
Chapter 2

ENTROPY AND CODING TECHNIQUES

2.1 INFORMATION AND ENTROPY

A binary digit, or "bit," b, takes one of the values b = 0 or b = l.
A single bit has the ability to convey a certain amount of information
- the information corresponding to the outcome of a binary decision, or
"event," such as a coin toss. If we have N bits, then we can identify the
outcomes of N binary decisions.

Intuitively, the average amount of information associated with a bi­
nary decision depends upon prior knowledge which we have concerning
the likelihoods of the possible outcomes. For example, .there is little
informative value to including snow conditions in the weather report
during summer - in common parlance, the result is a foregone conclu­
sion. By contrast, the binary events which convey most information
on average are those which are equally likely. Similarly, the N-bit se­
quences which convey most information are those for which each bit has
equally likely outcomes, regardless of the outcomes of the other bits in
the sequence - loosely speaking, these are "entirely random" sequences
of bits.

Source coding is the art of mapping each possible output from a given
information source to a sequence of binary digits called "code bits."
Ideally, the mapping has the property that the code bits are "entirely
random," i.e., statistically independent, taking values of 0 and 1 with
equal probability. In this way, the code bits convey the maximum pos­
sible amount of information. Then, provided the mapping is invertible,
we can identify the number of code bits with the amount of information
in the original source output.
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24 Information and Entropy

The above concepts were formalized in the pioneering work of Claude
Shannon [130]. A quantity known as "entropy" is defined in terms of the
statistical properties of the information source. The entropy represents
a lower bound on the average number of bits required to represent the
source output. Moreover, it is possible to approach this lower bound ar­
bitrarily closely. In fact, practical coding algorithms can achieve average
bit rates which are extremely close to the entropy in many applications
and when they do so the code bits must be entirely random.

2.1.1 MATHEMATICAL PRELIMINARIES
RANDOM VARIABLES AND VECTORS
Let X denote a random variable. Associated with the random variable

is a set of possible outcomes, known as the aphabet, Ax. The outcome
of the random variable is denoted x, and is one of the elements of Ax .
A random variable is said to be discrete if its alphabet is finite or at
most countably infinite. That is, we can enumerate the elements of the
alphabet,

Ax = {ao,al,a2, ... }

In this case, the statistical properties of the random variable are de­
scribed by its probability mass function (PMF)

fx (x) #:. P (X = x) for each x E Ax

In words, fx (x) is the probability of the outcome X = x. By contrast, a
continuous random variable has uncountably many outcomes, e.g. Ax =

JR, the set of all real numbers. In this chapter we will be concerned
exclusively with discrete alphabets. As an example, we model binary
decisions as random variables whose alphabets have only two entries,
usually written Ax = {O, I}. Binary random variables playa special
role in coding.
The notion of a random variable is trivially extended to random vec­

tors, X, with alphabet, Ax and PMF, fx (x), for each vector, x EAx.
An m-dimensional random vector is a collection of m random variables,
usually taken as a column vector,

X=

X m - 1

The PMF, fx (x), is sometimes written longhand as

fx (x) == fXO,XI,,,,,Xm-l (XO,Xl,'" ,Xm-l)
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Chapter 2: Entropy and Coding Techniques 25

It denotes the probability that Xo = Xo, Xl = Xl, ... , and Xm - l = Xm-l
simultaneously. For this reason, it is often called the joint PMF, or joint
distribution, for the m random variables.
From the joint distribution of a collection of m random variables,

we can obtain the "marginal" distribution of anyone of the random
variables, Xi, as

IXi (X) = L Ix (x)
X3 X i=X

INDEPENDENCE AND CONDITIONAL PMF'S
We say that two random variables are statistically independent, or

simply independent, if their joint distribution is separable; i.e.,

That is, the probability that both Xo = Xo and Xl = Xl is the product of
the two marginal probabilities. As suggested by the introductory com­
ments above, the notion of statistical independence plays an important
role in coding.
We define the conditional distribution of Xl, given Xo, by

The function, Ix llxo (-, xo), is interpreted as a modified PMF for X I,
where the modification is to reflect the fact that the outcome Xo = Xo
is already known. If the two random variables are statistically indepen­
dent, we expect that the outcome of Xo has no bearing on the distribu­
tion of X I and indeed we find that

IXllXo (XI,XO) = IXI (Xl) if and only if XI,Xo are independent

We note that the marginal distribution of Xo and the conditional distrib­
ution of Xl, given Xo, together are equivalent to the joint distribution of
Xl and Xo· More generally, we write IXnIXn-l, ... ,Xo (xn , ... ,xo) for the
conditional distribution of X n , given Xo through X n - l . The joint dis­
tribution of all m random variables of an m-dimensional random vector,
X, may be recovered from

Ix (x) = Ixo (xo) IXllXo (Xl, Xo) ... IXm -lIXm -2, ... ,Xo (Xm-l, . .. , xo)
(2.1)

and the random variables are said to be mutually independent if

Ix (x) = Ixo (xo) IXl (Xl) ... IXm - 1 (xm-d
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26 Information and Entropy

EXPECTATION
The expectation of a random variable, X, is denoted E [X] and defined

by

E[X] ~ L xfx (x)
xEAx

It represents the statistical average or mean of the random variable X.
Here, for the first time, we are concerned with the algebraic properties
of random variables. More generally, let 9 0 be any function. We may
define Y = 9 (X) to be the random variable whose outcomes are y =
9 (x) whenever the outcome of X is x. Consequently, the distribution of
Y may be found from

fy (y) = L fx (x)
x3g(x)=y

It is readily shown that the expectation of the new random variable, Y,
satisfies

E [Y] =E [g (X)] = L yfy (y) = L 9 (x) fx (x) (2.2)
yEAy xEAx

Given two random variables, Xo and XI, we may define conditional
expectations in the most obvious way as

E [Xl IXo = xo] ~ L xfx1IXo (x, xo)
XEAxl

and for any function, gO, we have

E [g (Xl) IXo = xo] = L 9 (x) fXl\XO (x, xo)
xEAxl

RANDOM PROCESSES
We conclude this section by introducing the concept of a discrete

random process, denoted {Xn }. A random process is nothing but a se­
quence of individual random variables, X n , nEZ, all having a common
alphabet, Ax. The key distinction from a random vector is that there
are infinitely many random variables. The statistics are summarized by
the vector PMF's, fXi:j 0, for all i < j E Z, where we use the notation,
X i :j , to refer to the (j - i)-dimensional random vector formed from the
elements, X k , i ::; k < j, of the random process.
The random process, {Xn }, is said to be stationary if the vector

PMF's satisfy

fX i :i+m = fXo: m for all i, m E Z, m > 0

GE Video Exhibit 2003
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Chapter 2: Entropy and Coding Techniques 27

That is, all collections of m consecutive random variables from the
process have exactly the same joint distribution. Thus, a stationary
random process is characterized by the PMF's, fXo:m for each m =
1,2, .... Alternatively, from equation (2.1) we see that stationary ran­
dom processes are characterized by the marginal distribution, fxo == fx,
together with the sequence of conditional distributions, fXmIXo:m' for
m= 1,2, ....
In most applications we find that the conditional distributions satisfy

(2.3)

for a sufficiently large value of the parameter, p. That is, the conditional
distribution of X m given Xo through X m - 1 , is actually a function of only
the p most recent random variables, X m - p through X m - 1 . We say that
X m is "conditionally independent" of X o through X m - p- 1 ' Conditional
independence is a phenomenon which we usually expect to encounter in
the information sources which we model using random processes. Indeed
statistical dependencies among samples taken from natural physical phe­
nomena such as images and audio are generally of a local nature. For
stationary processes, conditional independence means that the entire
process is described by a finite number of conditional PMF's

fxo' fXllxo' fX2Ixo:2' ... , fXplxo: p

These are called Markov random processes with parameter p. AMarkov­
1 random process is entirely described by Ix and IXllxo' IfP = 0, all ele­
ments of the random process are statistically independent with identical
distribution, fx. Such a random process is said to be IID (Independent
and Identically Distributed). It is also said to be "memoryless."
Stationary random processes with conditional independence proper­

ties (i.e. Markov processes) play an extremely important role in coding,
precisely because they are described by a finite number of conditional
PMF's. By observing the outcomes of the random process over a finite
period of time, we can hope to estimate these conditional PMF's and use
these estimates to code future outcomes of the random process. In this
way, we need not necessarily have any a priori knowledge concerning the
statistics in order to effectively code the source output. Adaptive coders
are based on this principle.
The technical condition required to enable estimation of the rele­

vant PMF's from a finite number of outcomes is "ergodicity." To be
more precise, suppose we observe the outcomes of random variables Xo
through XM-l' For each m-dimensional vector, y, let Ky,M denote the
number of occurrences of y as a "sub-string" of the observed sequence,
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