INFO.LIB
/4
699
Al

143B

000001

Unified Patents, Ex. 1004

=
Ag)
o
)
=
=
Q
=
U
X
o
)
m
«
=
=
ep}
>
=
o
=
>
=
>
G
m
=
m
=
-

000002 Unified Patents, Ex. 1004

'INFORMATION PROCESSING & MANAGEMENT

— An International Journal —
(Incorporating INFORMATION TECHNOLOGY)

Volume 30, Number 6

Abraham Bookstein
James Storer

Alistair Moffat
Justin Zobel
Ron Sacks-Davis

Cornel Constantinescu
James A. Storer

Julia Abrahams

A. Bookstein
I.K. Ravichandra Rao
M.D. Patil

Paul G. Howard
Jeffrey Scott Vitter

Alistair Moffat
Neil Sharman
Ian H. Witten
Timothy C. Bell

Gennady Feygin
P. Glenn Gulak
Paul Chow

John D. Villasenor
Karel Culik II
Jarkko Kari

Xiaolin Wu
Yonggang Fang

733

745

759

765

777

791

805

817

829

839

1994

Contents

Introduction

Memory Efficient Ranking

Online Adaptive Vector Quantization With
Variable Size Codebook Entries

Codes With Monotonic Codeword Lengths

Can Random Fluctuation Be Exploited
in Data Compression?

Design and Analysis of Fast Text Compression
Based on Quasi-Arithmetic Coding

An Empirical Evaluation of Coding Methods for
Multi-Symbol Alphabets

Minimizing Excess Code Length and VLSI
Complexity in the Multiplication Free
Approximation of Arithmetic Coding

Tomographic Image Compression Using
Multidimensional Transforms

Image-Data Compression Using Edge-Optimizing
Algorithm for WFA Inference

Progressive Image Coding by Hierarchical
Linear Approximation

{Continued)

INnDEXED IN Curr. Cont. ASCA, Biosis Data, Cam. Sci. Abstr, Chem. Abstr., Curr. Cont. CompuMath, Curr.
Cont./Health Serv. Admin., Curr. Cont./Soc. & Beh. Sci., Curr. Cont./Eng. Tech. & Applied Sci., Comput.
Cont., Curr. Tech. Ind., ERIC Clear on Inform. Res., Eng. Ind., Ergon Abstr., Info. Sci. Abstr., LISA, Leg.
Cont., Lib. Sci. Abstr., Lib. Lit., Manage Cont., PASCAL-CNRS Data, PIRA, Curr. Cont. Soc. Sci. Cit.
Indx, SSSA/CISA/ECA/ISMEC.

PRINTED IN GREAT BRITAIN by A. WHEATON & Co. LTD., EXETER.

000003

ISSN 0306-4573
IPMADK 30(6) 731-898 (1994)

244
Unified Patents, Ex. 1004

Aims and Scopes
Information Processing & Management is devoted to refereed reporting of’

1. basic and applied research in information science, computer science, communication, cognitive
science, and related areas, that deals with the generation, organization, storage, retrieval, trans-
fer, and utilization of information; the nature, manifestation, and effects of information, knowl-
edge, and communication; and human information behavior.

2. experimental and advanced procedures, and their evaluation in: information retrieval (IR); text
processing; text and knowledge representation; knowledge-based IR, including expert systems;
natural language processing and IR; human-computer interfaces; hypertext and multimedia; and
related implementation issues.

3. management of information resources, libraries, information centers, systems, and networks,
including studies of contemporary advances and the principles of information management.

The aim is to provide an international forum for advanced works and critical analysis in these inter-
dependent areas.

Invited are original papers and critical reviews of trends reporting on:

e Research on the formal characteristics and properties of information, knowledge, cognitive struc-
tures, and the associated processes of communication; including bibliometric studies of the struc-
tural and statistical properties of information collections; and studies of human information
behavior such as seeking, searching, retrieving, and using information.

* Progress in the theory, principles, and procedures of technological applications to information
processing, particularly those involving information retrieval, knowledge-based retrieval; en-
hancement of intelligent information processing by machines, and human-computer interactions.

* Modeling and evaluation of information systems performance, including libraries, and their op-
timization in relation to given environments.

¢ Discussion of principles of management of information, and of information resources, systems,
and networks, and the use of information for management decision making.

¢ Studies in the economics of information; and in issues involving information policies, includ-
ing studies presenting data relevant for information policy making on organizational, national,
and international levels.

Copyright © 1994 Elsevier Science Ltd !

It is a condition of publication that manuscripts submitted to this journal have not been published and will not
be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copy-
right for their article is transferred to the publisher if and when the article is accepted for publication. However,
assignment of copyright is not required from authors who work for organizations which do not permit such as-
signment. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints, pho-
tographic reproductions, microform or any other reproductions of similar nature and translations. No part of this
publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, elec-
tronie, electrostatic, magnetic type, mechanical, photocopying, recording or otherwise, without permission in writ-
ing from the copyright holder.

U.S. COPYRIGHT LAW APPLICABLE TO USERS IN THE U.S.A.

Photocopying Information for Users in the U.S.A.: The Item-Fee Code for this publication indicates that authori-
zation to photocopy items for internal or personal use is granted by the copyright holder for libraries and other
users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service provided the stated
fee for copying, beyond that permitted by Section 107 or 108 of the United States Copyright Law, is paid. The
appropriate remittance of $6.00 per copy per article is paid directly to the Copyright Clearance Center Inc.,
222 Rosewood Drive, Danvers, MA 01923. The copyright owner’s consent does not extend to copying for gen-
eral distribution, for promotion, for creating new works, or for resale. Specific written permission must be ob-
tained from the publisher for such copying. In case of doubt please contact your nearest Elsevier Science office.

The Item-Fee Code for this publication is: 0306-4573/94 $6.00 + .00

Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data,
opinion, or statement appears in this journal, they wish to make it clear that the data and apinions appearing in
the articles and advertisements herein are the sole responsibility of the contributor or advertiser concerned. Ac-
cordingly, the publishers, the editorial board, and editors, and their respective employees, officers, and agents,
accept no responsibility or liability whatsoever for the consequences of any such inaccurate or misleading data,
opinion, or statement.

Information Processing Management is published bimonthly. Subscription price is $559. Second Class Postage
Pending at Rahway, NJ. Postmaster send address corrections to Information Processing Management ¢/o Elsevier
Science Inc., 660 White Plains Road, Tarrytown, NY 10591,

Printed in Great Britain.

000004 Unified Patents, Ex. 1004 “—

[R RS

INFORMATION PROCESSING & MANAGEMENT

— An International Journal —
(Incorporating INFORMATION TECHNOLOGY)

Editos-In-Chief

A iate Editors

Tefko Saracevic

School of Communication, Information and

Library Studies
Rutgers University
4 Huntington St.
New Brunswick, NJ 08903, USA

A iate Editor (Europe)

Harold Borko

Graduate School of Library and Information

Science

University of California

405 Hilgard Ave

Los Angeles, CA 90024-1520, USA

C. J. van Rijshergen
Department of Computing Science

Amanda Spink

Associate Editor (Book Reviews)

School of Library & Information Science

W. Bruce Croft

Department of Computer and
Information Science

University of Massachusetts

Amherst, MA 01003, USA

Assistant to the Editor-in-Chief

Trudy Downs
School of Information and Library Science

Lillybank Gardens University of North Texas Pratt Enstitute

The University P.O. Box 13796 200 Willoughby Ave.
Glasgow, G12 8QQ Scotland Denton, TX 76203-3796, USA Brooklyn, NY 11205, USA
Editorial Board

Maristella Agosti Edward A. Fox John Lindsay Roy Rada

Padova University
Via Gradenigo, 6/A
35131 Padova, Ttaly

Setsuo Arikawa

Research Institute of
Fundamental Information
Science

Kyushu University 33

Fukuoka, 812, Japan

Nicholas J. Belkin

School of Communication, Information
and Library Studies

Rutgers University

4 Huntington St.

New Brunswick, NJ 08903, USA

Trudi Bellardo

Special Libraries Association
1700 18th Street, NW
Washington, D.C. 20009, USA

David C. Blair

Computer and Information Systems
Graduate School of Business
University of Michigan

Ann Arbor, M1 48109-1234, USA

Abraham Bookstein

Center for Information and
Language Studies

The University of Chicago

Chicago, IL 60637, USA

Michael Backland

School of Library and
Information Studies

University of California

Berkeley, CA 94720, USA

Yves Chisramella

University of Grenoble
LGI-IMAG

BPi3X

38041 Grenoble Cedex, France

Raya Fidel

Graduate School of Library and
Information Science

University of Washington

Seattle, WA 98195, USA

Department of Computer Science

Virginia Polytechnic Institute &
State University

Blacksburg, VA 24061-0106, USA

H. P. Fret

UBILAB

Union Bank of Switzerland
Bahnhofstrasse 45

Zurich, 8021, Switzerland

Donna Harman

National Institute of Standards &
Technology

Bldg. 225/Rm. A216

Gaithersburg, MD 20898, USA

Roland Hjerppe

LIBLAB-Library and Information
Science Laboratory

Department of Computer and
Information Science

Peter Ingwersen

The Royal School of Libranianship
6 Birketinget

Copenhagen, Denmark 2300 §

Kalervo Jarvelin
Department of Info. Studies
University of Tampere

P.O. Box &07

SF-33101 Tarapere, Finland

Jin H. Kim

Computer Science Department

Korea Advanced Institute of Science
and Technology

KooSung-Dong 373, YooSung-Ku

Taejon, Korea

Gelard Knorz

Department of Computer Science
FG Datenverwaltungssysteme 1
Technische Hochschule Darmstadt
Alexanderstrasse 10

6100 Darmstadt, Germany

Rainer Kuhlen

Universitat Konstanz

Fachgruppe Informationswissenschaft
Postfach 5560

D-7750 Konstanz 1, Germany

School of Information Systems

Kingston University

Kingston upon Thames

KT1 2EE, United Kingdom

M. F. Lynch

Postgraduate School of Librarianship
and Information Science

Department of Information Studies

Western Bank

Sheffield S10 2TN, United Kingdom

Richard §. Marcus

Laboratory for Information and
Decision Systems

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

A. J. Meadows
Head of Department
Department of Library and
Information Studies
Loughborough University of Technalogy
Loughborough
Leicester LE11 3TU, United Kingdom

Michel J. Menou

Information Science Consultant
129 Av. P. Vaillant Couturier
94250 Gentilly, France

Jessica L. Milstead

‘The JELEM Company
P.0O. Box 5063

Brookfield, CT 06804, USA

Desal Naramsimhalu

Institute of Systems Science
National University of Singapore
Heng Mui Keng Terrace

Kent Ridge

Singapore 0511

A.S. Pollit1

Dept. of Computing and Mathematics
Usiversity of Huddersfield
Queengate, Huddersfield HD1 3DH,
United Kingdom

Fausto Rabitti
Instituto di Elaborazione
dell’ Informazione
Consiglio Nazionale delle Ricerche
Via S. Maria, 46 56100 Pisa, Italy

Department of Computer Science
University of Liverpool
Liverpool L69 3BX, United Kingdom

Edie M. Rasmussen

School of Library and
Information Science

University of Pittsburgh

Pittsburgh, PA 15260, USA

Nagey Roderer

Director, Medical Library
Yale University

333 Cedar Street

New Haven, CT 06510, USA

Naomi Sager

Courant Institute of Mathematical
Sciences

New York University

New York, NY 10012, USA

Jorge Reina Schement

School of Communication, Information
and Library Studies

Rutgers University

4 Huntington Street

New Brunswick, NI 08903, USA

William M. Shaw, Jr.

Schoo! of Information and Library Science

University of North Carolina

at Chapel Hill
CB #3360, 100 Manning Hall
Chapel Hill, NC 27599-3360, USA

Karen Sparck Jones
University of Cambridge
Computer Laboratory
MNew Musems Site
Pembroke Street
Cambridge CB2 3QG, United Kingdom
Jean M. Tague
School of Library and
Information Science
University of Western Ontario
London, Ontario N6G 1H1, Canada

Miroslav Tudjman

University of Zagreb,
Faculty of Philosophy

Department of Information

Dj. Salaja 3

41000 Zagreb, Croatia

Production Editor: Lauren Levey, E-mail: L.LEVEY@ELSEVIER.COM

Editorial Office: School of Communication, Information and Library Studies, Rutgers University, 4 Huntington Street, New
Brunswick, NJ 08903, U.S.A.

Publishing, Subscription, and Advertising Offices: Elsevier Science Inc., 660 White Plains Road, Tarrytown, NY 10591-5153,
U.S.A., E-mail Address: ESUK.USA@ELSEVIER.COM; and Elsevier Science Ltd, The Boulevard, Langford Lane, Kidling-
ton, Oxford, OX5 1GB, England.

Published Bimonthly. Annual Institutional Subscription Rates (1995): North, Central and South America, US$559.00, Rest
of World £375.00. Associated Personal Subscription Rates are available on request for those whose institutions are library
subscribers. Sterling prices exclude VAT. Non-VAT registered customers in the European Community will be charged the ap-
propriate VAT in addition to the price listed. Prices include postage and insurance and are subject to change without notice,

000005 Unified Patents, Ex. 1004

INFORMATION
PROGESSING
&

MANAGEMENT

An International Journal

Editor-in-Chief: Tefko Saracevic
Rutgers University

SPECIAL ISSUE:
DATA COMPRESSION

Guest Editors
James Storer and Abraham Bookstein

Pergamon

000006 Unified Patents, Ex. 1004

P e — |

INFORMATION
PROCESSING
&

MANAGEMENT

THE UNIVERSITY F
OF MICHIGAN -

JUN 28 1995

0306-4573(1994)30:6;1-T

Information Processing & Management, Vol. 30, No. 6, pp. 777-790, 1994
@ Pergamon Copyright © 1994 Elsevier Science Lid

Printed in Great Britain. All rights reserved
0306-4573/94 $6.00 + .00

0306-4573(94)00023-9

DESIGN AND ANALYSIS OF FAST TEXT COMPRESSION
BASED ON QUASI-ARITHMETIC CODING!

PauL G. Howarp?
Department of Computer Science, Brown University, Providence, R.1. 02912-1910

and

JEFFREY SCOTT VITTER®
Department of Computer Science, Duke University, Durham, N.C. 27706-0129

Abstract—We give a detailed algorithm for fast iext compression. Our algorithm, related
to the PPM method, simplifies the modeling phase by eliminating the escape mechanism
and speeds up coding by using a combination of guasi-arithmetic coding and Rice cod-
ing. We provide details of the use of quasi-arithmetic code tables, and analyze their com-
pression performance. Our Fast PPM method is shown experimentally to be almost twice
as fast as the PPMC method, while giving comparable compression.

1. INTRODUCTION

For compression of text files, the best compression results from the use of high-order
models in conjunction with statistical coding techniques. The best compression reported
in the literature comes from the PPM (prediction by partial matching) method of Cleary
and Witten [3]; the most widely used implementation is Moffat’s PPMC. The PPM meth-
ods use adaptive context models with a fixed maximum order, and arithmetic coding for
the coder.

In this paper we show that we can obtain significantly faster compression with only
a small loss of compression efficiency by modifying both the modeling and coding aspects
of PPM. The important idea is to concentrate computer resources where they are needed
for good compression, while using simplifying approximations where they cause only slight
degradation of compression performance.

On the modeling side, we eliminate the explicit use of escape symbols, we use approx-
imate probability estimation, and we simplify the repeated-symbol-exclusion mechanism.
For the coder, we replace the time-consuming arithmetic coding step with various combi-
nations of quasi-arithmetic coding and simple prefix codes in the Rice family. Quasi-
arithmetic coding, introduced and explained in [6], is a variation of arithmetic coding [11]
that uses lookup tables after performing all the arithmetic ahead of time. The computa-
tions are done to low precision to keep the table sizes manageable.

In Section 2 we briefly describe the PPM method and our speed-oriented enhance-
ments. In Section 3 we describe our implementation, including a detailed example show-
ing both encoding and decoding using quasi-arithmetic coding. In Section 4 we analyze
quasi-arithmetic coding, showing that using it instead of full-precision arithmetic coding
causes only a small loss of compression efficiency. In Section 5 we show experimentally
that our methods run nearly twice as fast as PPMC, with comparable compression.

1A shorter version of this paper appears in the proceedings of the IEEE Computer Society/NASA/CESDIS
Data Compression Conference, Snowbird, Utah, March 30-April 1, 1993, 98-107.

2Support was provided in part by NASA Graduate Student Researchers Program grant NGT-50420, by a
Universities Space Research Association/CESDIS associate membership, and by National Science Foundation
grant IR1-9116451. The author is currently at AT&T Bell Laboratories, Holmdel, NJ 07733-3030.

3Work was performed while the author was at Brown University. Support was provided in part by a
National Science Foundation Presidential Young Investigator Award with matching funds from IBM and by Air
Force Office of Scientific Research grant number F49620-92-J-0515. Additional support was provided by a Uni-
versities Space Research Association/CESDIS associate membership.

777

000008 Unified Patents, Ex. 1004

778 P.G. Howarp and J.S. VITTER
2. PREDICTION BY PARTIAL MATCHING

The Cleary-Witten PPM method

The PPM idea is to maintain contexts of different lengths up to a fixed maxim
order 0. To encode a new symbol, we check whether the current order-o context
occurred, and if so, whether the new symbol has occurred in that context. If it has, we u
arithmetic coding to encode the symbol based on the current symbol counts in the context
Otherwise, we encode a special escape symbol (whose probability must be estimated),
repeat the process with progressively shorter contexts until we succeed in encoding the sym
bol. (In the shorter contexts we may exclude from consideration symbols that have already
been rejected in longer contexts.) If a symbol has never occurred in any context, we esca
to a special context containing the entire alphabet (including a special end-of-file symbol,
but possibly excluding symbols already rejected), thus ensuring that every symbol can be
encoded. Table 1(a) illustrates the coding of one symbol using the PPM method.

Table 1. Example of PPM operation, maximum coding order o = 3. (a) Standard PPM.
Suppose we are encoding the short message “instheabeginning” (= representing the space
character), and that we have coded all but the final ‘g’. The current order 3 context, ‘nin’,
has never occurred, so we try order 2. Neither of the symbols that have occurred in the
current order-2 context are the one we want, so we explicitly escape to order 1. At order
1 we can exclude ‘e’ and ‘n’ since we already checked them at order 2; ‘i’ is not the letter
we want, so we escape to order 0, the empty context. At order 0 we exclude ‘n’, V',
and ‘o’, and check the others until we come to ‘g’. This is the letter we want, so we
code it and stop. If the symbol had not yet occurred in the message, we would
have escaped to order “—1" which includes the entire alphabet. In this example
contexts of all orders have been created or updated after coding each symbol.

{b) Concatenated list in Fast PPM at the same point in the coding. It results
from combining the lists of various orders and eliminating duplicate symbols.

The new-symbol and end-of-file pseudo-symbots have been added to the end
of the list. We code ‘g’ by indicating 7 NOT-FOUNDs and one FOUND.

(a)
Order Context Symbol Count Action
3 nin — — automatic escape
2 in . 1 NOT FOUND
n 1 NOT FOUND, escape
1 n » 1 exclude
n 1 exclude
i 1 NOT FOUND, escape
0 - n 4 exclude
i 3 exclude
- 2 exclude
e 2 NOT FOUND
t 1 NOT FOUND
h 1 NOT FOUND
b i NOT FOUND
g 1 FOUND
-1 Full alphabet not needed.
(b)
Symbol
0 a
1 n
2 i
3 e
4 t
5 h
6 b
7 g
8 new-symbol
9 end-of-file

000009 Unified Patents, Ex. 1004

Fast text compression based on quasi-arithmetic coding 779

The symbols are coded using 2 multi-symbol arithmetic coder. The probabilities passed
to the coder are based on symbol frequency counts, periodically scaled down to exploit
locality of reference. At least seven different methods have been used to estimate the escape
probability [1,3,6,8,10]; Moffat’s PPMC {8] is the most widely used, although our PPMD
method [6] consistently gives about 1% better compression on text files.

Fast PPM

We observe that the use of arithmetic coding guarantees good compression, but runs
slowly; the multi-symbol version used in PPMC requires two multiplications and two divi-
sions for each symbol coded, including escapes. We also note that often the PPM method
predicts very well. When we compress text files using a maximum order of 3 or more, we
find that the symbol that actually occurs is the most frequent symbol in the longest avail-
able context more than half the time, as seen in Table 2. This implies that the escape mech-
anism is not needed very often. (This is one reason for the observations by Cleary, Witten,
and Bell that the choice of escape probability makes little difference in the amount of com-
pression obtained.) Finally, we recall that arithmetic coding significantly outperforms pre-
fix codes like Huffman coding only when the symbol probabilities are highly skewed.

In the methods presented here, we eliminate the escape mechanism altogether. First
we concatenate the symbol lists of the current contexts of various orders, beginning with
the longest, as shown in Table 1(b). (Of course, the concatenation is only conceptual. In
practice, we simply search through the context’s lists, moving to the next list when one is
exhausted and stopping when we find the current symbol.) To avoid wasting code space,
we exclude all but the first occurrence of repeated symbols, using the fast exclusion mech-
anism described in Section 3.

We must identify the current symbol’s position within the concatenated list. We choose
one of a number of related methods, our choice depending on the speed and compression
required. The idea is to use binary quasi-arithmetic coding to encode NOT-FOUND/FOUND
decisions for the symbols with highest probability, then if necessary to use a simple pre-
fix code (in particular, a Rice code) to encode the symbol’s position in the remainder of
the list. For maximum speed, we can eliminate the quasi-arithmetic coding step altogether,
while for maximum compression we can eliminate the prefix code, using only a series of
binary decisions to identify each symbol. Using quasi-arithmetic coding for just the first
symbol in the longest context is a good practical choice, as is using quasi-arithmetic cod-

Table 2. Probability of finding next symbol in one trial. We show the percentage of symbols
found as the most probable symbol in the first usable context. The rows represent the ten
text files of the Calgary corpus. The columns represent different maximum model
orders. The compression program is a version of Fast PPM in which the symbol
lists within each context are maintained in approximate frequency count
order. When a symbol occurs, its count is compared with that of its
predecessor in the list; if the current symbol’s count is greater than
or equal to that of its predecessor, the two symbols are transposed
in the list, For models of maximum order 3, 4, or 5, we
find the current symbol in the first position of the
longest context more than half the time.

Maximum order

File 1 2 3 4 S

bib 30.3 47.0 58.7 62.6 63.5
bookl 26.9 394 48.8 53.2 542
book2 24.5 39.7 52.9 59.4 61.2
news 22,6 379 50.4 35.4 56.4
paperl 25.2 42.1 52.6 55.6 56.0
paper2 26.5 41.3 51.4 54.8 55.3
Pproge 21.9 45.9 54.9 57.0 57.4
progl 31.0 49.3 60.4 64.0 65.3
progp 38.0 56.4 65.8 67.7 68.2
trans 33.6 52.9 65.9 69.7 70.7

000010 Unified Patents, Ex. 1004

780 P.G. Howarp and J.S. VITTER

ing until the FOUND probability falls below a specified threshold. Lelewer and Hirschbe
[5) also use the idea of coding a symbol’s position within a PPM context list, '

Quasi-arithmetic coding :

In arithmetic coding, we subdivide the real interval [0,1), the lengths of the syl bdi
sions being proportional to the probabilities of the events that can occur, then select
subinterval corresponding to the event that actually occurs. We recursively repeat the sub
division and selection process for all input symbols. At the end of coding, we outp
enough bits to distinguish the final interval from all other possible final intervals, In p
tice, we use integer arithmetic and subintervals of an integer interval [0, N). We output bit
as soon as we know them and expand the interval, allowing us to limit the coding dela
and to use finite precision arithmetic. Witten, Neal, and Cleary [11) present a very clea
implementation of arithmetic coding; they use a large N for the interval, namely N -

metic ahead of time and to store the results in lookup tables Since the number of cad ;;,
states is 3N2%/16, if we choose a small enough value for N, the number of coder states wil
be small enough to permit keeping all the lookup tables in memory. Table 3 is the entir
coding table for N = 8; in practice somewhat larger values of N give slightly better res

Rice codes

ing a number of decisions at once, however, we can speed up the coder. Rice codes [9]
eminently suitable for encoding a number of NOT-FOUND decisions followed by a single
FOUND decision. .

Each Rice code has a non-negative integer parameter k. We encode a non-negative inte-
ger n by outputting | 7/2*] in unary, then outputting # mod 2* in binary. In practice, we
divide the binary representation of » into high- and low-order parts, the low-order part con-
sisting of k bits; then we output the high-order part as a unary number, and the low-order
part directly as a binary number. For example, to encode n = 5 with the Rice code whose
parameter k = 2, we divide 5,5 = 101, into 1-01, output 10 (the unary representation of
1, the high order part), and then output 01 (the low-order & bits). Several Rice codes are
illustrated in Table 4. |

Strictly speaking, Rice codes apply to exponential distributions, but in fact they will
give good compression for almost any decaying probability distribution. If we keep our
symbol lists ordered by frequency count within each context, the concatenated list used to
find a symbol will be in decreasing probability order, except possibly for bumps where
the context lists are joined, so we can use Rice coding to encode symbol positions within
the concatenated lists.

To choose the parameter value k, in each context we maintain a cumulative count for
each reasonable parameter value of the number of bits that would have been required if
we had always used that parameter value; we then choose the parameter value with the
smallest count. This parameter estimation method is presented in detail in [7], where we
prove that under reasonable assumptions it produces a code length only O(+/¢) bits in
excess of that of the optimal Rice code for a context that occurs ¢ times.

Rice codes are a subset of Golomb codes {4]; in Golomb codes we encode n by out-
putting [#/m] in unary and # mod m in binary (adjusted to avoid wasting code space if
m is not a power of 2). Since the Rice codes are just the Golomb codes where m is a power
of 2, Rice codes are somewhat simpler. Since there are fewer reasonable Rice codes, the
parameter estimation technique is faster. We could use Golomb codes in the Fast PPM
method; in practice, Rice codes run slightly faster and give about 1% worse compression.

3. IMPLEMENTATION

In this section we describe an implementation of the Fast PPM text compression sys-
tem. We explain the differences in modeling between our method and the PPMC method.

000011 Unified Patents, Ex. 1004

Fast text compression based on quasi-arithmetic coding 781

Table 3. Complete quasi-arithmetic coding code table for N = 8, based on the arithmetic
coding method described by Witten, Neal, and Cleary. The initial state is [0,8). An f
in an Output column indicates that the bits-ro-follow count should be incremented.
Within a given state we choose the row based on the probability of a ¢ input;
the probability ranges are calculated according to eqn (1).

0 input 1 input
Start Probability Next Next
state of ¢ input Output state Output state
[0,8) 0.000-0.182 000 [0,8) - [1,8)
0.182-0.310 00 {0,8) - 2.8)
0.310-0.437 0 [0,6) - [3,8)
0.437-0.563 0 [0,8) 1 [0,8)
0.563-0.690 - [0,5) 1 [2,8)
0.690-0.818 = [0,6) 11 [0,8)
0.818-1.000 - [0,7) 111 [0,8)
[0,7) 0.000-0.208 000 [0.8) = (1,7)
0.208-0.355 00 [0,8) - 2.7
0.355-0.500 (1] [0,6) - (3,
0.500-0.645 0 [0,8) 1 [0,6)
0.645-0.792 — [0,5) 1f [0,8)
0,792-1,000 - [0,6) 110 0,8
[0,6) 0.000-0.244 000 [0,8) - {1,6)
0.244-0.415 00 [0,8) f [0,8)
0.415-0.585 0 [0,6) f [2,8)
0.585-0.756 0 [0,8) 10 [0,8)
0.756-1.000 - [0.5) 101 [0,8)
[o,5) 0.000-0.293 000 [0,8) - [1,5)
0.293-0.500 00 [0,8) f [0,6)
0.500-0.707 0 [0,6) it [0,8)
0.707-1.000 (1} [0,8) 100 [0,8)
(1,8 0.000-0.208 001 [0,8) - 2,8)
0.208-0.355 of [0.8) o [3,8)
0.355-0.500 0 2,8) 1 [0.8)
0.500-0.645 - [1,5) 1 2,8)
0.645-0.792 — [1,6) 11 [0,8)
0.792-1.000 = (1,7 111 [0,8)
[1,7 0.000-0.244 001 [0,8) - 2,7
0.244-0.415 of [0,8) - [3,D
0.415-0.585 0 (2,8) 1 [0,6)
0.585-0.756 - (1,5) 1f [0,8)
0.756-1.000 - [1,6) 110 [0,8)
1,6) 0.000-0.293 001 [0,8) f [0,8)
0.293-0.500 ot [0,8) f 2,8)
0.500-0.707 0 [2,8) 10 [0.8)
0.707-1.000 - [1,5) 101 [0,8)
[1,5) 0.000-0.369 001 [0,8) f [0,6)
0.369-0.631 of [0,8) ff {0,8)
0.631-1.000 0 [2,8) 100 [0.8)
[2,8) 0.000-0.244 010 [0,8) - [3.8)
0.244-0.415 01 [0,8) 1 [0,8)
0.415-0.585 f [0,6) 1 [2,8)
0.585-0.756 f [0,8) 11 [0,8)
0.756-1.000 - [2,7) 111 [0,8)
12,7 0.000-0.293 010 [0,8) - 3,9
0.293-0.500 01 [0,8) 1 [0,6)
0.500-0.707 f [0,6) 1f [0,8)
0.707-1.000 f [0,8) 110 [0,8)
3.8) 0.000-0.293 011 [0,8) 1 [0,8)
0.293-0.500 ff [0.8) 1 [2,8)
0.500-0.707 f 2,8) 11 [0,8)
0.707-1.000 - 3,7 111 [0,8)
3.9 . 0.000-0.36% 011 [0,8) 1 [0,6)
0.369-0.631 {4 [0,8) 1t [0,8)
0.631-1.000 f 2,8) 110 [0,8)

000012 Unified Patents, Ex. 1004
e

782 P.G. Howarp and J.S. ViT1ER

Table 4. Examples of the beginnings of some Rice codes for
several parameter values. In this table a midpoint ()
separates the high-order (unary) part from the
low-order (binary) part of each code.

n k=0 k=1 k=2 k=3
0 0- 0.0 0-00 0-000
1 10- 0-1 0-01 0-001
2 110- 10-0 0-10 0-010
3 1110- 101 0-11 0-011
4 11110- 110-0 10-00 0-100
5 111110- 110-1 10-01 0-101
6 1111110- 1110-0 10-10 0-110
7 11111110~ 11101 10-11 0-111
8 111111110- 11110-0 110-00 10-000
9

1111111110 11110-1 110-01 10-001

Then we discus the coding phase, particularly quasi-arithmetic coding with precomput;
tables. We give an extended example that includes complete coding tables for a small co de

Data structure for high order models ‘

We use a multiply-linked list structure similar to the vine pointers of Bell et al. [
the structure is illustrated in Fig. 1. In the versions of the Fast PPM system that use Rig
coding, we keep the context lists sorted according to frequency count, while in the ve: si
that uses only quasi-arithmetic coding we do not reorganize the lists at all.

We delay creating new nodes to save time and control the number of nodes prese
Every symbol instance appears simuitaneously in contexts of all orders from 0 to o, bu
we do not create nodes for all possible orders. Instead, we create at most one new ng
for any symbol instance, just one order higher than the one at which the symbol was foun
(If it was found at the highest order, we do not create any new nodes.) This procedure
somewhat counter to a recommendation of Bell ef al. [2, pages 149-150], but compr

YN i
1ne r:—)___ mnn n :
. T sss _rJ{—’on
in - : ne . nn oLk ni i
GEEER. 1 o=
3(¢)° 2 1]y 1 @ 1
g J
Null contest [
= r—.-u ru-
s 9 il . n o 3T t 1 g
= i n — . — t g
.-j i 020
15{¢1 * 30 an 2l .10 573 Y 1] 1
L T 0 J

Fig. 1. Implementation of part of the multiply-linked list data structure for Fast PPM, maximum
order o = 3, after coding everything but the final ‘g’ in “inmthembeginning”. Each node except _n!
the highest order is both a node in the list for a certain order (middle link) and the head of a list
of the next greater order (upper link). Each node also points to the head of the list of the next smaller
order (lower link). For example, the node labeled ‘in’ is the first (and only) node in the ‘i’ context;
it is the head of the list for the ‘in’ context, on the top row; and it points to the head of the list for
the ‘n’ context. The numbers in the nodes are frequency counts. To code the last ‘g’, we would be-
gin at node ‘in’ and follow the links in the order indicated by the small boxed numbers.

000013 Unified Patents, Ex. 1

Fast text compression based on quasi-arithmetic coding 783

does not appear to suffer greatly. We also use a lazy update rule as in [2], updating sta-
tistics only for contexts actually searched. In our implementation we allow the model to
grow without bound, never deleting nodes or restarting the model. This is a reasonable
approach considering the increasing availability of large amounts of inexpensive memory.
Hirschberg and Lelewer [5] use a hashing approach to save space in PPM-like models.

Exclusion mechanism

The standard approach to exclusions is to maintain a bit map of alphabet symbols,
together with a list of currently excluded symbols to quickly reset the bit map after every
symbol. We can make the exclusion map unnecessary by using a time stamp array, with
one element for each alphabet symbol. The “time” is the position of the current symbol
within the file. When we reject a symbol in the concatenated list, we write the current time
in the symbol’s position in the time stamp array. If a symbol’s entry in the array is the same
as the current time, then we must have previously encountered it in the concatenated list
for the current symbol, so we can exclude it. We must clear the time stamp array only when
the symbol position counter overflows, typically after about 22 = 4 x 10° bytes. When we
are using quasi-arithmetic coding for all coding, this mechanism introduces a small inac-
curacy in the FOUND/NOT-FOUND probabilities; The NOT-FOUND probabilities will be higher
than they should be, since they include symbols further down the list that should be
excluded. Fortunately, the effect is minor.

Coding new symbols and end-of-file

At any point in the coding, the concatenated, duplicate-free context list contains exactly
k symbols, where X is the number of distinct alphabet symbols seen so far in the file. To
deal with symbols not yet seen in any context, we add a pseudo-symbol whose meaning is
“new symbol.” When a new symbol occurs, we send the new-symbol pseudo-symbol, fol-
lowed by the uncoded bits of the new symbol. (Using arithmetic coding to identify new sym-
bols requires considerably more work and saves only klog, n — (log, n! — loga(n — k) !)
bits for a file with k distinct characters drawn from an n-character alphabet. For n = 256
and k = 100, this is about 4 bytes.) We also append a second pseudo-symbol to the con-
catenated list; its meaning is “end-of-file.” Hence, a sequence of k + 1 NOT-FOUNDs (how-
ever we choose to code them) means that the file is complete.

Coding

We now explain the coding mechanism, and illustrate it with complete tables and a
short example using a small coder. In practice we would use larger tables, but their size
remains manageable; the construction and use of the tables follows exactly the same prin-
ciples. In the example we use N = 8 (i.e., the full interval is {0,8)). Using N = 32 improves
compression by about 3.5%, and using N = 128 gives only another 0.2% improvement.

Probability estimation for quasi-arithmetic coding

We use a modification of the scaled-count technique to estimate the FOUND/NOT-FOUND
probabilities used by the quasi-arithmetic coder. In effect we use small counts for the FOUND
and NOT-FOUND events at each decision point (i.e., we keep a count pair F : NF). Only a
few bits are used for each count. When either count overflows, we scale both counts down-
ward; the new scaled count pair is the closest to the (unavailable) new count pair, close-
ness being measured by average excess code length.

In the implementation we denote each possible pair of counts by an index number,
and we precompute all the transitions to new count states, including those requiring scal-
ing. In Table S we show the correspondence among counts, probabilities, and probability
index numbers for a small example coder, as well as all the transitions. For example,* O
index P = 14 corresponds to F : NF = 3 : 1 and @) we find that P = 11 is the index of the
new count state after a NOT-FOUND event, where 3 index P = 11 corresponds to F : NF =
3 : 2. In the example we allow counts to reach 4; in practice we allow somewhat larger

“The small circled numbers key the text to the tables.
IPM 30:6-E

000014 Unified Patents, Ex. 1004
B

784 P.G. HowaArp and J.S. VITTER
Table 5. Probability arrays for quasi-arithmetic coding
Counts Probability Transitions
Index F NF of F After F After NF
P=0 1 4 0.200 P=1 P=0
P=1 1 3 0.250 P=4 P=0
P=2 | 2 0.333 P=7 P=1
P=3 2 4 0.333 P=35 P=1
P=4 2 3 0.400 P=8 P=3
P=35 3 4 0.429 P=9 P=4
P=6 1 1 0.500 P=13 P=2
P=7 2 2 0.500 P=11 P=4
P=8 3 3 0.500 P=10 P=5
P=9 4 4 0.500 P=10 P=5
P=10 4 3 0.571 P=11 P=9
@rP=1 3 2 0.600 P=12 P=38
P=12 4 2 0.667 P=14 P=10
P=13 2 1 0.667 P=14 P=7
DP=14 3 1 0.750 P=15 @pP=11
P=15 4 1 0.800 P=15 P=12

counts (up to 10 or so), and allow some of the unbalanced counts to be larger than the bal
anced ones. It is quite feasible to store each probability index number in one byte. On
the transition columns are needed by the coder.

Use of quasi-arithmetic coding

We use quasi-arithmetic coding to encode binary decisions, with probabilities (indi
cated by probability index numbers) supplied by the model. In the implementation w
include internal states corresponding to expandable subintervals. The process consists
selecting a new state based on the current event and event probabilities, possibly followed
by the output of some bits and a second transition to an unexpandable state. This mech
anism makes very efficient use of space in the code tables, allowing us to use a larger full
interval and, hence, to obtain more precise coding and more compression.

We use a pointer into a code table to indicate the state of the coder, corresponding
to the current interval in a true reduced-precision arithmetic coder. Table 6 shows a com-

Table 6. Complete implementation of the quasi-arithmetic coding table for N = 8. Terminal states
are the states that appear in Table 3; nonterminal states are internal states that can be expanded
with output. The L and R entires are used only by the encoder, the T and N entires only
by the decoder, and all other entires by both. This table and the companion delta array
(Table 7) and right-branch array (Table 8) are considerably more compact and faster
in operation than the conceptual N = 8§ quasi-arithmetic coder shown in Table 3.

Terminal states Nonterminal states More nonterminal states
W LH. T L RFN Q L R F .N-uho
@0 W Hy 8 Qu 0 - 0 1| Qg Qs 1 - 0 1 Oos
QCnn Wi H,; 7 Qun 0 — 0 1 Qg Qs 1 - 0 1 Cos
Qs Ws Hg 6 Qnn 0 0 0 2 Qg e 1 0 0 2 Qos
gos :;”s Zs : go. g 00 g 3 Qos g., | 00 g 3 gu.

18 7 8 14 - 1 QO g 1 — 1 o8
@®Qr Wie® H, 7@ Q3 0 - 1 2 Qg @0y 1 -®@ 10 3@ Q0u®
Qe Ws Hg 6 QG2 0 01 0 3 Qg Qs 1 01 o© 3 Qos

®Qs W, Hy) Qs 1 1 0 2 QOos
Qs Wy Hg 8 Q6 — — 1 1 Qun Qq 1 10 0 3 Qos
On W H, 7 Qs — = 1 1 Qs Qn 1 1 o 3 Qos
Qu 0 1 0 2 Qn
O 0 10 0 3 Qg
Qi W Hy 8 Qs — — 1 1 O
Qs W, H,; 7 Qs — — 2 2 Qn
Ow 0 11 0 3 Qg
000015 Unified Patents, Ex. 1004

[

Fast text compression based on quasi-arithmetic coding T85
Table 7. Delta array. The five vectors, one for each possible

terminal state width, are indexed by probability index
numbers to find A, the size of the right subinterval.

Ws® W

W,

=
=

L L 1 A T /T |

- e D OO NN W= O

B
TTTTTVTTVVT TV VT
W bW -0

@

——— e B BB N BRI BRI NI N W W W W
- NN WWWYW RN
_- DRI WW e i bd et
=N NWWWWWLARLLULLO
NNWWWwWwaLELELAULMUMUNULAN

plete code table for N = 8 (full interval [0,8)); the initial state is Qpg, marked @) in the
table. In practice we use a somewhat larger value of N, say 32. We use left subintervals
for FOUND decisions and right subintervals for NOT-FOUND decisions.

We illustrate the use of the coder with an example. (4) Suppose we are in state Q; =
[1,7), the F : NF counts are 3 : 1, indicated by index P = 14 (1}, and the next decision is
NOT-FOUND. () The W entry for state Q,; is Wj since the width of the interval is 6; ® W
is a pointer to one of the five vectors in the delta array (Table 7), the interface between the
probability estimator and the coder. (In Section 4 we show how to find the cutoff proba-
bilities between successive values of A, which can then be used with Table 5 to compute
the delta array.) () We use P = 14 to index into the W vector, and (® final A = 2; this
is the size of the right subinterval of [1,7). (9} If the decision were FOUND, we would move
down A = 2 rows in the code table to Q,s, a “terminal state” (one for which no output or
interval expansion is possible). But, in fact, the decision is NOT-FOUND, so (10 we use the
H entry for state Q,;, namely, H,, which indicates that 7 is the high end of the interval
[1,7). G H, is a pointer to one of the four vectors in the right-branch array (Table 8). @
We use A = 2 as an index into the H- vector, and (i3 find the next state, Qsy. 9 We go
to state Qs; in the code table. It is a nonterminal state, so we perform the output indicated
by the L, R, F, and Q entries, which were computed by applying the Witten-Neal-Cleary
algorithm to the interval [5,7).

To do the output, we use a two-byte buffer and two counts (Table 9). We insert new
bits into the upper end of the low-order byte, then shift the useful bits into the high-order
byte; when the high-order byte is full of useful bits, we output them. Continuing the exam-

Table 8. Right branch array. The four vectors, one for
each possible value of the high end of a terminal state,
are indexed by A, the size of the right subinterval,
to find a pointer to the next state.

Hs Hs H,© Hyg

A=1 Qus Oss Q67 O
@a=2 Oss O Qs; @ Qes
A=3 Qs Qi Qa7 Oss
A=4 Qis O Oy QOus
A=S5 Qis O Qss
A=6 Qi O
A=7 Qs

000016 Unified Patents, Ex. 1004

R =

786 P.G. HowaRrp and J.S. VITTER

Table 9. Encoding example. Useful bits not yet
output shown in bold face type

Bits Pending
Encoding buffer left count
@ 10010110 00000000 2 2
@ 10010110 10000000 2 3
01011010 00000000 8 1
10110100 00000000 7 0
@ 10110100 00000000 T 1

ple, @9 suppose that the output buffer contains 6 useful bits, so there is room for 2 more,
and that the pending count is 2, meaning that the next output bit will be followed by two
opposite bits, as in the bits-to-follow mechanism of Witten ef al. [11)° @ The leading out-
put bit L is 1, so @ we put 10000000 into the low byte of the buffer (if L had been 0,
we would have put 01111111 into the low byte of the buffer). We then shift left by three
bits altogether, one for the leading bit and two for the pending bits. Since there was only
room for two bits, @8 we shift left by two bits, output 01011010, indicate that space
remains for 8 bits, and @9 shift left by one more bit. @) The R entry shows that there are
no remaining bits. (If there had been, we would have put them into the upper end of the
low-order byte of the buffer, then shifted them into the high-order byte.) @) The F entry
shows that the pending count should be increased by 1. The resulting buffer state is shown
at @. Finally, @ the Q entry shows that the next coder state is Qqg, indicated at €.

Decoding is more mysterious but slightly easier than encoding. We illustrate it by show-
ing how to decode the decision used in the encoding example. Suppose that the encoded
file contains the bytes ...01011010 01000101 01001000. . ., the first of these bytes
being the byte written in the encoding example. Again we maintain a two-byte buffer,
shown in Table 10; @5 as we begin decoding this decision, all eight bits of the first byte
have been consumed, the third byte has been read, and the first bit of the next byte has
been changed from 1 to 0, to account for the pending bits left over from the previous
decision. As in the encoder, 3) we are in state Q,7, and we find A = 2, as in steps &
through (®). @9 We take the T entry for the current state (T = 7, indicating that 7 is the
top of the current state) and subtract A = 2 to obtain the cutoff value C = 5 between the
left and right decisions. We shift this value to left-justify it in a byte; since in this coder
N = 8, three bits of C are significant, so we shift C leftward by 5 bits, giving 10100000.
If the actual value of the high-order byte in the buffer had been less than C, we would have
a left (FOUND) branch, but in this case @9 the high-order byte 11000101 is greater than
(or equal to) the cutoff value, so we have a right (NOT-FOUND) branch. As in steps
through @), we find the next state to be nonterminal state Qs;, indicated at (9. @ From
the N entry for state Qs;, we find that 2 bits are to be consumed (corresponding to the
output of the leading 1 bit and the incrementing of the pending count by 1). @ To con-
sume the two bits, we shift the entire buffer leftward by two bits. (We would have paused
to read another byte had the number of useful bits fallen below 9.) Because @) the F entry
for state Qs is nonzero, @9 we change the value of the high-order bit of the high-order
byte, in this case from 0 to 1. Finally, @ we use the Q entry to find the next state, Qg,
indicated at @d.

Use of Rice coding

The use of Rice codes to encode the symbol positions is straight-forward. The only
complication is the difficulty of interleaving the quasi-arithmetic code output and the pre-
fix code output. The bits (or bytes) must be output by the encoder in the order that the

SBriefly, when the endpoints of the current interval in arithmetic coding are both in the range [},2) but on
opposite sides of 3, we know that the next two output bits are 01 or 10, We do not known what the next bit is,
but whatever it is, the following bit must be the opposite. So we keep track of this fact, and expand the middle
half of the interval. The process cn be repeated any number of times.

000017 Unified Patents, Ex. 1004

Fast text compression based on quasi-arithmetic coding 787

Table 10. Decoding example. Useful bits not yet
processed shown in bold face type

Bits

Decoding buffer left
@ 11000101 01001000 16
g 00010101 00100000 14
33 19018101 20108200 14

decoder will read them. The resulting buffering problem can be solved, but here we side-
step the problem by simply using two separate output files.

4. ANALYSIS OF QUASI-ARITHMETIC CODING

We now show that using quasi-arithmetic coding causes an insignificant increase in the
code length compared with pure arithmetic coding. We analyze several cases.

First we assume that we know the success probability p of each event, and we show
both how to minimize the average excess code length and how small the excess is. In
arithmetic coding we divide the current interval (whose width is #) into subintervals of
length L and R, the left subinterval being associated with the success event; this gives an
effective coding probability ¢ = L/W, since the resulting code length is —log; g for the left
branch and —log,{1 - g) for the right. When we encode a binary event with probability
D using an effective coding probability g, the average code length /(p, @) is given by

I(p,q) = —plog,q — (1 — p)log,(1 — g).

If we use exact arithmetic coding, we can subdivide the interval into lengths pW and
(1 — p)W, thus making ¢ = p, and giving an average code length equal to the entropy,
—plog, p — (1 — p)log,(1 — p); this is optimal.

Consider two probabilities p, and p, that are adjacent based on the subdivision
of an interval of width W; in other words, p, = (W — A))/W, p, = (W — A;)/W, and
A, = A, — 1. For any probability p between p, and p,, either p, or p, should be chosen,
whichever gives a shorter average code length. There is a cutoff probability p* for which
P, and p, give the same average code length. We can compute p* by solving the equation

I(p*, ;) = I(p", p2), giving

logél-
* l Az
P = =)
log"—’3 1 iz ALY
W—4, A
Trer F4 1 A2
— P
log
1-p;

Clearly we can construct the delta table by computing cutoff probabilities for every pair
of adjacent coding probabilities and every possible interval size, and then applying them
to the count state probabilities. As an example, we compute the value of A, the size of
the right subinterval, to be used for F : NF=3 : 1 (i.e., for p = 3) and W = 6. Clearly
A=1or2,s0p,=%(A, =2)and p, = $(A, = 1). We compute p* = log2/log(3) = 0.756,
and choose A = A, = 2, since 0.667 < 0.750 < 0.756 < 0.833, i.e., p; < p < p* < p,. This
is the entry at (& in Table 7.

Probability p* is the probability between p, and p, with the worst average quasi-
arithmetic coding performance, both in excess bits per decision and in excess bits relative
to optimal compression. (This can be shown by monotonicity arguments.) For a quasi-
arithmetic coder with full interval [0, N), the shortest terminal state intervals have size

000018 Unified Patents, Ex. 1004

788 P.G. HowaArD and J.S. VITTER

W = N/4 + 2; the worst average error occurs for the smallest W and the most extreme prol
abilities. We bound the absolute and relative average excess code length in the followi
theorem. (This analysis excludes probabilities less then 1/W and greater than (W — /W
for which the relative excess code length becomes infinite. It is not unusual for probabili
ties to be very large or small in image compression applications, but in text compressio
extreme probabilities occur infrequently.) ‘

Touenbpoas T
i xsUREM 1.

If we construct a quasi-arithmetic coder based on full interval [0, N), and use correc,
probability estimates for probabilities between 1/N and (N — 1)/N, the number of bits pe
input symbol by which the average code length obtained by the quasi-arithmetic coder
exceeds that of an exact arithmetic coder is at most

i]o 2 l.,.o-l_ 5,__0‘497+0_1_
n2 B2 N N2 N NE)

and the fraction by which the average code length obtained by the quasi-arithmetic coder
exceeds that of an exact arithmetic coder is at most

o 2 1 +O(1) " 0.0861 3 (1)
€2 oin2 logs N (log N)? logs N (log NY? /~

If we let p = (p; + p>)/2 and note that the maximum value of p in our analysis is
1 — 1/W, we can expand eqn (1) asymptotically in W to express p* as

|

6W2 -;T—'-—)- + O(1/W). 2)

p=p+

The O(-) term is 1/ W because of the effect of the maximum possible value of p. The
constant in the O(1/W) term is very small, less than 0.002. We can use egn (2) to approx-
imate the cutoff probabilities using rational arithmetic; the compression [oss introduced
by using the approximation p* instead of the exact value of p* is completely negligible,
never more than 0.06%. In the example above with p, = % and p, = £, we find that p* =
log 2/10g(3) = 0.75647 and p* = 245/324 = 0.75617.

Next we consider a more general case, in which we compare quasi-arithmetic coding
with arithmetic coding for a single worst-case event. We assume that both coders use the
same estimated probability, but that the estimate need not be right. In this case we find
the cutoff probability between p, and p, for 1 < p, < p, by equating the excess code
length from using probability p, for the more probable event and the excess from using
probability p, for the less probable event, that is, by solving the equation —log, p, +
log, p* = —logy(1 — p3) + logy(1 — p*); this yields

1 _W—Al

-—p, W-1"
1+l__p3

h

pr=

The excess code length in this case is just log, (W7 (W — 1)) ~ 1/W In 2 regardless of the
value of A,. We note that the smallest value of W is N/4 + 2, and thus we bound the
worst-case excess code length in the following theorem.

' THEOREM II.
If we construct a quasi-arithmetic coder based on full interval [0,N), and use arbi-
trary probability estimates between 1/N and (N — 1)/N, the number of bits per input sym-

f 000019 Unified Patents, Ex. 1004

Fast text compression based on quasi-arithmetic coding 789

bol by which the code length obtained by the quasi-arithmetic coder exceeds that of an exact
arithmetic coder in the worst case is at most

N+8.=4 5.971
N+4 Nin2 N

log,

5. EXPERIMENTAL RESULTS

We compare the Fast PPM method with PPMC and with the Unix compress program;
the results appear in Table 11. We show results for two versions of Fast PPM: one that
uses quasi-arithmetic coding for all binary decisions (QA) and one that uses quasi-arithmetic
coding for one decision in each context, then uses Rice coding if necessary to encode the
symbol’s position in the remainder of the concatenated context lest (QA/Rice). For quasi-
arithmetic coding we use N = 32 and an order-3 coder; the time needed to precompute the
tables is not included, since the tables can be compiled into the coder. The PPMC imple-
mentation also uses exclusions and an order 3 model. The test data consists of the 10 text
files of the Calgary corpus. We see that Fast PPM outcompresses the compress program
on all text files. Fast PPM with quasi-arithmetic coding gives compression performance
comparable to that of PPMC, especially for larger files. We show timing results for encod-
ing on a Sun SPARCstation1 GX; decoding times are similar for the PPM methods. We
see that Fast PPM, even using quasi-arithmetic coding alone, is always faster than PPMC;
the version that uses some Rice coding is nearly twice as fast as PPMC.

6. CONCLUSION

We have identified several parts of the PPMC text compression method that can be
speeded up by the introduction of simplifying approximations. In the Fast PPM method
presented here, we speed up the modeling phase by eliminating the need for escape sym-
bols; since they occur infrequently anyway, this does not hurt compression much. We speed
up coding by using quasi-arithmetic coding instead of arithmetic coding when we need high-
precision predictions, and by using Rice codes to encode the context list positions of low-
probability symbols. Quasi-arithmetic coding gives enough precision for practical use as
a binary coder, and runs much faster than true arithmetic coding; Rice codes waste some
code space because of the limitations of their models, but the amount is small because we
apply them only to infrequently occurring symbols.

We have presented a detailed example of a quasi-arithmetic coder and its use, and anal-
ysis showing that the excess code length introduced is only O(1/N) (in both the average

Table 11. Compression and encoding throughout on the ten text files in the Calgary corpus.

Compressed size Encoding throughput
(bits per input character) (thousands of characters per second)
Fast PPM Fast PPM
File QA QA/Rice PPMC compress QA QA/Rice PPMC compress
bib 2.19 2.32 2.12 3.35 232 29.0 16.4 111.3
book1 2.51 2.58 2.:52 3.46 23.2 30.1 18.5 108.3
book2 2.29 2.41 2.28 3.28 23.5 306 18.1 111.1
news 2.78 2,94 2.77 3.86 16.9 23.5 12.6 99.2
paperl 2.62 2.83 2.48 3.77 17.8 24.7 13.6 106.3
paper2 2.51 2.67 2.46 3.52 21.1 26.5 152 102.7
proge 2.68 2.92 2.49 3.87 16.9 236 124 99.0
progl 1.99 2.16 1.87 3.03 24.8 31.7 18.4 119.4
progp 1.96 2.17 1.82 3.1 22.0 311 16.5 98.8
trans 1.88 2,09 1.75 3.27 23.7 32.1 18.0 117.1
000020 Unified Patents, Ex. 1004

M ———

790 P.G. HowarD and J.S. ViTTeR

and worst cases), and that the excess relative code length is only O(1/1og N). The analy-
sis is also useful in the construction of the code tables.

Finally, we have shown experimentally that Fast PPM gives compression comparable
to that of PPMC, with nearly twice the throughput.

REFERENCES

(11 R. B. Arps, G. G. Langdon, and J. J. Rissanen, Method for Adaptively Initializing a Source Model for Sym-
bol Encoding, IBM Technical Disclosure Bulletin 26 (May 1984), 6292-6294.

[2] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression, Prentice-Hall, Englewood Cliffs, NJ, 1990,

[3] J. G. Cleary and I. H. Witten, Data Compression Using Adaptive Coding and Partial String Matching, JEEE
Trans. Comm. COM-32 (Apr. 1984), 396-402.

[4] S. W. Golomb, Run-Length Encodings, IEEE Trans. Inform. Theory 1T-12 (July 1966), 399-401.

(5] D. S. Hirschberg and D. A. Lelewer, Context Modeling for Text Compression, in Jmage and Text Compres-
sion, J. A. Storer, ed., Kluwer Academic Publishers, Norwell, MA, 1992, 113-144,

[6] P. G. Howard and J. S. Vitter, Practical Implementations of Arithmetic Coding, in Image and Text Com-
pression, J. A. Storer, ed., Kluwer Academic Publishers, Norwell, MA, 1992, 85-112.

[7] P. G. Howard and J. S. Vitter, Fast and Efficient Lossless Image Compression, in Proc. Data Compres-
sion Conference, J. A. Storer and M. Cohn, eds., Snowbird, Utah, Mar. 30-Apr. 1, 1993, 351-360,

[8] A. M. Moffat, implementing the PPM Data Compression Scheme, IEEE Trans, Comm. COM-38 (Nov.
1990), 1917-1921.

9] R. F. Rice, Some Practical Universal Noiseless Coding Techniques, Jet Propulsion Laboratory, JPL Pub-
lication 79-22, Pasadena, California, Mar. 1979.

{10] 1. H. Witten and T. C. Bell, The Zero Frequency Problem: Estimating the Probabilities of Novel Events
in Adaptive Text Compression, JEEE Trans. Inform. Theory IT-37 (July 1991), 1085-1094.
{11] 1. H. Witten, R. M. Neal, and J. G. Cleary, Arithmetic Coding for Data Compression, Comm. ACM 30

(June 1987), 520-540.

000021 Unified Patents, Ex. 1004

