
Measuring Integrity on Mobile Phone Systems

Divya Muthukumaran
Systems and Internet
Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
dzm133@psu.edu

Anuj Sawani
Systems and Internet
Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
axs1003@psu.edu

Joshua Schiffman
Systems and Internet
Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
jschiffm@cse.psu.edu

Brian M. Jung
Secure Systems Group

Samsung Electronics Co., Ltd.
Suwon-City, Gyeonggi-Do,

Korea, 443-742
brian.m.jung@samsung.com

Trent Jaeger
Systems and Internet
Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
tjaeger@cse.psu.edu

ABSTRACT
Mobile phone security is a relatively new field that is gather-
ing momentum in the wake of rapid advancements in phone
system technology. Mobile phones are now becoming so-
phisticated smart phones that provide services beyond ba-
sic telephony, such as supporting third-party applications.
Such third-party applications may be security-critical, such
as mobile banking, or may be untrusted applications, such
as downloaded games. Our goal is to protect the integrity of
such critical applications from potentially untrusted func-
tionality, but we find that existing mandatory access con-
trol approaches are too complex and do not provide formal
integrity guarantees. In this work, we leverage the sim-
plicity inherent to phone system environments to develop
a compact SELinux policy that can be used to justify the
integrity of a phone system using the Policy Reduced In-
tegrity Measurement Architecture (PRIMA) approach. We
show that the resultant policy enables systems to be proven
secure to remote parties, enables the desired functionality
for installing and running trusted programs, and the resul-
tant SELinux policy is over 90% smaller in size. We envision
that this approach can provide an outline for how to build
high integrity phone systems.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection —
Access Control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’08, June 11–13, 2008, Estes Park, Colorado, USA.
Copyright 2008 ACM 978-1-60558-129-3/08/06 ...$5.00.

General Terms
Security

Keywords
Integrity Measurement, Mobile Phones, SELinux

1. INTRODUCTION
Cellular communication is changing. Mobile phones have

become smaller, lighter, and more powerful, and support
a wide variety of applications, including text messaging, e-
mail, web surfing and even multimedia transmissions. Smart
phones that are a hybrid of cell phones and PDAs that can
handle voice and data communications, in essence function-
ing as a ”tiny computer.” This transformation motivated
the transition from small, custom operating environments
to more powerful, general purpose environments that are
based on personal computer environments, such as Windows
Mobile [33] and Linux phone OS projects [19, 23].

Third-party developers now provide many multimedia ap-
plications that users can easily download onto these powerful
new phones. The flexibility of supporting third-party appli-
cations presents security concerns for other applications that
handle critical user data. For example, mobile banking ap-
plications have been created for such phones [2], providing
attackers with a valuable target. Worm attacks [16, 4] have
been launched against the market-leading Symbian mobile
platform [27], a variety of vulnerabilities on this platform
have been identified [7, 29], and a large number of users (over
5 million in March 2006 [11]) download freeware games (i.e.,
potential malware) to their mobile devices. As a result, it
seems likely that mobile phones, including Linux and Win-
dows phones, will become targets for a variety of malware.

Security architectures for phone systems are emerging, but
they make no concrete effort to justify critical application
integrity. The Symbian security architecture distinguishes
between its installer, critical applications, and untrusted ap-
plications. The Symbian approach has been effective at pro-
tecting its kernel, but some critical resources, such as phone

155

Apple Ex. 1025
Apple Inc. v. Firstface Co., Ltd.

IPR2019-00614
Page 00001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

contacts and Bluetooth pairing information, can be compro-
mised by untrusted applications [24]. A mandatory access
control framework has been developed for Linux, the Linux
Security Modules (LSM) framework [34], but LSM-based ap-
proaches (e.g., SELinux [22] and AppArmor [21]) do not en-
sure integrity. The SELinux LSM focuses on enforcing least
privilege, and its policies on personal computer systems are
too complex to understand integrity completely. The Ap-
pArmor LSM focuses on confining network-facing daemons,
which may prevent integrity problems from untrusted net-
work requests, but not from untrusted programs running on
the system.

Our goal is to protect the integrity of critical phone ap-
plications from the untrusted code and data of downloaded
third-party applications. The mobile banking application
above is one critical phone application. The aim is to install
and execute such trusted applications under the control of
a phone policy for which precise integrity guarantees can be
made. We believe that mandatory access control policies
are the foundation for providing such guarantees, but the
policies developed thusfar are inadequate because they are
too complex or are focused on the wrong goal.

In this paper, we define a MAC policy for a Linux phone
system and enable a remote party to verify the integrity of
our phone systems using integrity measurements. We use
the SELinux LSM as the starting point, but we reduce the
policy to focus on integrity goals. In designing our phone
policy, we use the CW-Lite integrity model [25], a weakened,
but more practical, version of the Clark-Wilson integrity
model [6] to define our precise integrity goals. Focusing on
integrity, we find that the SELinux LSM policy can be re-
duced dramatically, by over 90% in size thusfar, although
we believe that much greater reductions are possible. We
also show that the resultant policy is suitable for justifying
the integrity of such critical applications to remote parties
using the PRIMA integrity measurement architecture [13].
PRIMA measures the trusted code and the information flows
generated by the MAC policy to ensure that the integrity
of the trusted code is protected from low integrity inputs
according to the CW-Lite integrity policy. We envision that
this approach can provide an outline for how to build high
integrity phone systems in the future.

The structure of the paper is as follows. In Section 2, we
review the background of phone systems, SELinux, formal
integrity models, and integrity measurement that form the
basis for this work. In Section 3, we define the phone sys-
tem architecture, outline our policy design goals, and show
that these goals satisfy integrity requirements while permit-
ting the necessary function. In Section 4, we describe the
implementation of our system on an evaluation board us-
ing to prototype phone software. We show how our policies
are implemented, and how integrity measurements are gen-
erated for this system. We also provide results showing the
performance of the system, when performing integrity mea-
surement. In Section 5, we specify other related work, and
we conclude with Section 6.

2. BACKGROUND
In this section, we provide background for phone systems

security, SELinux, integrity models, and integrity measure-
ment approaches that motivate our work.

2.1 Mobile Phone Security
Historically, mobile phone systems have been standalone

devices with custom operating systems. These consumer
electronics devices were installed with software in the factory
and no user interfaces were provided for typical users to
update the software.

As more functional, “Smart” phones began to appear, the
operating system functionality requirements increased. A
consortium of phone manufacturers created the Symbian op-
erating system [27], a general-purpose, embedded operating
system targeted specifically at the phone market.

The Symbian operating system is most noteworthy for
not having a known kernel compromise in its history, but
it also implements an interesting security model. The Sym-
bian system defines three distinct subjects: the installer,
Symbian-signed subjects, and untrusted subjects [28]. Each
process is assigned to one of these three subjects depending
upon which of the three categories the originating program
file belongs. The three subjects essentially form a Biba hier-
archy with installer being the highest integrity level. How-
ever, the choice of how files are assigned to integrity-levels
is somewhat ambiguous. For example, some system files,
such as the Bluetooth pairing database can be modified by
untrusted code, permitting untrusted devices to upload files
unbeknownst to the user [24]. Although we like the small
number of subjects, the integrity protections provided are
insufficient.

Recently, Windows and Linux-based phone systems have
begun to emerge, eating into the Symbian market share, al-
though it is still the operating system in over 50% of the
phone devices sold. Windows and Linux systems bring both
applications and security issues to the phone market. Secu-
rity in the initial versions of these phones was nearly non-
existent. For early Linux phones, if an attacker could get
a user to download her malware to the phone, it would be
trivially compromised. But, most modern phones provide
users with easy mechanisms to upload new programs. As
a result, many phone system vendors are seeing that they
need to add security enforcement. Motorola Linux phones,
such as the A1200, include a mandatory access control mod-
ule called MotoAC [19] and Samsung Research has explored
SELinux on phones [35].

The challenge for phone security is becoming similar to the
personal computer. Do the phone system vendors provide
so much flexibility that the phones become impossible to
manage? Or can a model of security that permits the secure
use of untrusted code be created? We explore the answers
to these questions in this paper.

2.2 SELinux
SELinux is a reference monitor for the Linux operating

system [22]. SELinux enforces a mandatory access control
policy based on an extended Type Enforcement model [3].
The traditional TE model has subject types (e.g., processes)
and object types (e.g., sockets), and access control is repre-
sented by the permissions of the subject types to the object
types. All objects are labeled with a type. All objects are
an instance of a particular class (i.e., data type) which has
its own set of operations. A permission associates a type,
a class, and an operation set (a subset of the class’s opera-
tions). Permissions are assigned to subject types using an
allow statement.

SELinux also permits domain transitions that allow a pro-

156
IPR2019-00614 Page 00002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

cess to change its label (e.g., when it executes a new pro-
gram). Domain transitions are important because an un-
privileged program could not invoke a privileged program
without such transitions. For example, passwd would not
be able to change a user’s password in the /etc/shadow file
when called from a user’s shell unless a transition permitted
passwd to invoke its own rights. Domain transitions are also
relevant to security because a privileged program that does
not protect itself from invocations by untrusted subjects will
be a security liability to the system. In SELinux, a subject
type must have a transition permission to the resultant
subject type in order to effect a domain transition.

SELinux provides a fine-grained model in which virtually
any policy could be defined. As a result, we believe that the
SELinux model can be used to implement a policy that we
can use to verify the integrity of critical phone applications.
However, the development of SELinux policies to date have
focused on defining least privilege permissions to contain
services. Also, SELinux policies have grown to be very com-
plex. A typical SELinux policy is approximately 3MB in size
containing over 2000 types and between 50,000 to 100,000
permission assignments. While there have been efforts to
shrink the SELinux policy, we believe that a different view
of policy and function is necessary for the phone system. If
we can get a simple SELinux policy that provides effective
functionionality, then we might get a handle on security be-
fore the phone systems get out of control. We believe that
to do this we need to focus on the integrity protection of
critical applications.

2.3 Integrity Models
Protecting the integrity of critical system applications has

always been a goal of security practitioners. However, the in-
tegrity models that have been proposed over the years seem
not to match the practical environment. Our challenge in
the development of phone system policies is to find a prac-
tical integrity model.

The Biba integrity model [15] assigns integrity labels to
processes and relates these labels in an integrity lattice. Biba
integrity requires that normal processes not read data at
labels of lower integrity in the lattice. Also, Biba integrity
does not permit normal processes to write data at labels of
higher integrity in the lattice. As such, no lower integrity
data could reach our critical, high integrity application in
a Biba system. Unfortunately, many critical applications,
including software installers, read some low integrity data.

Efforts to allow processes to read lower integrity data
without compromising their integrity have not found accep-
tance either. LOMAC [8] requires that a process drop its in-
tegrity level to that of the lowest integrity data it reads, but
some critical phone processes, such as the telephony servers,
must be permitted to accept commands from low integrity
subjects, but execute at high integrity. In general, we find
LOMAC too restrictive, although we implement a variant
of it for software installers (see Section 4.2). Clark-Wilson
integrity [6] provides a more flexible alternative, by permit-
ting subjects to read low integrity data if the immediately
discard or upgrade the data, but Clark-Wilson requires full
formal assurance of such processes.

We have previously proposed a compromise approach to
integrity, called the CW-Lite integrity model. CW-Lite is
weaker than Clark-Wilson in that it doesn’t require full for-
mal assurance, but CW-Lite requires processes to have fil-

tering interfaces that immediately upgrade or discard low
integrity data as Clark-Wilson prescribes. The focus then
moves to identifying where low integrity data may be read
and ensuring that programs use filtering interfaces to read
such data. We aim to apply this view of integrity to phone
systems.

2.4 Integrity Measurement
Given the inherently untrustworthy nature of remote par-

ties, it is desirable to be able to validate that a system is of
high integrity. More specifically, there should be some guar-
antee that the remote machine is only running programs that
are trusted to behave properly and that the security policy
is correct. A proposed method of establishing these guaran-
tees uses integrity measurement [26, 17, 10, 5, 12]. Integrity
measurements consist of cryptographic hashes that uniquely
identify the components that define system integrity (i.e.,
code and data). Remote parties verify the integrity of a sys-
tem by verifying that the integrity measurements taken are
consistent with the remote party’s view of integrity. Such
measurements are conveyed in a messages signed by an au-
thority trusted to collect the measurement, and a signed
integrity measurement is called an attestation.

The secure storage and reporting of these measurements
are typically reliant upon a root of trust in hardware like
the Trusted Computing Group’s Trusted Platform Module
(TPM) [32]. This commodity cryptographic co-processor
has facilities storing hash chains in a tamper-evident fash-
ion. It can also securely generate public key pairs that are
used to sign attestations and identify itself to remote par-
ties. Samsung demonstrated a phone with a hardware TPM,
called the Mobile Trusted Module [31], at the CES confer-
ence in Las Vegas in January 2008 [1].

Several architectures exist to gather integrity measure-
ments such as the Linux Integrity Architecture (IMA) [10].
It obtains run-time integrity measurements of all code that
is memory-mapped as executable. This facilitates the detec-
tion of any malware present on a system.

However, the IMA approach is too simplistic for phone
systems for two reasons. First, if any untrusted code is run
on the phone system, such as a third-party game, then an
IMA verification will result in the entire phone being un-
trusted. Second, if an attack can modify a data file used by
a trusted process, then the remote party may be tricked into
thinking that a compromised phone is high integrity because
IMA only measures the code and static data files. We aim to
enable a phone system to run some untrusted code as long
as the MAC policy enables verification that the trusted code
is protected from inputs from such untrusted code.

2.5 PRIMA
The Policy-Reduced Integrity Measurement Architecture

(PRIMA) [13] addresses the problem of run-time integrity
measurements by additionally measuring the implied infor-
mation flows between processes from the system’s security
policy. This way, a verifier can prove that trusted com-
ponents in the system are isolated from untrusted and po-
tentially harmful inputs. Moreover, PRIMA’s CW-Lite in-
tegrity enforcement model only requires the trusted portions
of a system to be measured and thus reduces the number of
measurements required to verify a system.

In addition to the basic integrity measurements of code
and static data, we identify the following set of measure-

157
IPR2019-00614 Page 00003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Trusted
Program

Untrusted
Program

Installer

Operating System Kernel

MAC
Enforcement PRIMA

CRTMRoot of Trust
Measurement

Operating
System

System
Services

Applications

Figure 1: Software architecture for a phone system

ments necessary for a remote party to verify CW-Lite in-
tegrity:

1. MAC Policy: The mandatory access control (MAC)
policy determines the system information flows.

2. Trusted Subjects: The set of trusted subjects (TCB)
that interact with the target application is measured.
The remote party must agree that this set contains
only subjects that it trusts as well.

3. Code-Subject Mapping: For all code measured,
record the runtime mapping between the code and the
subject type under which it is loaded. For example, ls
may be run by normal users or trusted administrators;
we might want to trust only the output of trusted pro-
grams run by trusted users. If the same code is run
under two subject types, then we take two measure-
ments, but subsequent loads under a previously-used
subject type are not re-measured.

At system startup, the MAC policy and the set of trusted
subjects is measured. From these, the remote party con-
structs an information flow graph. The remote party can
verify that all edges into the target and trusted applications
are either from trusted subjects (that are verified at runtime
only to run trusted code) or from untrusted subjects via fil-
tering interfaces (recall that we extended the MAC system
to include interface-level permissions).

Next, we measure the runtime information. Due to the in-
formation flow graph, we only need to measure the code that
we depend on (i.e., trusted subjects’ code). All others are
assumed untrusted anyway. Also, we measure the mapping
between the code loaded and the trusted subject in which
the code is loaded, so the remote party can verify that the
expected code is executed for the subject. This is analo-
gous to measuring the UID a program runs as in traditional
UNIX.

By measuring how the code maps to system subjects,
PRIMA enables a remote party to verify that the system
runs high integrity code, perhaps with acceptable filtering
interfaces, in its trusted subjects, and that these subjects are
protected from information flows from untrusted subjects by
the MAC policy.

Package Installer
ipkg File

Labeler
setfiles

config executable
scripts

tmp log

Figure 2: The software installation process

3. APPROACH

3.1 System Architecture
Figure 1 shows the software architecture for a phone sys-

tem. First, the phone system contains some root of trust
which is the basis for integrity in a phone system. An ex-
ample is the Mobile Trusted Module [31] proposed by the
Trusted Computing Group.

Second, the phone system has an operating system ker-
nel that supports mandatory access control (MAC) and in-
tegrity measurement using the PRIMA approach. The MAC
policy of the kernel will be used to define the system’s in-
formation flows. The MAC policy is enforced by a reference
monitor in the kernel that mediates all the security-sensitive
operations of all the user-level programs. SELinux is an
example of a kernel with such MAC enforcement (see Sec-
tion 2.2). The PRIMA module measures the information
flows in this MAC policy as well as the code that is loaded
in the system, as described in Section 2.5, to enable verifica-
tion that the trusted subjects are protected from untrusted
subjects.

Third, the phone system has a software installer for in-
stalling both trusted and untrusted software packages. Most
phone systems permit the phone users to install new software
packages. In many cases, such installations require confir-
mation from the device user, but that is not always the case.
Also, some software packages may include signed hash files
that enable verification of the originator of package and the
integrity of its contents.

Fourth, the packages loaded on a phone system may in-
clude trusted packages, such as a banking client, and un-
trusted packages, such as a game program. While some
phone systems only permit the installation of signed pack-
ages from trusted authorities (e.g., Symbian-signed pack-
ages [28]), we envision that ultimately phone systems will
also have to support the use of arbitrary packages. However,
the trusted components of the system, such as the banking
client and the installer itself, must be provably protected
from such software.

3.2 Software Installation and Execution
Figure 2 shows the process of software installation. A

software installer is a program that takes a software pack-
age consisting of several files and installs these files into the
appropriate location in the phone’s file system. Since the
software installer may update virtually any program on the
phone system, it is entrusted with write access over all soft-

158
IPR2019-00614 Page 00004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ware in the system. As a result, the integrity of the system
is dependent on the integrity of the software installer.

The software installation process also determines the la-
bels of the installed files. Typically, this is not done by the
software installer, however, but a MAC labeling service, out-
side the kernel, that labels the files based on a specification
in the MAC policy. In SELinux, a program called setfiles

interprets the MAC policy specification for file labeling to
set the correct labeling for the newly-installed package files.
The MAC labeling service must also be trusted, but unlike
the software installer, it need not interact with any untrusted
package files directly.

When the software installer executes, its executable uses
information in a variety of other files to implement installa-
tion. Such files may include installer configurations, scripts,
logs, and temporary files. Installation configurations, scripts,
and the installer executable itself are rarely modified (e.g.,
only on installer upgrades), so these can be assumed not
to be written on the loading of untrusted software. Other
files, such as logs and temporary files may be updated on
each installation. That is certainly the intent of the log file,
which is designed to collect information from each installa-
tion. Temporary files may or may not be used depending
on the installation process. In designing an access control
policy, in the next section, we must consider the use of these
files in designing policies that protect system integrity prop-
erly.

After the software packages are installed, the programs
included in these packages may now be executed (i.e., as
processes). In order to protect the integrity of the system,
trusted processes, such as the banking client, must be pro-
tected from untrusted processes, such as the game program.
As we identified in the PRIMA background in Section 2.5,
a process’s integrity depends on its code and the data that
it depends on. The banking client should be isolated from
untrusted programs, so it should not depend on data that
can be modified by untrusted processes. However, the in-
staller clearly receives input from untrusted processes (e.g.,
the untrusted programs themselves) which is necessary for
correct functioning. Thus, integrity must be justified while
allowing some access to untrusted data, but we also want to
minimize the amount of untrusted data that installers must
access.

3.3 System MAC Policy Design
The system MAC policy must enable practical justifica-

tion of integrity for the software installer and the trusted
packages that it installs. Here, we sketch the requirements
for the MAC policies for trusted programs and the installer.
The actual policies are defined in Section 4.

For trusted packages, such as the banking client, we be-
lieve that a conservative model of integrity is practical. Biba
integrity [15] (see Section 2.3) can be enforced for the bank-
ing client because its files can be isolated from all untrusted
programs. Since there is only one user on the phone sys-
tem, there is no need to have separate principals for differ-
ent banking client data files. We envision that many trusted
programs, such as those used to maintain phone books, ser-
vice configurations, etc., will be isolated from untrusted pro-
grams, and generally one another.

For the installer, isolation from untrusted programs is not
possible. As a result, only the more liberal justification of

Untrusted
process

Trusted
Installer

Trusted
process

UnTrusted
Installer

untrusted package

trusted
files

untrusted
files

labeler

config scripts

config scripts

(untrusted)

(trusted)

trusted tmp

untrusted tmp

trusted

untrusted

log file (PFS)

Figure 3: The modified installer process showing
filtering interface to handle untrusted input

CW-Lite integrity [25] (see Section 2.3) is possible1. In ad-
dition, in the design of MAC policy for the installer, we
also wish to minimize exposure to the confused deputy prob-
lem [9] as well. As a result, our software installer runs with
permissions that permit any program to invoke it and per-
missions that permit it to access a package file anywhere in
the phone’s file system, but the installer’s permissions are
dropped based on the label of the package that it will install.

Figure 3 shows the modified installer process and outlines
the installer’s MAC policy. The installer must provide a fil-
tering interface that protects it from compromise on invoca-
tion. Thus, the installer’s integrity will not be compromised
by either a malicious invocation by an untrusted process
or an invocation that includes a malformed package. The
installer immediately determines whether it is installing a
trusted or untrusted package, and drops privileges to that
label. This prevents the confused deputy problem by not
allowing the installer to use its trusted privileges when in-
stalling untrusted software.

3.4 System Security
In this section, we show informally that the MAC policy

described above will enable verification of the integrity of
the trusted programs and the installer and these policies
will provide the necessary permissions for trusted programs
and the installer to function properly.

Biba Integrity.
For trusted programs, the MAC policy aims to ensure

isolation from untrusted programs. Isolation from other
trusted programs may be desirable for least privilege per-

1We find that other system services on the phone, such as
the baseband processor daemon that enables phone calls,
SMS, etc., can also be invoked by untrusted programs, so
these will also achieve CW-Lite integrity at best. A sim-
ilar approach would be used for securing them, but their
examination is outside the scope of this paper.

159
IPR2019-00614 Page 00005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

