547.577-233.1

SYNTHESIS OF β -PHENYL-ETHYLAMINE DERIVATIVES III 1) BRONCHODILATORS.

BY

H. D. MOED, J. VAN DIJK, and H. NIEWIND

(Contribution from the Central Research Laboratory - N.V. Philips-Roxane, Weesp).

The synthesis is described of a number of β -(m,p-dihydroxyphenyl)- β -hydroxy-N-aralkyl-ethylamine derivatives,

$$HO$$
—CHOH— CH_2 — NH — R_1 —CHOH— R_1 — R_2 — R_3 — R_4 — R

which were screened for their bronchodilator effect against acetylcholineinduced bronchoconstriction in the guinea pig, and for their cardiovascular action.

The influence of the side-chain R_1 — R_2 on the pharmacological activity of the basic structure,

was investigated. For comparison, a number of N-alkylarterenols were prepared and examined.

At the same time attention was paid to the bronchodilator activity of

N-aralkyl derivatives of noradrenalone.

The U.V. absorption spectra of these sympathomimetics, aminoalcohols as well as aminoketones, were measured.

The results are discussed.

Introduction.

The sympathomimetics epinephrine (adrenalin) and N-isopropyl arterenol are valuable compounds in the symptomatic treatment obronchial asthma.

¹⁾ II, H. D. Moed c.s., Rec. trav. chim. 71, 933 (1952).

Their therapeutic use covers a wide range of indications and their ect is obtained swiftly.

However, their activity after oral administration as a rule is poor, d their effect on the circulatory system is undoubtedly a disvantage.

We therefore set out to find bronchodilators of the epinephrine type th relatively fewer side effects and greater oral activity.

In this investigation we did not consider it worth while to synthesize w N-alkyl- and N-cycloalkylarterenols, because so many of these npounds have already been prepared 2) and examined 3).

From the literature it appears that N-isopropylarterenol is the most ive bronchodilator. In our opinion N-(phenyl-sec. butyl) arterenol, strong bronchodilator effect of which has been published 4), can be osen as a starting point.

This derivative of epinephrine still has a pronounced effect on the culatory system.

We investigated whether, and to what extent, the chemical structure this substance could be changed into compounds in which the onchodilator effect exceeds the effect on the cardiovascular system. the same time attention was paid to the activity of such derivatives er oral administration.

We started with the synthesis of a number of N-aralkylarterenol rivatives. By varying the length and the branching of the alkylene bup and by introducing substituents (OH, CH₂) into the benzene cleus of the aralkyl group, the series of aralkylated sympathometics developed by Külz 5) could be extended with a large number new compounds. In order to have material available for comparison th regard to the pharmacological examination, a number of N-alkylterenols were also prepared (IV).

On account of the publication by Schneider c.s. 6) on the bronchoator effect of adrenalone and its derivatives, a number of type III mpounds were included in our investigations. These relate to the emical synthesis, the determination of the U.V. absorption spectra, d the pharmacological properties of the above-mentioned compounds. he present paper describes the chemistry of the compounds

) J. R. Corrigan c.s., J. Am. Chem. Soc. 71, 530-1 (1949).

K. Wiemers, Arch. exptl. Pathol. Pharmakol. 213, 343 (1951).

5) M. Schneider c.s., Klin. Wochschr. 1950, 709.

The amino-alcohols were obtained through catalytic reduction (Pd on C) of the hydrochlorides of the aminoketones, dissolved in water or in a mixture of alcohol and water. The bases were isolated by ammoniation of the hydrogenated solution, concentrated in vacuo under nitrogen. The arterenols, which became solid in a short time, were purified by extraction with hot water or by crystallization from methanol or dioxane.

Some N-alkylarterenols were isolated as salts. Hydrogenation in alcohol involved difficulties: ethoxylation of the CHOH-group in some of the arterenols took place, probably under the influence of the weak acid medium.

The N-aralkylarterenols with two asymmetrical C-atoms (IV 12, 14, 15, 16, 18, 19, 25, 27 in table II) may belong to two stereochemical series. As the compounds were prepared in a similar way and the melting points are close to each other, while there is little difference in the bronchodilator activity of the crude bases and those purified to a constant melting point, it is not unlikely that these amino-alcohols will belong to the same stereochemical series.

In order to be able to reduce the possible influence of this uncertain factor in the study and the comparison of the pharmacological activities, we prepared a number of N-aralkylarterenols without an asymmetrical C-atom in the side-chain (IV 20, 22, 23,, 24 and 26 in table II).

The yields, melting points, and analyses of the N-(ar)-alkylarterenols have been summarized in table II.

The aminoketones (III) were obtained by demethylation 1) of the ω-amino-m, p-dimethoxy-acetophenones (II), prepared by condensation of veratrole with aminoacetonitriles (I) 1).

Melting points and analyses of the hydrochlorides of I, II, and III, and the yields of the hydrochlorides of II and III have been listed in table I.

The U.V. absorption spectra of the amino-alcohols (IV) and the aminoketones (III) were measured *) under the supervision of Dr. K. J. Keuning and Drs. F. J. Mulder of our Analytical Department. The data $(\lambda_{max}, \varepsilon_{max})$ are summarized in tables II and I.

¹⁾ H. Konzett, Arch. exptl. Pathol. Pharmakol. 197, 41 (1940-41); O. H. gmund c.s., J. Pharmacol. Exptl. Therap. 97, 14 (1949); D. E. Marsh c.s., Pharmacol. Exptl. Therap. 92, 108 (1948); P. Siderius, Acta Physiol. et Pharmacol. erl. 2, 546 (1951).

⁵⁾ F. Külz, Arch. exptl. Pathol. Pharmakol. 181, 136 (1936); F. Külz and K. W. senmund, Arch. exptl. Pathol. Pharmakol. 181, 135 (1936); F. Külz and M. hneider, Klin. Wochschr. 1950, 535.

^{*)} Ca.3 mg in 100 ml of ethanol.

T~a~b~l~e~I. Yields, melting points, analysis, u.v. absorption spectra (λ_{max} , and ϵ), bronchodilator activity

11.														
	R		ochlorides of -CH ₂ —C≡N	RH	II Hydroch	olorides of CO OCH ₃		III Hydrochlo	rides of		-со-			
		Analysis ⁰ / ₀		Ana		Analysis %	Analysis %		Analysis ⁰ / ₀	u	Broncho-			
		M.P. °C¹)	Cl found calc.	Yield ⁰ / ₀	M.P. °C¹)	Cl found Calc	Yield ⁰ / ₀	M.P. °C¹)	Cl found calc.	λ ε max mμ	λ _{max} ε mμ	λ ε max mμ	dilator Activity ⁵)	
	CH ₂ — CH ₂ — CH ₃ —CH ₂ — CH— CH— CH— CH— CH ₃ —CH ₂ —CH ₂ — C(CH ₃) ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —CH ₂ — CH ₂ —CH(CH ₃)— CH ₂ —CH(CH ₃)— CH ₂ —CH ₂ —CH ₂ —CH ₂ — CH(CH ₃)— CH ₄ —CH ₂ —CH ₂ — CH(CH ₃)— CH ₄ —CH ₂ —CH ₂ — CH(CH ₃)— CH ₂ —C(CH ₃) ₂ — CH ₄ —CH ₂ —C(CH ₃) ₂ — CH ₄ —CH ₂ —C(CH ₃) ₂ — CH ₄ —CH ₂ —C(CH ₃) ₂ — CH ₄ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —C(CH ₃) ₂ — CH ₂ —CH ₂ —CH ₂ —C(CH ₃)—CH ₂ —CH ₂	*)198—201 *)198—201 *)137—140 *)158—159 *)170—171 *)174—175 *)168—169 2)139—140 *)161—163 *)119—120 *)214—215,5 *)208—209 *)217—218 *)202—203 *)198—199 *)187—190 *)165—167	29.46 29.42 26.24 26.36 17.40 17.33 18.32 18.04 15.70 15.65 16.85 16.84 15.17 14.74 15.91 15.79 15.85 15.79 13.87 13.95 14.80 14.88 16.474)15.79 14.604)13.95 15.634)14.86 15.484)14.86 15.624)14.86 15.624)14.86 14.45 14.04 17.70 16.84	2) 2) *)67 *)62 2) *)52 *)73 *)82 *)77 *)70 *)63 *)68 *)50 *)37 *)48 *)68 *)50 *)57	190—192 193—194 208—211 219—220 209—211 213—215 203—205 200—202 216—218 210—212 193—196 238—240 217—220 223—224 223—225 218—220 221—223 188—190	13.18 13.66 12.98 12.96 10.23 10.32 10.56 10.56 10.63 ⁴) 9.70 10.34 10.14 9.28 9.34 9.81 9.75 9.68 9.75 9.04 9.02 8.72 ⁴) 9.41 9.85 9.75 9.49 9.02 9.13 9.39 9.02 9.39 9.53 9.39 8.50 ⁴) 9.05 10.44 10.14	*)43 *)60 *)43 *)67 *)88 *)86 *)85 *)79 *)47 *)78 *)47 *)79 *)45 *)49 *)80	255—257 240—241 199,5—201 220—222 202—204 208—211 163—166 176—180 225—227 231—235 196—200 227—230 252—253 234—235 227—230 206—208 237—240 195—199	15.15 15.31 14.49 14.44 11.40 11.23 10.92 11.536) 10.95 10.96 10.96 11.02 10.50 10.50 10.43 10.56 10.54 10.56 10.13 10.08 10.17 10.17 10.54 10.56 10.18 10.08 10.24 10.14 10.07 10.14 10.40 10.14 9.80 9.75 11.04 11.02	232 12100 232 12900 232 13600 228 18700	279 8500 279 8900 279 9200 281 10600	312 7300 312 7800 312 8100 312 7900	$ \begin{vmatrix} 1 & < 0.03 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{vmatrix} $ $ < 0.05 \\ < 0.1 $ $ < 0.1 $ $ < 0.02 \\ < 0.05 $	1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

^{*)} New compound.

¹⁾ All the compounds melted with decomposition; m. points are uncorrected.

²⁾ H. D. Moed c.s., Rec. trav. chim. 71, 939 (1952).

³⁾ J. R. Corrigan c.s., J. Am. Chem. Soc. 71, 530-1 (1949).

⁴⁾ Impure compound (see experimental).

⁵⁾ N-isopropylarterenol = 100.

⁶⁾ Product contains 1 aq.

and ε .), bronchodilator activity. (1 max. Yields, melting points, analysis, u.v. absorption spectra

	Oral	activity at 200 y	111	1 +	+	+	++	+				rried ora-
		cho- dilator Act.	50 30 100 5	0,2	88	800	900	100	0000	3 % 4) 	were car lept., Lab
	U.V. Abs.	8	3200	3250			3190				3000	Anal. E
H H	u.v	7	282	282	280	280	282	282	282	282	282	Micro
но-он			.74 6.63	, ,,	, ,	4.51 4.62	4.75 4.65		4.39 4.44	4 4	4.76 4.88	4) The C, H, and N micro-analyses were carried out by Mr. P. J. Hubers, Micro-Anal. Dept., Laboratory tory Chem., Mun. Univ., Amsterdam.
ОН-	Analysis4), 0/0	H N Ound calc.	8.06	9.62	6.52	6.94	7.65	7.94	7.26	7.94	7.32	he C, H, Mr. P. J. r. Org. C
Š	Analy		8,1,	and take the same	7.37		at a target are a		8.08			4) Ti out by tory fo
RHN-CH2-CHOH-	7	C found calc.	62.06 62.56 8.15 8.06 6.74 6.63	67.57 68.33 69.55 70.34	62.44 66.44 70.42 71.09	66.81 67.34	70.65 71 77 66.91 68.14	72.26 72.39	66.36 68.14 71.82 72.39	72.21 72.39	69.63 71.09	
∑ 8		o.C.:i)	171—172	139—139,5 172—173	122—123 154—155	167—167,5	163—164 141—143	148 – 150 161 – 162	160—162 168—169	162-163	80-84	ts are uncorre
	:	y ield	80 76	80	37	81	35	99	73.7	299	43	n. poin 952).
	·		(S)	(a)	` * *	* *	(H) - (H)	CH ₃) - *)	÷.	 		omposition; n
æ			H;-CH;- H;-CH;- H;-CH;-	CH3)	C,H,—CH,—CH,— :H,—CH(ČH,)—	CH CH CH(CH)	H; — CH; — CH (CH;) — CH (CH;	CH,—CH,—CH,—CH(CH,—CH(CH,—CH(CH,—CH(CH,—CH(CH,—CH,—CH,—CH,—CH,—CH,—CH,—CH,—CH,—CH,—	C,H,—CH,—C(CH ₃);— C,H,—CH;—C(CH ₃);—		CH(CH ₁)—CH ₂ —C(CH ₃) CH(CH ₁)—CH ₂ —	New compound. All the compounds melted with decomposition; m. points are uncorrected. H. D. Moed c.s., Rec. trav. chim. 71, 943 (1952).
			######################################	771	C,H,O	p.HO_(P.H.Ö.		 [[[]	I
			-46440	V 80	11	4.7	191	19	22	25	26	1.55

The arterenols IV 11, 14, 18, 22 (IV') possess a diphenol as well as a monophenol configuration.

We considered it worth while to compare the spectra of the four compounds with those of the isolated chromophore groups, phenol and pyrocatechol.

In order to be able to give a correct interpretation of the contributions of the chromophore systems, it was also necessary to determine the extinction curves of type V compounds **)

Fig. 1. Molecular extinction curves of three representatives of IV, IV' and V.

$$\begin{array}{l} -\text{o}-\text{o}-=\text{m.p-(HO)}_2\text{C}_6\text{H}_3-\text{CHOH-CH}_2-\text{NH-R}_1-\text{C}_6\text{H}_5 & \text{(IV)} \\ -+-+=\text{p-HO-C}_6\text{H}_4-\text{CHOH-CH}_2-\text{NH-R}_1-\text{C}_6\text{H}_5 & \text{(V)} \\ -\cdot\cdot\cdot=\text{m.p-(HO)}_2\text{C}_6\text{H}_3-\text{CHOH-CH}_2-\text{NH-R}_1-\text{C}_6\text{H}_4-\text{p.OH} & \text{(IV')} \end{array}$$

^{**)} The synthesis of these substances will be published at a later date.

Find authenticated court documents without watermarks at docketalarm.com

In the compounds IV and V, phenol and pyrocatechol form part molecules with a similar structure.

n fig. I the molecular extinction curves of three representatives of IV' and V are given.

Figure 2 shows the extinction curves of two types of N-aralkylnoranalones (III and III').

Fig. 2. Molecular extinction curves of the two types of N-aralkylnoradrenalones.

$$\begin{array}{lll} \text{m,p-(HO)}_2\text{C}_6\text{H}_3 & \text{CO--CH}_2 & \text{NH--R}_1 & \text{C}_6\text{H}_5 & \text{(III)} \\ \text{m,p-(HO)}_2\text{C}_6\text{H}_3 & \text{CO--CH}_2 & \text{NH--R}_1 & \text{C}_6\text{H}_4 & \text{-p.OH} & \text{(III')} \end{array}$$

The pharmacological research, which will be published elsewhere, was carried out by Prof. Dr. F. Brücke c.s. 7), Prof. Dr. J. H. Gaarenstroom c.s. 8), and Drs. Th. W. J. Hendriksen 9), who kindly permitted us to mention already in this publication the preliminary pharmacology of our compounds.

The arterenols and some derivatives of noradrenalone were screened for their bronchodilator effect against acetylcholine-induced bronchoconstriction in the guinea pig 10). The data are also summarized respectively in tables II and I. Several amino-alcohols were tested for their in vivo effect on the circulatory system in dog (heart rate) and cat (blood pressure).

The therapeutic usefulness of some arterenols has been investigated by clinical tests.

Discussion.

U.V. Absorption spectra.

Table III.

	λ mμ mμ	ε (ave rage)
IV HO—CHOH—CH ₂ —NH—R ₁ —	282	3100
HO—	278	2700
V HO—CHOH—CH ₂ —NH—R ₁ —	277	1600
HO—《	273	1800
IV' HO————————————————————————————————————	280	4700

⁷⁾ Pharmacological Laboratory of the University of Vienna.

⁸⁾ Pharmacological Laboratory of the University of Groningen. (Dr. P. Siderius, Dr. B. Louwerens, Dr. D. de Wied).

⁹⁾ Pharmacological Laboratory of N.V. Philips-Roxane.

¹⁰⁾ Method: P. Siderius, Acta Physiol. et Pharmacol. Neerl. 2, 546 (1951).

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

