"Wod Wlie|el}aXd0p Je s)Jewldalem JN0oYlIM Ssjuslundop 14Nn0od pajedijuayine puld

W d V 7

13 DOCI

s

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 2, FEBRUARY 1989 93

A Multiplication-Free Multialphabet Arithmetic
Code

JORMA RISSANEN anp K. M. MOHIUDDIN

Abstract—A new recursion for arithmetic codes used for dsta compres-
sion ts described which requires no multiplication or division, even in the
cuse with gonbinary Ipbabet For this , such a code admits &

for symbol from left to right. When encoding the symbol i,
immediately following the so-far processed string s, the code
requires as input the data that represent the conditional

simple and fast hxrdwue implementation. The inpun 10 the code are, in
addition to the symbols to be eueoded, either the symbol probabilities or,
more simply, the corresp t Bence, the code is

ficable in conj i wlth i y and dels atike.
The code efficiency is typically in the range of 97-99 percent.

1. INTRODUCTION

q RITHMETIC codes, introduced in the LIFO-form (last-in

t-out) in Rissanen {3} and subsequently modified 1o the
irnportant FIFO-form (first-in first-out) in Pasco [2], are by far
the most flexible and powerful coding techniques available for
the purpose of achieving compression, for they can be used
with equal case to encode strings modeled by stationary or
nonstationary sources. The basic encoding operation in an
arithmetic code requires ah update of the probability P(s) of
the so-far processed string s, which can be done by multiplica-
tion P(s) P(i|s) where P({|s) is a conditional probability of the
symbol i given s. However, the multiplication in a hardware
implementation of the code is relatively expensive and slow
even though both probabilitics are numbers which in their
binary represchtation have at imost a fixed number of
significant digits. In the special case with a binary alphabet,
the multiplication was replaced in Langdon and Rissanen [1]
by the much simpler shift operation, which was made possible
by an approximation of the smaller symbol probability with an
integral power of 1/2. However, the same idea does not
generalize to nonbinary alphabets for the reason that the
symbol probabilities cannot be approxirhated well enough as
powers of 1/2.

In this paper, we describe a ncw nmplemenmuon of
arithmetic codes in which the proper multiplication is avoided
even with nonbinary alphabets. As an added bonus the code
can accept as inputs the occurrence counts of the symbols in
place of probabilities. This means thiat no division is needed to
convert the counts into probabilitics. Because of the reduced
eov&plcxity. this algorithm is well suited for implementation in

1.

‘We give an analysis of the code efficiency and discuss the
choice of various parameters. We have also studied the code
efficiency experimentally. In typical strings with the alphabet
sizes varying from 2 to 84, the efficiency was found to be 97~
99 percent or better. A particularly simple implementation
results in the case with a binary alphabet for which the
cfficiency of our code exceeds that of the fast code in Langdon
and Rissanen [1] mentioned above.

1. REVIEW OF ARITHMETIC CODES

Let the alphabet consist of the symbals i = 0,1, - -+, m. An
arithmetic code encodes the string to be compressed, symbol

Papcrapp:ovedbydwﬂdxwxforCodmg'meoryandApyhcauonsof&e
IEEE C Society. N ipt received April 4, 1986; revised
August 24, 1987.

The authors are with IBM Almaden Rescarch Center, San Jose, CA 95120,
IEEE Log Number 8825337.

probability of the symbol’s occurrence at its context, which in
themostgeneralcasexsthcenurcpas(su'mgs. Siuch
paramicters are provided by the so-called modeling unit. In the
special case where the string is modcled by a stationary
source, these parameters do not depend on 5. Often, the
simplest way to represent the model parameters is in terms of
miegcr—valued symbol occurrence counts, say n; for the
symbol i in its context, which we from here on do not indicate.

These numbers need not correspoid to the real occurrences of
the symbols; instead, the modeling unit may update them in a
sophisticated manner to reflect changing statistics. If # denotes
the sum of the counts n,, then we may say that the symbol {
following string s is modeled by the probability P(i|s) = ny/
n. In addition to these counts, the modeling unit collects and
delivers also the cumulative sums Qi) = ng + *-* + ni_y,
=1, *--, m, @(0) = 0. The modeling unit should update for
each symbol i not only the count 2 but also the cumulative
counts Q(), J > i, which are affected by n,. Finally, because
of the approximations that we introduce later, we assume for
the best compression efficiency that the symbol with the
highest count to be the last, i.e.,

An=ny, all i 2.1

An arithmetic code constructs the code string as a cumula-
tive probability of the strings that precede the considered one
in the lexical order of the strings. When calculating this
cumulative probability, the code uses a certain approximation
of the probability P(s) defined by the model, which we denote
by A(5). This approximation satisfies all the propertics of an
information source, as explained below. The lexical order on
the strings implies, in particular, that if s* < s, both strings
have the same length, then for all symbols i, s’ < s0 where si
denotes the string consisting of s followed by the symbol 7.
Therefore, if C(5) denotes the binary fractional number
representing the code, i.e., the cumulative probability of the
string s, then the code of the one symbol longer string si is
given by

C(s0)=C(s) -
CE)=CE+ A0+ - +A(si=-1), i>0 (2.2)

where for the sake of clarity the notation si -~ 1 was used for
the string consisting of s followed by the symbol i — 1. The
initial conditions are C(\) = 0 and A(N\) = 1 where A
denotes the empty string, The truth of this recursion for the
binary alphabet becomes immediate if the reader cares to draw
a binary tree with the root up, and at each internal node 0
points to the left son and 1 to the right son. Then the ordering
of the strings of length n grows from left to right, and the
formation of the cumulative string probabilities indeed follows
the given recursion. We shall also see to it that

A@E)=AGO) + -+ A(sm) 2.3)
which ensures decodability (Rissanen and Langdon [4]) which

0090-6778/89/0200-0093$01.00 © 1989 IEEE

BEST AVAILABLE COPY
000001

Unified Patents, Ex. 1017

https://www.docketalarm.com/

"Wod Wlie|el}aXd0p Je s)Jewldalem JN0oYlIM Ssjuslundop 14Nn0od pajedijuayine puld

W d V 7

13 DOCI

94

with its initialized value 1 causes A(s) to define a bona fide
information source. These equations leave open the issue of
how A (s) is computed recursively, which will be dealt with
later.

The arithmetic operations called for by the two recursions
will be done in two fixed size registers with width w (typically,
w = 16 or 12), onc for C(s) and the other for A (s). This is
possible if we introduce the normalized quantities a(s) = 24
A(s) where L(s) is a nonnegative integer determined by the
requirement that a(s) is a w digit binary number in a fixed
range. The selection of the range is discussed under Section V.
For ease of implementation, the following range turns out to
be suitable:

0.75<a(s)<1.5. (2.4)

This normalization is easy to do by means of shift operations.
To do the encoding/decoding in a single cycle, special
bardware should be provided to do shifis by multiple bit-
positions in a single cycle. In these notations, the recursion
(2.3) reads

a(s)=a(s0)+ « - - +a(sm) 2.5

where @(si) = 247 A(si). As s increases in length, A(s)
decreases as by (2.3) and L (s) increases, and the quantities
added to the code string according to (2.2) move to the right.
Equivalently, the code string C (s)is shifted left relative to the
fixed register where the addition takes place.

. BINARY CODE

A particularly simple implementation results in the case of
binary alphabets, which we describe first. Let x denote the
symbol to which the model assigns the lower count, i.e., n, =
n/2. This low probability symbol, of course, depends on the
past string. Denote by x’ the opposite high probability
symbol. First, convert the integral count n into a fractional
aumber in the range of (2.4). This is achieved by shifting 7 by
cnough positions k(1) to the left such that the resultant number
i will be in the range (2.4). Let the counts be maintzined in
registers of width w. Let /(n1) by the number of significant
binary digits in n. If the second significant digit of n is 1 (the
first of course being 1 by definition) then k(n), the number of
positions of shift, is equal to (w — 1) — I{n). If, however, the
significant digits of 21 start as 10 - - -, then k(#) is equal to w
— {(n). In the former case, one can think of the radix point as
being just to the left of the most significant digit. Correspond-
ingly, in the latter case, the radix point is just to the right of the
most significant digit. For example, assume that the width w
= 8. If n = 00001101 (binary), then # = 0.1101000, but if
= 00001011 then /1 = 1.0110000. In both cases, /(1) = 4. In
the first case, n is shifted by (8 — 1) — 4 = 3 positions and in
the second case by 8 — 4 = 4 positions. Notice that for
gaining the maximum speed in a VLSI lmplcmentatxon. these
shifts have to be done in a single cycle using special hardware
such as barrel shifters. We will define # = 2=y Further
define Ay = 2~ Notice that the individual count n, is
shifted by the same number of positions k() as n. In such
cases where the inputs are available not as counts but as
probabilities, each written with w — 1 fractional digits, we put
n = A = 1, which gives A; = p,. Since n = n; + 2., we
have

A=A+ Ayer. 3.1)

A recursion that would satisfy the basic decomposition of

(2.5) (form = 1) is

a@x)=a()p(x|s), a(sx’)=als)—a@)p(x|s) (3.2)

where p(x|$) is the conditional probability of x given the past
string 5. The goal is to apportion a(s) into a(si} in the

BEST AVAILABLE COPY
000002

[EEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 2, FEBRUARY 1989

proportion of the conditional probabilities of i given s.
However, it is exactly the asbove multiplication that we would
like to avoid. We first approximate the ideal conditional
probability by p(x|s) = n./n = A./7 and then rewrite the
recursion for a(sx) from (3.2) as

a(s)

a(sx)=a(s) —-=r‘f —_— 3.3)

Since a(s) and A are in the same range of (2.4), their ratio is of
the order of unity. We can now approximate the recursion for
a(sx) and a(sx’) as

a(sx)=H,, a(sx’')=a(s)— Ay (3.4)

and then normalize the new value of a(s) to be in the range of
(2.4), quite analogously with the gencral normalization with
which we bring the addends A (s) to the same range. In case
the inputs are available as probabilities, our approximation is
equivalent to the following recursions:

a(x)=p(x|s), a(sx’)=1-p(x]s). (3.9

Let us illustrate the approximations with an example. Suppose
n = 1101 and ne = 0010 in binary rcpresentation. By
normalization of the counts # = 0.1101 and A, = 0.0010.
Let, for example, a(s) = 1.001. Using the recursion of (3.4),
a(s0) = 0.0010and d(s1) = 1.000. Even though 0.001/1.001
differs from the count ration 0010/1101 by about 50 percent,
the effect to the code length turns out to be small. The issue of
the efficiency of the code is dealt with in greater detail in
Section V.

We now describe the coding operations in terms of the
actions in two registers, C and A4, both having width w, We
interpret the content of C as being a fractional binary number
resulting when the binary point is placed to its left end, while
in register 4 we place the binary point after the first position.
‘The code string C (s) consists of the symbols that get emitted
from the left end of register C together with the symbols in C.

A. Encoding Algorithm

Initially fill register C with O's and set 4 to 10 --- 0.

1) Read the next symbol. If none exists, shift the contents of
C left w positions to obtain the final string.

2) If the pext symbol is the low probability symbol x,
replace the contents of A by #, and go to 4).

3) If the next symbol is the high probability symbol, add to
register C the number #,, and subtract from register A the
same number. Go to 4).

4) Shift the contents of both registers 4 and C left as many
positions as required to bring .4 to the range [0.75, 1.5). Go to
1.

As numbers get added to register C, a carry-over may
occur. A special bit stuffing routinc may be used to handle
such carries (Langdon and Rissanen {1]). Also, in order to
reduce the frequency of the carry occurrences & guard register
of width w, may be placed to the left end of C to take care of
carries shorter than w.. In such a case, a corresponding
tegxsterslwuldbcusedatthedecodetalso

‘We illustrate the encoding algorithin using a simple exam-
ple. Let n = 1000, n, = 0010, and n; = 0110. After
normalization, we have A = 1.000, /4, = 0.010, and A; =
0.110. We assume the register width w to be 4 bits. Let the
string to be encoded be 0111010. Table I lists the contents of
both C and A registers after each symbol has been encoded.

The decoding is done by virtually reversing the steps in the
encoding.

B. Decoding Algorithm

Initialize C with w leftmost symbols of the code string and
A with 10 --- 0.

Unified Patents, Ex. 1017

https://www.docketalarm.com/

"Wod Wlie|el}aXd0p Je s)Jewldalem JN0oYlIM Ssjuslundop 14Nn0od pajedijuayine puld

W d V 7

13 DOCI

RISSANEN AND MOHIUDDIN: MULTIALPHABET ARITHMETIC CODE

TABLE
ENCODING EXAMPLE FOR BINARY ALPHABET

Symbol Reg C Reg A

Stan 0000 1000

0 00 0000 1000

1 00 0100 0110

1 001 0000 1000

1 001 0100 0110

0 00101 0000 1000

1 00101 0100 0110

0 0010101 0000 1000

TABLE I
DECODING EXAMPLE FOR BINARY ALPHABET

Decoded Reg C Reg A
Sypmbol

Start 0010 1000

4] 1010 1000

1 0110 0110

1 0101 1600

1 0001 0110

0 0100 1000

1 0000 0110

0 0000 1000

1) Form an auxiliary quantity T by subtracting A, from the
contents of C. Test if T < 0.

2) If T < 0, decode the symbol as x. Load 4 with #A,. Go to
4).

3) It T = 0, decode the symbol as the high probability
symbol. Load C with T, subtract 7, from A4, and go to 4).

4) Shift both registers left by as many positions as required
to bring A to the range [0.75, 1. 5), and read the same number
of symbols from the code string in the vacated positions m C.
If none exists, stop. Else, go to 1),

Let us use the coding parameters of the encoding-example
and decode the string gencrated by the encoder. Table II lists
the contents of both registers after each symbol has been
decoded.

Notice in Step 2) of the encoding algorithm that the
processing of the low probability symbol requires only one
operation while the encoding of the high probability symbol in
Step 3) requires two. However, these two operations can be
done in parallel, which means that the processing of each
symbol in hardware implementation requires about the same
time. In a software implementation, which does not allow
parallel processing, we get a faster encoding algorithm if we
rearrange the coding operations as follows:

Clsx)=Ck), Clsx)=C(s)+2- L= a(s)~ /). (3.3)
In other words, the two serial opcrauons. the subtraction in
register A and then the addition in register C, are done for the
low pmbabulty symbol, while for the more frequently
occurring high probability symbol only the updating of the A
register needs to be done. This means, though, that proper
decodmg is possible only when a dummy low probability
symbol is added to the very end of the source string.

IV. NoNBINARY CODE

The key idea in the updates of the normalized addends a(s)
in the binary case was to scale the total symbol count so as to

BEST AVAILABLE COPY
000003

95

bring it close to a(s), which then allows us to define the next
addends simply as A, and a(s) — #,, respectively. The same
idea can be applied in the general case as well. We recall that
the modeling unit places the symbol with the highest count as
the last symbol m, which is done for the reason to reduce the
approximation errors; the ordering of the other symbols does
not matter. As before, we define k(n) as the value of the
integer k which brings 2-%n in the range {0.75, 1.5). Then, we
define the normalized counts

A=2-kmp
=2-keap,

0= . QWO=0.

j<i

In case the inputs are probabilities, each written with w — 1
fractional binary digits, weputn = # = 1 and A; = p;.

The idea for updating the addends is to define them as a(si)
= A;, i < m, and a(sm) = a(s) — Q(m). But becausc we
may have A > a(s), the last addend &(sm) = a(s) — Q(m)
may be negative. In that case, we replace k(n) by k(n) + 1,
and this guarantees posmvuy of all the addends. The final
encoding algorithm receives 7 and ; as the inputs, and then
progresses by the following algorithm using two registers C
and .A. The content of C register is interpreted as a binary
fractional number resulting when the binary point is placed to
the left end, while in A the binary point is placed right after the
first position. Hence, for example, if register C has width w
= 4 then its content 0100 represents the number 0.0100, while
in A the same content represents the number 0.100.

A. Encoding Algorithm

Initially fill register C with 0's and set A to 10 -+ O. .

1) Read the next symbol i. If none exists, shift the contents
of C left w positions and stop. E!se test if Q(m) < A. If true,

put 8 = 0. Otherwxse, put 8 =

2) If the symbol i is not the last m add the number 274 Q@)
to the contents of register C, load register A with the number
2-%7;, and normalize, Step 4).

3) If the symbol in the last, i.e., i = m, add the number
2-2Q(m) to the contents of register C, subtract the same
number from A, and normalize, Step 4).

. 4) Shift the contents in both registers C and A left as many
positions as needed to bring the contents of 4 to the range
{0.75, 1.5), and fill the vacated positions with 0. Go to 1).

Whenever register C is shifted left, the bits ‘‘falling’’ off
the left end are the successive symbols in the code string C(s),
which may be either transmitted or stored in an appropriate
storing device. We may imagine this device to form an
extension of the register C to the left. Hence, the code C(s)
consists of all such symbols as well as those residing inside the
register C. As in the binary case the carry over problem may
be handled by the bit stuffing technique.

We illustrate the encoding algorithm by a simple example.
Let n = 1000, o = 0010, n, = 0011, and n, = 0011. After
normalization, we have # = 1.000, n, = 0.010, n; = 0.011,
n3 = 0.011, so that Q(0) = 0.000, O(1) = 0.010, and Q(Z)
= 0.101. Wc will use w = 4. Lct the string s be 100212,
Table I lists the contents of both registers after cach symbol
has been encoded.

The decoding unit uses the same two registers as the
encoding unit with the same interpretation of their contents as
binary fractional numbers. The decoding is donc with the
following algorithm.

B. Decoding Algorithm

Fill C with w first symbols of the code string and set A to 10
-ee 0.

1) Read Q(m) for the next symbol and test if Q(m) < A.If

Unified Patents, Ex. 1017

https://www.docketalarm.com/

"Wod Wlie|el}aXd0p Je s)Jewldalem JN0oYlIM Ssjuslundop 14Nn0od pajedijuayine puld

W d V 7

13 DOCI

BEST AVAILABLE COPY

[EEB TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 2, FEBRUARY 1989

base 2. Let L, be the actual code length and L, the ideal code
length after N symbols are encoded; let /, be the corresponding

actual per-symbol code length and /s the xdcal per-symbol code
length. Then

a(s xI-H)
== g log a(s‘}
Nl p(Xeealsh
- 20 log TDath T EPm

96
TABLE 1
ENCODING EXAMPLE FOR NONBINARY ALPHABET
Symbol Reg C Reg A
Start 0000 1000
1 0 1000 0110
0 010 0000 1000
/] 01000 0000 1000
2 010001 0100 o110
1 0100011 G000 0110
2 0100011101 G000 1000
TABLE v
DECODING EXAMPLE FOR NONBINARY ALPHABET
Decoded Reg C Reg A
Symbol
Start 0100 1000
1 0000 0110
] 0011 1000
4] 1110 1000
2 1001 0110
1 1010 0110
2 0000 1000

where C(p.) is a correction term due to the different way we
update a(s) when the next symbol happens to be 71, and can be
expressed as

c _ k) 1 (‘_’(—Pm) —log 2=
(Pm)=— Y, log|aG") T B
By =m
5.2)
Further,

.= - 2 log p(x;41|s) + 2 log (k(f)a(s*) + C(pm)

=0 =0

true, put § = 0. Otherwise, put 8 = 1, Then find the largest
symbol j such that 2-2Q(j) =< C. Decode the symbol as the
so-found largest symbol, sa: 3'

2) If i < m, subtract 2~ Q(/) from C and insert 2-%#; in
register A. Go to step 4).

3)If i = m, subtract 2-# Q(m) from both C and A.

4) Shift the contents of both registers C and A left as many
positions as neceded to bring the content of A to the range
{0.75, 1.5). Fill the remaining positions in C with new
symbols from the code string. If none exists, stop. Else, go to
Step 1).

We illustrate the decoding algorithm by decoding the code
stream generated by the encoder of our example above. Table
IV lists the contents of both registers after each symbol has
been decoded.

V. CopEe EFFICIENCY

In this section, we analyze the code efficiency, and discuss
the choice of certain parameters, such as the optimum scaling
range. For the convenience of analysis, we assume that the
input parameters are available as probabilities rather than
counts. Since it is crucial to the understanding of the analysis
of code efficiency, we repeat here the update rule for a(s).
After a string s’ has been encoded, the update rule for a(s)
when the next symbol Xy, is observed is the following:

P(Xeei|sY)

k(l) if X1 #Fm

a(s%41) = (1) ¢.D
—Pm

Tk ()

where &, = 1, if a(s") > (1 — pn), and &, = 2, ifa(s") < (1
— Pm), m is the last symbol in the alphabet, and p,, is the
probability assigned to the last symbol 2. The most probable
symbol in the alphabet should be chosen as the last symbol m
for maximizing code efficiency, as will be shown later in this
section. Please note that all logarithms in this section are to the

a(sl) if Xie1=m

000004

=L,+'S log (k(als)+C(pn).

=0

Dividing both sides by N, the total number of symbols seen so
far, we get the excess per-symbol code length over the idea
code length as

é=l, —I,——-— 2 log (k(t)a(s’))+— C(pPm)-

!-0

(5.3)

Now, for large values of N,

Y E log (k(?)a(s") = E (log (k()a(s"))

t-ﬂ
where E (.) denotes the expected value. Let us assume that
a(s’) forms a stationary process, uniformly distributed in its

scaling range which we choose as [0.75, 1.5) for the present
analysis. That is,

1
75<a<l.s

055 073 =4

o,

Further, noting that k(¢) = 1 for a(s") > (1 — pa) and k(1)
= 2 for a(s’) s (1 — pp), we get the first term in (5.3) as

pla(s))=pla)=
otherwise.

< E log k(?)a(s")

|

=0.142267 +

1=ppy

1

1 d SI.S
= 0.75 og 2ada+)

078 P

(1-pm)-0.75
0.75

loga da)

(5.9)

Unified Patents, Ex. 1017

https://www.docketalarm.com/

"Wod Wlie|el}aXd0p Je s)Jewldalem JN0oYlIM Ssjuslundop 14Nn0od pajedijuayine puld

W Vv "1V

13INO00d

RISSANEN AND MOHIUDDIN: MULTIALPHABET ARITHMETIC CODE

For the second term 1/N C(p,,), by (5.2) we have

1 - _ ___(1 —Pm)
oo = =am (2 (s (o (=-557)))
=0 5))-

Again, with the uniform distribution for a(s’), we get

1 Pm (['7Fm (A -pm)
NC(p,,,) T (Sms log (a~—-—-——-——2 da

1-p,

+j'"’ . log (@— (1 —pm)) da)

+ P 108 P~ Prp(a(s’)<1—pm)

Pn (1 —=pn)
=== (1—Pm —

142
+(0.5+2.) log (—-—efl”—)> +Prm 108 P

(1=pm)—0.75
P~ (5.5)

where e denotes the base of the natural logaritbm. Combining
(5.3), (5.4), and (5.5), we get the excess per-symbol code
length as

(1 =pm)—0.75

5=0.142267+(1 -
A -pm) 0.75

1-Pm . 1=Dm 05+pn. 142Dy
—Dm ! .
p (1.s B2 1.5 log e -9

and the efficiency of compression as

+Pm 108 P

// l/
Efficiency = 1_1 = -I—-i-g .
a M7

In English text, the most probable symbol is usually found to
be the letter “*£°”. Suppose that we make **#’’ the last symbol
m, in the compression of files containing English text. We
found by modeling a number of such files as a stationary
independent process that p, = 0.0624, and the ideal per-
symbol code length /; = 4.7887 bits. From (5.6) we can
calculate the excess code length & to be 0.2556 bits per
symbol, and from (5.7) the efficiency to be 94.4 percent. This
agrees well with the experimental results in Table VI. Any
deviations from experimental results are due to the simplifying
assumption that a(s) is uniformly distributed. For the above
analysis, we assumed that 0.75 s (1 — p,) < 1.5, as thatis
the general case. For large values of pn,, it is possible to have
0.75 > (1 — p.), and the analysis of code efficiency turns out
to be simpler because &£(?) = 1 in (5.1).

In (5.6), the cxcess code length & is dependent on pn. It
turns out that as p,, increases, & decreases, which implies high
efficiency. The decrease of & with increasing p,, can be seen
from entries in Table V, under the column 5(0.75). That is
why it is recommended that the most probable symbol be
considered as the last symbol in the alphabet.

.7

A. Optimum Scaling Range

For the analysis in the previous section, we had assumed
that a(5s) is scaled to be in the range [0.75, 1.5). In this section,
we address the question of the optimum scaling range for

BEST AVAILABLE COPY

000005

97
’
TABLE V
OPTIMUM SCALING RANGE
Fo Kopt Skopd | 3035 | 8(05)
0.02 0.6840 03662 03718 04361
0.04 86700 03018 0.3093 03589
0.06 0.6671 02529 02607 0.2999
0.08 0.6598 02144 02230 0.2533
0.10 0.6535 0.1836 0.1929 0.2162
0.12 0.6483 1592 0.1688 0.1858
0.1¢ 0.6444 0.1400 0.1497 0.163%
016 0.6422 0.1253 0.1348 0.1466
018 06418 0.1145 01235 0.1340
020 0.6435 0.1072 0.1154 0.1258
022 0.6475 0.1029 0.1101 o.1213
024 0.6538 0.1013 01072 0.11%0
026 0.6627 0.1019 0.1066 0.1220
08 0.6740 0.1045 0.1078 0.1265
030 0.6878 0.1087 0.1108 0.1334

maximizing the efficicncy. Let the scaling range be [k, 2k),
and k = (1 — pn) < 2k. We can write a general expression
for the excess code length in terms of X as

5(k) =1~ pm) (l—_-p;"'z———’—‘nﬂog §+p,,, 108
P ((1) tog L2 4 2= (1 -)
2k e
- log ———-———-—-—2(2’(—?"” m))) . (5.8)

This equation can be numerically solved for the optimum value
Ko, Which is dependent on p,,. Table V lists ko for various
values of p,. Table V also gives the corresponding excess
code length 5(kox). Kog varies from 0.6418 for p» = 0.18-
0.6878 for p, = 0.30. However, for ease of hardware
implementation it is desirable to keep the scaling range fixed.
We have the option of keeping & fixed, for example, at 0.5, or,
0.75, etc. Table V gives the corresponding excess code lengths
under 5(0.5) and §(0.75). It can be seen that 6(0.75) is much |
closer to §(kyx), than 5(0.5). Although we could consider
other scaling ranges such as [0.625, 1.25), it will make the
hardware more complex for little improvement in coding
efficiency. Hence, we recommend using a scaling range of
[0.75, 1.5). For pm > 0.3, the solution of (5.8) leads to values
of ko greater than (1 — p,). Since it violates the condition for
the derivation of (5.8), those values are not valid, and hence
we have not listed them. However, it is easy to derive an
expression for §(k) under the condition & < (1 — pm) and to
compute ko from the resulting expression, Fortuitously, it
turns out that the resulting values of Koy ranges from 0.7472
for p,, = 0.36 to 0.70 for p, = 0.8. Hence, our choice of k¥
= 0.75 is indeed close to the optimum for most cases.

The efficiency of the code for binary alphabets tends to be
higher because in such cases p,, > 0.5, which implies a(s*) >
(1 — pm) and k(f) = 1in(5.1). There is a peculiar singularity
in the performance of the binary code at the exact probability
one half of the lower normalized bound of the A4 register,
namely, 0.375 for one of the symbols, which gives by far the
worst case performance. Indeed, with this probability the
register A will always be normalized to the same valuc 0.75,
which implies that a shift of one position occurs for each
symbol occurrence. Hence, the code efficiency at this point is
H(0.375) = 0.955 where H(p) denotes the binary entropy
function. The efficiency increases very rapidly to about 0.99
when the lower probability deviates from this value. Fortu-
nately, this worst case performance does not occur in practice

Unified Patents, Ex. 1017

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

