
Arithmetic Coding Revisited

ALISTAIR MOFFAT
The University of Melbourne
RADFORD M. NEAL
University of Toronto
and
IAN H. WITTEN
The University of Waikato

Over the last decade, arithmetic coding has emerged as an important compression tool. It is
now the method of choice for adaptive coding on multisymbol alphabets because of its speed,
low storage requirements, and effectiveness of compression. This article describes a new
implementation of arithmetic coding that incorporates several improvements over a widely
used earlier version by Witten, Neal, and Cleary, which has become a de facto standard. These
improvements include fewer multiplicative operations, greatly extended range of alphabet
sizes and symbol probabilities, and the use of low-precision arithmetic, permitting implemen-
tation by fast shift/add operations. We also describe a modular structure that separates the
coding, modeling, and probability estimation components of a compression system. To moti-
vate the improved coder, we consider the needs of a word-based text compression program. We
report a range of experimental results using this and other models. Complete source code is
available.

Categories and Subject Descriptors: E.4 [Data]: Coding and Information Theory—data com-
paction and compression; E.1 [Data]: Data Structures

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Approximate coding, arithmetic coding, text compression,
word-based model

This investigation was supported by the Australian Research Council and the Natural
Sciences and Engineering Research Council of Canada. A preliminary presentation of this
work was made at the 1995 IEEE Data Compression Conference.
Authors’ addresses: A. Moffat, Department of Computer Science, The University of Melbourne,
Parkville, Victoria 3052, Australia; email: alistair@cs.mu.oz.au; R. M. Neal, Department of
Statistics and Department of Computer Science, University of Toronto, Canada; email:
radford@cs.utoronto.ca; I. H. Witten, Department of Computer Science, The University of
Waikato, Hamilton, New Zealand; email: ihw@waikato.ac.nz.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 1046-8188/98/0700–0256 $5.00

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998, Pages 256–294.

Unified Patents, Ex. 1010

000001 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1. INTRODUCTION

During its long gestation in the 1970’s and early 1980’s, arithmetic coding
[Rissanen 1976; Rissanen and Langdon 1979; Rubin 1979; Rissanen and
Langdon 1981; Langdon 1984] was widely regarded more as a curiosity
than a practical coding technique. This was particularly true for applica-
tions where the alphabet has many symbols, as Huffman coding is usually
reasonably effective in such cases [Manstetten 1992]. One factor that
helped arithmetic coding gain the popularity it enjoys today was the
publication of source code for a multisymbol arithmetic coder by Witten et
al. [1987] in Communications of the ACM, which we refer to as the CACM
implementation. One decade later, our understanding of arithmetic coding
has further matured, and it is timely to review the components of that
implementation and summarize the improvements that have emerged. We
also describe a novel, previously unpublished, method for performing the
underlying calculation needed for arithmetic coding. Software is available
that implements the revised method.

The major improvements discussed in this article and implemented in
the software are as follows:

—Enhanced models that allow higher-performance compression.

—A more modular division into modeling, estimation, and coding sub-
systems.

—Data structures that support arithmetic coding on large alphabets.

—Changes to the coding procedure that reduce the number of multiplica-
tions and divisions and which permit most of them to be done with
low-precision arithmetic.

—Support for larger alphabet sizes and for more accurate representations
of probabilities.

—A reformulation of the decoding procedure that greatly simplifies the
decoding loop and improves decoding speed.

—An extension providing efficient coding for binary alphabets.

To motivate these changes, we examine in detail the needs of a word-based
model for text compression. While not the best-performing model for text
(see, for example, the compression results listed by Witten et al. [1994]),
word-based modeling combines several attributes that test the capabilities
and limitations of an arithmetic coding system.

The new implementation of arithmetic coding is both more versatile and
more efficient than the CACM implementation. When combined with the
same character-based model as the CACM implementation, the changes
that we advocate result in up to two-fold speed improvements, with only a
small loss of compression. This faster coding will also be of benefit in any
other compression system that makes use of arithmetic coding (such as the
block-sorting method of Burrows and Wheeler [1994]), though the percent-

Arithmetic Coding Revisited • 257

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

Unified Patents, Ex. 1010

000002 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

age of overall improvement will of course vary depending on the time used
in other operations and on the exact nature of the hardware being used.

The new implementation is written in C, and is publicly available
through the Internet by anonymous ftp, at munnari.oz.au , directory
/pub/arith _coder , file arith _coder.tar.Z or arith _coder.tar.gz .
The original CACM package [Witten et al. 1987] is at ftp.cpsc.ucalgary.
ca in file /pub/projects/ar.cod/cacm-87.shar . Software that imple-
ments the new method for performing the arithmetic coding calculations,
but is otherwise similar to the CACM version, can be found at ftp.cs.

toronto.edu in the directory /pub/radford , file lowp _ac.shar .
In the remainder of this introduction we give a brief review of arithmetic

coding, describe modeling in general, and word-based models in particular,
and discuss the attributes that the arithmetic coder must embody if it is to
be usefully coupled with a word-based model. Section 2 examines the
interface between the model and the coder, and explains how it can be
designed to maximize their independence. Section 3 shows how accurate
probability estimates can be maintained efficiently in an adaptive compres-
sion system, and describes an elegant structure due to Fenwick [1994]. In
Section 4 the CACM arithmetic coder is reexamined, and our improvements
are described. Section 5 analyzes the cost in compression effectiveness of
using low precision for arithmetic operations. Low-precision operations
may be desirable because they permit a shift/add implementation, details
of which are discussed in Section 6. Section 7 describes the restricted coder
for binary alphabets, and examines a simple binary model for text compres-
sion. Finally, Section 8 reviews the results and examines the various
situations in which arithmetic coding should and should not be used.

1.1 The Idea of Arithmetic Coding

We now give a brief overview of arithmetic coding. For additional back-
ground the reader is referred to the work of Langdon [1984], Witten et al.
[1987; 1994], Bell et al. [1990], and Howard and Vitter [1992; 1994].

Suppose we have a message composed of symbols over some finite
alphabet. Suppose also that we know the probability of appearance of each
of the distinct symbols, and seek to represent the message using the
smallest possible number of bits. The well-known algorithm of Huffman
[1952] takes a set of probabilities and calculates, for each symbol, a code
word that unambiguously represents that symbol. Huffman’s method is
known to give the best possible representation when all of the symbols
must be assigned discrete code words, each an integral number of bits long.
The latter constraint in effect means that all symbol probabilities are
approximated by negative powers of two. In an arithmetic coder the exact
symbol probabilities are preserved, and so compression effectiveness is
better, sometimes markedly so. On the other hand, use of exact probabili-
ties means that it is not possible to maintain a discrete code word for each
symbol; instead an overall code for the whole message must be calculated.

258 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

Unified Patents, Ex. 1010

000003 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The mechanism that achieves this operates as follows. Suppose that pi is
the probability of the ith symbol in the alphabet, and that variables L and
R are initialized to 0 and 1 respectively. Value L represents the smallest
binary value consistent with a code representing the symbols processed so
far, and R represents the product of the probabilities of those symbols. To
encode the next symbol, which (say) is the jth of the alphabet, both L and R
must be refined: L is replaced by L 1 RO

i51
j21pi and R is replaced by R z pj,

preserving the relationship between L, R, and the symbols so far processed.
At the end of the message, any binary value between L and L 1 R will
unambiguously specify the input message. We transmit the shortest such
binary string, c. Because c must have at least 2log2 R and at most
2log2 R 1 2 bits of precision, the procedure is such that a symbol with
probability pj is effectively coded in approximately 2log2 pj bits, thereby
meeting the entropy-based lower bound of Shannon [1948].

This simple description has ignored a number of important problems.
Specifically, the process described above requires extremely high precision
arithmetic, since L and R must potentially be maintained to a million bits
or more of precision. We may also wonder how best to calculate the
cumulative probability distribution, and how best to perform the arith-
metic. Solving these problems has been a major focus of past research, and
of the work reported here.

1.2 The Role of the Model

The CACM implementation [Witten et al. 1987] included two driver pro-
grams that coupled the coder with a static zero-order character-based
model, and with a corresponding adaptive model. These were supplied
solely to complete a compression program, and were certainly not intended
to represent excellent models for compression. Nevertheless, several people
typed in the code from the printed page and compiled and executed it,
only—much to our chagrin—to express disappointment that the new
method was inferior to widely available benchmarks such as Compress
[Hamaker 1988; Witten et al. 1988].

In fact, all that the CACM article professed to supply was a state-of-the
art coder with two simple, illustrative, but mediocre models. One can think
of the model as the “intelligence” of a compression scheme, which is
responsible for deducing or interpolating the structure of the input,
whereas the coder is the “engine room” of the compression system, which
converts a probability distribution and a single symbol drawn from that
distribution into a code [Bell et al. 1990; Rissanen and Langdon 1981]. In
particular, the arithmetic coding “engine” is independent of any particular
model. The example models in this article are meant purely to illustrate
the demands placed upon the coder, and to allow different coders to be
compared in a uniform test harness. Any improvements to the coder will

Arithmetic Coding Revisited • 259

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

Unified Patents, Ex. 1010

000004 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

primarily yield better compression efficiency, that is, a reduction in time or
space usage. Improvements to the model will yield improved compression
effectiveness, that is, a decrease in the size of the encoded data. In this
article we are primarily interested in compression efficiency, although we
will also show that the approximations inherent in the revised coder do not
result in any substantial loss of compression effectiveness.

The revised implementation does, however, include a more effective
word-based model [Bentley et al. 1986; Horspool and Cormack 1992; Moffat
1989], which represents the stream as a sequence of words and nonwords
rather than characters, with facilities for spelling out new words as they
are encountered using a subsidiary character mode. Since the entropy of
words in typical English text is around 10–15 bits each, and that of
nonwords is around 2–3 bits, between 12 and 18 bits are required to encode
a typical five-character word and the following one-character nonword.
Large texts are therefore compressed to around 30% of their input size (2.4
bits per character)—a significant improvement over the 55%–60% (4.4–4.8
bits per character) achieved by zero-order character-based models of En-
glish. Witten et al. [1994] give results comparing character-based models
with word-based models.

A word-based compressor can also be faster than a character-based one.
Once a good vocabulary has been established, most words are coded as
single symbols rather than as character sequences, reducing the number of
time-consuming coding operations required.

What is more relevant, for the purposes of this article, is that word-based
models illustrate several issues that do not arise with character-based
models:

—An efficient data structure is needed to accumulate frequency counts for
a large alphabet.

—Multiple coding contexts are necessary, for tokens, characters, and
lengths, for both words and nonwords. Here, a coding context is a
conditioning class on which the probability distribution for the next
symbol is based.

—An escape mechanism is required to switch from one coding context to
another.

—Data structures must be resizable because there is no a priori bound on
alphabet size.

All of these issues are addressed in this article.
Arithmetic coding is most useful for adaptive compression, especially

with large alphabets. This is the application envisioned in this article, and
in the design of the new implementation. For static and semistatic coding,
in which the probabilities used for encoding are fixed, Huffman coding is
usually preferable to arithmetic coding [Bookstein and Klein 1993; Moffat
and Turpin 1997; Moffat et al. 1994].

260 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

Unified Patents, Ex. 1010

000005 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

