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Probability Estimation in Arithmetic and 
Adaptive-Huffman Entropy Coders 

Donald L. Duttweiler, Fellow, IEEE, and Christodoulos Chamzas, Senior Member, IEEE 

Abstract—Entropy coders, such as Huffman and arithmetic 
coders, achieve compression by exploiting nonuniformity in the 
probabilities under which a random variable to be coded takes 
on its possible values. Practical realizations generally require 
running adaptive estimates of these probabilities. An analysis 
of the relationship between estimation quality and the resulting 
coding efficiency suggests a particular scheme, dubbed scaled-
count, for obtaining such estimates. It can optimally balance 
estimation accuracy against a need for rapid response to changing 
underlying statistics. When the symbols being coded are from a 
binary alphabet, simple hardware and software implementations 
requiring almost no computation are possible. 

A scaled-count adaptive probability estimator of the type de-
scribed in this paper is used in the arithmetic coder of the JB1G 
and JPEG image coding standards. 

I. INTRODUCTION 

ENTROPY coders achieve compression by exploiting 
nonuniformity in the probabilities under which a signal 

to be compressed takes on its allowed values. Practical 
implementations generally require adaptive, on-line estimation 
of these probabilities either because sufficient statistical 
knowledge of the signal is lacking or because its statistics 
are time varying. How best to make such estimates is a 
question of much practical importance. 

We became interested in this problem from our involvement 
with two standards groups. The joint bilevel image group 
(JBIG) is under the auspices of both CCITT and ISO and 
is chartered to develop a standard for progressively coding 
bilevel (two-tone or black-white) images [1]. The joint pho-
tographic experts group (JPEG) is under the same auspices 
and is chartered to develop a standard for coding photographic 
(grey-scale or color) images [2], [3]. Both of these groups have 
finished their work and specifications are available [4], [5]. 

The JBIG algorithm and the JPEG algorithm (in some of 
its parameterizations) use a common arithmetic coder [6]—[8]. 
Although our work was strongly focused on these two image 
coding applications for arithmetic coders, it is clear that much 
of what was eventually learned has application beyond just 
image coding and even for forms of entropy coding other than 
arithmetic, such as adaptive Huffman. 

In the next section of this paper, we review adaptive 
entropy coding and develop some useful analytical relation-
ships between the quality of probability estimation and the 
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Fig. 1. General model for entropy encoding and decoding. 

resulting coding inefficiency. The analysis strongly suggests 
a particular structure for adaptive probability estimation. This 
structure, which is dubbed scaled-count, makes it possible to 
achieve any desired balance between the steady-state quality of 
probability estimation and the speed of response to changing 
underlying statistics. Section III presents this structure and 
addresses implementation issues. In some environments (those 
of JBIG and JPEG among them), both software and hardware 
implementation become extremely simple, requiring almost no 
computation. 

II. ENTROPY CODING REVIEW AND ANALYSIS 

A. General Framework 

Let X(0), X(1), . . be a random process taking on at each 
time n one value from a finite alphabet of possible values. 
Since the particular values taken on will just serve as labels 
in what follows, they can, without loss of any generality, be 
taken as 0, 1, , K — 1, where K denotes the alphabet size. 

Fig. 1 shows a general model for one-symbol-at-a-time 
entropy encoding and decoding. The function of the block 
labeled "Model" is to provide a vectors

P(r)= [Poo-o, . (1) 

of estimates Pk (n) of the probability X(n) will take 
on the value k. It may use any of the observed values 
X(0), , X(n — 1) in making that estimate. The unit delay 
block labeled "D" emphasizes that X(n) itself may not be 
used in forming P(?),). If it were to be used, the entropy 
decoder could not generate a tracking P (n). 

Ideally, the block labeled "entropy mapper" places 

1og2 (1/Pk (n)) (2) 

bits of information on its output stream whenever a symbol 
X(n) having an instance value k is coded. If the true proba-
bilities Pk (n) of X(n) taking on its various values k are highly 

Throughout this paper, vectors are shown in bold-face type. Vector 
components are separated by commas and grouped by square brackets. A 
superscript T denotes vector transposition. 
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nonuniform with some symbols much more likely than others, 
then the average of the number of bits the mapper uses to code 
a symbol can be well under log2 K, and there is substantial 
advantage to be gained with entropy coding. 

Entropy coders are always lossless. The sequence X(0), 
X(1), . . . is recovered exactly by the decoder. This is generally 
the type of coding desired if the sequence X(0), X(1), ... 
represents a text file in a computer system. It is also common 
for the coding of bilevel images (facsimile) to be done 
losslessly. In coding other types of images and in coding audio, 
some coding distortion is often allowed. Even when coding of 
this sort is being done, however, lossless coding often becomes 

a part of a larger structure in which some intermediate values, 
which are invertible to the original signal only with distortion, 

are themselves coded losslessly. The "baseline" JPEG system 
provides one example of this. 

The name "entropy mapper" is somewhat awkward and 
is nonstandard terminology. The same is true even more so 
for the decoding counterpart labeled "entropy unmapper." The 
reason for coining these terms here is to make it possible to 
carefully distinguish these mapping functions from the total 
entropy encoding and decoding functions. The term "entropy 
encoder" will be reserved for the combination of a probability 
estimator and an entropy mapper. "Entropy decoder" will 
always mean the combination of a probability estimator and 
an entropy unmapper. 

The well-known Huffman scheme [9] can attain the ideal 
of (2) whenever all the Pk(n) happen to equal inverse powers 
of two but, in general, falls somewhat short. The arithmetic 
mapper used in arithmetic coders does not suffer from this 
"breakage" problem and achieves the ideal. 

When the alphabet size K is large, Huffman mapping often 
can come acceptably close to the ideal and can be a viable 
choice for entropy mapping. With binary alphabets, it cannot. 
The breakage problem is unacceptably severe in the interesting 
situation where one of the symbol probabilities is small and 
the other is almost one. If the natural alphabet is binary and it 
is desired to use Huffman mapping, the standard way to solve 
the breakage problem is to recast the original problem into an 
equivalent one with a larger alphabet by grouping consecutive 
symbols X (n) together. With an arithmetic mapper there is 
no need to resort to an artifice like this, and indeed, there 
are significant implementation advantages with the binary 
alphabet. 

Conceptually, an arithmetic coder maps the sequence 
X(0). X(1), . to a real number on the unit interval [0.0, 1.0). 
What is transmitted in lieu of the sequence X(0), X(1), . . . 
is a binary encoding of this real number. The particular 
real number to be transmitted is determined recursively as 
shown in Fig. 2 for an example with a binary alphabet and 
X(0), X(1), . . . beginning with the particular instance values 
0, 1, 0. 

In general, at any given time, there exists a "current coding 
interval." Initially, it is the unit interval [0.0, 1.0). At time 
n, it is divided into K subintervals with the kth having a 
size proportional to Pk(n). The current coding interval at time 
n +1 is that subinterval associated with the instance k = X(n) 
actually occurring. 

1.000 

0.000 

P(11 

P(0) 

P(011 

P(01 I 

P(010) 
P(0101) 

P10100) 

P(00) 

Symbols to be coded: 0 1 0 

Fig. 2. Interval subdivision example with a binary alphabet. 

The idea of coding by recursive interval subdivision is an 
old idea that is arguably an "obvious" and "immediate" appli-
cation of the usual equations and theory developed in infor-
mation theory texts. Abramson [10] credits Elias with having 
conceived it soon after Shannon's seminal paper [11] on infor-
mation theory. Nonetheless, arithmetic coding was initially no 
more that an intellectual curiosity because a straightforward 
application of the recursive-interval-subdivision idea requires 
infinite precision arithmetic. What has changed recently is that 
it has been realized that it is possible to implement recursive 
interval subdivision with finite precision arithmetic and in a 
way allowing the "pipelining" of the encoder and decoder 
[12]—[14]. With a pipelined encoder and decoder, the encoder 
can begin to put out the bits of the compressed data stream 
before seeing the entire (possibly infinite) input sequence 
X(0), X(1), .. ., and the decoder can begin to put out decoded 
symbols before seeing the entire (possibly infinite) sequence 
of compressed bits. The existence of finite-precision imple-
mentations that can be pipelined is crucial for the practical 
application of arithmetic coders, but detail about how these 
properties are achieved is inconsequential and unnecessary 
for the purposes of this paper. Some additional discussion of 
arithmetic coding appears later in Section III-F, but it is only 
to the minimal depth needed to illustrate the points central 
to this paper. Readers interested in more detail on arithmetic 
coding are referred to [7] and [8]. 

B. What is Desired From the Model? 

For notational convenience, let X[i: denote the string 
, X[j]. The block labeled "Model" in Fig. 1 is free to 

use any of the X[0: n — 1] in forming its estimate P(n). Let 

T(n) = {i: X(i) is used in forming 1"(n)} (3) 

denote the set of time indices of the symbols actually used in 
forming P(n). 

The conditional entropy 

K -1 

H(P(n) X(i),i E kit (n)) = E Pk(n)log2(1/Pk(n)) (4) 
k=0 

is the average number of bits that will be used to code X(n) 
given X (i), i E In this equation 

Pk(n) = Pr{X(n) = k I X(i),i E kIi(n)} (5) 
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is the true conditional probability of an occurrence of symbol 
k given the particular pattern X(i). i E 11(n) of past symbols 
that has occurred. The conditional expected bit count provided 
by (4) is minimized if 

P(n) = P(n). (6) 

Therefore, not surprisingly, one thing desired from the model 
for efficient coding is accurate estimates P(n). 

More is needed, however. A significant entropy coding 
advantage is only achievable if the probability distribution 
P(n) is nonuniform with one or possibly a few of the symbols 
taken on by X (n) much more likely than the others. Thus, 
the other requirement for good modeling is a conditioning set 
tP(n) allowing good prediction so that at least as an average 
over past patterns X(i), i E W(n), the probability estimate 
P(n) is highly nonuniform with one (or, less desirably, a few) 
symbols predicted to occur with high likelihood. 

The unconditional entropy 

H(P(n) 1I1(n)) 

= E[H(P(n) I X (i),i E W(n))] 

PrIX(i),i E (n)1H(P(n) X(i), i E 11(0)(1,x 
J 

(7) 

is the expected bit count to code symbol n using the probability 
estimate P(n), depending on past symbols X(i), i E 41(n). If 
P(n) = P(n) so that the coding is the best possible with the 
conditioning indices kV(n), the expected bit count for coding 
X(n) is 

11(41(n)) = ( i ) I X (i), E kif(n))] 

= E[
K-1

Pk(n)10g2(1/Pk(n)) (8) 
k=0 

It can be shown (see, for example, pp. 105-111 of 110] 
or almost any discussion on equivocation in an information 
theory text) that if 

then 

C. Approximating Excess Bit Count 

Before specializing the structure of Fig. 1 to something 
allowing practical realization, it is useful to proceed a little 
further within the general framework and derive a broadly 
applicable approximation to excess bit count. 

The conditional entropy difference 

D(P(n) I X(i),i E qi(n)) 

= H(P(rt) I X(i),i E 111(n)) — H(P(n) I X(i),t E qi(n)) 

= E pk(n)log,(Pk(n)/Pk(n)) 
k=0 

(13) 

is the expected excess bit count due to error in probability 
estimation when X(i), i E tlf(n), has been observed. If we 
assume that the estimate Pk(n) is at least close to Pk(n) so 
that Pk(n)/Pk (n) is close to one and the approximation 

x — 1 (14) 

with "In" denoting the natural logarithm is valid, then (13) 
becomes 

D(P(n) X(i), i E T(n)) 

K-1 
1 

Pk(n)  
 1

k=0 (Pk (n) 
K-1 

1 1 
= —

1n2 
 (Pk(n)::::»  (15) 

k=0 1 -I- 
Pk(n)-Pk(n) 

 
Pk(n) 

The further approximation 

1 
1 — e (16) 

1+e 

for small e, and an assumption that Pk (n) is sane in the sense 
that 

Ti(n) C II/2(n) (9) leads to 

11(Pier0) FT(T2(T))-

Hence, the best model sets 

W(n) = [0,n— 1] 

(10) 

(11) 

to use all the past information and then makes the probability 
estimate P(n) = P. 

From a theoretical standpoint, the discussion thus far says all 
there is to say about modeling. From a practical standpoint, 
it says nothing. For most real-world applications, statistical 
knowledge about the source is usually nowhere near sufficient 
to begin to calculate 

Pk(n) = Pk(n) = Pr{X(n) = k I X(i),i E Ten)} (12) 

and even if it were, the calculation would in all likelihood be 
hopelessly complex. 

K -1 

E Pk(n) = 1 

k=0 

(17) 

1 ic-1 (Pk(n) Pk(n))2 D(P(n) I X(i), 
Ten)) lug E Pk(n) 

Let 

Q(P(n) X(i),i E T(7)) = 

k-=0 
(18) 

D(P(n) X(i).i E 14")) 
H(P(n) X(i), i E T(0 

(19) 

denote the fractional (or normalized) excess bit count due to 
estimation error, that is, the expected coding inefficiency due 
to estimation error when XW, i E 111(n) has been observed. 
A simple formula for this coding inefficiency Q(P(n) 
X(i), i E T(n)) can be derived under the assumption that 
one symbol, say, kina.(n), is highly likely to occur, and all 
the others are unlikely. In the case of a binary alphabet, this 
will always be true whenever there is anything to be gained 
from entropy coding. With a multisymbol alphabet, it is a 
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Fig. 3. Adap ive probability estimation for entropy encoding and decoding. 

somewhat restrictive assumption since entropy coding would 
be advantageous if a few (as opposed to just one) of the 
symbols were likely and all the others nonlikely. However, 
additional structure in multisymbol applications will often 
justify this assumption. 

Assuming the symbol kmax(n) is highly likely and all the 
others unlikely 

where 

H(P(n) I X(i),i E )11(n)) 

(1 — Pmax(n))log2(1/(1 — Pmax(n))) 

=  
ln2
IA(1 — P„,ax(n)) 

Pmax (n) = Pkn.„.(n)(n) 

(20) 

(21) 

is the probability of the dominating symbol, and for conve-
nience 

A(q) = q In(l/q). (22) 

In words, (20) approximates the entropy H(P(„) X(i), i E 

T(n)) by the information in the fact that the expected symbol 
does not occur times the probability that it does occur. The true 
entropy also adds in the probability of the expected symbol 
times its information and the entropy needed to distinguish 
exactly which of the unlikely events did occur, but these 
two components to the total entropy are comparatively much 
smaller. 

Using (20) in (19) finally gives 

Q(P(n) X(i),i E kli(n)) 

1 (Pk(n) — Pk(n))2 
(23) 

A(1 — Pmax(n)) Pk(n) 

D. Adaptive Probability Estimation 

Fig. 3 shows an entropy encoding structure that is much 
more restrictive than that of Fig. 1, but it has the important 
advantage of not requiring any a priori statistical knowledge 
about the source for the sequence X(0), X(1), . . . . The de-
coding counterpart, which is similar, is not shown. 

With this adaptive entropy encoder, the conditioning index 
set )11(n) has the special form 

)1/(n) = i -= n — j with j E (24) 

where 1 is a set of positive integers. In other words, the 
condition set )IJ(n) at all times n is always past symbols 
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Fig. 4. Simplified adaptive probability estimation with only one context. 

X(n) at particular offsets relative to the current symbol.2 The 
conditioning set 52 is often referred to as a template because 
it specifies a pattern of past symbols to use in predicting the 
current one. It is important to note that the template is fixed3
and not dependent on n. In image coding, the template is 
usually chosen as a few pixels that are near and causally (in a 
raster scan sense) related to a given pixel to be coded [16]. In 
text coding, the template is usually one or two of the preceding 
characters [7]. 

The "context extractor" outputs a unique integer T(n) for 
each possible instance of conditioning values {X(n — i), i E 

D}. For example, if 52 = {1, 2}, one possible way to define 
the context T(n) is by 

T(n) = X(n —1)K° + X(n — 2)K1. (25) 

The exact manner in which particular instances of conditioning 
values are mapped to an integer is inconsequential as the 
context T(n) just serves as a labeling in what follows. 

The "frequency observer" notes the context T(n) and, based 
on this, makes a probability estimate P(n). An obvious way 
in which it might do this adaptively is by maintaining counts 
of how often each particular instance k of X(n) has occurred 
when the context has been T(n). Estimated probabilities are 
roughly (but preferably not exactly, as will be discussed at 
length later) proportional to occurrence frequencies. 

Such a strategy implicitly assumes at least "local" ergodicity 
so that averages over past time are good predictors of ensemble 
averages. The qualifier "local" is added because an advantage 
of considerable practical importance for running (that is, on-
line or adaptive) probability estimation like this is an ability 
to track slowly varying input statistics. This, too, will be the 
subject of much further discussion. 

Context is a powerful idea. It is essential for efficient coding 
to use it in the JBIG and JPEG environments as well as the 
text coding environment. In spite of the power and utility 
of the context idea, the remainder of the analysis in this 
paper assumes that there is only one context. The reason for 
doing an analysis under this unrealistic condition is simply 
that the extension of all results back to the more interesting 
multicontext environment is trivial. Carrying the necessary 
notation for context throughout the analysis adds nothing but 
uneeded clutter. Assuming a single context application, the 
model of Fig. 3 reduces to that of Fig. 4. 

2 For small n, ,P(rr) may reference nonexistent symbols. There are many 
reasonable ways of patching this up, and we will ignore this uninteresting 
detail here. 

3 In the JBIG application, it was found to be advantageous to infrequently 
allow SI to change [15], but this kind of detail is best ignored here. 
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III. SCALED-COUNT PROBABILITY ESTIMATION 

A. Bayesian Estimation 

Assume the sequence X(0). X(1), . . . is a sequence of 
independent, identically distributed, random variables each 
taking on the value k with probability Rk. If the vector 

R = [1-?0, . . . .RK-l]T (26) 

of symbol probabilities is itself a random variable with a priori 

probability density fo(r), then the a posteriori probability 
density f,(r) of the random variable R given an obseration 
of X(0) X(n - 1) is computable by Bayes formula. In 
particular, 

f„(r) = PORI X[0: n - I]} 
- Pr{lt, X[0: n- 1]} 

Pr{X[0: ra - 1]1 

PrIX[0: n - 1] I rhio(r) 
f Pr{X[0: n - 1] r}fo(r)dr 

The expected value 

(27) 

rf, (r)dr (28) 

is the Bayesian estimate of R. 
Analytical evaluation of these equations is possible for some 

particular a priori densities fo(r). One that is well known is 
the unform density 

fo(r) = 6I 1 

K -1 ) 

- rk 
k=0 

(29) 

where the Dirac delta function 6(•) simply forces the proba-
bilities to add to one and lowers the effective dimensionality 
of the probability density from K to K- 1. With a uniform 
a priori density 

and 

C(n) + 1 
n+ K 

(30) 

K -1 ) 

fn (r) = a(n)roc' (n) • • r rk-t(' ) 6 1 -- rk (31) k i
k=0 

where 

C(n) = [Co(n) 

1 = [1 ,  
1]

T

 Ch (n)r. 

P(n + K) 
a(n) =  

r(Co(n) + K) • F(C K - _1(n) + K) .

F(x) = Ax-l e-AdA, x > 0 

(32) 

(33) 

(34) 

(35) 

and the Ck(n) are counts of the number of occurrences of 
the instance k in X[0: n - 1]. The Gamma function P(x) 
is a standard mathematical function that extends the idea of 

factorial to noninteger numbers. Some of its properties that 
are useful here are 

F(0) = 1 

F(x + 1) = xr(x), x > 0 

(x) = (x - 1)!, x > 1 and integer. 

(36) 

(37) 

(38) 

The estimate it of (30) makes intuitive sense. If n is 
much larger than K. it becomes simply a ratio of observed 
frequencies. The "+I" in the numerator and the "+K" in the 
denominator bias early estimates of R toward equiprobable. 

Another a priori density that allows analytical evaluation 
and one that leads to a class of estimates that at least for the 
JBIG and JPEG applications has been found quite powerful is 

( 

K-1 ) 

fo(r) = ry(0)r,5 -1 • • • rZ=1,6 1 - E rk (39) 
k=0 

where A > 0 is a real number that is a free parameter and the 
normalizing constant a(0) will be given later. This particular 
prior has also been described by Zandi and Langdon [17]. 
If A = 1, this density becomes the uniform density already 
discussed. With A < 1, the apriori density fo(r) tends to favor 
symbol probability vectors R near the edges rather than the 
center of the n-dimensional unit hypercube. Such a density is 
of interest because the symbol probability vectors it faors are 
just those for which entropy coding is rewarding. There are of 
course many other such apriori densities favoring edges and 
there is no argument for considering one over them other than 
it happening to lead to analytically tractable calculations. 

Under the apriori density 39, 

C(n) + 
R(n) =   (40) 

+ KA 

and 

f„(r) = n roc ' (n)+A-1 • • r Ch 11(n)+-1-16 (1 -

k=0 rh

where 

(41) 

F(n + KO) 
(n ) -=-

P(Co(n) + A) • • F(CK_ (n) + A ) 
. (42) 

With A < 1 (the interesting parameterization), the Bayesian 
estimate (40) is quicker to jump to conclusions about the 
underlying probability density. As an example, suppose K = 
2, and X(0) happens to be 1. Equation (30) (or, equivalently, 
(40) with A = 1) estimates 

/51(1) = 2/3 (43) 

whereas with very small A, (40) has already concluded that 

Pi(1).-':, 1. (44) 

Rashness of this sort empirically has been found desirable for 
the JBIG and JPEG application for which the optimal value 
of Z seems to be about 0.4. 
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