WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: H03M 7/40, H04N 7/50

(11) International Publication Number:

WO 00/51243

A1

(43) International Publication Date:

31 August 2000 (31.08.00)

(21) International Application Number:

PCT/KR99/00764

(22) International Filing Date:

11 December 1999 (11.12.99)

(30) Priority Data:

1999/6157

24 February 1999 (24.02.99)

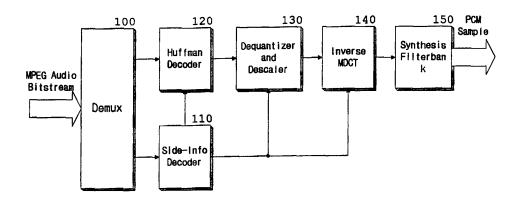
KR

(71)(72) Applicant and Inventor: YOU, Soo, Geun [KR/KR]; Jamwon Hansin Apt. 1-1103, 56-3, Jamwon-dong, Seocho-gu, Seoul 137-030 (KR).

(72) Inventor; and

(75) Inventor/Applicant (for US only): PARK, Jung, Jae [KR/KR]; 6516, Taepyeong 1-dong, Sujeong-gu, Seongnam, Kyunggi-do 461-191 (KR).

(74) Agent: PARK, Lae, Bong; 4F TLBS B/D, 464-1, Kunja-dong, Kwangjin-gu, Seoul 143-150 (KR).


(81) Designated States: AU, BR, CA, CN, DE, ES, GB, IN, JP, RU, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: A BACKWARD DECODING METHOD OF DIGITAL AUDIO DATA

(57) Abstract

This invention provides a method of backward decoding compressed digital audio data into an analog audio data reversed in time. The method according to this invention comprises the steps of locating a header of a last frame of the compressed digital audio data; dequantizing a plurality of data blocks constructing the frame based on information contained in the located header; extracting time signals of each frequency subband from the dequantized data blocks, reducing discontinuities between the dequantized data blocks; and synthesizing the extracted time signals of all subbands backward into real audio signal reversed in time. Therefore, this invention enables to record the decoded analog signal on both tracks on a magnetic tape simultaneously while the magnetic tape travels in one direction with little increase of computation load and memory size, resulting in a high speed recording.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/51243 PCT/KR99/00764

DESCRIPTION

A BACKWARD DECODING METHOD OF DIGITAL AUDIO DATA

1. Technical Field

The present invention relates to a method of decoding

5 compressed digital audio data backward, more particularly,
to a method of backward decoding an MPEG (Moving Picture
Experts Group) encoded audio data into analog audio
signal with little increase of computation load and
memory size.

10 2. Background Art

Digital audio signal is in general more robust to noise than analog signal and thus the quality is not subject to degradation during copy or transmission over network. The digital audio signals are, moreover, transmitted more

15 rapidly and stored in storage media of less capacity due to effective compression methods recently developed.

Many compression methods have been proposed to effectively encode audio signals into digital data. MPEG (Moving Picture Experts Group) audio coding schemes have

20 been used for the standard in this area. The MPEG audio standards that are standardized as ISO (International Standardization Organization) - MPEG audio layer-1,

WO 00/51243 PCT/KR99/00764

layer-2, and layer-3 were devised to encode high-quality stereo audio signals with little or no perceptible loss of quality. They have been widely adopted in digital music broadcasting area and in addition have been used with MPEG video standards to encode multimedia data. In addition to MPEG-1, standard specifications for digital environments have been proposed; MPEG-2 includes standards on compression of multimedia data. Standards for object oriented multimedia communication are included in MPEG-4, which is in progress.

MPEG-1 consists of five coding standards for compressing and storing moving picture and audio signals in digital storage media. MPEG audio standard includes three audio coding methods: layer-1, layer-2, and layer-3.

15 MPEG audio layer-3 (hereinafter referred to as "MP3")

algorithm includes a much more refined approach than in

layer-1 and layer-2 to achieve higher compression ratio

and sound quality, which will be described briefly below.

MPEG audio layer-1, 2, 3 compress audio data using

20 perceptual coding techniques which address perception of sound waves of the human auditory system. To be specific, they take an advantage of the human auditory system's inability to hear quantization noise under conditions of auditory masking. The "masking" is a perceptual property WO 00/51243 PCT/KR99/00764

of the human ear which occurs whenever the presence of a strong audio signal makes a temporal or spectral neighborhood of weaker audio signals imperceptible. Let us suppose that a pianist plays the piano in front of

- 5 audience. When the pianist does not touch keyboard, the audience can hear trailing sounds, but is no longer able to hear the trailing sounds at the instant of touching the keyboard. This is because, in presence of masking sounds, or the newly generated sounds, the trailing
- 10 sounds which fall inside frequency bands centering the masking sound, so-called critical bands, and loudness of which is lower than a masking threshold are not audible. This phenomenon is called spectral masking effect. The masking ability of a given signal component depends on
- 15 its frequency position and its loudness. The masking threshold is low in the sensitive frequency bands of the human ear, i.e., 2KHz to 5KHz, but high in other frequency bands.

There is the temporal masking phenomenon in the human auditory system. That is, after hearing a loud sound, it takes a period of time for us to be able to hear a new sound that is not louder than the sound. For instance, it requires 5 milliseconds for us to be able to hear a new sound of 40 dB after hearing a sound of 60 dB during 5

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

