
ResearchGate 

See discussions, stats, and author profiles for this publication at: htss://www.researchgate.net/publication/2984808 

Arithmetic Coding for Data Compression 

Article in Proceedings of the IEEE • July 1994 
DOI: 10.1109/5.286189 • Source: IEEE Xplore 

CITATIONS 

305 

2 authors, including 

Jeffrey Scott Vitter 

University of Mississippi 

433 PUBLICATIONS 16,365 CITATIONS 

SEE PROFILE

Some of the authors of this publication are also working on these related projects: 

Data Compression View project 

Pros. Compressed Data Structures View project 

READS 

129 

All content following this page was uploaded by Jeffrey Scott Vitter on 03 June 2013. 

The user has requested enhancement of the downloaded file. 

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2984808

Arithmetic Coding for Data Compression

Article  in  Proceedings of the IEEE · July 1994

DOI: 10.1109/5.286189 · Source: IEEE Xplore

CITATIONS

305
READS

129

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Data Compression View project

Compressed Data Structures View project

Jeffrey Scott Vitter

University of Mississippi

433 PUBLICATIONS   16,365 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jeffrey Scott Vitter on 03 June 2013.

The user has requested enhancement of the downloaded file.

Unified Patents, Ex. 1008000001f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.researchgate.net/publication/2984808_Arithmetic_Coding_for_Data_Compression?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2984808_Arithmetic_Coding_for_Data_Compression?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Data-Compression-9?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Compressed-Data-Structures-2?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeffrey_Vitter?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeffrey_Vitter?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Mississippi?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeffrey_Vitter?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeffrey_Vitter?enrichId=rgreq-0f51dd9cf0525d720cd9dbd97bad4bbd-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQ4MDg7QVM6MTA0NDY5NjYwNDM4NTMwQDE0MDE5MTg5MTYxNzk%3D&el=1_x_10&_esc=publicationCoverPdf
https://www.docketalarm.com/


CS--1994--09 

Arithmetic Coding for Data Compression 

Paul G. Howard, Jeffrey S. Vitter 

Department of Computer Science 

Duke University 

Durham, North Carolina 27708-0129 

March 25, 1994 

CS--1994--09

Arithmetic Coding for Data Compression

Paul G. Howard, Jeffrey S. Vitter

Department of Computer Science

Duke University

Durham, North Carolina 27708-0129

March 25, 1994

Unified Patents, Ex. 1008000002f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Arithmetic Coding for Data Compression 

PAUL G. HOWARD AND JEFFREY SCOTT VITTER, FELLOW, IEEE 

Arithmetic coding provides an effective mechanism for remov-
ing redundancy in the encoding of data. We show how arithmetic 
coding works and describe an efficient implementation that uses 
table lookup as a fast alternative to arithmetic operations. The 
reduced-precision arithmetic has a provably negligible effect on the 
amount of compression achieved. We can speed up the implemen-
tation further by use of parallel processing. We discuss the role of 
probability models and how they provide probability information 
to the arithmetic coder. We conclude with perspectives on the 
comparative advantages and disadvantages of arithmetic coding. 

Index terms Data compression, arithmetic coding, lossless 
compression, text modeling, image compression, text compres-
sion, adaptive, semi-adaptive. 

I. ARITHMETIC CODING 

The fundamental problem of lossless compression is to de-
compose a data set (for example, a text file or an image) 
into a sequence of events, then to encode the events using as 
few bits as possible. The idea is to assign short codewords 
to more probable events and longer codewords to less prob-
able events. Data can be compressed whenever some events 
are more likely than others. Statistical coding techniques 
use estimates of the probabilities of the events to assign the 
codewords. Given a set of mutually distinct events e1, e2 , e3, 

, e r„ and an accurate assessment of the probability dis-
tribution P of the events, Shannon [1] proved that the the 
smallest possible expected number of bits needed to encode 
an event is the entropy of P, denoted by 

H(P)= 
k=1 

—p{e k} log2 p{e k}, 

where p{ek} is the probability that event e k occurs. An op-
timal code outputs — log2 p bits to encode an event whose 
probability of occurrence is p. Pure arithmetic codes sup-
plied with accurate probabilities provides optimal compres-
sion. The older and better-known Huffman codes [2] are 
optimal only among instantaneous codes, that is, those in 
which the encoding of one event can be decoded before en-
coding has begun for the next event. 

In theory, arithmetic codes assign one "codeword" to each 
possible data set. The codewords consist of half-open subin-
tervals of the half-open unit interval [0, 1), and are expressed 
by specifying enough bits to distinguish the subinterval cor-
responding to the actual data set from all other possible 
subintervals. Shorter codes correspond to larger subinter-
vals and thus more probable input data sets. In practice, 

Manuscript received Mmm DD, 1993. Some of this work was per-
formed while both authors were at Brown University and while the 
first author was at Duke University. Support was provided in part by 
NASA Graduate Student Researchers Program grant NGT-50420, by 
a National Science Foundation Presidential Young Investigator Award 
with matching funds from IBM, and by Air Force Office of Scientific 
Research grant number F49620-92—J-0515. Additional support was 
provided by Universities Space Research Association/CESDIS asso-
ciate memberships. 

P. G. Howard is with AT&T Bell Laboratories, Visual Communica-
tions Research, Room 4C-516, 101 Crawfords Corner Road, Holmdel, 
NJ 07733-3030. 

J. S. Vitter is with the Department of Computer Science, Duke 
University, Box 90129, Durham, NC 27708-0129. 

IEEE Log Number 0000000. 

the subinterval is refined incrementally using the probabili-
ties of the individual events, with bits being output as soon 
as they are known. Arithmetic codes almost always give bet-
ter compression than prefix codes, but they lack the direct 
correspondence between the events in the input data set and 
bits or groups of bits in the coded output file. 

A statistical coder must work in conjunction with a mod-
eler that estimates the probability of each possible event at 
each point in the coding. The probability model need not 
describe the process that generates the data; it merely has 
to provide a probability distribution for the data items. The 
probabilities do not even have to be particularly accurate, 
but the more accurate they are, the better the compression 
will be. If the probabilities are wildly inaccurate, the file may 
even be expanded rather than compressed, but the original 
data can still be recovered. To obtain maximum compres-
sion of a file, we need both a good probability model and 
an efficient way of representing (or learning) the probability 
model. 

To ensure decodability, the encoder is limited to the use 
of model information that is available to the decoder. There 
are no other restrictions on the model; in particular, it can 
change as the file is being encoded. The models can be adap-
tive (dynamically estimating the probability of each event 
based on all events that precede it), semi-adaptive (using 
a preliminary pass of the input file to gather statistics), or 
non-adaptive (using fixed probabilities for all files). Non-
adaptive models can perform arbitrarily poorly [3]. Adaptive 
codes allow one-pass coding but require a more complicated 
data structure. Semi-adaptive codes require two passes and 
transmission of model data as side information; if the model 
data is transmitted efficiently they can provide slightly bet-
ter compression than adaptive codes, but in general the cost 
of transmitting the model is about the same as the "learn-
ing" cost in the adaptive case [4]. 

To get good compression we need models that go beyond 
global event counts and take into account the structure of 
the data. For images this usually means using the numeric 
intensity values of nearby pixels to predict the intensity of 
each new pixel and using a suitable probability distribution 
for the residual error to allow for noise and variation between 
regions within the image. For text, the previous letters form 
a context, in the manner of a Markov process. 

In Section II, we provide a detailed description of pure 
arithmetic coding, along with an example to illustrate the 
process. We also show enhancements that allow incremental 
transmission and fixed-precision arithmetic. In Section III 
we extend the fixed-precision idea to low precision, and show 
how we can speed up arithmetic coding with little degrada-
tion of compression performance by doing all the arithmetic 
ahead of time and storing the results in lookup tables. We 
call the resulting procedure quasi-arithmetic coding. In Sec-
tion IV we briefly explore the possibility of parallel coding 
using quasi-arithmetic coding. In Section V we discuss the 
modeling process, separating it into structural and probabil-
ity estimation components. Each component can be adap-
tive, semi-adaptive, or static; there are two approaches to 
the probability estimation problem. Finally, Section VI pro-

1 

Arithmetic Coding for Data CompressionPAUL G. HOWARD and JEFFREY SCOTT VITTER, fellow, ieeeArithmetic coding provides an e�ective mechanism for remov-ing redundancy in the encoding of data. We show how arithmeticcoding works and describe an e�cient implementation that usestable lookup as a fast alternative to arithmetic operations. Thereduced-precision arithmetic has a provably negligible e�ect on theamount of compression achieved. We can speed up the implemen-tation further by use of parallel processing. We discuss the role ofprobability models and how they provide probability informationto the arithmetic coder. We conclude with perspectives on thecomparative advantages and disadvantages of arithmetic coding.Index terms| Data compression, arithmetic coding, losslesscompression, text modeling, image compression, text compres-sion, adaptive, semi-adaptive.I. Arithmetic codingThe fundamental problem of lossless compression is to de-compose a data set (for example, a text �le or an image)into a sequence of events, then to encode the events using asfew bits as possible. The idea is to assign short codewordsto more probable events and longer codewords to less prob-able events. Data can be compressed whenever some eventsare more likely than others. Statistical coding techniquesuse estimates of the probabilities of the events to assign thecodewords. Given a set of mutually distinct events e1, e2, e3,: : : , en, and an accurate assessment of the probability dis-tribution P of the events, Shannon [1] proved that the thesmallest possible expected number of bits needed to encodean event is the entropy of P , denoted byH(P ) = nXk=1 �pfekg log2 pfekg;where pfekg is the probability that event ek occurs. An op-timal code outputs � log2 p bits to encode an event whoseprobability of occurrence is p. Pure arithmetic codes sup-plied with accurate probabilities provides optimal compres-sion. The older and better-known Hu�man codes [2] areoptimal only among instantaneous codes, that is, those inwhich the encoding of one event can be decoded before en-coding has begun for the next event.In theory, arithmetic codes assign one \codeword" to eachpossible data set. The codewords consist of half-open subin-tervals of the half-open unit interval [0; 1), and are expressedby specifying enough bits to distinguish the subinterval cor-responding to the actual data set from all other possiblesubintervals. Shorter codes correspond to larger subinter-vals and thus more probable input data sets. In practice,Manuscript received Mmm DD, 1993. Some of this work was per-formed while both authors were at Brown University and while the�rst author was at Duke University. Support was provided in part byNASA Graduate Student Researchers Program grant NGT{50420, bya National Science Foundation Presidential Young Investigator Awardwith matching funds from IBM, and by Air Force O�ce of Scienti�cResearch grant number F49620{92{J{0515. Additional support wasprovided by Universities Space Research Association/CESDIS asso-ciate memberships.P. G. Howard is with AT&T Bell Laboratories, Visual Communica-tions Research, Room 4C{516, 101 Crawfords Corner Road, Holmdel,NJ 07733{3030.J. S. Vitter is with the Department of Computer Science, DukeUniversity, Box 90129, Durham, NC 27708{0129.IEEE Log Number 0000000.

the subinterval is re�ned incrementally using the probabili-ties of the individual events, with bits being output as soonas they are known. Arithmetic codes almost always give bet-ter compression than pre�x codes, but they lack the directcorrespondence between the events in the input data set andbits or groups of bits in the coded output �le.A statistical coder must work in conjunction with a mod-eler that estimates the probability of each possible event ateach point in the coding. The probability model need notdescribe the process that generates the data; it merely hasto provide a probability distribution for the data items. Theprobabilities do not even have to be particularly accurate,but the more accurate they are, the better the compressionwill be. If the probabilities are wildly inaccurate, the �le mayeven be expanded rather than compressed, but the originaldata can still be recovered. To obtain maximum compres-sion of a �le, we need both a good probability model andan e�cient way of representing (or learning) the probabilitymodel.To ensure decodability, the encoder is limited to the useof model information that is available to the decoder. Thereare no other restrictions on the model; in particular, it canchange as the �le is being encoded. The models can be adap-tive (dynamically estimating the probability of each eventbased on all events that precede it), semi-adaptive (usinga preliminary pass of the input �le to gather statistics), ornon-adaptive (using �xed probabilities for all �les). Non-adaptive models can perform arbitrarily poorly [3]. Adaptivecodes allow one-pass coding but require a more complicateddata structure. Semi-adaptive codes require two passes andtransmission of model data as side information; if the modeldata is transmitted e�ciently they can provide slightly bet-ter compression than adaptive codes, but in general the costof transmitting the model is about the same as the \learn-ing" cost in the adaptive case [4].To get good compression we need models that go beyondglobal event counts and take into account the structure ofthe data. For images this usually means using the numericintensity values of nearby pixels to predict the intensity ofeach new pixel and using a suitable probability distributionfor the residual error to allow for noise and variation betweenregions within the image. For text, the previous letters forma context, in the manner of a Markov process.In Section II, we provide a detailed description of purearithmetic coding, along with an example to illustrate theprocess. We also show enhancements that allow incrementaltransmission and �xed-precision arithmetic. In Section IIIwe extend the �xed-precision idea to low precision, and showhow we can speed up arithmetic coding with little degrada-tion of compression performance by doing all the arithmeticahead of time and storing the results in lookup tables. Wecall the resulting procedure quasi-arithmetic coding. In Sec-tion IV we briey explore the possibility of parallel codingusing quasi-arithmetic coding. In Section V we discuss themodeling process, separating it into structural and probabil-ity estimation components. Each component can be adap-tive, semi-adaptive, or static; there are two approaches tothe probability estimation problem. Finally, Section VI pro-1 Unified Patents, Ex. 1008000003f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


vides a discussion of the advantages and disadvantages of 
arithmetic coding and suggestions of alternative methods. 

11. HOW ARITHMETIC CODING WORKS 

In this section we explain how arithmetic coding works 
and give operational details; our treatment is based on that 
of Witten, Neal, and Cleary [5]. Our focus is on encoding, 
but the decoding process is similar. 

Basic algovilliwn for arillirraclic coding 

The algorithm for encoding a file using arithmetic coding 
works conceptually as follows: 

1. We begin with a "current interval" [L, 11 ) initialized to 
[0, 1). 

2. For each event in the file, we perform two steps. 
(a) We subdivide the current interval into subintervals, 

one for each possible event. The size of a event's 
subinterval is proportional to the estimated proba-
bility that the event will be the next event in the 
file, according to the model of the input. 

(b) We select the subinterval corresponding to the 
event that actually occurs next, and make it the 
new current interval. 

3. We output enough bits to distinguish the final current 
interval from all other possible final intervals. 

The length of the final subinterval is clearly equal to the 
product of the probabilities of the individual events, which 
is the probability p of the particular sequence of events in 
the file. The final step uses at most L-log., pi + 2 bits to 
distinguish the file from all other possible files. We need some 
mechanism to indicate the end of the file, either a special end-
of-file event coded just once, or some external indication of 
the file's length. Either method adds only a small amount( 
to the code length. 

In step 2, we need to compute only the subinterval cone-
sponding to the event ai that actually occurs. To do this it is 
convenient to use two "cumulative" probabilities: the cumu-
lative probability Pr = -1 ph and the next-cumulative 
probability PH = Pr + p• = k =1 ; .1.) The new subinterval 
is [L. + Pc(ii — L.), L PH (!1 — L.)). The need to main-
tain and supply cumulative probabilities requires the model 
to have a complicated data structure, especially when many 
more than two events are possible. 

We now provide an example, repeated a number of times 
to illustrate different steps in the development of arithmetic 
coding. For simplicity we choose between just two events at 
each step, although the principles apply to the multi-event 
case as well. We assume that we know a priori that we 
have a file consisting of three events (or three letters in the 
case of text compression); the first event is either al (with 
probability Mai = 1) or bi (with probability p{bi = 4); 
the second event is a, (with probability p{a.;} = ) or lb; 
(with probability p{b2 = ); and the third event is as (with 
probability p{as} = t) or bs (with probability plbs1 = ). 
The actual file to be encoded is the sequence bia,bs. 

The steps involved in pure arithmetic coding are illus-
trated in Table 1 and Fig. 1. In this example the final interval 
corresponding to the actual file bia,bs is [M,i). The length 
of the interval is ÷, 5 , which is the probability of bi bs , com-
puted by multiplying the probabilities of the three events: 

}p{a, }p{bs = i4 = . In binary, the final inter-
val is [0.110001 . .. ,0.110101 . ..). Since all binary numbers 
that begin with 0.11001 are entirely within this interval, out-
putting 11001 suffices to uniquely identify the interval. 

Table 1 Example of pure azithirieLic coding 

Action Subint ervals 

Start [0,1) 

Subdivide with left prob. Hail = 

Input 1i l , select right subinterval 

[0, i). [1.1) 
[1.1) 

S ubdivide with left prob. p{ a, = 

Input u,, select left subinterval 
[3, ),[ ,1)

Subdivide with left prob. plus = 

Input bs, select right subinterval 
[ig) [g,D 

[4 , 
= [0.110001 _ 2 ,0.110101 .. . 2) 

Output 11001 0.11001, is the shortest binary 
fraction that lies within [*3). , 

0 initial current interval 1' 

2 

subdivide 
-1 

s •Ir s 3.1C

0 al 
') . bl 

1

subdivide 

select b1

--- _,.. 
s a2 b.) 1

subdivide 

select a, 

44-4 3.i 

as  l bs u5

select bs

L a 

output 11001 .4— 0.110012 0.110102

Fig. 1. Pure ariLlutieLic coding graphically illusLra,Led. 

B. incrcracrilal maws' 

The basic implementation of arithmetic coding described 
above has two major difficulties: the shrinking current in-
terval requires the use of high precision arithmetic-, and no 
output is produced until the entire file has been read. The 
most straightforward solution to both of these problems is 
to output each leading bit as soon as it is known, and then 
to double the length of the current interval so that it re-
flects only the unknown part of the final interval. Wit ten, 
Neal, and Cleary [5] add a clever mechanism for preventing 
the current interval from shrinking too much when the end-
points are close to A but straddle In that case we do not 
yet know the next output bit, but we do know that what-
ever it is, the following bit will have the opposite value; we 
merely keep track of that fact, and expand the current inter-
val symmetrically about This follow-on procedure may 
be repeated any number of times, so the current interval size 
is always strictly longer than 1. 

Mechanisms for incremental transmission and fixed preci-
sion arithmetic- have been developed through the years by 
Pasco [6], Rissanen [7], Rubin [8], Rissanen and Langdon 
[9], Guazzo [10], and Witten, Neal, and Cleary [5]. The 
bit-st tilling idea of Langdon and others at IBM that limits 
the propagation of carries in the additions serves a function 
similar to that of the follow-on procedure described above. 

vides a discussion of the advantages and disadvantages ofarithmetic coding and suggestions of alternative methods.II. How arithmetic coding worksIn this section we explain how arithmetic coding worksand give operational details; our treatment is based on thatof Witten, Neal, and Cleary [5]. Our focus is on encoding,but the decoding process is similar.A. Basic algorithm for arithmetic codingThe algorithm for encoding a �le using arithmetic codingworks conceptually as follows:1. We begin with a \current interval" [L;H) initialized to[0; 1).2. For each event in the �le, we perform two steps.(a) We subdivide the current interval into subintervals,one for each possible event. The size of a event'ssubinterval is proportional to the estimated proba-bility that the event will be the next event in the�le, according to the model of the input.(b) We select the subinterval corresponding to theevent that actually occurs next, and make it thenew current interval.3. We output enough bits to distinguish the �nal currentinterval from all other possible �nal intervals.The length of the �nal subinterval is clearly equal to theproduct of the probabilities of the individual events, whichis the probability p of the particular sequence of events inthe �le. The �nal step uses at most b� log2 pc + 2 bits todistinguish the �le from all other possible �les. We need somemechanism to indicate the end of the �le, either a special end-of-�le event coded just once, or some external indication ofthe �le's length. Either method adds only a small amountto the code length.In step 2, we need to compute only the subinterval corre-sponding to the event ai that actually occurs. To do this it isconvenient to use two \cumulative" probabilities: the cumu-lative probability PC = Pi�1k=1 pk and the next-cumulativeprobability PN = PC + pi =Pik=1 pk . The new subintervalis [L + PC(H � L); L + PN(H � L)). The need to main-tain and supply cumulative probabilities requires the modelto have a complicated data structure, especially when manymore than two events are possible.We now provide an example, repeated a number of timesto illustrate di�erent steps in the development of arithmeticcoding. For simplicity we choose between just two events ateach step, although the principles apply to the multi-eventcase as well. We assume that we know a priori that wehave a �le consisting of three events (or three letters in thecase of text compression); the �rst event is either a1 (withprobability pfa1g = 23 ) or b1 (with probability pfb1g = 13 );the second event is a2 (with probability pfa2g = 12 ) or b2(with probability pfb2g = 12 ); and the third event is a3 (withprobability pfa3g = 35 ) or b3 (with probability pfb3g = 25 ).The actual �le to be encoded is the sequence b1a2b3.The steps involved in pure arithmetic coding are illus-trated in Table 1 and Fig. 1. In this example the �nal intervalcorresponding to the actual �le b1a2b3 is [ 2330 ; 56 ). The lengthof the interval is 115 , which is the probability of b1a2b3, com-puted by multiplying the probabilities of the three events:pfb1gpfa2gpfb3g = 13 12 25 = 115 . In binary, the �nal inter-val is [0:110001 : : : ; 0:110101 : : :). Since all binary numbersthat begin with 0:11001 are entirely within this interval, out-putting 11001 su�ces to uniquely identify the interval.

Table 1 Example of pure arithmetic codingAction SubintervalsStart [0; 1)Subdivide with left prob. pfa1g = 23 [0; 23 ); [ 23 ; 1)Input b1, select right subinterval [ 23 ; 1)Subdivide with left prob. pfa2g = 12 [ 23 ; 56 ); [ 56 ; 1)Input a2, select left subinterval [ 23 ; 56 )Subdivide with left prob. pfa3g = 35 [ 23 ; 2330 ); [ 2330 ; 56 )Input b3, select right subinterval [ 2330 ; 56 )= [0:110001 : : : 2; 0:110101 : : : 2)Output 11001 0:110012 is the shortest binaryfraction that lies within [ 2330 ; 56 )initial current interval0 1subdivide23 130 23a1 1b1select b112 12subdivide 23 56a2 1b2select a235 25subdivide 23 2330a3 56b3select b32330 560:110012 0:110102output 11001Fig. 1. Pure arithmetic coding graphically illustratedB. Incremental outputThe basic implementation of arithmetic coding describedabove has two major di�culties: the shrinking current in-terval requires the use of high precision arithmetic, and nooutput is produced until the entire �le has been read. Themost straightforward solution to both of these problems isto output each leading bit as soon as it is known, and thento double the length of the current interval so that it re-ects only the unknown part of the �nal interval. Witten,Neal, and Cleary [5] add a clever mechanism for preventingthe current interval from shrinking too much when the end-points are close to 12 but straddle 12 . In that case we do notyet know the next output bit, but we do know that what-ever it is, the following bit will have the opposite value; wemerely keep track of that fact, and expand the current inter-val symmetrically about 12 . This follow-on procedure maybe repeated any number of times, so the current interval sizeis always strictly longer than 14 .Mechanisms for incremental transmission and �xed preci-sion arithmetic have been developed through the years byPasco [6], Rissanen [7], Rubin [8], Rissanen and Langdon[9], Guazzo [10], and Witten, Neal, and Cleary [5]. Thebit-stu�ng idea of Langdon and others at IBM that limitsthe propagation of carries in the additions serves a functionsimilar to that of the follow-on procedure described above.2 Unified Patents, Ex. 1008000004f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Table 2 Example of pure arithmetic coding with incremental 
transmission and interval expansion 

Action Subintervals 

Start [0, 1) 

Subdivide with left prob. Mal = 

Input b1, select right subinterval 

Output 1, expand 

Subdivide with left prob. p{a2} = 

Input a2 , select left subinterval 

Increment follow count, expand 

Subdivide with left prob. p{a3} = 

Input b3 , select right subinterval 

Output 1, output 0 (follow bit), expand 

r i 17 ) r17 
30 /, 6 / 

r17 5
30' 

) 

[ 5 
Output 01 D is entirely within [ 1+5 , 3) 

o initial current interval 1 

2 
subdivide 

1 < 3 3 
0 (11 bl 1 

select b1
. 1 

output 1; expand 

. 
i v
7 . 

1 

1 
subdivide 

1 
2 2

1 3 a2
3 
2 b2 1

select a2

1 
1 
3 

2 
3 . 

follow: expand 
V V 

1 
6 

5 
6 

3

subdivide 
2 _).. < >< 

1 6 a3 17 
30 b3 5 

6 
select b3

17 
. 30 

5 
6 

output if = 10; expand 
2 
3 

0.012 0.102 —> output 01 

Fig. 2. Pure arithmetic coding with incremental transmission 
and interval expansion, graphically illustrated 

We now describe in detail how the incremental output and 
interval expansion work. We add the following step immedi-
ately after the selection of the subinterval corresponding to 
an input event, step 2(b) in the basic algorithm above. 

2. (c) We repeatedly execute the following steps in se-
quence until the loop is explicitly halted: 
1. If the new subinterval is not entirely within one 

of the intervals [0, D, or g, 1), we exit 
the loop and return. 

2. If the new subinterval lies entirely within [0, D, 
we output 0 and any following is left over from 
previous events; then we double the size of the 
subinterval by linearly expanding [0, D to [0, 1). 

3. If the new subinterval lies entirely within g, 1), 
we output 1 and any following Os left over from 
previous events; then we double the size of the 
subinterval by linearly expanding g, 1) to [0, 1). 

4. If the new subinterval lies entirely within [1, 
we keep track of this fact for future output by 
incrementing the follow count; then we double 
the size of the subinterval by linearly expanding 

D to [0,1). 

Table 2 and Fig. 2 illustrate this process. In the exam-
ple, interval expansion occurs exactly once for each input 
event, but in other cases it may occur more than once or not 
at all. The follow-on procedure is applied when processing 
the second input event a2 . The 1 output after processing 
the third event b3 is therefore followed by its complement 0. 
The final interval is [ 1+5 , Since all binary numbers that 
start with 0.01 are within this range, outputting 01 suffices 
to uniquely identify the range. The encoded file is 11001, 
as before. This is no coincidence: the computations are es-
sentially the same. The final interval is eight times as long 
as in the previous example because of the three doublings of 
the current interval. 

Clearly the current interval contains some information 
about the preceding inputs; this information has not yet 
been output, so we can think of it as the coder's state. If a 
is the length of the current interval, the state holds — log2 a 
bits not yet output. In the basic method the state contains 
all the information about the output, since nothing is out-
put until the end. In the incremental implementation, the 
state always contains fewer than two bits of output informa-
tion, since the length of the current interval is always more 
than 1. The final state in the incremental example is [ 1+5 , 
which contains — log2 k 0.907 bits of information; the fi-
nal two output bits are needed to unambiguously transmit 
this information. 

C. Use of integer arithmetic 

In practice, the arithmetic can be done by storing the 
endpoints of the current interval as sufficiently large inte-
gers rather than in floating point or exact rational numbers. 
We also use integers for the frequency counts used to esti-
mate event probabilities. The subdivision process involves 
selecting non-overlapping intervals (of length at least 1) with 
lengths approximately proportional to the counts. Table 3 
illustrates the use of integer arithmetic using a full inter-
val of [0, N) = [0, 1024). (The graphical version of Table 3 
is essentially the same as Fig. 2 and is not included.) The 
length of the current interval is always at least N/4 2, 258 
in this case, so we can always use probabilities precise to at 
least 1/258; often the precision will be near 1/1024. In prac-
tice we use even larger integers; the interval [0, 65 536) is a 
common choice, and gives a practically continuous choice of 
probabilities at each step. The subdivisions in this example 
are not quite the same as those in Table 2 because the re-
sulting intervals are rounded to integers. The encoded file 
is 11001 as before, but for a longer input file the encodings 
would eventually diverge. 

3 

Table 2 Example of pure arithmetic coding with incrementaltransmission and interval expansionAction SubintervalsStart [0; 1)Subdivide with left prob. pfa1g = 23 [0; 23 ); [ 23 ; 1)Input b1, select right subinterval [ 23 ; 1)Output 1, expand [ 13 ; 1)Subdivide with left prob. pfa2g = 12 [ 13 ; 23 ); [ 23 ; 1)Input a2, select left subinterval [ 13 ; 23 )Increment follow count, expand [ 16 ; 56 )Subdivide with left prob. pfa3g = 35 [ 16 ; 1730 ); [ 1730 ; 56 )Input b3, select right subinterval [ 1730 ; 56 )Output 1, output 0 (follow bit), expand [ 215 ; 23 )Output 01 [ 14 ; 12 ) is entirely within [ 215 ; 23 )initial current interval0 1subdivide23 130 23a1 1b1select b123 1output 1; expand13 1subdivide12 1213 23a2 1b2select a213 23follow; expand16 56subdivide35 2516 1730a3 56b3select b31730 56output 1f = 10; expand215 230:012 0:102 output 01Fig. 2. Pure arithmetic coding with incremental transmissionand interval expansion, graphically illustratedWe now describe in detail how the incremental output andinterval expansion work. We add the following step immedi-ately after the selection of the subinterval corresponding toan input event, step 2(b) in the basic algorithm above.2. (c) We repeatedly execute the following steps in se-quence until the loop is explicitly halted:1. If the new subinterval is not entirely within oneof the intervals [0; 12 ), [ 14 ; 34 ), or [ 12 ; 1), we exitthe loop and return.

2. If the new subinterval lies entirely within [0; 12 ),we output 0 and any following 1s left over fromprevious events; then we double the size of thesubinterval by linearly expanding [0; 12 ) to [0; 1).3. If the new subinterval lies entirely within [ 12 ; 1),we output 1 and any following 0s left over fromprevious events; then we double the size of thesubinterval by linearly expanding [ 12 ; 1) to [0; 1).4. If the new subinterval lies entirely within [ 14 ; 34 ),we keep track of this fact for future output byincrementing the follow count; then we doublethe size of the subinterval by linearly expanding[ 14 ; 34 ) to [0; 1).Table 2 and Fig. 2 illustrate this process. In the exam-ple, interval expansion occurs exactly once for each inputevent, but in other cases it may occur more than once or notat all. The follow-on procedure is applied when processingthe second input event a2. The 1 output after processingthe third event b3 is therefore followed by its complement 0.The �nal interval is [ 215 ; 23 ). Since all binary numbers thatstart with 0:01 are within this range, outputting 01 su�cesto uniquely identify the range. The encoded �le is 11001,as before. This is no coincidence: the computations are es-sentially the same. The �nal interval is eight times as longas in the previous example because of the three doublings ofthe current interval.Clearly the current interval contains some informationabout the preceding inputs; this information has not yetbeen output, so we can think of it as the coder's state. If ais the length of the current interval, the state holds � log2 abits not yet output. In the basic method the state containsall the information about the output, since nothing is out-put until the end. In the incremental implementation, thestate always contains fewer than two bits of output informa-tion, since the length of the current interval is always morethan 14 . The �nal state in the incremental example is [ 215 ; 23 ),which contains � log2 815 � 0:907 bits of information; the �-nal two output bits are needed to unambiguously transmitthis information.C. Use of integer arithmeticIn practice, the arithmetic can be done by storing theendpoints of the current interval as su�ciently large inte-gers rather than in oating point or exact rational numbers.We also use integers for the frequency counts used to esti-mate event probabilities. The subdivision process involvesselecting non-overlapping intervals (of length at least 1) withlengths approximately proportional to the counts. Table 3illustrates the use of integer arithmetic using a full inter-val of [0;N) = [0; 1024). (The graphical version of Table 3is essentially the same as Fig. 2 and is not included.) Thelength of the current interval is always at least N=4+2, 258in this case, so we can always use probabilities precise to atleast 1=258; often the precision will be near 1=1024. In prac-tice we use even larger integers; the interval [0; 65 536) is acommon choice, and gives a practically continuous choice ofprobabilities at each step. The subdivisions in this exampleare not quite the same as those in Table 2 because the re-sulting intervals are rounded to integers. The encoded �leis 11001 as before, but for a longer input �le the encodingswould eventually diverge.3 Unified Patents, Ex. 1008000005f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


