
Practical Implementations of
Arithmetic Coding

Paul G. Howard and Jeffrey Scott Vitter

Brown University
Department of Computer Science

Technical Report No. 92-18
Revised version, April 1992

(Formerly Technical Report No. CS-91-45)

Appears in Image and Text Compression,
James A. Storer, ed., Kluwer Academic Publishers, Norwell, MA, 1992, pages 85-112.

A shortened version appears in the proceedings of the
International Conference on Advances in Communication and Control (COMCON 3),

Victoria, British Columbia, Canada, October 16-18, 1991.

Practical Implementations of

Arithmetic Coding

Paul G. Howard and Je�rey Scott Vitter

Brown University
Department of Computer Science

Technical Report No. 92{18
Revised version, April 1992

(Formerly Technical Report No. CS{91{45)

Appears in Image and Text Compression,
James A. Storer, ed., Kluwer Academic Publishers, Norwell, MA, 1992, pages 85{112.

A shortened version appears in the proceedings of the

International Conference on Advances in Communication and Control (COMCON 3),

Victoria, British Columbia, Canada, October 16{18, 1991.

Unified Patents, Ex. 1007000001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Unified Patents, Ex. 1007000002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PRACTICAL IMPLEMENTATIONS OF
ARITHMETIC CODING'

Paul G. Howard2 Jeffrey Scott Vitter3
Department of Computer Science

Brown University
Providence, R.I. 02912-1910

Abstract

We provide a tutorial on arithmetic coding, showing how it provides nearly
optimal data compression and how it can be matched with almost any prob-
abilistic model. We indicate the main disadvantage of arithmetic coding, its
slowness, and give the basis of a fast, space-efficient, approximate arithmetic
coder with only minimal loss of compression efficiency. Our coder is based on
the replacement of arithmetic by table lookups coupled with a new deterministic
probability estimation scheme.

Index terms: Data compression, arithmetic coding, adaptive modeling, analysis
of algorithms, data structures, low precision arithmetic.

'A similar version of this paper appears in Image and Text Compression, James A. Storer, ed.,
Kluwer Academic Publishers, Norwell, MA, 1992, 85-112. A shortened version of this paper appears
in the proceedings of the International Conference on Advances in Communication and Control
(COMCON 3), Victoria, British Columbia, Canada, October 16-18, 1991.

2Support was provided in part by NASA Graduate Student Researchers Program grant NGT-
50420 and by a National Science Foundation Presidential Young Investigators Award grant with
matching funds from IBM. Additional support was provided by a Universities Space Research As-
sociation/CESDIS associate membership.

3Support was provided in part by National Science Foundation Presidential Young Investigator
Award CCR-9047466 with matching funds from IBM, by NSF research grant CCR-9007851, by
Army Research Office grant DAAL03-91—G-0035, and by the Office of Naval Research and the De-
fense Advanced Research Projects Agency under contract N00014-91—J-4052 ARPA Order No. 8225.
Additional support was provided by a Universities Space Research Association/CESDIS associate
membership.

Practical Implementations of

Arithmetic Coding1

Paul G. Howard2 Je�rey Scott Vitter3

Department of Computer Science
Brown University

Providence, R.I. 02912{1910

Abstract

We provide a tutorial on arithmetic coding, showing how it provides nearly

optimal data compression and how it can be matched with almost any prob-

abilistic model. We indicate the main disadvantage of arithmetic coding, its

slowness, and give the basis of a fast, space-e�cient, approximate arithmetic

coder with only minimal loss of compression e�ciency. Our coder is based on

the replacement of arithmetic by table lookups coupled with a new deterministic

probability estimation scheme.

Index terms : Data compression, arithmetic coding, adaptive modeling, analysis

of algorithms, data structures, low precision arithmetic.

1A similar version of this paper appears in Image and Text Compression, James A. Storer, ed.,
Kluwer Academic Publishers, Norwell, MA, 1992, 85{112. A shortened version of this paper appears
in the proceedings of the International Conference on Advances in Communication and Control
(COMCON 3), Victoria, British Columbia, Canada, October 16{18, 1991.

2Support was provided in part by NASA Graduate Student Researchers Program grant NGT{
50420 and by a National Science Foundation Presidential Young Investigators Award grant with
matching funds from IBM. Additional support was provided by a Universities Space Research As-
sociation/CESDIS associate membership.

3Support was provided in part by National Science Foundation Presidential Young Investigator
Award CCR{9047466 with matching funds from IBM, by NSF research grant CCR{9007851, by
Army Research O�ce grant DAAL03{91{G{0035, and by the O�ce of Naval Research and the De-
fense Advanced Research Projects Agency under contract N00014{91{J{4052ARPA Order No. 8225.
Additional support was provided by a Universities Space Research Association/CESDIS associate
membership.

Unified Patents, Ex. 1007000003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Unified Patents, Ex. 1007000004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1

1 Data Compression and Arithmetic Coding

Data can be compressed whenever some data symbols are more likely than others.
Shannon [54] showed that for the best possible compression code (in the sense of
minimum average code length), the output length contains a contribution of — lg p
bits from the encoding of each symbol whose probability of occurrence is p. If we can
provide an accurate model for the probability of occurrence of each possible symbol
at every point in a file, we can use arithmetic coding to encode the symbols that
actually occur; the number of bits used by arithmetic coding to encode a symbol with
probability p is very nearly — lg p, so the encoding is very nearly optimal for the given
probability estimates.

In this paper we show by theorems and examples how arithmetic coding achieves
its performance. We also point out some of the drawbacks of arithmetic coding
in practice, and propose a unified compression system for overcoming them. We
begin by attempting to clear up some of the false impressions commonly held about
arithmetic coding; it offers some genuine benefits, but it is not the solution to all data
compression problems.

The most important advantage of arithmetic coding is its flexibility: it can be
used in conjunction with any model that can provide a sequence of event probabilities.
This advantage is significant because large compression gains can be obtained only
through the use of sophisticated models of the input data. Models used for arithmetic
coding may be adaptive, and in fact a number of independent models may be used
in succession in coding a single file. This great flexibility results from the sharp
separation of the coder from the modeling process [47]. There is a cost associated with
this flexibility: the interface between the model and the coder, while simple, places
considerable time and space demands on the model's data structures, especially in
the case of a multi-symbol input alphabet.

The other important advantage of arithmetic coding is its optimality. Arithmetic
coding is optimal in theory and very nearly optimal in practice, in the sense of encod-
ing using minimal average code length. This optimality is often less important than it
might seem, since Huffman coding [25] is also very nearly optimal in most cases [8,9,
18,39]. When the probability of some single symbol is close to 1, however, arithmetic
coding does give considerably better compression than other methods. The case of
highly unbalanced probabilities occurs naturally in bilevel (black and white) image
coding, and it can also arise in the decomposition of a multi-symbol alphabet into a
sequence of binary choices.

The main disadvantage of arithmetic coding is that it tends to be slow. We shall
see that the full precision form of arithmetic coding requires at least one multiplication
per event and in some implementations up to two multiplications and two divisions
per event. In addition, the model lookup and update operations are slow because
of the input requirements of the coder. Both Huffman coding and Ziv-Lempel [59,
60] coding are faster because the model is represented directly in the data structures

1

1 Data Compression and Arithmetic Coding

Data can be compressed whenever some data symbols are more likely than others.

Shannon [54] showed that for the best possible compression code (in the sense of

minimum average code length), the output length contains a contribution of � lg p

bits from the encoding of each symbol whose probability of occurrence is p. If we can

provide an accurate model for the probability of occurrence of each possible symbol

at every point in a �le, we can use arithmetic coding to encode the symbols that

actually occur; the number of bits used by arithmetic coding to encode a symbol with

probability p is very nearly � lg p, so the encoding is very nearly optimal for the given

probability estimates.

In this paper we show by theorems and examples how arithmetic coding achieves

its performance. We also point out some of the drawbacks of arithmetic coding
in practice, and propose a uni�ed compression system for overcoming them. We
begin by attempting to clear up some of the false impressions commonly held about
arithmetic coding; it o�ers some genuine bene�ts, but it is not the solution to all data
compression problems.

The most important advantage of arithmetic coding is its
exibility: it can be
used in conjunction with any model that can provide a sequence of event probabilities.
This advantage is signi�cant because large compression gains can be obtained only
through the use of sophisticated models of the input data. Models used for arithmetic
coding may be adaptive, and in fact a number of independent models may be used

in succession in coding a single �le. This great
exibility results from the sharp
separation of the coder from the modeling process [47]. There is a cost associated with
this
exibility: the interface between the model and the coder, while simple, places
considerable time and space demands on the model's data structures, especially in
the case of a multi-symbol input alphabet.

The other important advantage of arithmetic coding is its optimality. Arithmetic
coding is optimal in theory and very nearly optimal in practice, in the sense of encod-

ing using minimal average code length. This optimality is often less important than it

might seem, since Hu�man coding [25] is also very nearly optimal in most cases [8,9,

18,39]. When the probability of some single symbol is close to 1, however, arithmetic

coding does give considerably better compression than other methods. The case of
highly unbalanced probabilities occurs naturally in bilevel (black and white) image

coding, and it can also arise in the decomposition of a multi-symbol alphabet into a
sequence of binary choices.

The main disadvantage of arithmetic coding is that it tends to be slow. We shall

see that the full precision form of arithmetic coding requires at least one multiplication
per event and in some implementations up to two multiplications and two divisions

per event. In addition, the model lookup and update operations are slow because
of the input requirements of the coder. Both Hu�man coding and Ziv-Lempel [59,

60] coding are faster because the model is represented directly in the data structures

Unified Patents, Ex. 1007000005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

