
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. Y, MONTH 2003 1

Abstract—Context-based Adaptive Binary Arithmetic Cod-
ing (CABAC) as a normative part of the new ITU-T | ISO/IEC
standard H.264/AVC for video compression is presented. By
combining an adaptive binary arithmetic coding technique
with context modeling, a high degree of adaptation and redun-
dancy reduction is achieved. The CABAC framework also in-
cludes a novel low-complexity method for binary arithmetic
coding and probability estimation that is well suited for effi-
cient hardware and software implementations. CABAC sig-
nificantly outperforms the baseline entropy coding method of
H.264/AVC for the typical area of envisaged target applica-
tions. For a set of test sequences representing typical material
used in broadcast applications and for a range of acceptable
video quality of about 30 to 38 dB, average bit-rate savings of 9
to 14% are achieved.

Index Terms—CABAC, entropy coding, context modeling,
binary arithmetic coding, H.264, MPEG-4 AVC.

I. INTRODUCTION

ATURAL camera-view video signals show non-
stationary statistical behavior. The statistics of these

signals largely depend on the video content and the acquisi-
tion process. Traditional concepts of video coding that rely
on a mapping from the video signal to a bitstream of vari-
able length-coded syntax elements exploit some of the non-
stationary characteristics but certainly not all of it. More-
over, higher-order statistical dependencies on a syntax ele-
ment level are mostly neglected in existing video coding
schemes. Designing an entropy coding scheme for a video
coder by taking into consideration these typically observed
statistical properties, however, offers room for significant
improvements in coding efficiency.

Context-based Adaptive Binary Arithmetic Coding
(CABAC) is one of the two entropy coding methods of the
new ITU-T | ISO/IEC standard for video coding,
H.264/AVC [1],[2]. The algorithm was first introduced in a
rudimentary form in [7] and evolved over a period of suc-
cessive refinements [8]−[17]. In this paper, we present a de-
scription of the main elements of the CABAC algorithm in
its final, standardized form as specified in [1]. Unlike the
specification in [1], the presentation in this paper is in-

Manuscript received May 21, 2003.
The authors are with the Fraunhofer Institute for Communications –

Heinrich Hertz Institute, Berlin, Germany.

tended to provide also some information on the underlying
conceptual ideas as well as the theoretical and historical
background of CABAC.

Entropy coding in today’s hybrid block-based video cod-
ing standards such as MPEG-2 [3], H.263 [4], and MPEG-4
[5] is generally based on fixed tables of variable length
codes (VLC). For coding the residual data in these video
coding standards, a block of transform coefficient levels is
first mapped onto a one-dimensional list using an inverse
scanning pattern. This list of transform coefficient levels is
then coded using a combination of run-length and variable
length coding. Due to the usage of variable length codes,
coding events with a probability greater than 0.5 cannot be
efficiently represented and hence, a so-called alphabet ex-
tension of “run” symbols representing successive levels
with value zero is used in the entropy coding schemes of
MPEG-2, H.263, and MPEG-4. Moreover, the usage of
fixed VLC tables does not allow an adaptation to the actual
symbol statistics, which may vary over space and time as
well as for different source material and coding conditions.
Finally, since there is a fixed assignment of VLC tables and
syntax elements, existing inter-symbol redundancies cannot
be exploited within these coding schemes.

Although, from a conceptual point-of-view, it is well
known for a long time that all these deficiencies can be most
easily resolved by arithmetic codes [23], little of this
knowledge was actually translated into practical entropy
coding schemes specifically designed for block-based hy-
brid video coding. One of the first hybrid block-based video
coding schemes that incorporate an adaptive binary arithme-
tic coder capable of adapting the model probabilities to the
existing symbol statistics was presented in [6]. The core of
that entropy coding scheme was inherited from the JPEG
standard (at least for coding of DCT coefficients) [25], and
an adjustment of its modeling part to the specific statistical
characteristics of typically observed residual data in a hy-
brid video coder was not carried out. As a result, the per-
formance of this JPEG-like arithmetic entropy coder in the
hybrid block-based video coding scheme of [6] was not
substantially better for inter-coded pictures than that of its
VLC-based counterpart.

The first and – until H.264/AVC was officially released –
the only standardized arithmetic entropy coder within a hy-
brid block-based video coder is given by Annex E of H.263
[4]. Three major drawbacks in the design of that optional

Context-Based Adaptive Binary Arithmetic Coding
in the H.264/AVC Video Compression Standard

Detlev Marpe, Member, IEEE, Heiko Schwarz, and Thomas Wiegand

N

Realtime Adaptive Streaming LLC
Exhibit 2012

IPR2019-01035
Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. Y, MONTH 2003 2

arithmetic coding scheme can be identified. First, Annex E
is applied to the same syntax elements as the VLC method
of H.263 including the combined symbols for coding of
transform coefficient levels. Thus, one of the fundamental
advantages of arithmetic coding that a non-integer code
length can be assigned to coding events is unlikely to be ex-
ploited. Second, all probability models in Annex E of H.263
are non-adaptive in the sense that their underlying probabil-
ity distributions are assumed to be static. Although, multiple
probability distribution models are defined and chosen in a
frequency-dependent way for the combined symbols of run,
level and “last” information, this conditioning does not re-
sult in a significant gain in coding efficiency, since an adap-
tation to the actual symbol statistics is not possible. Finally,
the generic m-ary arithmetic coder used in Annex E in-
volves a considerable amount of computational complexity,
which may not be justified in most application scenarios,
especially in view of the typically observed, small margins
of coding gains.

Entropy coding schemes based on arithmetic coding are
quite frequently involved in the field of non block-based
video coding. Most of these alternative approaches to video
coding are based on the discrete wavelet transform (DWT)
in combination with disparate methods of temporal predic-
tion, such as overlapped block motion compensation, grid-
based warping or motion-compensated temporal filtering
[18],[19],[20]. The corresponding entropy coding schemes
are often derived from DWT-based still image coding
schemes like SPIHT [21] or other predecessors of
JPEG2000 [35].

In our prior work on wavelet-based hybrid video coding,
which led to one of the proposals for the H.26L standardiza-
tion [19], the entropy coding method of partitioning, ag-
gregation and conditional coding (PACC) was developed
[22]. One of its main distinguishing features is related to the
partitioning strategy: Given a source with a specific alpha-
bet size, for instance, quantized transform coefficients, it
was found to be useful to first reduce the alphabet size by
partitioning the range according to a binary selector, which
e.g. in the case of transform coefficients would be typically
given by the decision whether the coefficient is quantized to
zero or not. In fact, range partitioning using binary selectors
can be viewed as a special case of a binarization scheme,
where a symbol of a non-binary alphabet is uniquely
mapped to a sequence of binary decisions prior to further
processing.

This (somehow) dual operation to the aforementioned al-
phabet extension, which in the sequel we will therefore refer
to as alphabet reduction, is mainly motivated by the fact
that it allows the subsequent modeling stage to operate more
efficiently on this maximally reduced (binary) alphabet. In
this way, the design and application of higher-order condi-
tioning models is greatly simplified and, moreover, the risk
of “overfitting” the model is reduced. As a positive side ef-
fect, a fast table-driven binary arithmetic coder can be util-

ized for the final arithmetic coding stage.
The design of CABAC is in the spirit of our prior work.

To circumvent the drawbacks of the known entropy coding
schemes for hybrid block-based video coding such as An-
nex E of H.263, we combine an adaptive binary arithmetic
coding technique with a well-designed set of context mod-
els. Guided by the principle of alphabet reduction, an addi-
tional binarization stage is employed for all non-binary val-
ued symbols. Since the increased computational complexity
of arithmetic coding in comparison to variable length cod-
ing is generally considered as its main disadvantage, great
importance has been devoted to the development of an algo-
rithmic design that allows efficient hardware and software
implementations.

For some applications, however, the computational re-
quirements of CABAC may be still too high given today’s
silicon technology. Therefore, the baseline entropy coding
method of H.264/AVC [1] offers a different compression-
complexity trade-off operating at reduced coding efficiency
and complexity level compared to CABAC. It mostly relies
on a single infinite-extended codeword set consisting of
zero-order Exp-Golomb codes, which are used for all syntax
elements except for the residual data. For coding the resid-
ual data, a more sophisticated method called Context-
Adaptive Variable Length Coding (CAVLC) is employed.
In this scheme, inter-symbol redundancies are exploited by
switching VLC tables for various syntax elements depend-
ing on already transmitted coding symbols [1],[2]. The
CAVLC method cannot provide an adaptation to the actu-
ally given conditional symbol statistics. Furthermore, cod-
ing events with symbol probabilities greater than 0.5 cannot
be efficiently coded due to the fundamental lower limit of 1
bit/symbol imposed on variable length codes. This restric-
tion prevents the usage of coding symbols with a smaller al-
phabet size for coding the residual data, which could allow
a more suitable construction of contexts for switching be-
tween the model probability distributions.

The remainder of the paper is organized as follows. In
Section II, we present an overview of the CABAC frame-
work including a high-level description of its three basic
building blocks of binarization, context modeling and bi-
nary arithmetic coding. We also briefly discuss the motiva-
tion and the principles behind the algorithmic design of
CABAC. A more detailed description of CABAC is given
in Section III, where the individual steps of the algorithm
are presented in depth. Finally, in Section IV we provide
experimental results to demonstrate the performance gains
of CABAC relative to the baseline entropy coding mode of
H.264/AVC for a set of interlaced video test sequences.

II. THE CABAC FRAMEWORK

Fig. 1 shows the generic block diagram for encoding a
single syntax element in CABAC.1 The encoding process

1 For simplicity and for clarity of presentation we restrict our exposition of
CABAC to an encoder only view. In the text of the H.264/AVC standard

Realtime Adaptive Streaming LLC
Exhibit 2012

IPR2019-01035
Page 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. Y, MONTH 2003 3

consists of at most three elementary steps:

1) binarization
2) context modeling
3) binary arithmetic coding

In the first step, a given non-binary valued syntax element
is uniquely mapped to a binary sequence, a so-called bin
string. When a binary valued syntax element is given, this
initial step is bypassed, as shown in Fig. 1. For each element
of the bin string or for each binary valued syntax element,
one or two subsequent steps may follow depending on the
coding mode.

In the so-called regular coding mode, prior to the actual
arithmetic coding process the given binary decision, which,
in the sequel, we will refer to as a bin, enters the context
modeling stage, where a probability model is selected such
that the corresponding choice may depend on previously
encoded syntax elements or bins. Then, after the assignment
of a context model the bin value along with its associated
model is passed to the regular coding engine, where the fi-
nal stage of arithmetic encoding together with a subsequent
model updating takes place (see Fig. 1).

Alternatively, the bypass coding mode is chosen for se-
lected bins in order to allow a speedup of the whole encod-
ing (and decoding) process by means of a simplified coding
engine without the usage of an explicitly assigned model, as
illustrated by the lower right branch of the switch in Fig. 1.

In the following, the three main functional building
blocks, which are binarization, context modeling, and bi-
nary arithmetic coding, along with their interdependencies
are discussed in more detail.

A. Binarization

1) General Approach
For a successful application of context modeling and

adaptive arithmetic coding in video coding we found that
the following two requirements should be fulfilled:

[1] itself, the converse perspective dominates – the standard normatively
specifies only how to decode the video content without specifying how to
encode it.

i) a fast and accurate estimation of conditional probabili-
ties must be achieved in the relatively short time inter-
val of a slice coding unit

ii) the computational complexity involved in performing
each elementary operation of probability estimation
and subsequent arithmetic coding must be kept at a
minimum to facilitate a sufficiently high throughput of
these inherently sequentially organized processes.

To fulfill both requirements we introduce the important
“pre-processing” step of first reducing the alphabet size of
the syntax elements to encode. Alphabet reduction in
CABAC is performed by the application of a binarization
scheme to each non-binary syntax element resulting in a
unique intermediate binary codeword for a given syntax
element, called a bin string. The advantages of this ap-
proach are both in terms of modeling and implementation.

First, it is important to note that nothing is lost in terms of
modeling, since the individual (non-binary) symbol prob-
abilities can be recovered by using the probabilities of the
individual bins of the bin string. For illustrating this aspect,
let us consider the binarization for the syntax element
mb_type of a P/SP slice.

As depicted in Fig. 2 (left), the terminal nodes of the bi-
nary tree correspond to the symbol values of the syntax
element such that the concatenation of the binary decisions
for traversing the tree from the root node to the correspond-
ing terminal node represents the bin string of the corre-
sponding symbol value. For instance, consider the value “3”
of mb_type, which signals the macroblock type “P_8x8”,
i.e., the partition of the macroblock into four 8×8 sub-
macroblocks in a P/SP slice. In this case the corresponding
bin string is given by “001”. As an obvious consequence,
the symbol probability p(“3”) is equal to the product of the
probabilities p(C0)(“0”), p(C1)(“0”) and p(C2)(“1”), where C0,
C1 and C2 denote the (binary) probability models of the
corresponding internal nodes, as shown in Fig. 2. This rela-
tion is true for any symbol represented by any such binary
tree, which can be deduced by the iterated application of the
Total Probability Theorem [26].

Fig. 1. CABAC encoder block diagram.

Realtime Adaptive Streaming LLC
Exhibit 2012

IPR2019-01035
Page 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. Y, MONTH 2003 4

Fig. 2. Illustration of the binarization for mb_type (left) and sub_mb_type
(right) both for P/SP slices.

Although at this stage nothing seems to be gained, there
is already the advantage of using a binary arithmetic coding
engine on the bin string instead of an m-ary arithmetic coder
operating on the original m-ary source alphabet. Adaptive
m-ary arithmetic coding (for m > 2) is in general a computa-
tionally complex operation requiring at least two multiplica-
tions for each symbol to encode as well as a number of
fairly complex operations to perform the update of the
probability estimation [36]. In contrast to that, there are fast,
multiplication-free variants of binary arithmetic coding, one
of which was specifically developed for the CABAC
framework, as further described below. Since the probabil-
ity of symbols with larger bin strings is typically very low,
the computational overhead of coding all bins of that bin
string instead of using only one pass in an m-ary arithmetic
coder is fairly small and can be easily compensated by using
a fast binary coding engine.

Finally, as the most important advantage, binarization en-
ables context modeling on a sub-symbol level. For specific
bins, which, in general, are represented by the most fre-
quently observed bins, conditional probabilities can be
used, whereas other, usually less frequently observed bins
can be treated using a joint, typically zero-order probability
model. Compared to the conventional approach of using
context models in the original domain of the source with
typically large alphabet size (like e.g. components of motion
vector differences or transform coefficient levels) this addi-
tional freedom in the design offers a flexible instrument for
using higher-order conditional probabilities without suffer-
ing from context “dilution” effects. These effects are often
observed in cases, where a large number of conditional
probabilities have to be adaptively estimated on a relatively
small (coding) time interval, such that there are not enough
samples to reach a reliable estimate for each model.2

For instance, when operating in the original alphabet do-
main, a quite moderately chosen 2nd order model for a given
syntax element alphabet of size m = 256 will result in the in-
tractably large number of 2562 ⋅ (256 − 1) ≈ 224 symbol
probabilities to be estimated for that particular syntax ele-
ment only. Even for a zero-order model, the task of tracking
255 individual probability estimates according to the previ-

2 A more rigorous treatment of that problem can be found in [23][24].

ous example is quite demanding. However, typically meas-
ured probability density functions (pdf) of prediction re-
siduals or transformed prediction errors can be modeled by
highly peaked Laplacian, generalized Gaussian or geometric
distributions [28], where it is reasonable to restrict the esti-
mation of individual symbol statistics to the area of the
largest statistical variations at the peak of the pdf. Thus, if,
for instance, a binary tree resulting from a Huffman code
design would be chosen as a binarization for such a source
and its related pdf, only the nodes located in the vicinity of
the root node would be natural candidates for being mod-
eled individually, whereas a joint model would be assigned
to all nodes on deeper tree levels corresponding to the “tail”
of the pdf. Note that this design is different from the exam-
ple given in Fig. 2, where each (internal) node has its own
model.

In the CABAC framework, typically, only the root node
would be modeled using higher-order conditional probabili-
ties. In the above example this would result for a 2nd order
model in only 4 different binary probability models instead
of m2 different m-ary probability models with m = 256.

2) Design of CABAC Binarization Schemes
As already indicated above, a binary representation for a

given non-binary valued syntax element provided by the bi-
narization process should be close to a minimum-
redundancy code. On the one hand, this allows to easily ac-
cessing the most probable symbols by means of the binary
decisions located at or close to the root node for the subse-
quent modeling stage. On the other hand, such a code tree
minimizes the number of binary symbols to encode on the
average, hence minimizing the computational workload in-
duced by the binary arithmetic coding stage.

However, instead of choosing a Huffman tree for a given
training sequence, the design of binarization schemes in
CABAC (mostly) relies on a few basic code trees, whose
structure enables a simple on-line computation of all code
words without the need for storing any tables. There are
four such basic types: the unary code, the truncated unary
code, the kth order Exp-Golomb code and the fixed-length
code. In addition, there are binarization schemes based on a
concatenation of these elementary types. As an exception of
these structured types, there are five specific, mostly un-
structured binary trees that have been manually chosen for
the coding of macroblock types and sub-macroblock types.
Two examples of such trees are shown in Fig. 2.

In the remaining part of this section, we explain in more
detail the construction of the four basic types of binarization
and its derivatives.

Unary and Truncated Unary Binarization Scheme: For
each unsigned integer valued symbol x ≥ 0 the unary code
word in CABAC consists of x “1” bits plus a terminating
“0” bit. The truncated unary (TU) code is only defined for x
with 0 ≤ x ≤ S, where for x < S the code is given by the
unary code, whereas for x = S the terminating “0” bit is ne-
glected such that the TU code of x = S is given by codeword

Realtime Adaptive Streaming LLC
Exhibit 2012

IPR2019-01035
Page 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. Y, MONTH 2003 5

consisting of x “1” bits only.
kth order Exp-Golomb Binarization Scheme: Exponen-

tial Golomb codes were first proposed by Teuhola [29] in
the context of run-length coding schemes. This parameter-
ized family of codes is a derivative of Golomb codes, which
have been proven to be optimal prefix-free codes for geo-
metrically distributed sources [30]. Exp-Golomb codes are
constructed by a concatenation of a prefix and a suffix code
word. Fig. 3 shows the construction of the kth order Exp-
Golomb (EGk) code word for a given unsigned integer sym-
bol x. The prefix part of the EGk code word consists of a
unary code corresponding to the value .)12/(log)(2 += kxxl

The EGk suffix part is computed as the binary representa-
tion of x + 2k (1 − 2l(x)) using k + l(x) significant bits, as
can be seen from the pseudo-C code in Fig. 3.

Consequently, for the EGk binarization the number of
symbols having the same code length of k + 2 · l(x) + 1 is
geometrically growing. By inverting Shannon’s relationship
between ideal code length and symbol probability, we can
e.g. easily deduce that EG0 is the optimal code for a pdf
p(x) = ½ · (x + 1)−2 with x ≥ 0. This implies that for an ap-
propriately chosen parameter k the EGk code represents a
fairly good first-order approximation of the ideal prefix-free
code for tails of typically observed pdfs, at least for syntax
elements that are representing prediction residuals.

Fixed-Length Binarization Scheme: For the applica-
tion of fixed-length (FL) binarization, a finite alphabet of
values of the corresponding syntax element is assumed. Let
x denote a given value of such a syntax element, where
0 ≤ x < S. Then, the FL code word of x is simply given by
the binary representation of x with a fixed (minimum) num-
ber .log2 SlFL = of bits. Typically, FL binarization is ap-

plied to syntax elements with a nearly uniform distribution
or to syntax elements, where each bit in the FL binary rep-

resentation represents a specific coding decision as e.g. in
the part of the coded block pattern symbol related to the lu-
minance residual data.

Concatenation of Basic Binarization Schemes: From
the basic binarization schemes as described above three
more binarization schemes are derived. The first one is a
concatenation of a 4-bit FL prefix as a representation of the
luminance related part of the coded block pattern and a TU
suffix with S = 2 representing the chrominance related part
of coded_block_pattern.

Both the second and third concatenated scheme are de-
rived from the TU and the EGk binarization. These
schemes, which are referred as Unary / kth order Exp-
Golomb (UEGk) binarizations, are applied to motion vector
differences and absolute values of transform coefficient lev-
els. The design of these concatenated binarization schemes
is motivated by the following observations. First, the unary
code is the simplest prefix-free code in terms of implemen-
tation cost. Secondly, it permits a fast adaptation of the in-
dividual symbol probabilities in the subsequent context
modeling stage, since the arrangement of the nodes in the
corresponding tree is typically such that with increasing dis-
tance of the internal nodes from the root node the corre-
sponding binary probabilities are less skewed.3 These ob-
servations are only accurate for small values of the absolute
motion vector differences and transform coefficient levels.
For larger values, there is not much use of an adaptive mod-
eling leading to the idea of concatenating an adapted trun-
cated unary tree as a prefix and a static Exp-Golomb code
tree as a suffix. Typically, for larger values, the EGk suffix
part represents already a fairly good fit to the observed
probability distribution, as already mentioned above. Thus,
it is reasonable to speedup the encoding of the bins related
to the EGk suffix part in CABAC by using the fast bypass
coding engine for uniformly distributed bins, as further de-
scribed in Section III.D.

For motion vector differences UEGk binarization is con-
structed as follows. Let us assume the value mvd of a mo-
tion vector component is given. For the prefix part of the
UEGk bin string, a TU binarization is invoked using the ab-
solute value of mvd with a cut-off value of S = 9. If mvd is
equal to zero, the bin string consists only of the prefix code
word “0”. If the condition |mvd| ≥ 9 holds, the suffix is con-
structed as an EG3 codeword for the value of |mvd| − 9, to
which the sign of mvd is appended using the sign bit “1” for
a negative mvd and the sign bit “0” otherwise. For mvd val-
ues with 0 < |mvd| < 9, the suffix consists only of the sign
bit. Noting that the component of a motion vector difference
represents the prediction error at quarter-sample accuracy,
the prefix part always corresponds to a maximum error
component of ±2 samples. With the choice of the Exp-
Golomb parameter k = 3, the suffix code words are given

3 The aspect of a suitable ordering of nodes in binary trees for optimal
modeling and fast adaptation has been addressed in [31], although in a
slightly different context.

while(1) {
 // unary prefix part of EGk
 if (x >= (1<<k)) {

put(1)
x = x – (1<<k)

 k++
 } else {
 put(0) // terminating “0” of prefix part
 while(k--) // binary suffix part of EGk
 put((x>>k) & 0x01)
 break
 }
}

Fig. 3. Construction of kth order Exp-Golomb (EGk) code for a given un-
signed integer symbol x.

TABLE I
UEG0 BINARIZATION FOR ENCODING OF ABSOLUTE VALUES OF

TRANSFORM COEFFICIENT LEVELS

Bin string Abs.
value TU prefix EG0 suffix

1 0
2 1 0
3 1 1 0
4 1 1 1 0
5 1 1 1 1 0
...

...
13 1 1 1 1 1 1 1 1 1 1 1 1 0
14 1 1 1 1 1 1 1 1 1 1 1 1 1 0
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
...

bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

Realtime Adaptive Streaming LLC
Exhibit 2012

IPR2019-01035
Page 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

