Laurence A. Greenberg (FL Bar)
Werner H. Stemer (FL Bar)
Ralph E. Locher (FL, IL, MO Bars)
Gregory L. Mayback (FL Bar)
Manfred Beck (US \& German PaL. Agent)
Mark P. Weichselbaum (TN Bar)
Markus Wolff (FL Bar)
Loren Donald Pearson (FL Bar)
Otto S. Kauder (Reg. Pat. Agent)
Denise A. Lettau (DC Bar)
Yonghong Chen (Chinese Pat Agent)
F. Donald Paris (NY, NJ, DC Bars)

Alfred K. Dassler (Reg. Pat. Agent)
Kyle H. Flindt (UT Bar)

Fax: (954) 925-1101
PATENTUSA ${ }^{(8)}$
www.patentusa.com patents@patentusa.com

Mailing Address:
Post Office Box 2480
Hollywood, FL 33022-2480

New York Satellite Office 153 E 57th St., Suite 15G

New York, NY 10022

Of Counsel:
Herbert L. Lerner (NY Bar)
"Express Mail" mailing label number: EL974067755US Date of Deposit December 4, 2003

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Docket No.: S\&ZFH030508

Date: December 4, 2003
Mail Stop Patent Application
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
Enclosed herewith are the necessary papers for filing the following application for Letters Patent:

Applicant : DETLEF MARPE ET AL.
Title : METHOD AND ARRANGEMENT FOR ARITHMETIC ENCODING AND DECODING BINARY STATES AND A CORRESPONDING COMPUTER PROGRAM AND A CORRESPONDING COMPUTER-READABLE STORAGE MEDIUM

4 sheets of drawings.
The payment in the amount of $\$ 928.00$ covering the filing fee.
PCT Cover Sheet WO 03/094355 A2

This application is being filed without a signed oath or declaration under the provisions of 37 CFR 1.53(f). Applicants await notification of the date by which the oath or declaration and the surcharge are due, pursuant to this rule.

The Patent and Trademark Office is hereby given authority to charge Deposit Account No. 12-1099 of Lerner and Greenberg, P.A. for any fees due or deficiencies of payments made for any purpose during the pendency of the above-identified application.

LAURENCE A REG. NO. 29,308 R ERG

Method and Arrangement for Arithmetic Encoding and Decoding Binary Stảtes and a Corresponding Computer Program and a Corresponding Computer-readable Storage Medium

Cross-Reference to Related Application:

This application is a continuation of copending International Application No. PCT/EP03/04654, filed May 2, 2003, which designated the United States and was not published in English.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to a method and an arrangement for arithmetically encoding and decoding binary states and to a corresponding computer program and a corresponding computer-readable storage medium which may in particular be used in digital data compression.
2. Description of the Related Art:

The present invention describes a new efficient method for binary arithmetic coding. There is a demand for binary arithmetic coding in most different application areas of digital data compression; here, in particular applications in the fields of digital image compression are of special interest. In numerous standards for image coding, like e.g. JPEG, JPEG-2000, JPEG-LS and JPIG, methods for a binary arithmetic coding were defined. Newer standardization activities make also the future use of such coding technologies obvious in the field of video coding (CABAC in H. $264 / A V C$) [1].

The advantages of arithmetic coding (AC) in contrast to the Huffman coding [2] which has up to now been used in practice, may basically be characterized by three features:

1. By using the arithmetic coding, by simple adaptation mechanisms a dynamic adaptation to the present source statistic may be obtained (adaptivity).
2. Arithmetic coding allows the allocation of a noninteger number of bits per symbol to be coded and is therefore suitable to achieve coding results which illustrate an approximation of the entropy as the theoretically given lower bound (entropy approximation) [3].
3. Using suitable context models statistical bindings between symbols for a further data reduction may be used with arithmetic coding (intersymbol redundancy) [4].

As a disadvantage of an application of the arithmetic coding, generally the increased calculation effort compared to Huffman coding is regarded.

The concept of the arithmetic coding goes back to the basic documentation for information theory by Shannon [5]. First conceptional construction methods were firstly published by Elias [6]. A first LIFO (last-in-first-out) variant of the arithmetic coding was designed by Rissanen [7] and later modified [8] [9] [10] by different authors to the FIFO implementations (first-in-first-out).

All of those documents have the basic principle of recursive partial interval decomposition in common. Corresponding to the given probabilities $P(" 0 ")$ and $P(" 1 ")$ of two results $\{" 0 ", " 1 "\}$ of a binary alphabet a primarily given interval, e.g. the interval [0, 1), is recursively decomposed into partial intervals depending on the
occurrence of individual events. Here, the size of the resulting partial interval as the product of the individual probabilities of the occurring events is proportional to the probability of the sequence of individual events. As every event S_{i} adds a contribution of $H\left(S_{i}\right)=-\log \left(P\left(S_{i}\right)\right)$ of the theoretical information content $H\left(S_{i}\right)$ of S_{i} to the overall rate by the probability $P\left(S_{i}\right)$, a relation between the number $N_{B i t}$ of bits for illustrating the partial interval and the entropy of the sequence of individual events results, which is given by the right side of the following equation:

$$
N_{B i t}=-\log \prod_{i} P(S i)=-\sum_{i} \log P(S i)
$$

The basic principle, however, first of all requires a (theoretically) unlimited accuracy in the illustration of the resulting partial interval and apart from that it has the disadvantage that only after the coding of the last result may the bits for a representation of the resulting partial interval be output. For practical application purposes it was therefore decisive to develop mechanisms for an incremental output of bits with a simultaneous representation with numbers of a predetermined fixed accuracy. These were first introduced in the documents [3] [7] [11].

In Fig. 1, the basic operations for a binary arithmetic coding are indicated. In the illustrated implementation the current partial interval is represented by the two values L and R, wherein L indicates the offset point and R the size (width) of the partial interval, wherein both quantities are respectively illustrated using b-bit integers. The coding of a bit $\in\{0,1\}$ is thereby basically performed in five substeps: In the first step using the probability estimation the value of the less probable symbol is determined. For this symbol, also referred to as LPS (least probable symbol), in contrast to the MPS (most probable symbol), the probability estimation $P_{\text {Lps }}$ is used in the
second step for calculating the width $R_{\text {lps }}$ of the corresponding partial interval. Depending on the value of the bit to be coded L and R are updated in the third step. In the forth step the probability estimation is updated depending on the value of the just coded bit and finally the code interval R is subjected to a so-called renormalization in the last step, i.e. R is for example rescaled so that the condition $R \in\left[2^{b-2}, 2^{b-1}\right]$ is fulfilled. Here, one bit is output with every scaling operation. For further details please refer to [10].

The main disadvantage of an implementation, as outlined above, now lies in the fact that the calculation of the interval width $R_{\text {Lps }}$ requires a multiplication for every symbol to be coded. Generally, multiplication operations, in particular when they are realized in hardware, are costand time-intensive. In several research documents methods were examined to replace this multiplication operation by a suitable approximation [11] [12] [13] [14]. Hereby, the methods published with reference to this topic may generally be separated into three categories.

The first group of proposals for a multiplication-free, binary arithmetic coding is based on the approach to approximate the estimated probabilities $P_{\text {Lps }}$ so that the multiplication in the second step of Fig. 1 may be replaced by one (or several) shift and addition operation(s) [11] [14]. For this, in the simplest case the probabilities $P_{\text {Lps }}$ are approximated by values in the form of 2^{-q} with the integer q > 0 .

In the second category of approximative methods it is proposed to approximate the value range of R by discrete values in the form (1/2-r), wherein $r \in\{0\} \cup\left\{2^{-k} \mid k>\right.$ $0, \mathrm{k}$ integer\} is selected [15] [16].

The third category of methods is only known from the fact that here any arithmetic operations are replaced by table
accesses. To this group of methods on the one hand the Q coder used in the JPEG standard and related methods, such as the $Q M$ - and $M Q$-coder [12], and on the other hand the quasi-arithmetic coder [13] belong. While the latter method performs a drastic limitation of the number b of bits used for the representation of R in order to obtain acceptably dimensioned tables, in the Q-coder the renormalization of R is implemented so that R may at least approximately be approximated by 1 . This way the multiplication for determining $R_{\text {Lps }}$ is prevented. Additionally, the probability estimation using a table in the form of a finite state machine is operated. For further details please see [12].

SUMMARY OE THE INVENTION

It is the object of the present invention to provide a method and an arrangement for an arithmetic encoding and decoding of binary states and a corresponding computer program and a corresponding computer-readable storage medium which eliminate the mentioned disadvantages and in particular (a) do not require a multiplication, (b) allow a probability estimation without calculation effort and (c) simultaneously guarantee a maximum coding efficiency over a wide range of typically occurring symbol probabilities.

In accordance with a first aspect, the present invention provides a method for an arithmetic encoding and decoding of binary states, wherein in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots\right.$,
 probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{k}(1 \leq k \leq K)$ to every interval width R and one $\mathrm{P}_{\mathrm{n}}(1 \leq \mathrm{n} \leq \mathrm{N})$ to every probability, and that in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding
process, respectively, using a representative interval width $Q_{K}(1 \leq k \leq K)$ and a representative probability state $\mathrm{P}_{\mathrm{n}} \quad(1 \leq \mathrm{n} \leq \mathrm{N})$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{k} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.

In accordance with a second aspect, the present invention provides an arrangement having at least one processor and/or chip, which is/are implemented such that a method for an arithmetic encoding and decoding of binary states is may be performed, wherein in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots\right.$, $\left.Q_{k}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{k}(1 \leq k \leq K)$ to every interval width R and one $\mathrm{P}_{\mathrm{n}}(1 \leq \mathrm{n} \leq \mathrm{N})$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{K}(1 \leq k \leq K)$ and a representative probability state $P_{n}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.

In accordance with a third aspect, the present invention provides a computer program which enables a computer after it has been loaded into the storage of the computer to
perform a method for an arithmetic encoding and decoding of binary states, wherein in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{K}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{k}(1 \leq k \leq K)$ to every interval width R and one $\mathrm{P}_{\mathrm{n}}(1 \leq \mathrm{n} \leq \mathrm{N})$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{K}(1 \leq k \leq K)$ and a representative probability state $\mathrm{P}_{\mathrm{n}}(1 \leq \mathrm{n} \leq \mathrm{N})$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.

In accordance with a fourth aspect, the present invention provides A computer-readable storage medium on which a computer program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method for an arithmetic encoding and decoding of binary states, wherein in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{k}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{k}(1 \leq k \leq K)$ to every interval width R and one $P_{n}(1 \leq n \leq N)$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding
process, respectively, using a representative interval width $Q_{K}(1 \leq k \leq K)$ and a representative probability state $P_{n}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.

One method for an arithmetic encoding and decoding of binary states is advantageously performed so that in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{K}\right\}, ~ a ~ p r e s e t a b l e ~ v a l u e ~ r a n g e ~ f o r ~$ the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{K}(I$ $\leq \mathrm{k} \leq \mathrm{K}$) to every interval width R and one $\mathrm{P}_{\mathrm{n}}(\mathrm{I} \leq \mathrm{n} \leq \mathrm{N}$) to every probability, and that in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{k}(1 \leq k \leq K)$ and a representative probability state $P_{n}(I \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{k} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.

Another preferred implementation of the invention is characterized by the fact that based on the interval currently to be evaluated with a width R for determining the associated interval width Q_{K} an index $q_{\text {_index }}$ is
determined by a shift and bit masking operation applied to the computer-internal/binary representation of R.

It is also advantageous when based on the interval currently to be evaluated with a width R for determining the associated interval width Q_{K} an index $q_{\text {_index }}$ is determined by a shift operation applied to the computerinternal/binary representation of R and a downstream access to a table Qtab, wherein the table Qtab contains the indices of interval widths which correspond to the values of R which were pre-quantized by the shift operation.

It is in particular advantageous when the probability estimation underlying the symbol to be encoded or decoded is associated to a probability state P_{n} using an index p_state.

It is also an advantage when the determination of the interval width $R_{\text {LPs }}$ corresponding to the LPS is performed by an access to the table Rtab, wherein the table Rtab contains the values corresponding to all K quantized values of R and to the N different probability states of the interval width $R_{\text {Lps }}$ as product values (Q_{K} * P_{n}). The calculation effort is reduced in particular when the determination of the interval width $R_{\text {Lps }}$ corresponding to the LPS is performed by an access to the table Rtab, wherein for evaluating the table the quantization index q_index and the index of the probability state p_state are used.

It is further provided that in the inventive method for the N different representative probability states transition rules are given, wherein the transition rules indicate which new state is used based on the currently encoded or decoded symbol for the next symbol to be encoded or decoded. It is hereby of an advantage when a table Next_State_LPS is created which contains the index m of the new probability state P_{m} when a least probable symbol (LPS)
occurs in addition to the index n of the currently given probability state P_{n}, and/or when a table Next_State_MPS is created which contains the index m of the new probability state P_{m} when a most probable symbol (MPS) occurs in addition to the index n of the currently given probability state P_{n}.

An optimization of the method for a table-aided binary arithmetic encoding and decoding is achieved in particular by the fact that the values of the interval width $R_{\text {Lps }}$ corresponding to all K interval widths and to all N different probability states are filed as product values (Q_{K} * P_{n}) in a table Rtab.

A further optimization is achieved when the number K of the quantization values and/or the number N of the representative states are selected depending on the preset accuracy of the coding and/or depending on the available storage room.

One special implementation of the encoding in the inventive method includes the following steps:

1. Determination of the LPS
2. Quantization of R :
q_index $=$ Qtab[R>>q]
3. Determination of $R_{\text {Lps }}$ and R :
$R_{\text {Lps }}=$ Rtab [q_index, p_state]
$\mathbf{R}=\mathbf{R}-R_{\text {LPS }}$
4. Calculation of the new partial interval:
if (bit : LPS) then
$\mathbf{L} \leftarrow \mathbf{L}+\mathbf{R}$
$\mathbf{R} \leftarrow \mathbf{R}_{\text {LpS }}$
P_state \leftarrow Next_State_LPS [p_state]
if (p_state $=0$) then valMPS $\leftarrow 1$ - valMPS
else
P_state \leftarrow Next_State_MPS [p_state]
5. Renormalization of L and R, writing bits, wherein q_index describes the index of a quantization value read out of Qtab,
p_state describes the current state,
$\mathrm{R}_{\text {Lps }}$
describes the interval width corresponding to the LPS and
valmps describes the bit corresponding to the MPS.

The decoding in a special implementation of the inventive method includes the following steps:

1. Determination of the LPS
2. Quantization of R :
q_index $=$ Qtab [$R \gg q$]
3. Determination of $R_{\text {LPs }}$ and R :
$R_{\text {Lps }}=$ Rtab [q_index, $\left.p _s t a t e\right]$
$\mathbf{R}=\mathbf{R}-\mathbf{R}_{\mathrm{LPS}}$
4. Determination of bit depending on the position of the partial interval:
if ($V \geq R$) then
bit \leftarrow LPS
$\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}$
$R \leftarrow R_{\text {LPS }}$ if (p_state $=0$) valMPS $\leftarrow 1$ - valMPS p_state \leftarrow Next_State_LPS [p_state]
else
```
bit \leftarrow MPS
P_state \leftarrow Next_State_MPS [P_state]
```

5. Renormalization of R, reading out one bit and updating V, wherein
q_index describes the index of a quantization value read out of Qtab,
p_state describes the current state,
$R_{\text {Lps }}$ describes the interval width corresponding to the LPS,
describes the bit corresponding to the MPS, and
v describes a value from the interior of the

current partial interval.

In another special implementation of the inventive method it is provided that in encoding and/or decoding the calculation of the quantization index q_index is performed in the second substep after the calculation regulation:
q_index $=(R \gg q) \&$ Qmask
wherein Qmask illustrates a bit mask suitably selected depending on K.

If a uniform probability distribution is present a further optimization of the method for a table-aided binary arithmetic encoding and decoding may be achieved by the fact that in the encoding according to claim 12 the substeps 1 to 4 are performed according to the following calculation regulation:
$\mathbf{R} \leftarrow \mathbf{R} \gg 1$
if (bit $=1$) then
$L \leftarrow L+R$
or
that the substeps 1 to 4 of the encoding according to claim 12 are performed according to the following calculation regulation:

$\mathrm{L} \leftarrow \mathbf{L}<1$

if (bit $=1$) then
$\mathbf{L} \leftarrow \mathbf{L}+\mathbf{R}$
and wherein in the last alternative the renormalization (substep 5 according to claim 12) is performed with doubled decision threshold values and no doubling of L and R is performed, and
that in the decoding according to claim 13 the substeps 1 to 4 are performed according to the following calculation regulation:

$\mathbf{R} \leftarrow \mathbf{R} \gg 1$

if ($V \geq R$) then
bit $\leftarrow 1$

$$
V \leftarrow V-R
$$

else

bit $\leftarrow 0$,
or
the substeps 1 to 5 of the decoding according to claim 13 are performed according to the following calculation regulation:

1. Reading out one bit and updating V
2. Determination of bit according to the position of the partial interval: if ($V \geq R$) then

$$
\text { bit } \leftarrow 1
$$

$$
\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}
$$

else
bit $\leftarrow 0$.

It further turns out to be advantageous when the initialization of the probability models is performed depending on a quantization parameter SliceQP and preset model parameters m and n, wherein SliceQP describes the quantization parameter preset at the beginning of a slice and m and n describe the model parameters.

It is also advantageous when the initialization of the probability models includes the following steps:

1. preState $=\min (\max (1,((m * S l i c e Q P) \gg 4)+n), 2 * N)$
2. if (preState $<=N$) then
```
p_state = N+1 - preState
valMPS = 0
```

else

```
p_state = preState - N
valMPS = 1,
```

wherein valMPS describes the bit corresponding to the MPS, SliceQP describes the quantization parameter preset at the beginning of a slice and m and n describe the model parameters.

One arrangement for an arithmetic encoding and decoding of binary states includes at least one processor which is/are implemented such that a method for an arithmetic encoding and decoding may be performed, wherein in a first step a presetable value range for the specification of the interval width R is separated in K representative interval
 specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one Q_{K} (1 $\leq k \leq K$) to every interval width R and one $P_{n}(1 \leq n \leq N)$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{K}(1 \leq k \leq K)$ and a representative probability state $P_{n}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{k} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations..

One computer program for an arithmetic encoding and decoding of binary states allows a computer, after it has been loaded into the storage of the computer, to perform an method for an arithmetic encoding and decoding, wherein in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{k}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{N}}\right\}$ and allocation regulations are given, which allocate one Q_{k} (1 $\leq k \leq K$) to every interval width R and one $P_{n}(1 \leq n \leq N)$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by
performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{k}(1 \leq k \leq K)$ and a representative probability state $P_{n}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying for the symbol to be encoded or to be decoded according to the given allocation regulations.

For example, such computer programs may be provided (against a certain fee or for free, freely accessible or password-protected) which may be downloaded into a data or communication network. The thus provided computer programs may then be made useable by a method in which a computer program according to claim 22 is downloaded from a network for data transmission, like for example from the internet to a data processing means connected to the network.

For performing a method for an arithmetic encoding and decoding of binary states preferably a computer-readable storage medium is used on which a program is stored which allows a computer, after it has been loaded into the storage of the computer, to perform a method for an arithmetic encoding or decoding, wherein in a first step a presetable value range for the specification of the interval width R is separated in K representative interval
 specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one Q_{k} (l $\leq k \leq K$) to every interval width R and one $P_{n}(1 \leq n \leq N)$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively,
using a representative interval width $Q_{k}(1 \leq k \leq K)$ and a representative probability state $P_{n}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying as the basis for the symbol to be encoded or to be decoded according to the given allocation regulations.

The new method is distinguished by the combination of three features. First of all, similar to the Q-coder the probability estimation is performed using a finite state machine (FSM), wherein the generation of the N representative states of the FSM is performed offline. The corresponding transition rules are thereby filed in the form of tables.

A second characteristic feature of the invention is a prequantization of the interval width R to a number of K predefined quantization values. This allows, with a suitable dimensioning of K an N, the generation of a table which contains all K x N combinations of precalculated product values $R \quad x \quad P_{\text {LPS }}$ for a multiplication-free determination of $R_{\text {LPS }}$.

For the use of the presented invention in an environment in which different context models are used among which also such with (almost) uniform probability distribution are located, as an additional (optional) element a separated branch is provided within the coding machine in which assuming an equal distribution the determination of the variables L and R and the renormalization regarding the calculation effort is again substantially reduced.

As a whole the invention in particular provides the advantage that it allows a good compromise between a high
coding efficiency on the one hand and a low calculating effort on the other hand.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and features of the present invention will become clear from the following description taken in conjunction with the accompanying drawings, in which:

Fig. 1 shows an illustration of the basic operations for a binary arithmetic coding;
Fig. 2 shows a modified scheme for a table-aided arithmetic encoding;
Fig. 3 shows the principle of the table-aided arithmetic decoding;
Fig. 4 shows the principle of encoding or decoding, respectively, binary data having a uniform distribution;
Fig. 5 shows an alternative realization of encoding or decoding, respectively, for binary data with a uniform distribution; and

Fig. 6 shows the initialization of the probability models depending on a quantization parameter SliceQP and preset model parameters m and n.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

First of all, however, the theoretical background is to be explained in more detail:

Table-aided probability estimation

As it was already mentioned above, the effect of the arithmetic coding relies on an estimation of the occurrence probability of the symbols to be coded which is to be as good as possible. In order to enable an adaptation to non-
stationary source statistics, this estimation needs to be updated in the course of the coding process. Generally, usually methods are used for this which operate using scaled frequency counters of the coded results [17]. If Cips and $C_{\text {MPS }}$ designates counters for the occurrence frequencies of LPS and MPS, then using these counters the estimation

$$
\begin{equation*}
P_{L P S}=\frac{C_{L P S}}{C_{L P S}+C_{M P S}} \tag{1}
\end{equation*}
$$

may be performed and then the operation outlined in Fig. 1 of the interval separation may be carried out. For practical purposes the division required in equation (1) is disadvantageous. It is often convenient and required, however, to perform a rescaling of the counter readings when a predetermined threshold value $C_{m a x}$ of the overall counter $C_{\text {Total }}=C_{\text {MPS }}+C_{\text {LPS }}$ is exceeded. (In this context it is to be noted that with a b-bit representation of L and R the smallest probability which may be indicated correctly is 2^{-b+2}, so that for preventing that this lower limit is fallen short of, if necessary a rescaling of the counter readings is required.) with a suitable selection of $C_{\text {max }}$ the reciprocal values of $C_{\text {Total }} m a y$ be tabulated, so that the division required in equation (1) may be replaced by a table access and by a multiplication and shift operation. In order to prevent also these arithmetic operations, however, in the present invention a completely table-aided method is used for the probability estimation.

For this purpose in a training phase representative probability states $\left\{P_{k} \mid 0 \leq k<N_{\text {max }}\right\}$ are preselected, wherein the selection of the states is on the one hand dependent on the statistics of the data to be coded and on the other hand on the side conditions of the default maximum number $N_{\max }$ of states. Additionally, transition rules are defined which indicate which new state is to be used for the next symbol to be coded based on the currently coded symbol. These transition rules are provided in the
form of two tables: \{Next_State_LPS $\left.{ }_{k} \mid 0 \leq k<N_{\text {max }}\right\}$ and $\left\{\right.$ Next_State_MPS $\left.{ }_{k} \mid 0 \leq k<N_{\text {max }}\right\}$, wherein the tables provide the index m of the new probability state P_{m} when an LPS or MPS occurs, respectively, for the index n of the currently given probability state. It is to be noted here, that for a probability estimation in the arithmetic encoder or decoder, respectively, as it is proposed herein, no explicit tabulation of the probability states is required. Rather, the states are only implicitly addressed using their respective indices, as it is described in the following section. In addition to the transition rules it needs to be specified at which probability states the value of the LPS and MPS needs to be exchanged. Generally, there will only be one such excellent state which may be identified using its index p_state.

Table-aided interval separation

Fig. 2 shows the modified scheme for a table-aided arithmetic coding, as it is proposed herein. After the determination of the LPS, first of all the given interval width R is mapped to a quantized value Q using a tabulated mapping Qtab and a suitable shift operation (by q bit). Alternatively, the quantization may in special cases also be performed without the use of a tabulated mapping Qtab only with the help of a combination of shift and masking operations. Generally, here a relatively coarse quantization to $K=2$... 8 representative values is performed. Also here, similar to the case of the probability estimation, no explicit determination of Q is performed; rather, only an index q _index is transferred to Q. This index is now used together with the index p_state for a characterization of the current probability state for the determination of the interval width $R_{\text {Lps }}$. For this, now the corresponding entry of the table Rtab is used. There, the K. $N_{\text {max }}$ product values $R \times P_{\text {Lps }}$, that correspond to all K quantized values of R and the $N_{\max }$ different from the probability states, are entered as integer values with an
accuracy of generally b-2 bits. For practical implementations a possibility is given here to weigh up between the storage requirements for the table size and the arithmetic accuracy which finally also determines the efficiency of the coding. Both target variables are determined by the granularity of the representation of R and $P_{\text {ips }}$.

In the forth step of Fig. 2 it is shown, how the updating of the probability state p_state is performed depending on the above coded event bit. Here, the transition tables Next_State_LPS and Next_State_MPS are used which were already mentioned above in the section "table-aided probability estimation". These operations correspond to the updating process indicated in Fig. 1 in step 4 which is not explained in more detail.

Fig. 3 shows the corresponding flow chart of the tableaided arithmetic decoding. For characterizing the current partial interval in the decoder the interval width R and a value V is used. The latter is present within the partial interval and is refined successively with every read-out bit. As it may be seen from Fig. 3, the operations for the probability estimation and the determination of the interval width R are performed according to those of the encoder.

Coding with uniform probability distribution

In applications in which e.g. signed values are to be coded whose probability distribution is arranged symmetrically around zero, for coding the sign information generally an equal distribution may be assumed. As this information is one the one hand to be embedded in the arithmetic bit stream, while it is on the other hand not sensible to use a relatively compact apparatus of the table-aided probability estimation and interval separation for the case of a probability of $p \approx 0.5$, it is for this special case
proposed to optionally use a special encoder/decoder procedure which may be illustrated as follows.

In this special case the interval width of the new partial interval may be determined in the encoder by a simple shift operation corresponding to a bisection of the width of the original interval R. Depending on the value of the bit to be coded, the upper or lower half of R, respectively, is then selected as a new partial interval (see Fig. 4). The subsequent renormalization and output of bits is performed as in the above case of the table-aided solution.

In the corresponding decoder the required operations are reduced to determining the bit to be decoded using the value of V relatively to the current interval width R by a simple comparison operation. In the case that the decoded bit is set, V is to be reduced by the amount of R. As it is illustrated in Fig. 4, the decoding is ended by the renormalization and updating of V using the bit to be read in next.

An alternative realization of the coding of events with a uniform probability distribution is illustrated in Fig. 5. In this exemplary implementation the current interval width R is not modified. Instead, V is first doubled by a shift operation in the encoder. Depending on the value of the bit to be coded, then, similar to the above example, the upper or lower half, respectively, of R is selected as a new partial interval (see Fig. 5). The subsequent renormalization and output of bits is performed as in the above case of the table-aided solution with the difference that the doubling of R and L is not performed and that the corresponding comparison operations are performed with doubled threshold values.

In the corresponding decoder of the alternative realization first of all a bit is read out and V is updated. The second step is performed in the same way as step 1 in Fig. 4, i.e.
the bit to be decoded is determined using the value of V relative to the current interval width R by a simple comparison operation, and in the case in which the decoded bit is set, V is to be reduced by the amount of R (see Fig. 5) .

Addressing and initializing the probability models

Every probability model, as it is used in the proposed invention, is indicated using two parameters: 1) The index p_state that characterizes the probability state of the LPS, and 2) the value valMPS of the MPS. Each of these two variables needs to be initialized at the beginning of the encoding or decoding, respectively, of a completed coding unit (in applications of video coding about one slice). The initialization values may thereby be derived from control information, like e.g. the quantization parameter (of a slice), as it is illustrated as an example in Fig. 6.

Forward-controlled initialization process

A further possibility of adaptation of the starting distributions of the models is provided by the following method. In order to guarantee a better adaptation of the initializations of the models, in the encoder a selection of predetermined starting values of the models may be provided. These models may be combined into groups of starting distributions and may be addressed using indices, so that in the encoder the adaptive selection of a group of starting values is performed and is transmitted to the decoder in the form of an index as page information. This method is referred to as a forward-controlled initialization process.

While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many
alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

References

[1] T. Wiegand, G. Sullivan, "Draft Text of Final Draft International Standard (FDIS) of Joint Video Specification (ITU-T Rec. H. 264 /ISO/IEC 14496-10 AVC)", JVT-G050, March 2003.
[2] D. A. Huffman, "A Method for Construction of Minimum Redundancy code", Proc. IRE, Vol. 40 , pp. 1098-1101, 1952.
[3] I. H. Witten, R. M. Neal, J. G. Cleary, "Arithmetic Coding for Data Compression", Communication of the ACM, Vol. 30, No. 6, pp. 520-540, 1987.
[4] G. G. Langdon, J. Rissanen, "A Simple General Binary Source code", IEEE Transactions on Information Theory, Vol. 28, pp. 800-803, 1982.
[5] C. E. Shannon, "A Mathematical Theory of Communication", Bell Syst. Tech. Journal, vol. 27, pp. 379-423, 623-656, 1948.
[6] P. Elias, in "Information Theory and Coding", N. Abramson (Ed.), New York, Mc-Gra-Hill, 1963.
[7] J. Rissanen, "Generalized Kraft Inequality and Arithmetic Coding", IBM J. Res. Develop., Vol. 20, pp. 198-203, 1976.
[8] R. C. Pasco, "Source Coding and Algorithms for Fast Data Compression", Ph. D. Dissertation, Stanford University, USA, 1976.
[9] G. G. Langdon, "An Introduction to Arithmetic Coding", IBM J. Res. Develop., Vol. 28, pp. 135-149, 1984.
[10] A. Moffat, R. M. Neal, I. H. Witten, "Arithmetic Coding Revisited", Proc. IEEE Data Compression Conference, Snowbird (USA), pp. 202-211, 1996.
[11] J. Rissanen, K. M. Mohiuddin, "A Multiplication-Free Multialphabet Arithmetic Arithmetic Code", IEEE Trans. on Communication, Vol. 37, pp. 93-98, 1989.
[12] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, R. B. Arps, "An Overview of the Basic Principles of the $Q-$ Coder Adaptive Binary Arithmetic Coder", IBM J. Res. Develop., Vol. 32, pp. 717-726, 1988.
[13] P. G. Howard, J. S. Vitter, "Practical Implementations of Arithmetic Coding", in "Image and Text Compression", J. Storer (Ed.), Norwell (USA), Kluwer, 1992.
[14] L. Huynh, A. Moffat, "A Probability-Ratio Approach to Approximate Binary Arithmetic Coding", IEEE Trans. on Information Theory, Vol. 43, pp. 1658-1662, 1997.
[15] D. Chevion, E. D. Karnin, E. Walach, "High-Efficiency, Multiplication Free Approximation of Arithmetic Coding", Proc. IEEE Data Compression Conference, Snowbird (USA), pp. 43-52, 1991.
[16] G. Feygin, P. G. Gulak, P. Chow, "Minimizing Excess Code Length and VLSI Complexity in the Multiplication Free Approximation of Arithmetic Coding", Inform. Proc. Manag., vol. 30, pp. 805-816, 1994.
[17] D. L. Duttweiler, Ch. Chamzas, "Probability Estimation in Arithmetic and Adaptive-Huffman Entropy Coders", IEEE Trans. on Image Processing, Vol. 4, pp. 237-246, 1995.

Claims

1. A method for an arithmetic encoding and decoding of binary states, characterized in that
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{K}\right\}, ~ a$ presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{k}(1 \leq k \leq$ K) to every interval width R and one $P_{n}(1 \leq n \leq N)$ to every probability, and that in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{K}(1 \leq k \leq K)$ and a representative probability state $P_{n}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{k} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
2. The method according to claim 1,
characterized in that
based on the interval currently to be evaluated having a width R, for determining the associated interval width Q_{K}, an index $q_{\text {_index }}$ is determined by a shift
and bit masking operation applied to the computerinternal/binary representation of R.
3. The method according to claim 1,
characterized in that
based on the interval currently to be evaluated with a width R, for the determination of the associated interval width Q_{K}, an index $q_{\text {_index }}$ is determined by a shift operation applied to the computer-internal/binary representation of R and a downstream access to a table Qtab, wherein the table Qtab contains the indices of interval widths corresponding to values of R prequantized by a shift operation.
4. The method according to claim 1,
characterized in that
the probability estimation underlying the symbol to be encoded or to be decoded is associated with a probability state P_{n} with the help of an index p_state.
5. The method according to claim 1,
characterized in that
the values of the interval width $R_{\text {LPs }}$ corresponding to all K interval widths and to all N different probability states are entered into a table Rtab as product values ($Q_{K} * P_{n}$).
6. The method according to claim 1,
characterized in that
the determination of the interval width $R_{\text {Lps }}$ corresponding to the LPS is performed by an access to a table Rtab, wherein the table Rtab contains the values of the interval width $R_{\text {Lps }}$ corresponding to all K quantized values of R and to the N different probability states as product values (Q_{K} * P_{n}).
7. The method according to claim 1,
characterized in that
the determination of the interval width $R_{\text {LPS }}$ corresponding to the LPS is performed by an access to the table Rtab, wherein, for an evaluation of the table, the quantization index q_index and the index of the probability state p_state are used.
8. The method according to claim 1,
characterized in that
for the N different representative probability states transition rules are preset, wherein the transition rules indicate which new state is used for the next symbol to be encoded or to be decoded based on the currently encoded or decoded symbol.
9. The method according to claim 8,
characterized in that
a table Next_State_LPS is created which contains the index m of the new probability state P_{m} for the index n of the currently given probability state P_{n} at the occurrence of a least probable symbol (LPS).
10. The method according to claim 8,
characterized in that
a table Next_State_MPS is created which contains the index m of the new probability state P_{m} for the index n of the currently given probability state P_{n} at the occurrence of a most probable symbol (MPS).
11. The method according to claim 1,
characterized in that
the number K of quantization values and/or the number N of the representative states are selected depending on the preset accuracy of the coding and/or depending on the available storage room.
12. The method according to claim 1,
characterized in that
the table-aided encoding includes the following steps:
13. Determination of the LPS
14. Quantization of R :
q_index $=$ Qtab[R>>q]
15. Determination of $R_{\text {Lps }}$ and R :
$R_{\text {LPS }}=$ Rtab [q_index, p_state]
$\mathbf{R}=\mathbf{R}-R_{\mathrm{LPS}}$
16. Calculation of the new partial interval:
if (bit $=$ LPS) then
$\mathbf{L} \leftarrow \mathbf{L}+\boldsymbol{R}$
$\mathbf{R} \leftarrow \mathrm{R}_{\mathrm{LPS}}$
P_state \leftarrow Next_State_LPS [p_state]
if (p_state $=0$) then valMPS $\leftarrow 1$ - valMPS
else
P_state \leftarrow Next_State_MPS [p_state]
17. Renormalization of L and R, writing bits, wherein q_index describes the index of a quantization value read out of $Q t a b$,

18. The method according to claim 1, characterized in that
a table-aided decoding includes the following steps:
19. Determination of the LPS
20. Quantization of R :
21. Determination of $R_{\text {LPS }}$ and R :
$\mathbf{R}_{\text {LPS }}=$ Rtab [q_index, p_state] $\mathbf{R}=\mathbf{R}-\mathbf{R}_{\mathrm{LPS}}$
22. Determination of bit depending on the position of the partial interval:
if $(V \geq R)$ then
bit \leftarrow LPS
$\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}$
$\mathbf{R} \leftarrow \mathbf{R}_{\text {LPS }}$
if (p_state $=0$) then valMPS $\leftarrow 1$ - valMPS
P_state \leftarrow Next_State_LPS [p_state]
else
bit \leftarrow MPS
p_state \leftarrow Next_State_MPS [p_state]
23. Renormalization of R, reading out one bit and updating V, wherein
q_index describes the index of a quantization value read out of Qtab,
P_state describes the current state, describes the interval width corresponding to the LPS, describes the bit corresponding to the MPS, and

v

describes a value from the interior of the current partial interval.
14. The method according to claim 1 ,
characterized in that
in encoding and/or decoding the calculation of the quantization index q_index is performed in the second substep according to claim 12 and/or 13 according to the calculation regulation:
q_index $=(R \gg q) \&$ Qmask
wherein Qmask illustrates a bit mask suitably selected depending on K.
15. The method according to claim1,
characterized in that
when a uniform probability distribution is present
in the encoding according to claim 12 the substeps 1 to 4 are performed according to the following calculation regulation:
$\mathbf{R} \leftarrow \mathbf{R} \gg 1$
if (bit $=1$) then
$\mathbf{L} \leftarrow \mathbf{L}+\mathbf{R}$
or
that the substeps 1 to 4 of the encoding according to claim 12 are performed according to the following calculation regulation:
$\mathrm{L} \leftarrow \mathrm{L} \ll 1$
if (bit $=1$) then
$\mathbf{L} \leftarrow \mathbf{L}+\mathbf{R}$
and wherein in the last alternative the
renormalization (substep 5 according to claim 12) is performed with doubled decision threshold values and no doubling of L and R is performed, and
that in the decoding according to claim 13 the
substeps 1 to 4 are performed according to the
following calculation regulation:
$\mathbf{R} \leftarrow \mathbf{R} \gg 1$
if ($V \geq R$) then
bit $\leftarrow 1$
$\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}$
else

$$
\text { bit } \leftarrow 0 \text {, }
$$

or
the substeps 1 to 5 of the decoding according to claim 13 are performed according to the following calculation regulation:
3. Reading out one bit and updating V
4. Determination of bit according to the position of the partial interval:
if ($V \geq R$) then

> bit $\leftarrow 1$
> $V \leftarrow V-R$
else

$$
\text { bit } \leftarrow 0
$$

16. The method according to claim 1,
characterized in that
the initialization of the probability models is performed depending on a quantization parameter SliceQP and preset model parameters m and n, wherein SliceQP describes the quantization parameter preset at the beginning of a slice and m and n describe the model parameters.
17. The method according to claim 1,
```
characterized in that
```

the initialization of the probability models includes the following steps:

1. preState $=\min (\max (1,((m * S l i c e Q P) \quad \gg 4)+n)$, 2*N)
2. if (preState $<=N$) then
```
p_state = N+1 - preState
valMPS = 0
```

else

> p_state $=$ prestate $-N$ valMPS $=1$,
wherein valMPS describes the bit corresponding to the MPS, SliceQP describes the quantization parameter preset at the beginning of a slice and m and n describe the model parameters.
18. The method according to claim 1,
characterized in that
the probability estimation of the states is performed using a finite state machine (FSM).
19. The method according to claim 1,
characterized in that
the generation of the representative states is performed offline.
20. The method according to claim 1,
characterized in that
the selection of the states depends on the statistics of the data to be coded and/or on the number of states.
21. An arrangement having at least one processor and/or chip, which is/are implemented such that a method for an arithmetic encoding and decoding of binary states is may be performed, wherein
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{K}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{N}}\right\}$ and allocation regulations are given, which allocate one $\mathrm{Q}_{\mathrm{K}}(1 \leq \mathrm{k} \leq$ K) to every interval width R and one $P_{n}(1 \leq n \leq N)$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{k}(1 \leq k \leq K)$ and a representative probability state $P_{n}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
22. A computer program which enables a computer after it has been loaded into the storage of the computer to perform a method for an arithmetic encoding and decoding of binary states, wherein
in a first step a presetable value range for. the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{k}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative
probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one $\mathrm{Q}_{\mathrm{k}}(1 \leq \mathrm{k} \leq$ K) to every interval width R and one $P_{n}(I \leq n \leq N)$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{k}(1 \leq k \leq K)$ and a representative probability state $P_{n}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{k} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
23. A computer-readable storage medium on which a computer program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method for an arithmetic encoding and decoding of binary states, wherein
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{k}\right\}, ~ a$ presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{k}(1 \leq k \leq$ K) to every interval width R and one $P_{n}(1 \leq n \leq N)$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{k}(1 \leq k \leq K)$ and a representative probability
state $P_{n}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the

10 24. The computer program according to claim 22, which is downloaded from an electronic data network, like for example from the internet, onto a data processing means which is connected to the data network.

Method and Arrangement for Arithmetic Encoding and Decoding Binary States and a Corresponding Computer Program and a Corresponding Computer-readable Storage Medium

ABSTRACT

The invention describes a method and an arrangement for an arithmetic encoding and decoding of binary states and a corresponding computer program and a corresponding computer-readable storage medium, which may in particular be used in digital data compression.

To this end it is proposed to for example perform a tableaided binary arithmetic encoding and decoding using two or several tables.

1. Determination of the LPS
2. Calculation of the Variables RLPS and RMPS :
$R_{\text {LPS }}=R \times P_{\text {LPS }}$
$R_{\text {tps }}=R-R_{\text {LPS }}$
3. Calculation of the new partial interval:
if (bit $=$ LPS) then
$\mathrm{L} \leftarrow \mathrm{L}+\mathrm{R}_{\mathrm{sps}}$
$R \leftarrow R_{\text {LPS }}$
else
$R \leftarrow R_{\text {xps }}$
4. Updating the probability estimation PLPS
5. Outputing the bils and renormalizing R

FIG. 1

1. Determination of the LPS
2. Quantization of R :
q_index $=$ Qtab[R>>q]
3. Delermination of RLPS and RMPS:
$R_{\text {LpS }}=$ Rtab[q_index, p_state]
$\mathbf{R}_{\text {mPS }}=\mathbf{R}-\mathbf{R}_{\text {LPS }}$
4. Calculation of the new partial interval:
if (bit $=$ LPS) then
$\mathrm{L} \leftarrow \mathrm{L}+\mathrm{R}_{\text {eps }}$
$R \leftarrow R_{\text {Lrs }}$
$p_{-} s t a t e \leftarrow$ Next_State_LPS[p_state]
else
$\mathbf{R}^{\prime} \leftarrow \mathrm{R}_{\text {Hips }}$
P_state \leftarrow Next_State_MPS[p_state]

FIG. 2

2/4

1. Determination of the LPS
2. Quantization of R :
q_index = Qtab [R>>q]
3. Determination of RLPS and RMPS :
$\mathrm{R}_{\text {Lps }}=$ Rtab[q_index, p_{-}state]
$R_{\text {tPPS }}=R-R_{\text {tps }}$
4. Determination of bit, depending on the position of the partial interval:
```
if (V \geq Rmps) then
```

bit \leftarrow LPs
$\mathrm{V} \leftarrow \mathrm{V}-\mathrm{R}_{\mathrm{xPS}}$
$\mathrm{R} \leftarrow \mathrm{R}_{\text {L.PS }}$
P_state \leftarrow Next_State_LPS[p_state]
else
bit \leftarrow MPS
$\mathrm{R} \leftarrow \mathrm{R}_{\text {xpps }}$
$p_{-} s t a t e ~ \leftarrow$ Next_State_MPS[p_statel
5. Renormalization of R, reading out a bit and updating V

FIG. 3

3/4

Encoder:

1. Calculating the new partial interval:
$R \leftarrow R \gg 1$
if (bit $=1$) then
$\mathrm{L} \leftarrow \mathbf{L}+\mathrm{R}$
2. Outputting bits and renomalizing R

Decoder:

1. Determination of bit, depending on the position of the partial interval:
if ($V \geq R$) then
bit $\leftarrow 1$
$v \leftarrow v-R$
else
bit $\leftarrow 0$
2. Reading out a bit, renomalizing R and updating V

FIG. 4

4/4

Encoder:

1. Calculating the new partial interval:

$$
\begin{aligned}
& \text { L } \leftarrow(\mathrm{L} \ll 1 \\
& \text { if }(b i t=1) \text { then }
\end{aligned}
$$

$$
L \leftarrow L+R
$$

2. Outputting a bit and renormalizing using doubled determination threshold values (without doubling R and L)

Decoder:

1. Reading out a bit and updating V
2. Determination of bit depending on the position of the partial interval:
if ($V \geq R$) then bit $\leftarrow 1$ $v \leftarrow V-R$
else

FIG. 5

```
1. preState = mIn(max( 1,((m * SliceQP )>>4)+n),126)
2. if (preState <= 63) then
    p_state = 63 - prestate
    valMPS = 0
    else
    p_state = prestate - 64
    valMPS = 1
```

FIG. 6
(19) Weltorganisation für geistiges Eigentum Internationales Büro
(43) Internationales Veröffentlichungsdatum 13. November 2003 (13.11.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/094355 A2
(51) Internationale Patentklassifikation ${ }^{\text {² }}$:
(21) Internationales Aktenzeichen:

H03M
PCT/EP03/04654
(22) Internationales Anmeldedatum:
2. Mai 2003 (02.05.2003)

(25) Einreichungssprache:

(26) Veröffentlichungssprache:

Deutsch
Deutsch
(30) Angaben zur Priorität: 10220962.6 2. Mai 2002 (02.05 .2002) DE
(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V. [DE/DE]; Leonrodstr. 54, 80636 München (DE).
(72) Erfinder; und
(75) Erfinder/Anmelder finur für US): MARPE, Detlef
[DE/DE]; Südwestkorso 70. 12161 Berlin (DE). WIEGAND, Thomas [DE/DE]; Nürnberger Sur. I8, 10789 Bertin (DE).
(74) Anwalt: SCHOPPE, Fritz Schoppe, Zimmermann, Stöckeler \& Zinkler; Postfach / P.O. Box 246, 82043 Pullach b. München (DE).
(81) Bestimmungsstaaten (inational): JP, KR, US.
(84) Bestimmungsstaaten (regional): europäisches Patent (AT. BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, TT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

- ohne internationalen Recherchenbericht und erneut zu veroffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die ErkJärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
(54) Title: METHOD AND ARRANGEMENT FOR ARITHMETICALLY ENCODING AND DECODING BINARY STATES, CORRESPONDING COMPUTER PROGRAM, AND CORRESPONDING COMPUTER-READABLE STORAGE MEDIUM
(54) Bezeichnung: VERFAHIREN UND ANORDNUNG ZUR ARITHMETISCHEN ENKODIERUNG UND DEKODIERUNG VON BINÄREN ZUSTÄNDEN SOWIE EIN ENTSPRECHENDES COMPUTERPROGRAMM UND EIN ENTSPRECHENDES COMPUTERLESBARES SPEICHERMEDIUM

```
Bestimmung des LPS
2. Quantisierung von R:
    \(q\) index \(=Q t a b[R \gg q]\)
3. Bestimmung von \(R_{\text {LPS }}\) und \(R_{\text {mps }}\) :
    \(R_{\text {Lps }}=\) Rtab[q_index, \(p_{\text {state }}\) ]
    \(R_{\text {weps }}=R-R_{\text {LTS }}\)
4. Berechnung des neuen Teilintervalls:
    if (bit \(=\) LPS) then
            \(\mathbf{L} \leftarrow \mathbf{L}+\mathrm{R}_{\text {urps }}\)
            \(R \leftarrow R_{\text {Lps }}\)
            p_state \(\leftarrow\) Next_State_LPS[p_state]
        else
            \(R \leftarrow R_{\text {trps }}\)
            \(p_{-}\)state \(\leftarrow\) Next_State_MPS[p_state]
```

 1. Determine the lps
 2. QUANTIZE R: ...
 3. DETERMINE RLPS AND RMPS: ...
 4. CALCULATE THE NEW PARTIAL INTERVAL: ...

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

12/0B/2003 FFANAEIA 0000007310727801	
$01 \mathrm{FC}: 1001$	770.00 op
$02 \mathrm{FC}: 1201$	86.00 op
$03 \mathrm{FC}: 1202$	72.00 op

Flay ans maiy n envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
By:

Date: January 7, 2004
IN THE UNUTED STATES PATENT AND TRADEMARK OFFICE

Applic. No. : 10/727,801
Applicant : Detlev Marpe et al.
Filed : December 4, 2003
Art Unit : to be assigned
Examiner : to be assigned
Docket No. : S\&ZFH030508
Customer No.: 24131
Mail Stop: Missing Parts
Hon. Commissioner for Patents, Alexandria, VA 22313-1450

Sir:
The above-mentioned new patent application was filed on December 4, 2003 without a signed oath or declaration, under the provision of 37 C.F.R. 1.53(f).

In accordance with the above-mentioned rule, enclosed herewith is the original signed declaration.

The undersigned hereby states that the application filed in the Patent and Trademark Office is the application which the inventor(s) executed by signing the declaration. MPEP 602 ($8^{\text {th }}$ ed., Aug. 2001).

The fee required for the late filing of an oath or declaration in the amount of $\$ 130.00$ is also enclosed.

Respectrpilly submitted,

GHEORY L. MAYBACK
RE(8). XO/ 40,716
/mjb
Date: January 7, 2004
Lerner and Greenberg, P.A.
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100
Fax: (954) 925-1101

COMBINED DECLARATION AND POWER OF ATTORNEY IN ORIGINAL APPLICATION

op a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; that I verily believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND ARRANGEMENT FOR ARITHMETIC ENCODING AND DECODING BINARY STATES AND A CORRESPONDING COMPUTER PROGRAM AND A CORRESPONDING COMPUTER-READABLE STORAGE MEDIUM

described and claimed in the specification bearing that title, that I understand the content of the specification, that I do not know and do not believe the same was ever known or used in the United States of America before my or our invention thereof, or patented or described in any printed publication in any country before my or our invention thereof or more than one year prior to this application, that the same was not in public use or on sale in the United States of America more than one year prior to this application, that the invention has not been patented or made the subject of an inventor's certificate issued before the date of this application in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve months prior to this application, that I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in 37 CFR § 1.56, and that no application for patent or inventor's certificate of this invention has been filed earlier than the following in any country foreign to the United States prior to this application by me or my legal representatives or assigns:

German Application 10220 962.6, filed May 2, 2002, the International Priority of which is claimed under 35 U.S.C. § 119; and International Application PCT/EP03/04654, filed May 2, 2003, the Priority of which is claimed under 35 U.S.C. § 120.

I hereby appoint practitioners associated with the Customer Number:
24131

Address all correspondence and telephone calls to:

> LERNER AND GREENBERG, P.A. POST OFFICE BOX 2480
> HOLLYWOOD, FLORIDA $33022-2480$

Tel: (954) 925-1100
Fax: (954) 925-1101
I hereby state that I have reviewed and understand the contents of the aboveidentified specification, including the claims, as amended by any amendment referred to above.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

FULL NAME OF FIRST JOINT INVENTOR:

Residence: BERLIN, GERMANY
Country of Citizenship: GERMANY
Post Office Address: SÜDWESTKORSO 70
D-12161 BERLIN
GERMANY

FULL NAME OF SECOND JOINT INVENTOR:

Inventor's Signature

DETLEF MARPE

December 24, 2003 Date

Residence: BERLIN, GERMANY
Country of Citizenship: GERMANY
Post Office Address: NÜRNBERGER STRASSE 18
D-10789 BERLIN
GERMANY

Unted States Patent and Trademark Office

Alexuticis, Vigginia 22313-1450

APPLICATION NUMBER	FILING OR 371 (c) DATE	FIRST NAMED APPLICANT	ATTORNEY DOCKET NUMBER
$10 / 727,801$	$12 / 04 / 2003$	Detlef Marpe	S\&ZFH030508

CONFIRMATION NO. 6855
LERNER AND GREENBERG, P.A.
POST OFFICE BOX 2480
HOLLYWOOD, FL 33022-2480

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

Items Required To Avoid Abandonment:

An application number and filing date have been accorded to this application. The item(s) indicated below, however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The oath or declaration is unsigned.

Replies should be mailed to: Mail Stop Missing Parts
Commissioner for Patents
P.O. Box 1450

Alexandria VA 22313-1450

A copy of this notice MUST be returned with the reply.

Refine Search
Search Results -

Terms	Documents
L18 and L11	1

> US Pre-Grant Publication Full-Text Database
> US Patents Full-Text Database
> US OCR Full-Text Database
> EPO Abstracts Database
> JPO Abstracts Database
> Derwent World Patents Index
> IBM Technical Disclosure Bulletins

Database:

Search:

Recall Text
Clear
= Interrupt

Search History

DATE: Thursday, September 09, 2004 Printable Copy Create Case

Set Name Query side by side		Hit Count $\frac{\text { Set Name }}{\text { result set }}$	
$D B=P G P B, U S P T, U S O C, E P A B, J P A B, D W P I, T D B D ; P L U R=Y E S ; O P=O R$			
L19	L18 and 111	1	L19
L18	341/106.ccls.	689	L18
L17	L14 and 111	2	$\underline{\mathrm{L} 17}$
$\underline{L 16}$	L14 and 111	2	L16
$\underline{\text { L15 }}$	L14 and 111 and 341/106.ccls.	0	L15
L14	341/107.ccls.	245	L14
L13	L12 and 111	10	L13
$\underline{\mathrm{LL} 2}$	341/\$.ccls.	36425	L12
L11	L9 and 18 and 17 and 16 and 15 and 14 and 13 and 12 and 11	224	L11
L10	L9 same 18 same 17 same 16 same 15 same 14 same 13 same 12 same 11	1	$\underline{L 10}$
L9	decod\$3	400128	L9
L8	encod\$3	486432	L8
$\underline{L 7}$	arithmetic\$	192078	L7
$\underline{L 6}$	caculat\$3 or comput\$	1682144	L6
$\underline{L 5}$	stat\$	5642610	L5
L4	binary	299416	L4
L3	allocat\$	209199	L3
L2	preset\$	421284	L2

L1 probabilit\$ $177329 \quad \underline{\text { Ll }}$
END OF SEARCH HISTORY
h e b b cg b e e ch
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.

Specification

It is suggested to submit the cited references on pages 24 and 25 on an Information disclosure statement 1449.

Abstract

1. Applicant is reminded of the proper language and format for an abstract of the disclosure. The abstract should be in narrative form and generally limited to a single paragraph on a separate sheet within the range of 50 to 150 words. It is important that the abstract not exceed 150 words in length since the space provided for the abstract on the computer tape used by the printer is limited. The form and legal phraseology often used in patent claims, such as "means" and "said," should be avoided. The abstract should describe the disclosure sufficiently to assist readers in deciding whether there is a need for consulting the full patent text for details. The language should be clear and concise and should not repeat information given in the title. It should avoid using phrases which can be implied, such as, "The disclosure concerns," "The disclosure defined by this invention," "The disclosure describes," etc.

It is suggested not to use the word "the invention" in the abstract. Also, the abstract must be in a single paragraph. Appropriate correction is required.

Claim Objection

2. Claims $12,13,15,17$ are objected to because of the following informalities: it is suggested not to use numerical numbers such as 1), 2), 3) etc in the steps of a process as disclosed in the claims rather use alphabetic letters such as a), b), c) etc. to indicate
the steps. This will create confusion as the claims are already numbered. Appropriate correction is required.
3. Also, it is suggested to write "claim1" in claim 15 as - claim 1 -.
4. Moreover, steps 3, 4 are numbered in claim 15 while steps 1 , and 2 are not numbered. Appropriate correction is required.

Allowable Subject Matter

5. Claims 1-24 are allowable.
6. Reasons for allowing the aforementioned claims will be provided in the next office action.

Conclusion
7. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.
8. Mitchell et al. (US Patent Number $4,891,643$) discloses an arithmetic coding data compression/Decompression by selectively employed, diverse arithmetic coding encoders and decoders.
9. Berger et al. (US patent Number $5,973,626$) discloses a byte-based prefix encoding.
10. Kimura et al. (US patent Number $6,075,471$) discloses an adaptive coding method.
11. This application is in condition for allowance except for the formal matters mentioned above.

Prosecution on the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

A shortened statutory period for reply to this action is set to expire TWO MONTHS from the mailing date of this letter.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jean B Jeanglaude whose telephone number is 571 -272-1804. The examiner can normally be reached on Monday - Friday 7:30 A. M. - 5:00 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Michael Tokar can be reached on 571-272-1812. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Notice of References Cited	Application/Control No. $10 / 727,801$	Applicant(s)/Patent Under Reexamination MARPE ET AL.	
	Examiner Jean B Jeanglaude	Art Unit 2819	Page 1 of 1

U.S. PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Name	Classification
$*$	A	US-4,891,643	$01-1990$	Mitchell et al.	$341 / 107$
$*$	B	US-5,973,626	$10-1999$	Berger et al.	$341 / 65$
$*$	C	US-6,075,471	$06-2000$	Kimura et al.	$341 / 107$
	D	US-			
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Country		Name
	N					Classification
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
	U	
	V	
	W	
	X	

[^0]Dates in MM-YYY format are publication dates. Classifications may be US or foreign.

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
United States Patent and Tradema
Address: COMMISSIONER FOR PATENTS
Alexandria, Vinginia 22313-1450
www.upto.gov
BIBDATASHEET
Bib Data Sheet

TITLE
Method and arrangement for arithmetic encoding and decoding binary states and a corresponding computer program and a corresponding computer-readable storage medium

FILING FEE RECEIVED 1058	FEES: Authority has been given in Paper No. \qquad to charge/credit DEPOSIT ACCOUNT No. \qquad for following:	\square All Fees
		$\square_{1.16 ~ F e e s ~(~ F i l i n g ~) ~}^{\text {) }}$
		1.17 Fees (Processing Ext. of time)
		$\square_{1.18}$ Fees (Issue)
		\square Other
		\square Credit

I hare y certify that this correspondence is being deposited with the United States Postal Service with ThaDesticient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O Box 1450, Alexandria, VA $22313-1450$.

Date:

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
Applic. No. : 10/727,801
Confirmation No: 6855
Applicant : Detlef Mare, et al.
Filed : December 4, 2003
Art Unit : 2819
Title : Method and Arrangement for Arithmetic Encoding and Decoding Binary States and a Corresponding Computer Program and a Corresponding Computer-Readable Storage Medium
Docket No. : S\&ZFH030508
Customer No. : 24131

INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. 1.97(C)(2)

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Sir:

In accordance with 37 C.F.R. 1.98 copies of the following patents and/or publications are submitted herewith:

Ref 1.01: Title: Draft ITU-T Recommendation and Final Draft International Standard Joint Video Specification (ITU-T Rec. H.264I ISO/IEC 14496-10 AVC). From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-250.

Ref 1.02: Title: Overview of the H.264/AVC Video Coding Standard. Author: Thomas
Wiegand, Gary J. Sullivan, Senior Member, IEEE, Gisele Bjontegaard, and Ajay Luthra, Senior Member, IEEE. Pages: 560-576.

Ref 1.03: Title: Information Technology-Generic Coding Moving Pictures and
Associated Audio Information: Video. From: International Standard 13818-2
Recommendation ITU-T H.26. Pages: 1-224.
10/08/2004 AKONDAF1 0000000110727801

Ref 1.04: Title: Draft Text of Recommendation H. 263 Version 2 ("H.263+") for Decision.
From: International Telecommunication Union. Pages: 1-143.
Ref 1.05: Title: Information Technology-Coding of Audio Visual Objects-Part 2: Visual.
From: International Organization for Standardization Organization International Normalization ISO/IEC JTC1/SC29/WG 11 Coding of Moving Picture and Audio. Pages: 1-526.
Ref 1.06: Title: DCT Coding for Motion Video Storage Using Adaptive Arithmetic Coding. Author: C.A. Gonzalez, L. Allman, T. McCarthy, P. Wendt. Pages: 145-154.
Ref 1.07: Title: Adaptive Codes for H.26L. From: ITU -Telecommunications Standardization Sector. Pages: 1-7
Ref 1.08: Title: Further Results for CABAC Entropy Coding Scheme. From: ITU Telecommunications Standardization Sector. Pages: 1-8.
Ref 1.09: Title: Improved CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-6.
Ref 1.10: Title: New Results in Improved CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6).

Pages: 1-12.

Ref 1.11: Title: Improved CABAC. From: ITU-Telecommunications Standardization Sector. Pages: 1-9.
Ref 1.12: Title: Fast Arithmetic Coding for CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6).

Pages: 1-11.

Ref 1.13: Title: CABAC and Slices. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-17.
Ref 1.14: Title: Analysis and Simplification of Intra Prediction. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6).

Ref 1.15: Title: Proposed Cleanup Changes for CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-7.

Ref 1.16: Title: CABAC Cleanup and Complexity Reduction. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-20.

Ref 1.17: Title: Final CABAC Cleanup. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 124.

Ref 1.18: Title: Very Low Bit-Rate Video Coding Using Wavelet-Based Techniques. Author: Detlev Marpe and Hans L. Cycon. Pages: 85-94

Ref 1.19: Title: Wavelet-Based Very Low Bit-Rate Video Coding Using Image Warping and Overlapped Block Motion Compensation. Author: G. Heising, D. Marpe, H.L.
Cycon and A.P. Petukhov. Pages: 93-101.
Ref 1.20: Title: Motion-Compensated 3-D Subband Coding of Video. Author: SeungJong Choi and John W. Woods, Fellow IEEE. Pages: 155-167.

Ref 1.21: Title: A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarachial Trees*. Author: Amir Said (Faculty of Electrical Engineering) and William A. Pearlman (Department of Electrical, Computer, and Systems Engineering Renesselar Polytechnic Institute). Pages: 1-15.
Ref 1.22: Title: Efficient Pre-Coding Techniques for Wavelet-Based Image
Compression. Author: Detlev Marpe and Hans L. Cycon. Pages: 45-51.
Ref 1.23: Title: Universal Modeling and Coding. Author: Jorma Rissanen and Glen G.
Langdon, Jr., Senior Member, IEEE. Pages: 12-23.
Ref 1.24: Title: Universal Coding Information, Prediction, and Estimation. Author: Jorma Rissanen. Pages: 629-636.

Ref 1.27: Title: Applications of Universal Context Modeling to Lossless Compression of Grey-Scale Images. Author: Marcelo J. Weinberger, Member, IEEE, Jorma J.

Rissanen, Senior Member, IEEE, and Ronald B. Arps. Pages: 575-586.
Ref 1.29: Title: A Compression Method for Clustered Bit-Vectors. Author: Jukka Teuhola (Department of Computer Science, University of Turka). Application: XP001000934.

Ref 1.30: Title: Optimal Source Codes for Geometrically Distributed Integer Alphabets.
Author: Robert G. Gallager, fellow, IEEE, David C. Vanvoorhis, member, IEEE.
Pages: 228-230.
Ref 1.31: Title: A Context Modeling Algorithm and its Application in Video Compression. Author: Marta Mrak, Detlev Marpe, and Thomas Wiegand.
Ref 1.32: Title: An Overview of the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder. Author: W.B. Pennebaker, J.L. Mitchell, G.G. Langdon, Jr., and R.B. Arps. Pages: 717-726.

Ref 1.33: Title: A Muliplication-Free Multialphabet Arithmetic Code. Author: Jorma Rissanen and K.M. Mohiuddin. Pages: 93-98.

Ref 1.34: Title: Practical Implementations of Arithmetic Code. Author: Paul G. Howard and Jeffrey Scott Vitter. Pages: 1-30.

Ref 1.35: Title: Sample Data Coding. From: Chapter 12. Pages: 474-484.
Ref 1.37: Title: Arithmetic Code Revisited. Author: Alistair Moffat (The University of Melbourne), Radford M. Neal (University of Toronto), and Ian H. Witten (the University of Waikato). Pages: 257-294.
Ref 1.38: Title: Rate-Constrained Coder Control and Comparison of Video Coding Standards. Author: IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, July 2003. Thomas Wiegand, Heiko Schwarz, Anthony Joch, Faouzi Kossentini, Senior Members, IEEE, and Gary J. Sullivan, Senior Member, IEEE.

Pages: 689-703.
Ref 2.1: Title: Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T rec. H. 264 I ISO/IEC 14496-10 AVC). From: Joint Video Team (JVT) of SO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG 16 Q.6). Pages 1-249.
Ref 2.03x: Title: Line Transmission of Non-Telephone Signals / Video Codec for Audiovisual Services AT p x 64 kbit/s. From: International Telecommunication Union H.261. Pages: 1-25.

Ref 2.06x: Title: H.264/AVC Over IP. Author: Stephan Wenger. Pages: 645-656. Ref 2.07: Title: H.264/AVC in Wireless Environments. From: Thomas Stockhammer, Miska M. Hannuksela, and Thomas Wiegand. Pages: 657-673.
Ref 2.08: Title: Motion-and Aliasing-Compensated Prediction for Hybrid Video Coding. Author: Thomas Wedi and Hand Georg Musmann. Pages: 577-586.
Ref 2.9: Title: Long-Term Memory Motion-Compensated Prediction. Author: Thomas Wiegand, Xiaozheng Zhang, and Bernd Girod, Fellow, IEEE. Pages: 70-84.
Ref 2.11: Title: A Locally Optimal Design Algorithm for Block-Based Multi-Hypothesis Motion-Compensated Prediction. Author: Markus Flierl, Thomas Wiegand, and Bernd Girod Telecommunications Laboratory University of Erlangen-Nürnberg, Germany.
Pages: 1-10.
Ref 2.12: Title: Generalized B Pictures and the Draft H.264/AVC Video-Compression Standard. Author: Markus Flierl, Student Member, IEEE, and Bernd Girod, Fellow, IEEE. Pages: 587-597.

Ref 2.13: Title: Rate-Constrained Coder Control and Compression of Video Coding Standards. Author: Thomas Wiegand, Heiko Schwarz, Anthony Joch, Faouzi Kossentini, Senior Member, IEEE, and Gary J. Sullivan, Senior Member, IEEE. Pages: 688-703.

Ref 2.14: Title: H.264/AVC Over IP. Author: Stephan Wenger. Pages: 645-656. Ref 2.15: Title: The SP-and Si-Frames Design for H.264/AVC. Author: Marta Karcewicz and Ragip Kurceren, Member, IEEE. Pages: 637-644.
Ref 2.16: Title: Context-Based Adaptive Binary Arithmetic Coding in the H/264/AVC Video Compression Standard. Author: Detlev Marpe, Member, IEEE, Heiko Schwarz, and Thomas Wiegand. Pages: 620-636.

Ref 2.17: Title: Low-Complexity Transform and Quantization in H.264/AVC. Author: Henrique S. Malvar, Fellow, IEEE, Antti Hallapuro, Marta Karczewicz, and Louis Kerofsky, Member, IEEE. Pages: 598-603.
Ref 2.18: Title: Adaptive Deblocking Filter. Author: Peter List, Anthony Joch, Jani Lainema, Gisle Bjontegaard, and Marta Karczewicz. Pages: 614-619.
Ref 2.19: Title: A Generalized Hypothetical Reference Decoder for H.264/AVC. Author: Jordi Ribas-Cobrera, Member, IEEE, Philip A. Chou, Senior Member, IEEE, and Shankar L. Regunathan. Pages: 674-687.
Ref A: Title: Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. zh. 264 I ISO/IEC 14496-10 AVC). From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO.IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-253.
Ref B: Title: A Highly Efficient Multiplication-Free Binary Arithmetic Coder and its Application in Video Coding. Author: Detlev Marpe and Thomas Wiegand. Pages: 14.

Ref C: Title: Proposed Editorial Changes and Cleanup of CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO.IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-10.
Ref D: Title: Study of Final Committee Draft of Joint Video Specification (ITU-T Rec. H. 264 I ISO/IEC 14496-10 AVC). From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO.IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-239.
Ref E: Title: Study of Final Committee Draft and Joint Video Specification (ITU-T Rec. H. 264 I ISO/IEC 14496-10 AVC). From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO.IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-227.

Ref F: Title: CABAC and Slices. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO.IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-17.

In accordance with 37 C.F.R. 1.97(e) the undersigned herewith states that each item of information contained in the information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement.

If no translation of pertinent portions of any foreign language patents or publications mentioned above is included with the aforementioned copies of those applications, patents and/or publications, it is because no existing translation is readily available to the applicant. As per the Notice in 1273 OG 55 (August 5, 2003) no copies of any above-mentioned U.S. patents and U.S. patent application publications are submitted for any application filed after June 30, 2003.

In accordance with 37 C.F.R. 1.97 (c) (2), consideration of this Information Disclosure Statement is requested.

Enclosed is the fee in the amount of $\$ 180.00$.

It is believed that the enclosed prior art is less pertinent than the prior art previously submitted and cited by the Examiner. Kindly place the references in the Patent Office file wrapper.

Respectfully submitted,

Alfred K. Dassler
 52,794

Date: October 4, 2004
Lerner And Greenberg, P.A.
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100
Fax: (954) 925-1101

	Ref 1.09: Title: Improved CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-6.
	Ref 1.10: Title: New Results in Improved CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-12.
	Ref 1.11: Title: Improved CABAC. From: ITU-Telecommunications Standardization Sector. Pages: 1-9.
	Ref 1.12: Title: Fast Arithmetic Coding for CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-11.
	Ref 1.13: Title: CABAC and Slices. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-17.
	Ref 1.14: Title: Analysis and Simplification of Intra Prediction. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6).
	Ref 1.15: Title: Proposed Cleanup Changes for CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC
	JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-7.

		45-51.
	Ref 1.23: Title: Universal Modeling and Coding. Author: Jorma Rissanen and Glen G. Langdon, Jr., Senior Member, IEEE. Pages: 12- $\mathbf{2 3 .}$	
	Ref 1.24: Title: Universal Coding Information, Prediction, and Estimation. Author: Jorma Rissanen. Pages: 629-636.	
	Ref 1.27: Title: Applications of Universal Context Modeling to Lossless Compression of Grey-Scale Images. Author: Marcelo J. Weinberger, Member, IEEE, Jorma J. Rissanen, Senior Member, IEEE, and Ronald B. Arps. Pages: 575-586.	
	Ref 1.29: Title: A Compression Method for Clustered Bit-Vectors. Author: Jukka Teuhola (Department of Computer Science, University of Turka). Application: XP-001000934.	
	Ref 1.30: Title: Optimal Source Codes for Geometrically Distributed Integer Alphabets. Author: Robert G. Gallager, fellow, IEEE, David C. Vanvoorhis, member, IEEE. Pages: 228-230.	
	Ref 1.32: Title: An Overview of the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder. Author: W.B. Pennebaker, J.L. Mitchell, G.G. Langdon, Jr., and R.B. Arps. Pages: 717-726.	
	Ref 1.31: Title: A Context Modeling Algorithm and its Application in Video Compression. Author: Marta Mrak, Detlev Marpe, and Thomas Wiegand.	
Ref 1.33: Title: A Muliplication-Free Multialphabet Arithmetic Code.		
Author: Jorma Rissanen and K.M. Mohiuddin. Pages: 93-98.		

| . | Ref 2.1: Title: Draft ITU-T Recommendation and Final Draft
 International Standard of Joint Video Specification (ITU-T rec. H.264 I
 ISO/IEC 14496-10 AVC). From: Joint Video Team (JVT) of SO/IEC
 MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG 16
 Q.6). Pages 1-249. |
| :--- | :--- | :--- |
| | Ref 2.03x: Title: Line Transmission of Non-Telephone Signals /Video
 Codec for Audiovisual Services AT p x 64 kbit/s. From: International
 Telecommunication Union H.261. Pages: 1-25. |
| | Ref 2.06x: Title: H.264/AVC Over IP. From: Stephan Wenger. Pages:
 645-656. |
| | Ref 2.07: Title: H.264/AVC in Wireless Environments. Author:
 Thomas Stockhammer, Miska M. Hannuksela, and Thomas Wiegand.
 Pages: 657-673. |
| | Ref 2.08: Title: Motion-and Aliasing-Compensated Prediction for Hybrid
 Video Coding. Author: Thomas Wedi and Hand Georg Musmann.
 Pages: 577-586. |
| | Ref 2.9: Title: Long-Term Memory Motion-Compensated Prediction.
 Author: Thomas Wiegand, Xiaozheng Zhang, and Bernd Girod, Fellow,
 IEEE. Pages: 70-84. |
| | Ref 2.11: Title: A Locally Optimal Design Algorithm for Block-Based
 Multi-Hypothesis Motion-Compensated Prediction. Author: Markus
 Fliel, Thomas Wiegand, and Bernd Girod Telecommunications
 Laboratory University of Erlangen-Nürnberg, Germany. Pages: 1-10. |
| | Ref 2.12: Title: Generalized B Pictures and the Draft H.264/AVC Video-
 Compression Standard. Author: Markus Flierl, Student Member, IEEE, |
| and Bernd Girod, Fellow, IEEE. Pages: 587-597. | |

| . | | H.264/AVC. From: Henrique S. Malvar, Fellow, IEEE, Antti Hallapuro,
 Marta Karczewicz, and Louis Kerofsky, Member, IEEE. Pages: 598-
 603. |
| :--- | :--- | :--- | :--- |
| | Ref 2.18: Title: Adaptive Deblocking Filter. Author: Peter List, Anthony
 Joch, Jani Lainema, Gisle Bjontegaard, and Marta Karczewicz. Pages:
 614-619. | |
| | Ref 2.19: Title: A Generalized Hypothetical Reference Decoder for
 H.264/AVC. Author: Jordi Ribas-Cobrera, Member, IEEE, Philip A.
 Chou, Senior Member, IEEE, and Shankar L. Regunathan. Pages:
 674-687. | |
| | Ref A: Title: Draft ITU-T Recommendation and Final Draft International
 Standard of Joint Video Specification (ITU-T Rec. zh.264 I ISO/IEC

 ITU-T VCEG (ISO.IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). | |
| Pages: 1-253. | | |

\because	December 4, 2003	2819

CERTIFICATION OF MAILING OR TRANSMISSION

I hereby certify that this correspondence is being deposited with the United states Postal Service with sufficient postage as first class mail in an envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to the U.S. Patent and Trademark office, on the date shown below.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

A MENDDMENT

Mail Stop Amendment
Hon. Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

S ir r

Responsive to the Office Action dated September 14, 2004,
kindly amend the above-identified application as follows:

Amendments to the Specification begin on page 3 of this paper.

Amendments to the Drawings begin on page 4 of this paper and include both an attached replacement sheet and an annotated sheet showing changes.

Amendments to the claims begin on page 5 of this paper.

Remarks/Arguments begin on page 29 of this paper.

Amendments to the Specification:

Please replace the Abstract, on page 37 , lines 1 - 16 , with
the following :

- Method and Axrangement for Arithmetic Eneoding and Deeoding Binary state日-and- a Coxfeqpending-Cemputex-Program-and a Correopending Computer readable Storage Medium

ABSTRACT

A method and arrangement for arithmetic encoding/decoding is described, wherein the probability estimation is performed by a finite state machine $F S M$, wherein the generation of N representative states of the FSM is performed offline. Corresponding transition rules are filed in the form of tables. In addition, a pre-quantization of the interval width R to a number of K pre-defined quantization values is carried out. With suitable dimensioning of K and N, this allows the generation of a table containing all $K \times N$ combinations of pre-calculated product values $R \quad x \quad P_{\text {Lps }}$ for a multiplicationfree determination of $R_{\text {Lps. Overall, the result is a good }}$ compromise between high coding efficiency and low calculation effort. The invention degeribes a method and an arrangement for an axithmetie eneoding and decoding of binary gtateg and a eorresponding eomputer program and a eorreoponding eomputer readable otoxage medium, whieh-may in partieular be used in digital data eompxession.

To this end it is proposed to for example pexform a table aided binaxy axithmetic eneoding and deeoding using two or several tables. - -

This listing of claims will replace all prior versions, and
listings, of claims in the application:

Listing of Claims:

1. (original) A method for an arithmetic encoding and decoding of binary states,
characterized in that
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{K}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots\right.$, $\left.P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{K}(1 \leq k \leq K)$ to every interval width R and one P_{n} (l $\leq n \leq N$) to every probability, and that in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width Q_{K} (1 $\leq k \leq K$) and a representative probability state $P_{n}(1 \leq n$ $\leq N$) by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{k} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
2. (original) The method according to claim 1 ,
characterized in that
based on the interval currently to be evaluated having a width R, for determining the associated interval width Q_{k}, an index q_index is determined by a shift and bit masking operation applied to the computer-internal/binary representation of R.
3. (original) The method according to claim 1,
characterized in that
based on the interval currently to be evaluated with a width R, for the determination of the associated interval width Q_{K}, an index q_{i} index is determined by a shift operation applied to the computer-internal/-binary representation of R and a downstream access to a table Qtab, wherein the table Qtab contains the indices of interval widths corresponding to values of R prequantized by a shift operation.
4. (original) The method according to claim 1, characterized in that
the probability estimation underlying the symbol to be encoded or to be decoded is associated with a probability state P_{n} with the help of an index p_state.
5. (original) The method according to claim 1 ,
characterized in that
the values of the interval width $R_{\text {Lps }}$ corresponding to all K interval widths and to all N different probability states are entered into a table Rtab as product values (Q_{k} * P_{n}).
6. (original) The method according to claim 1,
characterized in that
the determination of the interval width $R_{\text {Lps }}$ corresponding to the LPS is performed by an access to a table Rtab, wherein the table Rtab contains the values of the interval width $R_{\text {Lps }}$ corresponding to all K quantized values of R and to the N different probability states as product values (Q_{K} * P_{n}).
7. (original) The method according to claim 1,
characterized in that
the determination of the interval width $R_{\text {Lps }}$ corresponding to the LPS is performed by an access to the table Rtab, wherein, for an evaluation of the table, the quantization index q_index and the index of the probability state p_state are used.
8. (original) The method according to claim 1,
characterized in that
for the N different representative probability states transition rules are preset, wherein the transition rules indicate which new state is used for the next symbol to be encoded or to be decoded based on the currently encoded or decoded symbol.
9. (original) The method according to claim 8 ,
characterized in that
a table Next_State_LPS is created which contains the index m of the new probability state P_{m} for the index n of the currently given probability state P_{n} at the occurrence of a least probable symbol (LPS).
10. (original) The method according to claim 8,
characterized in that
a table Next_State_MPS is created which contains the index m of the new probability state P_{m} for the index n of the currently given probability state P_{n} at the occurrence of a most probable symbol (MPS).
11. (original) The method according to claim 1,
characterized in that
the number K of quantization values and/or the number N of the representative states are selected depending on the preset accuracy of the coding and/or depending on the available storage room.
12. (currently amended) The method according to claim 1,
characterized in that
the table-aided encoding includes the following steps:
6.f) Determination of the LPS
7.g) Quantization of R :
q index $=$ Qtab [$R \gg q]$
\& h) Determination of $R_{\text {Lps }}$ and R :
$R_{\text {Lps }}=$ Rtab [q_index, p_state]
$\mathrm{R}=\mathrm{R}-\mathrm{R}_{\mathrm{LPS}}$
9-i) Calculation of the new partial interval:
if (bit $=$ LPS) then
$\mathbf{L} \leftarrow \mathbf{L}+\mathbf{R}$
$\mathrm{R} \leftarrow \mathrm{R}_{\mathrm{LPS}}$
if (p state $=0$) then valMPS $\leftarrow 1$ - valMPS
p state \leftarrow Next State LPS [p state]
else
p_state \leftarrow Next_State_MPS [p_state]
10-j) Renormalization of L and R, writing bits, wherein

13. (currently amended) The method according to claim 1,
characterized in that
a table-aided decoding includes the following steps:

1-a) Determination of the LPS
$z-b)$ Quantization of R :
q index $=Q t a b[R \gg q]$
3-C) Determination of $R_{\text {Lps }}$ and R :
$R_{\text {Lps }}=$ Rtab [q_index, $\left.p _s t a t e\right]$
$\mathbf{R}=\mathbf{R}-\mathbf{R}_{\mathrm{LPS}}$
4-d) Determination of bit depending on the position of the partial interval:
if ($V \geq R$) then
bit \leftarrow LPS
$\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}$
$R \leftarrow R_{\text {LPS }}$
if (p_state $=0$) then valMPS $\leftarrow 1$ - valMPS
p_state \leftarrow Next_State_LPS [p_state]
else
bit \leftarrow MPS
p_state \leftarrow Next_state_MPS [p_state]
5.e) Renormalization of R, reading out one bit and updating V, wherein
q_index describes the index of a quantization value read out of Qtab,
p_state describes the current state,
$R_{\text {LPs }} \quad$ describes the interval width corresponding to the LPS,
valmps describes the bit corresponding to the MPS, and
v describes a value from the interior of the current partial interval.
14. (original) The method according to claim 1 ,
characterized in that
in encoding and/or decoding the calculation of the quantization index q_index is performed in the second substep according to claim 12 and/or 13 according to the calculation regulation:
q_index = (R >> q) \& Qmask
wherein Qmask illustrates a bit mask suitably selected depending on K.
15. (currently amended) The method according to claim_1,
characterized in that
when a uniform probability distribution is present
in the encoding according to claim 12 the substeps [[¥]] \underline{f} to [[4]] $\underset{i}{ }$ are performed according to the following calculation regulation:
$\mathbf{R} \leftarrow \mathbf{R} \gg 1$
if (bit $=1$) then
$\mathrm{L} \leftarrow \mathrm{L}+\mathrm{R}$
or
that the substeps [[士]] \underline{f} to [[4]] \underline{i} of the encoding according to claim 12 are performed according to the following calculation regulation:
$L \leftarrow L \ll 1$
if (bit $=1$) then
$L \leftarrow L+R$
and wherein in the last alternative the renormalization (substep [[5]] j according to claim 12) is performed with doubled decision threshold values and no doubling of L and R is performed, and
that in the decoding according to claim 13 the substeps [[7]] a to [[4]] d are performed according to the following calculation regulation:
$R \leftarrow R \gg 1$
if $(V \geq R)$ then
bit $\leftarrow 1$
$\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}$
else
bit $\leftarrow 0$,
or
the substeps [[士]] a to [[5]] e of the decoding according to claim 13 are performed according to the following calculation regulation:

3-m) Reading out one bit and updating V
4.n) Determination of bit according to the position of the partial interval:

```
if (V \geq R) then
```

bit $\leftarrow 1$
$\mathrm{V} \leftarrow \mathrm{V}-\mathrm{R}$
else
bit $\leftarrow 0$.
16. (original) The method according to claim 1 ,
characterized in that
the initialization of the probability models is performed depending on a quantization parameter sliceQP and preset model parameters m and n, wherein $S l i c e Q P$ describes the
quantization parameter preset at the beginning of a slice and m and n describe the model parameters.
17. (currently amended) The method according to claim 1 ,
characterized in that
the initialization of the probability models includes the following steps:

士..k) preState $=\min (\max (1,((m * \operatorname{sliceQP}) \gg 4)+n), 2 * N)$
$z-1$) if (prestate $<=N$) then

```
                p_state = N +# - prestate
                valMPS = 0
```

else

$$
\begin{aligned}
& \text { p_state }=\text { prestate }-(N+1) \\
& \text { valMPS }=1,
\end{aligned}
$$

wherein valMPS describes the bit corresponding to the MPS, SliceQP describes the quantization parameter preset at the beginning of a slice and m and n describe the model parameters.
18. (original) The method according to claim 1, characterized in that
the probability estimation of the states is performed using a finite state machine (FSM).
19. (original) The method according to claim 1 ,
characterized in that
the generation of the representative states is performed offline.
20. (original) The method according to claim 1 ,
characterized in that
the selection of the states depends on the statistics of the data to be coded and/or on the number of states.
21. (original) An arrangement having at least one processor and/or chip, which is/are implemented such that a method for an arithmetic encoding and decoding of binary states is may be performed, wherein
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{k}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots\right.$, $\left.\mathrm{P}_{\mathrm{N}}\right\}$ and allocation regulations are given, which allocate one $Q_{k}(1 \leq k \leq K)$ to every interval width R and one P_{n} (1 $\leq \mathrm{n} \leq \mathrm{N}$) to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width Q_{k} (1 $\leq k \leq K$) and a representative probability state $P_{n}(1 \leq n$ $\leq N$) by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
22. (original) A computer program which enables a computer after it has been loaded into the storage of the computer to perform a method for an arithmetic encoding and decoding of binary states, wherein
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{k}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots\right.$, $\left.\mathrm{P}_{\mathrm{N}}\right\}$ and allocation regulations are given, which allocate one $Q_{K}(1 \leq k \leq K)$ to every interval width R and one P_{n} (1 $\leq \mathrm{n} \leq \mathrm{N})$ to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width Q_{k} (I $\leq k \leq K$) and a representative probability state $p_{n}(1 \leq n$ $\leq N$) by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
23. (original) A computer-readable storage medium on which a computer program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method for an arithmetic encoding and decoding of binary states, wherein
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{K}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots\right.$, P_{N} \} and allocation regulations are given, which allocate one $Q_{K}(1 \leq k \leq K)$ to every interval width R and one P_{n} (1 $\leq \mathrm{n} \leq \mathrm{N}$) to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{k}(1$ $\leq k \leq K$) and a representative probability state $P_{n}(1 \leq n$ $\leq N$) by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
24. (original) The computer program according to claim 22, which is downloaded from an electronic data network, like for example from the internet, onto a data processing means which is connected to the data network.
--25. (new) A method for arithmetically encoding a symbol to be encoded having a binary state based on a current interval width R and a probability representing a probability estimation for the symbol to be encoded, wherein the probability is represented by a probability index for addressing a probability state from a plurality
of representative probability states, which method comprises the following steps:
encoding the symbol to be encoded by performing the following substeps:
mapping the current interval width to a quantization
index from a plurality of representative
quantization indices; and
performing the interval separation by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
26. (new) The method of claim 25, wherein the encoding further takes place by the following step:
updating the current interval width using the interval width value to obtain a new, updated interval width.
27. (new) The method of claim 25, wherein the partial interval width value specifies a width of a partial interval for a symbol to be encoded with a less probable state from a current interval with a current interval width.
28. (new) The method of claim 25, wherein updating the current interval width is further performed depending on the binary state of the symbol to be encoded.
29. (new) The method of claim 25, further comprising the following step:
adaptation of the probability estimation, wherein the adaptation of the probability estimation comprises looking up, with the probability index, in an LPS transition rule table (Next_state_LPS) to obtain a new probability index, when the symbol to be encoded has a
less probable state, and looking up, with the probability index, in an MPS transition rule table (Next_State_MPS) to obtain a new probability index, when the symbol to be encoded has a more probable state.
30. (new) The method of claim 29, further comprising adjusting a value indicative of the more probable state from a state originally indicated to the binary state of the symbol to be encoded, when the probability index is like a predetermined probability index and the symbol to be encoded has a binary state different from the state originally indicated.
31. (new) The method of claim 25, wherein the substep of updating the current interval width comprises the following steps:
equating the new interval width with the difference of current interval width minus the partial interval width value; and
subsequently, if the symbol to be encoded has a less probable state, equating the new interval width with the partial interval width value.
32. (new) The method of claim 25, wherein a current interval is represented by the current interval width and a current offset point, and the encoding is further performed by the following substep:
accumulating the current offset point and a difference of current interval width and partial interval width value to obtain a new, updated offset point, when the symbol to be coded has a less probable state.
33. (new) A method for arithmetically decoding an encoded symbol having a binary state based on a current interval width R and a probability representing a probability
estimation for the encoded symbol, wherein the probability is represented by a probability index of a probability state from a plurality of representative probability states, wherein the method comprises the following step:
decoding the encoded symbol by performing the following substeps:
mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
performing the interval division by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
34. (new) The method of claim 33, wherein the decoding further takes place by means of the following step:
updating the current interval width using the partial interval width value to obtain a new, updated interval width.
35. (new) The method of claim 33, wherein the partial interval width value specifies a width of a partial interval for an encoded symbol with a less probable state from a current interval with the current interval width.
36. (new) The method of claim 33, wherein updating the current interval width is further performed depending on a value within a new partial interval characterized by the current partial interval width and the value within a new partial interval.
37. (new) The method of claim 36, wherein the decoding is further performed by means of the following substep:
equating the binary state of the encoded symbol with one of a more improbable and a more probable state depending on whether the value within the new partial interval is larger or smaller than a difference of the current interval width and partial interval width value.
38. (new) The method of claim 36 , wherein the encoding is further performed by means of updating the value within the new partial interval with a next bit to be read in.
39. (new) The method of claim 36, further comprising the following step:
updating the probability estimation, wherein updating the probability estimation comprises looking up, with the probability index, in an LPS transition rule table (Next_State_LPS) to obtain a new probability index, when the value within the new partial interval is larger than a difference of the current interval width and partial interval width value, and looking up, with the probability index, in an MPS transition rule table (Next_State_MPS) to obtain a new probability index, when the value within the new partial interval is smaller than a difference of the current interval width and partial interval width value.
40. (new) The method of claim 36, further comprising adjusting a value indicative of the more probable state of the encoded symbol from a state originally indicated to a different binary state, when the probability index is like a predetermined probability index and the value within the new partial interval is larger than a difference of the current interval width and partial interval width value.
41. (new) The method of claim 33, wherein the current interval width is represented with an accuracy of b bits, and the
partial interval width value obtained from the interval division table is represented with an accuracy of $b-2$ bits.
42. (new) The method of claim 33, wherein
the substep of mapping comprises applying a shift and bit masking operation to a computer-internal/binary representation of the current interval width.
43. (new) The method of claim 33, wherein
the substep of mapping comprises applying a shift operation to a computer-internal/binary representation of the current interval width to obtain a quantized value for the current interval width, and a downstream access to a table (Qtab) to obtain the quantization index.
44. (new) The method of claim 33, wherein,
in the interval division table, values for the current interval width corresponding to all possible quantization indices and to all probability indices are filed as product values between quantization index, and in a table Rtab.
45. (new) The method of claim 33, further comprising the following step:
updating the probability estimation, wherein updating the probability estimation is performed by means of transition rules, wherein the transition rules specify which new probability state from a plurality of probability states, based on the symbol to be encoded and/or the encoded symbol, will be used for a next symbol to be encoded and/or an encoding symbol.
46. (new) The method of claim 33, further comprising the following step:
updating the probability estimation, wherein updating the probability estimation comprises looking up, with the probability index, in a transition rule table (Next_State_LPS) to obtain a new probability index.
47. (new) The method of claim 33, wherein
the number of possible quantization indices and/or the number of the probability states are selected depending on the preset accuracy of the coding and/or depending on the available storage room.
48. (new) The method of claim 33, further comprising the following substep:
renormalizing the new updated offset point and the new, updated interval width.
49. (new) The method of claim 33, wherein
decoding includes the following steps:
a) Determination of the LPS
b) Quantization of R :
q_index $=Q t a b$ [$R \gg q]$
c) Determination of $R_{\text {Lps }}$ and R :
$R_{\text {LPS }}=$ Rtab [q_index, $p_{\text {_state] }}$
$\mathbf{R}=\mathbf{R}-\mathbf{R}_{\mathrm{LPS}}$
d) Determination of bit, depending on the position of the partial interval:
if ($V \geq R$) then bit \leftarrow LPS V $\leftarrow \mathbf{V}-\mathbf{R}$
$\mathrm{R} \leftarrow \mathrm{R}_{\mathrm{LPS}}$
if (p_state $=0$) then valMPS - 1 - valmps

```
p_state - Next_State_LPS[p_state]
```

else
bit \leftarrow MPS
p_state - Next_State_MPS[p_state]
e) Renormalization of R, reading out one bit and
updating V,
wherein
q_index describes the index of a quantization value
read out of Qtab,
p_state describes the current state,
$R_{\text {Lps }}$ describes the interval width corresponding to
the LPS,
Valmps describes the bit corresponding to the MPS and
v describes a value from within the current
partial interval.
50. (new) The method of claim 33, wherein,
in encoding and/or decoding, mapping to the quantization index q _index is performed according to the calculation regulation:
q_index $=(R \gg q) \&$ Qmask
wherein Qmask represents a bit mask suitably selected depending on the number of probability states, R represents the current interval width and q represents a number of bits.
51. (new) The method of claim 33, wherein,
in the presence of a uniform probability distribution,

```
- in the encoding, the following calculation
regulation is performed:
\(R \leftarrow R \gg 1\)
if (bit \(=1\) ) then
    \(L \leftarrow I+R\),
or
the following calculation regulation is performed:
```

L $\leftarrow \mathrm{L} \ll 1$
if (bit $=1$) then

$$
L \leftarrow I+R
$$

and, in the last alternative, a renormalization with doubled decision threshold values is performed and no doubling of L and R is carried out.
52. (new) The method of claim 33 , wherein,
in the decoding, the following calculation regulation is performed:
$\mathbf{R} \leftarrow \mathbf{R} \gg 1$
if ($V \geq R$) then
bit -1
$\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}$
else
bit $\leftarrow 0$,
or
the following calculation regulation:
m) Reading out one bit and updating V
n) Determination of bit depending on the position of the partial interval:
if $(V \geq R)$ then
bit $\leftarrow 1$
$\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}$
else
bit -0 .
53. (new) The method of claim 33 , wherein
the initialization of the probability models is performed depending on a quantization parameter sliceQP and preset model parameters m and n, wherein sliceQP describes the quantization parameter preset at the beginning of a slice, and m and n describe the model parameters.
54. (new) The method of claim 33, wherein
the initialization of the probability models includes the following steps:
k) preState $=\min (\max (1,((m * S l i c e Q P) \gg 4)+n), 2 * N)$
l) if (preState $<=N$) then
p_state $=N$ - preState
valMPs = 0
else
p_state $=$ preState $-(N+1)$
valMPS = 1,
wherein valmps describes the bit corresponding to the MPS, SliceQP describes the quantization parameter preset at the beginning of a slice, and m and n describe the model parameters.
55. (new) The method of claim 33, wherein
the probability estimation of the states is performed by means of a finite state machine (FSM).
56. (new) The method of claim 33, wherein
the generation of the probability states is performed offline.
57. (new) The method of claim 33, wherein
the selection of the states depends on the statistics of the data to be coded and/or on the number of the states.
58. (new) An arrangement for arithmetically encoding a symbol to be encoded having a binary state based on a current interval width R and a probability representing a probability estimation for the symbol to be encoded, wherein the probability is represented by a probability index for addressing a probability state from a plurality of representative probability states, the device comprising:
means for encoding the symbol to be encoded, including the following means:
means for mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
means for performing the interval separation by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
59. (new) An arrangement for arithmetically decoding an encoded symbol having a binary state based on a current interval width R and a probability representing a probability estimation for the encoded symbol, wherein the probability is represented by a probability index for addressing a probability state from a plurality of representative probability states, the device comprising:
means for decoding the encoded symbol, comprising the following means:
means for mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
means for performing the interval separation by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
60. (new) A computer program which enables a computer after it has been loaded into the storage of the computer to perform a method for arithmetically encoding a symbol to be encoded having a binary state based on a current interval width R and a probability representing a probability estimation for the symbol to be encoded,
wherein the probability is represented by a probability index for addressing a probability state from a plurality of representative probability states, the method comprising the following steps:
encoding the symbol to be encoded by performing the following sub-steps:
mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
performing the interval separation by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
61. (new) A computer program which enables a computer after it has been loaded into the storage of the computer to perform a method for arithmetically decoding an encoded symbol having a binary state based on a current interval width R and a probability representing a probability estimation for the encoded symbol, wherein the probability is represented by a probability index of a probability state from a plurality of representative probability states, the method comprising the following steps:
decoding the encoded symbol by performing the following sub-steps:

```
mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
performing the interval division by accessing an interval division table using the quantization index
```

and the probability index to obtain a partial interval width value.
62. (new) A computer-readable storage medium on which a program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method for arithmetically encoding a symbol to be encoded having a binary state based on a current interval width R and a probability representing a probability estimation for the symbol to be encoded, wherein the probability is represented by a probability index for addressing a probability state from a plurality of representative probability states, the method comprising the following steps:
encoding the symbol to be encoded by performing the following sub-steps:

Abstract

mapping the current interval width to a quantization index from a plurality of representative quantization indices; and performing the interval separation by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.

63. (new) A computer-readable storage medium on which a program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method for arithmetically decoding an encoded symbol having a binary state based on a current interval width R and a probability representing a probability estimation for the encoded symbol, wherein the probability is represented by a probability index of a probability state from a plurality of representative probability states, the method comprising the following steps:
decoding the encoded symbol by performing the following sub-steps:
mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
performing the interval division by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
64. (new) The computer-readable storage medium on which a program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method according to claim 60.
65. (new) The computer-readable storage medium on which a program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method according to claim 61.

Remarks:

Reconsideration of the application is respectfully requested.

Claims 1 - 65 are presently pending in the application. Claims 1 - 24 were previously indicated as allowable, subject to certain informalities. New claims 25 - 65 have been added.

On page 2 of the of the above-identified Office Action, the Examiner objected to the Abstract of the Disclosure. An amended Abstract has been submitted herewith.

Further, claims 12, 13,15 and 17 were objected to for certain informalities. Applicants' have made the amendments suggested in the Office Action. Moreover, in claim 12, step I), two lines have been switched in order to adapt step I) to the corresponding substep d) in claim 13. In claim 17, step 1), the variables for updating p_state have been amended in order to bring the sub step into conformity with Fig. 6.

Fig. 5 has been amended. Attached is one revised formal drawing sheet, including a revised Fig. 5, in which "bit $\leftarrow 0$ " has been added at the bottom of this figure. Original disclosure for this amendment may be found in original claim 15. A red-lined sheet showing this addition to Fig. 5 is additionally being provided.

Finally, Applicants appreciatively acknowledge the Examiner's statement that claims 1 - 24 are allowable.

Although, the Office Action states that prosecution on the merits is closed in accordance with the practice under Ex parte Quayle, Applicants are currently submitting new claims 25 - 65, which correspond to claims currently pending in the international preliminary Examination procedure of the parallel international patent application PCT/EP 03/04654. MPEP § 714.14 states that such amendments are treated in a manner similar to amendments after final rejection and cites to MPEP $\S \S 714.12$ and 714.13. As such, Applicants submit these new claims herein and respectfully request that they be entered and considered. Generally stated, the independent claims among these new claims are directed to the same kind of invention as the original, allowed independent claims.

Applicants believe that new claims 25-65 do not represent subject matter that extends beyond the content of the original disclosure. For example, new claim 25, like original claim 1, is a method for arithmetical encoding and is based on the following matter from the description of the instant application:

- the fact that the symbol to be encoded has a binary state, page 2, line 28, page 3, lines 25 and 28 - 29, page 18, lines 33-34 and page 17, line 37;
- the fact that the arithmetic encoding takes place on the basis of a probability, page 17, lines 26 - 31, in connection with page 18, line 22;
- the fact that the probability represents a probability estimation for the symbol to be encoded, page 17, line 26 - page 18, line 6 and line 22;
- the fact that the probability is represented by a probability index which addresses a probability state from a plurality of representative probability states, page 19, liens 2 - 4, page 18, lines 22 - 23, page 9, lines 18 - 21;
- the fact that the encoding of the encoding symbol takes place by means of mapping the current interval width to a quantization index from a plurality of representative quantization indices, page 19, lines 15-16 and 20-22;
- the fact that the encoding of the symbol to be encoded takes place by means of carrying out the interval separation, page 18, line 4, page 3, lines 30-32, page 18, line 3, page 9, and page 2, lines 25-26;
- the fact that the interval separation takes place by accessing an interval division table, page 9, lines 10-12 and 15-21;
- the fact that the access takes place using the quantization index and the probability index, page 9 , lines 19-21;
- the fact that a partial interval width value is obtained by the access, page 9, line 11.

The passages in the disclosure cited above, correspondingly apply to new independent claims 33, 58, 59 and new claims 60 65.

The new dependent claims are based on the original disclosure of the present application as follows:

Claim 26: Page 3, line 33, in connection with page 18, line 3 and Figs. 1 and 2. From the mentioned passages in the disclosure, it can readily be seen that the updating of the interval width R (page 3, line 33) takes place using the interval width value, i.e. by $R_{\text {MPs }}$ which, in turn, corresponds to $R-R_{\text {LPS }}$. The result is the new, updated interval width R.

Claim 27: Page 9, line 11.

Claim 28: Page 3, lines 32/33, in connection with page 18, line 3, and Figs. 1 and 2. From these passages, it can readily be seen that the updating of the interval width R is performed depending on the binary state of the symbol to be encoded, i.e. "bit" (ct, "if... then").

Claim 29: Original claim 10, as well as Fig. 2 in connection with page 18, lines 30 to 35, and page 3, lines 34/35, in connection with page 18 , line 3 , and page 17, lines 32/33, in connection with page 18, lines 28 to 30.

Claim 30: Original claim 12, i.e. particularly page 28, lines 29 and 33 in connection with page 19, lines 4 to 8.

Claim 31: Original claim 12, particularly page 28, line 27 as well as 29 and 31.

Claim 32 Page 3, lines 21/22, in connection with page 18, line 3, as well as original claim 12, page 28 , line 30, in connection with line 27.

Claim 34: Page 20, lines 16 to 19 , in connection with the
passages mentioned with respect to claim 26.

Claim 35: Page 20, lines 16 to 19 , in connection with the passages mentioned with respect to claim 26.

Claim 36: Page 20, lines 12 to 14 , particularly page 29 , lines 21 and 24, as well as line 18.

Claim 37: Original claim 13, particularly page 29, line 18, lines $21 / 22$ and 28.

Claim 38: Page 21, lines 12/13.

Claim 39: Page 20, lines 16 to 19 , in connection with the passages of the disclosure mentioned with respect to claim 29, and original claim 13, particularly page 29, lines 21,26 and 29.

Claim 40: The passages of the disclosure given with respect to claim 30, as well as original claim 13, particularly page 29, lines 21 and 25

Claim 41: Page 19, lines 28 to 32 , and page 18, lines 10/11.

Claim 42: Original claim 2.

```
Claim 43: Original claim 3.
```

```
Claim 44: Original claim 5.
```

Claim 45: Original claim 8.
Claim 46: Original claim 9.
Claim 47: Original claim 11.
Claim 48: Original claim 12.
Claim 49: Original claim 13.
Claim 50: Original claim 14.
Claim 51: Original claim 15.
Claim 53: Original claim 16.
Claim 54: Original claim 17.

Claim 55: Original claim 18.

Claim 56: Original claim 19.

Claim 57: Original claim 20.

See also Figs. 1 - 3 , for support.

In view of the foregoing, entry of claims 25-65 and reconsideration and allowance of claims 1-65 are solicited. The fee for adding the new claims 25-65 in the amount of $\$ 3,650.00$ is being provided herewith.

In the event the Examiner should find any of the claims to be unpatentable, counsel would appreciate receiving a telephone call so that, if possible, patentable language can be worked out.

Additionally, please consider the present as a petition for a one month extension of time, and please provide a one month extension of time, to and including, December 14, 2004, to respond to the present Office Action. The extension fee for response within a period of one (1) month pursuant to section $1.136(\mathrm{a})$ in the amount of $\$ 120.00$ in accordance with section 1.17 is enclosed herewith.

Please provide any additional extensions of time that may be necessary and charge any other fees that might be due with

Applic. No. 10/727,801
Response Dated December 14, 2004
Responsive to Office Action of September 14, 2004
respect to Sections 1.16 and 1.17 to the Deposit Account of
Lerner and Greenberg, P.A., No. 12-1099.

Respectfully submitted,

Kerry P. Sisselman
Reg. No. 37,237

KPS: cgm
December 14, 2004
Lerner and Greenberg, P.A.
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100
Fax: (954) 925-1101

Amendments to the Drawings:
Attached is one revised formal drawing sheet, including a revised Fig. 5 , in which "bit $\leftarrow 0$ " has been added at the bottom of this figure.

Attachment: Replacement Sheet
Annotated Sheet Showing Changes

Encoder:

1. Calculating the new partial interval:
$L \leftarrow I \ll 1$
if (bit $=1$) then
$\mathrm{L} \leftarrow \mathbf{L}+\mathbf{R}$
2. Outputting a bit and renormalizing using doubled determination threshold values (without doubling R and L)

Decoder:

1. Reading out a bit and updating V
2. Determination of bit depending on the position of the partial interval:

$$
\begin{gathered}
\text { if }(V \geq R) \text { then } \\
\text { bit } \leftarrow 1 \\
V \leftarrow V-R \\
\text { else } / \text { bit } \leftarrow 0
\end{gathered}
$$

Fig. 5

1. preState $=m \min (\max (1,((m * S l i c e Q P) \gg 4)+n), 126)$
2. if (prestate $<=63$) then
p_state $=63$ - preState
valMPS $=0$
else
p_state $=$ preState -64
valMPS = 1

Fig. 6

Encoder:

1. Calculating the new partial interval:

$$
\begin{aligned}
& \text { L } \leftarrow L \ll 1 \\
& \text { if (bit }=1 \text {) then } \\
& L \leftarrow I+R
\end{aligned}
$$

2. Outputting a bit and renormalizing using doubled determination threshold values (without doubling R and L)

Decoder:

1. Reading out a bit and updating V
2. Determination of bit depending on the position of the partial interval:
```
if (V \geq R) then
            bit }\leftarrow
            V \leftarrow V - R
else
    bit}\leftarrow
```

Fig. 5

```
1. preState = min(max(. 1,((m * SliceQP )>>4)+n), 126)
2. if (preState <= 63) then
            p_state = 63 - preState
            valMPS = 0
    else
    p_state = prestate - 64
    valMPS = 1
```

Fig. 6

OPE

8 . ${ }_{3}$ aby certify that this correspondence is being deposited with the United States Postal Service with sufficient s, stage as First Class Mail in an envelope addressed to the Commissioner for Patents, P.O. Box 1450,
alexandria, va 22313 F145\%. on the date indicated below.
By:

Date: January 28, 2005

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applic. No.	$:$	10/727,801 Detlef Marpe et al.\quad Confirmation No: 6855
Applicant	$:$	December 4, 2003
Filed	$:$	Method and Arrangement for Arithmetic Encoding and Decoding Binary States and a Corresponding Computer Program and a
Title		Corresponding Computer-Readable Storage Medium
Art Unit	$:$	2819 Jean Bruner Jeanglaude
Examiner	$:$	S\&ZFH030508
Docket No.	$:$	Customer No. $:$
Customer		

INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. 1.97(C)(2)

Hon. Commissioner for Patents

Sir:

In accordance with 37 C.F.R. 1.98 copies of the following patents and/or publications are submitted herewith:

United States Patent No. 5,592,162 (Printz et al.), dated January 7, 1997;

Dan Chevion et al.: "High Efficiency, Multiplication Free Approximation of Arithmetic Coding", IEEE 1991, Order No. TH0373-1/91/0000/0043/\$01.00, pp. 43-52;

David S. Taubman et al.: "JPEG2000 Image Compression Fundamentals, Standards and Practice", Kluwer Academic Publishers, Boston, 2002, pp. 65-77;

European Office Action dated November 2, 2004.

In accordance with 37 C.F.R. 1.97 (c) (2), consideration of this Information Disclosure Statement is requested.

Enclosed is the fee in the amount of $\$ 180.00$.

Respectfully submitted,

Alfred K. Dassler 52,794

Date: January 28, 2005
Lerner And Greenberg, P.A.
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100
Fax: (954) 925-1101
/bmb

PE

```
U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE
```

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (37 CFR 1.98(b))

Attorney Docket No.: S\&ZFH030508

Applic. No.
10/727,801
Applicant
Detlef Marpe et al.
Filing Date
December 4, 2003

Group Art Unit
2819

U.S. PATENT DOCUMENTS

$\begin{aligned} & \text { EXAMINER } \\ & \text { INITIALS } \\ & \hline \end{aligned}$		PATENT NO.	DATE	PATENTEE	CLASS	$\begin{gathered} \text { SUB } \\ \text { CLASS } \end{gathered}$	$\begin{aligned} & \hline \text { FILING } \\ & \text { DATE } \end{aligned}$	
	A	5,592,162	01/07/97	Printz et al.				
	B							
	C							
	D							
	E							
	F							
	G							
	H							
	1							
		FORE	N PATEN	T DOCUMENT				
		DOCUMENT NO.	DATE	COUNTRY	CLASS	$\begin{gathered} \text { SUB } \\ \text { CLASS } \end{gathered}$	$\begin{aligned} & \text { TRAN } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { NSL. } \\ & \text { NO } \end{aligned}$
	J							
	K							
	L							
	M							
	N							

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, etc.)

	O	Dan Chevion et al.: "High Efficiency, Multiplication Free Approximation of Arithmetic Coding", /EEE 1991, Order No. TH0373-1/91/0000/0043/\$01.00, pp. 43-52
	P	David S. Taubman et al.: "JPEG2000 Image Compression Fundamentals, Standards and Practice", Kluwer Academic Publishers, Boston, 2002, pp. 65-77
EXAMINER	DATE CONSIDERED	
EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.		

Request For Continued Examination (RCE) Transmittal

Address to:
Mail Stop RCE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
This is a Request for Continued Examination (RCE) under 37 CFR 1.114 of the above-identified application.
Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to any utility or plant application filed prior to June 8, 1995, or to any design application. See Instruction Sheet for RCEs (not to be submitted to the USPTO) on page 2.

1. Submission required under 37 CFR 1.114 Note: If the RCE is proper, any previously filed unentered amendments and amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs otherwise. If applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of such amendment(s).
a. X

Previously submitted. If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked.
i. \square Consider the arguments in the Appeal Brief or Rely Brief previously filed on \qquad
$1 i$.
Other
b. X Enclosed
i. X Amendment/Reply
iii. \square Information Disclosure Statement (IDS)
iv. \square Other
2. Miscellaneous
a. \square

Suspension of action on the above-identified application is requested under 37 CFR 1.103(c) for a period of \qquad months. (Period of suspension shall not exceed 3 months; Fee under 37 CFR 1.17(i) required)
b.Other \qquad months. (Period or suspension shall not exceed 3 months, Fee under 37 CFR
3. Fees

The RCE fee under 37 CFR 1.17 (e) is required by 37 CFR 1.114 when the RCE is filed.
The Director is hereby authorized to charge the following fees, or credit any overpayments, to
Deposit Account No. 12-1099
a. X
i. X

RCE fee required under 37 CFR 1.17(e) (02/18/2005 MNOLDGE1 $00000050121099 \quad 10727801$ Extension of time fee (37 CFR 1.136 and 1.17) 01 FC: 1801 790.00 ap Other
b. \square Check in the amount of $\$$ \qquad enclosed
c. X Payment by credit card (Form PTO-2038 enclosed)

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

This collection of information is required by 37 CFR 1.114. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 - W. C. 122 and 37 CFR $1 / 14$. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

CERTIFICATION OF MAILING OR TRANSMISSION

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to the
Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to

Mail Stop Amendment
Hon. Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

S i r :

Kindly amend the above-identified application as follows:

Amendments to the Claims begin on page 2 of this paper.

Remarks/Arguments begin on page 26 of this paper.

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (original) A method for an arithmetic encoding and decoding of binary states,
characterized in that
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{k}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots\right.$, $\left.P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{K}(1 \leq k \leq K)$ to every interval width R and one $P_{n}(1$ $\leq n \leq N$) to every probability, and that in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width Q_{K} (I $\leq k \leq K$) and a representative probability state $P_{n}(1 \leq n$ $\leq N$) by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
2. (original) The method according to claim 1,
characterized in that
based on the interval currently to be evaluated having a width R, for determining the associated interval width Q_{K}, an index q _index is determined by a shift and bit masking operation applied to the computer-internal/binary representation of R.
3. (original) The method according to claim 1,
characterized in that
based on the interval currently to be evaluated with a width R, for the determination of the associated interval width Q_{K}, an index q index is determined by a shift operation applied to the computer-internal/-binary representation of R and a downstream access to a table Qtab, wherein the table Qtab contains the indices of interval widths corresponding to values of R prequantized by a shift operation.
4. (original) The method according to claim 1 ,
characterized in that
the probability estimation underlying the symbol to be encoded or to be decoded is associated with a probability state P_{n} with the help of an index $p_{\text {_ }}$ state.
5. (original) The method according to claim 1,
characterized in that
the values of the interval width $R_{\text {Lps }}$ corresponding to all K interval widths and to all N different probability states are entered into a table Rtab as product values $\left(Q_{K}\right.$ * P_{n}).
6. (original) The method according to claim 1,
characterized in that
the determination of the interval width $R_{\text {Lps }}$ corresponding to the LPS is performed by an access to a table Rtab, wherein the table Rtab contains the values of the interval width $R_{\text {Lps }}$ corresponding to all K quantized values of R and to the N different probability states as product values (Q_{K} * P_{n}).
7. (original) The method according to claim 1,
characterized in that
the determination of the interval width $R_{\text {Lps }}$ corresponding to the LPS is performed by an access to the table Rtab, wherein, for an evaluation of the table, the quantization index q index and the index of the probability state p_state are used.
8. (original) The method according to claim 1 ,
characterized in that
for the N different representative probability states transition rules are preset, wherein the transition rules indicate which new state is used for the next symbol to be encoded or to be decoded based on the currently encoded or decoded symbol.
9. (original) The method according to claim 8,
characterized in that
a table Next_State_LPS is created which contains the index m of the new probability state P_{m} for the index n of the currently given probability state P_{n} at the occurrence of a least probable symbol (LPS).
10. (original) The method according to claim 8, characterized in that
a table Next_State_MPS is created which contains the index m of the new probability state P_{m} for the index n of the currently given probability state P_{n} at the occurrence of a most probable symbol (MPS).
11. (original) The method according to claim 1,
characterized in that
the number K of quantization values and/or the number N of the representative states are selected depending on the preset accuracy of the coding and/or depending on the available storage room.
12. (previously presented) The method according to claim 1,
characterized in that
the table-aided encoding includes the following steps:
f) Determination of the LPS
g) Quantization of R :
q_index $=$ Qtab [R>>q]
h) Determination of $R_{\text {LPs }}$ and R :
$R_{\text {Lps }}=$ Rtab [q_index, p_state] $\mathbf{R}=\mathrm{R}-\mathrm{R}_{\mathrm{Lps}}$
i) Calculation of the new partial interval:
if (bit $=$ LPS) then
$\mathrm{L} \leftarrow \mathbf{L}+\mathbf{R}$
$\mathrm{R} \leftarrow \mathrm{R}_{\mathrm{LPS}}$
if (p_state $=0$) then valMPS $\leftarrow 1$ - valMPS p_state \leftarrow Next_State_LPS [p_state]
else
p_state \leftarrow Next_state_MPS [p_state]
j)Renormalization of L and R, writing bits, wherein
q_index describes the index of a quantization value read out of Qtab,
p_state describes the current state,
$R_{\text {LPS }} \quad$ describes the interval width corresponding to the LPS and
valmps describes the bit corresponding to the MPS .
13. (previously presented) The method according to claim 1, characterized in that
a table-aided decoding includes the following steps:
a) Determination of the LPS
b) Quantization of R :
q_index $=$ Qtab [$R \gg q]$
c) Determination of $R_{\text {LPs }}$ and R :
$R_{\text {Lps }}=$ Rtab [q_index, p_state]
$R=R-R_{\text {Lps }}$
d) Determination of bit depending on the position of the
partial interval:
if ($V \geq R$) then
bit \leftarrow LPS
$\mathrm{V} \leftarrow \mathrm{V}-\mathrm{R}$
$R \leftarrow R_{\text {Lps }}$
if (p_state $=0$) then valMPS $\leftarrow 1$ - valMPS
p_state \leftarrow Next_state_LPS [p_state]
else
bit \leftarrow MPS
p_state \leftarrow Next_State_MPS [p_state]
e) Renormalization of R, reading out one bit and updating

V , wherein
q_index describes the index of a quantization value read out of $Q t a b$,
p_state describes the current state,
$R_{\text {LPS }}$ describes the interval width corresponding to the LPS,

valmps describes the bit corresponding to the MPS, and
 v describes a value from the interior of the current partial interval.

14. (currently amended) The method according to claim 1, characterized in that
in encoding and/or decoding the calculation of the quantization index q_index is performed in the second substep acording to elaim 12 andor 13 according to the calculation regulation:
q_index $=(\mathrm{R}$ >> q) \& Qmask
wherein Qmask illustrates a bit mask suitably selected depending on K.
15. (currently amended) The method according to claim [[t]] 12,
characterized in that
when a uniform probability distribution is present
in the encoding aeeording to elaim 12 the substeps f to i are performed according to the following calculation regulation:
$R \leftarrow R \gg 1$
if (bit $=1$) then
$\mathrm{L} \leftarrow \mathrm{L}+\mathrm{R}$
or
that the substeps f to i of the encoding aeording to elaim 12 are performed according to the following calculation regulation:
$L \leftarrow L \ll 1$
if (bit = 1) then
$\mathrm{L} \leftarrow \mathrm{L}+\mathrm{R}$
and wherein in the last alternative the renormalization [[t]] of substep j acording to with doubled decision threshold values and no doubling of L and R is performed, and
that in the decoding aeoring to elaim 13-the substeps a to d are performed according to the following calculation regulation:
```
R}\leftarrowR>>
```

if ($V \geq R$) then

$$
\begin{aligned}
& \text { bit } \leftarrow \mathrm{I} \\
& \mathrm{~V} \leftarrow \mathrm{~V}-\mathrm{R}
\end{aligned}
$$

```
else
```

bit $\leftarrow 0$,
or
the substeps a to e of the decoding are performed according to the following calculation regulation:
m) Reading out one bit and updating V
n) Determination of bit according to the position of the partial interval:
if ($V \geq R$) then
bit $\leftarrow 1$
$\mathrm{V} \leftarrow \mathrm{V}-\mathrm{R}$
else
bit $\leftarrow 0$.
16. (original) The method according to claim 1 ,
characterized in that
the initialization of the probability models is performed depending on a quantization parameter SliceQP and preset model parameters m and n, wherein SliceQP describes the
quantization parameter preset at the beginning of a slice and m and n describe the model parameters.
17. (previously presented) The method according to claim 1, characterized in that
the initialization of the probability models includes the following steps:
k) preState $=\min (\max (1,((m * S l i c e Q P) \gg 4)+n), 2 * N)$
l) if (preState $<=N$) then

```
p_state \(=\) N - preState
va1MPS = 0
```

else
p_state $=$ prestate $-(N+1)$
va1MPS = 1,
wherein valMPS describes the bit corresponding to the MPS, SliceQP describes the quantization parameter preset at the beginning of a slice and m and n describe the model parameters.
18. (original) The method according to claim 1,
characterized in that
the probability estimation of the states is performed using a finite state machine (FSM).
19. (original) The method according to claim 1,
characterized in that
the generation of the representative states is performed offline.
20. (original) The method according to claim 1,
characterized in that
the selection of the states depends on the statistics of the data to be coded and/or on the number of states.
21. (original) An arrangement having at least one processor and/or chip, which is/are implemented such that a method for an arithmetic encoding and decoding of binary states is may be performed, wherein
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{K}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots\right.$, $\left.P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{K}(1 \leq k \leq K)$ to every interval width R and one P_{n} (1 $\leq \mathrm{n} \leq \mathrm{N}$) to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width Q_{K} (1 $\leq k \leq K$) and a representative probability state $P_{n}(1 \leq n$ $\leq N$) by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{k} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
22. (original) A computer program which enables a computer after it has been loaded into the storage of the computer to perform a method for an arithmetic encoding and decoding of binary states, wherein
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{K}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots\right.$, $\left.P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{K}(1 \leq k \leq K)$ to every interval width R and one P_{n} (I $\leq n \leq N$) to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width Q_{k} (I $\leq k \leq K$) and a representative probability state $P_{n}(1 \leq n$ $\leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{K} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
23. (original) A computer-readable storage medium on which a computer program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method for an arithmetic encoding and decoding of binary states, wherein
in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{1}, \ldots, Q_{K}\right\}$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots\right.$, $\left.P_{N}\right\}$ and allocation regulations are given, which allocate one $Q_{k}(1 \leq k \leq K)$ to every interval width R and one P_{n} (1 $\leq \mathrm{n} \leq \mathrm{N}$) to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width Q_{K} (1 $\leq \mathrm{k} \leq \mathrm{K}$) and a representative probability state P_{n} (I $\leq \mathrm{n}$ $\leq N$) by arithmetic operations other than multiplication and division, wherein the representative interval width Q_{k} is determined by the basic basis interval of the width R and the representative probability state P_{n} is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the given allocation regulations.
24. (original) The computer program according to claim 22, which is downloaded from an electronic data network, like for example from the internet, onto a data processing means which is connected to the data network.
25. (previously presented)

A method for arithmetically encoding a symbol to be encoded having a binary state based on a current interval width R and a probability representing a probability estimation for the symbol to be encoded, wherein the probability is represented by a probability index for addressing a probability state from
a plurality of representative probability states, which method comprises the following steps:
encoding the symbol to be encoded by performing the following substeps:

```
mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
performing the interval separation by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
```

26. (previously presented) The method of claim 25, wherein the encoding further takes place by the following step:
updating the current interval width using the interval width value to obtain a new, updated interval width.
27. (previously presented) The method of claim 25, wherein the partial interval width value specifies a width of a partial interval for a symbol to be encoded with a less probable state from a current interval with a current interval width.
28. (previously presented) The method of claim 25, wherein updating the current interval width is further performed depending on the binary state of the symbol to be encoded.
29. (previously presented) The method of claim 25, further comprising the following step:
adaptation of the probability estimation, wherein the adaptation of the probability estimation comprises looking up, with the probability index, in an LPS
transition rule table (Next_State_LPS) to obtain a new probability index, when the symbol to be encoded has a less probable state, and looking up, with the probability index, in an MPS transition rule table (Next_State_MPS) to obtain a new probability index, when the symbol to be encoded has a more probable state.
30. (previously presented) The method of claim 29, further comprising adjusting a value indicative of the more probable state from a state originally indicated to the binary state of the symbol to be encoded, when the probability index is like a predetermined probability index and the symbol to be encoded has a binary state different from the state originally indicated.
31. (previously presented) The method of claim 25, wherein the substep of updating the current interval width comprises the following steps:
equating the new interval width with the difference of current interval width minus the partial interval width value; and
subsequently, if the symbol to be encoded has a less probable state, equating the new interval width with the partial interval width value.
32.

(previously presented) The method of claim 25, wherein a current interval is represented by the current interval width and a current offset point, and the encoding is further performed by the following substep:
accumulating the current offset point and a difference of current interval width and partial interval width value to obtain a new, updated offset point, when the symbol to be coded has a less probable state.
33. (previously presented) A method for arithmetically decoding an encoded symbol having a binary state based on a current interval width R and a probability representing a probability estimation for the encoded symbol, wherein the probability is represented by a probability index of a probability state from a plurality of representative probability states, wherein the method comprises the following step:
decoding the encoded symbol by performing the following substeps:
mapping the current interval width to a quantization
index from a plurality of representative
quantization indices; and
performing the interval division by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
34. (previously presented) The method of claim 33, wherein the decoding further takes place by means of the following step:
updating the current interval width using the partial interval width value to obtain a new, updated interval width.
35. (previously presented) The method of claim 33, wherein the partial interval width value specifies a width of a partial interval for an encoded symbol with a less probable state from a current interval with the current interval width.
36. (previously presented) The method of claim 33, wherein updating the current interval width is further performed depending on a value within a new partial interval
characterized by the current partial interval width and the value within a new partial interval.
37. (previously presented) The method of claim 36, wherein the decoding is further performed by means of the following substep:
equating the binary state of the encoded symbol with one of a more improbable and a more probable state depending on whether the value within the new partial interval is larger or smaller than a difference of the current interval width and partial interval width value.
38. (previously presented) The method of claim 36, wherein the encoding is further performed by means of updating the value within the new partial interval with a next bit to be read in.
39. (previously presented) The method of claim 36, further comprising the following step:
updating the probability estimation, wherein updating the probability estimation comprises looking up, with the probability index, in an LPS transition rule table (Next_State_LPS) to obtain a new probability index, when the value within the new partial interval is larger than a difference of the current interval width and partial interval width value, and looking up, with the probability index, in an MPS transition rule table (Next_State_MPS) to obtain a new probability index, when the value within the new partial interval is smaller than a difference of the current interval width and partial interval width value.
40. (previously presented) comprising adjusting a value indicative of the more probable state of the encoded symbol from a state originally indicated to a different binary state, when
the probability index is like a predetermined probability index and the value within the new partial interval is larger than a difference of the current interval width and partial interval width value.
41. (previously presented) The method of claim 33, wherein the current interval width is represented with an accuracy of b bits, and the partial interval width value obtained from the interval division table is represented with an, accuracy of b-2 bits.
42. (previously presented) The method of claim 33, wherein
the substep of mapping comprises applying a shift and bit masking operation to a computer-internal/binary. representation of the current interval width.
43. (previously presented) The method of claim 33, wherein
the substep of mapping comprises applying a shift operation to a computer-internal/binary representation of the current interval width to obtain a quantized value for the current interval width, and a downstream access to a table (Qtab) to obtain the quantization index.
44. (previously presented) The method of claim 33, wherein,
in the interval division table, values for the current interval width corresponding to all possible quantization indices and to all probability indices are filed as product values between quantization index, and in a table Rtab.
45. (previously presented) The method of claim 33, further comprising the following step:
updating the probability estimation, wherein updating the probability estimation is performed by means of transition rules, wherein the transition rules specify which new probability state from a plurality of probability states, based on the symbol to be encoded and/or the encoded symbol, will be used for a next symbol to be encoded and/or an encoding symbol.
46. (previously presented) The method of claim 33, further comprising the following step:
updating the probability estimation, wherein updating the probability estimation comprises looking up, with the probability index, in a transition rule table (Next_State_LPS) to obtain a new probability index.
47. (previously presented) The method of claim 33, wherein
the number of possible quantization indices and/or the number of the probability states are selected depending on the preset accuracy of the coding and/or depending on the available storage room.
48. (previously presented) The method of claim 33, further comprising the following substep:
renormalizing the new updated offset point and the new, updated interval width.
49. (previously presented) The method of claim 33, wherein
decoding includes the following steps:
a) Determination of the LPS
b) Quantization of R :
q_index $=$ Qtab [R>>q]
c) Determination of $R_{L P S}$ and R :
$R_{\text {LPS }}=$ Rtab [q_index, p_state]
$\mathbf{R}=\mathbf{R}-\mathbf{R}_{\mathrm{LPS}}$
d) Determination of bit, depending on the position of the partial interval:
if ($V \geq R$) then
bit \leftarrow LPS
$V \leftarrow V-R$
$\mathbf{R} \leftarrow \mathbf{R}_{\mathrm{LPS}}$
if (p_state $=0$) then valMPS $\leftarrow 1$ - valMPS
p_state \leftarrow Next_State_IPS[p_state]
else
bit \leftarrow MPS
p_state \leftarrow Next_State_MPS[P_state]
e) Renormalization of R, reading out one bit and updating V,
wherein
q_index describes the index of a quantization value read out of Qtab,
p_state describes the current state,
$R_{\text {Lps }}$ describes the interval width corresponding to the LPS,

Valmps describes the bit corresponding to the MPS and v describes a value from within the current partial interval.
50. (previously presented) The method of claim 33, wherein,
in encoding and/or decoding, mapping to the quantization index q_index is performed according to the calculation regulation:
q_index $=(R \gg q) \&$ Qmask
wherein Qmask represents a bit mask suitably selected depending on the number of probability states, R represents the current interval width and q represents a number of bits.
51. (previously presented) The method of claim 33, wherein,
in the presence of a uniform probability distribution,

- in the encoding, the following calculation regulation is performed:
$R \leftarrow R \gg 1$
if (bit = 1) then
$\mathbf{L} \leftarrow \mathbf{L}+\mathbf{R}$,
or
the following calculation regulation is performed:
L
if (bit = 1) then
$\mathrm{L} \leftarrow \mathrm{L}+\mathrm{R}$
and, in the last alternative, a renormalization with doubled decision threshold values is performed and no doubling of L and R is carried out.

52. (previously presented) The method of claim 33, wherein,
in the decoding, the following calculation regulation is performed:
$\mathbf{R} \leftarrow \mathbf{R} \gg 1$
if ($V \geq R$) then
bit $\leftarrow 1$
$\mathrm{V} \leftarrow \mathrm{V}-\mathrm{R}$
else
bit $\leftarrow 0$,
or
the following calculation regulation:
m) Reading out one bit and updating V
n) Determination of bit depending on the position of the partial interval:
if ($V \geq R$) then
bit -1

$$
\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}
$$

else
bit $\leftarrow 0$.
53. (previously presented) The method of claim 33, wherein
the initialization of the probability models is performed depending on a quantization parameter SliceQP and preset model parameters m and n, wherein SliceQP describes the quantization parameter preset at the beginning of a slice, and m and n describe the model parameters.
54. (previously presented) The method of claim 33, wherein
the initialization of the probability models includes the following steps:
k) preState $=\min (\max (1,((m * S l i c e Q P) \gg 4)+n), 2 * N)$

1) if (preState <=N) then
p_state $=\mathbf{N}$ - prestate
va1MPS = 0
else
p_state $=$ prestate $-(N+1)$
valMPS = 1,
wherein valMPS describes the bit corresponding to the MPS, SliceQP describes the quantization parameter preset at the beginning of a slice, and m and n describe the model parameters.
55. (previously presented) The method of claim 33, wherein
the probability estimation of the states is performed by means of a finite state machine (FSM).
56. (previously presented) The method of claim 33, wherein
the generation of the probability states is performed offline.
57. (previously presented) The method of claim 33, wherein
the selection of the states depends on the statistics of the data to be coded and/or on the number of the states.
58. (previously presented) An for arithmetically encoding a symbol to be encoded having a binary state based on a current interval width R and a probability representing a probability estimation for the symbol to be encoded, wherein the probability is represented by a probability index for addressing a probability state from a plurality of representative probability states, the device comprising:
means for encoding the symbol to be encoded, including the following means:
means for mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
means for performing the interval separation by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
59. (previously presented) An arrangement for arithmetically decoding an encoded symbol having a binary state based on a current interval width R and a probability representing a probability estimation for the encoded symbol, wherein the probability is represented by a probability index for addressing a probability state from a plurality of representative probability states, the device comprising:
means for decoding the encoded symbol, comprising the following means:
means for mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
means for performing the interval separation by accessing an interval division table using the quantization index
and the probability index to obtain a partial interval width value.
60. (previously presented) A computer program which enables a computer after it has been loaded into the storage of the computer to perform a method for arithmetically encoding a symbol to be encoded having a binary state based on a current interval width R and a probability representing a probability estimation for the symbol to be encoded, wherein the probability is represented by a probability index for addressing a probability state from a plurality of representative probability states, the method comprising the following steps:
encoding the symbol to be encoded by performing the following sub-steps:

> mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
> performing the interval separation by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
61. (previously presented) A computer program which enables a computer after it has been loaded into the storage of the computer to perform a method for arithmetically decoding an encoded symbol having a binary state based on a current interval width R and a probability representing a probability estimation for the encoded symbol, wherein the probability is represented by a probability index of a probability state from a plurality of representative probability states, the method comprising the following steps:
decoding the encoded symbol by performing the following sub-steps:
mapping the current interval width to a quantization
index from a plurality of representative
quantization indices; and
performing the interval division by accessing an
interval division table using the quantization index
and the probability index to obtain a partial
interval width value.
62. (previously presented) A computer-readable storage medium on which a program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method for arithmetically encoding a symbol to be encoded having a binary state based on a current interval width R and a probability representing a probability estimation for the symbol to be encoded, wherein the probability is represented by a probability index for addressing a probability state from a plurality of representative probability states, the method comprising the following steps:
encoding the symbol to be encoded by performing the following sub-steps:

> mapping the current interval width to a quantization index from a plurality of representative quantization indices; and
> performing the interval separation by accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.
63. (previously presented) A computer-readable storage medium on which a program is stored which enables a computer after it has been loaded into the storage of the computer to perform a method for arithmetically decoding an encoded symbol having a binary state based on a current interval width R and a probability representing a probability estimation for the encoded symbol, wherein the probability is represented by a probability index of a probability state from a plurality of representative probability states, the method comprising the following steps:
decoding the encoded symbol by performing the following sub-steps:
mapping the current interval width to a quantization
index from a plurality of representative
quantization indices; and
performing the interval division by accessing an
interval division table using the quantization index
and the probability index to obtain a partial
interval width value.
64. (canceled).
65. (canceled).

Remarks:

Reconsideration of the application is respectfully requested.

Claims 1 - 63 are presently pending in the application. Claims 1 - 24 were previously indicated as allowable, subject to certain informalities. Claims 14 and 15 have been amended. Claims 64 and 65 have been canceled.

In the event the Examiner should find any of the claims to be unpatentable, counsel would appreciate receiving a telephone call so that, if possible, patentable language can be worked out.

In a conversation with Examiner Jeanglaude of Friday, February 11, 2005, it was discussed that the Advisory Action in the present case would be withdrawn, and that a Notice of NonCompliance would be issued instead, in order to permit the Applicants to file a Request for Continued Examination and the present Preliminary Amendment. A restarting of the period for response was discussed, and Examiner Jeanglaude indicated that he would ask his Supervisor to restart the period for response to the Notice of Non-Compliance and provide Applicants with one-month to respond. The present Preliminary Amendment is being filed prior to Applicants' receipt of said Notice of Non-Compliance. As such, it is believed that no extensions of time are presently necessary.

However, in the event that the period for response was not restarted by the mailing of the Notice of Non-Compliance, please consider the present as a petition for a further two month extension of time, to and including, February 14, 2004. A previous first month extension of time was requested in a Response filed in the present case on December 14, 2005 and the fee of $\$ 120.00$ was previously paid. In the event that a further extension of time is deemed necessary, please charge the Deposit Account of Lerner and Greenberg, P.A., No. 12-1099 for the additional fee of $\$ 900.00$ for the further extension of time (i.e., $\$ 1,020$ minus $\$ 120$, which was previously paid).

Please provide any additional extensions of time that may be necessary and charge any other fees that might be due with respect to sections 1.16 and 1.17 to the Deposit Account of Lerner and Greenberg, P.A., No. 12-1099.

Respectfully submitted,
For Applicants
KPS:cgm
February 14, 2005
Lerner and Greenberg, P.A.
Post Office Box 2480
Hollywood, FL $33022-2480$
Tel: (954) $925-1100$
Fax: (954) 925-1101

Kerry P. Sisselman
Reg. No. 37,237
P.O. Box 1450
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/727,801	12/04/2003	Detlef Marpe	S\&ZFH030508	6855
24131	02/18/2005		EXAMINER	
LERNER AND GREENBERG, PA			JEANGLAUDE, JEAN BRUNER	
P O BOX 2480	33022-24		ART UNIT	PAPER NUMBER

DATE MAILED: 02/18/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

All participants (applicant, applicant's representative, PTO personnel):
(1) Jean B. Jeanglaude (The Examiner).
(2) Kerry P. Sisselman (The Applicant's Rep.).
(3) \qquad .
(4) \qquad .

Date of Interview: 08 February 2005.
Type: a) \boxtimes Telephonic b) \square Video Conference
c) \square Personal [copy given to: 1) \square applicant
2) \square applicant's representative]

Exhibit shown or demonstration conducted: d) \square Yes e) \boxtimes No.
If Yes, brief description: \qquad .

Claim (s) discussed: 1-65.
Identification of prior art discussed: \qquad .

Agreement with respect to the claims f) \boxtimes was reached. g) \square was not reached. h) \square N/A.

Substance of Interview including description of the general nature of what was agreed to if an agreement was reached, or any other comments: An interview was held with the Applicant's Representative, Kerry P. Sisselman, on Tuesday February 8, 2005 regarding an advisory action that was mailed to the applicant on February 2, 2005. The advisory action was discussed and it was agreed that the advisory action will be withdrawn and a non-compliance action will be mailed to the applicant.
(A fuller description, if necessary, and a copy of the amendments which the examiner agreed would render the claims allowable, if available, must be attached. Also, where no copy of the amendments that would render the claims allowable is available, a summary thereof must be attached.)

THE FORMAL WRITTEN REPLY TO THE LAST OFFICE ACTION MUST INCLUDE THE SUBSTANCE OF THE INTERVIEW. (See MPEP Section 713.04). If a reply to the last Office action has already been filed, APPLICANT IS GIVEN ONE MONTH FROM THIS INTERVIEW DATE, OR THE MAILING DATE OF THIS INTERVIEW SUMMARY FORM, WHICHEVER IS LATER, TO FILE A STATEMENT OF THE SUBSTANCE OF THE INTERVIEW. See Summary of Record of Interview requirements on reverse side or on attached sheet.

Examiner Note: You must sign this form unless it is an Attachment to a signed Office action.

Examiner's signature, if required

For further explanation of the amendment format required by 37 CFR 1.121 , see MPEP § 714 and the USPTO website at http://www.uspto.gov/web/offices/pac/dapp/opla/preognotice/officeflyer.pdf .

TIME PERIODS FOR FILING A REPLY TO THIS NOTICE:

1. Applicant is given no new time period if the non-compliant amendment is an after-final amendment or an amendment filed after allowance. If applicant wishes to resubmit the non-compliant after-final amendment with corrections, the entire corrected amendment must be resubmitted within the time period set forth in the final Office action.
2. Applicant is given one month, or thirty (30) days, whichever is longer, from the mail date of this notice to supply the corrected section of the non-compliant amendment in compliance with 37 CFR 1.121, if the non-compliant amendment is one of the following: a preliminary amendment, a non-final amendment (including a submission for a request for continued examination (RCE) under 37 CFR 1.114), a supplemental amendment filed within a suspension period under 37 CFR 1.103(a) or (c), and an amendment filed in response to a Quayle action.

Extensions of time are available under 37 CFR 1.136(a) only if the non-compliant amendment is a non-final amendment or an amendment filed in response to a Quayle action.

Failure to timely respond to this notice will result in:
Abandonment of the application if the non-compliant amendment is a non-final amendment or an amendment filed in response to a Quayle action; or
Non-entry of the amendment if the non-compliant amendment is a preliminary amendment or supplemental amendment.

Remarks

An interview was held with the Applicant's Representative, Kerry P. Sisselman, on Tuesday February 8, 2005 regarding an advisory action that was mailed to the applicant on February 2, 2005. The advisory action was discussed and it was agreed that the advisory action will be withdrawn and a non-compliance action will be mailed to the applicant.

Response to Amendments

The reply filed on 12-20-2004 is not fully responsive to the prior Office Action because it was stated in the last office action that the prosecution of the case is closed. The applicant way not add more claims to an application to response to the Ex-Parte Quayle office action that was mailed on 09-14-04. Since the period for reply set forth in the prior Office action has expired, this application will become abandoned unless applicant corrects the deficiency and obtains an extension of time under 37 CFR 1.136(a).

The date on which the petition under 37 CFR 1.136(a) and the appropriate extension fee have been filed is the date for purposes of determining the period of extension and the corresponding amount of the fee. In no case may an applicant reply outside the SIX (6) MONTH statutory period or obtain an extension for more than FIVE (5) MONTHS beyond the date for reply set forth in an Office action. A fully responsive reply must be timely filed to avoid abandonment of this application.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jean B. Jeanglaude whose telephone number is 571 -

272-1804. The examiner can normally be reached on Monday - Friday 7:30 A. M. - 5:00 PM..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Michael Tokar can be reached on 571-272-1812. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Han Burner HanAlaude
Primary Examiner
February 11, 2005

- It the entry tin oxumn 1 is less than the entry in column 2, write 0° in column 3.
TH the Hightest Number Prevousty Paid For IN THIS SPACE is less than 20, enter "20."
The. "Highest Number Proviousty Paid For IN THIS SPACE k less than 3, enter 3.".

		(Column 1)		(Columin 2)	(Column 3)
	-	\qquad			present EXTRA
	Total	*	Minus	*	$=$
	Independent	-	Minus	**	$=$
	FIRST PRESENTATION OF MULTTPLE DEPENDENT CLAIM				

CERTIFICATION OOF MAILING OR TRANSMISSION

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to the U.S. Patent and Trademark Office on the date shown below.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

RESPONSE TO NOTICE OF NON-COMPLIANT AMENDMENT

Mail Stop Amendment
Hon. Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

S ir r

Responsive to the Notice of Non-Compliant Amendment dated

February 18, 2005, kindly consider the following.

Remarks/Arguments begin on page 2 of this paper.

Remarks:

Reconsideration of the application is respectfully requested.

Applicants' would like to thank Examiner Jeanglaude for the courtesy shown to Applicants' representative in a series of telephone calls leading up to, including and after the Telephonic interview of February 8, 2005.

In the present case, Applicants received a first Office Action dated September 13, 2004, allowing all claims 1 - 24, but for the correction of certain informalities. The Office Action indicated that except for the formal matters, prosecution as to the merits was closed in accordance with the practice under Ex parte Quayle.

In response to the Office Action, Applicants addressed the formal matters and added new claims 25 - 65. An Advisory Action, dated February 2, 2005 was mailed to Applicants, in which new claims 25-65 were objected to. It was indicated in the Advisory Action that the proposed amendments would not be entered.

In response to the Advisory Action, Applicants' representative requested by telephone conversation with the Examiner that the Advisory Action be withdrawn and a Notice of Allowance be issued, as to claims 1 - 24, along with a notice of entry of
the amendment in part, pursuant to MPEP §714.20(C), which
states:
"(C) In an application in which prosecution on the merits is closed, i.e., after the issuance of an Ex Parte Quayle action, where an amendment is presented curing the noted formal defect and adding one or more claims some or all of which are in the opinion of the examiner not patentable, or will require a further search, the amendment in such a case will be entered only as to the formal matter. Applicant has no right to have new claims considered or entered at this point in the prosecution." [emphasis in original]

During the telephone conversation, Examiner Jeanglaude pointed out additional informalities in Applicants' claims 14 and 15 that would need to be corrected prior to issuance of a notice of allowability on claims 1 - 24.

In a subsequent telephone conversation, it was discussed that Examiner Jeanglaude would issue the present Notice of NonCompliant Amendment, which would restart the period for response and provide thirty (30) days for the Applicants to file a Request for Continuing Examination (RCE) with a Preliminary Amendment, so as to have all sixty-five claims entered and considered. On February 14, 2005, Applicants filed the agreed upon RCE with a Preliminary Amendment addressing the informalities raised in previously presented claims 14 and 15.

It is believed that the filing of the RCE and Preliminary
Amendment in the present case, as was agreed between the Examiner and Applicants' representative, has addressed the issues raised in the present Notice of Non-Compliant Amendment, and that nothing further is needed from Applicants' at this time.

Because it is believed that the Notice of Non-Compliant Amendment restarted the time period for Applicants' response, Applicants' believe that no additional extension of time fees were necessary for the filing of the RCE on February 14, 2005. The Notice of Non-Compliant Amendment itself indicates that a new time period of the longer of one month or thirty days is provided to Applicants when, as in the present case, the Notice of Non-Compliant Amendment was issued based on an amendment filed in response to a Quayle action. However, Applicants' representative's deposit account was charged $\$ 900.00$ for a further extension of time when the RCE was filed on February 14, 2005. Applicants' representative plans to file a separate paper requesting a refund for the fees charged for the extension of time.

As such, it is believed that the Preliminary Amendment filed in the present case addresses the issues raised in the Notice of Non-Compliant Amendment, and further puts claims 1 - 65 in

- . .

Applic. No. 10/727,801
Response Dated February 25, 2005
Responsive to Office Action of February 18, 2005
condition for allowance. Allowance of claims 1-65is
therefore, respectfully requested.

In the event that the Examiner should find any of the claims to be unpatentable, counsel would appreciate receiving a telephone call so that, if possible, patentable language can be worked out.

If an extension of time for this paper is required, petition for extension is herewith made.

Please charge any fees that might be due with respect to Sections 1.16 and 1.17 to the Deposit Account of Lerner and Greenberg, P.A., No. 12-1099.

Respectfully submitted,

Kerry P. Sisselman
Reg. No. 37,237

. . PATENT APPLICATION FEEDETERMINATION REC\qquad Effective Oesember 8,204		
CLAIMS AS FILED - PARTI		
	(Coluimn 1)	(Column 21
TȮTAL CLAIMS		
FOR	NUMBER FILED	number extra
total Chargeable claims	(\$ minus 68	$\xrightarrow{ } \rightarrow$
INDEPENDENT CLAIMS	12 minus 2	
MULTIPLE DEPENDENT CLAIM PRESENT		

- If the difference in column 1 is less than zero. enter ${ }^{\circ} 0^{\circ}$ in columni 2

CLAIMS AS AMENDED - PART II

Small entity

 TYPE \square

OTHER THAN OR

"1 the Heriast Number Privioushy Paid For IN THIS SPACE t less than 20, emer 20."
The "Highest Number Previousty Pald For IN THIS SPACE is hess than 3, enter "3."
The "Hogtost Number Proviousty Pald For fictal or tndependentl is the highest number

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to Commissioner for Patents, P.O. Box 1450, Alexandria, By:
 Date: February 25, 2005

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applic. No.
Inventor
10/727,801

Filed : December 4, 2003
TC/A.U. : 2819
Examiner : Jean Bruner Jeanglaude
Customer No.:
Confirmation No.: 6855

Hon. Commissioner for Patents
tent date: 04/15Adtovangria VA 22313-1450
2005 MHOLDGE1 OOOOOO50 12109910727801

Sir:

For the reasons set forth below, applicants herewith request a refund in the amount of $\$ 900.00$ which was charged to counsel's deposit account on February 18, 2005.

- Applicants submitted an amendment in the above-identified application on December 14,2004 as a response to the Office action of September 14, 2004.
- Applicants then received an Advisory Action and responded thereto by filing a Preliminary Amendment together with an RCE on February 14, 2005.
- However, as acknowledged by the Examiner in an interview held with counsel on February 8, 2005, the Advisory Action was improper and the Examiner agreed to withdraw the Advisory Action and issue a Notice of Non-Compliant Amendment, which restarts the period for reply and grants applicants thirty (30) days for taking action.

BEST AVAILABLE COPY

Applic. No. 10/727,801

Request for Refund, dated 2/25/2005
In view of the foregoing, applicants respectfully request that the amount of $\$ 900.0 \mathrm{~g}$ be credited to counsel's Deposit Account No. 12-1099 of Lemer and Greenberg, P.A., since no extension fee was in fact due.

Applicants have also submitted a Response to the Notice of Non-Compliant Amendment on this date in which the events leading to this request for refund are outlined in detail. Applicants enclose a copy of that response.

Date: February 25, 2005
LERNER AND GREENBERG, PA.
Post Office Box 2480
Hollywood, Florida 33022-2480
Tel: (954) 925-1100
Fax: (954) 925-1101
/bb

Freeform Search

Search \qquad Interrupt:

Search History

DATE: Friday, March 04, 2005 Printable Copy Create Case

Set Name side by side	Query	$\underset{\text { Count }}{\underline{\text { Hit }}}$	
$D B=P G P B, U S P T, U S O C, E P A B, J P A B, D W P I, T D B D ; ~ P L U R=Y E S ; O P=O R$			
L25	L24 and 123	17	L25
L24	341/\$.ccls.	37167	L24
L23	L22 and 110 and 19 and 18	79	L23
L22	(arithmetic with (cod \$3 or encod\$3)) same 13	888	L22
L21	4891643.pn. or 6075471.pn.	4	L21
L20	5592162.pn.	2	L20
L19	L16 and (interval\$ same (split\$ or divid\$3) same 110 same 15)	1	L19
L18	L16 and (interval\$ same.(split\$ or divid\$3) same 110 same 15)	1	L18
$\underline{L 17}$	L16 and (interval\$ same separat\$ same (split\$ or divid\$3) same 110 same 15)	0	$\underline{L 17}$
L16	L15 and decod\$3	560	L16
$\underline{L 15}$	113 and 112 and 111 and 110 and 19 and 18 and 17 and 16 and 15 and 14 and 13 and 12 and 11	612	$\underline{\mathrm{L} 15}$
L14	L13 same 112 same 111 same 110 same 19 same 18 same 17 same 16 same 15 same 14 same 13 same 12 same 11	0	$\underline{\text { L14 }}$

$\underline{\mathrm{L} 13}$	part\$	8739009	$\underline{\mathrm{~L} 13}$
$\underline{\mathrm{~L} 12}$	division or divid\$3	2625938	$\underline{\mathrm{~L} 12}$
$\underline{\mathrm{~L} 11}$	access\$	1736147	$\underline{\mathrm{~L} 11}$
$\underline{\mathrm{~L} 10}$	quantiz\$	63996	$\underline{\mathrm{~L} 10}$
$\underline{\mathrm{~L} 9}$	interval\$	1317912	$\underline{\mathrm{~L} 9}$
$\underline{\mathrm{~L} 8}$	map\$	405473	$\underline{\mathrm{~L} 8}$
$\underline{\mathrm{~L} 7}$	stat\$3	7980790	$\underline{\mathrm{~L} 7}$
$\underline{\mathrm{~L} 6}$	symbol\$1	365468	$\underline{\mathrm{~L} 6}$
$\underline{\mathrm{~L} 5}$	index or indic\$	4877682	$\underline{\mathrm{~L} 5}$
$\underline{\mathrm{~L} 4}$	estimat\$3 or evaluat\$3	1013180	$\underline{\mathrm{~L} 4}$
$\underline{\mathrm{~L} 3}$	probability	191458	$\underline{\mathrm{~L} 3}$
$\underline{\mathrm{~L} 2}$	binary or bit $\$ 1$	993116	$\underline{\mathrm{~L} 2}$
$\underline{\mathrm{~L} 1}$	encod $\$ 3$ or cod\$3	2677746	$\underline{\mathrm{~L} 1}$

END OF SEARCH HISTORY
${ }^{24131} \quad{ }^{5590} \quad{ }^{03 / 23 / 2005}$
LERNER AND GREENBERG, PA
P O BOX 2480
HOLLYWOOD, FL 33022-2480
 \title{
NOTICE OF ALLOWANCE AND FEE(S) DUE
}
 \title{
NOTICE OF ALLOWANCE AND FEE(S) DUE
}

EXAMINER	
JEANGLAUDE, JEAN BRUNER	
ART UNIT	PAPER NUMBER
2819	
DATE MAILED: 03/23/2005	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$10 / 727,801$	$12 / 04 / 2003$	Detlef Marpe	S\&ZFH030508	

TITLE OF INVENTION: METHOD AND ARRANGEMENT FOR ARITHMETIC ENCODING AND DECODING BINARY STATES AND A CORRESPONDING. COMPUTER PROGRAM AND A CORRESPONDING COMPUTER-READABLE STORAGE MEDIUM

APPLN. TYPE	SMALL ENTITY	ISSUE FEE	PUBLICATION FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	$\$ 1400$	$\$ 300$	$\$ 1700$	

Abstract

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THLS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE REFLECTS A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE APPLIED IN THIS APPLICATION. THE PTOL-85B (OR AN EQUIVALENT) MUST BE RETURNED WITHIN THIS PERIOD EVEN IF NO FEE IS DUE OR THE APPLICATION WILL BE REGARDED AS ABANDONED.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box 5 b on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and $1 / 2$ the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL should be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). Even if the fee(s) have already been paid, Part B - Fee(s) Transmittal should be completed and returned. If you are charging the fee(s) to your deposit account, section " 4 b " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE
 Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (703) 746-4000

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

241317590 03/23/2005
LERNER AND GREENBERG, PA
P O BOX 2480
HOLLYWOOD, FL 33022-2480

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (703) $746-4000$, on the date indicated below.

		(Depositor's name)
		(Signature)
	(Date)	
	ATTORNEY DOCKET NO.	CONFIRMATION NO.
S\&ZFH030508		

TITLE OF INVENTION: METHOD AND ARRANGEMENT FOR ARITHMETIC ENCODING AND DECODING BINARY STATES AND A CORRESPONDING COMPUTER PROGRAM AND A CORRESPONDING COMPUTER-READABLE STORAGE MEDIUM

APPLN. TYPE	SMALL ENTITY	ISSUE FEE	PUBLICATION FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1400	\$300	\$1700	06/23/2005
EXAMINER		ART UNIT	CLASS-SUBCLASS		
JEANGLAUDE, JEAN BRUNER		2819	341-106000		
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached.			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attorneys or agents OR, alternatively,		

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : \quad Individual $\quad \square$ Corporation or other private group entity $\quad \square$ Government 4a. The following fee(s) are enclosed:

4b. Payment of Fee(s):
$\square_{\text {Issue Fee }}$
Publication Fee (No small entity discount permitted)
\square Advance Order - \# of Copies \qquadA check in the amount of the fee(s) is enclosed.
\square Payment by credit card. Form PTO-2038 is attached.
The Director is hereby authorized by charge the required fee(s), or credit any overpayment, to Deposit Account Number (enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)
\square a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27.
\square b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR $1.27(\mathrm{~g})(2)$.
The Director of the USPTO is requested to apply the Issue Fee and Publication Fee (if any) or to re-apply any previously paid issue fee to the application identified above. NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attomey or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.

Authorized Signature
Date
Typed or printed name \qquad Registration No. \qquad
This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O.
Box 1450, Alexandra, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO'THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.
P.O. Box 1450
Alexandria, Virginia 22313-1450

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment to date is 0 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 0 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571) 272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at (703) 305-8283.

Notice of Allowability	Application No. 10/727,801	Applicant(s) MARPE ET AL.	
	Examiner Jean B. Jeanglaude	Art Unit 2819	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. \triangle This communication is responsive to RCE filed on 2-17-05.
2. \boxtimes The allowed claim(s) is/are 1-63.
3. \boxtimes The drawings filed on 04 December 2003 are accepted by the Examiner.
4. \boxtimes Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d) or (f).
a)
$\square \mathrm{Al}$
b) \square Some*
c) \boxtimes None of the:
5. \boxtimes Certified copies of the priority documents have been received.
6. \square Certified copies of the priority documents have been received in Application No. \qquad .
7. \square Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: \qquad .

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
5. \square A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
6. \square CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
(a) \square including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached

1) \square hereto or 2) \square to Paper No./Mail Date \qquad -
(b) \square including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \qquad _.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
7.

DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. \triangle Notice of References Cited (PTO-892)
2.Notice of Draftperson's Patent Drawing Review (PTO-948)
2. Information Disclosure Statements (PTO-1449 or PTO/SB/08), Paper No./Mail Date 10-06-04;2-R-05
4.Examiner's Comment Regarding Requirement for Deposit of Biological Material
5.Notice of Informal Patent Application (PTO-152)
6.Interview Summary (PTO-413), Paper No./Mail Date \qquad .
3. \square Examiner's Amendment/Comment
4. \boxtimes Examiner's Statement of Reasons for Allowance
9.Other \qquad aecmioumer feandeumede

Reasons For Allowance

Claims 1-63 are allowable.

1. The following is an examiner's statement of reasons for allowance: in combination with other limitations of the claims the prior arts made of record fail to suggest a system and method for an arithmetic encoding and decoding of binary states is may be performed, wherein in a first step a presetable value range for the specification of the interval width R is separated in K representative interval widths $\left\{Q_{i}, \ldots, Q_{k}\right)$, a presetable value range for the specification of the probabilities is separated in N representative probability states $\left\{P_{1}, \ldots, P_{N}\right\}$ and allocation regulations are given, which allocate one $\mathrm{Q}_{\mathrm{K}}(1 \leq \mathrm{k} \leq \mathrm{K})$ to every interval width R and one $\mathrm{Pn}(1 \leq n$ $\leq \mathrm{N}$) to every probability, and wherein in a second step the encoding or decoding of the binary states take place by performing the calculation of the new interval width to be derived in the encoding or decoding process, respectively, using a representative interval width $Q_{K}(1 \leq k \leq K)$ and a representative probability state $\operatorname{Pn}(1 \leq n \leq N)$ by arithmetic operations other than multiplication and division, wherein the representative interval width QK is determined by the basic basis interval of the width R and the representative probability state Pn is determined by the probability estimation underlying the symbol to be encoded or to be decoded according to the giving allocation regulations. Moreover, in combination with other limitations of the claims the prior arts made of record fail to suggest a system and method that comprise a means for mapping a current interval width to a quantization index from a plurality of representative quantization indices; and means for performing an interval separation by
accessing an interval division table using the quantization index and the probability index to obtain a partial interval width value.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Conclusion

2. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. (See PTO-892).

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jean B. Jeanglaude whose telephone number is 571 -272-1804. The examiner can normally be reached on Monday - Friday 7:30 A. M. - 5:00 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Michael Tokar can be reached on 571-272-1812. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Jean Pruner Jeanglaude
Primary Examiner
March 4, 2005

$\triangle B 32$	Ref 1.09: Title: Improved CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29NWG11 and ITU-T SG16 Q.6). Pages: 1-6. J an $29-F$ ebl 2002
	Ref 1.10: Title: New Results in Improved CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-12. μ arch 2002
	Ref 1.11: Title: Improved CABAC. From: ITU-Telecommunications Standardization Sector. Pages: 1-9. 4-6 Dec 2001
	Ref 1.12: Title: Fast Arithmetic Coding for CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29NWG11 and ITU-T SG16 Q.6). Pages: 1-11. i i 95 (rnom
	Ref 1.13: Title: CABAC and Slices. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-17. July 2002
	Ref 1.14: Title: Analysis and Simplification of Intra Prediction. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). July 2002
	Ref 1.15: Title: Proposed Cleanup Changes for CABAC. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-7. OcT 2002
	Ref 1.16: Title: CABAC Cleanup and Complexity Reduction. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). Pages: 1-20.
	Ref 1.17: Title: Final CABAC Cleanup. From: Joint Video Team (JVT) of ISO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29NWG11 and ITU-T SG16 Q.6). Pages: 1-24, DeC. 2002.
	Ref 1.18: Title: Very Low Bit-Rate Video Coding Using Wavelet-Based Techniques. Author: Detlev Marpe and Hans L. Cycon.j 'Pages: 85-94
	Ref 1.19: Title: Wavelet-Based Very Low Bit-Rate Video Coding Using Image Warping and Overlapped Block Motion Compensation. Authorkpu G. Heising, D. Marpe, H.L. Cycon and A.P. Petukhov. Pages: 93-101; 2
	Ref 1.20: Title: Motion-Compensated 3-D Subband Coding of Video. Author: Seung-Jong Choi and John W. Woods, Fellow IEEE. Pages: 155-167. Vol 8, No 2, Febmony 19 个9.
	Ref 1.21: Title: A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees*. Author: Amir Said (Faculty of Electrical Engineering) and William A. Pearlman (Department of Electrical, Computer, and Systems Engineering Renesselar Polytechnic Institute). Pages: 1-15. May 1993.
$\Delta B{ }^{\prime} J$	Ref 1.22: Title: Efficient Pre-Coding Techniques for Wavelet-Based Image Compression. Author: Detlev Marpe \& Hans L. Cycon. Pages:

	45－51．（n o date）	
加才て	Ref 1．23：Title：Universal Modeling and Coding．Author：Jorma Rissanen and Glen G．Langdon，Jr．，Senior Member，IEEE．Pages：12－ 23，Vol 27 ，NO1，January 1981.	
	Ref 1．24：Title：Universal Coding Information，Prediction，and Estimation．Author：Jorma RissanenA Pages：629－636；${ }^{\wedge}$ ， 984.	
	Ref 1．27：Title：Applications of Universal Context Modeling to Lossless Compression of Grey－Scale Images．Author：Marcelo J．Weinberger， Member，IEEE，Jorma J．Rissanen，Senior Member，IEEE，and Ronald B．Arps．Pages：575－586， Vol 5，No4，Apul 1996.	
	Ref 1．29：Title：A Compression Method for Clustered Bit－Vectors． Author：Jukka Teuhola（Department of Computer Science，University of Turka）．Application：XP－001000934．o cTi978	
	Ref 1．30：Title：Optimal Source Codes for Geometrically Distributed Integer Alphabets．Author：Robert G．Gallager，fellow，IEEE，David C． Vanvoorhis，member，IEEE．Pages：228－230，Macech 1975.	
	Ref 1．32：Title：An Overview of the Basic Principles of the Q－Coder Adaptive Binary Arithmetic Coder．Author：W．B．Pennebaker，J．L． Mitchell，G．G．Langdon，Jr．，and R．B．Arps \wedge Pages： 717 －726．＇	
	Ref 1．31：Title：A Context Modeling Algorithm and its Application in Video Compression．Author：Marta Mrak，Detlev Marpe，and Thomas Wiegand． （ N－date．）	
	Ref 1．33：Title：A Muliplication－Free Multialphabet Arithmetic Code． Author：Jorma Rissanen and K．M．Mohiuddin．$ᄉ$ Pages：93－98．，Febl	389
	Ref 1．34：Title：Practical Implementations of Arithmetic Code．Author： Paul G．Howard and Jeffrey Scott Vitter．Pages：1－30．OCT／6－18， 19	91
	Ref 1．35：Title：Sample Data Coding．From：Chapter 12．Pages：474－ 484．（N－date）	
	Ref 1．37：Title：Arithmetic Code Revisited．Author：Alistair Moffat（The University of Melbourne），Radford M．Neal（University of Toronto），and Ian H．Witten（zthe University of Waikato）．λ Pages：25 $\neq 294$.	
spJ	Ref 1．38：Title：Rate－Constrained Coder Control and Comparison of Video Coding Standards．Author：IEEE Transactions on Circuits and Systems for Video Technology，Vol．13，No．7，July 2003．Thomas Wiegand，Heiko Schwarz，Anthony Joch，Faouzi Kossentini，Senior Members，IEEE，and Gary J．Sullivan，Senior Member，IEEE． $\mathrm{VO}_{1} 13_{3} \mathrm{NO}^{2}$ Pages：689－703．	$7, \text { July } 2003$

OBT	Ref 2.1: Title: Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T rec. H. 264 I ISO/IEC 14496-10 AVC). From: Joint Video Team (JVT) of SO/IEC MPEG \& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG 16 Q.6). Pages 1-249. 7-14 Manch 2003 ,
	Ref 2.03x: Title: Line Transmission of Non-Telephone Signals / Video Codec for Audiovisual Services AT p $\times 64$ kbits. From: International Telecommunication Union H.261. Pages: 1-25; June 1994.
	Ref 2.06x: Title: H.264/AVC Over IP. From: Stephan Wenger. Pages: 645-656. Vol 13 , Non, July 2003.
	Ref 2.07: Title: H.264/AVC in Wireless Environments. Author: Thomas Stockhammer, Miska M. Hannuksela, and Thomas Wiegand. Pages: 657-673. Vol 13 , No7, July, 2003
	Ref 2.08: Title: Motion-and Aliasing-Compensated Prediction for Hybrid Video Coding. Author: Thomas Wedi and Hand Georg Musmann. Pages: 577-586, vot 13, No 7, July 2003
	Ref 2.9: Title: Long-Term Memory Motion-Compensated Prediction. Author: Thomas Wiegand, Xiaozheng Zhang, and Bernd Girod, Fellow, IEEE. Pages: 70-84. \qquad
	Ref 2.11: Title: A Locally Optimal Design Algorithm for Block-Based Multi-Hypothesis Motion-Compensated Prediction. Author: Markus Flierl, Thomas Wiegand, and Bernd Girod Telecommunications Laboratory University of Erlangen-Nürnberg, Germany. Pages: 1-10. Mc
	Ref 2.12: Title: Generalized B Pictures and the Draft H.264/AVC VideoCompression Standard. Author: Markus Flierl, Student Member, IEEE, and Bernd Girod, Fellow, IEEE. Pages: 587-597, Vol $13, N 07$, July 2
	Ref 2.13: Title: Rate-Constrained Coder Control and Compression of Video Coding Standards. From: Thomas Wiegand, Heiko Schwarz, Anthony Joch, Faouzi Kossentini, Senior Member, IEEE, and Gary J. Sullivan, Senior Member, IEEE. Pages: 688-703, Vol $13, N o n$, July 2
	Ref 2.14: Title: H.264/AVC Over IP. Author: Stephan Wenger. Pages: 645-656. Vol 13, No7, July $20 \theta 3$
	Ref 2.15: Title: The SP-and Si-Frames Design for H.264/AVC. Author: Marta Karcewicz and Ragip Kurceren, Member, IEEE. Pages: 637644, Vol. 13, No7, July 2003.
ゅ	Ref 2.16: Title: Context-Based Adaptive Binary Arithmetic Coding in the H/264/AVC Video Compression Standard. Author: Detlev Marpe, Member, IEEE, Heiko Schwarz, and Thomas Wiegand. Pages: 620636. Vol 13 , No 7. July 2003
加J	Ref 2.17: Title: Low-Complexity Transform and Quantization in

Sheet 6 of

.	December 4, 2003	2819

O-1449 (SUBSTITUTE)
U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (37 CFR 1.98(b))

Sheet 1 of 1
Attorney Docket No. S\&ZFH030508 Applic. No. 10/727,801

Applicant
Detlef Marpe et al.
$\overline{\text { Filing Date }}$
Group Art Unit
December 4, 2003
2819
U.S. PATENT DOCUMENTS

EXAMINER INITIALS		PATENT NO.	DATE	PATENTEE	CLASS	SUB CLASS	FILING DATE
JISJL	A	$5,592,162$	$01 / 07 / 97$	Printz et al.	-	-	-
	B						
	C						
	D						
	E						
	F						
	G						
	H						
	I						

FOREIGN PATENT DOCUMENT

	DOCUMENT NO.	DATE	COUNTRY	CLASS	$\begin{aligned} & \text { SUB } \\ & \text { CLASS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TRANSL. } \\ & \text { YES JNO } \\ & \hline \end{aligned}$	
J							
K							
L							
M							
N							

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, etc.)

JßJて	\bigcirc	Dan Chevion et al.: "High Efficiency, Multiplication Free Approximation of Arithmetic Coding", IEEE 1991, Order No. TH0373-1/91/0000/0043/\$01.00, pp. 43-52 . 8- 11 Apuil 1991
JHJJ-	P	David S. Taubman et al.: "JPEG2000 Image Compression Fundamentals, Standards and Practice", Kluwer Academic Publishers, Boston, 2002, pp. 65-77 (Augustino2)

DATE CONSIDERED

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Notice of References Cited	Application/Control No. $10 / 727,801$	Applicant(s)/Patent Under Reexamination MARPE ET AL.	
	Examiner Jean B. Jeanglaude	Art Unit 2819	Page 1 of 1

U.S. PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Name	Classification
	A	US-5,272,478	$12-1993$	Allen, James D.	$341 / 107$
	B	US-5,363,099	$11-1994$	Allen, James D.	$341 / 107$
	C	US-5,475,388	$12-1995$	Gormish et al.	$341 / 107$
	D	US-6,449,393	$09-2002$	Peters, Michael Alan	$382 / 239$
	E	US-6,757,436	$06-2004$	Peters, Michael Alan	$382 / 239$
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Country		Name
	N					Classification
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
	\cup	Marpe et al. (PUb. No. 2005/0012648), "Apparatus and methods For entropy-encoding or entropy-decoding using an initializaiton of context Variables", filed on July 17, 2003.
	V	Gavrilescu et al. (Pub. No. 2005/0027521), Embedded Multiple Description Scalar Quantizers For Progressive Image Transmission", filed on March 30, 2004.
	W	
	X	

Dates in MM-YYY format are publication dates. Classifications may be US or foreign.

Issue Classification	Application/Control No.	Applicant(s)/Patent under Reexamination
	10/727,801	MARPE
	Examiner Jean B. Jeanglaude	Art Unit 2819

\triangle claims renumbered in the same order as presented by applicant									\square CPA		\square T.D.		\square R.1.47	
$\overline{\text { 프든 }}$	$\begin{aligned} & \overline{0} \\ & \frac{\overline{0}}{0} \\ & \text { (} \end{aligned}$	듣	$\begin{aligned} & \text { 픟 } \\ & \stackrel{\bar{O}}{\bar{O}} \end{aligned}$	$\overline{\text { 플 }}$	$\begin{aligned} & \overline{\widetilde{0}} \\ & \stackrel{\bar{C}}{\overline{0}} \end{aligned}$				$\overline{\text { 픈 }}$	或	$\overline{\bar{i}}$		듣	
	1		31		61		91			121		151		181
	2		32		62		92			122		152		182
	3		33		63		93			123		153		183
	4		34		64		94			124		154		184
	5		35		65		95			125		155		185
	6		36		66		96			126		156		186
	7		37		67		97			127		157		187
	8		38		68		98			128		158		188
	9		39		69		99			129		159		189
	10		40		70		100			130		160		190
	11		41		71		101			131		161		191
	12		42		72		102			132		162		192
	13		43		73		103			133		163		193
	14		44		74		104			134		164		194
	15		45		75		105			135		165		195
	16		46		76		106			136		166		196
	17		47		77		107			137		167		197
	18		48		78		108			138		168		198
	19		49		79		109			139		169		199
	20		50		80		110			140		170		200
	21		51		81		111			141		171		201
	22		52		82		112			142		172		202
	23		53		83		113			143		173		203
	24		54		84		114			144		174		204
	25		55		85		115			145		175		205
	26		56		86		116			146		176		206
	27		57		87		117			147		177		207
	28		58		88		118			148		178		208
	29		59		89		119			149		179		209
	30		60		90		120			150		180		210

Search Notes				Examiner Jean B. Jeanglaude	Applicant(s)/Pate Reexamination MARPE ET AL. Art Unit 2819	under
SEARCHED				SEARCH NOTES(INCLUDING SEARCH STRATEGY)		
Class	Subclass	Date	Examiner		DATE	EXMR
Search	updated	3/4/2005	JBJG	WEST	3/4/2005	JBJG
382	239	3/4/2005	JBJG			
	FEREN	SEARC				
Class	Subclass	Date	Examiner			
341	106	3/4/2005	JBJG			
341	107	3/4/2005	JBJG			
					\|	

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OP COMMERCE United States Patent and Trademark Oirice Addrent: COMMISSIONER FOR PATENTS
P.O. Bax 1450

Alexradaris Virginia 22313-1450
BIBDATASHEET
Bib Data Sheet

TITLE
Method and arrangement for arithmetic encoding and decoding binary states and a corresponding computer program and a corresponding computer-readable storage medium

FILING FEE$\begin{aligned} & \text { RECEIVED } \\ & 1058 \end{aligned}$	FEES: Authority has been given in Paper No. \qquad to charge/credit DEPOSIT ACCOUNT No. \qquad for following:	$\square_{\text {All }}$ Fees
		1.16 Fees (Filing)
		1.17 Fees (Processing Ext. of time)
		1.18 Fees (Issue)
		\square Other
		$\square{ }^{1}$ Credit

[^1]
BEST AVAILABLE COPY

Docket No.: S\&ZFH030508

I hereby certify that this correspondent is being deposited with the United States Postal Service as First Class Mail in an envelope addressed to the Commissioner for Patents, P.O. Box 1750,41 and a, va 2 3313-1450 on the date indicated below.

Date: \qquad
IA THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applic. No.	$:$ 10/727,801 Confirmation No: 6855
Applicant	$:$ Detlef Marpe, et al.
Filed	$:$ December 4, 2003
Art Unit	$: 2819$
Examiner	$:$ Jean Pruner Jeanglaude
Title	$:$ Method and Arrangement for Arithmetic Encoding and Decoding
	Binary States and a Corresponding Computer Program and a
	Corresponding Computer-Readable Storage Medium
Docket No.	$:$ S\&ZFH030508
Customer No.	$: 24131$

CLAIM FOR PRIORITY

Commissioner for Patents,
P.O. Box 1450, Alexandria, VA 22313-1450

Sir:

Claim is hereby made for a right of priority under Title 35, U.S. Code, Section 119, based upon the German Patent Application 10220 962.6, filed May 2, 2002.

A certified copy of the above-mentioned foreign patent application is being submitted herewith.

Date: May 3, 2005
Lerner and Greenberg, P.A.
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100
Fax: (954) 925-1101
/av

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

Anmeldetag:

Anmelder/Inhaber:

Bezeichnung:

IPC:
H 03 M, G 06 T

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 13. April 2005
Deutsches Patent- und Markenamt Der Präsident

CERTIFIED COPY OF PRIORITY DOCUMENT

Verfahren und Anordnung zur tabellengestūtzten bināren arithmetischen Gokodierung und Dekodierung sowie ein entsprechendes Computexprogrammprodukt und ein entsprechences computerlesbares Speichermedium

Beachreibung

Die Erfindung betrifft ein Verfahren und eine Anordnung zur tabellengestatzten binaren arithmetischen Enkodierung und Dekodierung sowie ein entsprechendes Computerprogramprodukt und ein entsprechendes computerlesbares Speichermedium, welche insbesondere bei der digitalen Datenkompression eingesetzt werden kōnnen.

Die vorlilegende Erfindung beschreibt ein neues effizientes Verfahren zur binaxen arithmetischen Kodierung. Der Bedarf nach bingrer arithmetischer Kodierung entsteht in den verachiedensten. Anwendungabereichen dex digitalen Datenkompression; hier sind vor allem Anwendungen in den Bereichen dex digitalen Bildkompression von beispielhaften Interesse. In zahlreichen Standards zur Bildkodierung, wie etwa JPEG, JPEG-2000, JPEG-LS und JBIG wrurden Verfahren zur bingren arithmetischen Kodierung definiert. Neuere Standardisierungsaktivitāten lassen auch den zukūnftigen Einsatz derartiger Kodiertechniken im Bereich der Videokodierung (H.26L/JVT) erkennen [1].

Die Vorteile der arithmetischen Kodierung (AR) gegenUber der bisher in der praxis haufig verwendeten Huffman-Kodierung [2] lassen sich im wesentlichen durch drei Merkmale charakterisieren:

1. Mit der Verwendung der arithmetischen Kodierung lasat sich durch einfache Adaptionsmechanismen eine dynamische Anpassung an die vorhandene quellenstatistik exzielen (Adaptivitat).
2. Die arithmetische Kodierung erlaubt die Zuweisung von einer nicht ganzzahligen Anzahl von Bita pro zu kodierendem Symbol und ist damit geeignet, Kodierresultate zu erzielen, die eine Approximation der Entropie als der theoretisch gegebenen unteren Schranke darstellen (Entropie-Approximation) [3].
3. Unter Zuhilfenahme geeigneter Kontextmodelle lassen sich mit der arithmetischen Kodierung statistische Bindungen zwischen Symbolen zur weiteren Datenreduktion ausnutzen (Intersymbol-Redundanz) [4].

Als Nachteil einer Anwendung der arithmetischen Kodierung wird der im Vergleich zur Huffman-Kodierung i, a. erhöhte Rechenaufwand angesehen.

Das Konzept der arithmetischen Kodierung geht zurück auf die grundlegenden Arbeiten zur Informationstheorie von Shannon [5]. Erste konzeptionelle Konstruktionsmethoden wurden in [6] erstmals von Elias verōffentlicht. Eine erste LIFO (last-in-first-out) Variante der arithmetischen Kodierung wurde von Rissanen [7] entworfen und spaiter von verschiedenen Autoren zu FIFOAusbildungen (first-in-first-out) modifiziert [8] [9] [10].

Gemeinsam ist allen diesen Arbeiten das zugrundeliegende Prinzip der rekursiven Teilintervallzerlegung: Entsprechend den gegebenen Wahrscheinlichkeiten $P\left({ }^{\prime \prime} 0^{\circ}\right)$ und $P\left({ }^{\prime \prime} 1^{\prime \prime}\right)$ zweier Ereignispe $\left\{{ }^{\prime \prime} 0^{n}, 1^{\prime \prime}\right\}$, eines bināren Alphabets wird ein anfanglich gegebenes Intervall, z.B. das Intervall $[0,1)$, je nach Auftreten von sinzelereignissen rekursiv in Teilintervalle zerlegt. Dabei ist Größe des resultierenden Teilintervalls als Produkt der Einzelwahrscheinlichkeiten der aufgetretenen Ereig-

Das Grundprinzip erfordert jedoch zunāchst eine (theoretisch) unbegrenzte Genauigkeit in der DarstelIung des resultierenden Teilintervalls und hat daruber hinaus den Nachteil, dass erst nach Rodierung des letzten Exeignisses die Bits zur Reprāsentierung des resultiexenden Teilintervalls ausgegeben werden kōnnen. Für praktiache Anwendungszwec̣ke war es daher entscheidend, Mechanismen fur eine inkrementelle Ausgabe von Bits bei gleichzeitiger Darstellung mit Zahlen vorgegebener fester Genauigkeit zu entwickeln. Diese wurden erstmals in den Arbeiten [3][7][11] vorgestellt.

In Figur 1 aind die wesentlichen Operationen zur binåren arithmetischen Kodierung skizziert. In der dargestellten Implementierung wird das aktuelle Teilintervall durch die beiden Werte L und R repräsentiert, wobei L den Aufgatzpunkt und R die Große (Breite) des Teilintervalls bezeichnet und beide Großen mit jeweils b-bit Ganzzahlen dargestellt werden. Die Kodierung eines bit $\in\{0,1\}$ erfolgt dabei im wesentlichen in 5 Teilschritten: Im ersten Schritt wird anhand der Wahrscheinlichkeitsachatzung der Wert des weniger wahrscheinlichen Symbols ermittelt. Für dieses symbol, auch LPS (least probable symbol) in Unterscheidung zum RPS (most probable symbol) genannt, wird die Wahrscheinlichkeitsschatzung $P_{\text {LPS }}$ im zweiten Schritt zur Berechnung der Breite $R_{\text {tps }}$ des entsprechenden Teilintervalls herangezogen. Je nach Wert des zu kodierenden Bits bit werden L und R im dritten Schritt aktualisiert. Im vierten Schritt wird die Wahrscheinlichkeitsschatzung je nach Wert des gerade kodierten Bits aktualisiert und schließlich wird das Codeintervall R im letzten schritt einer sogenannten Renormalisierung unterzogen, d. h. R wird so reskaliert, dass die Bedingung $R \in\left(2^{b-2}, z^{b-1}\right]$ erfūllt ist. Dabei wird bei jeder skalierungsoperation ein Bit ausgegeben. Far weitere Details sei auf [10] verwiesen.

Der wesentliche Nachteil einer Implementierung, wie oben skizziert, besteht nun darin, dass die Berechnung der Intervallbreite $R_{\text {tps }}$ eine FAultiplikation pro $z u$ kodierendem Symbol erfordert. Üblicherweise sind Multiplikationsoperationen, insbesondere, wenn sie in Hardware realisiert werden, aufwändig und kostenintensiv. In mehreren Forschungsarbeiten wurden daher Verfahren untersucht, diese Multiplikationsoperation durch eine
geeignete Approximation zu ersetzen [11] [12] [13][14]. Hierbei kōnnen die zu diesem Thema veroffentlichten Verfahren grob in drei Kategorien eingeteilt werden.

Die erste Gruppe von Vorschlagen zu einer multiplikationsfreien, binären arithmetischen kodierung basiert auf dem Ansatz, die geschatzten Wahrscheinlichkeiten $P_{\text {upg }}$ so zu approximieren, dass die Multiplikation im 2. Schritt von Figur 1 durch eine (oder mehrere) Schiebeund Additionsoperation(en) ersetzt werden kann [1i][14]. Hierzu werden im einfachsten Fall die Wahrscheinlichkeiten $P_{\text {ups }}$ durch Werte in der Form 2^{-7} mit ganzahligem $q>0$ angenähert.

In der zweiten Kategorie von approximativen Verfahren wird vorgeschlagen, den Wertebereich von R durch diskrete Werte in der Form ($/ 3-1$) $z u$ approximieren, wobei $r \in\{0\} \cup\left\{2^{-k} \mid k>0, k\right.$ ganzzablig\} gewählt wird [15] [16].

Die dritte Kategorie von Verfahren zeichnet sich schließlich dadurch aus, dass dort sāmeliche arithmetische Operationen durch Tabellenzugriffe ersetzt werden. Zu dieser Gruppe von verfahren gehören einerseita der im upEG-Standard verwendete Q-Coder und verwandte Verfahren, wie der QM- und MQ-Coder [12], und andererseits der quasi-arithmetische Roder [13]. Wärend das letztgenannte Verfahren`eine drastische Einschränkung der zur Reprāsentierung von R verwendeten Anzahl b von Bits vornimmt, um zu akzeptabel dimensionierten Tabellen zu gelangen, wird im o-Coder die Renormalisierung von R so gestaltet, dass R zumindest naherungaweise durch 1 approximiert werden kann. Auf diese Art und Weise wird die Multiplikation zur Be-

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

Anmeldetag:

Anmelder/Inhaber:

Bezeichnung:

IPC:
10220962.6
2. Mai 2002

Heinrich Hertz Institut für Nachrichtentechnik Berlin GmbH, 10587 Berlin/DE

Verfahren und Anordnung zur tabellengestützten binären arithmetischen Enkodierung und Dekodierung sowie ein entsprechendes Computerprogrammprodukt und ein entsprechendes computerlesbares Speichermedium

H 03 M, G 06 T

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 13. April 2005
Deutsches Patent- und Markenamt
Der Präsident

Abstract

stimmung von Rups vermieden. Zusātzlich wird die Wahrscheinlichkeitsschatzung mittels einer Tabelle in Form einer Finite-State Machine betrieben. Fūr weitere Einzelheiten hierzu sei auf [12] verwiesen.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Anordnung zur tabellengestūtzten binären arithmetischen Enkodierung und Dekodierung sowie ein entsprechendes Computerprogrammpodukt und ein entsprechendes computerlesbares Speichermedium anzugeben, welche die erwähnten Nachteile beheben, insbesondere (a) keine Multiplikationen erfordert, (b) eine Wahrscheinlichkeitsschätzung ohne Bexechnungsaufwand erlaubt und (c) gleichzeitig ein Hōchstmaß an Kodiereffizienz über einen weiten Bereich von typischerweise auftretenden Symbolwahrscheinlichkeiten gewährleistet.

Diege Aufgabe wird exfindungsgemak gelost durch die Merkmale im kennzeichnenden Teil der Ansprüche 1, 6, 7 und 8 im Zusammenwirken mit den Merkmalen im Oberbegriff, Zweckmaßßige Ausgestaltungen der Exfindung sind in den dnteransprūchen enthalten.

Ein Verfahren zur tabellengestūtzten binaren arithmetischen Enkodierung und Dekodierung wird vorteilhafterweise so durchgefūhrt, daß $z w e i$ oder mehrere Tabellen zur adaptiven arithmetischen Codierung genutzt werden.
Eine Anordnung zur tabellengestützten binãren arith-
metischen Enkodierung und Dekodierung umfasst
mindestens einen Prozessor, der (die) derart einge-
richtet ist (sind), dass ein Verfahren zur
tabellengestützten bināren arithmetischen Enkodierung und Dekodienung gemaßs einem der Anspräche 1 bis 5 durchfuhrbar ist.

Ein Computerprogramm-Erzeugnis zur tabellengestūtzten binaren arithmetischen Enkodierung und Dekodierung umfasst ein computerlesbares speichermedium, auf dem ein Programm gespeichert ist, das es einem Computer ermöglicht, nachdem es in den Speicher des. Computers geladen worden ist, ein verfahren zur tabellengesthtzten binagren arithmetiachen Enkodierung und Dekodierung gemāß einem der Ansprüche 1 bis 5 durchzuführen.

Zur Durchführung eines Verfahrens zur tabellengestŭtzten binären arithmetischen Enkodierung und Dekodierung wird vorteilhafterweise ein computerlesbares Speichermedium genutzt, auf dem ein Programm gespeichert ist, das es einem Computer ermơglicht, nachdem es in den Speicher des Computers geladen worden ist, ein Verfahren zur tabellengestatzten bingren arichmetischen Enkodierung und Dekodierung gemās einem der Ansprūche 1 bis 5 durchzufūhren.

Das neue Verfahren zeichnet sich durch die Kombination dreier Merkmale aus, Zunachst erfolgt, ahnlich wie im Q-Coder die Wahrscheinlichkeitsschătzung mittels einer endlichen Zustandsmaschine (FSM: finite state machine), wobei die Generierung der N. reprāsentativen Zustande der FSM offline erfolgt. Die entsprechenden übergangsregeln werden dabei in Form von Tabellen abgelegt.

Zweites charakteristiaches Merkmal der Erfindung ist eine Vorquantisierung der Intervallbreite R auf eine Anzahl von K vorab definierten quantisierungswerten.

Dies erlaubt bei geeigneter Dimensionierung von K und N die Eratellung einer Tabelle, die alle $K \times N$ Kombinationen vos vorab berechneten Produktwerten $R \times P_{\text {pss }}$ zu einer multiplikationsfreien Bestimuung von $R_{t p s}$ enthalt.

Fhir die Vexwendung der vorgestellten Exfindung in einer Ungebung, in der verschiedene Kontextmodelle zum Einsatz kommen, wher denen sich auch solohe mit (nahezu) uniformer Wahrscheinlichkeitsverteilung befinden, wird als zusätzliches (optionales) Element ein separater Zweig in der Kodiermaschine vorgesehen, in der sich unter der Annahme einer Gleichverteilung die Bestimmung der Groben L und R sowie die Renormalisierung vom Rechenaufwand her nochmals deutlich reduziert.

Insgesamt beurteilt, erbringt die Exfindung insbesondere den Vorteil, dass sie einen guten Kompromiss zwischen hoher Kodiereffizienz auf der einen Seite und geringem Rechenaufwand auf der anderen seite ermóglicht.

Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels nåher erlautert.

Ea zeigen:
Figur 1 Darstellung der wesentlichen Operationen zur binăren arithmetiachen Kodierung;
Figur 2 Modifiziertes schema zur tabellengestatzten arithmetischen Enkodierung;
Figur 3 Prinzip der tabellengestŭtzten arithmetischen Decodiexung;
Figur 4 Prinzip der En- bzw. Dekodierung für binäre Daten mit uniformer Verteilung.

Zunächst einmal soll jedoch der theoretische Hintergrund etwas nāher erlāutert werden:

Tabellengestützte Wahrscheinlichkeitsschätzung Wie oben bereits nāher erlãutert, beruht die Wirkungsweiae der arithmetischen Kodierung auf einer mōglichst guten Schåtzung der Auftrittswahrscheinlichkeit der zu kodierenden Symbole. Um eine Adaption an instationāre Quellenstatistiken zu exmōglichen, muss diese schätzung im Laufe des Kodierungsprozebses aktualisiert werden. In der Regel werden hierzu herkömmlicherweise Verfahren verwendet, die mit Hilfe skalierter Háufigkeitszähler der kodierten Ereignisse operiexen [17]. Bezeichnen $C_{\text {Lps }}$ und cmps zăhler fūr die Auftrittshäufigkeiten von LPS und MPS, so lässt sich mittels dieser zahler die Schātzung

$$
\begin{equation*}
P_{L P S}=\frac{c_{L P S}}{c_{L P S}+c_{\text {MPPS }}} \tag{I}
\end{equation*}
$$

vornehmen und damit die in Figur 1 skizzierte Operation der Intervallunterteilung ausführen. Für praktische Zwecke nachteilig ist die in Gleichung (1) erforderliche Division. Häufig ist es jedoch zweckmaßig und erforderlich, bei überschreitung eines vorgegebenen Schwellwerts $C_{\text {max }}$ des Gebamtzählers $c_{\text {Total }}=c_{\text {MPs }}+c_{\text {Lps }}$ eine Reskalierung der zählerstände vorzunehmen. (Man beachte in diesem Zusammenhang, dass bei einer b-bitDaratellung von L und R die kleinste Wahrscheinlichkeit, die noch korrekt dargestellt werden kann, 2^{-b+2} beträgt, so dass zur Vermeidung der Unterschreitung dieser unteren Grenze gegebenenfalls eine Reskalierung der zahlerstande erforderlich ist.) Bei geeigneter Wahl von $C_{\text {max }}$ lassen sich die reziproken Werte von Crotal tabellieren, so dass die in Gleichung (1) erforderliche Division durch einen Tabellenzugriff sowie eine Multi-plikations- und schiebeoperation ersetzt werden kann.

Um jedoch auch diese arithruetischen Operationen zu vermeiden, wird in der vorliegenden Erfindung ein vollstandig tabellengestütztes Verfahren zux Wahrscheinlichkeitsschảtzung verwendet.

Zu diesem Zweck werden vorab in einer Trainingsphase reprāsentative Wahrscheinlichkeitszustande $\left\{P_{k} \mid 0 \leq k<N_{\max }\right\}$ ausgewanlt, wobei die Auswahl der Zustande einerseits von der statistik der zu kadierenden Daten und andererseits von der Nebenbedingung der vorgegebenen maximalanzahl $N_{\text {max }}$ von Zustäden abhangt. Zusatzlich werden Übergangaregeln definiert, die angegeben, welcher meue zuatand ausgehend von dem aktuell kodierten Symbol fur das nāchste zu kodierende symbol verwendet werden soll. Diese übergangsregeln werden in Form zweier Tabellen bereitgestel.j: $\quad\left\{N e x t _S t a t e _L P S_{k} \mid 0 \leq k<N_{\text {max }}\right\} \quad$ und \{Next_State_MPS $\left.\mid 0 \leq k<N_{\text {maxx }}\right\}$, wobei die Tabellen für den Index n des aktuell gegebenen Wahrscheinlichkeitszustands P_{n} den Index m dea neuen Wahrscheinlichkeitszustands P_{m} bei Auftreten eines LPS bzw. MPS liefern. Hervarzuheben sei an diesex stelle, dass zur Wahrscheinlichkeitsschātzung im arithmetischen Enkoder bzw. Dekoder, so wie ex hier vorgeschlagen wird, keine explizite Tabellierung dex Wahrscheinlichkeitszustande notwendig ist. Vielmehr werden die Zustande nur anhand ihrer entsprechenden Indizes implizit adressiert, wie im nachfolgenden Abschnitt beschrieben.

Tabellengestūtzte Intervallunterteilung
Figur 2 zeigt das modifizierte Schema zur tabellengestŭzten arithmetischen Kodierung, wie sie hier vorgeschlagen wird. Nach Bestimung des LPS wird zunāchst die gegebene Intervallbreite R mittels einer tabellier-
ten Abbildung Qtab und einer geeigneten Schieber operation (um q bit) auf einen quantisierten Wert Q abgebildet. In der Regel wird hier eine relativ grobe Quantisierung $k=4 \ldots 8$ verschiedene Werte vorgenommen. Auch hler erfolgt, ahnlich wie im Fall der Wahrscheinlichkeitsschảtzung, keine explizite Bestimmung von Q; vielmehr wird nur ein Index q_index auf Q ubergeben. Dieaer Index wird nun zusammen mit dem Index p_state zur Charakterisierung des aktuellen wahrscheinlichkeitszustands für die Bestimmung der Intervalibreite $R_{\text {Ips }}$ verwendet. Dazu wird der entsprechende Eintrag der Tabelle Rtab verwendet. Dort sind die zu allen K quantisierten Werten von R und $N_{\text {max }}$ verschiedenen Wahrscheinlichkeitszustānden korrespondierenden $K \cdot N_{\max }$ Produktwerte $R \times P_{\text {LPg }}$ abgelegt. Für praktische Implementierungen ist hier eine Möglichkeit gegeben, zwischen dem Speicherbedarf für die Tabellengroße und der arithmetischen Genauigkeit, die letztlich auch die Effizienz der Kodierung bestimmt, abzuwāgen. Beide Zielgrößen werden durch die Granularitat der Reprāsentierung von R und $P_{\text {Lps }}$ bestimmt.

Im vierten Schritt der Figur 2 ist gezeigt, wie die Aktualisierung des Wahrscheinlichkeitszustands p_state in Abhängigkeit dea gerade kodierten Ereignisses bit vorgenommen wird. Hiex werden die im vorigen Abschnitt "Tabellengestūtzte wahrscheinlichkeitsschātzung" bereits erwahnten bbergangstabellen Next_State_LPS und Next_State_MPS benutzt. Diese Operationen entsprechen dem in Figur 1 im 4. Schritt angegebenen, aber nicht naher spezifizierten Aktualisierungsprozeß.

Figux 3 zeigt das korrespondierende Ablaufachema der tabellengestūtzten axithmetischen Dekodierung. Zur

Charakterisierung des aktuellen Teilintervalls. wird im Dekoder die Intervallbreite R und ein Wert v verwendet. Letzterer liegt im Innern des Teilintervalls und wird mit jedem gelesenen Bit sukzessive verfeinert. Wie aus der Figur 3 hervorgeht, werden die Operationen zur Wahrscheinlichkeitsschảtzung und Bestimmung der Intervallbreite R entsprechend denen des Enkoders nachgefūhrt.

Kodierung mit uniformer Wahracheinlichkeitsverteilung In Anwendungen, in denen z. B. vorzeichenbehaftete Werte kodiert werden sollen, deren Wahrscheinlichkeitsverteilung symmetrisch un die Null angeordnet ist, wird man zur Kodierung der Vorzeicheninformation in der Regel von einer Gleichverteilung ausgehen kōnnen. Da diese Information einerseits mit in den arithmetischen Bitstrom eingebettet werden soll, es anderseits aber nicht sinnvoll ist, fūr den Fall einer Wahrscheinlichkeit von $P=0.5$ den immer noch relativ aufwandigen Apparat aer tabellengestutzten Wahracheinlichkeitsschatzung und Intervallunterteilung zu benutzen, wird vorgeschlagen fur diesen Spezialfall, optional eine gesonderte Enkoder-/Dekoder Prozedur zu benutzen, die gich wie folgt darstellt.

Im Enkoder lässt sich fŭr diesen Spezialfall die Intervallbreite des neuen Teilintervalls durch eine einfache Schiebeoperation entsprechend einer Halbierung der Breite des Ausgangsintervalls R bestimmen. Je nach Wert des zu kodierenden Bits. wird dann die obere bzw. untere Halfte von R als neues Teilintervall gewahlt (vgl. Figur 4). Die anschließende Renormalisierung und Ausgabe von Bits erfolgt wie im obigen Fall der tabellengestŭtzten Losung.

In entsprechenden Dekoder reduzieren sich die notwendigen Operationen darauf, das zu dekodiexende Bit anhand des Werts von V relativ zur aktuelien Inter- vallbreite. R durch eine einfache Vergleichsoperation zu beatimmen. In dem Fall, dass das dekodierte Bit gesetzt wird, lat V un den Betrag von R zu reduzieren. Wie in Figur 4 dargestellt, wird die Dekodierung durch die Renormalisierung und die Aktualisierung von v mit dem nachsten einzulesenden Bit abgeschlossen.

Quellennachweis

[I] D. Marpe, G. Blattermann, G. Heising, Th: Wiegand: "Video Compression Using Context-Based Adaptive Arithmetic Coding", Proc. IEEE Int. Congress on Image Processing, Thessaloniki, Greece, pp. 558-561. 2001.
[2] D. A. Huffman, "A Method for construction of Minimum Redundancy coden, Proc. IRE, Vol. 40, pp. 1098-1101, 1952.
[3] I. H. Witten, R. M. Neal. J. G. cleary, "Arithmetic Coding for Data Compression", Communcation of the ACM, Vol. 30, No. 6, pp. 520540, 1987.
[4] G. G. Langdon, J. Rissanen, "A simple General Binary Source code". IEEE Transactions on Information Theory, Vol. 28, pp. 800-803, 1982.
[5] C. E. Shannon, uA Mathematical Theory of Communication", Bell Syat. Tech. Journal, vol. 27, pp. 379-423, 623-656, 1948.
[6] P. Elias, in ${ }^{\prime}$ Information Theory and Coding", N. Abramson (Ed.), New York, Mc-Gra-Hill, 1963.
[7] J. Rissanen, "Generalized Kraft Inequality and Arithmetic Coding", IBM J. Res. Develop., Vol. 20, pp. 198-203. 1976.
[8] R. C. Pasco, "Source Coding and Algorithms for Fast Data Compression", Ph. D. Dissertation, stanford University, USA, 1976.
[9] G. G. Inangdon, "An Introduction to Arithmetic Coding". IBM J. Res. Develop., Vol. 28, PP. 135149, 1984.
[10] A. Moffat, R. M. Neal, I. H. Witten, "Arithmetic Coding Revisited", Proc. IEEE Data Compression Conference, Snowbird (USA), Pp. 202-211, 1996.
[11] J. Rissanen, K. M. Mohiuddin; \quad A Multiplication-Free Multialphabet Arithmetic Arithmetic Code", IEEE Trans. on Communication, Vol. 37. pp. 93-98, 1989.
[12] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, R. B. Arpa, "An Overview of the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder", IBM J. Res. Develop., Vol. 32, pp. 717-726, 1988.
[13] P. G. Howard, J. s. Vitter, "Practical Implementations of Arithmetic Coding", in "Image and Text Compreasion". J. Storer (Ed.), Norwell (USA), Kluwer, 1992.
[14] L. Huynh, A. Moffat, "A Probability-Ratio Approach to Approximate Binary Arithmetic Coding", IEEE Trans. on Information Theory, Vol. 43. pp. 1658-1662, 1997.
[15] D. Chevion, E. D. Karnin, E. Walach, nHighEfficiency, Multiplication Free Approximation of Arithmetic Coding", Proc. IEEE Data Compression Conferenc, Snowbird (USA), pp. 43-52, 1991.
[16] G. Feygin, P. G. Gulak, P. Chow, "Minimizing Excess Code Length and VLSI Coraplexity in the Multiplication Free Approximation of Arithmetic Coding", Inform. Proc. Manag.. vol. 30 , pp. Bo5816. 1994.
[17] D. I. Duttweiler, Ch. Charazas, "Probability Estimation in Arithmetic and Adaptive-Huffman Entropy Coders", IEEE Trans. on Image Processing, Vol. 4, pp. 237-246, 1995.

Patentanspxūche

1. Verfahren zur tabellengestūtzten binären arithmeti- achen Enkodierung und Dekodierung, wobei zwei oder mehrere Tabellen zur adaptiven arithmetischen Codierung genutzt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
die Tabellen zur adaptiven arithmetischen Codierung in Bild- und videocodierern und -decodierern zur übertragung der Syntaxelemente Bewegungsvektoren, Coded-Block-Pattern und/oder Texturinformation eingesetzt werden.
3. Verfahren nach einem der vorangehenden Ansprūche, dadurch gekennzeichnet, dals eine Tabelle die Zustandsübergānge des arithmetischen Codieres/Decodierers und eine andere die Zustandaủbergānge fŭr die Wahrscheinlichkeitaschatzung der syntaxelemente darstellt.
4. Verfahren nach einem der vorangehenden Ansprinche, dadurch gekennzeichnet, dak eine Bestimmung des Least-Probable-Symbols und des Most-Probable-Symbols und somit eine effizientere und adaptive Verarbeitung der binären Eingangasymbole erfolgt.
5. Verfahren nach einem der vorangehenden Ansprūche, dadurch gekennzeichnet, daß eine vereinfachte Codierung von Syntaxelementen mit approximativ uniformer Wahracheinlichkeit durch einen Beipass durchgefūhrt wird.
6. Anordnung mit mindestens einem Prozessor, der (die) dexart eingerichtet ist (sind), dass ein Verfahren zur tabellengestützten bināren arithmetischen Enkodiemung und Dekodierung gemßs einem der Ansprüche 1 bis 5 durchführbar ist.
7. Computexprogramm-Erzeugnis, dass ein computerlesbares Speichermedium umfasst, auf dem ein Programn gespeichert ist, das es einem Computer ermōglicht, nachdem es in den Speicher des Computers geladen worden ist, ein Verfahren zur tabellengestutzten bināren arithmetischen Enkodierung und Dekodiemng gemảß einem der Ansprūche 1 bis 5 durchzufūhren.
8. Computerlesbares Speichermediun, auf dem ein Programm gespeichert ist, das es einem Computer ermöglicht, nachdem es in den Speicher des Computers geladen worden ist, ein Verfahren zur tabellengestützten binären arithmetischen Enkodierung und Dekodierung gemas einem der Ansprüche 1 bis 5 durchzufuhren.
```
1. Bestimmung des LPG
2. Berechnung der Groisen \(\mathrm{R}_{\mathrm{Lps}}\) und \(\mathrm{R}_{\text {Hps }}\) :
```



```
    \(\mathbf{R}_{\text {Repa }}=\mathbf{R}-\mathbf{R}_{\text {Lpa }}\)
3. Berechnung des meuen Teilintervalis:
        IE (bit \(=\) LPS) then
            \(\boldsymbol{L} \leftarrow \mathbf{L}+\mathbf{R}_{\text {HPg }}\)
            \(\boldsymbol{R} \leftarrow \boldsymbol{R}_{\text {LPQ }}\)
        elee
            \(\boldsymbol{R} \leftrightarrow \mathrm{R}_{\mathrm{KPB}}\)
4. Aktualisierung der Wahrscheinlichkeitsschatzung Pws
5. Ausgabe von Bits und Repormalisierumg von \(R\)
```

Fig. 1
I. Beatimmung des LPs
2. Quantisierung von R :

ㅎ_inder $=0 t a b[R \gg q]$
3. Bestimmung von $R_{\text {Lps }}$ und $R_{\text {tps }}$: $\boldsymbol{k}_{\text {Lpg }}=$ Rtab[q_index, P_state] $\boldsymbol{R}_{\text {IPPG }}=\boldsymbol{R}-\boldsymbol{R}_{\text {LPS }}$
4. Berechnung des neuen Teilintervalls: if (bit $=$ IPSS) then
$\boldsymbol{I} \leftarrow \mathbf{I}+\mathrm{R}_{\mathrm{mos}}$
$\boldsymbol{R} \leftarrow \mathbf{R}_{\text {RPs }}$
else
P_state \leftarrow Wext_state_LRS [p_state]
$\mathbf{R} \leftarrow \boldsymbol{R}_{\text {mps }}$
p_state \leftarrow Next_state_ms [p_state]
Fig. 2

1. Bestimnung des LPS
2. Quantisiexung von R:
q-index $=$ Qtab [R>>q]
3. Beatinmung von $R_{\text {Lps }}$ und $R_{\text {PRP }}$:
$R_{\text {ips }}=$ Rtab[q_index, $P_{\text {_state] }}$
$\mathbf{R}_{\text {RIPI }}=\mathbf{R}-\mathbf{R}_{\text {LPa }}$
4. Bestimmung von bit, je nach Lage des Teilintervalls:
if ($\mathrm{V} \geq \mathrm{R}_{\text {MPB }}$) then
bit \leftarrow LPS
$\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}_{\mathrm{x} \mathrm{\varphi s}}$
$R \leftarrow \mathbf{R}_{\text {LPA }}$
$P_{\text {_s }}$ state \leftarrow Next_state_LPS [p_state]
else
bit \leftarrow moss
R $\leftarrow \boldsymbol{R}_{\text {xpa }}$
P_state \leftarrow Mext_state_mps [p_state]
5. Renormalisierung von R, Auslesen eines Bits und Aktualisierung von V

Fig. 3

Enkoder:

1. Berechnung des neuen Teilintervalis:
$\mathbf{R} \leftarrow \mathbf{R} \rightarrow \mathbf{1}$
1土 (bit \Rightarrow 1) then
```
            I}\leftarrow工\boldsymbol{L}+\boldsymbol{R
```

2. Ausgabe von Bits und Renormalisierung von R

Dekoder:

1. Bestimmung von bit, je nach Lage des Teilintervalls: if ($V \geqslant R$) then bit $\leftarrow 1$ $\mathbf{V} \leftarrow \mathbf{V}-\mathbf{R}$
else
bit $\leftarrow 0$
2. Auslesen eines Bits, Renormalisierung von R und Aktualisierung von V

Fig. 4

Zusammenfassung

Die Erfindung beschreibt ein Verfahren und eine Anoxdnung zur tabellengestatzten bināren arithmeti- schen Enkodierung und Dekodierung sowie ein entsprechendes Computexprogrammprodukt und ein entsprechendes computerlesbares speichermedium, welche insbesondere bei der digitalen Datenkompression eingesetzt werden können.
Hierfür wird vorgeschlagen, zur tabellengestützten binären arithmetischen Enkodierung und Dekodierung zwei oder mehrere Tabellen zur adaptiven arithmetischen Codierung zu nutzen.

[^2]
This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

8
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
\square SKEWED/SLANTED IMAGES
\square COLOR OR BLACK AND WHITE PHOTOGRAPHS
\square GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

8
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
\square other: \qquad

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450
or Fax
(703) 746-4000

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) speqpyi maintenance fee notifications.
$241317590 \quad$ 03/23/2005

LERNER AND GREENBERG, PA
P O BOX 2480
HOLLYWOOD, FL 33022-2480 Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (703) 746-4000, on the date indicated below.

06/28/2005 MBERHE1 0000014010727801

RALPHE.LOCHER	(Depositor's name)
	(Signature)
June 23, 2005	(Date)

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCK̈ET NO.	CONFIRMATION NO.
$10 / 727,801$	$12 / 04 / 2003$	Detlef Marpe	S\&ZFH030508	

 COMPUTER PROGRAM AND A CORRESPONDING COMPUTER-READABLE STORAGE MEDIUM

APPLN. TYPE	SMALL ENTITY	ISSUE FEE	PUBLICATION FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1400	\$300	\$1700	06/23/2005
EXAMINER		ART UNIT	CLASS-SUBCLASS		
JEANGLAUDE, JEAN BRUNER		2819	341-106000		

1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363).
\square Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached.
\square "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.
2. For printing on the patent front page, list
(1) the names of up to 3 registered patent attorneys or agents OR, alternatively,
(2) the name of a single firm (having as a member a registered attorney or agent) and the names of up to 2 registered patent attorneys or agents. If no name is listed, no name will be printed.

1Laurence A. Greenberg

2Werner H. Stemer

3 Ralph E. Locher
3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)
Muenchen, GGermany

Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung .E.V.
Please check the appropriate assignee category or categories (will not be printed on the patent): \square Individual ${ }^{\text {WR}}$ (erporation or other private group entity $\quad \square$ Government

4a. The following fee(s) are enclosed:
4b. Payment of $\mathrm{Fe}(\mathrm{s})$:
A check in the amount of the fee(s) is enclosed.
Payment by credit card. Form PTO-2038 is attached.
WPThe Director is hereby authgrized by charge the required fee(s), or credit any overpayment, to Deposit Account Number $12-1099$ (enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)
$\square_{\text {a. Applicant claims SMALL ENTITY status. See } 37 \text { CFR 1.27. }}$
b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27 (g)(2).

The Director of the USPTO is requested to apply the Issue Fee and Publication Fee (if any)-or to re-apply any previously paid issue fee to the application identified above. NOTE: The Issue Fee and Publication Fee (if required) will notbe accepted fremranyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United Statenterit n Trademark Office.

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandra, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995 , no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Alcxandria, Virginia 22313-1450
www.uspto.gov

DATE MAILED: 08/1/2005

PRIORITY ACKNOWLEDGMENT

1. Receipt is acknowledged of priority papers submitted under 35 U.S.C. 119. The papers have been placed of record in the file.
2. Applicant's claim for priority, based on papers filed in parent Application Number \qquad submitted under 35 U.S.C. 119 , is acknowledged.
\square 3. The priority papers, submitted \qquad , after payment of the issue fee are
\square acknowledged
While the priority claim or certified copy filed will be placed in the file record, neither will be reviewed and the patent when published will not include the priority claim.
See 37 CFR 1.55(a)(2).
\square not acknowledged since the processing fee in 37 CFR 1.17(i) has not been received.
3. For utility and plant applications. filed on or after November 29, 2000, the priority claim is not entered because the claim was not presented within the time limit required by 37 CFR 1.55(a)(1). A petition to accept a delayed claim for priority under 35 U.S.C. 119(a) - (d) or (f), or 365 (a) may be filed. See 37 CFR 1.55(c) and MPEP 201.14(a).

Office of Patent Publication
(703) 305-8388

 $37 \subset \subset \mathrm{~B} 373(6)$
bereby appoins:

ox

Namere	Rejuetrator Nutrises		R3me	Pegistration Mumber

GE Vdeo Compraswon, 1 , C
T Researm Clole KT-4ASOE
Nokayma, Ny 12300

5 gramax	$\text { \&\&\% } \& \mathcal{*}$	case $\mathcal{F}^{2} \mathrm{~F}$
Name	Konneth R. Qubk	Telentone 518.434 .6859
The		

STATEMENT UNDER 37 CFR 3.73(b)

Applicant/Patent Owner: GE VIDEO COMPRESSION, LLC
Application No./Patent No.: 10/727801/6943710 Filed/Issue Date: 2003-12-04/2005-09-13
Titled: METHOD AND ARRANGEMENT FOR ARITHMETIC ENCODING AND DECODING BINARY STATES AND A CORRESPONDING COMPUTER PROGRAM AND A CORRESPONDING COMPUTER-READABLE STORAGE MFRIIIM
GE VIDEO COMPRESSION, LLC , a
(Name of Assignee)
(Type of Assignee, e.g., corporation, partnership, university, government agency, etc.
states that it is:

1. X the assignee of the entire right, title, and interest in;
2. \square an assignee of less than the entire right, title, and interest in
(The extent (by percentage) of its ownership interest is \qquad \%); or
3. \square the assignee of an undivided interest in the entirety of (a complete assignment from one of the joint inventors was made) the patent application/patent identified above, by virtue of either:
A. \square An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel copy therefore is attached.
OR
B. X A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows:
4. From:

To: FRAUNHOFER-GESELLSCHAFT ZUR FORD

The document was recorded in the United States Patent and Trademark Office at
Reel 016725 \qquad , Frame 0234 , or for which a copy thereof is attached.
2. From: FRAUNHOFER-GESELLSCHAFT ZUR FORD To: GE VIDEO COMPRESSION, LLC

The document was recorded in the United States Patent and Trademark Office at
\qquad , Frame 0402 , or for which a copy thereof is attached.
3. From: \qquad To:

The document was recorded in the United States Patent and Trademark Office at Reel \qquad , Frame \qquad , or for which a copy thereof is attached.

Additional documents in the chain of title are listed on a supplemental sheet(s).
X As required by 37 CFR $3.73(\mathrm{~b})(1)(\mathrm{i})$, the documentary evidence of the chain of title from the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11.
[NOTE: A separate copy (i.e., a true copy of the original assignment document(s)) must be submitted to Assignment Division in accordance with 37 CFR Part 3, to record the assignment in the records of the USPTO. See MPEP 302.08]

The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.
/Manu Bansal/
Signature
Manu Bansal, Reg. No. L0610
Printed or Typed Name
$\frac{2015-11-05}{\text { Date }}$
$\frac{\text { Patent Agent }}{\text { Title }}$

This collection of information is required by 37 CFR 3.73(b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Electronic Acknowledgement Receipt	
EFS ID:	24000082
Application Number:	10727801
International Application Number:	
Confirmation Number:	6855
Title of Invention:	METHOD AND ARRANGEMENT FOR ARITHMETIC ENCODING AND DECODING BINARY STATES AND A CORRESPONDING COMPUTER PROGRAM AND A CORRESPONDING COMPUTER-READABLE STORAGE MEDIUM
First Named Inventor/Applicant Name:	Detlef Marpe
Customer Number:	24131
Filer:	Manu Bansal/allie bernardo
Filer Authorized By:	Manu Bansal
Attorney Docket Number:	S\&ZFH030508
Receipt Date:	05-NOV-2015
Filing Date:	04-DEC-2003
Time Stamp:	15:37:38
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1	Power of Attorney	POA-B.pdf	528093	no	1
Warnings:					
Information:					

2	Assignee showing of ownership per 37 CFR 3.73	10727801.pdf	426909	no	2
Warnings:					
Information:					
		Total Files Size (in bytes)	955002		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

PC. Box 1450
$\begin{aligned} & \text { Alexandria, Virginia 22313-1450 } \\ & \text { www:uspto.gov }\end{aligned}$
APPLICATION NUMBER \quad FILING OR 371(C) DATE
10/727,801
12/04/2003
FIRST NAMED APPLICANT
ATTY. DOCKET NO./TITLE
Detlef Marpe
CONFIRMATION NO. 6855
24131
LERNER GREENBERG STEMER LLP
P O BOX 2480
HOLLYWOOD, FL 33022-2480

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 11/05/2015.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).

Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101.
/rmturner myles/

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

PO. Box 1450
Alexandria, Virginia 22313-1450
www:uspto gov

APPLICATION NUMBER	FLING OR 371(C) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TTTLE
$10 / 727,801$	$12 / 04 / 2003$	Detlef Marpe	

CONFIRMATION NO. 6855
136446
POA ACCEPTANCE LETTER
GE Video Compression, LLC
c/o Pillsbury Winthrop Shaw Pittman, LLP
PO Box 10500
McLean, VA 22102
Date Mailed: 11/10/2015

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 11/05/2015.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.

Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101.
/rmturner myles/

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

PC. Box 1450
Alexandria, Virginia 22313-1450
www:uspto.gov
APPLICATION NUMBER \quad FILING OR 371(C) DATE
10/727,801
12/04/2003
FIRST NAMED APPLICANT
ATTY. DOCKET NO./TITLE
Detlef Marpe
CONFIRMATION NO. 6855
24131
POWER OF ATTORNEY NOTICE
LERNER GREENBERG STEMER LLP
P O BOX 2480
HOLLYWOOD, FL 33022-2480

Date Mailed: 11/10/2015

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 11/05/2015.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).

Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101.
/rmturner myles/

[^0]: *A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)

[^1]: h e e e e

[^2]: 1 1

