

	

20 	 This instruction causes the Instruction Pointer to be loaded with the address in the 

JumpAddress field of the State Processor Instruction Database. At the same time the 

current address in the Instruction Pointer is pushed onto the 2 level stack. 

This instruction may be made conditional Whether the call is taken (made) or not 

depends on the ConditionCode field in the instruction and the state of the flag register. 

25 Return 

This instruction causes the Instruction Pointer to be loaded with the address at the 
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top of the stack. This instruction is always unconditional. 

In_Set_SPDone 

Set the SP Done Bit 

Move 

	

5 	 The move instruction in made up of a set of specific move instructions that deal 

with moving different size words from a source to a destination. These set of Move 

instructions have been developed to ensure the word sizes always match. There are 32 bit 

and 16 bit Move instructions 

The Move instruction moves data from: 

	

10 
	

Immediate Data 	to SP ALU B Register 

Immediate Data 	to Cache 

Immediate Data 	to UFKB 

SP ALU Output 	to UFKB 

SP ALU Output 	to Cache 

	

15 
	

Cache 	 to UFKB 

Cache 	 to SP ALU A Register 

Cache 	 to SP ALU B Register 

UFKB 	 to Cache 

UFKB 	 to SP ALU A Register 

	

20 	 The execution of a MOVE instruction entails: 

• The generation of the addresses to the sources and destinations (in the case of 

Flow Signature and Cache) 

• The selection of the appropriate destination MUX. 

• The generation of the appropriate Load or Write signal to the destination 

	

25 	 register or memory. 

To continue the description of the instructions: 
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Address Generator Control Instruction 

Flags Affected: UFKB_Nend — Address Generator End Count 

In_Load_FKAG 	Load the FK Address Generator 

In_Inc_FKAG 	Increment the KF Address Generator 

5 	In_Dec_FKAG 	Decrement the KF Address Generator 

In Load_FEAG 	Load the FK Address Generator 

In_Inc_FEAG 	Increment the KF Address Generator 

In_Dec_FEAG 	Decrement the KF Address Generator 

In_Set_SPDone 	Set the SP Done Bit 

10 	STAGE 1 ALU Instructions (those in a simpler implementation) 

15 

Flags Affected: SPALU_Carry, SPALUMatch 

In_INC 	Increment the value in the A Register. The Flags Affected: 

SPALU_Carry 

In_DEC 	Decrement the value in the A Register 

Flags Affected: SPALU_Carry 

In_ADD ADD Register A + Register B 

Flags Affected: 	SPALU_Carry 

In_SUB Subtract Register A - Register B 

Flags Affected: 	SPALU_Carry 

20 In_AND Bitwise OR Register A, Register BFlags Affected: 

SPALU_Carry=0 

In_OR Bitwise OR Register A, Register B 

Flags Affected: 	SPALU_Carry=0 

In_XOR Bitwise XOR Register A , Register B 

25 Flags Affected: 	SPALU_Carry=0 
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In_COM 	Bitwise Complement Register A 

Flags Affected: 	SPALU_Carry=0 

In_Simple_Compare 

This instruction compares the contents of RegA with the contents of RegB and 

5 	returns a MATCH if equal The instruction format is as follows: 

STAGE 2 ALU Instructions (those in a more complex implementation) 

The following is a list of the Stage2 ALU Instructions along with the instruction 

formats and related information. 

In_Compare 

io 	This instruction provides information to the ALU-Search Engine to perform a 

compare operation and return a MATCH along with the matched string information. A 

Compare operation compares a WORD whose first character is located at a known 

location in the UFKB, and a known Reference String in the Reference String memory. 

Prior to executing this instruction, the SPUFKB address generator is loaded with the 

15 	address pointing to the Target Character. Since the UFKB has multiple words in one 

location, an additional offset is provided which points to the exact location of the Target 

Character within a UFKB word. A location in the ALU Reference Memory will hold a 

list of reference characters to compare. 

In_Compare_Continue 

20 In_Find 

This instruction provides information to the ALU-Search Engine to perform a 

Find operation and return a MATCH along with the matched string information and 

the location at which the target string was found. 

The instruction format is as follows: 

25 	 In_Find [Reference String Array Address], [UFKB Byte Offset], [Range] 

Instruction Word Definition 

Bit 
	

Description 

In Find 
	

OpCode 
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N (size of 
Abus) 

Reference String Array Address in the ALU Reference Memory. 

At this location, there is an array of one to four reference strings to 
be found. A Reference String Data Structure of the array is defined 
in the Reference Memory Data Structure section below. 

(Default N = 16) 

Offset (2:0) UFKB Byte Offset 

This is the offset address pointing to a byte in the selected UFKB 
word. 

The offset is used to determine which byte within the selected 
UFKB word is the first byte location to start the find operation. If the 
UFKB is 64 bits (8 bytes) this field would be 3 bits wide and point 
to the first target byte to start the find operation. 

Range (7:0) The Range, in number of byte, in the UFKB area to be searched. 

This means the number of bytes to search. 

If a full MATCH does not result after comparing this range, the find 
operation is concluded. 

Reference String Memory Data Structure for FIND Operations 

Bit Field Description 

# of Strings 

(8 bits) 

# of Strings in Array indicates the total number of strings in this 
array. Valid numbers are 0,1,2,3 for 1,2,3 or 4 strings. 

8 bits are allocated for future expansion and to simplify the 
implementation. 

Size of 1st  
String 

(4 bits) 

This parameter indicates the size of the 1st  string in bytes. The value 
placed here is N-1. Valid numbers are 0-F for a string as small as 1 
character and as large as OxF characters. 

Size of 2nd  
String 

(4 bits) 

This parameter indicates the size of the 2nd  string in bytes. The value 
placed here is N-1. Valid numbers are 0-F for a string as small as 1 
character and as large as OxF characters. 

Size of 3rd  

String 

(4 bits) 

This parameter indicates the size of the 3rd  string in bytes. The value 
placed here in N-1. Valid numbers are 0-F for a string as small as 1 
character and as large as OxF characters. 

Size of 4th  
String 

(4 bits) 

This parameter indicates the size of the 4th  string in bytes. The value 
placed here in N-1. Valid numbers are 0-F for a string as small as 1 
character and as large as OxF characters. 

Stringl 1 to 16 characters of stringl. 

String2 1 to 16 characters of string2. 
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String3 1 to 16 characters of string3. 

String4 1 to 16 characters of string4. 

Vector 

(16 bits) 

This is a 16 bit vector returned to the Program Counter to point to an 
area in the SPID that processes the result of the FIND. 

Reference String Memory Data Structure for FIND Operations (Diagram) 

Input 

The Reference String Array Address in the SP ALU Reference Memory. This is 

	

5 	always a WORD location. 

There can be one or more (up to four) reference strings. 

The offset is used to determine the first byte location in the UFKB memory for 

starting the find operation. 

The range specifies the field of search. I.e. how many bytes of the Flow Key (i.e., 

	

10 	flow signature) Buffer should be searched. This range is inclusive. 

Output 

When the search is complete, the Search Done bit is set. 

The MATCH bit is set or reset based on the result of the search. 

The ALU_DATA bus will hold the following information: 

	

15 	 Jump_Vector[15:0] — this is a vector stored in the Reference String Array. 

String Code[l :0] — this is the STRING CODE for the string that was 

found. (i.e. 0,1,2,3) 

The location at which the string was found in the Flow Key Buffer is maintained. 

This is a combination of the UFKB word address + the byte location of the first character 

	

20 	of the target found string. 

The search is done if: 
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a) the first occurrence of any of the reference strings is found OR 

b) there is no MATCH in the entire search range. 

Consider the following example. Assume we wish to FIND a reference string in 

the payload area of the UFKB and search starting at byte location 5 of the payload and 

stop searching at byte location 100. Assume the reference string is located at location 

0050h. The instruction format for this example would be as follows: 

In_Load_FKAG, payload address 

In_Find, 0050h, 5, 60h 

The range would be 100 — 5 + 1 = 96 = 60h 

to 	Example 2 

If we wish to search locations 12h to location 2Ah in the UFKB, the following 

instructions will be issues: 

In_Load_FKAG 02H 

In_Find [Reference String Address],2,19h 

15 	 2Ah — 12h +1 = 19h 

In_Find_Continue 

This instruction follows a FIND instruction and tells the ALU-Search Engine to 

perform a Find operation starting from the location where the last string was found and 

return a MATCH along with the matched string information and the location at which 

20 	the target string was found. The purpose for this instruction is to facilitate searching for a 

new reference string starting from the location where a previous search ended. Therefore, 

an offset is not provided since the Search Engine will remember the location where it 

finished its previous search. 

The instruction format is as follows: 

25 	 In_Find_Continue [Reference String Array Address], [0], [Range] 
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Instruction Word Definition 

Bit Description 

In_Find Opcode 

N (size of 
Abus) 

Reference String Array Address in the ALU Reference Memory. 

At this location, there is an array of one to four reference strings to 
be found. A Reference String Data Structure of the array is defined 
in the Reference Memory Data Structure section below. 

(Default N = 16) 

Offset (2:0) UFKB Byte Offset 

Always Zero. 

Range (7:0) The Range, in number of byte, in the UFKB area to be searched. 

This means the number of bytes to search. 

If a full MATCH does not result after comparing this range, the find 
operation is concluded. 

As an example, assume we wish to FIND a string (String A) in the payload area 

of the UFKB and search starting at byte location 5 of the payload and stop searching at 

byte location 100. Assume the reference string (String A) is located at location 0050h. 

5 	After finding the first reference string, assume we wish to continue searching for a new 

string (String B) in the following 30h bytes. Assume String B is located at location 

0080h. 

The instruction format for this example would be as follows: 

In_Load_FKAG, payload address 

is 	In_Find, 0050h, 5, 60h 

In_Find_Continue, 0080h, 5, 30h 

The range would be 100 — 5 + 1 = 96 = 60h 
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ASCII Decimal to Binary 

This instruction passes the location of an ASCII code string representing a 

decimal value. The result is the binary equivalent value. 

ASCII Hex to Binary 

5 	 This instruction passes the location of an ASCII code string representing a hex 

value. The result is the binary equivalent value. 

Search Engine -- Architectural Overview 

Search Engine in the preferred embodiment executes the IN FIND and 

10 	IN_FIND_CONTINUE instructions issued to the State Process ALU. The FIND 

Instructions searches an area of the UFKB and looks for up to four possible reference 

strings in the target (UFKB) area. The reference strings are stored in the ALU Reference 

String Memory. 

The Search Engine continuously monitors the SPMuxBOut bus and SPALUGo 

15 	signal to detect the In_Find and In_Find_Continue instructions. The In-Find instruction 

is a fresh search instruction (as explained elsewhere hereinabove in the State Processor 

description) whereas the In_Find_Continue is the continuation search instruction which 

continues a new search from the last UFKB location of the previously executed In_Find 

instruction. On the falling (or rising in other implmentaions) edge of SPALUGo control 

20 	signal, the search engine checks SPMuxBOut bus's [31:25] bits to determine if the 

current command is In_Find or In_Find_Continue. The search engine assumes that the 

SP_Data_UFKB is setup to receive data, in word size, from UFKB through SPMUXA 

(see Architecture Block Diagram of the Search Engine SE_TOP in Fig. 21). Similarly, 

port SP_Data_RMB is setup to receive the reference string from the appropriate address 

25 	of Reference String Memory. 

As shown in Fig. 22, the Search Engine interface with the following blocks: 

• ALU String Reference Memory — Where the reference strings are stored 

• SPAUL Data Mux A — Through which the Target data is supplied (64 bits at 
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a time) 

6 	SPALU Data Mux B — Through which the instruction Code is supplied 

• Flow Key Address Generator — Used to increment and decrement the UFKB 

address 

5 	• 	State Processor Program Counter — Where the results are reported. 

Search Engine Internal Block Diagram 

Fig. 23 shows a block diagram of internal structure of the Search Engine. 

Search Engine Sub Module Descriptions 

The Instruction Decode Block — SE_INST 

io 	The Instruction Decode Block — SE_INST — is the Instruction Decode block 

which decodes the instruction code for In_Find and In_Find_Continue and starts the 

Search Engine upon the activation of the SPAUL_GO signal. 

The Search Engine Reference Load Block — SE_LOAD 

The Search Engine Reference Load — SE_LOAD — module is responsible for 

15 	"priming" the reference string registers once an In_Find or In_FindContinue instruction 

is issued. It takes a Reference String Array from the Reference String memory and 

interprets it and load the reference string registers with the information. 

State Machine for the Reference Memory Data Structure 

The SE_LOAD is implemented as a state machine consisting of three states, the 

20 	reset, idle, and the proc state. The module remains in the idle state between the reset and 

the issuing of the first In_Find instruction, and then between the completion of the 

In_Find or In_Find_Continue instruction and the next In_Find or In_Find_Continue 

instruction issue. When the desired instruction is issued, this module is placed in the 

proc state upon the assertion of the SPALUGo signal. In the proc state it first loads the 

25 	first word from the starting location of the reference memory buffer (RMB), the starting 

location is assumed to be set up at the proper location prior to issuing of the instruction. 

The first word contains the number of strings to be searched, the size of each string, and 
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the first or subsequent strings as shown in the reference memory format diagram below. 

Once the number of strings and the size of the strings are loaded, the loading process 

continues loading all of the strings. During the loading of the strings, the 

LOAD_KEY_DONE is negated. When the last word of the last reference string is being 

5 	loaded, the LOAD_KEY signal is pulsed once indicating to the search_engine_module to 

start searching from the next clock cycle. The LOAD_KEY_DONE signal is asserted 

during the next clock cycle and the jump vector is loaded at the same time from String 

Reference Memory. 

The Search Engine Increment Control Block — SE_INCR_CONTROL 

to 	The Search Engine Increment / Control module is responsible for incrementing 

the Flow Key Address Generator in order to supply new words from the UFKB to the 

Search Engine block. It monitors the found signals out of the Single Search Engine 

modules and reports results. IT also is responsible for calculating true ending address and 

determines the last byte to be checked in the last word based on the Range provided in 

15 	the In_Find instruction. The true ending address is provided to the SE_4SEARCH 

module, which subsequently provides the same, to all of the four underneath search 

engines. This module also provides several signals, SPALU_Done, SPALU_Inc_FKAG, 

SPALU_Dec,FKAG, SPALU_Match, and SPALU_Data, to the rest of the system. The 

assertion of SPALU_Done signal indicates the search is completed. If the 

20 	SPALU_Match signal is asserted at the same time then it is a successful search. The 

successful search also results in the SPALU_Data bus carrying the jump vector along 

with the search engine number which found the reference string. The longest time for the 

SPALU_Done to be asserted from the time the instruction is issued is N+11 clock cycles 

(N= number of words to be searched in the UFKB memory) +(11 clocks for pre-loading 

25 	and pointer adjustment in case of successful search). In case of failed search, the UFKB 

address pointer will be pointing two words beyond the range. Note that it is necessary for 

the micro-sequencer to decrement the UFKB address pointer by two before another 

In_Find instruction can be issued on the same buffer. In case of a successful search, the 

address pointer does point to the proper word as it is adjusted before SPALU_Match is 

30 	asserted. This module has three states; the reset, the idle, and the proc. Transition from 

the idle state to the proc state occurs when the go_ahead signal is issued. During the 
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transition, the module checks if the instruction is In_Find or In_Find_Continue and 

accordingly computes the new true ending address. In case of In_Find instruction, it uses 

byte offset (SPMuxBOut[10:8]) and the range to compute the new ending address. In 

case of In_Find_Continue instruction, it uses the previous successful searches ending 

5 	byte offset (foundx_byte[2:0]) and the range to compute the new ending address. The 

module maintains a counter internally to determine when the search is exhausted. 

The 4 Search Module Block — SE_4SEARCH 

The 4 Search Module Block (SE_4SEARCH module) is a wrapper that 

combines 4 Single Search modules in one. In the future, if more than 4 reference strings 

10 	need to be compared simultaneously, this module can be easily extended. The block 

diagram is shown in Fig. 24. 

The Single Search Module Block — SE_SSEARCH 

Each of the Search Engine Single Search (SE_SSEARCH) modules performs a 

single reference string search. Using multiple copies of this module multiple distinct 

15 	reference strings can be searched in a common source buffer. The module consists of a 

comparator matrix and a state machine. The matrix is capable of comparing a target 

string of three eight-byte words (loaded in three successive cycles, one word at a time) 

with a reference string up to 16 bytes long. Each of the reference string bytes is appended 

with a check bit, which indicates whether to check this byte, or not. If the check bit is set 

20 	then the corresponding byte checking is disabled. As 64-bit words (8 bytes) are loaded 

into three registers in a pipelined fashion, the comparison takes place two clock cycles 

after they are fetched. Hence, the source (UFKB) address pointer needs to be adjusted if 

the search is successful. If the search is successful, the match int signal becomes active 

and the position of the first byte of the reference string is placed out on the position[2:0] 

25 	bus. The state machine performs several tasks every clock cycle. It consists of three 

states; the reset, the idle, and the process state. While in the idle state, the state machine 

waits for the go pulse from the SE LOAD module. Once arrived, it switches to the 

process state. During the first clock cycle in the process state, if a match occurs then the 

position is checked against the byte offset. If the byte offset is greater then the position, 

30 	then it is ignored, i.e. found is not asserted. Similarly, if it is the last word to be checked, 

then the end offset byte is checked with the position and the found is ignored if the 
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position is greater then last byte to be checked in the range. Otherwise, the found signal 

is asserted when the match is found by the matrix module and the position is latched and 

forwarded to the higher level's SE_INCR_CONTROL module. 

Single Search Engine Control Block — SE_CONTROL 

	

5 	 The Search Engine Matrix Block — SE_MATRIX Single Search Engine Control 

Block is the state machine for the single search module. 

Search Engine Matrix Block — SE_MATRIX 
The Search Engine Matrix Block — SE_MATRIX is the core comparator matrix 

of the Search Engine Module. It consists of a reference axis and a target axis. The 

	

10 	reference axis holds the Reference String. The target axis holds three words coming from 

the UFKB. When "searching starts", the matrix will resolve (or find) a reference string, 

up to 16 bytes long, anywhere in the target word axis. If a target string happens to cross a 

word boundary, the matrix will automatically find the word. 

The State Processor Instructions — Discussion 

	

15 	 In most common processing systems, the set of instructions implemented are 

general purpose in nature. All processing systems have a typical set of instructions 

related to the analysis and manipulation of the Instruction and Program Counters. These 

instructions include Jump, Call and Return. In addition, these same processing systems 

contain the appropriate instructions to analyze and manipulate registers and memory 

	

20 	locations. These instructions include Increment, Decrement and Move, Compare and 

Logical manipulation. 

The state processor of the preferred embodiment also includes such a basic set of 

standard instructions. All of the instructions and operations described above are found in 

the core set of instructions for our system. 

	

25 	 However, the preferred embodiment state processor has some very specific 

functions that are required in order to evaluate the content of and data within packets on 

networks. There are four specific functions performed by the preferred embodiment state 

processor to meet these objectives. Two of these are specialized conversion instructions 

designed to interpret and transpose text elements in a specific for into a mathematical 
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and numerical format. These instructions are AH2B (ASCII Hexadecimal to Binary) and 

AD2D (ASCII Decimal to Binary). These instructions are single cycle in nature. These 

instructions are novel and included to provide for the time sensitive nature of the 

functions performed by the preferred embodiment state processor. 

	

5 	 In order to have the system make speed and meet the objective for classification, 

there are several special functions provided in the inventive State Processor. These 

functions primarily deal with seeking, locating, analyzing and evaluating sequences of 

strings. These strings can be either formatted or unformatted. 

The primary high level instructions are the FIND and IN_FIND_CONTINUE 

	

10 	sub-systems. These high level systems are broken down into 4 specific microcode 

functions. They include SE LOAD, SE_1NST, SE _INCR_CONTROL, and 

SE_4SEARCH. 

These functions and the total system have been designed to make the State 

Processor capable of simultaneous searching of payload content from a packet send into 

	

15 	the system. This enables the system to scale and meet any network speed requirements. 

These functions are very specialized and novel, as is their implementation and 

application.. 

The basic microcode for the instructions is implemented the following 

operational codes for the system Compiler. The simple instructions are Find and Find- 

	

20 	Continue. Using both of these instructions all required string and pattern searches can be 

performed. 

A simple example of these functions can be found in the review of the steps the 

state processor must go through in order to determine the application level of an HTTP 

stream. 

	

25 	 A simple example of these functions can be found in the review of the steps the 

state processor must go through in order to determine the application level of an HTTP 

stream. 

Once the state processor has gone through the first several packet exchanges, a 

flow signature, key and payload will enter the UFKB for processing by the state 
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processor. The instruction pointer in the Cache for the flow record will point to the entry 

that contains the following set of CPL instructions in a binary form. Note that "--" 

indicates what follows is a comment. See the PDL reference Guide hereinbelow for 

details on syntax. 
5 -- MSG Pending 1 

0x8002 -- StateReferenceCode (look for URLs and User-Agents) 
0x03 	-- StateObjectCount (3) 
OxEE00 	-- StateObject (StringSearch - "LF-CR-LF") Early out LF-CR-LR 
Ox00 	 StateObjectOperand (Case = sensitive) 

10 	0x0384 	StateObjectOperand (Weighting = 900 of 1000 packets) 
0x00 	 StateObjectOperand (Offset = 0) 
Ox00 	 StateObjectOperand (LF Offset Flag = 0) 
OxFF 	 StateObjectOperand (Range = 255) 
Ox00 	 StateObjectOperand (LF Range Flag = 0) 

15 	0x8003 	StateObjectOperand (state = Server Reply) 
Ox01 	-- StateObjectOperand (process next state in NEXT packet) 
OxEE01 	StateObject (StringSearch - "LF-LF") Early out LF-LF 
Ox00 	 StateObjectOperand (Case = sensitive) 
0x0384 	StateObjectOperand (Weighting = 900 of 1000 packets) 

20 	Ox00 	 StateObjectOperand (Offset = 0) 
Ox00 	-- StateObjectOperand (LF Offset Flag = 0) 
OxFF 	 StateObjectOperand (Range = 255) 
Ox00 	 StateObjectOperand (LF Range Flag = 0) 
0x8003 	StateObjectOperand (state = Server Reply) 

25 	Ox01 	 StateObjectOperand (process next state in NEXT packet) 
OxE004 	StateObject (StringSearch = "PCN-The Poin") 
Ox00 	-- StateObjectOperand (Case = sensitive) 
Ox01F4 	-- StateObjectOperand (Weighting = 500 of 1000 packets) 
0x04 	-- StateObjectOperand (Offset = 4) 

30 	Ox01 	-- StateObjectOperand (LF Offset Flag = 1) 
OxFF 	-- StateObjectOperand (Range = 255) 
Ox00 	-- StateObjectOperand (LF Range Flag = 0) 
0x61 	-- StateObjectOperand (child = PointCast) 
Ox01 	-- StateObjectOperand (process next state in NEXT packet) 

35 	0x8003 	-- StateChildOrNextState (go here when this state complete) 
Ox001F -- StateChi1dOrNextStatePercent (how often does this occur) 

In order to decrease the amount of storage and utilize the cache in an effective 

manner, the string and byte fragments are associated with a specific hash location. In this 

40 	example, the first two entries are specified by the OxEE00 and OxEE01 locations. These 

string elements are used throughout the state processor string analysis functions. They 

are actually incorporated into the logic of the system; they are only in the CPL for 

reference by the optimization system in the compiler. These strings are used to locate an 

early exit from a deep and complex string search. 

45 	 In most HTTP messages, a specific end of line termination sequence can 

terminate the string search. In this example, we are using standard UNIX and DOS end 

of line terminators as early search termination strings. These are used in the current 

example for completeness. 
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Once a Flow Record enters the "MSG Pend 1" state, the next packet will cause 

the state processor to perform a string search for a group of substrings. In our simple 

example, the set of strings is reduced to the early termination sequences and the string 

"PCN-The Poin". 

5 	 Notice that these operations have several options to modify the features and 

search types performed by the state processor search engine. Since the search system will 

be reviewing several strings in the same pass, each string must be weighted. The 

weighting is used to determine which content is loaded into the search engine 

comparison memory systems. The heavy weighted strings will be loaded and review 

io 	first. 

Also notice that each search string has offsets, end of line offsets search ranges, 

end of line search ranges and case sensitivity. All of these parameters are used to assist in 

proper loading of the search engine memories and proper order execution of the 

searches. 

15 	 Last, notice that each search strings contains the next state to enter on a match 

and a selection of searching on the current or next packet in the flow. This is used to 

perform multiple states on the same packet in a flow or move to the next packet in the 

flow. 

Upon entering the "MSG Pend 1" state, the search state will be loaded into the 

20 	program counter of the state processor. Once this occurs, the state processor will fetch 

the required memory locations and begin the setup of each subsystem in the state engine. 

The search engine has a large number of selection muxes in order to enable several 

simultaneous loads of the primed memories for the search engine. In our example, the 

memories will be loaded with the "PCN-The Poin" binary values. 

25 	 At this point, the system will begin comparing 64 bit elements, stepping through 

the memory by loading packet elements. This case of a packet that contains the string, 

the initial 64-bit pattern will create a match event. Once that event has occurred, the next 

64-bit element from the "PCN-The-Poin" search string will be loaded into the search 

memory. The search engine will continue by review the next set of 64 bit elements 

30 	within the payload of the packet memory. This process will continue until we have a 
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match. In our case the packet will match the search string. 

Once the match has occurred, the search engine has completed it's task and 

indicates to the state processor that the match has occurred. This match will cause the 

state processor to load the next state into the flow record via the cache system. Since the 

	

5 	state is to occur on the next packet, the state processor marks the record in the cache and 

the entry in the UFKB as complete. The state processor finishes and moves to the next 

set of work without changing the actual flow signature or record pattern for a deeper 

application. 

	

10 	-- MSG Pend 2 
0x8003 	StateReferenceCode (look for Content-Type and Servers) 
0x04 	StateObjectCount (4) 
OxEE00 	StateObject (StringSearch - "LF-CR-LF") Early out LF-CR-LR 
Ox00 	 StateObjectOperand (Case = sensitive) 

	

15 	0x0032 	StateObjectOperand (Weighting = 50 of 1000 packets) 
Ox00 	 StateObjectOperand (Offset = 0) 
Ox00 	 StateObjectOperand (LF Offset Flag = 0) 
Ox00 	 StateObjectOperand (Range = 0) 
Ox00 	 StateObjectOperand (LF Range Flag = 0) 

	

20 	0x8003 	StateObjectOperand (state = Server Reply) 
Ox01 	 StateObjectOperand (process next state in NEXT packet) 
OxEE01 	StateObject (StringSearch - "LF-LF") Early out LF-LF 
Ox00 	 StateObjectOperand (Case = sensitive) 
0x0032 	StateObjectOperand (Weighting = 50 of 1000 packets) 

	

25 	Ox00 	 StateObjectOperand (Offset = 0) 
Ox00 	 StateObjectOperand (LF Offset Flag = 0) 
Ox00 	 StateObjectOperand (Range = 0) 
Ox00 	 StateObjectOperand (LF Range Flag = 0) 
0x8003 	StateObjectOperand (state = Server Reply) 

	

30 	Ox01 	 StateObjectOperand (process next state in NEXT packet) 
OxE007 	StateObject (StringSearch = "Content-Type:") 
Ox00 	 StateObjectOperand (Case = sensitive) 
0x0320 	StateObjectOperand (Weighting = 800 of 1000 packets) 
Ox00 	 StateObjectOperand (Offset = 0) 

	

35 	Ox00 	 StateObjectOperand (LF Offset Flag = 0) 
OxFF 	 StateObjectOperand (Range = 255) 
Ox00 	 StateObjectOperand (LF Range Flag = 0) 
0x63 	 StateObjectOperand (child = MIME) 
Ox00 	 StateObjectOperand (process next state in THIS packet) 

	

40 	OxE004 	StateObject (StringSearch = "PCN-The Poin") 
Ox00 	 StateObjectOperand (Case = sensitive) 
Ox01F4 	StateObjectOperand (Weighting = 500 of 1000 packets) 
0x04 	 StateObjectOperand (Offset = 4) 
Ox01 	 StateObjectOperand (LF Offset Flag = 1) 

	

45 	OxFF 	 StateObjectOperand (Range = 255) 
Ox00 	 StateObjectOperand (LF Range Flag = 0) 
0x61 	 StateObjectOperand (child = PointCast) 
Ox01 	 StateObjectOperand (process next state in NEXT packet) 
Ox8000 	StateChildOrNextState (where to go when this state done) 

	

50 	Ox001F 	StateChildOrNextStatePercent (how often does this occur) 

The next state that occurs will be initiated by the state processor on the next 
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packet that has a flow signature created in the UFKB. This packet will be an exchange 

from the server to the client. The state processor will utilize the string search engine to, 

again, review the content of the packet payload for key text. Once this has been 

completed, the final state is set in the flow record for this UFKB signature. This sets the 

5 	classification for the application of the flow to a value related to "PointCast". Now the 

Flow is classified and no further classification is required. The state step is updated in 

the flow record found in the cache. All state processing for this flow is complete related 

to application classification. 

The Cache memory 

10 	 The cache memory is connected to keep a set of most-likely-to-be-accessed flow 

entries in the flow-entry database. The cache memory contains a fully associative, true 

least-recently-used cache memory. Full associatively is achieved through the use of a 

content addressable memory (CAM). The need for a fully associative cache arises from 

the fact that the hash used to generate the initial lookup into the flow-entry database 

15 	spreads the flow entries pseudo-randomly throughout the memory. Each hash data value 

corresponds to a bucket containing N flow entries. 

The cache memory can service two read transfers at once. If there are more than 

two read requests active at one time the cache memory services them in order. The 

content-addressable memory contains a hash data value associated with the 

20 	corresponding bucket in the cache memory. When there is a cache hit, the content- 

addressable memory produces the most significant bits of the address in cache memory 

where the bucket is stored. The cache then accesses the cache memory at the address 

indicated after concatenating the lower address bits provided by the requesting module. 

The cache remembers that the requesting module had a cache hit and the memory 

25 	location returned. Such allows a cache lookup for a requesting module to occur only 

once per request. When the requesting module requires a different bucket, it drops, then 

again raises its request and another content-addressable memory cycle is initiated. A 

least-recently-used (LRU) algorithm requires the content-addressable memory to also be 

a stack. When there is a cache hit the content-addressable memory location that produced 

30 	the hit is put on the top of the stack. The other locations above the hit location are shifted 

down to fill in the gap. If there is a miss, the bottom location is read to determine the 
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address in the cache memory to put in the new bucket. All locations shift down. The new 

hash data value and cache memory address are put at the top of the stack. 

Cache System - Detailed Description 

Typical prior-art cache systems are used to support expediting memory accesses 

	

5 	to and from microprocessor systems. Because microprocessors mainly access memory in 

a sequential mode, a typical prior-art cache engine for these systems uses a very simple 

association for blocks of memory that are currently stored in the cache and their current 

state. This limited association enables such a prior-art cache system to aid the 

microprocessor in both sequential and limit random access memory requests. 

	

10 	 While a normal microprocessor system needs to have a cache assist in mainly 

sequential memory accesses, the preferred hardware embodiment of the present 

invention has very special memory access properties. These differing requirements 

mainly are caused by, 1) the need to access memory by a specific hash for addressing 

bins and buckets and, 2) due to the high random access on a large pool of off-chip 

	

15 	memory structures tat are used for the flow database 324. 

In one aspect, the invention uses the premise that the network data itself will 

create the best signature and hash key in order to locate the proper flow record for 

managing the state and updating the associated statistics. This enhances the overall 

system performance. It also created an opportunity for including a novel method for 

	

20 	rapidly accessing and managing the memory system. 

The first major feature of the cache system of the preferred hardware embodiment 

of monitor 300 is a full association between the cached item and the random memory 

storage location. This type of cache, known as a fully associative cache, is novel. 

This fully associative property of the inventive Cache system is achieved 

	

25 	preferably by implementing CAMs (content addressable memories) as the core of the 

Cache memory addressing subsystem. This provides a good matches the nature of the 

information we are looking up from the Memory System. The CAM contains the hash 

value associated with the corresponding bucket in the cache memory. When there is a 

cache hit, the CAM produces the most significant bits of the address in cache memory 

	

30 	where the bucket is stored. The CAMs are used to quickly access elements from the 
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Cache memory via the Hash values used to manage memory lookup and access. In 

addition, the hash value in the CAM and the related address create and association 

between the bucket and the actual memory location in the off-chip memory subsystem. 

In other words, the computed Hash can then be directly evaluated to see if the record is 

	

5 	currently in the cache memory or not. If the cache does contain the value, then the 

memory is reported as valid with in the same cycle. This is accomplished in the preferred 

embodiment system by the use of fully associative cache systems that contain specialized 

CAM elements to pinpoint the exact direct memory address in a randomly accessed 

memory system. 

	

10 	 The architecture of this Cache also enables simultaneous read by individual 

systems in overlapping cycles. The Cache can service two read transfers at one time. If 

there are more than two read requests active at one time the Cache services them in a 

priority order related to the timeliness requirements of the other engines in the Analyzer 

system. This is key to the architecture of the Analyze and creates the required 

	

is 	environment for the system to make the speed required. 

The least recently used (LRU) algorithm means that the CAM can 

advantageously also be a stack. When there is a cache hit the CAM location that 

produced the hit is put on the top of the stack. The other locations above the hit location 

are shifted down to fill in the gap. If there is a miss, the bottom location is read to 

	

20 	determine the address in the cache memory to put the new bucket. All the locations 

shifted down as normally. Finally the new hash value and cache memory address are put 

at the top of the stack. CAM is being used to shift the 'most recently accessed' to the top. 

When an entry is in the cache, the CAM enables the system to automatically keep the 

most recent randomly access information. If this system were to be implemented with 

	

25 	standard memory cells the LRU system would not be able to maintain the associations 

and meet speed using normal addressing methods. 

The Pattern Parse and Extraction Database Format 

A compressed 3-D representation is used to store the pattern parse and extraction 

database 308 used by the parser and the identifying information extractor. 

	

30 	 The three dimensions of the data structure are: 
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I. 	Type identifier [0:M-1]. This is the identifier that identifies a type of 

protocol at a particular level. For example, 0 indicates an Ethernet frame. 64 

indicates IP, 16 indicates a that the Ethernet packet is an IEEE type Ethernet 

packet, etc. M may be a large number, depending on how may protocols the 

5 
	 packet parser can handle, and M may grow over time as more protocols are 

able to be recognized by the system. 

2. Size [1:64]. The size of the field of interest within the packet, and 

3. Location [1:512]. This is the offset location within the frame, expressed 

as a number of octets (bytes). 

10 	 At each location, when data is present, the data in the form of a length, or a value, 

and when a value, also included are a list children (as type IDs) to search next, for each 

of the IDs in the list, a list of values that need to be compared to determine which child 

or children are to be searched, and the extraction operations to perform to build the 

identifying signature. Note that the size of this matrix is M by 64 by 512, which large 

15 	since M may extend up to 10,000. Also, at most dimensions, there are no entries. In other 

words, this is a sparse matrix. 

Virtual base layer is the entry point for the parser. There can be multiple entry 

points. For every packet that is acquired into the system, there is a header provided by 

the packet acquisition device that is supplying the packets into the parser, for example, a 

20 	network interface card for an Ethernet LAN. The packet acquisition device would 

receive the packet from the network, and a mechanism in the acquisition device would 

know the type of network, e.g., an Ethernet, and would place a header indicating this 

type of packet. This header is used to determine the virtual base layer entry point into the 

parser. Thus, the parser in addition to the packet knows the type of packet at base layer. 

25 	 The zero node of the 3D structure has all the children. The parser will start at the 

virtual base, which may have one or more children. In the example script in virtual.pd1 

included herein, there is only one child, 01, indicating the Ethernet. 

Initially, the search starts at the child of the virtual base, as obtained in the header 

supplied by the acquisition device, which in this case is ID value 01, as parsed out of the 

30 	header. ID value 01 is Ethernet. 
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We now search through the 3D structure. The parser looks for the first entry that 

has a child in the location specified. The hardware supports 4 lengths searched at once in 

parallel. 

In our case, suppose we find something at 1, 2, 12 

	

5 	 This states that the ID value 01 (which means virtual base, which for this case, is 

Ethernet version 2, the only virtual child in virtual.pdl, one of the PDL files included 

herein). This ID value needs to have a child (the type field) examined at offset 12 which 

has length 2 bytes (octets). 

The 2-byte "type" field is operated on by first checking to see if it is a length. It is 

	

10 	a length if its value is less than or equal to 05DC16. This test is particular to the Ethernet 

packet format because there are older types (V 2) and newer types (IEEE) of Ethernet 

formats that differ. The system via the PDL files specifies two children — the Ethertypes, 

and the LLC-check. The LLC check is macro that operates to set the type length check 

function for this node, and to fill in a value of 05DC16  in the child of the node. While 

	

15 	this capability is only used for Ethernet type packets, in the future other packets may end 

up being modified, and so this capability in the form of a macro in the PDL files enables 

such future packets to still be decoded. If it is a length, then we know that this is an IEEE 

type Ethernet frame, else, if the LENGTH operation fails, we look at the 2 byte field 

code, and it will be one of the codes shown in 1712 in Fig 17. For example, if the type is 

	

20 	0800 (Hex), then the protocol is IP. If the code is OBAD (Hex) the protocol is VIP 

(VINES). To follow the example, suppose the code at 2,12 is 0800, indicating IP. 

Note that when the parser operates on the data structure, the search proceeds is 

groups of four lengths, since the hardware presently searches up to four lengths 

simultaneously. So starting at 

25 (1, 1, 1) (1, 1, 2) 

(1, 2, 1) (1, 2,  2) 

(1, 3,  1) (1, 3, 2) 

(1, 4, 1) (1, 4, 2) 
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The parser eventually gets a match of either a length operation (in the form of a 

maximum length) or a value. A match means the ID part of the of the matrix is 

populated. At (0, 2, 12) where, in the example, the match is of a value 0800 (Hex) 

indicating IP. The new ID (first dimension) for IP is 64. Note, the possible children are 

5 	put in at compile time into the data structure. For each node, at compile time, the 

following information is included in the 3-D location in the 3-D data structure stored in 

pattern structures and extraction operations database: 

a) a list children (as type IDs) to search next. For example, for an Ethernet 

type 2, the children are Ethertype ( IP, IPX, etc, as shown in 1712 of Fig. 

10 	 17). These children are compiled into the type codes. The code for IP is 64, 

that for IPX is 83, etc. 

b) for each of the IDs in the list, a list of values that need to be compared. 

For example, 64:080016 in the list indicates that the value to look for is 

080016  for the child to be type ID 64 (which is the IP protocol). 83:813716  in 

15 	 the list indicates that the value to look for is 813716  for the child to be type 

ID 83 (which is the IPX protocol), etc. 

c) the extraction operations to perform to build the identifying signature for 

the flow. The format used is (offset, length, 

flow_signature_value_identifier), the flow_signature_value_identifier 

20 	 indicating where the extracted entry goes into in the signature, including 

what operations (AND, ORs, etc.) may need to be carried out. For example, 

if it is a hash key component, then operations need to be carried out to 

evaluate the hash key component. For example, for a type 2 Ethernet packet, 

the 2-byte type (1706 in Fig 17), a 1-byte hash (1708 in Fig. 17) of the type, 

25 	 the offset (1710 in Fig. 17) in the packet for the next level are used to form 

the signature, and the values for these in defining the extraction operations. 

So at each stage of a search, the parser examines the packet and the 3-D structure 

to see if there's match. If not, the size is incremented (to maximum of 4) and then the 

offset is incremented. Note that in the preferred embodiment, the hardware parser is able 

30 	to examine all four lengths simultaneously. 
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To continue with the Ethernet type-2 example, once the parser matches one of the 

possible children for the type, and in the example, the type is IP with a code 64, then the 

parser continues the search for the next level. The ID is 64, the length is unknown, and 

offset of known to be equal or larger than 14 bytes (12 offset for type, plus 2, the length 

	

5 	of type), so the search of the 3-D structure commences as 

(64, 1, 14) 

(64, 2, 14) 

and then there is a match (meaning a populated node). 

Alternatively, suppose at (0, 2, 12) had a length 121110. Then this indicates this 

	

10 	is an IEEE type Ethernet frame, which stores its type elsewhere. We now try for a new 

ID (that of an IEEE type Ethernet frame, type 16) and continue the search, which in this 

case starts at offset 14. so the search of the 3-D structure continues as 

(16, 1, 14) 

(16, 2, 14) 

	

15 	and then there is a match at (16, 2, 14) of 0800, which indicates the IP protocol at the 

next level, which is type 64, and the search continues, starting at (64, 1, 16). 

Compression. 

As noted above, the 3-D data structure is very large, and sparsely populated. For 

example, if 32 bytes are stored at each location, then the length is M by 64 by 512 by 32 

	

20 	bytes, which is M megabytes. If M = 10000, then this is about 10 gigabytes. A 

compressed form of storing the data structure thus is required. 

One compression scheme that may be used is a modification of multi-

dimensional run length encoding. An alternate is functionally equivalent: rather than 

have one overall 3-D table of nodes, store many smaller tables. The second scheme is 

	

25 	used in the preferred embodiment. 

The process of compression is now described. The compression is carried out by 

the optimizer component of the compiler. The building of the uncompressed table is first 

described. 

The compiler first builds a table of all the links between protocols. Links consist 
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of the connection between parent and child protocols. Each protocol can have zero or 

more children. If a protocol has children, a link is created that consists of the parent 

protocol, the child protocol, the child recognition pattern and the child recognition 

pattern size. The compiler first extracts child recognition patterns that are greater than 

5 	two bytes long. Since there are a few of these they are handled separately. Next sub links 

are created for each link that has a child recognition pattern size of two. All the links are 

then formed into tables of 256 entries. The first step in the optimization is checking all 

the tables against all the other tables to find out which tables can share a table. This 

process creates the "folds". When a child recognition pattern is checked against a table 

10 	there is always been expected fold. If the fold matches the information in the table, it is 

used to decide what to do next. If the fold does not match, we are finished. 

The next step in the optimization is to find a minimum size for each table. The 

tables are then rearranged so that they fit in the minimum possible address space. At each 

step in the process there's no break between the parent and child protocols. This means 

15 	that we can update the final tables with the information required for the slicer. 

The pattern recognition engines database consists of a series of tables. Each table 

entry contains a node code. This node code can have four values. The first is a terminal 

node. A terminal node when found tells the patte'rn recognition engine that a protocol has 

been recognized. The second type of node is an intermediate node. An intermediate node 

20 	means that a protocol has been partially recognized. The third type of node is a terminus 

node. A terminus node is used for a recognized protocol that has no children. Finally 

there is the null node. A null node is inserted in the table at each unused entry. That is, 

the "null" type node is used as an 'invalid flag' at leach 3-D location which tells us 

whether or the particular location (in 3D) has content, that is, a valid child recognition 

25 	pattern (i.e., an ID code). 

Other fields in the table entry are a next table pointer, a next table length, the 

protocol and the fold. If the entry is a terminal or terminus node to protocol is used to 

index into another table. This table contains the information necessary for further 

processing. It contains the header length, offset, slicer command, and flags. 

30 	 The slicer (also called extractor) instruction database consists of instruction, 

source address, destination address, and length. The slicer receives a command from the 
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pattern recognition engine. This command is used as offset into the slicer instruction 

database. The instruction or Op code tells the slicer what to extract from the incoming 

packet and where to put it in the flow signature. Writing into certain fields of the flow 

signature automatically generates a hash. The instruction can also tell the slicer out to 

5 	determine the connection status of certain protocols. 

When a packet arrives at the parser, the virtual base has been prepended. The 

virtual base entry tells the packet recognition engine where to find the child recognition 

pattern. The pattern recognition engine then extracts child recognition patterns from 

packet and uses it as an address into the virtual base table. If the entry looked up by this 

10 	method matches the fold value in the virtual base entry the lookup is deemed valid. The 

node code is then examined. If it is an intermediate node and next table field is used as 

the most significant bits of the address. The new fold is also extracted from the entry. 

The pattern recognition engine then extracts the next byte from the packet and uses it as 

least significant bits of the address. There is actually a little more to it then that because 

15 	the size of the tables can vary. Tables can be from 2 to 256 entries in powers of two. If 

table is 256 bytes byte from the packet is unmodified. The table is 128 bytes the most 

significant bit of byte from packet is ignored. This process continues until the entire set 

of structures has been converted. 

The system reduces the number of null nodes by first finding tables that can be 

20 	shared. Tables that can be shared have no addresses in common. For example, if table 1 

as entries up to address 16 and table 2 has no entries below 16 they can share a table. The 

fold value is used to distinguish between two types of entries. When a lookup is 

performed using that table, the parent protocols fold value is compared to the entries. If 

they match the entry is valid that parent protocol. If they do not match the entry is 

25 	invalid. The second way reduce the number of null nodes is by sizing the tables. If a 

table has no more than 16 entries the table sizes four bits. Sixteen of these tables can be 

condensed into a single 256-entry table. Depending on the number of protocols with 

children and their child recognition patterns this method can reduce the number of 

entries by up to 80 percent. 

30 	 The pattern recognition database is split into two parts. One part contains a single 

entry for each protocol. The entry consists of the slicer (extractor) command for that 
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protocol, if there are children the first table to perform the lookup in, the size of that 

table, the expected fold value, the header length, child recognition pattern offset, and 

flags. To optimize the size of the memory areas for the data structures, the compiler sizes 

these fields based on the number of protocols, the number of tables, the number of folds, 

	

5 	the maximum header length and the maximum offset. The second part of the pattern 

recognition database contains the tables (compressed 3-D structures) as described above. 

Traffic Classification Capabilities 

The invention allows for a very rich set of protocol classification and sub-

classification in the process of analyzing and interpreting network traffic. In the preferred 

	

10 	embodiment, this is accomplished by combining the maintenance of state information 

with a robust ability to interpret network data streams. 

Without the ability to maintain state, an increasingly large amount of network 

traffic will be mis-classified, partially classified, or not classified at all with prior art 

traffic analysis and interpretation technologies. Pattern matching parser techniques used 

	

15 	in many such technologies provide little help here given the growing complexity of 

today's network traffic. 

One method of classification is parsing each datagram followed by interpreting 

assigned (or otherwise well-known) port/socket numbers to particular applications. 

Misclassification would then be common because of the as ephemeral nature of such 

	

20 	ports/sockets. This has become especially noteworthy with the increasing proliferation of 

Web Browsers and the use of WinSock (Microsoft, Redmond, Washington). For 

example, BackWeb push-technology and Streamworks or VDOLive multimedia clients 

can use UDP ports that are either assigned to or used as defacto standards by other 

network applications such as Citrix, H.323 Gatekeeper, RealAudio, etc. 

	

25 	 When the scope of interpretation is limited to a single packet, partial 

classification is a common limitation. For example, one could see TCP Port #1527 

referenced in a network packet and know that is was an Oracle TNS Packet. Without 

having interpreted the initial Oracle TNS protocol exchange spanning multiple packets, 

one could not have known that it was indeed PeopleSoft running over SQL*Net running 

	

30 	over Oracle TNS. 
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Another example is of partial classification is simple "IP Fragmentation". 

Decoding the first fragment of an IP Datagram could easily determine that it further 

contained NFS over SunRPC over UDP. However, since subsequent fragments do not 

contain the UDP or SunRPC headers, they cannot be sub-classified for these protocols 

	

5 	without having retained state and decoding information from the original (or first) 

fragment. 

The inability to classify is becoming increasingly common as Network 

Applications use dynamic mechanisms to allocate and assign resources to various 

applications. There are a number of ways this can happen. 

	

10 	• In many cases, connections are established on a "truly" well-known port/socket 

of a server. The exchange on this connection serves to negotiate services 

requested/available and the address/port at which those services can be accessed. 

A second connection on the allocated/assigned address and port (almost always 

ephemeral) carries the bulk or volume of the data in the overall Network Session. 

	

15 	 Without the ability to interpret and analyze "data" in such allocation/assignment 

protocols connections, the volume traffic on the secondary connections cannot be 

distinguished from any other "un-interpretable" traffic. Microsoft's Endpoint-

Mapper, SunRPC's Portmapper, and Oracle TNS are examples of such protocols. 

• In other cases, available services and their locations (addresses and ports/sockets) 

	

20 	 are periodically announced. Without having interpreted and remembered the 

content of such announcements, traffic to/from them cannot be classified. Novell 

SAP and Apple's Name Binding Protocol (NBP) are examples of such 

announcement-based approaches. 

The art of traffic classification becomes further complicated when a multitude of 

	

25 	the underlying challenges described above occurs for the same Network Data events. For 

example, NFS version 1 is transferring one of its typical 32-Kbyte blocks of data in a 

single IP Datagram and is hence fragmenting it (partial classification scenario). This 

transfer is occurring on an "ephemeral" UDP port of the server that was allocated via an 

initial exchange with the SunRPC Poi 	tinapper protocol (no classification scenario). Or, 

	

30 	even worse, the "ephemeral" UDP port on the server turns out to be the same as one of 
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the defacto standard UDP ports that "RealAudio" uses (mis-classification scenario). 

Embodiments of the present invention surmount these challenges to provide 

accurate and thorough network traffic classification. There are many traffic in-progress 

traffic classification capabilities supported by aspects of the invention. The preferred 

5 	embodiment of the invention also may be extended to support further sub-classifications. 

Particular Protocols and Features supported 

Each of the following protocols are supported. A set of PDL files may be built for 

any of these protocols. After compiling (and optimization), the including of the resulting 

databases is equivalent to having a separate "sub-engine" in the Parser/Extractor and in 

to 	the Analyzer for the particular application/protocol, since when the databases 

compiled/optimized by using set of such PDL files for the particular 

application/protocol, when acting with the engine, are equivalent to a sub-engine being 

present. 

IP/IPIP/IPIP4 Fragmentation 

15 	 Fragmentation considerations address the area of partial classification. The first 

fragment of an IP Datagram can be decoded to determine further information on the 

nature of the underlying traffic contained within the packet. However, since the 

remaining fragments of the overall IP Datagram do not contain Transport, Session, and 

Application layer headers, they cannot be classified for these protocol layers without 

20 	having retained state and decoding information from the original (or first) fragment. 

Internet fragmentation capabilities in the preferred implementation of the invention 

address these traffic considerations. 

The analyzer component includes support for state maintenance and sub- 

classification retention for network packet fragments associated with the following 

25 protocols: 

IP 	- Internet Protocol Version 4 datagram fragments 

IPIP - IPIP datagram fragments Tunneled over IP 

IPIP4 - IPIP4 datagram fragments Tunneled over IP 
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Key capabilities for these protocols include: 

I. tracking fragments for their corresponding protocols; 

2. passing on 1st  fragments through normal decoding and state-based decoding; 

3. retaining complete 1st  fragment sub-classification information for datagrams 

5 
	 which are not further classified as state based (e.g. NFS Version 2 over UDP 

on well-known port 2049) and applying this information to all subsequent 

fragments components; 

4. retaining flow references for 1st  fragment sub-classifications that further 

classify as state-based (e.g. Oracle TNS over TCP on a redirected, ephemeral 

io 	 port) and updating such flows for all subsequent fragment components; and 

5. supporting concurrent fragmentation of data across multiple layers of 

Tunneling (e.g. IPIP4 fragments contained in IP fragments). 

Sub-classifications: Note that these "sub-engines" don't really "classify" or "sub-

classify" underlying protocols contained in fragments beyond that normally done by 

15 	the standard IP Version 4 decoding of the "protocol type". They do however retain 

"sub-classification" information or flow references. 

Support for IP Version 6 is easily added. 

Microsoft Endpoint-Mapper 

The Microsoft Endpoint-Mapper actually supports the Endpoint-Mapper 

20 	protocol defined by the "Distributed Computing Environment (DCE) 1.1 — Remote 

Procedure Call" specification. The key node point in the protocol directory for this 

protocol, and related applications determined by its mappings, is "endpoint-mapper". 

With "endpoint-mapper", connections are initially established on a well-known 

service port. The DCE-RPC Endpoint Mapper protocol is used on this connection to 

25 	identify the target application requested by the client and set-up a second connection on 

an ephemeral port where the bulk of exchange and data transfer will occur with the target 

application. 

Key capabilities for Microsoft Endpoint-Mapper include: 
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1. tracking connections to and exchange within the well-known Endpoint-

Mapper. 

2. distinguishing such "mapping" traffic from traffic on application connections 

subsequently "mapped". 

	

5 	 3. detecting assignments of server application access assignments to various 

hosts and/or ports and creating sub-classifications for these access points. 

4. classifying traffic seen on these access points: 

a) by the appropriate application under "endpoint-mapper", if the server 

application identifier in the mapping exchange is a known sub- 

	

10 
	 application; or 

b) Minimally as "endpoint-mapper", if the server application is 

unknown. 

5. allowing known sub-applications to be specified with respect to flow 

reporting with two levels of identification 

	

15 	 a) Level 1 — Endpoint Mapped "Application Group" 

b) Level 2 — Sub-application within the Application Group 

6. supporting the "connection-oriented" mode of Endpoint-Mapper operations. 

Sub-classifications: Sub-classifications under "endpoint-mapper" include the following 

in both the "tcp" and "udp" protocol subtrees: 

20 

endpoint-mapper 	dcerpc-mapper 
ms-exchange -1 directory 

4 information-store 
- mta 

(DCE RPC — Endpoint Mapping) 
(MS-Exchange Directory) 
(MS-Exhange Information Store) 
(MS-Exchange MS-Mail MTA) 

New sub-classifications are easily added as new entries in the DCE RPC Sub- 

Engine's "Sub-Protocol Info" table, if the Universally Unique IDs (UUIDs) of the 

corresponding applications are known. 

25 	 Certainly there are more applications other than MS-EXCHANGE using DCE- 
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RPC (also known as MS-RPC or Microsoft RPC since Microsoft adopted this RPC 

standard as opposed to SunRPC). As more notable applications are identified along with 

their assigned UUIDs, they may easily be added to the implementation, as would be clear 

to those in the art. 

5 	 Support for the "connection-less" mode of Endpoint Mapper operation could also 

be implemented. 

SunRPC PortMapper 

The SunRPC PortMapper protocol is defined by the "RPC: Remote Procedure 

Call Specification Version 2 (RFC 1831)" standard. The key node point in the protocol 

10 	directory for this protocol, and related applications determined by its mappings, is 

"sunrpc" . 

With SunRPC PortMapper, exchanges are initially performed on a well-known 

service port identify the target application requested by the client and set-up a subsequent 

ephemeral port (for use by either a connection or datagram service) where the bulk of 

15 	exchange and data transfer will occur with the target application. 

Key capabilities of this sub-engine include: 

1. tracking exchanges with the well-known SunRPC PortMapper; 

2. distinguishing such "mapping" traffic from traffic on application connections 

subsequently "mapped"; 

20 	 3. detecting assignments of server application access assignments to various 

hosts and/or ports and creating sub-classifications for these access points; 

4. classifying traffic seen on these access points: 

a) by the appropriate application under "sunrpc", if the server 

application identifier in the mapping exchange is a known sub- 

25 
	 application; or 

b) minimally as "sunrpc", if the server application is unknown; 

5. allowing known sub-applications to be specified with respect to flow 

NOAC Ex. 1014 Page 125



121 

reporting with a single levels of identification 

a) Level 1— Portmapped "Application". 

Sub-classifications: Sub-classifications under "sunrpc" include the following in both the 

"tcp" and "udp" protocol subtrees: 

sunrpc 	portmapper 	 (SunRPC — Port Mapping) 
4 rstat 	 (remote statistics) 
-9 nfs 	 (network file service) 
4 ypsery 	 (yellow pages — server) 

ypbind 	 (yellow pages — bindings) 
ypupdated 	 (yellow pages — update daemon) 

4 ypxferd 	 (yellow pages — transfer daemon) 
4 mount 	 (remote file system mount) 
4 3270-mapper 	 (3270 terminal session mapper) 
4 rje-mapper 	 (remote job entry session mapper) 

nis 	 (next generation yellow pages) 
4 pcnfsd 	 (pcNFS daemon) 

5 

New sub-classifications are easily added as new entries in the SunRPC Sub-

Engine's "Sub-Protocol Info" table, if the SunRPC Program Number of the 

corresponding applications are known. 

Other applications also use SunRPC, and as more such applications are identified 

to 	along with their assigned SunRPC Program Numbers, they may easily be added to the 

implementation. 

Enhancement of the SunRPC Sub-Engine to additionally support SET, UNSET, 

DUMP, and/or CALLIT SunRPC Poi-Mapper primitives could be added to the 

implementation. 

15 	Oracle 6/7 Transparent Network Substrate (TNS) 

The Transparent Network Substrate (TNS) protocol is defined by Oracle 

Corporation and is used as the underlying networks access framework for its Oracle 

Version 6 and Oracle Version 7 database product offerings. The key node points in the 

protocol directory for this protocol and applications determined by its mappings are 

20 	"oracl-tns","oracl-tns2","oracl-tns-srv". These three node points reflect the three 

different "well-known" ports that serve to support initial access to Oracle TNS on Oracle 

Database servers. The first is a defacto, Oracle standard use. The next two access points 
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(TCP ports) are assigned to Oracle by IANA. 

Oracle client applications initially connect to the database on a well-known, 

Oracle TNS service port. On this connection, they identify themselves by client host, 

user, and application. The Oracle Server may choose to accept the database session on 

5 	this connection or "redirect" it to another ephemeral port. When redirected, a second 

connection to the ephemeral port will be established and where the subsequent bulk of 

exchange and data transfer with the database server will occur. 

Key capabilities of for this application include: 

1. tracking connections to and exchanges in well-known Oracle TNS port 

10 	 traffic; 

2. learning the client application attempting to access the Oracle Database (e.g. 

PeopleSoft, Oracle Forms, etc.) to further classify traffic on the well-known 

Oracle TNS connections; 

3. detecting "redirections" of connections to various hosts and/or ports and 

15 	 creating sub-classifications for these access points. Such "redirections" 

inherit the sub-classifications of the initial connections to the well-known 

Oracle TNS service; 

4. classifying traffic to these access points is seen or when TNS sessions are 

"accepted" on the well-known TNS service port: 

20 
	 a) by the appropriate client application under "oracle-tns" (or "oracl- 

tns2" or "oracl-tns-srv), if the client application identifier is a known 

sub-application; or 

b) minimally as "oracle-tns" (or "oracl-tns2" or "oracl-tns-srv), if the 

server application is unknown. 

25 	 5. allowing known sub-applications to be specified with respect to flow 

reporting with two levels of identification 

a) Level 1— Oracle client's "Application Group" 

b) Level 2 — Sub-application within the Application Group 
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Sub-classifications: Sub-classifications under "oracle-tns" include the following in the 

"tcp" subtree. Note that the same sub-classification occurs under the "oracl-tns2" and 

"oracl-tns-srv" nodes as well. 

5 

oracle-tns ms-odbc 	 (Microsoft ODBC) 
ms-ole 	 (Microsoft OLE) 
oracle-sqlplus 	 (Oracle SQLPlus) 

- 	oracle forms 	 (Oracle FORMS) 
4 peoplesoft 	 (PeopleSoft) 

New sub-classifications are easily added as new entries in the Oracle TNS Sub-

Engine's "Sub-Protocol Info" table, if the Program Names (or names of the client 

programs' executables) of the corresponding client applications are known. 

Further sub-classification of "PeopleSoft" may also be easily added, which would 

10 	include breaking "peoplesoft" down into component applications. 

There similarly are other native, client applications using Oracle TNS, and any 

such applications may easily be added by identifying such applications along with their 

assigned Program/Executable Names. For example, "SAP R/3" and "Baan", may be 

added. 

15 	 The Oracle TNS sub-engine may be extended by building upon the application 

sub-classification capabilities presently supported. This will allow the "sub-engine" to 

further delve into the SQL*Net content to determine the actual client applications riding 

atop 4GL tools (such as Oracle FORMs) and access APIs (such as MS ODBC, and MS 

OLE). 

20 	H.323 Videoconferencing 

H.323 is an umbrella standard, published by the International Telecommunication 

Union (ITU, formerly CCITT), for videoconferencing. H.323 entails one of the most 

complicated traffic classification challenges of today's networking protocols. This arises 

from its inherent multi-tier connection/data-stream architecture. 

25 	 The key node points in the protocol directory for this protocol, and related 

applications determined by its mappings, are "h323-host-call" and "h323-host-control" 
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for videoconference negotiation/set-up and "rtp" and "rtcp" for videoconference payload 

data transfer. 

In 11.323, connections are initially established on a well-known service port. The 

Q.931 protocol is used on this "H.323 Call Setup" connection to set-up a second 

5 	connection on an ephemeral port. The second "H.323 Call Control" connection uses the 

H.245 protocol to negotiate audio and video capabilities (codecs) as well as to further 

set-up RTP/RTCP audio and video data streams over ephemeral UDP ports. 

Key capabilities for this service include: 

1. tracking connections to and exchanges on well-known H.323-host-call port 

to 	 (Q.931 protocol) traffic; 

2. detecting assignments of H.245 access points to various hosts and/or ports 

and creating H.245 sub-classifications for these access points; 

3. tracking connections to and exchanges with such assigned H.245 access 

points; 

15 	 4. detecting the assignment of RTP/RTCP audio and video, UDP datastreams 

access points as well as the audio and video "codecs" negotiated for use on 

them and creating RTP/RTCP sub-classifications for these access points; 

5. classifying traffic seen on these RTP/RTCP access points: 

a) by the appropriate "codec" under "rtp" , if the negotiated codec is a 

20 	 known audio/video stream type; or 

b) minimally as "rtp", if the negotiated codec is unknown 

6. allowing known sub-applications (audio/video datastreams) to be specified 

with respect to flow reporting with three levels of identification 

a) Level 1 — Datastream Class (e.g. audio, video, other...) 

25 	 b) Level 2 — Datastream Type within the Datastream Class 

c) Level 3 — Datastream Sub-Type within the Datastream Type 
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7. supporting the Q.931 "normal mode" of operation for "H.323 Call Setup 

connections". 

Sub-classifications: "H.323 Call Setup" sub-classifications under "h323-host-call" 

include the following in the "tcp" subtree. 

5 

h323-host-call 
	

4g931 
	 (H.323 Call Setup) 

- q931-fast-start 
	 (H.323 Combined Setup and Control) 

"H.323 Call Control" sub-classifications under "h323-host-control" include the 

following in the "tcp" subtree. 

h323-host-control 	h245 	 (H.323 Call Control) 

Audio and video datastream sub-classifications under "rtp" and "rtcp" include 

the following in the "udp" subtree: 

rtcp 	9 	 (Audio/Video Stream Control 
sub-channel) 

rtp[ 	4 audio 	 4 G.71I 	 (Audio Transfer sub-channel) 
- G.722 
9G.728 
9G.729 
4 MPEG1-audio 
4 G.723 
- GSM 

4 video 	 -9 H.261 	 9 QCIF 	(Video Transfer sub-channel) 
9 CIF 

4H.263 	 4 SQCIF 
4 QCIF 
4 CIF 
4 4CIF 

16C1F 
MRV 

10 

Standards for the audio stream sub-classifications indicated above are: 

G.711 - 64 Kbps, 8K samples/sec, 8-bit companded PCM (A-law or la -law), 

high quality, low complexity. Required for H.320 and H.323. 

G.722 - ADPCM audio encode/decode (64 kbit/s, 7 kHz) . 

15 	G.723 - Speech coder at 6.3 and 5.3 Kbps data rate. Medium complexity. 

Required for H.324; Optional for H.323. 
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G.728 - 16 Kbps, LD-CELP, high quality speech coder, very high complexity. 

Optional for H.320 and H.323. 

G.729 - 8Kbps, LD-CELP, high quality speech coder, medium complexity. 

G.DSVD is an interoperable subset. 

5 
	 GSM - Group Special Mobile -- European telephony standard, not ITU. Used by 

ProShare Video Conferencing software versions 1.0-1.8. 13Kbps, 

medium quality for voice only, low complexity. 

Standards for the video stream sub-classifications indicated above are: 

H.261 - Supports 352x288 (CIF or FCIF) and 176x144 (QCIF). DCT-based 

10 	 algorithm tuned for 2B to 6B ISDN communication. Required for 

H.320, H.323, and H.324. 

H.263 - Much-improved derivative of 11.261, tuned for POTS data rates. Mostly 

aimed at QCIF and Sub-QCIF (128x96 SQCIF). Optional for H.323 

and H.324, although industry is focusing on it for POTS. Being added as 

15 	 an option to H.261. 

MRV - Intel Indeo® video compression technology tuned for ISDN and LAN 

data rates. 

Extensibility: New sub-classifications are easily added as new entries in the H.323 Sub-

Engine's "Sub-Protocol Info" table, if the Audio/Video Capability Identifiers of the 

20 	corresponding audio/video datastream are known. 

There are still more audio/video datastream formats that can easily be included. 

There is a mode of H.323 operation defined called "Q.931 Fast Start". In this 

mode, "H.323 Call Control" operations (normally performed under their own H.245 

connection) are piggybacked over Q.931 in the "H.323 Call Setup" connection. The use 

25 	of this mode of operation has historically been rare and infrequent in contemporary 

videoconferencing products. The H.323 sub-engine can easily be enhanced to support 

this mode of operation. 
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HTTP 

The HTTP Protocol is the basis of common, present-day Web Browsers and has 

become a fundamental transport mechanism for many Internet applications. HTTP 

operates over TCP connections. Traditional/typical use of HTTP involves the 

5 	establishment/tear-down of an individual HTTP connection for each element of 

exchange in a given user session activity (e.g. a web page will involve many TCP 

connections to effect the transfer of the various components of the activity). The key 

node points in the protocol directory for HTTP "www-http" and "alternate-http".  

There are two ways to distinguish the nature of the higher-level, application 

10 	information involved in on an HTTP connection: 

• analyzing the HTTP content type; and 

• interpreting of various fields in the HTTP command and responses 

Key capabilities for this protocol include: 

1. tracking connections to and exchanges in well-known HTTP Port  traffic; 

15 	 2. learning the nature of the application data being transferred or accessed to 

further classify traffic on such well-known HTTP connections; 

3. learning the nature of the application by virtue of analyzing selected HTTP 

fields; 

4. allowing known sub-applications to be specified with respect to flow 

20 	 reporting with two levels of identification: 

a) Level 1 — HTTP sub-application group (e.g. database, application, 

video, etc.) 

b) Level 2 — sub-application within the sub-application group 

5. classifying HTTP traffic: 

25 	 a) by the appropriate sub-application within the sub-application group, if 

the sub-application identifier is known; or 

b) minimally by the sub-application group, if the negotiated sub- 
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application identifier is unknown. 

Sub-classifications : Sub-classifications under "www-http" include the following in the 

"tcp" subtree. Note that the same sub-classification occurs under the "alternate-http" 

node as well. 

www-http 

odbc-bridge 
ibm-db2 
gupta-jdbc 
sybase-jdbc 

4 database 	- sybase-web-sql 
- sybase-tunneled-
tds 
4 jdbc 

4 application 	9 pointcast 
backweb 
datawindow 
edi-content 
edi-x12 

4 edifact 
4 excel 

macbinhex40 
mp3 
mspowerpoint 

4 msword 
4 news-message-id 

4 news-
transmission 
4 octet-stream 
4 oda 

pdf 
4 postscript 
4 powerbuilder 

quattro-pro 
4 IV' 

sgml 
4 vnd-framemaker 
4 vnd-lotus-1-2-3 
4 vnd-lotus-
approach 

vnd-lotus-
freelance 
4 vnd-lotus-
organizer 
4 vnd-lotus-
wordpro 
4 vnd-mif 

4 vnd-ms-excel 
vnd-ms-

powerpoint 
4 vnd-ms-project 
4 vnd-ms-word 

(Sybase web.sql) 
(Sybase jConnect) 

(JDBC-ODBC Bridge) 
(IBM DB2 JDBC) 
(Gupta SQLBase JDBC) 
(Sybase jConnect) 
(Point Cast Network) 
(BackWeb) 
(Sybase PowerBuilder) 
(EDI) 
(EDI) 
(EDI) 
(Microsoft Excel) 
(Macintosh BINHEX) 
(MPEG-3 Audio) 
(Microsoft Powerpoint) 
(Microsoft Word) 
(USENET News — 
ifc1036) 
(USENET News — 
rfcl 036) 
(raw data, Java Applets) 
(Office Document 
Architecture) 
(Adobe Acrobat) 
(Postscript) 
(Sybase PowerBuilder) 
(Lotus Quattro-Pro) 
(Rich Text Format) 
(SGML — rfc1874) 
(Adobe FrameMaker) 
(Lotus 1-2-3) 
(Lotus Approach) 

(Lotus Freelance 
Graphics) 
(Lotus Organizer) 

(Lotus Word Pro) 

(Adobe FrameMaker 
MIF-Format) 
(Microsoft Excel) 
(Microsoft PowerPoint) 

(Microsoft Project) 
(Microsoft Word) 
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vnd-powerbuilder 	 (Sybase PowerBuilder) 
vnd-rn-realplyer 	 (RealAudio) 

vnd-visio 	 (VISIO Graphics) 

4 wordperfect 	 (Corel WordPerfect) 

- x-bcpio 	 (Old Unix CPIO 
Archive) 

x-compress 	 (Compressed Data 

x-cpio 	 (Posix-compliant CPIO 
Archive) 

4 x-csh 	 (`C' Shell Program) 
x-director 	 (MacroMedia 

Shockwave) 
x-dvi 	 (TeX DVI Document) 

4 x-gtar 	 (GNU Tape Archive) 

4 x-gzip 	 (GNU Zip Compressed 
Data) 

x-javascrip 	 (Java Scripts) 

x-latex 	 (LaTeX Document) 
4 x-lotus-notes 	 (Lotus Notes) 
4 x-macbinary 	 (Macintosh Binary) 

4 x-mif 	 (Adobe FrameMaker 
MIF-Format) 

4 x-pncmd 	 (RealAudio) 
4 x-pn-realaudio 	 (RealAudio) 

- x-powerpoint 	 (Microsoft Powerpoint) 
x-sh 	 (Bourne Shell Program) 
x-stuffit 	 (Macintosh StuffIt) 
x-tar 	 (Unix Tape Archive) 

4 x-tex 	 (TeX Document) 
4 x-troff 	 (TROFF Document) 
- x-ustar 	 (Posix-compliant Tape 

Archive) 
4 x-zip-compressed 	 (ZIP Compressed Data) 
4 xpp5 	 (Microsoft Powerpoint) 
4 zip-archive 	 (ZIP Compressed 

Archive) 
x-netcdf 	 (Unidata netCDF) 

4 audio 

4 image 

4 basic 	 (ULAW Audio Data) 

4 midi 	 (MIDI Audio Data) 
- mpeg 	 (MPEG-2 Audio Data) 

vnd-rn-realaudio 	 (RealAudio) 
9 way 	 (WAV Format Audio) 
4 x-aiif 	 (Apple AIFF Format 

Audio) 
4 x-midi 	 (MIDI Audio Data) 
4 x-mpeg 	 (MPEG-2 Audio Data) 

x-mpgurl 	 (MPEG Audio Data) 
4 x-pn-realaudio 	 (RealAudio) 
4 x-wav 	 (WAV Format Audio) 
4 cgm 	 (Computer Graphics 

Metafile) 
g3fax 	 (Group 3 FAX) 

4 gif 	 (GIF Format Graphic) 
4 ief 	 (Image Exchange 

Format) 
9 jpeg 	 (JPEG Format Graphic) 

pict 	 (PICT Format Graphic) 
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4 png 	 (Portable Network 
Graphics) 

- tiff 	 (Apple TIFF Format 
Graphic) 

- vnd-rn-realflash 	 (RealAudio) 
vnd-m-realpix 	 (RealAudio) 
x-bitmap 	 (X Bitmap) 
x-pixmap 	 (X Pixmap) 

4 x-quicktime 	 (Apple QuickTime) 
4 x-windowdump 	 (X-Windows Dump 

Image) 
9 x-xbm 	 (X Bitmap) 

9 text 
	

9 enriched 	 (Enriched Text — 
rfc1896) 

html 	 (HTML — rfc1866) 
9 plain 	 (Plain Text) 

richtext 	 (RichText Format) 
sgml 	 (SGML — rfc1874) 

4 tab-separated- 	 (Text with Tab 
value 	 Separations) 

vnd-rn-text 	 (RealAudio) 
9 css 	 (Cascading Style Sheet) 

4 video 	4 avi 	 (AVI Video) 
4 mpeg 	 (MPEG Video) 
4 msvideo 	 (Microsoft Media Video) 

ms-video 	 (Microsoft Media Video) 
quicktime 	 (Apple QuickTime) 
vnd-rn-realvideo 	 (RealAudio) 

4 vnd-vivo 	 (Vivo Acrtive Streaming 
Video) 

x-ls-asf 	 (Microsoft Media Video) 
x-ls-asx 	 (Microsoft Media Video) 

4 x-mpeg 	 (MPEG-Video) 
4 x-ms-asf 	 (Microsoft Media Video) 
4 x-ms-asx 	 (Microsoft Media Video) 

x-msvideo 	 (Microsoft Media Video) 
x-sgi-movie 	 (SGI MoviePlayer) 

-9 x-world 4 x-vrml 	 (VRML) 

New sub-classifications may be added to the HTTP capabilities. The following 

should be noted when doing so: 

1. HTTP is a "text" based protocol 

2. To support "minimum" execution overhead, when searching the HTTP Sub-

Engine's "Sub-Protocol Info" database, a rather robust set of sequentially 

indexed, look-aside tables are employed. 

(a) The challenge here is to take a string from an HTTP packet (e.g. 
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Content Type) and match it with any one of approximately 110+ well 

known (as is the case with Content Type) 

(b) And to do so within an embedded environment that is trying to keep 

up with the network packet rate at line speed. 

5 
	 (c) The supported search mechanism can identify a single match 

candidate sub-string by looking at typically no more than 3 to 5 

characters of the sub-string from the HTTP packet. 

3. Adding a sub-classification to the HTTP "Sub-Protocol Info" Database is 

simply a matter of adding a new entry if the "Content Type" or "JDBC URL 

io 	 Component" is known. 

4. Updating and/or extending the "look-aside" tables requires extreme caution 

and accuracy. 

Note that in these days, new "Content Types" are springing up almost every 

week. One feature of the invention is that as new applications are identified along with 

15 	their designated Content Types, they may easily be added to the implementation. 

WebNFS from Sun Microsystems, Inc., tunnels NFS file access over HTTP and 

is a good choice for inclusion into this sub-engine. 

There are many other JDBC packages from various database manufactures and 

technology suppliers that are integrated with WWW. Oracle's being the most noted at 

20 	this time. As more are identified along with their designated JDBC URL Selectors, they 

may easily be added to the implementation. 

BackWeb 

BackWeb (BackWeb Technologies, Inc.) is a news/broadcast application. It may 

be configured to operate in either of 2 modes: 

25 	• HTTP only (see Section 3.6 above) 

• UDP for access to BackWeb Servers & HTTP to access to 3rd  party channels 

(polite mode) 
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BackWeb operates over UDP in what it calls its "Polite Client" mode. In this 

mode, BackWeb has an unusual mechanism of exchange that makes traffic in one 

direction very easy to see (well-known), but difficult to classify in the other direction. 

The BackWeb sub-engine has been implemented specifically for BackWeb's 

5 	UDP (Polite Mode) access protocol. The key node points in the protocol directory for 

BackWeb is "backweb". 

Key capabilities for this protocol include: 

1. tracking exchanges with BackWeb Servers in well-known BackWeb Server 

port traffic; 

10 	 2. remembering the access points of traffic from BackWeb Clients and creating 

sub-classifications for these access points; and 

3. classifying traffic seen on these access points: 

a) as "backweb" 

15 	Real-Time Streaming Protocol (RTSP) 

The "Real-Time Streaming Protocol" is defined in RFC 2326. Like HTTP it is a 

"text" based protocol. Unlike HTTP, its principle purpose is to enable the controlled, on-

demand delivery of real-time data, such as audio and video. The key node points in the 

protocol directory for RTSP will be "rtsp".  

20 	 In function it acts similar to H.323's "Call Setup" and "Call Control" services, 

however, in a single connection on a well-known port. Ultimately, it serves to set up 

RTP/RTCP datastreams over UDP. 

Key capabilities for this protocol include: 

1. tracking exchanges with the well-known RTSP server; 

25 	 2. detecting the assignment of RTP/RTCP audio and video, UDP datastreams 

access points as well as the audio and video "codecs" negotiated for use on 

them and creating RTP/RTCP sub-classifications for these access points; 
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3. classifying traffic seen on these RTP/RTCP access points: 

a) by the appropriate "codec" under "rtp" , if the negotiated codec is a 

known audio/video stream type; or 

b) minimally as "rtp", if the negotiated codec is unknown. 

5 	 4. allowing known sub-applications (audio/video datastreams) to be specified 

with respect to flow reporting with three levels of identification 

a) Level 1 — Datastream Class (e.g. audio, video, other...) 

b) Level 2 — Datastream Type within the Datastream Class 

c) Level 3 — Datastream Sub-Type within the Datastream Type 

10 

Sub-classifications: RTSP traffic is classified as "rtsp" in the "tcp" subtree. RTSP itself 

does not sub-classify any further. 

New audio and video datastream sub-classifications under "rtp" include the 

following in the "udp" subtree. 

15 

rtp 	-9 audio 

- video 

4 1016 
4 DVI4 
4 L8 
-9 L16 
4 LPC 
- MPA 
-9 VDVI 
- AIFF-C 

-9 CeIB 
- JPEG 
4 MPV 
-9 MP2T 
-9 nv 

(Audio Transfer sub-channel) 

(Video Transfer sub-channel) 

Standards for the audio stream sub-classifications indicated above are: 

1016 - frame based encoding using code-excited linear prediction (CELP) and 

is specified in Federal Standard FED-STD 1016 

20 	 DVI4 - IMA ADPCM wave type, "IMA Recommended Practices for Enhancing 
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Digital Audio Compatibility in Multimedia Systems (version 3.0)" 

L8 - 	L8 denotes linear audio data, using 8-bits of precision with an offset of 

128, that is, the most negative signal is encoded as zero. 

L16 - L16 denotes uncompressed audio data, using 16-bit signed 

5 	 representation with 65535 equally divided steps between minimum and 

maximum signal level, ranging from -32768 to 32767. The value is 

represented in two's complement notation and network byte order. 

LPC - LPC designates an experimental linear predictive encoding contributed 

by Ron Frederick, Xerox PARC, which is based on an implementation 

io 	 written by Ron Zuckerman, Motorola, posted to the Usenet group 

comp.dsp on June 26, 1992. 

MPA - MPA denotes MPEG-I or MPEG-II audio encapsulated as elementary 

streams. The encoding is defined in ISO standards ISO/IEC 11172-3 and 

13818-3. The encapsulation is specified in work in progress. 

15 	 VDVI - VDVI is a variable-rate version of DVI4, yielding speech bit rates of 

between 10 and 25 kb/s. It is specified for single-channel operation only. 

AIFF-c -Apple Computer, "Audio interchange file format Alf(1i-C," Aug. 1991. 

(also ftp://ftp.sgi.com/sgi/aiff-c.9.26.91.ps.Z).  

Standards for the video stream sub-classifications indicated above are: 

20 	 CelB - The CELL-B encoding is a proprietary encoding proposed by Sun 

Microsystems. "RTP payload format of Ce11B video encoding," Work in 

Progress, Internet Engineering Task Force, Aug. 1995. 

JPEG - The encoding is specified in ISO Standards 10918-1 and 10918-2. 

MPV - Designates the use MPEG-I and MPEG-II video encoding elementary 

25 	 streams as specified in ISO Standards ISO/IbC 11172 and 13818-2, 

respectively. 

MP2T - MP2T designates the use of MPEG-II transport streams, for either audio 

or video. 
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my - 	The encoding is implemented in the program 'nv', version 4, developed 

at Xerox PARC 

Extensibility New sub-classifications are easily added as new entries in the RTSP Sub- 

Engine's "Sub-Protocol Info" table, if the Payload Types of the corresponding 

5 	audio/video stream are known. 

Novell Service Advertising Protocol (SAP) 

The Novell Service Advertising Protocol (SAP) is a protocol similar in nature to 

the "SUN RPC PortMapper" protocol. It is used to support the dynamic management and 

locating of "services" with regards to their locations (network addresses) and port 

10 	assignments. The key node points in the protocol directory for Novell SAP is "nov-sap". 

SAP uses a completely different protocol than the SUN RPC protocol 

PortMapper. Also, a fundamental difference from Sun RPC is that SAP periodically 

broadcasts services that are in its advertising database. 

Key capabilities for this service include: 

15 	 1. tracking SAP announcements periodically broadcast by Novell Netware 

servers; 

2. distinguishing such "announcement" traffic from traffic on application 

connections subsequently "mapped"; 

3. detecting assignments of server application access assignments to various 

20 	 hosts and/or sockets and creating sub-classifications for these access points; 

4. classifying traffic seen on these access points: 

a) By the appropriate application under "nov-sap", if the server 

application identifier in the announcement is a known sub-

application. 

25 
	 b) Minimally as "nov-sap", if the server application is unknown. 

5. allowing known sub-applications to be specified with respect to flow 

reporting with two levels of identification: 
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a) Level 1 — SAP Mapped "Application Group" 

b) Level 2 — Sub-application within the Application Group. 

Sub-classifications under "nov-sap" will include the following in the "ipx/nov- 

5 	pep" subtree. 

nov-sap 	4 announce 
ms-exchange 

▪ sybase_sqlany 
sybase_sqlenterprise 

▪ gupta-sqlbase 
4 ms-sna-server 
4 ms-sql-server 
4 citrix-app-server 

citrix-app-server-nt 
hp-laserjet 
advertising-print-svr 

4 netware-sql-server 
-4 remote-bridge 

bridge-server 
-1 print-queue 

(Novell SAP Announcements) 
(Microsoft Exchange) 
(Sybase SQL Anywhere) 
(Sybase SQL Enterprise) 
(Gupta SQLBase) 
(Microsoft SNA Server) 
(Microsoft SQL Server) 
(Citrix Application Server) 
(Citrix Application Server for NT) 
(HP Laserjet Printer) 
(Advertising Print Server) 
(Novell Netware SQL Server) 
(Remote Bridge Router Service) 
(Bridge Server) 
(Print Queue Server) 

New sub-classifications are easily added as new entries in the Novell SAP Sub-

Engine's "Sub-Protocol Info" table, if the SAP IDs of the corresponding application are 

known. 

lo MS-Media 

MS-Media is a audio/video streaming, multimedia application (similar to 

RealAudio) from Microsoft. MS-Media may be configured to operate over UDP when 

transferring its payload. In this configuration, MS-Media has an unusual mechanism to 

allocate UDP resources for this purpose via an initial TCP connection. 

is 	The MS-Media sub-engine will be implemented specifically for MS-Media's 

access protocol. 

Key capabilities for this service include: 

1. tracking connections to and exchanges in well-known MS-Media port traffic; 

2. detecting assignments of UDP access points to various hosts and/or ports and 

20 	 creating MS-Media sub-classifications for these access points; and 
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3. classifying traffic seen on these access points 

a) as "ms-media". 

Streamworks and VDOLive 

Streamworks and VDOLive are multi-media, streaming applications, which 

5 	transfer their payloads over UDP. 

Like BackWeb, Streamworks and VDOLive employ unusual mechanisms of 

exchange that makes traffic one direction very easy to see (well-known), but difficult to 

classify in the other direction. 

The BackWeb sub-engine may be expanded to further support Streamworks and 

to 	VDOLive classification. 

Re-using information from flows for maintaining statistics 

It is advantageous to collect statistics rather than to count each and every packet. 

The process used in the embodiments of the invention to accumulate statistics enables 

specific metrics to be collected in real-time that otherwise would not be possible. Metrics 

15 	related to bi-directional conversations must be maintained based on the entire flow for 

each exchange in the conversation. There are also several metrics that can not be 

acquired without a complete understanding of the state that the conversation is in when 

the metric is captured. 

Most prior-art systems related to network traffic when the use statistics collect 

20 	only end-point and end-of-session related statistics. Examples of commonly used metrics 

include packet counts, byte counts, session connection time, session timeouts, session 

and transport response times and others. All of these deal with events that can be directly 

related to an event in a single packet. These prior-art systems cannot collect some 

important performance metrics that are related to a set and sequence of packets in a 

25 	network. 

In another aspect of the invention, the monitor 300 provides the ability to collect 

metrics that are related to a sequence of events. A good example is relative jitter. 

Measuring the time from the end of one packet in one direction to another packet with 

the same signature in the same direction collects data that relates normal jitter. This type 
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of jitter metric is good for measuring broad signal quality in a packet network. However, 

it is not specific to the payload or data item being transported in a cluster of packets. 

Using the state processing as described herein, monitor 300 can be programmed to 

collect the same jitter metric for a group of packets in a flow that are all related to a 

5 	specific data payload. This allows the inventive system to provide metrics more focused 

on the type of quality related to a set of packets. This is much more useful when 

evaluating the performance of a system in a network than metrics related to single 

packets. 

Specifically, the monitor system 300 can be programmed to maintain any type of 

io 	metric at any point in a conversation. Also the system 300 can have the actual statistics 

programmed into the state at any point. This enables the monitor system to collect the 

standard metrics related to network usage and performance, as well as metrics related to 

specific states or sequences. 

Some of the specific metrics that can be collected only with states are events 

15 	related to a group of traffic in one direction, events related to the status of a 

communication sequence in one or both directions, events related to the exchange of 

packets for a specific application in a specific sequence. This is only a small sample of 

the metrics that requires an engine that can relate the state of a flow to a set of metrics. 

In addition, because the monitor 300 provides greater visibility to the specific 

20 	application in a conversation or flow, the monitor 300 can be programmed to collect 

metrics that may be specific to that type of application or service. In other word, if a flow 

is for an Oracle Database server, an embodiment of monitor 300 could collect the 

number of packets required to complete a transaction. Only with both state and 

application classification can this type of metric be derived from the network. 

25 	 Because the monitor 300 can be programmed to collect a diverse set of metrics, 

the system can be used as a data source for metrics required in a number of 

environments. In particular, the metrics our system collects could be used to monitor and 

analyze the quality and performance of traffic flows related to a specific set of 

applications. Other implementation could include metrics related to bill and charge-back 

30 	for specific traffic flow and events with the traffic flows. These are important for 

charging within a network system. Also, troubleshooting and capacity planning related 

NOAC Ex. 1014 Page 143



139 

directly to a focused application and service. The monitor system can be programmed to 

collect all of this type of metrics due to the ability to relate traffic to a specific point in 

time or point in a sequence of events. 

Fig. 15 describes how the monitor system can be set up with a host processor. 

5 	The host processor would do part of the analysis. 

This following section describes how the monitor of the invention can be used to 

monitor the Quality of Service (QOS) by providing QOS Metrics. 

Quality of Service Traffic Statistics (Metrics) 

This next section defines the common structure that may be applied for the 

to 	Quality of Service (QOS) Metrics according to one aspect of the invention. It also 

defines the original (or base) set of metrics that may be implemented in an embodiment 

of the invention to support QOS. 

In summary, the QOS Metrics defined in this part of the description are broken 

into the following Metrics Groups: 

15 	 Traffic Metrics 

CSTraffic 

SCTraffic 

Jitter Metrics 

CSJitter 

20 	 SCJitter 

Exchange Response Metrics 

CSExchangeResponseTimeS tartToS tart 

CSExchangeResponseTimeEndToS tart 

CSExchangeResponseTimeStartToEnd 

25 	 SCExchangeResponseTimeStartToStart 

SCExchangeResponseTimeEndToStart 

SCExchangeResponseTimeStartToEnd 

Transaction Response Metrics 

CSTransactionResponseTimeStartToStart 
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CSApplicationResponseTimeEndToStart 

CSApplicationResponseTimeStartToEnd 

SCTransactionResponseTimeStartToStart 

SCApplicationResponseTimeEndToStart 

5 
	 SCApplicationResponseTimeStartToEnd 

Connection Metrics 

ConnectionEstablishment 

ConnectionGracefulTermination 

ConnectionTimeoutTermination 

10 	 Connection Sequence Metrics 

CSConnectionRetransmissions 

SCConnectionRetransmissions 

CSConnectionOutOfOrders 

SCConnectionOut0fOrders 

15 	 Connection Window Metrics 

CSConnectionWindow 

SCConnectionWindow 

CSConnectionFrozenWindows 

SCConnectionFrozenWindows 

20 

	

	 CS ConnectionClosedWindows 

SCConnectionClosedWindows 

QOS Metric Structure and Methods 

Metrics Perspective 

When dealing with time based metrics on application data packets ideally if all 

25 

	

	the timestamps and related data could 	be stored and forwarded for later analysis. 

However when faced with thousands of conversations per second on ever faster 

networks, storing all the data, even if compressed, would take too much processing, 

memory, and manager down load time to be practical. 

In one aspect of the invention, statistical analysis may advantageously be applied 
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to time based metrics for traffic analysis. 

Network data is modeled as a population and not a sample. In collecting data fror 

processing, a population, i.e., all the data, must be processed. Because of the nature of 

application protocols, just sampling some of the packets will not give good results. 

	

5 	Missing just one critical packet, such as one the specified an additional port that data will 

be transmitted on, or what application will be run, can cause much valid data to be lost. 

The time-based metrics, the statistical metrics process collects will come from 

examining the entire group of data, i.e., the population. The population is finite. The 

statistical metrics process seeks only to provide information that will describe the actual 

	

10 	data. Analysis of that data is preferably left to the management station that may run on a 

host (see Fig. 15). 

The simplest form of representing a group of data is by frequency distributions in 

sub-ranges. Statistics provides inventive advantageous ways of analyzing this type of 

data. In the preferred embodiment, there are some rules in creating the sub-ranges. First 

	

15 	the range needs to be known. Second a sub-range size needs to be determined. Fixed 

sub-range sizes are best, variable may be used if needed, however the statistics texts tend 

to only refer to operations of fixed size sub-ranges. This method of describing data is 

expensive for a statistical metrics process to implement. First the statistical metrics 

process is processing a great amount of data at a time, storing the data and determining 

	

20 	the range, then the sub-ranges and then filling in the data after the fact takes too much 

storage and too much time. Fixing the range and sub-range sizes in the beginning can be 

problematical as the statistical metrics process may have to adjust the values for each of 

the applications it collects data on. That number can be in the thousands. Additional 

complexity arises in adding new protocols and even in describing the sub-ranges 

	

25 	themselves to the management application. 

In addition to frequency distribution, statistical analysis provides for 

measurements such a mean and standard deviation that can be obtained by summation 

functions on the individual data elements in a population. Also note that frequency 

distributions using sub-ranges, by their very nature, may introduce error that is not 

	

30 	present by directly analysis via summation type formulas. 
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The metric provided by the statistical metrics process will provide data that can 

be used to calculate the most basic and useful statistical measurements. In the preferred 

embodiment, the statistical metrics process will not perform the calculations and provide 

the statistical measurement directly, while in other embodiments, direct measurement is 

	

5 	provided. There are several reason why this is not preferred. First is that to find the final 

measurement can be expensive in terms of computation and representation. There are 

divisions and square roots and the measurements are expressed as floating point values. 

Second is that by providing the variables to the statistical functions, those variables are 

scaleable. It is possible to combine smaller intervals into larger ones. 

	

to 	An example is the arithmetic mean or average. This is the sum of the data divided 

by the number of data elements. 

= x 

N 

The metric provided by the statistical metrics process will provide 2 OIDs, the 

first the sum of the x, the second the number of elements N. The management station can 

	

15 	perform the division to obtain the average. Given two samples, they can be combined by 

adding the sum of the x's and by adding the number of elements to get a combined sum 

and number of elements. The average formula then works just the same. Also the sum of 

the x and the number of element variables are used in calculating other statistical 

measurement values as well. 

	

20 	Metric Structure 

The data structure elements of the metric have been chosen to maximize the 

amount of data available while minimizing the amount of memory needed to store the 

metric and minimizing the CPU processing requirement needed to generate the metric. 

The metric data structure contains five unsigned integer datum. 

	

25 	• N 	count of the number of data points for the metric 

• X X 	sum of all the data point values for the metric 

• X (X2) 	sum of all the data point values squared for the metric 
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• Xmax maximum data point value for the metric 

• Xmin minimum data point value for the metric 

• Trend An enumerated type { increasing, flat, decreasing, unknown} 

A performance metric is used to describe events over a time interval. The events, 

	

5 	data points, can be processed immediately into the metric and do not have to be stored 

for later processing. For example to count the number of events in a time interval it is 

sufficient to increment a counter for each event, it is not necessary to cache all the events 

and then count them at the end of the interval. The metric is also designed to be easily 

scaleable in terms of combining adjacent intervals. For example if an statistical metrics 

	

10 	process created a specific metric every 30 seconds and a user table interval was set to 60 

seconds, the 60 second metric could be obtained by combining the two 30 second 

metrics. The following rules will be applied when combining adjacent metrics. 

• N 	EN 

• EX 	/,(X (X)) 

	

15 	• I (X2) 	(X2)) 

• Xmax 	MAX(Xmax) 

• Xmin 	MIN(Xmin) 

• Trend 	Implementation specific 

The following approximates the CPU processing requirements needed to update a 

	

20 	specific metric. 

• 3 to 4 additions 

• 1 multiplication 

• 2 comparisons 

• 3 to 6 assignments. 

	

25 	The metric structure gives a generic framework upon which the actual 

performance metrics will be defined. Each specific performance metric definition must 
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address the specific significance, if any, given to each of the metric datum. While a 

specific metric definition should try to conform to the generic framework, it is ok for a 

metric datum to not be used, and to have no meaning, for a specific metric. In such cases 

the datum will default to a 0 value, or unknown in the case of the trend variable. 

5 	 Trend is unique in that it is an enumerated type rather than a directly updated 

integer value. The reason for this is that the recommended method of generating this 

information is to subtract the first value of the interval from the last value of the interval. 

The number calculated has little value other than examining its sign to determine a crude 

indication of trend. It cannot be interpreted as a slope of a line fitted to the data points. 

io 	Metric Analysis 

The actual meaning of a specific metric structure is determined by the definition 

of the specific metric. The following is a discussion of the operations and observations 

that can be performed on a generic metric. This means that the following may or may not 

apply and/or have meaning when applied to any specific metric. 

15 	 The following observations and analysis techniques are not all inclusive. Rather 

these are the ones we have come up with at the time of writing this document. 

• Number. 

N 

• Frequency. 

N 
20 

 

Timelnterval 

The time interval is the time interval specified in the control table. It is not a 

metric datum, but it is associated with the metric. 

• Maximum 

Xmax  

25 • Minimum 
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• Range 

R = 	— X min  

• Arithmetic Mean 

k_ = E X 

N 

5 	• Root Mean Square 

RMS = 
V N 

• Variance 

2 	E(X — 	2)-2X(EX)+ N(r) 
= 	 

• Standard Deviation 

 

E((x-xy)  ill(x1-2-g(Ex)+N(2)
N  N 

10 	 CT = 

 

• Trend 

There are two types of trending information. The trend between polled 

intervals and the trend within an interval. Trending between polled intervals is a 

management application function. Typically the management station would trend on 

15 	the average of the reported interval. The trend within an interval is presented as an 

enumerated type and can easily be generated by subtracting the first value in the 

interval from the last and assigning trend based on the sign value. 

Alternate Embodiments 

One or more of the following different data elements may be included in various 

20 	implementation of the metric. The following is what was considered but did not make it 

into the metric. 

• Sum of the deltas. The trend enumeration can be based on this easy 

calculation. It didn't make it because it could be negative, which would have 

meant another mib variable to specify sign information. And the number is 

25 	 an ambiguous measure of slope as seen by comparing the following two 

series of values. The sum of the delta in both cases is 6-2 = 4. 

1,(X2) 
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• Series A: 2, 6, 10, 6, 6, 6, 6, 6, 6, 6 

• Series B: 2, 2, 2, 2, 6, 10, 10, 10, 10, 6 

• Sum of the absolute values of the delta values. This would provide a 

measurement of the overall movement within an interval. A value for the 

5 	 average change could be calculated. This measurement gives no indication 

of trend or grouping of data within the interval. 

• Sum of positive delta values and sum of the negative delta values. These 

may not give much more useful information than the sum of the deltas and 

require 2 data elements to represent. Expanding each of these with an 

10 	 associated count and maximum would give nice information, but at a total of 

6 data elements for this data alone. It is potentially expensive in terms of 

memory. 

• The statistical measurement of skew can be obtained by adding E(X3) to the 

existing metric. This requires an additional multiply, and additional mib 

15 	 variable, and possibly overflow problems if X is sufficiently large. 

• The statistical measurement of kurtosis can be obtained by adding E(X3) 

and E(X4) to the existing metric. This would require two additional 

multiplies, 2 additional mib variables, and an even larger chance of overflow 

is X is sufficiently large. And in this case large is really not so large. 

20 	 • Data to calculate a slope of a least-squares line through the data would have 

taken 3 additional data elements, and two multiplies. Also in order to be 

scaleable to a control table interval would have required the sum of squaring 

of a potentially large time values causing overflow within the metric data 

element. 

25 	 Various metrics are now described 
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Traffic Metrics 

CSTraffic 

Definition 

This metric contains information about the volume of traffic measured for a 

5 	given application and either a specific Client-Server Pair or a specific Server and all of 

its clients. 

This information duplicates, somewhat, that which may be found in the standard, 

RMON II, AL/NL Matrix Tables. It has been included here for convenience to 

applications and the associated benefit of improved performance by avoiding the need to 

to 	access different functional RMON areas when performing QOS Analysis. 

Metric Specification 

Metric Applicability Units Description 

N Applicable Packets Count of the # of Packets from the Client(s) to 
the Server 

E Applicable Octets Sum total of the # of Octets in these packets 
from the Client(s) to the Server. 

Maximum Not Applicable 

Minimum Not Applicable 

SCTraffic 

15 Definition 

This metric contains information about the volume of traffic measured for a 

given application and either a specific Client-Server Pair or a specific Server and all of 

its clients. 

This information duplicates, somewhat, that which may be found in the standard, 

20 	RMON II, AL/NL Matrix Tables. It has been included here for convenience to 

applications and the associated benefit of improved performance by avoiding the need to 

access different functional RMON areas when performing QOS Analysis. 
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Jitter Metrics 

CSJitter 

Definition 

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured 

5 	for data packets for a given application and either a specific Client-Server Pair or a 

specific Server and all of its clients. Specifically, CSJitter measures the Jitter for Data 

Messages from the Client to the Server. 

A Data Message starts with the 1st  Transport Protocol Data Packet/Unit (TPDU) 

from the Client to the Server and is demarcated (or terminated) by 1st  subsequent Data 

10 	Packet in the other direction. Client to Server Inter-packet Gaps are measured between 

Data packets within the Message. Note that ACKnowledgements are not considered 

within the measurement of this metric. 

Also, there is no consideration in the measurement for retransmissions or out-of- 

order data packets. The interval between the last packet in a Data Message from the 

15 	Client to the Server and the 15t  packet of the Next Message in the same direction is not 

interpreted as an Inter-Packet Gap. 

Cheat Server Data Message 

Chest -> Server Data Msg 

20 

Server-> Client Data Message 
iL 

Data Data Data Data Data 

Data Data Data Data 

      

Chent->Server Inter-pkt Gaps 
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Jitter Metrics 

CSJitter 

Definition 

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured 

5 	for data packets for a given application and either a specific Client-Server Pair or a 

specific Server and all of its clients. Specifically, CSJitter measures the Jitter for Data 

Messages from the Client to the Server. 

A Data Message starts with the 1st  Transport Protocol Data Packet/Unit (TPDU) 

from the Client to the Server and is demarcated (or terminated) by 1st  subsequent Data 

10 	Packet in the other direction. Client to Server Inter-packet Gaps are measured between 

Data packets within the Message. Note that ACKnowledgements are not considered 

within the measurement of this metric. 

Also, there is no consideration in the measurement for retransmissions or out-of- 

order data packets. The interval between the last packet in a Data Message from the 

is 	Client to the Server and the 1st  packet of the Next Message in the same direction is not 

interpreted as an Inter-Packet Gap. 

Client -> Server Data Message 

Data Data 

 

Data Data 

Server -> Cheat Data Message 

20 N / Data Data Data Data 

Client->Seiver Inter-pkt Gaps  

Client -> Server Data Msg 

Data 
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Server -> Client Data Message 

Data Data Data Data 

Data Data Data Data Data 

N I / 
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Jitter Metrics 

CSJitter 

Definition 

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured 

5 	for data packets for a given application and either a specific Client-Server Pair or a 

specific Server and all of its clients. Specifically, CSJitter measures the Jitter for Data 

Messages from the Client to the Server. 

A Data Message starts with the 1st  Transport Protocol Data Packet/Unit (TPDU) 

from the Client to the Server  and is demarcated (or terminated) by 1St  subsequent Data 

10 	Packet in the other direction. Client to Server Inter-packet Gaps are measured between 

Data  packets within the Message. Note that ACKnowledgements are not considered 

within the measurement of this metric. 

Also, there is no consideration in the measurement for retransmissions or out-of- 

order data packets. The interval between the last packet in a Data Message from the 

15 	Client to the Server and the 1st  packet of the Next Message in the same direction is not 

interpreted as an Inter-Packet Gap. 

Client -> Server Data Message 

Client -> Server Data Msg 

20 

Client->Server Inter-pkt Gaps 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Inter- 
Packet 
Gaps 

Count of the # of Inter-Packet Gaps measured 
for Data from the Client(s) to the Server 

I Applicable uSeconds Sum total of the Delta Times in these Inter- 
Packet Gaps 

Maximum Applicable uSeconds The maximum Delta Time of Inter-Packet 
Gaps measured 

Minimum Applicable uSeconds The minimum Delta Time of Inter-Packet 
Gaps measured. 

SCJitter 

5 	Definition 

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured 

for data packets for a given application and either a specific Client-Server Pair or a 

specific Server and all of its clients. Specifically, SCJitter measures the Jitter for Data 

Messages from the Client to the Server. 

io 	A Data Message starts with the 1St  Transport Protocol Data Packet/Unit (TPDU) 

from the Server to the Client and is demarcated (or terminated) by 1st  subsequent Data 

Packet in the other direction. Server to Client Inter-packet Gaps are measured between 

Data packets within the Message. Note that ACKnowledgements are not considered 

within the measurement of this metric. 

15 	Also, there is no consideration in the measurement for retransmissions or out-of- 

order data packets. The interval between the last packet in a Data Message from the 

Client -a Server Data Message 

r"— 

Data  Data  Data  Data 

20 
	 Server -a Client Data Message 

Sever -a Client Data Msg 

Server->Client I nter-pkt Gaps 
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Server to the Client and the 1st  packet of the Next Message in the same direction is not 

interpreted as an Inter-Packet Gap. 

Metric Specification 

Metric Applicability Units Description 

N Applicable Inter- 
Packet 
Gaps 

Count of the # of Inter-Packet Gaps measured 
for Data from the Server to the Client(s). 

1 Applicable uSeconds Sum total of the Delta Times in these Inter- 
Packet Gaps. 

Maximum Applicable uSeconds The maximum Delta Time of Inter-Packet 
Gaps measured 

Minimum Applicable uSeconds The minimum Delta Time of Inter-Packet 
Gaps measured. 

5 

Exchange Response Metrics 

CSExchangeResponseTimeStartToStart 

Definition 

This metric contains information about the Transport-level response time 

10 	measured for data packets for a given application and either a specific Client-Server Pair 

or a specific Server and all of its clients. Specifically, 

CSExchangeResponseTimeStartToStart measures the response time between start of 

Data Messages from the Client to the Server and the start of their subsequent response 

Data Messages from the Server to the Client. 

15 	 A Client->Server Data Message starts with the 1st  Transport Protocol Data 

Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by 

1St subsequent Data Packet in the other direction. The total time between the start of the 

Client->Server Data Message and the start of the Server->Client Data Message is 

measured with this metric. Note that ACKnowledgements are not considered within the 

20 	measurement of this metric. 
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Data  Data  Data  Data 

Server -> Client Data Message 

Data  Data  Data  Data 

Client->Server Start-Start 

Exchange Response Time 

to 	Also, there is no consideration in the measurement for retransmissions or out-of- 

order data packets. 

Metric Specification 

Metric Applicability Units Description 

N Applicable Client-> 
Server 
Messages 

Count of the # Client->Server Messages 
measured for Data Exchanges from the 
Client(s) to the Server 

X Applicable uSeconds Sum total of the Start-to-Start Delta Times in 
these Exchange Response Times 

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of 
these Exchange Response Times 

Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of 
these Exchange Response Times 

15 CSExchangeResponseTimeEndToStart 

Definition 

This metric contains information about the Transport-level response time 

measured for data packets for a given application and either a specific Client-Server Pair 

or a specific Server and all of its clients. Specifically, 

20 	CSExchangeResponseTimeEndToStart measures the response time between end of Data 

Messages from the Client to the Server and the start of their subsequent response Data 

Messages from the Server to the Client. 

A Client->Server Data Message starts with the 1st  Transport Protocol Data 

Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by 
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1st  subsequent Data Packet in the other direction. The total time between the end of the 

Client->Server Data Message and the start of the Server->Client Data Message is 

measured with this metric. Note that ACKnowledgements are not considered within the 

measurement of this metric. 

5 

10 

Client -> Server Data Message 

Also, there is no consideration in the measurement for retransmissions or out-of- 

15 	order data packets. 

Metric Specification 

Metric Applicability Units Description 

N Applicable Client-> 
Server 
Messages 

Count of the # Client->Server Messages 
measured for Data Exchanges from the 
Client(s) to the Server 

I Applicable uSeconds Sum total of the End-to-Start Delta Times in 
these Exchange Response Times 

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of 
these Exchange Response Times 

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of 
these Exchange Response Times 

CSExchangeResponseTimeStartToEnd 

20 Definition 

This metric contains information about the Transport-level response time 

measured for data packets for a given application and either a specific Client-Server Pair 

or a specific Server and all of its clients. Specifically, 

CSExchangeResponseTimeEndToStart measures the response time between Start of 
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Data Messages from the Client to the Server and the End of their subsequent response 

Data Messages from the Server to the Client. 

A Client->Server Data Message starts with the 1st  Transport Protocol Data 

Packet/Unit (TPDU) from the Client to the Server and is demarcated (or teiminated) by 

5 	1St  subsequent Data Packet in the other direction. The end of the Response Message in 

the other direction (e.g. from the Server to the Client) is demarcated by the last data of 

the Message prior to the 1st  data packet of the next Client to Server Message. The total 

time between the start of the Client->Server Data Message and the end of the Server-

>Client Data Message is measured with this metric. Note that ACKnowledgements are 

lo 	not considered within the measurement of this metric. 

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets. 

Next 
Client -> Server Data Message 

Data 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Client-> 
Server 
Message 
Exchanges 

Count of the # Client->Server and Server-> 
Client Exchange message pairs measured for 
Data Exchanges from the Client(s) to the 
Server 

E Applicable uSeconds Sum total of the Start-to-End Delta Times in 
these Exchange Response Times 

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of 
these Exchange Response Times 

Minimum Applicable uSeconds The minimum Start-to-End Delta Time of 
these Exchange Response Times 

SCExchangeResponseTimeStartToStart 

5 	Definition 

This metric contains information about the Transport-level response time 

measured for data packets for a given application and either a specific Client-Server Pair 

or a specific Server and all of its clients. Specifically, 

SCExchangeResponseTimeStartToStart measures the response time between start of 

10 	Data Messages from the Server to the Client and the start of their subsequent response 

Data Messages from the Client to the Server. 

A Server->Client Data Message starts with the 1st  Transport Protocol Data 

Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by 

1st  subsequent Data Packet in the other direction. The total time between the start of the 

15 	Server->Client Data Message and the start of the Client->Sever Data Message is 

measured with this metric. Note that ACKnowledgements are not considered within the 

measurement of this metric. 

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets. 

20 
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Client -> Server Data Message 

s'- 

Metric Specification 

Metric Applicability Units Description 

N Applicable Server-> 
Client 
Messages 

Count of the # Server->Client Messages 
measured for Data Exchanges from the 
Client(s) to the Server 

I Applicable uSeconds Sum total of the Start-to-Start Delta Times in 
these Exchange Response Times 

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of 
these Exchange Response Times 

Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of 
these Exchange Response Times 

15 

SCExchangeResponseTimeEndToStart 

Definition 

This metric contains information about the Transport-level response time 

measured for data packets for a given application and either a specific Client-Server Pair 

20 	or a specific Server and all of its clients. Specifically, 

SCExchangeResponseTimeEndToStart measures the response time between end of Data 

Messages from the Server to the Client and the start of their subsequent response Data 

Messages from the Client to the Server. 

A Server->Client Data Message starts with the 1st  Transport Protocol Data 

25 	Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by 

Si 3 
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1st  subsequent Data Packet in the other direction. The total time between the end of the 

Server->Client Data Message and the start of the Client->Server Data Message is 

measured with this metric. Note that ACKnowledgements are not considered within the 

measurement of this metric. 
Client -> Server Data Message 

Server -> Client Data Message 

Data  Data  Data  Data 

4 

10 Data Data Data Data 

.01 

Serve r->Client End-Start  

15 	 Also, there is no consideration in the measurement for retransmissions or out-of- 

order data packets. 

Metric Specification 

Metric Applicability Units Description 

N Applicable Server-> 
Client 
Messages 

Count of the # Server->Client Messages 
measured for Data Exchanges from the 
Client(s) to the Server 

1 Applicable uSeconds Sum total of the End-to-Start Delta Times in 
these Exchange Response Times 

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of 
these Exchange Response Times 

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of 
these Exchange Response Times 

20 SCExchangeResponseTimeStartToEnd 

Definition 

This metric contains information about the Transport-level response time 

measured for data packets for a given application and either a specific Client-Server Pair 

Exchange Response Time 
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or a specific Server and all of its clients. Specifically, 

SCExchangeResponseTimeEndToStart measures the response time between Start of 

Data Messages from the Server to the Client and the End of their subsequent response 

Data Messages from the Client to the Server. 

5 	 A Server->Client Data Message starts with the 1St  Transport Protocol Data 

Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by 

1st  subsequent Data Packet in the other direction. The end of the Response Message in 

the other direction (e.g. from the Server to the Client) is demarcated by the last data of 

the Message prior to the 1st  data packet of the next Server to Client Message. The total 

io 	time between the start of the Server->Client Data Message and the end of the Client- 

>Server Data Message is measured with this metric. Note that ACKnowledgements are 

not considered within the measurement of this metric. 

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets. 

15 

fn. 

ik 3  

Client -> Server Data Message 

Next 
Server -> Client Data Message 

Data 

Server->Client Start-End 
Exchange Response Time 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Client->Svr 
Transaction 
Requests 

Count of the # Client->Server Transaction 
Requests measured for Application requests 
from the Client(s) to the Server 

/ Applicable uSeconds Sum total of the End-to-Start Delta Times in 
these Application Response Times 

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of 
these Application Response Times 

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of 
these Application Response Times 

CSApplicationResponseTimeStartToEnd 

Definition 

5 	 This metric contains information about the Application-level response time 

measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically, 

CSTransactionResponseTimeStartToEnd measures the response time between Start of 

an application transaction from the Client to the Server and the End of their subsequent 

o 	transaction response from the Server to the Client. 

A Client->Server transaction starts with the 1st  Transport Protocol Data 

Packet/Unit (TPDU) a transaction request from the Client to the Server and is 

demarcated (or terminated) by 1st  subsequent data packet of the response to the 

transaction request. The end of the Transaction Response in the other direction (e.g. from 

15 	the Server to the Client) is demarcated by the last data of the transaction response prior 

to the 1St  data of the next Client to Server Transaction Request. The total time between 

the start of the Client->Server transaction request and the end of the Server->Client 

transaction response is measured with this metric. 

20 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Client- 
Server 
Message 

Exchanges 

Count of the # Server->Client and Client-> 
Server Exchange message pairs measured for 
Data Exchanges from the Server to the 
Client(s) 

E Applicable uSeconds Sum total of the Start-to-End Delta Times in 
these Exchange Response Times 

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of 
these Exchange Response Times 

Minimum Applicable uSeconds The minimum Start-to-End Delta Time of 
these Exchange Response Times 

Transaction Response Metrics 

5 CSTransactionResponseTimeStartToStart 

Definition 

This metric contains information about the Application-level response time 

measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically, 

10 	CSTransactionResponseTimeStartToStart measures the response time between start of 

an application transaction from the Client to the Server and the start of their subsequent 

transaction response from the Server to the Client. 

A Client->Server transaction starts with the 1St  Transport Protocol Data 

Packet/Unit (TPDU) of a transaction request from the Client to the Server and is 

15 	demarcated (or terminated) by 1st  subsequent data packet of the response to the 

transaction request. The total time between the start of the Client->Server transaction 

request and the start of the actual transaction response from the Server->Client is 

measured with this metric. 

This metric is considered a "best-effort" measurement. Systems implementing 

20 	this metric should make a "best-effort" to demarcate the start and end of requests and 

responses with the specific application's definition of a logical transaction. The lowest 

level of support for this metric would make this metric the equivalent of 

CSExchangeResponseTimeStartToStart. 
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Client -, Server Transaction Request 
	

Server -> Client Misc. Control Dates 

Server Client Misc. Control Dates 
Server Client Transaction Response 

Data Data 

Client->Server Start-Start 
Transaction Response Time 

Metric Specification 

Metric Applicability Units Description 

N Applicable Client->Svr 
Transaction 
Requests 

Count of the # Client->Server Transaction 
Requests measured for Application requests 
from the Client(s) to the Server 

1 Applicable uSeconds Sum total of the Start-to-Start Delta Times in 
these Application Response Times 

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of 
these Application Response Times 

Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of 
these Application Response Times 

CSApplicationResponseTimeEndToStart 

Definition 

This metric contains information about the Application-level response time 

20 	measured for application transactions for a given application and either a specific Client- 

Server Pair or a specific Server and all of its clients. Specifically, 

CSApplicationResponseTimeEndToStart measures the response time between end of an 

application transaction from the Client to the Server and the start of their subsequent 
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transaction response from the Server to the Client. 

A Client->Server transaction starts with the 1st  Transport Protocol Data 

Packet/Unit (TPDU) of a transaction request from the Client to the Server and is 

demarcated (or terminated) by 1st  subsequent data packet of the response to the 

5 	transaction request The total time between the end of the Client->Server transaction 

request and the start of the actual transaction response from the Server->Client is 

measured with this metric 

This metric is considered a "best-effort" measurement. Systems implementing 

this metric should make a "best-effort" to demarcate the start and end of requests and 

io 	responses with the specific application's definition of a logical transaction. The lowest 

level of support for this metric would make this metric the equivalent of 

CSExchangeResponseTimeEndToStart. 

15 
Client -> Server Transaction Request 

 

Server -> Client Misc. Control Datas 

        

        

        

Data Data 

  

Data Data Data Data 
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Client -> Server Transaction Request Server -> Client Misc. Control Dates 

(..-----A---.\  

Next Client -> Server 
Transaction Request 

   

    

5 

Data Data Data Data Data Data Data 

This metric is considered a "best-effort" measurement. Systems implementing 

this metric should make a "best-effort" to demarcate the start and end of requests and 

10 	responses with the specific application's definition of a logical transaction. The lowest 

level of support for this metric would make this metric the equivalent of 

CSExchangeResponseTimeStartToEnd. 

Metric Specification 

Metric Applicability Units Description 

N Applicable Client-> 
Server 
Transactions 

Count of the # Client<->Server 
request/response pairs measured for 
transactions from the Client(s) to the Server 

I Applicable uSeconds Sum total of the Start-to-End Delta Times in 
these Application Response Times 

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of 
these Application Response Times 

Minimum Applicable uSeconds The minimum Start-to-End Delta Time of 
these Application Response Times 

15 
SCTransactionResponseTimeStartToStart 

Definition 

This metric contains information about the Application-level response time 

measured for application transactions for a given application and either a specific Client- 

20 	Server Pair or a specific Server and all of its clients. Specifically, 

SCTransactionResponseTimeStartToStart measures the response time between start of 

an application transaction from the Server to the Client and the start of their subsequent 

transaction response from the Client to the Server. 
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A Server->Client transaction starts with the 1st  Transport Protocol Data 

Packet/Unit (TPDU) of a transaction request from the Server to the Client and is 

demarcated (or terminated) by 1st  subsequent data packet of the response to the 

transaction request. The total time between the start of the Server->Client transaction 

5 	request and the start of the actual transaction response from the Client->Server is 

measured with this metric. 

This metric is considered a "best-effort" measurement. Systems implementing 

this metric should make a "best-effort" to demarcate the start and end of requests and 

responses with the specific application's definition of a logical transaction. The lowest 

io 	level of support for this metric would make this metric the equivalent of 

SCExchangeResponseTimeStartToStart. 

15 

Client -> Server Transaction Response 
Server -> Client Misc. Control Dates 

Server -> Client Transaction Request Server -> Client Misc. Control Dates 

Data Data 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Svr->Client 
Transaction 
Requests 

Count of the # Server->Client Transaction 
Requests measured for Application requests 
from the Server to the Client(s) 

E Applicable uSeconds Sum total of the Start-to-Start Delta Times in 
these Application Response Times 

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of 
these Application Response Times 

Minimum Applicable uSeconds The minimum Start-to-Start Delta Time of 
these Application Response Times 

SCApplicationResponseTimeEndToStart 

5 	Definition 

This metric contains information about the Application-level response time 

measured for application transactions for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically, 

SCApplicationResponseTimeEndToStart measures the response time between end of an 

to 	application transaction from the Server to the Client and the start of their subsequent 

transaction response from the Client to the Server. 

A Server->Client transaction starts with the 1st  Transport Protocol Data 

Packet/Unit (TPDU) of a transaction request from the Server to the Client and is 

demarcated (or terminated) by 1st  subsequent data packet of the response to the 

15 	transaction request The total time between the end of the Server->Client transaction 

request and the start of the actual transaction response from the Client->Server is 

measured with this metric 

This metric is considered a "best-effort" measurement. Systems implementing 

this metric should make a "best-effort" to demarcate the start and end of requests and 

20 	responses with the specific application's definition of a logical transaction. The lowest 

level of support for this metric would make this metric the equivalent of 

SCExchangeResponseTimeEndToStart. 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Svr->Client 
Transaction 
Requests 

Count of the # Server->Client Transaction 
Requests measured for Application requests 
from the Server to the Client(s) 

I Applicable uSeconds Sum total of the End-to-Start Delta Times in 
these Application Response Times 

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of 
these Application Response Times 

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of 
these Application Response Times 

SCApplicationResponseTimeStartToEnd 

Definition 

This metric contains information about the Application-level response time 

20 	measured for application transactions for a given application and either a specific Client- 

Server Pair or a specific Server and all of its clients. Specifically, 

SCTransactionResponseTimeStartToEnd measures the response time between Start of 

an application transaction from the Server to the Client and the End of their subsequent 

transaction response from the Client to the Server. 

kr) 
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A Server->Client transaction starts with the 1St  Transport Protocol Data 

Packet/Unit (TPDU) a transaction request from the Server to the Client and is 

demarcated (or terminated) by 1st  subsequent data packet of the response to the 

transaction request. The end of the Transaction Response in the other direction (e.g. from 

5 	the Client to the Server) is demarcated by the last data of the transaction response prior 

to the 1st  data of the next Server to Client Transaction Request. The total time between 

the start of the Server->Client transaction request and the end of the Client->Server 

transaction response is measured with this metric. 

This metric is considered a "best-effort" measurement. Systems implementing 

to 	this metric should make a "best-effort" to demarcate the start and end of requests and 

responses with the specific application's definition of a logical transaction. The lowest 

level of support for this metric would make this metric the equivalent of 

SCExchangeResponseTimeStartToEnd. 

15 
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Metric Applicability Units Description 

N Applicable Server-> 
Client 
Transactions 

Count of the # Server<->Client 
requestiresponse pairs measured for 
transactions from the Server to the Client(s) 

E Applicable uSeconds Sum total of the Start-to-End Delta Times in 
these Application Response Times 

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of 
these Application Response Times 

Minimum Applicable uSeconds The minimum Start-to-End Delta Time of 
these Application Response Times 

Connection Metrics 

ConnectionEstablishment 

5 	Definition 

This metric contains information about the transport-level connection 

establishment for a given application and either a specific Client-Server Pair or a specific 

Server and all of its clients. Specifically, ConnectionsEstablishment measures number of 

connections established the Client(s) to the Server. The information contain, in essence, 

to 	includes: 

• # Transport Connections Successfully established 

• Set-up Times of the established connections 

• Max. # of Simultaneous established connections. 

• # Failed Connection establishment attempts (due to either timeout or 

15 	 rejection) 

Note that the "# of CURRENT Established Transport Connections" may be 

derived from this metric along with the ConnectionGracefulTermination and 

ConnectionTimeoutTermination metrics, as follows: 

# current connections :== 	"# successfully established" 

20 	 - "# terminated gracefully" 

- "# terminated by time-out" 

Met 
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The set-up time of a connection is defined to be the delta time between the first 

transport-level, Connection Establishment Request (i.e., SYN, CR-TPDU, etc.) and the 

first Data Packet exchanged on the connection. 

Metric Specification 
5 

Metric Applicability Units Description 

N Applicable Connections Count of the # Connections Established 
from the Client(s) to the Server 

I Applicable uSeconds Sum total of the Connection Set-up Times in 
these Established connections 

Maximum Applicable Connections Count of the MAXIMUM simultaneous # 
Connections Established from the Client(s) 
to the Server 

Minimum Not Applicable Connections Count of the Failed simultaneous # 
Connections Established from the Client(s) 
to the Server 

ConnectionGracefulTermination 

Definition 

This metric contains information about the transport-level connections terminated 

to 	gracefully for a given application and either a specific Client-Server Pair or a specific 

Server and all of its clients. Specifically, ConnectionsGracefulTennination measures 

gracefully terminated connections both in volume and summary connection duration. 

The information contain, in essence, includes: 

• # Gracefully terminated Transport Connections 

15 	• Durations (lifetimes) of gracefully terminated connections. 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Connections Count of the # Connections Gracefully 
Terminated between Client(s) to the Server 

I Applicable mSeconds Sum total of the Connection Durations 
(Lifetimes) of these terminated connections 

Maximum Not Applicable 

Minimum Not Applicable 

ConnectionTimeoutTermination 

5 	Definition 

This metric contains information about the transport-level connections terminated 

non-gracefully (e.g. Timed-Out) for a given application and either a specific Client-

Server Pair or a specific Server and all of its clients. Specifically, 

ConnectionsTimeoutTermination measures previously established and timed-out 

to 	connections both in volume and summary connection duration. The information contain, 

in essence, includes: 

• # Timed-out Transport Connections 

• Durations (lifetimes) of timed-out terminated connections. 

The duration factor of this metric is considered a "best-effort" measurement. 

15 	Independent network monitoring devices cannot really know when network entities 

actually detect connection timeout conditions and hence may need to extrapolate or 

estimate when connection timeouts actually occur. 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Connections Count of the # Connections Timed-out 
between Client(s) to the Server 

I Applicable mSeconds Sum total of the Connection Durations 
(Lifetimes) of these terminated connections 

Maximum Not Applicable 

Minimum Not Applicable 

Connection Sequence Metrics 

5 CSConnectionRetransmissions 

Definition 

This metric contains information about the transport-level connection health for a 

given application and either a specific Client-Server Pair or a specific Server and all of 

its clients. Specifically, CSConnectionRetransmissions measures number of actual 

to 	events within established connection lifetimes in which Transport, data-bearing PDUs 

(packets) from the Client->Server were retransmitted. 

Note that retransmission events as seen by the Network Monitoring device 

indicate the "duplicate" presence of a TPDU as observed on the network. 

Metric Specification 
15 

Metric Applicability Units Description 

N Applicable Events Count of the # Data TPDU retransmissions 
from the Client(s) to the Server 

I Not Applicable 

Maximum Not Applicable 

Minimum Not Applicable 

SCConnectionRetransmissions 

Definition 

This metric contains information about the transport-level connection health for a 

20 	given application and either a specific Client-Server Pair or a specific Server and all of 
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its clients. Specifically, SCConnectionRetransmissions measures number of actual 

events within established connection lifetimes in which Transport, data-bearing PDUs 

(packets) from the Server->Client were retransmitted. 

Note that retransmission events as seen by the Network Monitoring device 

5 	indicate the "duplicate" presence of a TPDU as observed on the network. 

Metric Specification 

Metric Applicability Units Description 

N Applicable Events Count of the # Data TPDU retransmissions 
from the Server to the Client(s) 

I Not Applicable 

Maximum Not Applicable 

Minimum Not Applicable 

CSConnectionOutOfOrders 

10 Definition 

This metric contains information about the transport-level connection health for a 

given application and either a specific Client-Server Pair or a specific Server and all of 

its clients. Specifically, CSConnectionOutOfOrders measures number of actual events 

within established connection lifetimes in which Transport, data-bearing PDUs (packets) 

15 	from the Client->Server were detected as being out of sequential order. 

Note that retransmissions (or duplicates) are considered to be different than out-

of-order events and are tracked separately in the CSConnectionRetransmissions metric. 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Events Count of the # Out-of-Order TPDU events 
from the Client(s) to the Server 

1, Not Applicable 

Maximum Not Applicable 

Minimum Not Applicable 

SCConnectionOutOfOrders 

5 	Definition 

This metric contains information about the transport-level connection health for a 

given application and either a specific Client-Server Pair or a specific Server and all of 

its clients. Specifically, SCConnectionOutOfOrders measures number of actual events 

within established connection lifetimes in which Transport, data-bearing PDUs (packets) 

10 	from the Server->Client were detected as being out of sequential order. 

Note that retransmissions (or duplicates) are considered to be different than out- 

of-order events and are tracked separately in the SCConnectionRetransmissions metric. 

Metric Specification 

Metric Applicability Units Description 

N Applicable Events Count of the # Out-of-Order TPDU events 
from the Server to the Client(s) 

E Not Applicable 

Maximum Not Applicable 

Minimum Not Applicable 

15 
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Connection Window Metrics 

CSConnectionWindow 

Definition 

This metric contains information about the transport-level connection windows  

5 	for a given application and either a specific Client-Server Pair or a specific Server and all 

of its clients. Specifically, CS Connection Window measures number of Transport-level 

Acknowledges within established connection lifetimes and their relative sizes from the 

Client->Server. 

Note that the number of DATA TPDUs (packets) may be estimated by 

10 	differencing the Acknowledge count of this metric and the overall traffic from the Client 

to the Server (see CSTraffic above). A slight error in this calculation may occur due to 

Connection Establishment and Termination TPDUS, but it should not be significant. 

Metric Specification 

Metric Applicability Units Description 

N Applicable Events Count of the # ACK TPDU retransmissions 
from the Client(s) to the Server 

I Not Applicable Increments Sum total of the Window Sizes of the 
Acknowledges 

Maximum Not Applicable Increments The maximum Window Size of these 
Acknowledges 

Minimum Not Applicable Increments The minimum Window Size of these 
Acknowledges 

15 

SC Connection Window 

Definition 

This metric contains information about the transport-level connection windows  

for a given application and either a specific Client-Server Pair or a specific Server and all 

20 	of its clients. Specifically, SSConnectionWindow measures number of Transport-level 

Acknowledges within established connection lifetimes and their relative sizes from the 

Server->Client. 
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Note that the number of DATA TPDUs (packets) may be estimated by 

differencing the Acknowledge count of this metric and the overall traffic from the Client 

to the Server (see SCTraffic above).. A slight error in this calculation may occur due to 

Connection Establishment and Termination TPDUS, but it should not be significant. 

5 	Metric Specification 

Metric Applicability Units Description 

N Applicable Events Count of the # ACK TPDU retransmissions 
from the Server to the Client(s) 

E Applicable Increments Sum total of the Window Sizes of the 
Acknowledges 

Maximum Applicable Increments The maximum Window Size of these 
Acknowledges 

Minimum Applicable Increments The minimum Window Size of these 
Acknowledges 

CSConnectionFrozenWindows 

Definition 

10 	 This metric contains information about the transport-level connection windows  

for a given application and either a specific Client-Server Pair or a specific Server and all 

of its clients. Specifically, CS Connection Window measures number of Transport-level 

Acknowledges from Client->Server within established connection lifetimes which 

validly acknowledge data, but either 

15 	 • failed to increase the upper window edge, 

• reduced the upper window edge 
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Metric Specification 

Metric Applicability Units Description 

N Applicable Events Count of the # ACK TPDU with 
frozen/reduced windows from the Client(s) 
to the Server 

I Not Applicable 

Maximum Not Applicable 

Minimum Not Applicable 

SCConnectionFrozenWindows 

	

5 	Definition 

This metric contains information about the transport-level connection windows  

for a given application and either a specific Client-Server Pair or a specific Server and all 

of its clients. Specifically, SCConnectionWindow measures number of Transport-level 

Acknowledges from Server->Client within established connection lifetimes which 

	

10 	validly acknowledge data, but either 

• failed to increase the upper window edge, 

• reduced the upper window edge 

Metric Specification 

Metric Applicability Units Description 

N Applicable Events Count of the # ACK TPDU with 
frozen/reduced windows from the Client(s) 
to the Server 

E Not Applicable 

Maximum Not Applicable 

Minimum Not Applicable 

15 

CSConnectionClosed Windows 

Definition 

This metric contains information about the transport-level connection windows 
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for a given application and either a specific Client-Server Pair or a specific Server and all 

of its clients. Specifically, CS Connection Window measures number of Transport-level 

Acknowledges from Client->Server within established connection lifetimes which fully  

closed the acknowledge/sequence window. 

5 	Metric Specification 

Metric Applicability Units Description 

N Applicable Events Count of the # ACK TPDU with Closed 
windows from the Client(s) to the Server 

E Not Applicable 

Maximum Not Applicable 

Minimum Not Applicable 

SCConnectionClosedWindows 

Definition 

to 	This metric contains information about the transport-level connection windows  

for a given application and either a specific Client-Server Pair or a specific Server and all 

of its clients. Specifically, SCConnectionWindow measures number of Transport-level 

Acknowledges from Server->Client within established connection lifetimes which fully  

closed the acknowledge/sequence window. 

15 	Metric Specification 

Metric Applicability Units Description 

N Applicable Events Count of the # ACK TPDU with Closed 
windows from the Client(s) to the Server 

E Not Applicable 

Maximum Not Applicable 

Minimum Not Applicable 

Some common definitions 

The definitions below are of terms that would be well-known to those of ordinary 

20 	skill in the art, and are only presented here for completeness so that people less 
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acquainted with the art also may be able to understand the description. 

The term RMON derives from a standard that was first developed in 1992 by the 

Internet Engineering Task Force (IETF) as an extension to the Simple Network 

Management Protocol (SNMP) Management Information Base (MI6). These MD3 

5 	extensions are referred to as the Remote MONitoring M1B; which is commonly 

abbreviated to RMON. The IETF defines 10 RMON Groups for the gathering of 

information on Ethernet and Token Ring networks, and in 1997 a second RFC was 

adopted that allowed the gathering of information at all 7 layers. There is no IETF 

definition for RMON on FDDI networks or Wide Area Networks, such as Frame Relay, 

io 	but the probes follow the same structures and conventions as the original RMON 

definitions, providing this capability over many network types. 

Tunneling is understood to mean transmitting data structured in one protocol 

format within the format of another protocol. Tunneling allows other types of 

transmission streams to be carried within the prevailing protocol. For example, IP 

15 	tunneling is carrying a foreign protocol within a TCP/IP packet. For example, IPX can be 

encapsulated and transmitted via TCP/IP. 2TP (Layer 2 Tunneling Protocol) A protocol 

from the Internet Engineering Task Force (IETF) for creating virtual private networks 

(VPNs) over the Internet. It supports non-IP protocols such as AppleTalk and IPX as 

well as the IPSec security protocol. It is a combination of the Point-to-Point Tunneling 

20 	Protocol (Microsoft Corporation, Redmond, Washington) and Layer 2 Forwarding (L2F) 

technology (Cisco Systems, San Jose, California). 

DCOM (Distributed Component Object Model), formerly called Network OLE 

(Microsoft Corporation, Redmond, Washington), is Microsoft's technology for 

distributed objects. DCOM is based on COM, Microsoft's component software 

25 	architecture, which defines the object interfaces. DCOM defines the remote procedure 

call which allows those objects to be run remotely over the network. DCOM began 

shipping with Windows NT 4.0 and is Microsoft's counterpart to CORBA (Common 

Object Request Broker Architecture), a standard from the Object Management Group 

(OMG) for communicating between distributed objects (objects are self-contained 

30 	software modules). CORBA provides a way to execute programs (objects) written in 

different programming languages running on different platforms no matter where they 
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reside in the network. 

Sun-RPC (Sun's Remote Procedure Call) is a programming interface from Sun 

Microsystems (Palo Alto, California) that allows one program to use the services of 

another program in a remote machine. The calling programming sends a message and 

	

5 	data to the remote program, which is executed, and results are passed back to the calling 

program. This type of interface is designed to allow programs to communicate with each 

another while freeing the programmer from the networking details. Microsoft's DCOM 

was modeled after the RPC in DCE. CORBA also provides this capability. 

CAM is the same as associative storage. associative storage This is storage that is 

	

to 	accessed by comparing the content of the data stored in it rather than by addressing 

predetermined locations. 

UDP (User Datagram Protocol) A protocol within the TCP/IP protocol suite that 

is used in place of TCP when a reliable delivery is not required. For example, UDP is 

used for realtime audio and video traffic where lost packets are simply ignored, because 

	

15 	there is no time to retransmit. If UDP is used and a reliable delivery is required, packet 

sequence checking and error notification must be written into the applications. 

RTP (Realtime Transport Protocol) An IP protocol that supports realtime 

transmission of voice and video. An RTP packet rides on top of UDP and includes 

timestamping and synchronization information in its header for proper reassembly at the 

	

20 	receiving end. Realtime Control Protocol (RTCP) is a companion protocol that is used to 

maintain QoS. RTP nodes analyzes network conditions and periodically send each other 

RTCP packets that report on network congestion. 

RTP Packet. In a UDP/IP stack, the RTP header is created first and then the 

packet is moved down the stack to UDP and IP. This shows the RTP packet within an 

	

25 	Ethernet frame ready for transmission over the network. 

Port number. In a TCP/IP-based network such as the Internet, it is a number 

assigned to an application program running in the computer. The number is used to link 

the incoming data to the correct service. Well-known ports are standard port numbers 

used by everyone; for example, port 80 is used for HTTP traffic (Web traffic). 
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Binding. In a communications network, to establish a software connection 

between one protocol and another. Data flows from the application to the transport 

protocol to the network protocol to the data link protocol and then onto the network. 

Binding the protocols creates the internal pathway. 

5 	 Frame relay. A high-speed packet switching protocol used in wide area 

networks (WANs). It has become popular for LAN to LAN connections across remote 

distances, and services are provided by all the major carriers. Frame relay is faster than 

traditional X.25 networks, because it was designed for today's reliable circuits and 

performs less rigorous error detection. Frame relay provides for a granular service up to 

io 	DS3 rates of 44.736 Mbps and is suited for data and image transfer. Because of its 

variable-length packet architecture, it is not the most efficient technology for realtime 

voice and video. 

A connection oriented communications architecture is one that requires an 

establishment of the session between two nodes before transmission can begin. When the 

15 	communications is completed, the session is ended (torn down). All circuit-switched 

networks are connection oriented because they require a dedicated channel for the 

duration of the session. In addition, packet-switched X.25, frame relay and ATM 

networks are also considered connection oriented, because they require receiving nodes 

to acknowledge their ability to support the transmission before data can be sent. 

20 	 A connectionless communications architecture, on the other hand, is one that 

does not require the establishment of a session between two nodes before transmission 

can begin. The transmission of frames within a local area network (LAN), such as 

Ethernet, Token Ring and FDDI, is connectionless. The terms connection-oriented and 

connectionless oriented also apply to the different protocol levels. For example, common 

25 	TCP/IP is composed of TCP (Transmission Control Protocol), a connection-oriented 

protocol that passes its data to the next lower layer, IP (Internet Protocol), a 

connectionless protocol. TCP sets up a connection at both ends and guarantees reliable 

delivery of the full message sent. TCP tests for errors and requests retransmission if 

necessary, because IP does not. UDP packets within a TCP/IP network are also 

30 connectionless. 
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Some PDL Files. 

The following pages include some PDL files as examples. Included herein are the 

PDL contents of the following files. A reference to PDL is also included herein. Note 

that any contents on any line following two hyphen ( ) are ignored by the compiler. 

5 	That is, they are comments. 

common.pd1; 

flows.pd1; 

virtual.pd1; 

ethernet.pd1; 

10 	IEEE8032.pd1 and IEEE8033.pd1 (ethertype files); 

IP.pd1; 

TCP.pd1 and UDP.pd1; 

RPC.pd1; 

NFS.pd1; and 

15 	 1-ITTP.pdl. 
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Common.pd1 - Common protocol definitions 

5 
	

Description: 
This file contains some field definitions for commonly used fields 
in various network protocols. 

Copyright: 
10 	 Copyright (c) 1996-1999 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 	 $Id: Common.pdl,v 1.7 1999/04/13 15:47:56 skip Exp $ 

Int4 FIELD 
SYNTAX INT (4) 

20 
Int8 FIELD 

SYNTAX INT(8) 

Int16 FIELD 
25 	 SYNTAX INT(16) 

Int24 FIELD 
SYNTAX INT(24) 

30 Int32 FIELD 
SYNTAX INT(32) 

Int64 FIELD 
SYNTAX INT (64) 

35 
UInt8 FIELD 

SYNTAX UNSIGNED INT(8) 

UInt16 FIELD 
40 	 SYNTAX UNSIGNED INT (16 ) 

UInt24 FIELD 
SYNTAX UNSIGNED INT(24) 

45 	UInt32 FIELD 
SYNTAX UNSIGNED INT(32) 

UInt64 FIELD 
SYNTAX UNSIGNED INT (64) 

50 
SInt16 FIELD 

SYNTAX INT(16) 
FLAGS SWAPPED 

55 SUInt16 FIELD 
SYNTAX UNSIGNED INT(16) 
FLAGS SWAPPED 

SInt32 FIELD 
60 	 SYNTAX INT(32) 

FLAGS SWAPPED 

ByteStrl 	FIELD 
SYNTAX BYTESTRING(1) 

65 
ByteStr2 	FIELD 

SYNTAX BYTESTRING(2) 

ByteStr4 	FIELD 
70 	 SYNTAX BYTESTRING(4) 
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Padl FIELD 
SYNTAX BYTESTRING(1) 
FLAGS NOSHOW 

5 Pad2 FIELD 
SYNTAX BYTESTRING(2) 
FLAGS NOSHOW 

Pad3 FIELD 

10 SYNTAX BYTESTRING(3) 
FLAGS NOSHOW 

Pad4 FIELD 
SYNTAX BYTESTRING(4) 

15 FLAGS NOSHOW 

Pad5 FIELD 
SYNTAX BYTESTRING (5) 
FLAGS NOSHOW 

20 
macAddress 	FIELD 

SYNTAX 	BYTESTRING(6) 
DISPLAY-HINT "lx:" 
LOOKUP 	MACADDRESS 

25 	 DESCRIPTION 
"MAC layer physical address" 

ipAddress 	FIELD 
SYNTAX 	BYTESTRING(4) 

30 	 DISPLAY-HINT "ld." 
LOOKUP 	HOSTNAME 
DESCRIPTION 

"IP address" 

35 ipv6Address FIELD 
SYNTAX 	BYTESTRING(16) 
DISPLAY-HINT "ld." 
DESCRIPTION 

"IPV6 address" 
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Flows.pd1 - General FLOW definitions 

5 	Description: 
This file contains general flow definitions. 

Copyright: 
Copyright (c) 1998-1999 Apptitude, Inc. 

10 	 (formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
$Id: Flows.pdl,v 1.12 1999/04/13 15:47:57 skip Exp $ 

15 

chaosnet FLOW 

20 	spanningTree FLOW 

sna 	FLOW 

oracleTNS FLOW 
25 	 PAYLOAD { INCLUDE-HEADER, LENGTH=256 } 

ciscoOUI FLOW 

30 	-- IP Protocols 

igmp 	FLOW 

35 GGP FLOW 

ST 	FLOW 

UCL 	FLOW 
40 

egp 	FLOW 

igp 	FLOW 

45 EBN-RCC-MON FLOW 

NVP2 FLOW 

PUP 	FLOW 
50 

ARGUS FLOW 

EMCON FLOW 

55 XNET FLOW 

MUX FLOW 

DCN-MEAS FLOW 
60 

HMP 	FLOW 

PRM FLOW 

65 TRUNK1 FLOW 

TRUNK2 FLOW 

LEAF1 FLOW 
70 

LEAF2 FLOW 
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RDP 	FLOW 

IRTP FLOW 
5 

ISO-TP4 	FLOW 

NETBLT FLOW 

10 MFE-NSP 	FLOW 

MERIT- INP 	FLOW 

SEP 	FLOW 
15 

pc 3 	FLOW 

IDPR FLOW 

20 XTP FLOW 

DDP 	FLOW 

IDPR-CMTP 	FLOW 

TPPlus FLOW 

IL 	FLOW 

30 SIP FLOW 

SDRP FLOW 

SIP-SR FLOW 

S I P-FRAG FLOW 

IDRP FLOW 

40 RSVP FLOW 

MHRP FLOW 

BNA FLOW 

SIPP-ESP FLOW 

s IPP-AH 	FLOW 

50 INLSP FLOW 

SWIPE FLOW 

NHRP FLOW 

CFTP FLOW 

SAT-EXPAK 	FLOW 

60 KRYPTOLAN FLOW 

RVD 	FLOW 

I PPC 	FLOW 
65 

SAT-MON 	FLOW 

VISA FLOW 

70 	I PCV 	FLOW 

25 

35 

45 

55 
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CPNX FLOW 

CPHB FLOW 

5 WSN FLOW 

PVP 	FLOW 

BR-SAT-MON FLOW 
10 

SUN-ND FLOW 

WB-MON FLOW 

15 	WB-EXPAK FLOW 

ISO-IP FLOW 

VMTP FLOW 
20 

SECURE-VMTP FLOW 

TTP 	FLOW 

25 NSFNET-IGP FLOW 

DGP 	FLOW 

TCF 	FLOW 
30 

IGRP FLOW 

OSPFIGP 	FLOW 

35 Sprite-RPC FLOW 

LARP FLOW 

MTP 	FLOW 
40 

AX25 FLOW 

IPIP FLOW 

45 MICP FLOW 

SCC-SP FLOW 

ETHERIP 	FLOW 
50 

encap FLOW 

GMTP FLOW 

55 

UDP Protocols 

compressnet FLOW 
60 

rje FLOW 

echo FLOW 

65 discard FLOW 

systat FLOW 

daytime 	FLOW 
70 

clotd FLOW 
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msp 	FLOW 

chargen 	FLOW 
5 

biff FLOW 

who FLOW 

10 	sys log FLOW 

loadav FLOW 

notify FLOW 
15 

acmaint_dbd FLOW 

acmainttransd 

20 	puparp FLOW 

applix FLOW 

ock FLOW 
25 

TCP Protocols 

30 	tcpmux FLOW 

telnet FLOW 
CONNECTION { INHERITED } 

35 privMail FLOW 

nsw-fe FLOW 

msg-icp 	FLOW 
40 

msg-auth 	FLOW 

dsp FLOW 

45 privPrint FLOW 

50 

time 	FLOW 

rap 	FLOW 

rlp 	FLOW 

graphics FLOW 

55 nameserver FLOW 

nicname FLOW 

mpm-flags FLOW 
60 

mpm 	FLOW 

'Rpm- snd FLOW 

65 ni - f tp FLOW 

auditd. FLOW 

finger FLOW 
70 

re-mail-ck FLOW 

186 

FLOW 
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la-maint 	FLOW 

xns-time 	FLOW 
5 

xns-ch FLOW 

isi-gl FLOW 

10 xns-auth FLOW 

privTerm 	FLOW 

xns-mail 	FLOW 
15 

privFile 	FLOW 

ni-mail 	FLOW 

20 acas 	FLOW 

covia 	FLOW 

tacacs-ds FLOW 
25 

sqlnet FLOW 

gopher FLOW 

30 netrjs-1 FLOW 

netrjs-2 FLOW 

netrjs-3 FLOW 
35 

netrjs-4 FLOW 

privDial FLOW 

40 deos 	FLOW 

privRJE 

vettcp FLOW 

FLOW 

45 
hosts2-ns 

xfer 	FLOW 

FLOW 

50 ctf 	FLOW 

mit-ml-dev FLOW 

mfcobol 	FLOW 
55 

kerberos 	FLOW 

su-mit-tg 	FLOW 

60 dnsix FLOW 

mit-dov 	FLOW 

npp FLOW 
65 

dcp FLOW 

objcall 	FLOW 

70 	supdup FLOW 
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swift-rvf 	FLOW 

5 tacnews FLOW 

metagram 	FLOW 

newacct 	FLOW 

10 
hostname 	FLOW 

	

iso-tsap 	FLOW 

15 gppitnp FLOW 

	

csnet-ns 	FLOW 

threeCom-tsmux 
	

FLOW 

20 
rtelnet 	FLOW 

snagas FLOW 

25 	mcidas FLOW 

auth FLOW 

audionews 	FLOW 

30 
sftp FLOW 

ansanotify FLOW 

35 uucp-path FLOW 

	

sqlsery 	FLOW 

	

cfdptkt 	FLOW 

40 
erpc FLOW 

	

smakynet 	FLOW 

45 ntp FLOW 

ansatrader FLOW 

locus-map 	FLOW 

50 

	

unitary 	FLOW 

	

locus-con 	FLOW 

55 gss-xlicen FLOW 

pwdgen FLOW 

	

cisco-fna 	FLOW 
60 

	

cisco-tna 	FLOW 

	

cisco-sys 	FLOW 

65 statsry FLOW 

ingres-net FLOW 

	

loc-sry 	FLOW 

70 

	

profile 	FLOW 

188 
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emfis-data FLOW 

emfis-cntl 	FLOW 

bl-idm FLOW 

imap2 FLOW 

10 news FLOW 

uaac FLOW 

iso-tp0 	FLOW 

15 
iso-ip FLOW 

cronus FLOW 

20 aed-512 FLOW 

sql-net 	FLOW 

hems FLOW 

bftp FLOW 

sgmp FLOW 

30 netsc-prod FLOW 

netsc-dev 	FLOW 

sqlsry FLOW 
35 

knet-cmp 	FLOW 

pcmail-sry FLOW 

40 nss-routing FLOW 

sgmp-traps FLOW 

cmip-man 	FLOW 

cmip-agent FLOW 

xns-courier FLOW 

50 s-net FLOW 

namp FLOW 

rsvd FLOW 

send FLOW 

print-sry 	FLOW 

60 multiplex FLOW 

c1-1 FLOW 

xyplex-mux FLOW 
65 

mailq FLOW 

vmnet FLOW 

70 genrad-mux FLOW 

189 
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45 

55 
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60 

70 

xdmcp FLOW 

nextstep 	FLOW 

5 bgp FLOW 

ris FLOW 

unify FLOW 
10 

audit FLOW 

ocbinder FLOW 

15 ocserver FLOW 

remote-kis 

kis 	FLOW 

FLOW 

20 
aci 	FLOW 

mumps FLOW 

25 qft 	FLOW 

gacp 	FLOW 

prospero FLOW 
30 

osu-nms FLOW 

srmp FLOW 

35 irc FLOW 

dn6-nlm-aud FLOW 

dn6-smm-red FLOW 
40 

dls FLOW 

dls-mon 	FLOW 

45 smux FLOW 

src FLOW 

at-rtmp 	FLOW 

at-nbp FLOW 

at-3 FLOW 

55 at-echo FLOW 

at-5 FLOW 

at-zis FLOW 

at-7 FLOW 

at-8 FLOW 

65 tam FLOW 

z39-50 FLOW 

anet FLOW 

vmpwscs 

190 

FLOW 
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softpc FLOW 

atls FLOW 
5 

dbase FLOW 

mpp FLOW 

10 uarps FLOW 

imap3 FLOW 

15 
fln-spx 

rsh-spx 

cdc 	FLOW 

FLOW 

FLOW 

20 sur-meas 

link 	FLOW 

FLOW 

dsp3270 FLOW 
25 

pdap 	FLOW 

pawsery FLOW 

30 zsery FLOW 

fatsery FLOW 

csi-sgwp FLOW 
35 

clearcase FLOW 

ulistsery FLOW 

40 legent-1 FLOW 

legent-2 

hassle FLOW 

FLOW 

45 
nip 	FLOW 

tnETOS FLOW 

50 dsETOS FLOW 

is99c 	FLOW 

is99s 	FLOW 
55 

hp-collector FLOW 

hp-managed-node 	FLOW 

60 hp-alarm-mgr 

arns 	FLOW 

FLOW 

ibm-app FLOW 
65 

asa 	FLOW 

aurp 	FLOW 

70 unidata-ldm FLOW 

191 
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ldap FLOW 

uis 	FLOW 

5 synotics-relay 	FLOW 

synotics-broker 	FLOW 

dis 	FLOW 
10 

embl-ndt 

netcp 	FLOW 

FLOW 

15 netware-ip 

mptn 	FLOW 

FLOW 

kryptolan FLOW 
20 

work-sol 

ups 	FLOW 

FLOW 

25 genie 	FLOW 

decap 	FLOW 

nced 	FLOW 
30 

ncld 	FLOW 

imsp 	FLOW 

35 timbuktu 

prm-sm FLOW 

prm-nm FLOW 

FLOW 

40 
decladebug 

rmt 	FLOW 

FLOW 

45 synoptics-trap FLOW 

smsp FLOW 

infoseek 	FLOW 
50 

bnet FLOW 

silverplatter FLOW 

55 onmux FLOW 

hyper-g 	FLOW 

ariell FLOW 
60 

smpte FLOW 

ariel2 FLOW 

65 	ariel3 FLOW 

opc-job-start FLOW 

opc-job-trackFLOW 
70 

icad-el 	FLOW 

192 
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smartsdp 	FLOW 

svrloc FLOW 
5 

ocs_cmu 	FLOW 

ocs_amu 	FLOW 

10 utmpsd FLOW 

utmpcd FLOW 

iasd 	FLOW 
15 

nnsp 	FLOW 

mobileip-agent FLOW 

20 mobilip-mn 	FLOW 

dna-cml 	FLOW 

comscm FLOW 
25 

dsfgw FLOW 

dasp 	FLOW 

30 sgcp 	FLOW 

decvms-sysmgt FLOW 

cvc_hostd 	FLOW 
35 

https 	FLOW 

CONNECTION { 
snpp 	FLOW 

INHERITED } 

40 
microsoft-ds FLOW 

%13 ddm-rdb 	FLOW 
9r a 

45 ddm-dfm 	FLOW 

ddm-byte 	FLOW 

as-servermap FLOW 
50 

tserver 	FLOW 

exec 	FLOW 

55 CONNECTION f 
login FLOW 

INHERITED ) 

CONNECTION { 
cmd 	FLOW 

INHERITED 1 

60 
CONNECTION { 

printer 	FLOW 
INHERITED 1 

CONNECTION { INHERITED 1 
65 talk 	FLOW 

CONNECTION { 
ntalk FLOW 

INHERITED ) 

70 CONNECTION { 
utime 	FLOW 

INHERITED 
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efs 	FLOW 

timed FLOW 

tempo 	FLOW 

courier FLOW 

10 conference FLOW 

netnews FLOW 

netwall FLOW 
15 

apertus-ldp 

uucp 	FLOW 

FLOW 

20 uucp-rlogin 

klogin FLOW 

kshell FLOW 

FLOW 

25 
new-rwho 

dsf 	FLOW 

FLOW 

30 remotefs FLOW 

rmonitor FLOW 

monitor FLOW 
35 

chshell 

p9fs 	FLOW 

FLOW 

40 whoami FLOW 

meter FLOW 

ipcserver FLOW 
45 

urm FLOW 

nqs 	FLOW 

50 sift-uft FLOW 

npmp-trap FLOW 

npmp-local FLOW 
55 

npmp-gui 	FLOW 

ginad FLOW 

60 doom FLOW 

mdqs FLOW 

elcsd FLOW 
65 

entrustmanager 	FLOW 

netviewdml FLOW 

70 netviewdm2 FLOW 

194 
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netviewdm3 FLOW 

netgw FLOW 

	

5 	netrcs FLOW 

flexlm FLOW 

fujitsu-dev FLOW 
10 

ris-cm FLOW 

kerberos-adm FLOW 

	

15 	rf i le FLOW 

pump FLOW 

qrh 	FLOW 

rrh FLOW 

tell FLOW 

	

25 	nlogin FLOW 

con FLOW 

ns 	FLOW 
30 

rxe FLOW 

quotad FLOW 

35 cyclesery FLOW 

omsery FLOW 

webs ter 	FLOW 
40 

phonebook FLOW 

vid FLOW 

45 cadlock FLOW 

rtip FLOW 

cyc 1 es erv2 	FLOW 
50 

submit FLOW 

rpasswd. 	FLOW 

	

55 	entomb FLOW 

wpages FLOW 

wpgs FLOW 
60 

concert 	FLOW 

mdbs_daemon FLOW 

	

65 	device FLOW 

xtreelic 	FLOW 

maitrd FLOW 
70 

busboy FLOW 

195 
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garcon FLOW 

puprouter 	FLOW 

socks FLOW 

196 

m 

.., 
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Virtual.pd1 - Virtual Layer definition 

5 
	

Description: 
This file contains the definition for the VirtualBase layer used 
by the embodiment. 

Copyright: 
10 	 Copyright (c) 1998-1999 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 	 $Id: Virtual.pdl,v 1.13 1999/04/13 15:48:03 skip Exp $ 

-- This includes two things: the flow signature (called FLOWKEY) that the 
-- system that is going to use. 

20 
-- note that not all elements are in the HASH. Reason is that these non-HASHED 
-- elements may be varied without the HASH changing, whihc allows the system 
-- to look up multiple buckets with a single HASH. That is, the MeyMatchFlag, 
- StateStatus Flag and MuliPacketlD may be varied. 

25 

FLOWKEY { 
KeyMatchFlags, -- to tell the system which of the in-HASH elements have to 
match for the this particular flow record. 

30 	 -- Flows for which complete signatures may not yet have 
-- been generated may then be stored in the system 

StateStatusFlags, 

35 	Groupldl 
	

IN-HASH, -- user defined 
Groupld2 
	 IN-HASH, -- user defined 

DLCProtocol 	 IN-HASH, 	-- data link protocol - lowest level we 
-- evaluate. It is the type for the 

40 	Ethernet V 2 
NetworkProtocol 	IN-HASH, 	-- IP, etc. 
TunnelProtocol 	IN-HASH, 	-- IP over IPX, etc. 
TunnelTransport 	IN-HASH, 
TransportProtocol 	IN-HASH, 

45 	ApplicationProtocol IN-HASH, 

DLCAddresses(8) 	IN-HASH, 	lowest level address 
NetworkAddresses(16) IN-HASH, 
TunnelAddresses(16) IN-HASH, 

50 	Connectionlds 	IN-HASH, 

MultiPacketld 	 -- used for fragmentaion purposes 
} 

now define all of the children. In this example, only one virtual 
55 	child - Ethernet. 

virtualChildren 	FIELD 
SYNTAX INT(8) { ethernet(1) } 

60 	now define the base for the children. In this case, it is the same as 
for the overall system. There may be multiples. 

VirtualBase PROTOCOL 
65 	::= { VirtualChildren=virtualChildren } 

-- - The following is the header that every packet has to have and 
-- that is placed into the system by the packet acquisition system. 

70 
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VirtualBase FLOW 
HEADER { LENGTH=8 } 
CHILDREN { DESTINATION=VirtualChildren 

5 	-- Ethernet for this example. 

the virtualBAse will be 01 for these packets. 

} -- this will be 
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Ethernet.pd1 - Ethernet frame definition 

5 	Description: 
This file contains the definition for the Ethernet frame. In this 

PDL file, the decision on EtherType vs. IEEE is made. If this is 
EtherType, the selection is made from this file. It would be possible 
to move the EtherType selection to another file, if that would assist 

10 	in the modularity. 

Copyright: 
Copyright (c) 1994-1998 Apptitude, Inc. 
(formerly Technically Elite, Inc.) 

15 	 All rights reserved. 

RCS: 
$Id: Ethernet.pdl,v 1.13 1999/01/26 15:15:57 skip Exp $ 

20 

a 16 bit integer that contains all of the 
interest in the etherType field of an 

INT(16) { xns(0x0600), ip(0x0800), 
chaosnet(0x0804), arp(0x0806), 
vines(Oxbad), 
vinesLoop(Ox0bae), vinesLoop(0x80c4), 
vinesEcho(Oxbaf), vinesEcho(0x80c5), 
netbios(0x3c00), netbios(0x3c01), 

Enumerated type of 
possible values of 

25 	Ethernet V2 packet 

etherType FIELD 
SYNTAX 

30 

35 
netbios(0x3c02), 
netbios(0x3c04), 
netbios(0x3c06), 
netbios(0x3c08), 
netbios(Ox3cOa), 
netbios(0x3c0c), 

netbios(0x3c03), 
netbios(0x3c05), 
netbios(0x3c07), 
netbios(0x3c09), 
netbios(0x3c0b), 
netbios(0x3c0d), 

40 
	

dec(0x6000), mop(0x6001), mop2(0x6002), 
drp(0x6003), lat(0x6004), decDiag(0x6005), 
lavc(0x6007), rarp(0x8035), appleTalk(0x809b), 
sna(0x80d5), aarp(0x80f3), ipx(0x8137), 
snmp(Ox814c), ipv6(0x86dd), loopback(0x9000) 

45 
	

DISPLAY-HINT "lx:" 
LOOKUP 	FILE "EtherType.cf" 
DESCRIPTION 

"Ethernet type field" 

50 	
-- - The unformatted data field in and Ethernet V2 type frame 

etherData 	FIELD 
SYNTAX 	BYTESTRING(46..1500) 

55 	 ENCAP 	etherType 
DISPLAY-HINT "HexDump" 
DESCRIPTION 

"Ethernet data" 

60 	
-- - The layout and structure of an Ethernet V2 type frame with 
-- the address and protocol fields in the correct offset position 

ethernet 	PROTOCOL 
65 	 DESCRIPTION 

"Protocol format for an Ethernet frame" 
REFERENCE 	"RFC 894- 

MacDest=macAddress, MacSrc=macAddress, EtherType=etherType, 
Data=etherData } 

70 
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The elements from this Ethernet frame used to build a flow key 
to classify and track the traffic. Notice that the total length 
of the header for this type of packet is fixed and at 14 bytes or 
octets in length. The special field, LLC-CHECK, is specific to 

	

5 	Ethernet frames for the decoding of the base Ethernet type value. 
If it is NOT LLC, the protocol field in the flow is set to the 
EtherType value decoded from the packet. 

ethernet 	FLOW 

	

10 	 HEADER { LENGTH=14 
DLC-LAYER { 

SOURCE=MacSrc, 
DESTINATION=MacDest, 
TUNNELING, 

	

15 	 PROTOCOL 

CHILDREN { DESTINATION=EtherType, LLC-CHECK=11c } 
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- IEEE8022.pd1 - IEEE 802.2 frame definitions 

5 
	

Description: 
This file contains the definition for the IEEE 802.2 Link Layer 
protocols including the SNAP (Sub-network Access Protocol). 

Copyright: 
10 	 Copyright (c) 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

-- - RCS: 
15 	 $Id: IEEE8022.pdl,v 1.18 1999/01/26 15:15:58 skip Exp $ 

20 	-- IEEE 802.2 LLC 

llcSap FIELD 
SYNTAX 	INT(16) { ipx(OxFFFF), ipx(OxE0E0), isoNet(OxFEFE), 

netbios(OxF0F0), vsnap(OxAAAA), ip(0x0606), 
25 	 vines(OxECBC), xns(0x8080), spanningTree(0x4242), 

sna(0x0c0c), sna(0x0808), sna(0x0404) } 
DISPLAY-HINT "lx:" 
DESCRIPTION 

"Service Access Point" 
30 

11cControl FIELD 
-- This is a special field. When the decoder encounters this field, it 
-- invokes the hard-coded LLC decoder to decode the rest of the packet. 
-- This is necessary because LLC decoding requires the ability to 

35 	 -- handle forward references which the current PDL format does not 
-- support at this time. 
SYNTAX 	UNSIGNED INT(8) 
DESCRIPTION 

"Control field" 
40 

11cPduType FIELD 
SYNTAX BITSTRING(2) { 11cInformation(0), 11cSupervisory(1), 

11cInformation(2), 11cUnnumbererd(3) 

45 11cData FIELD 
SYNTAX 	BYTESTRING(38..1492) 
ENCAP 	11cPduType 
FLAGS 	SAMELAYER 
DISPLAY-HINT "HexDump" 

50 
11c PROTOCOL 

SUMMARIZE 
"$11cPduType == 11cUnnumbered" : 

"LLC ($SAP) $Modifier" 
55 	 "$11cPduType == 11cSupervisory" : 

"LLC ($SAP) $Function N(R)=$NR" 
"$11cPduType == 012" : 

"LLC ($SAP) N(R)=$NR N(S)=$NS" 
"Default" : 

60 	 "LLC ($SAP) $11cPduType" 
DESCRIPTION 

"IEEE 802.2 LLC frame format" 
::= { SAP=llcSap, Control=llcControl, Data=llcData 

65 11c FLOW 
HEADER { LENGTH=3 } 
DLC-LAYER { PROTOCOL } 
CHILDREN { DESTINATION=SAP } 

70 	11cUnnumberedData FIELD 
SYNTAX 	BYTESTRING(0..1500) 
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ENCAP 	11cSap 
DISPLAY-HINT "HexDump" 

11cUnnumberedPROTOCOL 
5 	 SUMMARIZE 

"Default" : 
"LLC ($SAP) $Modifier" 

= { Data=11cUnnuMberedData } 

10 11cSupervisoryData FIELD 
SYNTAX 	BYTESTRING(0..1500) 
DISPLAY-HINT "HexDump" 

11cSupervisory 	PROTOCOL 
15 	 SUMMARIZE 

"Default" : 
"LLC ($SAP) $Function N(R)=$NR" 

= { Data=llcSupervisoryData } 

20 11cInformationData FIELD 
SYNTAX 	BYTESTRING(0..1500) 
ENCAP 	11cSap 
DISPLAY-HINT "HexDump" 

25 11cInformation PROTOCOL 
SUMMARIZE 

"Default" : 
"LLC ($SAP) N(R)=$NR N(S)=$NS" 

{ Data=llclnformationData } 
30 

-- SNAP 

snapOrgCode FIELD 
35 	 SYNTAX 	BYTESTRING(3) { snap('00:00:00"), ciscoOUl("00:00:OC"), 

appleOUI("08:00:07") } 
DESCRIPTION 

"Protocol ID or Organizational Code" 

40 vsnapData FIELD 
SYNTAX 	BYTESTRING(46-1500) 
ENCAP 	snapOrgCode 
FLAGS 	SAMELAYER 
DISPLAY-HINT "HexDump" 

45 	 DESCRIPTION 
"SNAP LLC data" 

vsnap PROTOCOL 
DESCRIPTION 

50 	 "SNAP LLC Frame" 
{ OrgCode=snapOrgCode, Data=vsnapData } 

vsnap 	FLOW 
HEADER { LENGTH=3 } 

55 	 DLC-LAYER ( PROTOCOL } 
CHILDREN { DESTINATION=OrgCode } 

snapType 	FIELD 
SYNTAX INT(16) { xns(0x0600), ip(Ox0800), arp(0x0806), 

60 	 vines(Oxbad), 
mop(Ox6001), mop2(0x6002), drp(Ox6003), 
lat(0x6004), decDiag(0x6005), lavc(0x6007), 
rarp(Ox8035), appleTalk(0x809B), sna(0x80d5), 
aarp(0x80F3), ipx(0x8137), snmp(Ox814c), ipv6(0x86dd) } 

65 	 DISPLAY-HINT "lx:" 
LOOKUP 	FILE "EtherType.cf" 
DESCRIPTION 
"SNAP type field" 

70 snapData FIELD 
SYNTAX 	BYTESTRING(46..1500) 
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ENCAP 	snapType 
DISPLAY-HINT "HexDump" 
DESCRIPTION 

"SNAP data" 
5 

snap PROTOCOL 
SUMMARIZE 

"$OrgCode == 00:00:00" : 
"SNAP Type=$SnapType" 

10 	 "Default" : 
"VSNAP Org=$OrgCode Type=$SnapType" 

DESCRIPTION 
"SNAP Frame" 

::={ SnapType=snapType, Data=snapData } 
15 

snap FLOW 
HEADER LENGTH=2 1 
DLC-LAYER ( PROTOCOL 
CHILDREN DESTINATION=SnapType ) 
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- IEEE8023.pd1 - IEEE 802.3 frame definitions 

5 
	

Description: 
This file contains the definition for the IEEE 802.3 (Ethernet) 
protocols. 

Copyright: 
10 	 Copyright (c) 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

-- - RCS: 
15 	 $1d: IEEE8023.pdl,v 1.7 1999/01/26 15:15:58 skip Exp $ 

20 	-- - IEEE 802.3 

ieee8023Length 
	

FIELD 
SYNTAX UNSIGNED INT (16) 

25 	ieee8023Data FIELD 
SYNTAX 	BYTESTRING(38..1492) 
ENCAP 	=11c 
LENGTH 	"Sieee8023Length" 
DISPLAY-HINT "HexDump" 

30 
ieee8023 	PROTOCOL 

DESCRIPTION 
"IEEE 802.3 (Ethernet) frame" 

REFERENCE 	"RFC 1042" 
35 	::= MacDest=macAddress, MacSrc=macAddress, Length=ieee8023Length, 

Data=ieee8023Data 
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- IP.pd1 - Internet Protocol (IP) definitions 

Description: 
This file contains the packet definitions for the Internet 
Protocol. These elements are all of the fields, templates and 

processes required to recognize, decode and classify IP datagrams 
found within packets. 

Copyright: 
Copyright (c) 1994-1998 Apptitude, Inc. 
(formerly Technically Elite, Inc.) 

All rights reserved. 

-- RCS: 
- $Id: IP.pdl,v 1.14 1999/01/26 15:15:58 skip Exp $ 

-- The following are the fields that make up an IP datagram. 
-- Some of these fields are used to recognize datagram elements, build 
-- flow signatures and determine the next layer in the decode process. 

ipversion 	FIELD 
SYNTAX INT(4) 
DEFAULT 

30 ipHeaderLength FIELD 
SYNTAX INT(4) 

 

ipTypeOfService 	FIELD 
SYNTAX BITSTRING(8) { 

35 	 maxThruput(3), 
minCost(1), maxReliability(2), 
minDelay(4) 

ipLength 	FIELD 
SYNTAX UNSIGNED INT ( 16) 

40 	
-- - This field will tell us if we need to do special processing to support 
-- the payload of the datagram existing in multiple packets. 

5 

10 

15 

20 

25 

ipFlags 	 FIELD 
45 
	

SYNTAX BITSTRING(3) { moreFrags(0), dontFrag(1) } 

ipFragmentOffset FIELD 
SYMIAXINT(13) 

50 
This field is used to determine the children or next layer of the 
datagram. 

55 
i- pProtocol FIELD 

SYNTAX INT (8) 
LOOKUP FILE " IpProtocol.cf" 

ipData 	FIELD 
SYNTAX 
	

BYTESTRING(0..1500) 
60 
	

ENCAP 
	

ipProtocol 
DISPLAY-HINT "HexDump" 

Detailed packet layout for the IP datagram. This includes all fields 
65 	and format. All offsets are relative to the beginning of the header. 

ip 	PROTOCOL 
SUMMARIZE 

"$FragmentOffset != 0": 
70 	 "IPFragment ID=$Identification Offset=$FragmentOffset" 

"Default" : 
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"IP Protocol=$Protocol" 
DESCRIPTION 

"Protocol format for the Internet Protocol" 
REFERENCE 	"RFC 791" 

	

5 	::= { Version=ipVersion, HeaderLength=ipHeaderLength, 
TypeOfService=ipTypeOfService, Length=ipLength, 
Identification=UInt16, IpFlags=ipFlags, 
FragmentOffset=ipFragmentOffset, TimeToLive=Int8, 
Protocol=ipProtocol, Checksum=ByteStr2, 

	

10 	 IpSrc=ipAddress, IpDest=ipAddress, Options=ipOptions, 
Fragment=ipFragment, Data=ipData } 

This is the description of the signature elements required to build a flow 

	

15 
	

that includes the IP network layer protocol. Notice that the flow builds on 
the lower layers. Only the fields required to complete IP are included. 
This flow requires the support of the fragmentation engine as well as the 
potential of having a tunnel. The child field is found from the IP 
protocol field. 

20 
ip 	FLOW 

HEADER { LENGTH=HeaderLength, IN-WORDS } 
NET-LAYER { 

SOURCE=IpSrc, 

	

25 	 DESTINATION=IpDest, 
FRAGMENTATION=IPV4, 
TUNNELING 

} 
CHILDREN { DESTINATION=Protocol } 

30 
ipFragData FIELD 

SYNTAX 	BYTESTRING(1..1500) 
LENGTH 	"$ipLength - $ipHeaderLength * 4" 
DISPLAY-HINT "HexDump" 

35 
ipFragment GROUP 

OPTIONAL 	"$FragmentOffset != 0" 
{ Data=ipFragData } 

	

40 	ipOptionCode FIELD 
SYNTAX INT(8) { ipRR(0x07), ipTimestapp(0x44), 

ipLSRR(0x83), ipSSRR(0x89) ) 
DESCRIPTION 

"IP option code" 
45 

ipOptionLength 	FIELD 
SYNTAX UNSIGNED INT(8) 
DESCRIPTION 

"Length of IP option" 
50 

ipOptionData FIELD 
SYNTAX 	BYTESTRING(0..1500) 
ENCAP 	ipOptionCode 
DISPLAY-HINT "HexDump" 

55 
ipOptions 	GROUP 

LENGTH 	"($ipHeaderLength * 4) - 20" 
{ Code=ipOptionCode, Length=ipOptionLength, Pointer=UIntB, 

Data=ipOptionData } 
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TCP.pd1 - Transmission Control Protocol (TCP) definitions 

	

5 	Description: 
This file contains the packet definitions for the Transmission 
Control Protocol. This protocol is a transport service for 

the IP protocol. In addition to extracting the protocol information 
the TCP protocol assists in the process of identification of connections 

	

10 	for the processing of states. 

Copyright: 
Copyright (c) 1994-1998 Apptitude, Inc. 
(formerly Technically Elite, Inc.) 

	

15 	 All rights reserved. 

-- - RCS: 
$Id: TCP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp $ 

20 

-- - This is the 16 bit field where the child protocol is located for 
-- the next layer beyond TCP. 

	

25 	tcpPort FIELD 
SYNTAX UNSIGNED INT (16) 
LOOKUP FILE "TcpPort.cf" 

tcpHeaderLen FIELD 

	

30 	 SYNTAX INT (4) 

tcpFlags FIELD 
SYNTAX BITSTRING(12) { fin(0), syn(1), rst(2), psh(3), ack(4), urg(5) } 

	

35 	tcpData FIELD 
SYNTAX 	BYTESTRING(0..1564) 
LENGTH 	"($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen * 4)" 
ENCAP 	tcpPort 
DISPLAY-HINT "HexDump" 

40 

-- - The layout of the TCP datagram found in a packet. Offset based on the 
-- beginning of the header for TCP. 

	

45 	tcp PROTOCOL 
SUMMARIZE 

"Default" : 
"TCP ACK=$Ack WIN=SWindowSize" 

DESCRIPTION 

	

50 	 "Protocol format for the Transmission Control Protocol" 
REFERENCE 	"RFC 793" 

{ SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32, 
Ack=UInt32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags, 
WindowSize=UInt16, Checksum=ByteStr2, 

	

55 	 UrgentPointer=UInt16, Options=tcpOptions, Data=tcpData } 

-- - The flow elements required to build a key for a TCP datagram. 
-- Noticed that this FLOW description has a CONNECTION section. This is 

	

60 	-- used to describe what connection state is reached for each setting 
-- of the TcpFlags field. 

tcp 	FLOW 
HEADER { LENGTH=HeaderLength, IN-WORDS } 

	

65 	 CONNECTION { 
IDENTIFIER=SequenceNum, 
CONNECT-START="TcpFlags:1", 
CONNECT-COMPLETE="TcpFlags : 4" , 
DISCONNECT-START="TcpFlags:0", 

	

70 	 DISCONNECT-COMPLETE="TcpFlags:4" 
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PAYLOAD { INCLUDE-HEADER ) 
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort 

tcpOptionKind FIELD 
5 	 SYNTAX UNSIGNED INT(8) { tcpOptEnd(0), tcpNop(1), tcpMSS(2), 

tcpWscale(3), tcpTimestamp(4) ) 
DESCRIPTION 

"Type of TCP option" 

10 	tcpOptionData FIELD 
SYNTAX 	BYTESTRING(0-1500) 
ENCAP 	tcpOptionKind 
FLAGS 	SAMELAYER 
DISPLAY-HINT "HexDump" 

15 
tcpOptions GROUP 

LENGTH 	"($tcpHeaderLen * 4) - 20" 
SUMMARIZE 

"Default" 
20 	 "Option=$Option, Len=$OptionLength, $OptionData" 

{ Option=tcpOptionKind, optionLength=uint8, OptionData=tcpOptionData } 

tcpMSS 	PROTOCOL 
= { MaxSegmentSize=UInt16 } 
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UDP.pd1 - User Datagram Protocol (UDP) definitions 

5 
	

Description: 
This file contains the packet definitions for the User Datagram 
Protocol. 

Copyright: 
10 	 Copyright (c) 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 	 $Id: UDP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp $ 

udpPort 	FIELD 
SYNTAX UNSIGNED INT(16) 

20 	 LOOKUP FILE "UdpPort.cf" 

udpLength FIELD 
SYNTAX 	UNSIGNED INT(16) 

25 	udpData FIELD 
SYNTAX 	BYTESTRING(0..1500) 
ENCAP 	udpPort 
DISPLAY-HINT "HexDump" 

30 udp PROTOCOL 
SUMMARIZE 

"Default" : 
"UDP Dest=$DestPort Src=$SrcPort" 

DESCRIPTION 
35 	 -Protocol format for the User Datagram Protocol." 

REFERENCE 	"RFC 768" 
::= { SrcPort=udpPort, DestPort=udpPort, Length=udpLength, 

Checksum=ByteStr2, Data=udpData } 

40 udp FLOW 
HEADER { LENGTH=8 } 
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort } 

144 
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RPC.pd1 - Remote Procedure Calls (RPC) definitions 

5 
	

Description: 
This file contains the packet definitions for Remote Procedure 
Calls. 

Copyright: 
10 	 Copyright (c) 1994-1999 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

-- - RCS: 
15 	 RPC.pdl,v 1.7 1999/01/26 15:16:01 skip Exp $ 

rpcType 	FIELD 
SYNTAX UNSIGNED INT(32) { rpcCall(0), rpcReply(1) ) 

20 
rpcData 	FIELD 

SYNTAX 	BYTESTRING(0..100) 
ENCAP 	rpcType 
FLAGS 	SAMELAYER 

25 	 DISPLAY-HINT "HexDump" 

rpc PROTOCOL 
SUMMARIZE 

"$Type == rpcCall" : 
30 	 "RPC $Program" 

"$ReplyStatus == rpcAcceptedReply" : 
"RPC Reply Status=$Status" 

"$ReplyStatus == rpcDeniedReply" : 
"RPC Reply Status=$Status, AuthStatus=$AuthStatus" 

35 	 "Default" : 
"RPC $Program" 

DESCRIPTION 
"Protocol format for RPC" 

REFERENCE 
40 	 "RFC 1057" 

::= { XID=UInt32, Type=rpcType, Data=rpcData } 

rpc FLOW 
HEADER { LENGTH=0 } 

45 	 PAYLOAD { DATA=XID, LENGTH=256 } 

RPC Call 

50 	rpcProgram FIELD 
SYNTAX UNSIGNED INT(32) { portMapper(100000), nfs(100003), 

mount(100005), lockManager(100021), statusMonitor(100024) } 

rpcProcedure GROUP 
55 	 SUMMARIZE 

-Default" : 
"Program=$Program, Version=$Version, Procedure=$Procedure" 

{ Program=rpcProgram, Version=UInt32, Procedure=UInt32 

60 	rpcAuthFlavor FIELD 
SYNTAX UNSIGNED INT(32) { null(0), unix(1), short(2) ) 

rpcMachine FIELD 
SYNTAX LSTRING (4) 

65 
rpcGroup 	GROUP 

LENGTH "$NumGroups * 4" 
{ Gid=Int32 } 

70 rpcCredentials GROUP 
LENGTH "SCredentialLength" 
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{ Stamp=UInt32, Machine=rpcMachine, Uid=Int32, Gid=Int32, 
NumGroups=UInt32, Groups=rpcGroup 

rpcVerifierData 	FIELD 

	

5 	 SYNTAX 	BYTESTRING(0..400) 
LENGTH 	"$VerifierLength" 

rpcEncap 	FIELD 
SYNTAX COMBO Program Procedure 

	

10 	 LOOKUP FILE "RPC.cf" 

rpcCallData FIELD 
SYNTAX 	BYTESTRING(0..100) 
ENCAP 	rpcEncap 

	

15 	 DISPLAY-HINT "HexDump" 

rpcCall 	PROTOCOL 
DESCRIPTION 

"Protocol format for RPC call" 

	

20 	{ RPCVersion=UInt32, Procedure=rpcProcedure, 
CredentialAuthFlavor=rpcAuthFlavor, CredentialLength=UInt32, 
Credentials=rpcCredentials, 
VerifierAuthFlavor=rpcAuthFlavor, VerifierLength=UInt32, 
Verifier=rpcVerifierData, Encap=rpcEncap, Data=rpcCallData } 

25 

RPC Reply 

rpcReplyStatus 	FIELD 
30 	 SYNTAX INT(32) { rpcAcceptedReply(0), rpcDeniedReply(1) } 

rpcReplyData FIELD 
SYNTAX 	BYTESTRING(0..40000) 
ENCAP 	rpcReplyStatus 

35 	 FLAGS 	SAMELAYER 
DISPLAY-HINT "HexDump" 

rpcReply 	PROTOCOL 
DESCRIPTION 

40 	 "Protocol format for RPC reply" 
{ ReplyStatus=rpcReplyStatus, Data=rpcReplyData 

rpcAcceptStatus 	FIELD 
SYNTAX INT(32) { Success(0), ProgUnavail(1), ProgMismatch(2), 

45 	 ProcUnavail(3), GarbageArgs(4), SystemError(5) ) 

rpcAcceptEncap 	FIELD 
SYNTAX BYTESTRING (0) 
FLAGS NOSHOW 

rpcAcceptData FIELD 
SYNTAX 	BYTESTRING(0..40000) 
ENCAP 	rpcAcceptEncap 
DISPLAY-HINT "HexDump" 

rpcAcceptedReply PROTOCOL 
{ VerifierAuthFlavor=rpcAuthFlavor, VerifierLength=UInt32, 

Verifier=rpcVerifierData, Status=rpcAcceptStatus, 
Encap=rpcAcceptEncap, Data=rpcAcceptData } 

rpcDeniedStatus 	FIELD 
SYNTAX INT(32) { rpcVersionmismatch(0), rpcAuthError(1) 

rpcAuthStatus FIELD 
65 	 SYNTAX INT(32) 	Okay(0), BadCredential(1), RejectedCredential(2), 

BadVerifier(3), RejectedVerifier(4), TooWeak(5), 
InvalidResponse(6), Failed(7) 

rpcDeniedReply 	PROTOCOL 
70 	::= { Status=rpcDeniedStatus, AuthStatus=rpcAuthStatus } 

50 

55 

60 
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RPC Transactions 

rpcBindLookup PROTOCOL 

	

5 	 SUMMARIZE 
"Default" : 

"RPC GetPort Prog=$Prog, Ver=$Ver, Proto=$Protocol" 
{ Prog=rpcProgram, Ver=UInt32, Protoco1=UInt32 ) 

	

10 	rpcBindLookupReply PROTOCOL 
SUMMARIZE 

"Default" : 
"RPC GetPortReply Port=$Port" 

{ Port=UInt32 } 
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NFS.pd1 - Network File System (NFS) definitions 

5 
	

Description: 
This file contains the packet definitions for the Network File 
System. 

Copyright: 
10 	 Copyright (c) 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 	 $Id: NFS.pdl,v 1.3 1999/01/26 15:15:59 skip Exp $ 

nfsString 	FIELD 
SYNTAX LSTRING (4) 

20 
nfsHandle 	FIELD 

SYNTAX 	BYTESTRING(32) 
DISPLAY-HINT "16x\n 

25 nfsData 	 FIELD 
SYNTAX 	BYTESTRING(0..100) 
DISPLAY-HINT "HexDump" 

nfsAccess 	PROTOCOL 
30 	 SUMMARIZE 

"Default" : 
"NFS Access $Filename" 

::= { Handle=nfsHandle, Filename=nfsString 

35 nfsStatus FIELD 
SYNTAX INT(32) { OK(0), NoSuchFile(2) } 

nfsAccessReply 	PROTOCOL 
SUMMARIZE 

40 	 "Default" : 
"NFS AccessReply $Status" 

{ Status=nfsStatus 

nfsMode 	 FIELD 
45 	 SYNTAX UNSIGNED INT(32) 

DISPLAY-HINT "4o" 

nfsCreate 	PROTOCOL 
SUMMARIZE 

50 	 "Default" : 
"NFS Create $Filename" 

{ Handle=nfsHandle, Filename=nfsString, Filler=Int8, Mode=nfsMode, 
uid=int32, Gid=int32, Size=Int32, AccessTime=Int64, ModTime=Int64 } 

55 nfsFileType FIELD 
SYNTAX INT(32) { Regular(1), Directory(2) 1 

nfsCreateReply 	PROTOCOL 
SUMMARIZE 

60 	 "Default" : 
"NFS CreateReply $Status" 

{ Status=nfsStatus, Handle=nfsHandle, FileType=nfsFileType, 
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32, 
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32, 

65 	 AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64 

nfsRead 	PROTOCOL 
SUMMARIZE 

"Default" : 
70 	 "NFS Read Offset=$Offset Length=$Length" 

::= { Length=Int32, Handle=nfsHandle, Offset=UInt64, Count=Int32 } 
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nfsReadReply PROTOCOL 
SUMMARIZE 

"Default" : 

	

5 	 "NFS ReadReply $Status" 
Status=nfsStatus, FileType=nfsFileType, 
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32, 
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32, 
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64 

10 
nfsWrite PROTOCOL 

SUMMARIZE 
"Default" 

"NFS Write Offset=$Offset" 

	

15 	::= { Handle=nfsHandle, Offset=Int32, Data=nfsData } 

nfsWriteReply PROTOCOL 
SUMMARIZE 

"Default" : 

	

20 	 "NFS WriteReply $Status" 
{ Status=nfsStatus, FileType=nfsFileType, 

Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32, 
BlockSize=Int32, NumBlocks=Int64, FileSysld=UInt32, FileId=UInt32, 
ACCessTim.e=Int64, ModTime=Int64, InodeChangeTime=Int64 

25 
nfsReadDir PROTOCOL 

SUMMARIZE 
"Default" : 

"NFS ReadDir" 

	

30 	::= { Handle=nfsHandle, Cookie=Int32, Count=1nt32 } 

nfsReadDirReply 	PROTOCOL 
SUMMARIZE 

"Default" : 

	

35 	 "NFS ReadDirReply $Status" 
{ Status=nfsStatus, Data=nfsData 

nfsGetFileAttr 	PROTOCOL 
SUMMARIZE 

	

40 	 "Default" : 
"NFS GetAttr" 

{ Handle=nfsHandle } 

nfsGetFileAttrReply PROTOCOL 

	

45 	 SUMMARIZE 
"Default" : 

"NFS GetAttrReply $Status $FileType" 
= { Status=nfsStatus, FileType=nfsFileType, 

Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32, 

	

50 	 BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32, 
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64 

nfsReadLink PROTOCOL 
SUMMARIZE 

	

55 	 "Default" : 
"NFS ReadLink" 

{ Handle=nfsHandle } 

nfsReadLinkReply PROTOCOL 

	

60 	 SUMMARIZE 
"Default" 

"NFS ReadLinkReply Path=$Path" 
{ Status=nfsStatus, Path=nfsString 

65 nfsMount PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS Mount $Path" 

{ Path=nfsString } 
70 

nfsMountReply PROTOCOL 
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SUMMARIZE 
"Default" : 

"NFS MountReply $MountStatus" 
{ MountStatus=nfsStatus, Handle=nfsHandle } 

5 
nfsStatFs 	PROTOCOL 

SUMMARIZE 
"Default" : 

"NFS StatFs" 
10 	::= { Handle=nfsHandle 

nfsStatFsReply 	PROTOCOL 
SUMMARIZE 

"Default" : 
15 	 "NFS StatFsReply $Status" 

{ Status=nfsStatus, TransferSize=UInt32, BlockSize=UInt32, 
TotalBlocks=UInt32, FreeBlocks=UInt32, AvailBlocks=UInt32 } 

nfsRemoveDir PROTOCOL 
20 	 SUMMARIZE 

"Default" : 
"NFS RmDir $Name" 

{ Handle=nfsHandle, Name=nfsString } 

25 	nfsRemoveDirReply PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS RmDirReply $Status" 

{ Status=nfsStatus } 
30 

nfsMakeDir PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS MkDir $Name" 

35 	::= { Handle=nfsHandle, Name=nfsString 

nfsMakeDirReply PROTOCOL 
SUMMARIZE 

"Default" : 
40 

	

	 "NFS MkDirReply $Status" 
{ Status=nfsStatus 

nfsRemove 	PROTOCOL 
SUMMARIZE 

45 	 "Default" : 
"NFS Remove $Name" 

{ Handle=nfsHandle, Name=nfsString 

nfsRemoveReply PROTOCOL 
50 	 SUMMARIZE 

"Default" : 
"NFS RemoveReply $Status" 

::= { Status=nfsStatus } 
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HTTP.pd1 - Hypertext Transfer Protocol (HTTP) definitions 

5 
	

Description: 
This file contains the packet definitions for the Hypertext Transfer 
Protocol. 

Copyright: 
10 	 Copyright (c) 1994-1999 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

-- - RCS: 
15 	 $Id: HTTP.pdl,v 1.13 1999/04/13 15:47:57 skip Exp $ 

httpData FIELD 
SYNTAX 

20 	 LENGTH 
DISPLAY-HINT 
FLAGS 

BYTESTRING(1..1500) 
"($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen * 4)" 

"Text" 
NOLABEL 

http PROTOCOL 
25 	 SUMMARIZE 

"$httpData m/^GETI^HTTPI^HEADI^POST/" : 
"HTTP $httpData" 

"$httpData m/^[Dd]ate ^[Ss]erver1^[Ll]ast-[Mm]odified/" 
"HTTP $httpData" 

30 	 "$httpData m/^[Cc]ontent-/" : 
"HTTP $httpData" 

"$httpData m/^<HTML>7" 
"HTTP [HTML document]" 

"$httpData m/^GIFP : 
35 	 "HTTP [GIF image]" 

"Default" : 
"HTTP [Data]" 

DESCRIPTION 
"Protocol format for HTTP." 

40 	::= { Data=httpData } 

http FLOW 
CONNECTION { INHERITED } 
PAYLOAD { INCLUDE-HEADER, DATA=Data, LENGTH=256 

45 	 STATES 
"SO: CHECKCONNECT, GOTO S1 

DEFAULT NEXT SO 

50 
Si: 

S2:  

WAIT 2, GOTO S2, NEXT S1 
DEFAULT NEXT SO 

MATCH 
'\n\r\n' 900 0 0 255 0, NEXT S3 
'\n\n' 900 0 0 255 0, NEXT S3 

55 'POST /tds?' 50 0 0 127 1, CHILD sybaseWebsql 
'.hts HTTP/1.0' 50 4 0 127 1, CHILD sybaseJdbc 
'jdbc:sybase:Tds' 50 4 0 127 1, CHILD sybaseTds 
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast 
't: 	BW-C-' 100 4 1 255 0, CHILD backweb 

60 DEFAULT NEXT S3 

S3:  MATCH 
'\n\r\n' 50 0 0 0 0, NEXT S3 
'\n\n' 50 0 0 0 0, NEXT S3 

65 'Content-Type:' 800 0 0 255 0, CHILD mime 
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast 
't: 	BW-C-' 100 4 1 255 0, CHILD backweb 
DEFAULT NEXT SO" 

70 sybasewebscil FLOW 
STATE-BASED 
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sybaseJdbc FLOW 
STATE-BASED 

5 sybaseTds FLOW 
STATE-BASED 

pointcast FLOW 
STATE-BASED 

10 
backweb FLOW 

STATE-BASED 

mime FLOW 
15 STATE-BASED 

STATES 
"SO: MATCH 

'application' 900 0 0 1 0, CHILD mimeApplication 
'audio' 900 0 0 1 0, CHILD mimeAudio 

20 'image' 50 0 0 1 0, CHILD mimeImage 
'text' 50 0 0 1 0, CHILD mimeText 
'video' 50 0 0 1 0, CHILD mimeVideo 
'x-world' 

DEFAULT GOTO SO" 
500 4 1 255 0, CHILD mimeXworld 

25 
mimeApplication FLOW 

STATE-BASED 

mimeAudio FLOW 
30 	 STATE-BASED 

STATES 
"SO: MATCH 

'basic' 100 0 0 1 0, CHILD pdBasicAudio 
'midi' 100 0 0 1 0, CHILD pdMidi 

35 'mpeg' 100 0 0 1 0, CHILD pdmpeg2Audio 
'vnd.rn-realaudio.  100 0 0 1 0, CHILD pdRealAudio 
'way' 100 0 0 1 0, CHILD pdWav 
'x-aiff' 100 0 0 1 0, CHILD pdAiff 
'x-midi' 100 0 0 1 0, CHILD pdMidi 

40 'x-mpeg' 100 0 0 1 0, CHILD pdMpeg2Audio 
'x-mpgurl' 100 0 0 1 0, CHILD pdMpeg3Audio 
'x-pn-realaudio' 100 0 0 1 0, CHILD pdRealAudio 
'x-way.  
DEFAULT GOTO SO" 

100 0 0 1 0, CHILD pdWav 

45 
mimeImage FLOW 

mimeText 

STATE-BASED 

FLOW 
50 

mimeVideo 

STATE-BASED 

FLOW 
STATE-BASED 

55 	mimeXworld FLOW 
STATE-BASED 

pdBasicAudio FLOW 
STATE-BASED 

60 
pdMidi FLOW 

STATE-BASED 

pdMpeg2Audio FLOW 
65 	 STATE-BASED 

pdMpeg3Audio FLOW 
STATE-BASED 

70 pdRealAudio FLOW 
STATE-BASED 
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p dWav 
	 FLOW 

STATE-BASED 

5 	pdAi f f FLOW 
STATE-BASED 
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Traffic Classification System 

Protocol Definition Language (PDL) 
Reference Guide 

5 

Version A0.02 

VERSION A0.02 
10 

Included herein is this reference on the page description laguage (PDL) whihc, in one 
aspect of the invention, permits the automatic generation of the databases used by the 
parser and analyzer sub-systems, and also allows for including new and modified 

15 	protocols and applications to the capabliity of the monitor. 
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COPYRIGHT NOTICE 

A portion of this of this document included with the patent contains material 

which is subject to copyright protection. The copyright owner (Apptitude, Inc., of San 

Jose, California, formerly Technically Elite, Inc.) has no objection to the facsimile 

5 	reproduction by anyone of the patent document or the patent disclosure or this document, 

as it appears in the Patent and Trademark Office patent file or records, but otherwise 

reserves all copyright rights whatsoever. 

Copyright © 1997-1999 by Apptitude, Inc. (formerly Technically Elite, Inc.) 

10 	 All Rights Reserved. 
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1. INTRODUCTION 

The inventive Protocol Definition Language (PDL) is a special purpose language 
used to describe network protocols and all the fields within the protocol headers. 

Within this document, protocol descriptions (PDL files) are referred to as PDL or 
5 	 rules when there in no risk of confusion with other types of descriptions. 

PDL uses both form and organization similar to the data structure definition part 
of the C programming language and the PERL scripting language. Since PDL 
was derived from a language used to decode network packet contact, the authors 
have mixed the language format with the requirements of packet decoding. This 

io 	results in an expressive language that is very familiar and comfortable for 
describing packet content and the details required representing a flow. 

1.1 Summary 

The PDL is a non-procedural Forth Generation language (4GL). This means is 
describes what needs to be done without describing how to do it. The details of 

15 	 how are hidden in the compiler and the Compiled Protocol Layout (CPL) 
optimization utility. 

In addition, it is used to describe network flows by defining which fields are the 
address fields, which are the protocol type fields, etc. 

Once a PDL file is written, it is compiled using the Netscope compiler (nsc), 
20 	 which produces the MeterFlow database (MeterFlow.db) and the Netscope 

database (Netscope.db). The MeterFlow database contains the flow definitions 
and the Netscope database contains the protocol header definitions. 

These databases are used by programs like: mfkeys, which produces flow keys 
(also called flow signatures); mfcpl, which produces flow definitions in CPL 

25 	 format; mfpkts which produces sample packets of all known protocols; and 
netscope, which decodes SnifferTM and tcpdump files. 

Due to its size, electronic media copies of the documentation are not provided but 
can be made available if necessary. 

1.2 	Document Conventions 

30 	 The following conventions will be used throughout this document: 

Small courier typeface indicates C code examples or function names. 
Functions are written with parentheses after them [function ( ) ], variables are 
written just as their names [variables], and structure names are written 
prefixed with "struct" [struct packet]. 

35 	 Italics indicate a filename (for instance, mworks/base/h/base.h). Filenames will 
usually be written relative to the root directory of the distribution. 
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Constants are expressed in decimal, unless written "ox...", the C language 
notation for hexadecimal numbers. 

	

2. 	PROGRAM STRUCTURE 

A MeterFlow PDL decodes and flow set is a non-empty sequence of statements. 

5 
	There are four basic types of statements or definitions available in MeterFlow 

PDL: 

FIELD, 
GROUP, 
PROTOCOL and 

10 	FLOW. 

	

2.1 	FIELD Definitions 

The FIELD definition is used to define a specific string of bits or bytes in the 
packet. The FIELD definition has the following format: 

15 	 Name FIELD 
SYNTAX Type [ { Enums } ] 
DISPLAY-HINT "FormatString" 
LENGTH "Expression" 
FLAGS FieldFlags 

20 	 ENCAP FieldName [ , FieldName2 ] 
LOOKUP LookupType [ Filename ] 
ENCODING EncodingType 
DEFAULT "value" 
DESCRIPTION "Description" 

25 	Where only the FIELD and SYNTAX lines are required. All the other lines are 
attribute lines, which define special characteristics about the FIELD. Attribute 
lines are optional and may appear in any order. Each of the attribute lines are 
described in detail below: 

2.1.1 SYNTAX Type [ { Enums ] 

30 	This attribute defines the type and, if the type is an INT, BYTESTRING, 
BITSTRING, or SNMPSEQUENCE type, the enumerated values for the FIELD. 
The currently defined tunes are: 

INT(numBits) Integer that is numBits bits long. 

UNSIGNED INT(numBits) Unsigned integer that is numBits bits long. 

BYTESTRING(numBytes) String that is numBytes bytes long. 

BYTESTRING(R/..R2) String that ranges in size from R1 to R2 bytes. 

BITSTRING(numBits) String that is numBits bits long. 
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LSTRING(lenBytes) String with lenBytes header. 

NSTRING Null terminated string. 

DNSSTRING DNS encoded string. 

SNMPOID SNMP Object Identifier. 

SNMPSEQUENCE SNMP Sequence. 

SNMPTIMETICKS SNMP TimeTicks. 

COMBO fieldl field2 Combination pseudo field. 

2.1.2 DISPLAY-HINT "FormatString" 

This attribute is for specifying how the value of the FIELD is displayed. The 
formats are: 

Numx Print as a num byte hexidecimal number. 

Numd Print as a num byte decimal number. 

Numo Print as a num byte octal number. 

Numb Print as a num byte binary number. 

Numa Print num bytes in ASCII format. 

Text Print as ASCII text. 

HexDump Print in hexdump format. 

5 

2.1.3 LENGTH "Expression" 

This attribute defines an expression for determining the FIELD's length. 
Expressions are arithmetic and can refer to the value of other FIELD' s in the 
packet by adding a $ to the referenced field's name. For example, 

10 	"($tcpHeaderLen *4) — 20" is a valid expression if tcpHeaderLen is another field 
defined for the current packet. 

2.1.4 FLAGS FieldFlags 

The attribute defines some special flags for a FIELD. The currently supported 
FieldFla s are: 

SAMELA 
YER 

Display field on the same layer as the previous field. 

NOLABEL Don't display the field name with the value. 
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NOSHOW Decode the field but don't display it. 

SWAPPED The integer value is swapped. 

2.1.5 ENCAP FieldName [ ,FieldName2 ] 

This attribute defines how one packet is encapsulated inside another. Which 
packet is determined by the value of the FieldName field. If no packet is found 

5 
	 using FieldName then FieldName2 is tried. 

2.1.6 LOOKUP LookupType [ Filename ] 

This attribute defines how to lookup the name for a particular FIELD value. The 
currently supported  Looku T es are: - 

SERVICE 	 Use getservbyport().  

HOSTNAME 	 Use gethostbyaddr().  

MACADDRESS 	 Use $METERFLOW/conf/mac2ip.cf.  

FILE file 	 Use file to lookup value.  

10 	2.1.7 ENCODING EncodingType 

This attribute defines how a FIELD is encoded. Currently, the only supported 
EncodingType is BER (for Basic Encoding Rules defined by ASN.1). 

2.1.8 DEFAULT "value" 

This attribute defines the default value to be used for this field when generating 
15 	 sample packets of this protocol. 

2.1.9 DESCRIPTION "Description" 

This attribute defines the description of the HELD. It is used for informational 
purposes only. 

2.2 	GROUP Definitions 

20 	 The GROUP definition is used to tie several related FIELDs together. The 
GROUP definition has the following format: 

Name GROUP 
LENGTH "Expression" 
OPTIONAL "Condition" 

25 	 SUMMARIZE "Condition" : "FormatString" [ 
"Condition" : "FormatString"... 3 
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DESCRIPTION "Description" 
::= { Name=FieldOrGroup [ I 

Name=FieldOrGroup... ] } 

Where only the GROUP and ::= lines are required. All the other lines are 
5 
	 attribute lines, which define special characteristics for the GROUP. Attribute 

lines are optional and may appear in any order. Each attribute line is described in 
detail below: 

2.2.1 LENGTH "Expression" 

This attribute defines an expression for determining the GROUP's length. 
io 	Expressions are arithmetic and can refer to the value of other HELD's in the 

packet by adding a $ to the referenced field's name. For example, 
"($tcpHeaderLen *4) — 20" is a valid expression if tcpHeaderLen is another field 
defined for the current packet. 

2.2.2 OPTIONAL "Condition" 

15 	 This attribute defines a condition for determining whether a GROUP is present or 
not. Valid conditions are defined in the Conditions section below. 

2.2.3 SUMMARIZE "Condition" : "FormatString" [ "Condition" : 
"FormatString"... I 

This attribute defines how a GROUP will be displayed in Detail mode. A 
20 	 different format (FormatString) can be specified for each condition (Condition). 

Valid conditions are defined in the Conditions section below. Any FIELD's value 
can be referenced within the FormatString by proceeding the FIELD's name with 
a $. In addition to FIELD names there are several other special $ keywords: 

$LAYER Displays the current protocol layer. 

$GROUP Displays the entire GROUP as a table. 

$LABEL Displays the GROUP label. 

$field Displays the field value (use enumerated name if available). 

$:field Displays the field value (in raw format). 

25 	2.2.4 DESCRIPTION "Description" 

This attribute defines the description of the GROUP. It is used for informational 
purposes only. 

2.2.5 ::= Name=FieldOrGroup , Name=FieldOrGroup... 

This defines the order of the fields and subgroups within the GROUP. 
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2.3 PROTOCOL Definitions 

The PROTOCOL definition is used to define the order of the FIELDs and 
GROUPs within the protocol header. The PROTOCOL definition has the 
following format: 

	

5 	 Name PROTOCOL 
SUMMARIZE "Condition" : "FormatString" [ 
"Condition" : "FormatString"... ] 
DESCRIPTION "Description" 
REFERENCE "Reference" 

	

10 	 ::= { Name=FieldOrGroup [ , 
Name=FieldOrGroup... ] } 

Where only the PROTOCOL and ::= lines are required. All the other lines are 
attribute lines, which define special characteristics for the PROTOCOL. Attribute 
lines are optional and may appear in any order. Each attribute line is described in 

	

15 	 detail below: 

2.3.1 SUMMARIZE "Condition" : "FormatString" [ "Condition" : 
"FormatString"... [ 

This attribute defines how a PROTOCOL will be displayed in Summary mode. A 
different format (FormatString) can be specified for each condition (Condition). 

	

20 	 Valid conditions are defined in the Conditions section below. Any FIELD's value 
can be referenced within the FormatString by proceeding the FIELD's name with 
a $. In addition to FIELD names there are several other special $ keywords: 

$LAYER Displays the current protocol layer. 

$VARBIND Displays the entire SNMP VarBind list. 

$field Displays the field value (use enumerated name if available). 

$:field Displays the field value (in raw format). 

Weld Counts all occurrences of field. 

$*field Lists all occurrences of field. 

2.3.2 DESCRIPTION "Description" 

25 	 This attribute defines the description of the PROTOCOL. It is used for 
infoiniational purposes only. 

2.3.3 REFERENCE "Reference" 

This attribute defines the reference material used to determine the protocol 
format. It is used for informational purposes only. 
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2.3.4 ::= { Name=FieldOrGroup [ , Name=FieldOrGroup... ] } 

This defines the order of the 1-,IELDs and GROUPs within the PROTOCOL. 

2.4 	FLOW Definitions 

The FLOW definition is used to define a network flow by describing where the 

	

5 	 address, protocol type, and port numbers are in a packet. The FLOW definition 
has the following format: 
Name FLOW 

HEADER { Option [, Option...] } 
DLC-LAYER { Option E, Option...] } 

	

10 	 NET-LAYER { Option [, Option...] } 
CONNECTION { Option [, Option...] } 
PAYLOAD { Option I, Option...] } 
CHILDREN { Option [, Option...] } 
STATE-BASED 

	

15 	 STATES "Definitions" 

Where only the FLOW line is required. All the other lines are attribute lines, 
which define special characteristics for the FLOW. Attribute lines are optional 
and may appear in any order. However, at least one attribute line must be present. 
Each attribute line is described in detail below: 

	

20 	2.4.1 HEADER { Option [, Option...] } 

This attribute is used to describe the length of the protocol header. The currently 
supported Options are: 

LENGTH=num 
ber 

Header is a fixed length of size number. 

LENGTH=fie/ 
d 

Header is variable length determined by value of field. 

IN-WORDS The units of the header length are in 32-bit words rather than 
bytes. 

2.4.2 DLC-LAYER { Option [, Option...] } 

25 	 If the protocol is a data link layer protocol, this attribute describes it. The 
currently supported Options are: 

DESTINATION=fi 
eld 

Indicates which field is the DLC destination address. 

SOURCE field Indicates which field is the DLC source address. 

PROTOCOL Indicates this is a data link layer protocol. 

NOAC Ex. 1014 Page 234



228 

TUNNELING Indicates this is a tunneling protocol. 

  

2.4.3 NET-LAYER { Option [, Option...] } 

If the protocol is a network layer protocol, then this attribute describes it. The 
currently supported Options are: 

DESTINATION field Indicates which field is the network destination address. 

SOURCE=field Indicates which field is the network source address. 

TUNNELING Indicates this is a tunneling protocol. 

FRAGMENTATION=t 
ype 

Indicates this protocol supports fragmentation. There 
are currently two fragmentation types: IPV4 and IPV6. 

5 

2.4.4 CONNECTION { Option [, Option...] } 

If the protocol is a connection-oriented protocol, then this attribute describes how 
connections are established and torn down. The currently supported Options are: 

Indicates the connection identifier field. IDENTIPIER=fie/d 

CONNECT-START="flag" Indicates when a connection is being 
initiated. 

CONNECT-COMPLETE=2:flag" Indicates when a connection has been 
established. 

DISCONNECT-START="flag" Indicates when a connection is being torn 
down. 

DISCONNECT- 
COMPLETE="flag" 

Indicates when a connection has been torn 
down. 

INHERITED Indicates this is a connection-oriented 
protocol but the parent protocol is where the 
connection is established. 

10 	2.4.5 PAYLOAD { Option [, Option...] } 

This attribute describes how much of the payload from a packet of this type 
should be stored for later use during analysis. The currently supported Options 
are: 

INCLUDE- Indicates that the protocol header should be included. 
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HEADER 

LENGTH=numbe 
r 

Indicates how many bytes of the payload should be stored. 

DATA field Indicates which field contains the payload. 

2.4.6 CHILDREN { Option r, Option...] } 

This attribute describes how children protocols are determined. The currently 
tions are: . 	. 	. 

DESTINATION=fi 
eld 

Indicates which field is the destination port. 

SOURCE field Indicates which field is the source port. 

LLCCHECK=flow Indicates that if the DESTINATION field is less than 
Ox05DC then use flow instead of the current flow definition. 

5 

2.4.7 STATE-BASED 

This attribute indicates that the flow is a state-based flow. 

2.4.8 STATES "Definitions" 

This attribute describes how children flows of this protocol are determined using 
10 	states. See the State Definitions section below for how these states are defined. 

2.5 CONDITIONS 

Conditions are used with the OPTIONAL and SUMMARIZE attributes and may 
consist of the following: 

Valuel == 
Value2 

Valuel equals Value2. Works with string values. 

Valuel != 
Value2 

Valuel does not equal Value2. Works with string values. 

Valuel <= 
Value2 

Valuel is less than or equal to Value2. 

Valuel >= 
Value2 

Valuel is greater than or equal to Value2. 

Valuel < 
Value2 

Valuel is less than Value2. 
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Valuel > 
Value2 

Value] is greater than Value2. 

Field m/regex/ Field matches the regular expression regex. 

Where Value] and Value2 can be either FIELD references (field names preceded 
by a $) or constant values. Note that compound conditional statements (using 
AND and OR) are not currently supported. 

2.6 STATE DEFINITIONS 

5 
	 Many applications running over data networks utilize complex methods of 

classifying traffic through the use of multiple states. State definitions are used for 
managing and maintaining learned states from traffic derived from the network. 

The basic format of a state definition is: 
StateName: Operand Parameters [ Operand Parameters...] 

to 	The various states of a particular flow are described using the following 
operands: 

2.6.1 CHECKCONNECT, operand 

Checks for connection. Once connected executes operand. 

2.6.2 GOTO state 

15 	 Goes to state, using the current packet. 

2.6.3 NEXT state 

Goes to state, using the next packet. 

2.6.4 DEFAULT operand 

Executes operand when all other operands fail. 

20 	2.6.5 CHILD protocol 

Jump to child protocol and perform state-based processing (if any) in the child. 

2.6.6 WAIT numPackets, operandi, operand2 

Waits the specified number of packets. Executes operand] when the specified 
number of packets have been received. Executes operand2 when a packet is 

25 	 received but it is less than the number of specified packets. 

2.6.7 MATCH 'string' weight offset LF-offset range LF-range, operand 

Searches for a string in the packet, executes operand if found. 
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2.6.8 CONSTANT number offset range, operand 

Checks for a constant in a packet, executes operand if found. 

2.6.9 EXTRACTIP offset destination, operand 

Extracts an IP address from the packet and then executes operand. 

5 	2.6.10 EXTRACTPORT offset destination, operand 

Extracts a port number from the packet and then executes operand. 

2.6.11 CREATEREDIRECTEDFLOW, operand 

Creates a redirected flow and then executes operand. 
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3. 	EXAMPLE PDL RULES 

The following section contains several examples of PDL Rule files. 

3.1 Ethernet 

The following is an example of the PDL for Ethernet: 

5 
MacAddress FIELD 

SYNTAX 	BYTESTRING(6) 
DISPLAY-HINT "lx:" 
LOOKUP 	MACADDRESS 

10 	 DESCRIPTION 
"MAC layer physical address" 

etherType 	FIELD 
SYNTAX 	INT(16) 

15 	 DISPLAY-HINT "lx:" 
LOOKUP 	FILE "EtherType.cf" 
DESCRIPTION 

"Ethernet type field" 

20 etherData FIELD 
SYNTAX 	BYTESTRING(46..1500) 
ENCAP 	 etherType 
DISPLAY-HINT "HexDump" 
DESCRIPTION 

25 	 "Ethernet data" 

ethernet 	PROTOCOL 
DESCRIPTION 

"Protocol format for an Ethernet frame" 
30 	 REFERENCE 	"RFC 894" 

{ MacDest=macAddress, MacSrc=macAddress, EtherType=etherType, 
Data=etherData } 

ethernet 	FLOW 
35 	 HEADER LENGTH=14 

DLC-LAYER { 
SOURCE=MacSrc, 
DESTINATION=MacDest, 
TUNNELING, 

40 	 PROTOCOL 

CHILDREN { DESTINATION=EtherType, LLC-CHECK=11c } 
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3.2 IP Version 4 

Here is an example of the PDL for the IP protocol: 

ipAddress 	FIELD 
5 	 SYNTAX 	BYTESTRING(4) 

DISPLAY-HINT "ld." 
LOOKUP 	HOSTNAME 
DESCRIPTION 

"IP address" 
10 

ipVersion 	FIELD 
SYNTAX INT(4) 
DEFAULT 

15 ipHeaderLength FIELD 
SYNTAX INT(4) 

ipTypeOfService 	FIELD 
SYNTAX 	BITSTRING(8) { minCost(1), 

20 	 maxReliability(2), maxThruput(3), minDelay(4) 
) 

ipLength 	 FIELD 
SYNTAX UNSIGNED INT(16) 

25 
ipFlags 	 FIELD 

SYNTAX BITSTRING(3) { moreFrags(0), dontFrag(1) ) 

IpFragmentOffset 	 FIELD 
30 	 SYNTAX INT (13) 

ipProtocol FIELD 
SYNTAX INT(8) 
LOOKUP FILE "IpProtocol.cf" 

35 
ipData FIELD 

SYNTAX 	BYTEsTRING(0..1500) 
ENCAP 	 ipProtocol 
DISPLAY-HINT "HexDump" 

40 
ip 	PROTOCOL 

SUMMARIZE 
"$FragmentOffset != 0": 

"IPFragment ID=$Identification Offset=$FragmentOffset" 
45 	 "Default" : 

"IP Protocol=$Protocol" 
DESCRIPTION 

"Protocol format for the Internet Protocol" 
REFERENCE 	"RFC 791" 

50 	{ Version=ipVersion, HeaderLength=ipHeaderLength, 
TypeOfService=ipTypeOfService, Length=ipLength, 
Identification=UInt16, IpFlags=ipFlags, 
FragmentOffset=ipFragmentOffset, TimeToLive=Int8, 
Protocol=ipProtocol, Checksum=ByteStr2, 

55 	 IpSrc=ipAddress, IpDest=ipAddress, Options=ipOptions, 
Fragment=ipFragment, Data=ipData } 

ip 	FLOW 
HEADER { LENGTH=HeaderLength, IN-WORDS } 

60 	 NET-LAYER 
SOURCE=IpSrc, 
DESTINATION=IpDest, 
FRAGMENTATION=IPV4, 
TUNNELING 
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} 
CHILDREN { DESTINATION=Protocol } 

ipFragData FIELD 
5 	 SYNTAX 	BYTESTRING(1..1500) 

LENGTH 	"ipLength - ipHeaderLength * 4" 
DISPLAY-HINT "HexDump" 

ipFragment GROUP 
10 

	

	 OPTIONAL 	"$FragmentOffset != 0" 
f Data=ipFragData } 

15 

ipOptionCode FIELD 
SYNTAX INT(8) { ipRR(0x07), ipTimestamp(0x44), 

ipLSRR(0x83), ipSSRR(0x89) } 
DESCRIPTION 

"IP option code" 

ipOptionLength 	FIELD 
20 	 SYNTAX UNSIGNED INT(8) 

DESCRIPTION 
"Length of IP option" 

25 
	ipOptionData FIELD SYNTAX 
	EYTESTRING(0..1500) 

ENCAP 	 ipOptionCode 
DISPLAY-HINT "HexDump" 

ipOptions 	GROUP 
30 	 LENGTH 	"(ipHeaderLength * 4) - 20" 

{ Code=ipOptionCode, Length=ipOptionLength, Pointer=UIntB, 
Data=ipOptionData } 

2. 2 
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3.3 TCP 

Here is an example of the PDL for the TCP protocol: 

tcpPort FIELD 
5 	 SYNTAX UNSIGNED INT (16) 

LOOKUP FILE "TcpPort.cf" 

tcpHeaderLen FIELD 
SYNTAX INT(4) 

10 
tcpFlags FIELD 

SYNTAX BITSTRING(12) { fin(0), syn(1), rst(2), psh(3), 
ack(4), urg(5) ) 

15 	tcpData FIELD 
SYNTAX BYTESTRING(0 . 1564) 
LENGTH "($ipLength-($ipHeaderLength*4))-($tcpHeaderLen*4)" 

ENCAP 	tcpPort 
DISPLAY-HINT "HexDump" 

20 
tcp PROTOCOL 

SUMMARIZE 
"Default" : 

"TCP ACK=$Ack WIN=$WindowSize" 
25 	 DESCRIPTION 

"Protocol format for the Transmission Control Protocol" 
REFERENCE 	"RFC 793" 

::= { SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32, 
Ack=UInt32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags, 

30 	 WindowSize=UInt16, Checksum=ByteStr2, 
UrgentPointer=uInt16, Options=tcpOptions, Data=tcpData } 

tcp FLOW 
HEADER { LENGTH=HeaderLength, IN-WORDS 

35 	 CONNECTION { 
IDENTIFIER=SequenceNum, 
CONNECT-START="TcpFlags:1", 
CONNECT-COMPLETE="TcpFlags:4", 
DISCONNECT-START="TcpFlags:0", 

40 	 DISCONNECT-COMPLETE="TcpFlags:4" 
} 
PAYLOAD { INCLUDE-HEADER 
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort 

45 	tcpOptionKind FIELD 
SYNTAX UNSIGNED INT(8) { tcpOptEnd(0), tcpNop(1), 

tcpMSS(2), tcpWscale(3), tcpTimestamp(4) 
DESCRIPTION 

"Type of TCP option" 
50 

tcpOptionData FIELD 
SYNTAXBYTESTRING(0..1500) 
ENCAP 	tcpOptionKind 
FLAGS 	SAMELAYER 

55 	 DISPLAY-HINT "HexDump" 

tcpOptions GROUP 
LENGTH 	"($tcpHeaderLen * 4) - 20" 

::= { Option=tcpOptionKind, OptionLength=UInt8, 
60 	 OptionData=tcpOptionData } 

tcpMSS PROTOCOL 
::= { MaxSegmentSize=UInt16 
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3.4 HTTP (with State) 

Here is an example of the PDL for the HTTP protocol: 

httpData FIELD 

	

5 	SYNTAX BYTESTRING(1..1500) 
LENGTH 	"($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen * 4)" 
DISPLAY-HINT 	"Text" 
FLAGS 	 NOLABEL 

10 http PROTOCOL 
SUMMARIZE 

"$httpData m/AGETI-HTTPI-HEADI^POST/" : 
"HTTP $httpData" 

"$httpData m/A[Dd]atel^[Ss]erverl^[Ll]ast-[Mm]odified/" 

	

15 	 "HTTP $httpData" 
"$httpData m/^[Cc]ontent-/" : 

"HTTP $httpData" 
"$httpData m/^<HTmL>/" : 

"HTTP [HTML document]" 

	

20 	 "$httpData m/^GIFP : 
"HTTP [GIF image]" 

"Default" : 
"HTTP [Data]" 

DESCRIPTION 

	

25 	 "Protocol format for HTTP." 
{ Data=httpData } 

http FLOW 
HEADER { LENGTH=0 } 

30 

35 

CONNECTION { INHERITED } 
PAYLOAD { INCLUDE-HEADER, DATA=Data, 
STATES 

"SO: CHECKCONNECT, GOTO S1 
DEFAULT NEXT SO 

Si: WAIT 2, GOTO S2, NEXT S1 
DEFAULT NEXT SO 

LENGTH=256 } 

S2:  MATCH 
40 '\n\r\n' 900 0 0 255 0, NEXT S3 

'\n\n' 900 0 0 255 0, NEXT S3 
'POST /tds?' 50 0 0 127 1, CHILD sybaseWebsql 
'.hts HTTP/1.0' 50 4 0 127 1, CHILD sybaseJdbc 
'jdbc:sybase:Tds' 50 4 0 127 1, CHILD sybaseTds 

45 'PCN-The Poin' 500 4 1 255 0, CHILD pointcast 
't: 	BW-C-' 
DEFAULT NEXT S3 

100 4 1 255 0, CHILD backweb 

S3:  MATCH 
50 '\n\r\n' 50 0 0 0 0, NEXT S3 

'\n\n' 50 0 0 0 0, NEXT S3 
'Content-Type:' 800 0 0 255 0, CHILD mime 
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast 
't: 	BW-C-' 100 4 1 255 0, CHILD backweb 

55 

sybasewebsql 

DEFAULT NEXT SO" 

FLOW 
STATE-BASED 

60 sybaseJdbc FLOW 

sybaseTds 

STATE-BASED 

FLOW 
STATE-BASED 
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pointcast 	FLOW 
STATE-BASED 

5 backweb 	FLOW 
STATE-BASED 

mime 	 FLOW 
STATE-BASED 

10 	 STATES 
"SO: 	MATCH 

'application' 900 0 0 1 0, CHILD mimeApplication 
'audio' 900 0 0 1 0, CHILD mimeAudio 
'image' 50 0 0 1 0, CHILD mimeImage 

15 'text' 50 0 0 1 0, CHILD mimeText 
'video' 50 0 0 1 0, CHILD mimeVideo 
'x-world' 

DEFAULT GOTO SO" 
500 4 1 255 0, CHILD mimeXworld 

20 mimeApplication FLOW 
STATE-BASED 

mimeAudio 	FLOW 
STATE-BASED 

25 STATES 
"SO: MATCH 

'basic' 100 0 0 1 0, CHILD pdBasicAudio 
'midi' 100 0 0 1 0, CHILD pdMidi 
'mpeg' 100 0 0 1 0, CHILD pdMpeg2Audio 

30 'vnd.rn-realaudio' 100 0 0 1 0, CHILD pdRealAudio 
'way' 100 0 0 1 0, CHILD pdWav 
'x-aiff' 100 0 0 1 0, CHILD pdAiff 
'x-midi' 100 0 0 1 0, CHILD pdMidi 
'x-mpeg' 100 0 0 1 0, CHILD pdMpeg2Audio 

35 'x-mpgurl' 100 0 0 1 0, CHILD pdMpeg3Audio 
'x-pn-realaudio' 100 0 0 1 0, CHILD pdRealAudio 
'x-way.  

DEFAULT GOTO SO" 
100 0 0 1 0, CHILD pdWav 

40 mimeImage FLOW 

mimeText 

STATE-BASED 

FLOW 
STATE-BASED 

45 
mimeVideo FLOW 

STATE-BASED 

mimeXworld FLOW 
50 	 STATE-BASED 

pdBasicAudio FLOW 
STATE-BASED 

55 pdMidi 	FLOW 
STATE-BASED 

pdMpeg2Audio FLOW 
STATE-BASED 

60 
pdMpeg3Audio FLOW 

STATE-BASED 

pdRealAudio FLOW 
65 	 STATE-BASED 

pdWav FLOW 
STATE-BASED 

FLOW 
STATE-BASED 

70 pdAiff 
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As described herein, in order to derive the actual application used to 

communicate between a client and a server, all of the opening connection packets must 

be decoded, analyzed and interpreted. There could be several simultaneous and 

5 	overlapping applications executing over the network that are independent and 

asynchronous. 

Real-time application traffic classification thus includes several major challenges. 

First is to successfully classify each of the individual packets as they are seen on the 

network. The contents of the packets must be assembled into a unique flow signature to 

to 	retrieve future information about the conversational flow. A flexible and intelligent 

processing system must analyze the content of each and every packet exchanged between 

the client and server in the network. 

Parallel systems must operate together and simultaneously in order to meet the 

speed requirements of today's client/server networks. In addition, the design must be 

15 	flexible enough to adapt to future applications developed for client/server networks. 

Embodiments of the present invention are preferably completely implemented in 

application-specific integrated circuits (ASIC) or field programmable gate arrays 

(FPGA). A packet acquisition device is needed, such as a media access controller 

(MAC), or a segmentation and reassemble module. Such acquisition device is directly 

20 	connected to the pattern analysis and recognition engine and is the sole input data stream 

for all of the packets that are analyzed and classified to the application used. 

The packet parsing system preferably comprises two sub-parts, the pattern 

analysis and recognition engine (PAR), and the field extraction engine (FEE). The 

pattern analysis and recognition engine interprets each packet that is seen. Individual 

25 	fields in each packet are analyzed for specific patterns through a process of elimination 

until a particular pattern for the packet is found. 

The recognition patterns are stored in a pattern database that includes a sparsely 

populated three-dimensional array of patterns and links in the nodes. If a node does not 

include a link to a deeper level, pattern matching is declared complete. An instruction 
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will be found at that last node in the array, and it is sent to the field extraction engine 

along with the packet. 

The field extraction engine works on the packet contents using the extraction 

instructions from the pattern analysis and recognition engine. Each of the important 

5 	packet elements are removed and written into a flow signature generation buffer. Once 

all the operations requested of the field extraction engine are completed for this packet, 

the flow signature is set as complete, and a hash is generated to identify this flow 

signature. 

When the parsing system has successfully completed the task of deriving, 

io 	determining and extracting the required information, the remaining pieces of the packet 

and the generated flow signature for the packet are passed to the packet analysis system. 

All of the extracted packet elements are formulated into flow signatures that are 

stored in a unified flow signature buffer. Multiple flow signatures from all the packets 

being analyzed in parallel can be held in the one unified flow signature buffer. While a 

15 	packet flow signature exists in the unified flow signature buffer, many operations can be 

performed to further elucidate the identity of the application program content of the 

packet involved in the client/server conversational flow. 

The first step in the packet analysis process is to lookup the instance in the 

current database of known packet flow signatures. The lookup/update engine 

20 	accomplishes this task. Such engine uses the hash and remaining fields of the flow 

signature from the packet to determine if this packet flow record exists in the flow-entry 

database of the packet analysis system. Once the lookup processing has been completed 

the flag stating whether it is found or is new, is set within the unified flow signature 

buffer structure for this packet flow signature. 

25 	 After the packet flow signature has been looked up and contents of the current 

flow signature are in the database, the state processor can begin analyzing the packet 

payload to further elucidate the identity of the application program component of this 

packet. The exact operation of the state processor and functions performed by it will vary 

depending on the current packet sequence in the stream of a conversational flow. The 

30 	state processor moves to the next logical operation stored from the previous packet seen 
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with this same flow signature. If any processing is required on this packet, the state 

processor will execute instructions from it's database until there are either no more left or 

the instruction signifies processing. 

Since the sequence of packet exchanges between client and server is crucial in 

	

5 	deriving the application component of a conversational flow, the state processor 

functions must be programmable. Each new application on the network may have 

different characteristics for identifying the components within packets. The state 

processor functions take into consideration this variable method of communicating in a 

client/server network. If during the lookup process for this particular packet flow 

	

10 	signature, the flow is required to be inserted into the active database, the flow insertion 

and deletion engine is initiated. Such engine operates independently from the other two 

engines within the analysis system. The lookup update engine will determine whether the 

flow insertion and deletion engine is required to operate for a particular packet flow 

signature. 

	

15 	 Monitor embodiments of the present invention create and maintain classified 

traffic flows, process statistics for packets and flows, manage the traffic flow-entry 

database and cache, and perform state-based analysis of traffic flows. In order for the 

monitor to successfully classify traffic by application, there are several data elements 

required from each packet to be analyzed. Prior to sending a packet of information to the 

	

20 	monitor, all information must be formatted and sent along with the appropriate packet 

content. The monitor must specifically receive each packets in a conversational flow in 

the order that they are exchanged between the client and the server. The order is crucial 

for proper state based classification. More applications running over data networks use 

complex methods of classifying traffic through the creation of multiple states. The 

	

25 	creation of the state based traffic classification causes the need for managing and 

maintaining learned states from traffic deduced in the network. 

In preferred embodiments of the present invention, the flow lookup/update 

engine, flow insertion and deletion engine, state processor, cache, and unified memory 

controller all operate in parallel. 

30 	 Fig. 15 shows how an embodiment of the network monitor 300 might be used to 

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets 
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from a connection point 121 on network 102 so that all packets passing point 121 in 

either direction are supplied to monitor 300. Monitor 300 comprises the parser sub-

system 301 which determines flow signatures and analyzer sub-system 303 which 

analyzes the flow signature of each packet. A memory 324 is used to store the database 

5 	of flows which are determined and updated by monitor 300. A host processor 1504, 

which might be any processor, for example, a general purpose processor, is used to 

analyze the flows in memory 324, these flows obtained via a host interface in the 

analyzer subsystem, (see Fig. 11). As is conventional, host processor 1504 includes a 

memory, say RAM, shown as host memory 1506. In addition, the host might contain a 

10 	disk. In one application, the system can operate as an RMON probe, in which case the 

host processor is coupled to a network interface card 1510 that is connected to the 

network 102. 

The preferred embodiment of the invention is supported by an optional Simple 

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one 

15 	would, for example, implement an RMON probe, where a network interface card is used 

to send RMON information to the network. Commercial SNMP implementations also 

are available, and using such an implementation can simplify the process of porting the 

preferred embodiment of the invention to any platform. 

In addition, MD3 Compilers are available. An MD3 Compiler is a tool that greatly 

20 	simplifies the creation and maintenance of proprietary MIB extensions. 

Although the present invention has been described in terms of the presently 

preferred embodiments, it is to be understood that the disclosure is not to be interpreted 

as limiting. Various alterations and modifications will no doubt become apparent to 

those or ordinary skill in the art after having read the above disclosure. Accordingly, it is 

25 	intended that the claims be interpreted as covering all alterations and modifications as 

fall within the true spirit and scope of the present invention. 
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