3/30/2019 Dr. Dobb's | How Do | Create a Signed Castanet Channel? | January 01, 1998

Dr.Dobb’s

THE WORLD OF SOFTWARE DEVELOPMENT

How Do I Create a Signed Castanet Channel?
Source Code Accompanies This Article. Download It Now.

e javaqa.txt

This month, Cliff addresses centralized systems administration using Marimba's Castanet 2.0
channel (and JavaSoft's HotJavaBean) for distributing secure, signed content to users.

January 01, 1998
URL:http://www.drdobbs.com/jvm/how-do-i-create-a-signed-castanet-channe/1844 10474

Cliff, vice president of technology at Digital Focus, can be contacted at cliffbdf@ digitalfocus.com. To submit
questions, check out the Java Developer FAQ web site at http://www.digitalfocus.com/faq/.

For years, information systems managers and administrators have struggled to maintain software on client
machines. The proliferation of applications and the use of computers to support every business task -- combined
with the accelerated pace of updated software releases -- has made managing an organization's computing
infrastructure a Herculean task. What is needed is centralized administration.

The idea of centralized administration is not new. Software has long been available in server-based or server-
administered versions. However, most administration techniques used in the past have been proprietary, and not
applicable as general solutions. Push technology, which is represented by a collection of products that
automatically distribute arbitrary content to clients in a robust and application-independent way, has the
potential to solve the client software administration problem. This month, I'll reexamine Castanet, the Java-
centric (but not limited to Java) push technology from Marimba (http://www.marimba.com/), which I previously
looked at in "How Can I Create a Push Java Channel" (DD.J, May 1997). This time, I'll examine how to create a
signed Castanet channel for distributing signed and trustworthy content to users.

Distributing Real Applications

Since its release, Java's primary deployment platform has been browsers. Browsers, however, are best used for
what their name suggests -- browsing. If you have a business need for an application, you don't need to browse -
- you need an application that installs and deploys to run on demand. Browsers are not designed for this.

Recently released versions of browsers do incorporate installation features. Netscape, for example, has
"Netcaster," which is actually Castanet repackaged inside of the Netscape browser. Thus, when you develop a
Castanet channel, you are also developing a Netcaster channel. Internet Explorer has a similar technology for
content subscription.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

http://www.drdobbs.com/article/jvm/sourcecode/how-do-i-create-a-signed-castanet-channe/30201245
http://www.drdobbs.com/
http://www.drdobbs.com/jvm/how-do-i-create-a-signed-castanet-channe/184410474
https://www.docketalarm.com/

3/30/2019 Dr. Dobb's | How Do | Create a Signed Castanet Channel? | January 01, 1998

browsers and push software provide security features that limit what remotely obtained programs can do.
Arguably, Java provides the most secure method for running remote applications -- a Java-enabled browser will
not allow a Java applet to access the local disk drive, where sensitive information might be stored. More recent
versions of browsers relax this restriction if the applet is digitally signed, providing traceability to the applet's
source. Castanet now also allows you to digitally sign a channel and permit a signed channel to have full-
featured access to the local system.

For business applications, the best way to view Castanet is as a technology for deploying highly scalable
applications, with centralized update and administration capabilities. Using this technology, and its new content
signing and SSL transmission features, you can now create full-featured client applications that are trustworthy,
secure, and up to date -- regardless of whether or not they traverse the Internet. This is an ideal solution for
intranet/extranet requirements, as well as public-access applications via the Internet.

(Castanet technology actually goes beyond this. You can, for example, use the UpdateNow API to embed
Castanet into your software to create self-updating products.)

Castanet Overview

Castanet consists of a client called the "tuner" and a server called the "transmitter." Channels are published by an
administrator on a transmitter. A workstation that has a tuner installed can subscribe to any number of channels
on any number of transmitters. The tuner updates the channel's content, which may consist of Java code, media,
and other files, including binary code (signed channels can load native methods supported by DLLs). The tuner
presents a user interface for managing channels. The tuner interface is set apart from the interface constructed by
any given channel (if the channel even has a user interface). This is unlike a browser, which imposes a user
interface frame around any application that runs within it. Channels construct their own frames if and when they
need them.

When a channel is published, the administrator specifies default update behavior for the channel. Depending on
how the channel is programmed, it may or may not adhere to what the administrator specifies, since the update
behavior can be controlled by the actual channel application code. Users also have control over the channel's
update behavior. When the tuner determines that a channel needs to be updated, it automatically notifies the
transmitter which publishes the channel and requests an update. The details of the protocol are completely
hidden from the application code, and may occur even when the channel is not running. When the update
process completes, the channel may be notified that there is new content, and it has the opportunity to specify
how the content should be installed -- immediately, after a channel restart, and so on.

Castanet 2.0 Features

Release 2.0 of Castanet incorporates the RSA BSafe library for code signing and data encryption. Thus, Castanet
now lets channel administrators digitally sign a channel. Administrators can also specify that the channel content
be distributed via an encrypted SSL stream, providing a highly secure method of deployment that can easily
traverse a public network without the risk of interception or forgery. To develop a channel, you don't have to do
anything different than before -- the new functionality does not affect the development process or the channel
APL. It is all handled through the publish tool and transmitter protocol.

If you don't want to, you do not have to sign your channels or encrypt their downloads. The 2.0 features are
optional capabilities. However, the advantages are enormous. If a channel is signed, Castanet allows an
application to do all the things a traditional installed application would do, including reading from or writing to
any part of the client's disk, and accessing any host on the network. This is because it is presumed that a signed
channel can be trusted, because the creator of the channel can be identified via the digital certificate used to sign
the channel, and the channel can be proven to have been unaltered since creation. At the present time, channel
capabilities are either all or nothing -- if a channel is signed, it can do anything. A future release of Castanet will

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3/30/2019 Dr. Dobb's | How Do | Create a Signed Castanet Channel? | January 01, 1998

To illustrate channel signing, I'll implement a signed channel that does something an unsigned channel cannot --
access arbitrary URLs. To do this, I will use Javasoft's HotJava HTML-rendering Bean.

Applications that Access the Web

Most of today's business applications must be able to access the company's web site. Since many companies
now use the Web to publish critical business information, applications must be able to get to this information --
and be able to display it for users.

This generally means operating the application alongside or within a browser; hence, many applications are
being developed as web applications, using web protocols (like CGI) or web-deployable application languages
(like Java). In this mode, web data in HTML or any other web-enabled format can be displayed side-by-side
with the application.

The disadvantage of this practice is that a browser is not a very good application platform. However, if you want
to view web data, you are stuck with it -- or are you?

Many individuals and companies have attempted to create HTML-rendering Java components, which can bring
the Web to an application. By embedding an HTML renderer in an application, the application can allow users to
view company documents published on the company's web site, or even view data retrieved from a database, but
rendered via HTML. Further, the application can then easily control the browsing session, and even provide
users with a customized selection of URLs to view. The viewing window can be placed anywhere within the
Java application, just like any other component.

Creating such a component is a big job. It is not too hard to write an HTML 2.0 renderer. However, writing a
full-featured renderer that can display anything a webmaster might throw on a web site is another matter. The
HotJavaBean developed by Javasoft is such a component -- it can handle full HTML 3.2, with style sheets,
applets, and frames. Since it is the same component used in the HotJava browser, anything HotJava can do, the
HotJavaBean can do. It is the perfect answer for an application that primarily needs to access business data, but
also access a web site. HotJavaBean is only 600 KB -- practically nothing for this capability set -- and it's very
manageable in the context of a Castanet channel.

HotJavaBean shows that by deploying an application via Castanet, you do not have to forego the web
capabilities of a browser. Companies are generally afraid of the Internet for business applications -- the security
risks are complex. However, they know that today they need web access, but in a controlled way. With Castanet
and the HotJavaBean, you can create secure, web-enabled applications that primarily perform a business
function, but can access web sites as required by the application -- and no more.

BigCorporateApp and LittleBrowserWindow

My demonstration program is a Castanet channel that opens a window on the screen, and allows a user to select
from one of a small set of web locations to view. (These locations may be file URLs on a user's own machine, if
desired.) Selection is made via a drop-down choice list, hardwired into the program. When the user makes a
selection, the program fetches that content and displays it in a web viewing window, implemented with the
HotJavaBean component.

I won't go into all the details of the HotJavaBean component, except to show you how to instantiate and do some
very basic things with it. It is an interesting component in its own right, and I encourage you to study it.

The HotJavaBean is a JavaBean, which means that it can be added to the component library of a bean-capable
development tool to build applications. In most cases, you would create an application using a visual builder
tool, and place the HotJavaBean component using that tool. You would then hook its event sources to other

DOCKET -

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3/30/2019 Dr. Dobb's | How Do | Create a Signed Castanet Channel? | January 01, 1998

what to do when the user clicks on a hyperlinked URL in the HotJavaBean window -- ignore, allow, or disallow
it.

You do not have to use the component as a Bean, however. Since I cannot publish a development environment
with this article, I've decided to simply instantiate the component the way you would instantiate any component:
I simply create one using the new operator, and call its methods directly. I could write event adapters, but that is
getting out of the scope of this article.

My main class, BigCorporateApp, is a Castanet application that implements the marimba.channel Application
interface, and can be published as a Castanet channel (see Listing One). [want my application to come up in a
Java Frame. I also want my application to use default Castanet policies for updating itself. The easiest way to
accomplish these objectives is to extend the marimba.channel ApplicationFrame class. This is a Java AWT
frame that implements marimba.channel Application in a standard way.

Castanet is JDK 1.1 compatible, so you can do anything you would do in a JDK 1.1 application. You are also
subject to the same JDK 1.1 event model restrictions. The AWT decides which event model you are using, on a
component-by-component basis, depending on whether the component has any listeners registered. Basically, if
a component has at least one 1.1-style listener registered, the component is presumed to use the 1.1 event model;
otherwise, the 1.0 model is used.

The term "Castanet application" is a bit of a misnomer. In Java parlance, an application often connotes that the
program has a main routine. (I use the term to represent a superset of programs that are standalone as well as
applets.) However, a channel is actually an object that is instantiated by the tuner, with a preestablished
environment. This environment includes a context called an "Application Context," which is the link between
the channel program and tuner environment. It also includes a security manager which safeguards the local
system. Thus, your channel cannot set its own security manager because the tuner has already set one.

A Castanet tuner calls an application's start() method after it constructs and initializes the application object. At
this point, the application has an ApplicationContext. In the start() method for this demo, I first add a handler to
handle the window-close event (triggered when the user clicks on the "X" of the frame to close the frame), and
then I do two things:

¢ Obtain the URL that the user last selected during the previous session.
e Set up the GUI components of this application.

The only GUI control is a Choice selector, which lists the allowable URLSs that the user can select from. When
one of these is selected, the program saves it in a special data directory for the channel, then causes the HotJava
browser Bean to fetch the content at that URL and display it. Note that the list of allowable URLSs is hard-coded
into the program. They could have been downloaded as part of the content of this channel, in which case the
program would have to parse the file containing the list and construct the choice control from that. I chose to
hard-code it for simplicity here.

I instantiate the HotJava bean and add it to the frame, saving its reference in the variable /littleBrowser Window.
The window should be sized appropriately for its purpose. I have chosen to make use of the frame's default
layout policy, and I placed descriptive text to the right of the browsing window. Imagine if instead this label area
was occupied with data retrieved from a database, or other active application data. The browsing function would
then be mostly ancillary. It is still an important part of the overall application -- but not so important that it
justifies embedding the application itself inside of a browser!

Since users can select on any hyperlinks within the documents displayed within the browser component,
webmasters should be careful. Of course, your firewall may restrict outside access. You might have to build
proxy specification into the channel if you have a proxy (you can do this by giving end-users a control for
setting the proxy properties of the HTML renderer).

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

http://www.drdobbs.com/article/9801n.htm#l1
https://www.docketalarm.com/

3/30/2019 Dr. Dobb's | How Do | Create a Signed Castanet Channel? | January 01, 1998

Channel content can be transmitted encrypted using SSL. Current implementations of the SSL protocol require
that servers, and optionally clients, possess a digital certificate of a type recognized by the server. Marimba has
arranged with Verisign to provide its server certificates. When you start the transmitter, it displays a dialog
labeled "Enable Secure Connections." On this dialog there is a button "Request Certificate." If you click this, the
transmitter tool guides you through the steps of getting a certificate, including key generation and launching
your browser to visit Verisign's web site. The dialog also has a space for entering a password for encrypting the
private key returned by Verisign, so that someone cannot steal it from your computer.

One problematic item of information you will have to provide when getting a transmitter certificate is your
host's domain name. In addition, you need to request the certificate from the same host that will be used to host
the transmitter you are requesting the certificate for. If you later move the transmitter to another host, you will
need to obtain a new certificate. (There is no technical reason for this -- it is merely a matter of certificate
providers colluding to sell more certificates.)

The transmitter certificate lets you run SSL. To sign a channel, you need a signing certificate. This is another
kind of certificate you need to obtain from Verisign. Logically, there is no reason why the same certificate could
not be used. In fact, Marimba has implemented a test mode, in which you can use your transmitter certificate to
sign your channels to see if they work, before getting a separate signing certificate (at a cost of about $400).
Again, certificate providers have decided to make server certificates (such as the transmitter certificate) and
signing certificates different, by choice, so that you have to buy more of them. Granted, there is some additional
information in each kind of certificate, but there is no reason why one certificate could not in theory be used for
both purposes.

Publishing the Application

You can publish either the entire channel as a signed channel, or you can sign just part of it. Signing part of it is
accomplished by putting the portion to sign in a subdirectory named "signed" and selecting the "Only signed
subdirectory" option in the Publish tool's Security tab; see Figure 1.

The reason you might want to publish only part of a channel is because some of the content of a channel might
be dynamically generated (portions added by plug-ins, for instance), and this part cannot be signed because the
signature needs to be calculated at the moment of publishing. When you publish the channel, you need to decide
if the channel will run in the normal restricted mode on the client, according to the default restrictive security
policy, or if it will be allowed to run unrestricted. (In the future more granularity may be added to this selection.)
Selecting "ALL" chooses the latter, and the channel will then be able to read and write any files on the user's
disk, access any network host, and so on -- provided the channel's digital signature can be authenticated.

The source code for the completed browser is available electronically from DDJ (see "Resource Center," page 3)
and Digital Focus (http://www.digitalfocus .com/ddj/code).

Conclusion

At Digital Focus we have used Castanet to deploy mission-critical applications for clients, accessing CORBA,
JDBC, object databases, and various other kinds of middleware. Castanet is the most robust and powerful way to
deploy Java applications today, and we view it as a strategic component of the solutions we provide. The new
features are a major step in addressing corporate security concerns, and as the Java security model matures,
Castanet is expected to follow it. Full-powered applications, remotely administered, automatically deployed,
secure, and always up to date -- what more could you ask for?

DDJ

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

http://www.drdobbs.com/showArticle.jhtml?documentID=ddj9801n&pgno=2
https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

