"Wod Wlie|el}aXd0p Je s)Jewldalem JN0oYlIM Ssjuslundop 14Nn0od pajedijuayine puld

BEST AVAILABLE COPY

An overview

of the basic
principles

of the Q-Coder
adaptive binary
arithmetic coder

by W. B. Pennebaker
J. L. Mitchell
G. G. Langdon, Jr.
R. B. Arps

The Q-Coder is a new form of adaptive binary
arithmetic coding. The binary arithmetic coding

part of the technique is derived from the basic

concepts introduced by Rissanen, Pasco, and
Langdon, but extends the coding conventions to
resolve a conflict between optimal software and
hardware implementations. In addition, a robust
form of probability estimation is used in which
the probability estimate is derived solely from
the interval renormalizations that are part of the
arithmetic coding process. A brief tutorial of
arithmetic coding concepts is presented,
followed by a discussion of the compatible
optimal hardware and software coding
structures and the estimation of symbol
probabilities from interval renormalization.

1. Introduction

The Q-Coder is an adaptive binary arithmetic coding system
which allows different, but compatible, coding conventions
to be used in optimal hardware and optimal software

©Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. YOL. 32 NO. 6 NOVEMBER 1988

000001

implementations. It also incorporates a new probability-
estimation technique which provides an extremely simple yet
robust mechanism for adaptive estimation of probabilities
during the coding process.

This paper presents an overview of the principles of the
Q-Coder. A brief discussion of the basic principles of
arithmetic coding is presented in Section 2. A discussion of
the coding conventions which lead to optimal, compatible
hardware and software implementations of arithmetic coding
follows in Section 3. In addition, Section 3 introduces some
aspects of implementation using fixed-precision arithmetic.
Section 4 covers the estimation of probabilities by a new
technique which uses only the interval renormalization that
is a necessary part of the finite-precision arithmetic coding
process. Dynamic probability estimation makes the Q-Coder
an adaptive binary arithmetic coder. Section 5 gives some
experimental results.

2. Basic principles of binary arithmetic coding’
Traditionally, Huffman coding [2] is used to code a sequence
of symbols which describes the information being
compressed. As an example, Figure 1 shows a possible
Huffman tree for a set of four symbols—w, x, y, and z—
with respective probabilities 0.125, 0.125, 0.25, and 0.5. The
vertical axis of Figure 1 represents the number line from 0 to
1, which is the probability interval occupied by the four
symbols. Each of the four symbols is assigned a subinterval

TR - - . P .
A much more tutocial oo coding is found in {1).

W. B. PENNEBAKER, J. L. MITCHELL, G. G. LANGDON, JR., AND R. B. ARFS

W d V 7

13 DOCI

77

Unified Patents, Ex. 1018

https://www.docketalarm.com/

718

"Wod Wlie|el}aXd0p Je s)Jewldalem JN0oYlIM Ssjuslundop 14Nn0od pajedijuayine puld

Binary
Symbol Probability Code fraction ..
z 0.5 1 0.1
] 1
y 025 01 001 .
x 0.125 001 0001 [9
w 0125 000 0.000 [0 D>

Examplc of a Huffman codmg tree.

of size proportional to the probability estimate of that
symbol. If each subinterval is identified by its least or base
value, the four symbols are identified respectively by the
binary numbers 0.000, 0.001, 0.01, and 0.1. Note that the
subinterval size (or probability estimate) determines the
length of the code word. Ideally this length for some symbol
a is given by log,p (a), where p(a) is the probability estimate
for symbol a. For the example in Figure 1, the probabilities
have been chosen such that the code lengths are ideal.

0.1
y

0.01
1 x

[} -1~ 0.001
L
0.000

W. B. FENNEBAKER,), L. MITCHELL, G. G. LANGDON, JR.. AND R. B. ARPS

000002

Two examples of decomposition of a four-symbol alphabet into a sequence of three binary decisions: (a) Example corresponding to Figure 1.
(b) Example showing the most probable symbol encoded as a succession of three binary decisions.

W d V 7

13 DOCI

The tree in Figure 1 is constructed in a particular way to
illustrate a concept which is fundamental to arithmetic
coding: The code words, if regarded as binary fractions, are
pointers to the particular interval being coded. In Figure 1
the code words point to the base of each interval. The
general concept that a code string can be a binary fraction
pointing to the subinterval for a particular symbol sequence
is due to Shannon [3] and was applied to successive
subdivision of the interval by Elias [4]. The idea of
arithmetic coding, derived by Rissanen [5] from the theory
of enumerative coding, was approached by Pasco [6] as the
solution to a finite-precision constraint on the interval
subdivision methods of Shannon and Elias.

Any decision selecting one symbol from a set of two or
more symbols can be decomposed into a sequence of binary
decisions. For example, Figure 2 shows two possible
decompositions of the four-symbol choice of Figure 1. From
a coding-efficiency point of view there is no difference
between the two alternatives, in that the interval size and
position on the number line are the same for both. However,
from the point of view of computational efficiency,
decomposition () is better. Fewer computations are required
to code the most probable symbol. Thus, although the
Huffman coding tree is not required to achieve efficient
compression, it remains useful as an approximate guide for
minimizing the computational burden.

In general, as coding of each additional binary decision
occurs, the precision of the code string must be sufficient to

by v 0.1
0 y
J————-—L 0.01
Q x
0.001
0 w
0.000

®

1BM J. RES. DEVELOP. VOL. 32 NO. § NOVEMEER 1988

Unified Patents, Ex. 1018

https://www.docketalarm.com/

WO WJe|el}a)d0p je syJewldalem JNoYliM sjuswndop 14Nn0d pajedijuayine puly

K13

provide two distinguishable points within the subinterval
p(s) allocated to the sequence of symbals, s, which actually
occurred. The number of bits, b, required to express the code
string is then given by [3]

4> 2°p(s5) = 2,
which can be rewritten using the left inequality as
b < 2 —log,(p(s)).

After many symbols are coded, p(s) becomes very small,
and the code-string length required to express the fraction
approaches the ideal value of — log, p(s).

An example of Elias coding is shown in Figure 3 for the
binary decision sequence, M L L M, where M is the more
probable symbol (MPS) and L is the less probable symbol
(LPS). The interval subdivision in Figure 3 is a
generalization of that in Figures 2(a) and (b). The interval
subdivision process is defined in terms of a recursion that
selects one subinterval as the new current interval. The
recursive splitting of the current interval continues until all
decisions have been coded. By convention, as in Figure 1,
the code string in Figure 3 is defined to point at the base of
the current interval. The symbol-ordering convention is
adopted from (7], where the MPS probability estimate, P,, is
ordered above the LPS probability estimate, Q,, in the
current interval. The translation of the 0 and 1 symbols into
MPS and LPS symbols and the subsequent ordering of the
MPS and LPS subintervals is important for optimal
arithmetic coding implementations {8].

After each symbol is coded, the probability interval
remaining for future coding operations is the subinterval of
the symbol just coded. If the more probable symbol M is
coded, the interval allocated to the less probable symbol L
must be added to the code-string value so that it points to
the base of the new interval.

Arithmetic coders such as the Q-Coder avoid the
increasing-precision problem of Elias coding by using a
fixed-precision arithmetic. Implementation in fixed-precision
arithmetic requires that a choice be made for the fixed-
precision representation of the interval. Then, a
renormalization rule must be devised which maintains the
interval size within the bounds allowed by the fixed-precision
representation. Both the code string and the interval size
must be renormalized identically, or the identification of the
code string as a pointer to the current interval will be lost.
Efficiency of hardware and software implementations
suggests that renormalization be done using a shift-left-
logical operation.

The Elias decoder maintains the same current-interval size
as the encoder, and performs the same subdivision into
subintervals. The decoder simply determines, for each
decision, the subinterval to which the code string points. For
finite-precision implementations following the coding
conventions above, however, the decoder must subtract any

1BM J. RES. DEVELOP, VOL. 32 NO. § NOVEMBER 1988

000003

Symbot: M L L M
1.0

o

| E— 4 et

Qc / \
Code string
0.0 -

Examplc of Ehas-type codmg onstring ML L M,

interval added by the encoder, after decoding a given
symbol, The code-string remainder will be smaller than the
corresponding current-interval measure, since it is a pointer
to a particular subinterval within that interval.
Renormalization then keeps the precision of the arithmetic
operations within the required bounds. Decoder
renormalization must be the same as in the encoder.

Another problem to be resolved for implementation in
fixed-precision arithmetic is a carry propagation problem, It
is possible to generate a code string with a consecutive
sequence of 1-bits of arbitrary length. If a bit is added to the
least significant bit of this sequence, a carry will propagate
until a 0-bit is encountered, Langdon and Rissanen [8)
resolved this problem by “bit stuffing ” If a sequence of 1-
bits of a predefined maximum length is detected, an extra 0-
bit is stuffed into the code string. The stuffed 0-bit acts as a
carry trap for any carry from future coding operations. The
decoder, after detecting this same sequence, removes the
stuffed bit, adding any carry contained in it to the code-
string remainder. The Q-Coder follows this general scheme,
but with the additional constraints that the string of [-bits is
eight bits in length and is byte-aligned.

One final practical problem needs to be resolved. In
general, arithmetic coding requires a multiply operation to
scale the interval after each coding operation. Generally,
multiplication is a costly operation in both hardware and
software implementations. An early implementation of
adaptive binary arithmetic coding avoided multiplication [8].
However, the Skew Coder {7] uses an even simpler
approximation to avoid the multiply; the same
approximation is used in the Q-Coder. If renormalizations
are used to keep the current interval, A, of order unity, i.e.,
in the range 1.5 > 4 = 0.75, the multiplications required to

W. B. PENNEBAKER, J. L. MITCHELL, G. G. LANGDON, JR. AND R. B. ARPS

W d V 7

13 DOCI

718

Unified Patents, Ex. 1018 -

https://www.docketalarm.com/

720

"Wod Wlie|el}aXd0p Je s)Jewldalem JN0oYlIM Ssjuslundop 14Nn0od pajedijuayine puld

W d V 7

13 DOCI

o.lot
0.08 -
> ~—— 12-bit quantization only
€
S 0.6 |
&
E -—— 5-bit granularity added
o0
'§ 0.04 |
0.02 |-
/ A
0.00
N A1 A i 1 1
2 4 6 8 10 12
-log, (¢)

: Codmg mcfﬁcxcncy as a function of logl(q). where q is the less
¢ probable symbol probability. The solid line is for the 12-bit integer
i representation of Q,. The dashed line shows the effect of restricting
5 the set of allowed Qc 1o the values in Table 1.

b
subdivide the interval can be approximated as follows:

AxXQ.=Q,,
AXPe=AX(1-Q‘.)=‘A—Qe_._

Both the code string and the current interval are periodically
renormalized such that the value of 4 is in the desired range
relative to @, for the next decision. The true interval is
obtained by scaling 4 by the current renormalization factor.
The idea that A4 should be kept in the range from 0.75 to 1.5
is due to Rissanen.’

A calculation of the instantaneous coding inefficiency
introduced by this approximation is shown in Figure 4. The
abscissa is a log scale of the true (not the estimated) LPS
probability, g. The ordinate is the coding inefficiency relative
to the ideal code length, assuming that the best possible
integer value of g is selected. The coding inefficiency is
dominated on the left side of the plot by the approximation
to the multiply. On the right side of the plot, the coding
inefficiency is dominated by quantization effects. The solid
line gives the coding efficiency for the 12-bit integer
arithmetic precision used in the Q-Coder. When the allowed
LPS probability estimates are further restricted to the small
subset of 30 values actually used in the Q-Coder, the dashed
curve labeled “5-bit granularity added™ results.

S—

1, J. Rissanen, IBM Almaden Research Center, San Jose, CA, ptivate
communication.

W, B, PENNEBAKER, J. L. MITCHELL, G. G. LANGDON, JR., AND R. B. ARPS

000004

3. Q-Coder hardware and software coding
conventions

The description of the arithmetic coder and decoder in the
preceding section is precisely that of a hardware-optimized
implementation of the arithmetic coder in the Q-Coder. It
uses the same hardware optimizations developed for the
earlier Skew Coder [7]. A sketch of the unrenormalized
code-string development is shown in Figure S(a), and a
sketch of the corresponding decoding sequence is found in
Figure 5(b). Note that the coding (and decoding) process
requires that both the current code string and the current
interval be adjusted on the more probable symbol path. On
the less probable symbol path only the current interval must
be changed,

The extra operations for the MPS path do not affect
hardware speed, in that the reduction in the interval size and
the addition to (or subtraction from) the code string can be
done in parallel. The illustration of the hardware decoder
implementation in Figure 6(a) shows this parallelism.
However, this organization is not as good for software.
Having more operations on the more probable path, as seen
in the decoder flowchart of Figure 7(a), can be avoided.
Software speed can be enhanced by exchanging the location
of subintervals representing the MPS and LPS. As illustrated
in Figure 7(b), the instructions on the more probable path
are reduced to a minimum and, instead, more instructions
are needed on the less probable path. Note that this
organization gives slower hardware, in that two serial
arithmetic operations must be done on the LPS path [see
Figure 6(b)]. To decode, first the new MPS subinterval size is
calculated, then the result is compared to the code string.

If the choices were limited to the two organizations
sketched in Figures 6 and 7, there would be a fundamental
conflict between optimal hardware and software
implementations. However, there are two ways to resolve
this conflict [9]. First, it is possible to invert the code string
created for one symbol-ordering convention, and achieve a
code string identical to that created with the opposite
convention. A second (and simpler) technique uses the same
symbol-ordering convention for both hardware and software,
but assigns different code-string pointer conventions for
hardware and software implementations. The code-string
convention shown in Figure 5(a), in which the code string is
pointed at the bottom of the interval, is used for hardware
implementations. However, a different code-string
convention, illustrated in Figure 8(a), is used for software. In
this software code-string convention the code string is
pointed at the 70p of the interval. When the software code-
string conveation is followed, coding an MPS does not
change the code string, while coding an LPS does. Figure
8(a) also shows the relationship between hardware and
software code strings. Note that the gap between the two
code strings is simply the current interval.

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

Unified Patents, Ex.

1018

https://www.docketalarm.com/

WIoD"We|e}axd0p je s)Jdewdajem JnoylIM Sjuswindop 31n0d pajedijusyine pul4

W d V 7

13 DOCI

. I AQ) A0)
P
€
1A
l;_):
: £
: I
Q, Q. %
P
J 0 J ¥ ?‘ < o, 0
Symbol: M M L M Symbol: M M L M
@

Code-string treatment with hardware-oriented conventions: (2) Hardware encoder code-string development. (b) Hardware decoder code-string
remainder.

1 (MPS) DATA OUT

CODE IN i

t (MPS) DATA OUT CODE IN
—-—-#-—-—Dc

(@) ()

721

1BM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

W. B. PENNEBAKER, J, L MITCHELL, G. G. LANGDON, JR, AND R. B. ARPS

000005 Unified Patents, Ex. 1018

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

