
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4. NO. 3. MARCH 1995 237

Probability Estimation in Arithmetic and
Adaptive-Huffman Entropy Coders

Donald L. Duttweiler, Fellow, IEEE, and Christodoulos Chamzas, Senior Member, IEEE

Abstract—Entropy coders, such as Huffman and arithmetic
coders, achieve compression by exploiting nonuniformity in the
probabilities under which a random variable to be coded takes
on its possible values. Practical realizations generally require
running adaptive estimates of these probabilities. An analysis
of the relationship between estimation quality and the resulting
coding efficiency suggests a particular scheme, dubbed scaled-
count, for obtaining such estimates. It can optimally balance
estimation accuracy against a need for rapid response to changing
underlying statistics. When the symbols being coded are from a
binary alphabet, simple hardware and software implementations
requiring almost no computation are possible.

A scaled-count adaptive probability estimator of the type de-
scribed in this paper is used in the arithmetic coder of the JB1G
and JPEG image coding standards.

I. INTRODUCTION

ENTROPY coders achieve compression by exploiting
nonuniformity in the probabilities under which a signal

to be compressed takes on its allowed values. Practical
implementations generally require adaptive, on-line estimation
of these probabilities either because sufficient statistical
knowledge of the signal is lacking or because its statistics
are time varying. How best to make such estimates is a
question of much practical importance.

We became interested in this problem from our involvement
with two standards groups. The joint bilevel image group
(JBIG) is under the auspices of both CCITT and ISO and
is chartered to develop a standard for progressively coding
bilevel (two-tone or black-white) images [1]. The joint pho-
tographic experts group (JPEG) is under the same auspices
and is chartered to develop a standard for coding photographic
(grey-scale or color) images [2], [3]. Both of these groups have
finished their work and specifications are available [4], [5].

The JBIG algorithm and the JPEG algorithm (in some of
its parameterizations) use a common arithmetic coder [6]—[8].
Although our work was strongly focused on these two image
coding applications for arithmetic coders, it is clear that much
of what was eventually learned has application beyond just
image coding and even for forms of entropy coding other than
arithmetic, such as adaptive Huffman.

In the next section of this paper, we review adaptive
entropy coding and develop some useful analytical relation-
ships between the quality of probability estimation and the

Manuscript received May 31, 1992; revised November 26, 1993. The
assosciate editor coordinating the review of this paper and approving it for
publication was Prof. Michel Barlaud.

D. L. Duttweiler is with AT&T Bell Laboratories, Holmdel, NJ 07760 USA.
C. Chamzas is with Democritus University of Thrace, Xanthi, Greece.
IEEE Log Number 9408197.

atri1

[

t)

Entropy Encoder Entropy Decoder

 Model

Entropy
Mapper

Ornt

Entropy
Unmapper

PO.
Model

Fig. 1. General model for entropy encoding and decoding.

resulting coding inefficiency. The analysis strongly suggests
a particular structure for adaptive probability estimation. This
structure, which is dubbed scaled-count, makes it possible to
achieve any desired balance between the steady-state quality of
probability estimation and the speed of response to changing
underlying statistics. Section III presents this structure and
addresses implementation issues. In some environments (those
of JBIG and JPEG among them), both software and hardware
implementation become extremely simple, requiring almost no
computation.

II. ENTROPY CODING REVIEW AND ANALYSIS

A. General Framework

Let X(0), X(1), . . be a random process taking on at each
time n one value from a finite alphabet of possible values.
Since the particular values taken on will just serve as labels
in what follows, they can, without loss of any generality, be
taken as 0, 1, , K — 1, where K denotes the alphabet size.

Fig. 1 shows a general model for one-symbol-at-a-time
entropy encoding and decoding. The function of the block
labeled "Model" is to provide a vectors

P(r)= [Poo-o, . (1)

of estimates Pk (n) of the probability X(n) will take
on the value k. It may use any of the observed values
X(0), , X(n — 1) in making that estimate. The unit delay
block labeled "D" emphasizes that X(n) itself may not be
used in forming P(?),). If it were to be used, the entropy
decoder could not generate a tracking P (n).

Ideally, the block labeled "entropy mapper" places

1og2 (1/Pk (n)) (2)

bits of information on its output stream whenever a symbol
X(n) having an instance value k is coded. If the true proba-
bilities Pk (n) of X(n) taking on its various values k are highly

Throughout this paper, vectors are shown in bold-face type. Vector
components are separated by commas and grouped by square brackets. A
superscript T denotes vector transposition.

1057-7149/95$04.00 © 1995 IEEE

Unified Patents, Ex. 1011000001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

238 IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 4, NO. 3, MARCH 1995

nonuniform with some symbols much more likely than others,
then the average of the number of bits the mapper uses to code
a symbol can be well under log2 K, and there is substantial
advantage to be gained with entropy coding.

Entropy coders are always lossless. The sequence X(0),
X(1), . . . is recovered exactly by the decoder. This is generally
the type of coding desired if the sequence X(0), X(1), ...
represents a text file in a computer system. It is also common
for the coding of bilevel images (facsimile) to be done
losslessly. In coding other types of images and in coding audio,
some coding distortion is often allowed. Even when coding of
this sort is being done, however, lossless coding often becomes

a part of a larger structure in which some intermediate values,
which are invertible to the original signal only with distortion,

are themselves coded losslessly. The "baseline" JPEG system
provides one example of this.

The name "entropy mapper" is somewhat awkward and
is nonstandard terminology. The same is true even more so
for the decoding counterpart labeled "entropy unmapper." The
reason for coining these terms here is to make it possible to
carefully distinguish these mapping functions from the total
entropy encoding and decoding functions. The term "entropy
encoder" will be reserved for the combination of a probability
estimator and an entropy mapper. "Entropy decoder" will
always mean the combination of a probability estimator and
an entropy unmapper.

The well-known Huffman scheme [9] can attain the ideal
of (2) whenever all the Pk(n) happen to equal inverse powers
of two but, in general, falls somewhat short. The arithmetic
mapper used in arithmetic coders does not suffer from this
"breakage" problem and achieves the ideal.

When the alphabet size K is large, Huffman mapping often
can come acceptably close to the ideal and can be a viable
choice for entropy mapping. With binary alphabets, it cannot.
The breakage problem is unacceptably severe in the interesting
situation where one of the symbol probabilities is small and
the other is almost one. If the natural alphabet is binary and it
is desired to use Huffman mapping, the standard way to solve
the breakage problem is to recast the original problem into an
equivalent one with a larger alphabet by grouping consecutive
symbols X (n) together. With an arithmetic mapper there is
no need to resort to an artifice like this, and indeed, there
are significant implementation advantages with the binary
alphabet.

Conceptually, an arithmetic coder maps the sequence
X(0). X(1), . to a real number on the unit interval [0.0, 1.0).
What is transmitted in lieu of the sequence X(0), X(1), . . .
is a binary encoding of this real number. The particular
real number to be transmitted is determined recursively as
shown in Fig. 2 for an example with a binary alphabet and
X(0), X(1), . . . beginning with the particular instance values
0, 1, 0.

In general, at any given time, there exists a "current coding
interval." Initially, it is the unit interval [0.0, 1.0). At time
n, it is divided into K subintervals with the kth having a
size proportional to Pk(n). The current coding interval at time
n +1 is that subinterval associated with the instance k = X(n)
actually occurring.

1.000

0.000

P(11

P(0)

P(011

P(01 I

P(010)
P(0101)

P10100)

P(00)

Symbols to be coded: 0 1 0

Fig. 2. Interval subdivision example with a binary alphabet.

The idea of coding by recursive interval subdivision is an
old idea that is arguably an "obvious" and "immediate" appli-
cation of the usual equations and theory developed in infor-
mation theory texts. Abramson [10] credits Elias with having
conceived it soon after Shannon's seminal paper [11] on infor-
mation theory. Nonetheless, arithmetic coding was initially no
more that an intellectual curiosity because a straightforward
application of the recursive-interval-subdivision idea requires
infinite precision arithmetic. What has changed recently is that
it has been realized that it is possible to implement recursive
interval subdivision with finite precision arithmetic and in a
way allowing the "pipelining" of the encoder and decoder
[12]—[14]. With a pipelined encoder and decoder, the encoder
can begin to put out the bits of the compressed data stream
before seeing the entire (possibly infinite) input sequence
X(0), X(1), .. ., and the decoder can begin to put out decoded
symbols before seeing the entire (possibly infinite) sequence
of compressed bits. The existence of finite-precision imple-
mentations that can be pipelined is crucial for the practical
application of arithmetic coders, but detail about how these
properties are achieved is inconsequential and unnecessary
for the purposes of this paper. Some additional discussion of
arithmetic coding appears later in Section III-F, but it is only
to the minimal depth needed to illustrate the points central
to this paper. Readers interested in more detail on arithmetic
coding are referred to [7] and [8].

B. What is Desired From the Model?

For notational convenience, let X[i: denote the string
, X[j]. The block labeled "Model" in Fig. 1 is free to

use any of the X[0: n — 1] in forming its estimate P(n). Let

T(n) = {i: X(i) is used in forming 1"(n)} (3)

denote the set of time indices of the symbols actually used in
forming P(n).

The conditional entropy

K -1

H(P(n) X(i),i E kit (n)) = E Pk(n)log2(1/Pk(n)) (4)
k=0

is the average number of bits that will be used to code X(n)
given X (i), i E In this equation

Pk(n) = Pr{X(n) = k I X(i),i E kIi(n)} (5)

Unified Patents, Ex. 1011000002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

DUTTWEILER AND CHAMZAS. PROBABILITY ESTIMATION IN ENTROPY CODERS 239

is the true conditional probability of an occurrence of symbol
k given the particular pattern X(i). i E 11(n) of past symbols
that has occurred. The conditional expected bit count provided
by (4) is minimized if

P(n) = P(n). (6)

Therefore, not surprisingly, one thing desired from the model
for efficient coding is accurate estimates P(n).

More is needed, however. A significant entropy coding
advantage is only achievable if the probability distribution
P(n) is nonuniform with one or possibly a few of the symbols
taken on by X (n) much more likely than the others. Thus,
the other requirement for good modeling is a conditioning set
tP(n) allowing good prediction so that at least as an average
over past patterns X(i), i E W(n), the probability estimate
P(n) is highly nonuniform with one (or, less desirably, a few)
symbols predicted to occur with high likelihood.

The unconditional entropy

H(P(n) 1I1(n))

= E[H(P(n) I X (i),i E W(n))]

PrIX(i),i E (n)1H(P(n) X(i), i E 11(0)(1,x
J

(7)

is the expected bit count to code symbol n using the probability
estimate P(n), depending on past symbols X(i), i E 41(n). If
P(n) = P(n) so that the coding is the best possible with the
conditioning indices kV(n), the expected bit count for coding
X(n) is

11(41(n)) = (i) I X (i), E kif(n))]

= E[
K-1

Pk(n)10g2(1/Pk(n)) (8)
k=0

It can be shown (see, for example, pp. 105-111 of 110]
or almost any discussion on equivocation in an information
theory text) that if

then

C. Approximating Excess Bit Count

Before specializing the structure of Fig. 1 to something
allowing practical realization, it is useful to proceed a little
further within the general framework and derive a broadly
applicable approximation to excess bit count.

The conditional entropy difference

D(P(n) I X(i),i E qi(n))

= H(P(rt) I X(i),i E 111(n)) — H(P(n) I X(i),t E qi(n))

= E pk(n)log,(Pk(n)/Pk(n))
k=0

(13)

is the expected excess bit count due to error in probability
estimation when X(i), i E tlf(n), has been observed. If we
assume that the estimate Pk(n) is at least close to Pk(n) so
that Pk(n)/Pk (n) is close to one and the approximation

x — 1 (14)

with "In" denoting the natural logarithm is valid, then (13)
becomes

D(P(n) X(i), i E T(n))

K-1
1

Pk(n)
 1

k=0 (Pk (n)
K-1

1 1
= —

1n2
 (Pk(n)::::» (15)

k=0 1 -I-
Pk(n)-Pk(n)

Pk(n)

The further approximation

1
1 — e (16)

1+e

for small e, and an assumption that Pk (n) is sane in the sense
that

Ti(n) C II/2(n) (9) leads to

11(Pier0) FT(T2(T))-

Hence, the best model sets

W(n) = [0,n— 1]

(10)

(11)

to use all the past information and then makes the probability
estimate P(n) = P.

From a theoretical standpoint, the discussion thus far says all
there is to say about modeling. From a practical standpoint,
it says nothing. For most real-world applications, statistical
knowledge about the source is usually nowhere near sufficient
to begin to calculate

Pk(n) = Pk(n) = Pr{X(n) = k I X(i),i E Ten)} (12)

and even if it were, the calculation would in all likelihood be
hopelessly complex.

K -1

E Pk(n) = 1

k=0

(17)

1 ic-1 (Pk(n) Pk(n))2 D(P(n) I X(i),
Ten)) lug E Pk(n)

Let

Q(P(n) X(i),i E T(7)) =

k-=0
(18)

D(P(n) X(i).i E 14"))
H(P(n) X(i), i E T(0

(19)

denote the fractional (or normalized) excess bit count due to
estimation error, that is, the expected coding inefficiency due
to estimation error when XW, i E 111(n) has been observed.
A simple formula for this coding inefficiency Q(P(n)
X(i), i E T(n)) can be derived under the assumption that
one symbol, say, kina.(n), is highly likely to occur, and all
the others are unlikely. In the case of a binary alphabet, this
will always be true whenever there is anything to be gained
from entropy coding. With a multisymbol alphabet, it is a

Unified Patents, Ex. 1011000003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

240

X(n)

Context
Extractor

Tin) Frequency
Observer

0(n)

Entropy
Mapper

Fig. 3. Adap ive probability estimation for entropy encoding and decoding.

somewhat restrictive assumption since entropy coding would
be advantageous if a few (as opposed to just one) of the
symbols were likely and all the others nonlikely. However,
additional structure in multisymbol applications will often
justify this assumption.

Assuming the symbol kmax(n) is highly likely and all the
others unlikely

where

H(P(n) I X(i),i E)11(n))

(1 — Pmax(n))log2(1/(1 — Pmax(n)))

=
ln2
IA(1 — P„,ax(n))

Pmax (n) = Pkn.„.(n)(n)

(20)

(21)

is the probability of the dominating symbol, and for conve-
nience

A(q) = q In(l/q). (22)

In words, (20) approximates the entropy H(P(„) X(i), i E

T(n)) by the information in the fact that the expected symbol
does not occur times the probability that it does occur. The true
entropy also adds in the probability of the expected symbol
times its information and the entropy needed to distinguish
exactly which of the unlikely events did occur, but these
two components to the total entropy are comparatively much
smaller.

Using (20) in (19) finally gives

Q(P(n) X(i),i E kli(n))

1 (Pk(n) — Pk(n))2
(23)

A(1 — Pmax(n)) Pk(n)

D. Adaptive Probability Estimation

Fig. 3 shows an entropy encoding structure that is much
more restrictive than that of Fig. 1, but it has the important
advantage of not requiring any a priori statistical knowledge
about the source for the sequence X(0), X(1), The de-
coding counterpart, which is similar, is not shown.

With this adaptive entropy encoder, the conditioning index
set)11(n) has the special form

)1/(n) = i -= n — j with j E (24)

where 1 is a set of positive integers. In other words, the
condition set)IJ(n) at all times n is always past symbols

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 3, MARCH 1995

X(n)

Frequency
Observer

0(n)

Entropy
Mapper

Fig. 4. Simplified adaptive probability estimation with only one context.

X(n) at particular offsets relative to the current symbol.2 The
conditioning set 52 is often referred to as a template because
it specifies a pattern of past symbols to use in predicting the
current one. It is important to note that the template is fixed3
and not dependent on n. In image coding, the template is
usually chosen as a few pixels that are near and causally (in a
raster scan sense) related to a given pixel to be coded [16]. In
text coding, the template is usually one or two of the preceding
characters [7].

The "context extractor" outputs a unique integer T(n) for
each possible instance of conditioning values {X(n — i), i E

D}. For example, if 52 = {1, 2}, one possible way to define
the context T(n) is by

T(n) = X(n —1)K° + X(n — 2)K1. (25)

The exact manner in which particular instances of conditioning
values are mapped to an integer is inconsequential as the
context T(n) just serves as a labeling in what follows.

The "frequency observer" notes the context T(n) and, based
on this, makes a probability estimate P(n). An obvious way
in which it might do this adaptively is by maintaining counts
of how often each particular instance k of X(n) has occurred
when the context has been T(n). Estimated probabilities are
roughly (but preferably not exactly, as will be discussed at
length later) proportional to occurrence frequencies.

Such a strategy implicitly assumes at least "local" ergodicity
so that averages over past time are good predictors of ensemble
averages. The qualifier "local" is added because an advantage
of considerable practical importance for running (that is, on-
line or adaptive) probability estimation like this is an ability
to track slowly varying input statistics. This, too, will be the
subject of much further discussion.

Context is a powerful idea. It is essential for efficient coding
to use it in the JBIG and JPEG environments as well as the
text coding environment. In spite of the power and utility
of the context idea, the remainder of the analysis in this
paper assumes that there is only one context. The reason for
doing an analysis under this unrealistic condition is simply
that the extension of all results back to the more interesting
multicontext environment is trivial. Carrying the necessary
notation for context throughout the analysis adds nothing but
uneeded clutter. Assuming a single context application, the
model of Fig. 3 reduces to that of Fig. 4.

2 For small n, ,P(rr) may reference nonexistent symbols. There are many
reasonable ways of patching this up, and we will ignore this uninteresting
detail here.

3 In the JBIG application, it was found to be advantageous to infrequently
allow SI to change [15], but this kind of detail is best ignored here.

Unified Patents, Ex. 1011000004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

DU1TWEILER AND CHAMZAS. PROBABILITY ESTIMATION IN ENTROPY CODERS 241

III. SCALED-COUNT PROBABILITY ESTIMATION

A. Bayesian Estimation

Assume the sequence X(0). X(1), . . . is a sequence of
independent, identically distributed, random variables each
taking on the value k with probability Rk. If the vector

R = [1-?0,RK-l]T (26)

of symbol probabilities is itself a random variable with a priori

probability density fo(r), then the a posteriori probability
density f,(r) of the random variable R given an obseration
of X(0) X(n - 1) is computable by Bayes formula. In
particular,

f„(r) = PORI X[0: n - I]}
- Pr{lt, X[0: n- 1]}

Pr{X[0: ra - 1]1

PrIX[0: n - 1] I rhio(r)
f Pr{X[0: n - 1] r}fo(r)dr

The expected value

(27)

rf, (r)dr (28)

is the Bayesian estimate of R.
Analytical evaluation of these equations is possible for some

particular a priori densities fo(r). One that is well known is
the unform density

fo(r) = 6I 1

K -1)

- rk
k=0

(29)

where the Dirac delta function 6(•) simply forces the proba-
bilities to add to one and lowers the effective dimensionality
of the probability density from K to K- 1. With a uniform
a priori density

and

C(n) + 1
n+ K

(30)

K -1)

fn (r) = a(n)roc' (n) • • r rk-t(') 6 1 -- rk (31) k i
k=0

where

C(n) = [Co(n)

1 = [1 ,
1]

T

 Ch (n)r.

P(n + K)
a(n) =

r(Co(n) + K) • F(C K - _1(n) + K) .

F(x) = Ax-l e-AdA, x > 0

(32)

(33)

(34)

(35)

and the Ck(n) are counts of the number of occurrences of
the instance k in X[0: n - 1]. The Gamma function P(x)
is a standard mathematical function that extends the idea of

factorial to noninteger numbers. Some of its properties that
are useful here are

F(0) = 1

F(x + 1) = xr(x), x > 0

(x) = (x - 1)!, x > 1 and integer.

(36)

(37)

(38)

The estimate it of (30) makes intuitive sense. If n is
much larger than K. it becomes simply a ratio of observed
frequencies. The "+I" in the numerator and the "+K" in the
denominator bias early estimates of R toward equiprobable.

Another a priori density that allows analytical evaluation
and one that leads to a class of estimates that at least for the
JBIG and JPEG applications has been found quite powerful is

(

K-1)

fo(r) = ry(0)r,5 -1 • • • rZ=1,6 1 - E rk (39)
k=0

where A > 0 is a real number that is a free parameter and the
normalizing constant a(0) will be given later. This particular
prior has also been described by Zandi and Langdon [17].
If A = 1, this density becomes the uniform density already
discussed. With A < 1, the apriori density fo(r) tends to favor
symbol probability vectors R near the edges rather than the
center of the n-dimensional unit hypercube. Such a density is
of interest because the symbol probability vectors it faors are
just those for which entropy coding is rewarding. There are of
course many other such apriori densities favoring edges and
there is no argument for considering one over them other than
it happening to lead to analytically tractable calculations.

Under the apriori density 39,

C(n) +
R(n) = (40)

+ KA

and

f„(r) = n roc ' (n)+A-1 • • r Ch 11(n)+-1-16 (1 -

k=0 rh

where

(41)

F(n + KO)
(n) -=-

P(Co(n) + A) • • F(CK_ (n) + A)
. (42)

With A < 1 (the interesting parameterization), the Bayesian
estimate (40) is quicker to jump to conclusions about the
underlying probability density. As an example, suppose K =
2, and X(0) happens to be 1. Equation (30) (or, equivalently,
(40) with A = 1) estimates

/51(1) = 2/3 (43)

whereas with very small A, (40) has already concluded that

Pi(1).-':, 1. (44)

Rashness of this sort empirically has been found desirable for
the JBIG and JPEG application for which the optimal value
of Z seems to be about 0.4.

Unified Patents, Ex. 1011000005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

