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Abstract 

We provide a tutorial on arithmetic coding, showing how it provides nearly 
optimal data compression and how it can be matched with almost any prob-
abilistic model. We indicate the main disadvantage of arithmetic coding, its 
slowness, and give the basis of a fast, space-efficient, approximate arithmetic 
coder with only minimal loss of compression efficiency. Our coder is based on 
the replacement of arithmetic by table lookups coupled with a new deterministic 
probability estimation scheme. 

Index terms: Data compression, arithmetic coding, adaptive modeling, analysis 
of algorithms, data structures, low precision arithmetic. 
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1 Data Compression and Arithmetic Coding 

Data can be compressed whenever some data symbols are more likely than others. 
Shannon [54] showed that for the best possible compression code (in the sense of 
minimum average code length), the output length contains a contribution of — lg p 
bits from the encoding of each symbol whose probability of occurrence is p. If we can 
provide an accurate model for the probability of occurrence of each possible symbol 
at every point in a file, we can use arithmetic coding to encode the symbols that 
actually occur; the number of bits used by arithmetic coding to encode a symbol with 
probability p is very nearly — lg p, so the encoding is very nearly optimal for the given 
probability estimates. 

In this paper we show by theorems and examples how arithmetic coding achieves 
its performance. We also point out some of the drawbacks of arithmetic coding 
in practice, and propose a unified compression system for overcoming them. We 
begin by attempting to clear up some of the false impressions commonly held about 
arithmetic coding; it offers some genuine benefits, but it is not the solution to all data 
compression problems. 

The most important advantage of arithmetic coding is its flexibility: it can be 
used in conjunction with any model that can provide a sequence of event probabilities. 
This advantage is significant because large compression gains can be obtained only 
through the use of sophisticated models of the input data. Models used for arithmetic 
coding may be adaptive, and in fact a number of independent models may be used 
in succession in coding a single file. This great flexibility results from the sharp 
separation of the coder from the modeling process [47]. There is a cost associated with 
this flexibility: the interface between the model and the coder, while simple, places 
considerable time and space demands on the model's data structures, especially in 
the case of a multi-symbol input alphabet. 

The other important advantage of arithmetic coding is its optimality. Arithmetic 
coding is optimal in theory and very nearly optimal in practice, in the sense of encod-
ing using minimal average code length. This optimality is often less important than it 
might seem, since Huffman coding [25] is also very nearly optimal in most cases [8,9, 
18,39]. When the probability of some single symbol is close to 1, however, arithmetic 
coding does give considerably better compression than other methods. The case of 
highly unbalanced probabilities occurs naturally in bilevel (black and white) image 
coding, and it can also arise in the decomposition of a multi-symbol alphabet into a 
sequence of binary choices. 

The main disadvantage of arithmetic coding is that it tends to be slow. We shall 
see that the full precision form of arithmetic coding requires at least one multiplication 
per event and in some implementations up to two multiplications and two divisions 
per event. In addition, the model lookup and update operations are slow because 
of the input requirements of the coder. Both Huffman coding and Ziv-Lempel [59, 
60] coding are faster because the model is represented directly in the data structures 
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Data can be compressed whenever some data symbols are more likely than others.

Shannon [54] showed that for the best possible compression code (in the sense of

minimum average code length), the output length contains a contribution of � lg p

bits from the encoding of each symbol whose probability of occurrence is p. If we can

provide an accurate model for the probability of occurrence of each possible symbol

at every point in a �le, we can use arithmetic coding to encode the symbols that

actually occur; the number of bits used by arithmetic coding to encode a symbol with

probability p is very nearly � lg p, so the encoding is very nearly optimal for the given

probability estimates.

In this paper we show by theorems and examples how arithmetic coding achieves

its performance. We also point out some of the drawbacks of arithmetic coding
in practice, and propose a uni�ed compression system for overcoming them. We
begin by attempting to clear up some of the false impressions commonly held about
arithmetic coding; it o�ers some genuine bene�ts, but it is not the solution to all data
compression problems.

The most important advantage of arithmetic coding is its 
exibility: it can be
used in conjunction with any model that can provide a sequence of event probabilities.
This advantage is signi�cant because large compression gains can be obtained only
through the use of sophisticated models of the input data. Models used for arithmetic
coding may be adaptive, and in fact a number of independent models may be used

in succession in coding a single �le. This great 
exibility results from the sharp
separation of the coder from the modeling process [47]. There is a cost associated with
this 
exibility: the interface between the model and the coder, while simple, places
considerable time and space demands on the model's data structures, especially in
the case of a multi-symbol input alphabet.

The other important advantage of arithmetic coding is its optimality. Arithmetic
coding is optimal in theory and very nearly optimal in practice, in the sense of encod-

ing using minimal average code length. This optimality is often less important than it

might seem, since Hu�man coding [25] is also very nearly optimal in most cases [8,9,

18,39]. When the probability of some single symbol is close to 1, however, arithmetic

coding does give considerably better compression than other methods. The case of
highly unbalanced probabilities occurs naturally in bilevel (black and white) image

coding, and it can also arise in the decomposition of a multi-symbol alphabet into a
sequence of binary choices.

The main disadvantage of arithmetic coding is that it tends to be slow. We shall

see that the full precision form of arithmetic coding requires at least one multiplication
per event and in some implementations up to two multiplications and two divisions

per event. In addition, the model lookup and update operations are slow because
of the input requirements of the coder. Both Hu�man coding and Ziv-Lempel [59,

60] coding are faster because the model is represented directly in the data structures
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