
Squid and ICP: Past, Present, and FutureDuane Wesselswessels@nlanr.netAugust 6, 1997AbstractHierarchical Web caching has become prevalent throughout the Internet. The popular Squid softwarehas played an important role. We present a short history of Squid and the Internet Cache Protocol, ando�er our thoughts regarding its future evolution.1 IntroductionEver since the World-Wide Web rose to popularity around 1994, much e�ort has focused on reducing latencyexperienced by users. Sur�ng the Web can be slow for many reasons. Server systems become slow whenoverloaded, especially when hot spots suddenly appear. Congestion can also occur at network exchangepoints or across links, and is especially prevalent across trans-oceanic links that often cost millions of dollarsper month.Caching has proven a useful technique for improving end user experienced latency on the Web. The fun-damental concept is the intermediate storage of copies of popular Web documents close to the end users.Caching is e�ective because many Web documents are requested (much) more than once[1]. Web browsershave local disk caches because individuals often browse the same pages repeatedly. Additionally, there islikely overlap in the set of documents requested by a large group of users. These users can bene�t from ashared network cache.Taking the proxy caching concept one step further, we might like to connect sets of caches together in ahierarchy. A group of Web caches can bene�t from sharing another cache in the same way that a group ofWeb clients bene�t from sharing a cache. In a simple cache hierarchy, a set of child caches share a commonparent cache. Child caches forward to their parents requests for objects they do not have.The Internet Cache Protocol (ICP) provides support for informed selection of a next-hop cache, includingimplicit indications of network congestion. Although the diagnostic functionality of ICP may be useful,simple cache topologies do not really require ICP to operate; other approaches can help recognize and dealwith network failures. ICP is especially suited to enabling sibling relationships (i.e. queries between pairsof child caches). A group of sibling caches e�ectively acts as a large, distributed cache, a particularly usefulcon�guration when no organization is willing to operate a parent cache for a large community with no explicitrevenue stream for it.The di�erence between sibling and parent relationships is in their role during cache misses: parents can helpresolve misses, but siblings must not. Caches should not forward requests to sibling caches unless they knowthe sibling has the desired object. Without a mechanism to ascertain whether a cache has a given document,sibling relationships would not even be possible. ICP provides this functionality.In this article we assume the reader is already familiar with HTTP/1.0[2] and at least aware of HTTP/1.1[3].For additional information on ICP, please see our Internet Drafts (soon to be RFCs)[4, 5] and other work[6].
1

GUEST TEK EXHIBIT 1015
Guest Tek v. Nomadix, IPR2019-01191

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 Squid2.1 HistorySquid was developed as a follow-on to one component of the Harvest project[7], the latter e�ort originallyfunded in 1994 by the U.S. Advanced Projects Research Agency (ARPA). Harvest focused on developingtools for e�ective use of Internet information, with emphasis on indexing and searching the Web. The projectteam developed a multi-faceted architecture for e�cient cataloging and dissemination of popular information.One architectural component aimed at minimizing end user response time during Web navigation was anobject cache, a platform strategically placed within the network topology that would store copies of populardocuments to save users from having to wait for transmission of the document from the original source.The object cache component was named Harvest cached . The other Harvest components (the gatherer andthe broker) were quite popular as well, and are still being used in a number of places. In fact, a group ofvolunteers has emerged to continue development of that code.At that time, the only other Web caching (sometimes also called proxy) software in widespread use was theCERN HTTP Daemon[8]. The Harvest cache had two features that made it an attractive alternative toCERN's proxy. First, while CERN used a separate process for each request, Harvest serviced almost allproxy requests in a single process. The exception is FTP transfers, which are handled in an external processdue to the complexity of the FTP protocol. Second, the Harvest cache software supported the notion ofcache hierarchies.The single-process nature of Harvest was attractive because many cache operators saw their machines slowto a crawl during busy periods. The operating system would spend a lot of time and resources forkingand scheduling new processes, a price paid for the simplicity of the CERN server design. Harvest took thistradeo� in the opposite direction. As a single process, it has to worry about many operating system leveltasks, in particular memory and �le descriptor management.Note, for the remainder of this article, unless stated otherwise, Harvest refers to the cache component of theHarvest research project. It does not in any way refer to the commercial software, which is also known asNetCache.In late 1995 and early 1996, many members of the Harvest project moved on to industry jobs, bringing theproject to a premature close. At the same time, Hans-Werner Braun, k cla�y, and Michael Schwartz receivedU.S. National Science Foundation grant funding for their proposal to deploy a prototype Web caching systemwithin the U.S. In March of 1996 I went to work for k and Hans-Werner on this project.Shortly thereafter, Peter Danzig, primary technical architect for the original Harvest cache software itself,formed a company to sell a commercial version of the Harvest cache. In order to support the recently NSF-funded cache deployment and research project, we needed to have open and publicly available Web cachesoftware. Since I had already worked for a year on the Harvest project, it made the most sense to take thelast pre-commercial version of Harvest and enhance it to support research investigations. To avoid confusionbetween these two derivations of the Harvest software, we named our software Squid. We have spent the lastyear incorporating code contributions, suggestions, new feature requests, patches, error reports and otherfeedback into the Squid software.After a few months of beta testing, the �rst o�cial version of Squid (1.0.0) was released in July of 1996.Some of the more signi�cant additional features and enhancements are described below.2.1.1 Support for If-Modi�ed-SinceThe Harvest research code does not support If-Modi�ed-Since (IMS) requests. IMS requests are used whenclients or caches have a copy of an object and want to make sure it is the most up-to-date version. Harvestsimply ignored the IMS header which caused user agents to always receive full replies. The primary reasonthat Harvest did not support IMS is because the last modi�cation time is not kept as metadata in memory.To implement this, Squid needs to parse the reply headers as the object was read in from disk. Much of theinitial code was written by Henrik Nordstrom. 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

In Squid 1.0, IMS is only supported between Squid and the client. Squid forwards IMS headers for cachemisses, and provides the client with the corresponding reply, but does not update its own state with infor-mation from any Not Modi�ed replies. Squid 1.0 also never initiates an IMS request on its own.2.1.2 Public and Private objectsHarvest 1.4 treats all objects it knows about as public. Multiple clients can simultaneously receive data asan object is being retrieved. Although often a huge savings for large objects, under certain conditions thisapproach might allow a second client to receive something that should have been given only to the �rst.For example, consider a request that includes some authentication information. Because this data requiresauthentication, other clients should not have access to it from the cache. Instead they should separatelyauthenticate themselves with the origin server.The implementation decisions allowing this vulnerability are:� A single hash table is used to index all objects in the cache, including pending objects.� The hash table key is simply the URL for GET requests.One reason for keying on only the URL is that the cache uses the URL extracted from an ICP reply to lookup the pending request and continue the thread of execution. During the time interval between sending theICP queries and receiving the replies, additional clients could attach themselves to the reply stream. Thisis a problem because the reply headers may indicate that the object should only be given to the �rst client.Harvest could likely have avoided this problem by using a separate hash table for pending requests, oralternatively by using the Reqnum �eld of the ICP message. In fact, Harvest always set the Reqnum �eld tozero in ICP replies.Squid implements the Reqnum �eld properly and uses it to support both private and public objects. Privateobjects are accessible only to the client originating the request, and public objects are available to all clients.Squid indexes objects in the storage hash table with a key that includes an integer number prepended tothe URL string. Squid places this number into the Reqnum �eld of outgoing ICP query messages, and apeer must use the same Reqnum value in its reply. This technique allows Squid to use a cache key so thatpending requests can be located from the ICP replies, but not by new clients. All requests start out asprivate, and remain so during the peer selection stage. Upon receipt of the HTTP reply headers, the objectwill become public, unless the reply indicates otherwise. Only public objects remain in the cache; privateones are removed immediately after transfer. If Squid is con�gured with an old Harvest peer (which sets theReqnum �eld to zero), then the private object feature must be disabled, because it will be unable to locatethe pending requests from Harvest's ICP replies.2.1.3 Metadata reloading in the backgroundHarvest 1.4 does not serve any requests until it has rebuilt the cache metadata from the swap log �le.Shutting the cache down cleanly will allow a much faster reload upon restarting the cache, similar to thebene�t of fsck on Unix �lesystems. Depending on the cache size, a fast reload could take anywhere fromone to ten minutes. A slow reload could take hours. In either case, it is unrealistic to deny service to endusers while the cache rebuilds.Henrik Nordstrom implemented a background processing task to reload the swap log while the cache wasserving requests. During this phase, Squid gives select() a zero timeout value. Upon a timeout, Squidprocesses a small number of lines from the swap log.2.1.4 New Access Control schemeWith Harvest 1.4, the only access control (ACL) mechanism is the client's IP address. While working onSquid, it quickly became apparent that administrators wanted a rich, exible set of access controls. We3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

implemented the following additional access controls:� Request method� Access protocol� Destination domain name� Destination IP address� Port number� Regular expression matching the URL-path.� Time of dayHowever, Squid never postpones requests to make access control decisions. Speci�cally, the destination IPaddress is only available if the URL hostname is already present in the IP cache. Squid never delays the ACLdecision to wait for a DNS lookup to complete. If the URL contains an IP address instead of a hostname,Squid 1.0 does not make a reverse DNS lookup and compare the answer against the destination domainname.2.2 PresentThe �rst version of Squid 1.1 was released in December 1996. The most recent (1.1.14) was released July14, 1997. We describe its new features below.2.2.1 Refresh Rules and If-Modi�ed-SinceSquid 1.0 removes objects when they expire. Squid 1.1 keeps expired objects on disk and issues If-Modi�ed-Since requests for them. This can result in a signi�cant bandwidth savings since the origin server doesn'tneed to retransmit the entire object. Unfortunately, IMS does less to reduce latency than bandwidth, becausethe origin server must still be contacted.2.2.2 URL RedirectorSeveral Squid users in the community requested the ability to rewrite requested URLs or perform HTTPredirection. Rather than implement this feature in Squid itself, where an elegant solution satisfying everyonewould be di�cult, we chose to make it an external process. If con�gured to use redirection, Squid sendsevery request to one of the redirector processes. The redirector program must be supplied (i.e. written) bythe administrator. A redirector process reads URLs on stdin, possibly changes the request, then writes theresult to stdout. Squid reads the redirector output and modi�es the request data structures.One possible application of the redirector feature is additional access controls. If the redirector program hasaccess to a list of forbidden URLs, it can redirect the request to a page describing exactly why the originalrequest could not be allowed.2.2.3 Reverse IP Lookups, client hostname ACLs.Squid 1.1 includes support for access controls based on client domain name, previously impossible becauseSquid did not do reverse DNS lookups. Much like the IP cache, Squid caches reverse lookup results inthe FQDN cache. We note that the domain lookups will incur some additional delay and we thus do notnecessarily recommend their use. 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.2.4 Cache directory structure changesThe previous version of Squid used 100 subdirectories under each cache dir . For large caches (e.g., morethan 10^6 objects) this design would involve thousands of �les per subdirectory. Such large directories canpotentially cause unnecessary delays during �lesystem operations.A patch from Mark Treacy modi�ed Squid to use a two-level directory structure, defaulting to 16 �rst-leveldirectories and 256 second-level directories. In this con�guration, a million objects would lead to a moresensible 256 objects per subdirectory.2.2.5 Network Probe DatabaseBoth Harvest and Squid allow requests to be routed based on the hostnames from URLs. However, there area few problems with this approach. First, it requires a lot of manual con�guration. The cache con�guration�le must list each domain with each peer; it is only practical to list top-level-domains (TLDs). In addition,domain restrictions don't work for URLs with IP addresses instead of fully quali�ed domain names.The biggest problem is that the domain names are unrelated to network topology, apart from the roughmapping provided by the two-letter country code TLDs. These national TLDs can frame only a very coarseWeb routing system, and international (top-level) domains, e.g., .com, .net, are even worse because theyhave no bearing at all to topology. For these reasons, any routing scheme based on domain names isinauspicious; like any other routing scheme, e�ective cache-level routing needs knowledge of the underlyingnetwork topology.Squid 1.1 has an optional feature to acquire topology data with ICMP. When the query icmp option isenabled, Squid builds up a table of hop counts and round-trip times for the origin servers it encounters.Squid aggregates this data by IP network under the assumption that two hosts on the same local networkwill have similar values. Via an external process, Squid caches send and receive ICMP echo requests to serverhosts at a rate of no more than once per �ve minutes. Squid then includes the results of these network probemeasurements in ICP reply messages. The cache collecting ICP replies uses the network measurements toselect the best peer, ideally the one most toward the origin server.As a cache collects network measurements from its peers, it adds them to its local table, learning over timewhich peers are good choices for which sources. The cache will be closer to some sources than any of itspeers are; for these it can simply fetch directly and avoid the ICP querying. This approach complicates thepeer selection algorithm, since instead of remembering a single best parent, Squid must now remember a listof possible parents until all ICP replies arrive.2.2.6 Round-Robin IPSquid's IP cache stores all addresses returned by the gethostbyname() function call. However, Squid 1.0only uses the �rst address. Popular Web sites such as Microsoft require many servers, so an address lookupon www.microsoft.com returns 15{20 IP addresses. If the server at the �rst address fails, Squid 1.0 wouldnever try any of the other addresses. This behavior is �xed in version 1.1. It cycles through all availableaddresses and deletes addresses for which TCP connections fail.2.2.7 Neighbor features (neighbor type domain, miss access).When building a mesh of caches, having the same peering relationship (parent vs. sibling) for all requestsmight not be desirable. Consider, for example, a pair of upper-level caches in two di�erent countries. CountryA might want to forward requests for country B requests to the cache running in country B, in vice-versa. Inother words, cache B would be a parent for B domains, and cache A would be a parent for A domains. Butwhat about other requests? The cache administrators might want to leverage the fact that they are alreadypeering with each other.When some cache operators in Europe were building a high-level cache mesh, they were thwarted by the5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

