
Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering

Peri Tarr, William Harrison, Harold Ossher (IBM T. J. Watson Research Center, USA)
Anthony Finkelstein (University College London, UK)

Bashar Nuseibeh (Imperial College, UK)
Dewayne Perry (University of Texas at Austin, USA)

Workshop Web site: http://www.research.ibm.com/hyperspace/workshops/icse2000

ABSTRACT
Separation of concerns has been central to software engi-
neering for decades, yet its many advantages are still not
fully realized. A key reason is that traditional modulariza-
tion mechanisms do not allow simultaneous decomposition
according to mu ltiple kinds of (overlapping and interacting)
concerns. This workshop was intended to bring together
researchers working on more advanced modularization
mechanisms, and practitioners who have experienced the
need for them, as a step towards a common understanding
of the issues, problems and research challenges.

Keywords
Separation of concerns, decomposition, composition

1 SEPARATION OF CONCERNS
Separation of concerns [5] is at the core of software engi-
neering, and has been for decades. In its most general form,
it refers to the ability to identify, encapsulate, and manipu-
late only those parts of software that are relevant to a par-
ticular concept, goal, or purpose. Concerns are the primary
motivation for organizing and decomposing software into
manageable and comprehensible parts.

Many different kinds, or dimensions, of concerns may be
relevant to different developers in different roles, or at dif-
ferent stages of the software lifecycle. For example, the
prevalent kind of concern in object-oriented programming
is data or class; each concern in this dimension is a data
type defined and encapsulated by a class. Features [7], like
printing, persistence, and display capabilities, are also
common concerns, as are aspects [3], like concurrency con-
trol and distribution, roles [1], viewpoints [4], variants, and
configurations. Separation of concerns involves decomposi-
tion of software according to one or more dimensions of
concern.

 “Clean” separation of concerns has been hypothesized to
reduce software complexity and improve comprehensibil-
ity; promote traceability within and across artifacts and
throughout the lifecycle; limit the impact of change, facili-
tating evolution and non-invasive adaptation and customi-
zation; facilitate reuse; and simplify component integration.

2 THE TYRANNY OF THE DOMINANT
DECOMPOSITION

These goals, while laudable and important, have not yet
been achieved in practice. This is because the set of rele-
vant concerns varies over time and is context -sensitive—
different development activities, stages of the software life-
cycle, developers, and roles often involve concerns of dra-
matically different kinds. One concern may promote some
goals and activities, while impeding others; thus, any crite-
rion for decomposition will be appropriate for some con-
texts, but not for all. Further, multiple kinds of concerns
may be relevant simultaneously, and they may overlap and
interact, as features and classes do. Thus, different concerns
and modularizations are needed for different purposes:
sometimes by class, sometimes by feature, sometimes by
viewpoint, or aspect, role, variant, or other criterion.

These considerations imply that developers must be able to
identify, encapsulate, modularize, and manipulate multiple
dimensions of concern simultaneously, and to introduce
new concerns and dimensions at any point during the soft-
ware lifecycle, without suffering the effects of invasive
modification and rearchitecture. Even modern languages
and methodologies, however, suffer from a problem we
have termed the “tyranny of the dominant decomposition”
[6]: they permit the separation and encapsulation of only
one kind of concern at a time.

Software started out being represented on linear media, and
despite advances in many fields, such as graphics and vis u-
alization, hypertext and other linked structures, and data-
bases, it is still mostly treated as such. Programs are typi-
cally linear sequences of characters, and modules are col-
lections of contiguous characters. This linear structure im-
plies that a body of software can be decomposed in only
one way, just as a typical document is divided into sections
and subsections in only one way. This one decomposition is
dominant, and often excludes any other form of decomposi-
tion.

Examples of tyrant decompositions are classes (in object-
oriented languages), functions (in functional languages),
and rules (in rule-based systems). It is, therefore, impossi-

809

Apple Ex. 1033
Apple Inc. v. Firstface Co., Ltd.

IPR2019-01011
Page 00001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ble to encapsulate and manipulate, for example, features in
the object-oriented paradigm, or objects in rule-based sys-
tems. Thus, it is impossible to obtain the benefits of differ-
ent decomposition dimensions throughout the software
lifecycle. Developers of an artifact are forced to commit to
one, dominant dimension early in the development of that
artifact, and changing this decision can have catastrophic
consequences for the existing artifact. What is more, arti-
fact languages often constrain the choice of dominant di-
mension (e.g., it must be class in object-oriented software),
and different artifacts, such as requirements and design
documents, might therefore be forced to use different de-
compositions, obscuring the relationships between them.

We believe that the tyranny of the dominant decomposition
is the single most significant cause of the failure, to date, to
achieve many of the expected benefits of separation of con-
cerns.

3 MULTI-DIMENSIONAL SEPARATION OF
CONCERNS

We use the term multi-dimensional separation of concerns
to denote separation of concerns involving:

• Multiple, arbitrary dimensions of concern.
• Separation along these dimensions simultaneously; i.e., a

developer is not forced to choose a small number (usu-
ally one) of dominant dimensions of concern according
to which to decompose a system at the expense of others.

• The ability to handle new concerns, and new dimensions
of concern, dynamically, as they arise throughout the
software lifecycle. Concerns that span artifacts and stages
of the software lifecycle are especially interesting, and
challenging.

• Overlapping and interacting concerns; it is appealing to
think of many concerns as independent or “orthogonal,”
but they rarely are in practice. It is essential to be able to
support interacting concerns, while still achieving useful
separation.

• Concern-based integration. Separation of concerns is
clearly of limited use if the concerns that have been sepa-
rated cannot be integrated; as Jackson notes, “having di-
vided to conquer, we must reunite to rule” [2].

Full support for multi-dimensional separation of concerns
opens the door to on-demand remodularization, allowing a
developer to choose at any time the best modularization,
based on any or all of the concerns, for the development
task at hand.

Multi-dimensional separation of concerns represents a set
of very amb itious goals. They apply to any software devel-
opment language or paradigm. Recent approaches [8] go
some way towards satisfying these goals in various ways in
various contexts. Considerable research is still required,
however, before any approach fully achieves the goals . We
believe that it is necessary to achieve them in order to over-
come the problems associated with the tyranny of the

dominant decomp osition and to realize the full potential of
separation of concerns.

4 THE WORKSHOP
This workshop was intended to bring together researchers
interested in pushing the frontier in this important and bur-
geoning area, and practitioners who have experienced prob-
lems related to inadequate separation of concerns that can
help to guide their research. Material and links related to
the workshop, including position papers and contact infor-
mation for the organizers, are available at the workshop
Web site [8].

REFERENCES
1. E. P. Andersen and T. Reenskaug. “System Design by

Composing Structures of Interacting Objects.” Pro-
ceedings of the European Conference on Object-
Oriented Programming (ECOOP), 1992.

2. M. Jackson. Some complexities in computer-based
systems and their implications for system develop-
ment. In Proceedings of the International Conference
on Computer Systems and Software Engineering, pages
344–351, 1990.

3. Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, John Irwin. “Aspect-Oriented Programming.”
In proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Finland. Springer-
Verlag LNCS 1241. June 1997.

4. Bashar Nuseibeh, Jeff Kramer, and Anthony Finkel-
stein. “A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specifica-
tions.” In Transactions on Software Engineering, vol.
20, no. 10, pages 260-773, October 1994.

5. David L. Parnas. “On the Criteria To Be Used in De-
composing Systems into Modules.” Communications
of the ACM, vol. 15, no. 12, December 1972.

6. Peri Tarr, Harold Ossher, William Harrison, and Stan-
ley M. Sutton, Jr. “N Degrees of Separation: Multi-
Dimensional Separation of Concerns.” In Proceedings
of the 21st International Conference on Software Engi-
neering, pages 107–119, May 1999.

7. C. R. Turner, A. Fuggetta, L. Lavazza and A. L. Wolf.
Feature Engineering. In Proceedings of the 9th Inter-
national Workshop on Software Specification and De-
sign, 162–164, April, 1998.

8. Workshop Web site: http://www.research.ibm.com/ hy-
perspace/workshops/icse2000

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee.
ICSE 2000, Limerick, Ireland
© ACM 23000 1-58113-206-9/00/06 �$5.00

810
IPR2019-01011 Page 00002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

