
United States Patent (19)
Printz et al.

(54) INTERVAL WIDTH UPDATE PROCESS IN
THE ARTHMETIC COOING METHOD

(75) Inventors: Harry W. Printz, New York, N.Y.;
Peter R. Stubley, Outremont, Canada

73) Assignee: Digital Equipment International, Ltd.,
Fribourg, Switzerland

21 Appl. No.: 216,741
22 Filed: Mar 23, 1994
30) Foreign Application Priority Data
Mar. 29, 1993 FR France 93 03590

(51) Int. Cl." H03M 7700
(52) U.S. Cl. 341/107; 341/106
58 Field of Search 341/51, 65, 106,

341/107

56) References Cited

U.S. PATENT DOCUMENTS

4,467,317 8/1984 Langdon, Jr. et al. 341/107
4,989,000 1/1991 Chevion et al. 341/107
5,298,896 3/1994 Lei et al. 34/51
5,307,062 4/1994 Ono et al. 341/107
5,404,140 4/1995 Ono et al. 341/107

|||||||||
USOO5592162A

11 Patent Number: 5,592,162
(45) Date of Patent: Jan. 7, 1997

OTHER PUBLICATIONS

Storer “Image and Text Compression' 1990, Kluwer Aca
demic Press, Boston U.S., pp. 96-102.
Primary Examiner-Marc S. Hoff
Attorney, Agent, or Firm-Denis G. Maloney; Arthur W.
Fisher; Joanne Pappas
(57) ABSTRACT

The present invention relates to an interval width update
process in arithmetic coding, characterized in that
a set of values A={AOA1, ... Ar-1}, is selected and

the interval width is maintained as an index Wiin said set,
a single table lookup simultaneously updates the interval

width and supplies the augend and shift by performing the
following operation:

in which the function f" is implemented by a single table
lookup, in which p(Si) and P(Si) are determined from Si,
AWi) is determined from Wi, p(Si). AWi) and
Ri=P(Si). AWi) are computed, the shift Xi necessary for
representing p(Si)-AWi)-2' in R is determined. Wi+1
is determined in such a way that AWi+1) is the best
representative of p(Si). AWi)-2, followed by return to
Wi+1, Xi and Ri.

3 Claims, 1 Drawing Sheet

Unified Patents, Ex. 1005000001 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

U.S. Patent Jan. 7, 1997 5,592,162

10 11 12

INTERVAL
WDTH
UPDATE

POINT
UPDATE

PRIOR ART

18

STANDARD

PROBABILITY
MODELING
MODULE

Si

PRIOR ART 13

Unified Patents, Ex. 1005000002 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5,592,162
1.

INTERVAL WDTH UPDATE PROCESS EN
THEARTHMETC CODING METHOD

TECHNICAL FIELD

The present invention relates to an interval width update
process in the arithmetic coding method.

PRIOR ART

General Explanation Of Arithmetic Coding
As described in the article by Glen G. Langdon, Junior

entitled "An Introduction to Arithmetic Coding' (IBM Jour
nal of Research and Development, 28(2), pp. 135-149,
March 1984), arithmetic coding is a well known lossless
data compression method.

Arithmetic coding establishes a correspondence between
a sequence of symbols and an interval of real numbers. The
starting point is the interval 0,1]. When each symbol is
coded, the current interval is replaced by a subinterval
thereof. After coding a sequence of symbols, the original
sequence can be exactly reconstructed, no matter what the
given point in the current interval.

In this type of coding it is conventional practice to store
the leftmost point of the interval as the result, the value
obtained being called the code point.

This coding algorithm is recursive. For each symbol to be
coded, the algorithm divides the current interval as a func
tion of occurrence probabilities and the order given by the
list of symbols which can be coded. The algorithm then
replaces the current interval by the subinterval correspond
ing to the symbol to be coded. This procedure is repeated for
the number of times which is necessary for coding a given
Sequence.

Mathematical Explanation Of Arithmetic Coding
Up to now a geometrical explanation has been given of

arithmetic coding. Reference is made to intervals and their
subdivision. For implementation in a computer, it is neces
sary to explain the method using numerical quantities and
this explanation will now be given.

In the following description the following notations are
adopted:

S = {s', s', ..., s} set of codable N symbols
S. symbol to be coded in stage i
p(S) symbol occurrence probability
P(S) cumulative symbol probability
A; current interval width
R range of admissible values of A
X, shift for representing p(S), A2;
Xmax maximum possible value of X,
R augend of P(S) . A
C value of current code point

(location of leftmost point of
interval)

C as C. + Runshifted
B, 1 + X output bits
T fixed width bit block.

As previously explained, in each stage the coder state is
given by a subinterval of 0,1). The process for coding a
symbol consists of replacing the current interval by a
Subinterval of itself.

10

15

25

30

35

40

45

50

55

60

65

2
For representing the current interval in a computer, two

arithmetic quantities are updated, mainly Ci, the left-most
point of the interval, and Ai the interval width. Thus, for
each stage the actual interval is Ci, Ci-Ai).

Thus, the process given hereinbefore for coding a symbol
is expressed by the following equations:

Ai+1=p(Si). Ai (1)

Ci-la-Ci-P(S)-Ai (2)

in which p(Si) is the modelized probability of the symbol Si
and P(Si) is the sum of the probabilities of all the symbols
preceding Si in the list of the source alphabet

These equations arithmetically represent the same subdi
vision and selection procedure described above. The first
relates to the recurrence of the interval width and the second
to the recurrence of the code point.

Explanation Of The Finite Precision Algorithm For
Arithmetic Coding

These equations assume an infinite precision arithmetic.
For carrying out arithmetic coding on finite precision arith
metic operations, use is made of the approach of Frank
Rubin in an article entitled "Arithmetic Stream Coding
Using Fixed Precision Registers' (IEEE Transactions on
Information Theory, IT-25(6), pp. 672–675, November
1979). The number of bits used for representing each of the
Si, Ri, Ai, Ci, Bi, p(Si) and P(Si) is fixed, said quantities
being designated by is, HR, #A, #C, FB, #p and #P. It should
be noted that P=ip. The range R=o, 20), in which OD0 of
the admissible interval widths is also chosen. It is ensured
that Aix.R always applies and for this purpose the follow
ing operations are performed in each stage of coding:

1. Obtain p(Si) and P(Si), exactly compute p(Si). Ai.
2. Determine the shift Xi to determine p(Si)-Ai-2XR.
3. Find the lower approximation on #A bits closest to

p(Si)-Ai-2, which gives Ai-1.
4. Exactly compute Ri=P(Si). Ai.
5. Exactly compute i=Ci+Ri.
6. Emit the carry-out and Xi most significant bits of i,
which forms the variable width block Bi.

It should be noted that the definitions of the quantities in
the algorithm determine certain length relations:
by cumulative probability definition #P-hp.
by stages 1 and 2, Xip.
by stage 4, #R=#P-#A=#p+HA.
by stage 6, #B=1+X=1-Hp (the width of Biis variable,

but a large number of bits is required for representing
the longest possible value of Bi),

by stage 7, #C=#R=#p-HA.
Thus, the parameters ip and #A determine the length of

all the other quantities in these equations.
Thus an explanation has been given as to how the

sequence of variable width blocks Bi is produced by the
algorithm. Each block contains 1-Xibits, consisting of the
carry-out and Xi most significant bits of the sum =Ci+Ri.
These variable length blocks can be assembled in a sequence
of fixed length blocks Tk. The sequence of blocks Tk
constitutes the output coding flow. The assembly process is

Unified Patents, Ex. 1005000003 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5,592,162
3

performed by a standard method, which does not concern us
in the remainder of the present document.

It is possible to summarize stages 1 to 7 of the finite
precision algorithm given above by the following equations:

(Ai-li, Xi, Ri)=f(Si, Ai) (3)

(Ci-1, Bi)=f(Ci, Ri, Xi) (4)

The function f effects stages 1 to 4 and the function stages
5 to 7 given above.

Interval Width Update Prior Art
Interval width updating consists of the following stages:
1. Obtain p(Si) and P(Si), exactly compute p(Si). Ai.
2. Determine the shift Xi to represent p(Si). Ai-2), R.
3. Find the lower approximation on #A bits closest to

p(Si). Ai-2', which gives Ai--1.
4. Exactly compute Ri=P(Si). Ai.
This interval width updating technique also suffers from

a disadvantage in that this algorithm requires two multipli
cations for each coded symbol, which is an obstacle to high
speed implementation.

For this reason various authors have proposed coder
versions having no multiplication. These versions can be
subdivided into two categories. Those of the first category
require that the binary representation of always has a par
ticular form. They take advantage of this by replacing the
multiplications by other, simpler operations. Those of the
second category make use of the table lookup principle.
These methods will now be described.
We will start with the first category and refer to articles by

Jorma Rissanen and IK. M. Mohiuddin entitled "A Multi
plication Free Multialphabet Arithmetic Code' (IEEE Trans
actions on Communications, 37(2), pp. 93-98, 1989) and
Dan Chevion, Ehud Karnin and Eugene Walach entitled
"High Efficiency, Multiplication Free Approximation of
Arithmetic Coding' (Proceedings of the IEEE Data Com
pression). In the two other methods, they introduce a new
complication on suppressing multiplications.

Moreover, in each of these methods, the possible values
of Ai are not uniformly distributed in their admissible range
R. This leads to an inefficiency in coding. By increasing #A
for these methods there is only a slight, even no efficiency
improvement, because the new values which can be
assumed by Ai are grouped around /2 in the case of Chevion,
Karnin and Walach, or around 1 in the case of Tong and
Blake. It is not possible to increase #A in the case of
Rissanen and Mohiuddin.
The approach of the second category of solutions for this

problem consists of updating the state of the coderby a table
lookup.

It is pointed out that the state of the coder, as described by
equations (3) and (4), is determined by the bits of quantities
Ai and Ci. These equations express how it is possible to
update this state by coding the symbol Si and producing the
block Bi. Let us write Zi for the bits representing the current
state of the coder (i.e. the bits of Ai and Ci) and Zi--1 for the
next value. It is possible to mix the two equations (3) and (4)
to obtain

(Bi Xi, Zij-1)=h(Si, Zi) (5)

where the function h represents all the aforementioned
stages 1 to 7.

Thus, the authors Paul G. Howard and Jeffrey Scott Vitter,
in their article entitled "Practical Implementations of Arith

10

15

20

30

35

40

45

50

55

65

4
metic Coding' (in the book image and Text Compression,
Kluwer Academic Publishers, Boston, 1992, pp. 85-112),
proposed the implementation of an arithmetic coder, where
such a function h is represented by a table. In order to code
a symbol Si, the symbol and the state of the coder Zi is taken,
table lookup takes place and the block Bi is found there,
together with its width Xi and the new state of the coder
Zi--.

However, this method suffers from a significant defect,
the width of such a table in bits being

This number increases at superexponential speed to #Z.
Thus, with the exception of the case where #Z is small, this
method is unusable. Moreover, it would be desirable to have
a relatively high value of #Z for the reasons given below.

It should firstly be noted that the number of input bits for
the equation (5) is is-HZ-fis+2#A+#p. It is now pointed out
that each quantity p(s) or P(s) is a real number between 0
and 1, which can be represented on #p bits. In order to
compress the input flow, the distribution of probabilities
must be non-uniform. In addition, this non-uniformity must
be reflected in the probability values used for the computa
tion. Obviously, there is no control of the input flow content.
However, if there is a favorable distribution, in order to be
able to exploit it, it must be possible to represent the
numbers which are just below 1, as well as those which are
just above 0. Thus, it is desirable to have lip as high as
possible, so as to be able to represent the widest possible
probability range.
Howard and Vitter recognize this problem and introduce

other ideas for solving it. However, their solution uses a
binary alphabet, which only has two symbols. Our invention
deals with the case of a multialphabet.

Description Of The Invention

The present invention relates to an interval width update
process in arithmetic coding, characterized in that selection
takes place of a set of values

A={ALO), A(1),..., Ar-1},
and the interval width is maintained as an index Wi in said
set. These values can be represented with any random
precision.

In order to construct an arithmetic coder using the index
Wi as well as the value Ai, equation (3) is replaced by the
equation:

The function f" is stored in a table. A single table lookup
replaces all these operations: p(Si) and P(Si) are determined
from Si, AWi} is determined from Wi, p(Si). AWi) and
Ri=P(Si)-AWi) are computed, the shift Xi necessary for
representing p(Si). AWi)-2 in R is determined, Wi+1 is
determined in such a way that AWi+1) is best representative
of p(Si). AWi-2, followed by return to Wi+1, Xi and Ri.

In a first variant the table is computed beforehand.
In a second variant the table is dynamically computed.
As only the interval width update is processed by the table

lookup method, the aforementioned problem of Howard and
Vitter is avoided. The number of input bits of function f" is
only #s-#W, a quantity which is independent of ip.
As it is possible to choose the values of the set A, it is

possible to uniformly distribute them in the rank R and
therefore avoid the compression loss caused by the methods

Unified Patents, Ex. 1005000004 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5,592,162
S

of Rissanen and Mohiuddin, Chevion, Karnin and Walach,
and Tong and Blake.
As the quantity Wi of width #W bits, as well as Ai of

width #A bits is processed, it is possible to obtain a smaller
table than an implementation by table of the function f of 5
equation (3).
The invention makes it possible to improve the efficiency

of coding of non-adaptive arrangements for high speed
arithmetic coding by improving the efficiency in the updated
interval width. 10
The present invention permits both a higher speed and a

more effective data compression by the well known arith
metic coding technique. It can constitute the basis for a
hardware or software product intended for data compression
purposes. This product can e.g. be used for the compression 15
of data to be transmitted on a communications channel, or
for storage in a system of files.
A naive algorithm for arithmetic coding requires two

multiplications for each coded symbol. The invention elimi
nates both the multiplications and achieves a compression
efficiency superior to the aforementioned methods without
any multiplications.

20

BRIEF DESCRIPTION Of THE DRAWINGS 25

FIG. 1 shows the architecture of a prior art arithmetic
coder.

FIG. 2 shows a prior art interval width update unit.
FIG. 3 shows an interval width update unit according to

the invention.
30

DETALED DESCRIPTION OF THE
EMBODIMENTS 35

General Structure Of An Arithmetic Coding System
FIG. 1 shows the architecture of a prior art coder, whose 40

object is to code the symbol Si. It comprises an interval
width update unit 10, a code point update unit 11 and
optionally a buffer circuit 12.
The interval width update unit 10 supplies two signals Xi

and Rito the code point update unit 11. An output of the unit
10 connected to a register 13 makes it possible to supply the
signal Ai to an input of said module. An output of the unit
11 connected to a register 14 makes it possible to supply a
signal Cito another input of the module 11. On its two inputs
the buffer circuit 13 receives the signals from the code point
update unit 11, namely Xi and Bi, in order to deliver a signal
Tk.
The interval size update unit 10 makes it possible to

update Ai in the register 13. For each stage of the algorithm 55
it takes a new symbol Si and the current value of the register
13. It generates the augend Ri, the shift Xi and the new value
Ai-1 for the register. Thus, it updates the current interval
width Ai. In the same way the code point update unit 11
makes it possible to update Ci in register 14. For each stage
it takes into account the shift Xi, the augend Ri and the
current value of the register 14 by producing a new value for
Ri and a variable length block Bi of width 1+Xi. The value
Xi is not modified.
The variable block buffer circuit 12 assembles the 65

sequence of variable length blocks into fixed length blocks
Tk, which constitute the output of the coder.

45

50

60

6
Function Of The Interval Width Update Unit

The prior art interval width update unit 10 shown in FIG.
2 comprises a probability modelling module 15, whose two
outputs, supplying the signals p(Si) and P(Si) are respec
tively connected to a first multiplier 16 followed by a
standardization module 18 for supplying the signal Xi and to
a second multiplier 17 supplying the signal Ri. An output of
the standardization module 18 is connected to an input of
each multiplier 16 and 17 across the register 13.

This unit performs the following stages:
1. Obtain p(Si) and P(Si), exactly compute p(Si)-Ai.
2. Determine the shift Xi to represent p(Si). Ai2). R.
3. Find the lower approximation on HA bits closest to

p(Si)-Ai-2, which gives Ai+1.
4. Exactly compute Ri=P(Si)-Ai.
In the interval width update unit 10 according to FIG. 2

during each operating cycle a new value can be generated in
the register 13. In this unit there is a loop emanating from the
register across the first multiplier 16 and the standardization
unit 18 and which returns to the register 14. The presence of
this loop imposes a fundamental limit to the circuit operating
speed.
On considering said loop, if ti is the instant at which Ai

is stored in the register 14 and ti+1 the instant at which Ai-l
is stored in the register 14, the difference ti+1-ti cannot be
reduced below the time necessary for the electric signal to
propagate through the first multiplier 16 and the standard
ization unit 18.

Thus, it is possible to terminate the computation by
storing an incorrect value for Ai-i-1 if the output of the
restandardization unit is not then stabilized. Thus, the oper
ating speed of this unit is limited by the size of the
considered operands and in this loop the speed is dependent
on ip and #A.

Thus, in order to compress data it is necessary to represent
values p(Si) and P(Si) very close to 0 or 1, so that the value
#p must be high. However, in order that the circuit can
operate rapidly tip must be low.

Therefore a compromise must be made between a rapid
circuit which performs an effective compression and an
effective circuit which operates slowly.

Description Of The Fundamental Principle Of The
Invention

The proposal is to replace this unit with a single reference
to the memory of the system. As stated hereinbefore, the
article of Howard and Vitter proposes roughly the same idea,
but for the updating of any state of the coder. We also
propose a consultation or lookup of a table stored in the
memory, but only for the updating of the interval width and
using a non-arithmetic representation for the interval width.
The notion of non-arithmetic representation is a key idea of
the invention which will now be explained.

In the process according to the invention selection takes
place of a set of r values A={AO), A1, ..., Ar-1)} and
the interval width is maintained as an index Wi in said set.
This method is referred to as a non-arithmetic representation
of the interval width. This makes it possible to uniformly
distribute the values within the admissible range and there
fore obtain a higher compression level.

This process might give the appearance of reducing the
coding speed, in view of the fact that the multiplications and
realignment must now be preceded by a table lookup (for
converting the index Wi into an arithmetic value Ai) and

Unified Patents, Ex. 1005000005 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

