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for  the  Q-Coder 

The  Q-Coder  is  an  important  new  development 
in  binary  arithmetic  coding. It combines  a  simple 
but  efficient  arithmetic  approximation  for  the 
multiply  operation,  a  new  formalism  which  yields 
optimally  efficient  hardware  and  software 
implementations,  and  a  new  technique  for 
estimating  symbol  probabilities  which  matches 
the  performance of  any method  known.  This 
paper  describes  the  probability-estimation 
technique.  The  probability  changes are 
estimated solely  from  renormalizations  in  the 
coding  process  and  require  no  additional 
counters.  The  estimation  process  can be 
implemented as a  finite-state machine,  and  is 
simple  enough  to  allow precise  theoretical 
modeling  of  single-context  coding.  Approximate 
models  have  been  developed  for  a  more 
complex  multi-rate  version  of  the  estimator  and 
for  mixed-context  coding.  Experimental  studies 
verifying  the  modeling  and  showing  the 
performance  achieved  for  a  variety of image- 
coding  models are presented. 

1. Introduction 
Arithmetic coding, introduced several  years  ago by Rissanen 
[ 11 and Pasco [2] and generalized by Langdon and Rissanen 
[3] (see  Langdon [4] for a comprehensive review  article),  is a 
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powerful technique for  coding  of  strings of data symbols. It 
derives its power from an ability to approach the entropy 
limit in coding efficiency and to dynamically alter the 
estimate of the probability of the symbol  being encoded. 

A new binary arithmetic coding system, the Q-Coder, has 
been  developed as a joint effort  between the authors of this 
paper and colleagues at the IBM Almaden  Research Center. 
The new probability-estimation technique used in the Q- 
Coder  is  presented in this paper; companion papers describe 
the basic  principles  of the Q-Coder [ 5 ] ,  software 
implementations of the Q-Coder [6] ,  and the arithmetic 
coding procedures which  allow compatible yet optimal 
hardware and software structures [7, 81. The Q-Coder is part 
of a proposal submitted to the CCITT and IS0 Joint 
Photographic Experts Group (JPEG) for color photographic 
image compression [9]. 

A description of the general structure of the Q-Coder 
arithmetic coding section is  given in [ 5 ,  61. Briefly, the 
arithmetic coder contains two key  registers, the interval 
register A and the code  register  C. The interval register 
contains the measure of the current probability interval, and 
the code  register contains a pointer to the interval. In order 
to use fixed-precision  integer arithmetic for the coding 
process, the interval and code  registers must be  periodically 
renormalized. 

When a given  symbol  is coded, the interval measure in A 
is  reduced to the subinterval for that symbol, and the code 
string is repositioned to point within the subinterval. Ideally, 
the scaling of the interval is done by multiplying the current- 
interval measure A by the probability estimate of the symbol 
which occurred. If the less probable symbol (LPS or L) 
probability q is estimated as a and the more probable 
symbol (MPS or M) probability p is estimated as 1 - a, the 
binary  coding  process  divides the interval into two 
subintervals, A X a and A - ( A  X Qe). The multiplication 
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can be  avoided  by introducing a  tight constraint on the 
renormalization [3-5,  101.  If the probability-interval measure 
A falls  within the bounds 0.75 5 A < 1.5, A can be 
approximated by 1 when multiplying by $. The 
subintervals are then approximated by Q, and A - Q,, and 
the multiplication is  avoided. 

arithmetic approximation, it can serve another important 
purpose-it can also  be  used to estimate the probability of 
the symbol  being  coded. 

A number of  different but somewhat related techniques 
have  been  used to estimate symbol probabilities. Langdon 
and Rissanen [ 1 11 and Pennebaker and Mitchell [ 121 have 
both used  confidence-interval techniques to determine 
whether the current estimate Q, of the LPS probability 
should be changed. In [ 121, the degree to which the 
confidence limit is  exceeded  is  used to determine the degree 
to which Q, should be changed; this gives a multi-rate 
estimation process. Goertzel and Mitchell [ 131  used a 
counting technique with periodic renormalization; although 
in principle a divide operation is required, the precision  is 
small enough that a lookup table inversion and multiply can 
be  used. Mohiuddin, Rissanen, and Wax [ 141  devised an 
intriguing multi-rate adapter in which the choice of 
estimation rate is  based on a  local minimization of the code 
string being generated. Although  relatively  complex to 
implement, this technique is quite powerful; we regard it as a 
standard against  which other estimation techniques can  be 
measured. Finally, Helman et al. [ 151 used  a Monte Carlo 
technique involving the LPS renormalization and symbol 
counts for updating the estimate of the LPS probability in 
the Skew Coder [3]. 

The rest  of this paper is devoted to  an analysis  of  a 
probability-estimation technique in which the probability is 
estimated solely from renormalization.’ The renewed 
attempt to use renormalization as  the basis  for probability 
estimation was inspired by earlier work on the Log Coder 
[ 121. In that work the computations for probability 
estimation were minimized by estimating probability each 
time one byte of compressed data was generated. While this 
system  proved to be simple to implement and provided 
accurate estimates, it failed to adapt quickly enough in 
coding of facsimile data sets. On the other hand, calculating 
a new probability after the coding of each  symbol, as was 
done by Rissanen and Mohiuddin [lo], provided good 
estimates and fast adaptation but involved  far too much 
computation. Estimation after each renormalization 
appeared to be an attractive compromise between  these  two 
schemes. 

In Section 2 the estimation process  is  described.  Section  3 
develops the exact theoretical modeling of that process for a 
single context. Section  4 continues the theoretical modeling 

Although the renormalization is required for the 

738 possibility because they were  unable to obtain good coding efficiencies. 
’ In  unpublished work G. Goertzel and J. L. Mitchell explored and  abandoned this 

for  mixed contexts and a random-interval model. Theory 
and experiments are compared for  a  single context in 
Section 5 .  Section 6 extends the probability estimation to a 
multi-rate system.  Mixed-context coding is  analyzed in 
Section  7. 

2. Estimation process 
The basic concept is as follows: The estimated LPS 
probability, Q,, is taken from a fixed table of allowed  values. 
Renormalization occurs either when an L event is 
encountered or when the interval falls  below 0.75 following 
an M event. When renormalization after an LPS  is 
encountered, the index to the current Q, is  shifted to a  larger 
Q,. Conversely,  whenever the MPS renormalization is 
encountered, the index  is  shifted to a smaller Q,. (The terms 
MPS renormalization and LPS renormalization are usually 
abbreviated as “MPS renorm” and “LPS renorm” in the text 
following.) 

The following approximate calculation suggests that the 
estimate of the probability obtained from the table of 
allowed Q, values will adapt to and closely approach the true 
LPS probability q of a binary symbol sequence. Given a 
starting value A for the interval register immediately 
following the last renormalization, N successive  MPS events 
must occur to reach the MPS renorm point: 

N =  1 + [AA/Q,l, (1) 

where Q, is the current estimated value of q, AA is the 
change in the interval (0.75 > AA 2 0), and  the brackets 
denote the greatest  integer function (rounding down to the 
nearest  integer). The probability of getting N MPS events in 
a row (and an MPS renorm) is 

p,,, = (1 - 4 )  * 
N 

(2) 

For simplicity, consider the case  where q is  small. Taking the 
natural logarithm of Equation (2) and approximating 
In  (1 - 4 )  by -q, 

Pmmr e 
- W d / e . )  (3) 

The magnitude of AA is dependent on the type of 
renormalization. If the MPS renorm occurred last, AA is 
close to 0.75; if the LPS renorm occurred last, AA is 
typically somewhat smaller than 0.75.  If the effective value 
of AA is assumed to be an appropriate average and the 
change in Q, is the same for both types of renorms, the 
renorm probabilities are balanced at  the point where 

The equilibrium is stable at this balance point. If Qe is too 
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large, P,,, is  also  large and the system tends to move to 
smaller Q,. Conversely, if Q, is too small, P,,, is  small and 
the system tends to move to larger Q,. Therefore, the system 
adapts to and balances approximately at the point q = Q, . 
Although  these calculations are approximate, exact 
calculations which  follow the same general approach and 
prove the point more rigorously are described  below. 

As  will  be seen, the coding  efficiencies  achieved  by the 
Q-Coder  with this probability estimator for pseudorandom 
data sets are usually not as  good as those obtainable with 
simple estimates of probability from counts [ 131. Coding 
inefficiency  is due partly to the lower  coding  efficiency 
inherent in the arithmetic approximation to the multiply, 
partly to small but systematic errors in Q,, partly to the 
granularity of the set of  allowed  values  of Q,, and partly to 
the intrinsic distribution in Q, resulting from the stochastic 
estimation process.  However, the estimation process tracks 
variations in symbol probability  very  well. Consequently, the 
coding  efficiency  achieved  with the less  stable symbol 
probabilities encountered in many real  coding environments 
is extremely  good, competitive with the best that can be 
done by any technique currently known. 

and mixed-context  coding. For a single-context  system, the 
renormalization process is  used to estimate only one 
probability. For mixed-context  coding, the coding decisions 
are conditioned by past  history, and a different probability 
must be estimated for each conditioning state or context. It 
is perhaps somewhat unexpected that renormalization of a 
single A register can be  used to estimate the many different 
probabilities required in the mixed-context case. 

This estimation process  works well for both single-context 

3. Modeling of the  estimation  process  for  a 
single  context 
The estimator can  be  defined as a finite-state machine, that 
is, a table of Q, values and associated  next states for  each 
type of renorm (i.e., new table  positions). The rate of change 
of Q, is determined by the granularity of the table  of Q, 
values and by the new state associated  with  each Q, value for 
the two  types of renorms. Figure 1 diagrams sections of the 
actual finite-state machine used to estimate the probabilities. 
The leftmost  section illustrates the exchange  of MPS and 
LPS definitions at Qe z 0.5 (kex is defined to be the particular 
state index, k, where this exchange  occurs). The center 
section  shows a region  where the finite-state machine 
changes from a single-state jump  on LPS to a double-state 
jump. Some parts of the finite-state machine require a jump 
of more than one state in order to correctly estimate the 
probability. The rightmost section shows the diagram for the 
smallest  values of Q,. This last  section  shows  how the 
transition at the MPS renorm for the smallest Q, value is 
returned to that state. 

Conditional changes in estimated probability, such as 
changing Q, only  after the occurrence of two MPS renorms 
in a row,  can  readily  be incorporated by allowing multiple 

entries of a given Qe value. A related form of this can be 
seen in the diagram for the lowest Q, state, where entry to 
that state can only occur after two MPS renorms in 
sequence. Handling conditional effects in this manner greatly 
simplifies the theoretical treatment, the only penalty being 
the need to solve a relatively  large number of simultaneous 
equations when  complex conditional structures are being 
considered. 

Figure 2 illustrates the sequencing of the probability 
estimator for an LPS followed  by a sequence  of MPSs. In 
Figure 2 the ordinate is the interval (A-register)  value, and 
the abscissa  is the discrete  allowed  values of Q, . The LPS 
renormalization causes a transition to a known A-register 
value and a known state in the finite-state machine (in this 
case  from a of 0.42206 to the appropriate starting A- 
register  value at Q, = 0.46893. (The particular Q, values in 
the figure are taken from the actual optimized 5-bit Q, 
values in Table 1, shown later. As MPSs are coded, the 
interval decays until it drops below  0.75.  At that point a 
transition is made to a smaller Q,, and the interval is 
renormalized by doubling until it is  greater than 0.75. In 
most  cases  only one doubling is  needed. Thus, the pair of 
doublings shown at Q, = 0.32831 is the exception rather 
than the rule. Whether one or two doublings occur is  of no 
consequence for the probability estimation. However,  since 
each doubling produces one bit in the code string (ignoring 
bit stuffing for a carry), the extra doubling is important  in 
the calculation of the coding efficiency. 

underlies the calculation of the estimation process. The first 
half  of the problem is determining the probability that  the 
estimate will be at each  of the allowed Q, values.  If we define 
n, as the occupation probability for the state corresponding 
to Q,[k] (the kth allowed value of e,), balance of transition 
probabilities into and out of the kth state gives 

Figure 2 illustrates the sequencing behavior which 

where X ,  = q for k 2 k,, and X, = 1 - q for k < kex. The 
symbols rkj and tkj are defined  below. The table of allowed 
Q, is  defined to have mirror symmetry at  the boundary 
between  keX and k,, - 1. Thus, k,, is the index in the table of 
Q, where the definitions of  least probable symbol and most 
probable symbol are exchanged. (For k < kex the table 
provides an estimate of 1 - q rather than q.) 

The first term in the summation represents the transition 
probability into  the state at Q,[k] from all states j which can 
reach the state k by an LPS followed by a sequence of MPSs. 
The exponent tkj is the number of MPSs needed to just enter 
the kth state when starting from an LPS at statej. Thus, for 
the example sketched in Figure 2, state j is marked with an 
asterisk, and state k could be any  one of the states which  is 
reached by the MPS sequence  following the LPS. 

transition probability out of the state k, given that the MPS 
The second term in  the summation represents the 
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Sections of the state diagram for the probability estimator. 

sequence continues until the interval decays below 0.75 for 
the kth state. The exponent rkj is the number of MPSs 
needed to just leave the kth state, counting from the symbol 
after the LPS at state j. 

The summation therefore  represents the net gain  in nk due 
to transitions from  all statesj which can reach state k 
through an LPS followed  by a sequence of MPSs. It is 
equated to the probability of transition out of state k due to 
an LPS event.  (All  probabilities are per-symbol  encoded.) 
The probability of transition out of state k via the LPS path 
is the probability  of the LPS multiplied by the occupation 
probability nk. 

Normalization requires 

1 nj= 1. (7 ) 
j 

The numerical  solution  of  these equations can present 
problems, in that the nk can be vanishingly  small when the 

740 index k is  far  from the value  for the most  probablGvalue of 

Q,. Therefore, the equations are reduced to a subset 
involving  only the nk near the most  probable  value  of a. 
Contributions from  members outside this range  are  assumed 
to be zero. The set  of equations must be  large  enough that 
the error in truncating the set  is  small,  yet  small  enough to 
avoid arithmetic precision  problems in the calculation of 
determinants by the method of Gaussian elimination. Except 
near the end of the table, the center value  of k for the 
subset  is  defined as the index  for  which  Q,(k]  is  closest to q. 

Because the table of  allowed  values  of Q, is  finite in 
extent, the equations must be reformulated to take end 
conditions into account. This is done by assuming that 
either tkj = 0 or rkj = 00 in Equation (6). The latter condition 
exactly  describes the closure of the state diagram  for k,, in 
Figure 1, in that the system cannot exit  from the k,, state 
after the MPS renorm. It also approximates the closure if the 
equation set  is truncated before k reaches kma. Truncation 
near the other endpoint, k = kmin, is  described by one of the 
two approximations, the choice  depending on whether a 
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particular k is  less than the exchange index, k,,, or not. The 
two assumptions are equivalent to assuming that either LPS 
or MPS renormalization is  highly  unlikely. Note that the 
approximate closure condition at the smallest  value of k is 
not needed, as it is  replaced by Equation (7). 

Given a table of Q, values and associated  index  changes to 
new Q, values  for  each renormalization path, these equations 
provide an exact solution of the probability of the system 
being at each Q,[k]. However,  they  hold  only for single- 
context coding. 

The second  half  of the problem is the calculation of 
coding  rate.  Refer  again to Figure 2. The current occupation 
of each state in the system  is determined by the balance of 
LPS and MPS transitions into and out of that state. For each 
Q, the probability of the LPS renormalization is known by 
definition (q), and the probability of each  succeeding MPS 
renormalization is  readily  calculated. The bits generated by 
each renormalization are also  readily  calculated. The net bit 
rate R,  for the kth state is thus 

Rk = nkXk BLPS,k + x BMp&j (' - > 
[ j  I (8) 

where j ranges  over  all MPS renormalizations which can 
occur following the LPS renorm. BLPS,, is the number of bits 
generated in renormalizing Q,[k] to the allowed interval 
range. BMps,j is the number of bits generated by the jth MPS 
renorm. As defined earlier, X ,  = q for k 2 k,,, X ,  = 1 - q for 
k < k,,, and the exponent rkj is the number of MPSs needed 
to reach the j th MPS renorm after the LPS event from state 
k. 

The total coding rate in bits per  symbol  is therefore 

R = C R , .  
k 

4. Mixed  contexts: The random-interval  model 
The calculations in Section 3 are not applicable to coding of 
mixed-context  symbols. If the context varies from one 
symbol to the next, Q, also  varies. The calculation of 
probabilities of MPS renormalization and the associated bit 
rate is therefore far more complex.  Let  us consider the 
following  hypothesis: The probability of the various interval 
values  is  sufficiently randomized by the effects  of multiple 
contexts that the interval-register  values are uniformly 
distributed in the interval from 0.75 to 1.5. 

Assuming that the above  hypothesis  is  valid, the following 
equations give the LPS renormalization probability P,,k and 
the MPS renormalization probability Pm,k : 

The equations describing the balance in transition 
probabilities are similar to those developed in Section 3, 
except that the probability of the MPS renorm is calculated 

IBM J. RES, DEVELOP. VOL. 32 NO, 6 NOVEMBER 1988 
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t 
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t I -r 

I 

0.46893  0.42206*  0.32831  0.30487 

Allowed values of Q, 

b Example of the sequencing of the probability estimator following an I LPS. 

from Equation (1 1) rather than from the equations for the 
probability of a sequence of MPSs. Therefore, the balance 
for state k is  given  by 

nspI,s + ntPm,t - nk(Pm,k + p l ,k )  = O 9  

S I 

where s is summed over  all states which can make a 
transition to k via LPS, and t is summed over  all states 
which can make a transition to k via a single MPS renorm. 
The normalization condition, Equation (7), completes the 
set of equations to be  solved. Numerical precision  again 
requires that the set of equations be truncated. Therefore, 
endpoint conditions are handled in the same manner as 
discussed in Section 3. 

The calculation of coding  efficiency  is done differently for 
the random-interval model. For a given interval A and a 
given estimated LPS probability a, the relative coding 
efficiency is 

where H i s  the entropy and R, is the bit rate per symbol for 
state k. Defining p = 1 - q, the entropy is  given  by 

= -4 log 2(4) - P 1% 2(Ph  (14) 

and, for a uniform distribution of A values in  the interval 
0.75 to 1.5, R,  is  given  by 
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