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 Fast Adaptive Binary Arithmetic Coding (M Coder)
 
Overview: A novel design of a family of fast table-based adaptive binary arithmetic coders
has been designed. This so-called M coder involves the innovative features of a table-based
interval subdivision in conjunction with a fast and accurate table-based probability estimator
and a fast bypass coding mode. The computational critical operation of interval subdivision is
approximated by using a pre-quantization of the range of admissible interval width values
induced by renormalization. Then, for each quantization interval and for each representative
probability value, the corresponding product value is pre-calculated and stored with suitable
precision into a 2-D lookup table. Probability estimation is performed by employing a finite-
state machine with tabulated transition rules. For approximately uniformly distributed sub-
sources, an optional bypass of the probability estimator results in an additional speed-up. 
 
A member of the M-coder family has been adopted as a normative part of the H.264/AVC
CABAC entropy coding scheme. This M-coder variant in H.264/AVC provides virtually the
same coding efficiency as a conventional multiplication- and division-based implementation of
binary arithmetic coding at significantly higher throughput rates corresponding to speed-up
factors in the range of 1.5-2.5. Compared to the MQ coder (as part of JBIG2 or JPEG2000),
an increase in throughput of up to 18% can be achieved, depending on the implementation
platform. At the same time, the M coder obtains average bit rate savings of 2-4 % relative to
the MQ coder in its native H.264/AVC CABAC environment. 

  
Background: The discovery of arithmetic codes using a finite-precision arithmetic,
independently achieved by RISSANEN and PASCO in 1976, can be considered as the origin of
practical arithmetic coding. Since that time many researchers have contributed to the
evolution of arithmetic coding as a purely academic research topic towards a practical coding
method. The main advantages of arithmetic codes compared to the more popular variable-
length codes (VLCs) can be summarized as follows.

Entropy approximation: Arithmetic coding allows to assign a non-integer
number of bits to each symbol to encode and therefore, it is able to
generate a code with a compression performance that comes arbitrary close
to the theoretical lower bound.

Adaptivity: The usage of relatively simple adaptation mechanisms enables
an arithmetic coder to adapt to the underlying source statistics.

Higher-order modeling: Due to a simple interface between arithmetic
coding and statistical modeling, higher-order statistical redundancies can be
efficiently removed by the usage of appropriately designed context models.

However, compared to VLCs, the usage of arithmetic codes, in general, involves much higher
computational costs due to the inherently sequentially organized operation of recursive
interval subdivision. Moreover, in an adaptive coding approach, there is the closely related
task of estimating the symbol probabilities based on previously encoded/decoded symbols,
which generally results in additional nontrivial computational complexity. Although numerous
fast variants of adaptive binary arithmetic coding were invented and implemented into
practical coding schemes, there is an enduring interest in developing more efficient variants of
arithmetic coding that enable even better or more flexible compromises between coding
efficiency and implementation cost. 

  

  
Review of the principle of recursive interval subdivision : Suppose that the two possible
values '0' and '1' of the binary alphabet are discriminated according to their estimated
probability values, resulting in the least probable symbol (LPS) and the most probable symbol
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(MPS). By keeping track of the value of the MPS (valMPS) and the probability value of the
LPS, denoted as pLPS, a simple parametrization of the underlying binary alphabet is achieved.
Based on that setting, an initially given interval (as shown in the figure above), which is
represented by its lower bound (base) L and its width (range) R is subdivided into two disjoint
subintervals: one interval of width RLPS = R × pLPS, which is associated with the LPS, and the
dual interval of width RMPS = R - RLPS, which is assigned to the MPS. Depending on the
binary value to encode, either identified as the LPS or the MPS, the corresponding subinterval
is then chosen as the new coding interval. By recursively applying this interval-subdivision
scheme to each element bj of a given sequence of binary decisions b = (b1, b2, …, bN), the
encoder finally determines a value cb in the final subinterval [L(N), L(N)+ R(N)) that results after
the Nth interval subdivision process. The (minimal) binary representation of cb is the arithmetic
code of the input sequence b. To ensure that finite-precision registers are sufficient to
represent R(j) and L(j) for all j ∈ {1,2, …, N}, a renormalization operation is required, whenever
R(j) falls below a certain limit after one or more interval subdivision process(es). By
renormalizing R(j), and accordingly L(j), the leading bits of the arithmetic code can be output
as soon as they are unambiguously identified.

  
On the decoder side, the sequence of encoded binary values can be easily recovered by
tracking the interval subdivision step-by-step and by comparing the bounds of both
subintervals to the transmitted binary value of cb representing the final subinterval. Note that
the width R(N) of the final subinterval is proportional to the product ∏N

j=1 p(bj) of the individual
probabilities of the elements bj of the binary sequence, such that for signaling the final
subinterval, the lower bound of the empirical entropy of the binary sequence given by -log2
∏N

j=1 p(bj) = - ∑N
j=1 log2 p(bj) is approximately achieved. 

  
From the standpoint of computational complexity, the most critical drawback of a
straightforward implementation of arithmetic coding is the multiplication or even division
operation required to perform the interval subdivision in integer arithmetic for each symbol to
encode/decode. Usually, integer multiplications/divisions are quite expensive operations,
especially when realized in hardware. Therefore, most of the research work in the literature
dealing with the topic of fast binary arithmetic coding is devoted to the problem of employing a
suitable approximation of the multiplication R × pLPS for determining RLPS. The published
work in the literature can be roughly divided into two categories as follows.

  
Prior work on fast binary arithmetic coding: The first category of published work on
multiplication-free interval subdivision is based on the idea to approximate either the
estimated probabilities pLPS or the interval width R in such a way that the multiplication can be
replaced by one or more shifts and adds. Therefore, this class of coders are denoted as the
shift-and-add coders. Two typical representatives of this class are the shift coder of LANGDON
and RISSANEN and the CKW scheme of CHEVION et al. While in the former approach pLPS is
confined to negative integral powers of 2, the latter relies on an approximation of the form ½ +
r, where r ∈ {2-k | k ∈ |N} for the entire range of admissible values for the interval width R. In
general, however, there is a rather strong imbalance between the amount of complexity
reduction typically achieved by a shift-and-add coder and the observed degradation in coding
efficiency due to the rough approximations involved.

  
The second and main category of published research work summarizes all binary arithmetic
coding algorithms that are based on the more radical approach of performing the interval-
subdivision process by means of table-lookup operations only. The most prominent
representatives of this so-called class of table-driven coders are given by the Q coder
(PENNEBAKER et al.) and its variants QM and MQ coder, as adopted by JPEG and JPEG2000,
respectively. Other techniques belonging to this class are the quasi-arithmetic coder (HOWARD
and VITTER), the Z coder (BOTTOU), and the ELS coder (WITHERS). As a common
characteristic feature of these table-driven arithmetic coders, a finite-state machine (FSM) is
employed for estimating binary symbol probabilities. 

  

 
 
Proposed M Coder: The basic idea of the proposed low-complexity approach of interval
subdivision is to quantize the range of possible interval width values induced by
renormalization into a small number of K cells [JVT-C061]. To further simplify the calculations
required to determine quantizer indices, a uniform quantization with K = 2κ is assumed to be
performed, resulting in a set Q = {Q0,Q1,…,QK-1} of representative interval widths. Together
with the representative set of LPS-related probability values of the FSM given by P = {p0,p1,
…,pN-1}, this quantization enables an approximation of the exact multiplication R × pLPS by
means of a table of K × N pre-calculated product values {Qk · pn  | 0 ≤ k < K; 0 ≤ n < N } in a
suitably chosen integer precision. The entries of the corresponding 2-D lookup table will be
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addressed by the (probability) state index n and the quantization cell index k(R) related to the
given value of R, as illustrated above. Computation of the quantizer index k(R) is easily
carried out by a concatenation of a bit-shift and a bit-masking operation, where the latter can
be interpreted as a modulo operation using the operand K = 2κ, hence the naming 'modulo
coder' or briefly 'M coder' of the proposed two-parameter family of coders.

  
For a fixed choice of the FSM-based estimator, which means that P and N are selected
beforehand, the corresponding family of modulo coders can be parameterized by κ. Usually,
only small numbers of κ ∈ {0,1,2,3} are of practical relevance, since the size of the lookup
table is growing exponentially in κ. Larger values of κ result in a higher accuracy of the
representation of R, but they require also larger lookup tables. In most practical cases, the
choice of a suitable κ and the selection of an appropriate probability estimator has to be
simultaneously optimized. For H.264/AVC the optimal choice of the free parameters κ  and N
was determined under the constraint for the lookup table size of 2κ·N ≤ 256 bytes, where each
table entry was represented with an 8-bit integer precision. Obviously, the optimization
process depends on the statistical nature of the given data. For a representative test set of
video sequences encoded under different coding conditions within the H.264/AVC video
coder, a configuration of (κ, N) = (2,64) was found to be optimal. This configuration is used for
the standardized M coder variant of H.264/AVC. Note that the case κ = 0 is conceptually
equivalent to the Q coder approximation. Hence, the M coder concept can be considered as a
generalization of the Q coder and its derivatives of QM and MQ coder.

  
Additional speed-up can be obtained by using a bypass of the probability estimation for
approximately uniformly distributed binary symbols. This kind of sources is often observed in
transform coders, where, e.g., signs of transform coefficients or least significant bits of
absolute values of quantized transform coefficients can be assumed to be uniformly
distributed. Therefore, the M coder contains a simplified interval subdivision in the so-called
bypass coding mode based on a hard-wired equipartition. In this way, the whole bypass
encoding/decoding process (including renormalization) can be realized by nothing more than
a shift, a comparison, and for half of the symbols an additional subtraction.

  
Performance evaluation of the M Coder: In a set of coding experiments, the relative
performance of the M coder in comparison to the MQ coder and to a conventional binary
arithmetic coder has been evaluated in the CABAC environment of H.264/AVC. As a first
remarkable outcome of these experiments, it was observed that in terms of coding efficiency,
the specific M coder implementation of H.264/AVC achieves virtually the same performance in
terms of coding efficiency as an implementation of conventional binary arithmetic coding
based on multiplication and division operations in 16-bit integer arithmetic.

  
This experimental observation can be interpreted as a verification of the following analytical
study of the approximation effects in the interval subdivision process. As a measure of
inefficiency caused by the subdivision approximation, the so-called excess codelength or
relative entropy D(p,p') is given as follows:

 
D(p,p') = - p log2 p'

p  - (1-p) log2
1-p'
1-p ,   where p'= Q(R)

   R ·p

 
where p is the actual LPS probability and p' denotes the approximation of the probability p due
to the quantization Q(R) of the LPS related value of interval width R=RLPS. However, instead
of evaluating the absolute values of excess codelength D(p,p'), a more meaningful measure is
obtained by computing the inefficiency D(p,p') relative to the entropy H(p) (as the average
ideal codelength):

 
δ(p,p') = D(p,p')

 H(p) ,  where  H(p) = -p log2 p - (1-p) log2 (1-p).

 
Under the assumption that the probability p is fixed with values in P = {p0, p1, …, pN-1}, the
worst case relative excess codelength δmax(κ) = max{δ(p,p') | p ∈ P, Q(R) ∈ Q(κ)} can be
computed for different choices of κ. It turns out that for κ = 1, δmax is equal to 0.047,
whereas δmax(k = 2) < 0.013 and δmax(κ) < 0.003 for κ ≥ 3. These values, however, represent
the largest relative increase in codelength that can be expected for the largest possible
quantization error given by sup |R - Q(R)|. 

  

  
To calculate the average relative excess codelength δavg(p,p') = E[δ(p,p')], a distribution must
be assumed for R. Empirically, an 1 / R distribution has been determined for typical
sequences of symbols to encode, and based on this empirical distribution the average relative
excess codelength δavg has been computed for each fixed probability state. As shown in the
graph above, δavg is less than 0.83% for κ = 1 and less than 0.2% of the ideal codelength for κ
= 2 (i.e., the H.264/AVC related M coder realization, shown as the magenta colored curve).
This numerical estimation proves that the loss in coding efficiency due to the table-based
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interval subdivision is practically negligible, at least in case of a static probability distribution
and for the choice of κ ≥ 2. By the same kind of analysis it can be shown that the average
relative excess codelength resulting from a discretization of the probability space is also
negligible (less than 0.05% of the ideal codelength for N = 64). 
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