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Abstract
We argue that controlling energy allocation is an increas-
ingly useful and important feature for operating systems, es-
pecially on mobile devices. We present two new low-level
abstractions in the Cinder operating system, reserves and
taps, which store and distribute energy for application use.
We identify three key properties of control – isolation, dele-
gation, and subdivision – and show how using these abstrac-
tions can achieve them. We also show how the architecture of
the HiStar information-flow control kernel lends itself well
to energy control. We prototype and evaluate Cinder on a
popular smartphone, the Android G1.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design

General Terms Design

Keywords energy, mobile phones, power management

1. Introduction
In the past decade, mobile phones have emerged as a dom-
inant computing platform for end users. These very per-
sonal computers depend heavily on graphical user interfaces,
always-on connectivity, and long battery life, yet in essence
run operating systems originally designed for workstations
(Mac OS X/Mach) or time-sharing systems (Linux/Unix).

Historically, operating systems have had poor energy
management and accounting. This is not surprising, as their
APIs standardized before energy was an issue. For exam-
ple, the first commodity laptop with performance similar
to a desktop, the Compaq SLT/286 [Com 1988], was re-
leased just one year before the C API POSIX standard.
The resulting energy management limitations of POSIX
have prompted a large body of research, ranging from CPU
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scheduling [Flautner 2002] to accounting [Zeng 2003] to of-
floading networking. Despite this work, current systems still
provide little, if any, application control or feedback: users
have some simple high-level sliders or toggles.

This limited control and visibility of energy is especially
problematic for mobile phones, where energy and power de-
fine system lifetime. In the past decade, phones have evolved
from low-function proprietary applications to robust multi-
programmed systems with applications from thousands of
sources. Apple announced that as of April 2010 their App
Store houses 185,000 apps [App 2010] for the iPhone with
more than 4 billion application downloads. This shift away
from single-vendor software to complex application plat-
forms means that the phone’s software must provide effec-
tive mechanisms to manage and control energy as a resource.
Such control will be even more important as the danger
grows from buggy or poorly designed applications to poten-
tially malicious ones.

In the past year, mobile phone operating systems began
providing better support for understanding system energy
use. Android, for example, added a UI that estimates applica-
tion energy consumption with system call and event instru-
mentation, such as processor scheduling and packet counts.
This is a step forward, helping users understand the myster-
ies of mobile device lifetime. However, while Android pro-
vides improved visibility into system power use, it does not
provide control. Outside of manually configuring applica-
tions and periodically checking battery use, today’s systems
cannot do something as simple as controlling email polling
to ensure a full day of device use.

This paper presents Cinder, a new operating system de-
signed for mobile phones and other energy-constrained com-
puting devices. Cinder extends the HiStar secure kernel [Zel-
dovich 2006] to provide new abstractions for controlling
and accounting for energy: reserves and taps. Reserves are
a mechanism for resource delegation, providing fine-grained
accounting and acting as an allotment from which applica-
tions draw resources. Where reserves describe a quantity of a
resource, taps place rate limits on resources flowing between
reserves. By connecting reserves to one another, taps allow
resources to flow to applications. Taps and reserves compose
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together to allow applications to express their intentions, en-
abling policy enforcement by the operating system.

Cinder estimates energy consumption using standard
device-level accounting and modeling [Zeng 2002]. HiS-
tar’s explicit information flow control allows Cinder to track
which parties are responsible for resource use, even across
interprocess communication calls serviced in other address
spaces. Without needing any additional state or support
code, Cinder can accurately amortize costs across principals,
such as the energy cost of turning on the radio to multiple
applications that simultaneously need Internet access.

While Cinder runs on a variety of hardware platforms
(AMD64, i386, ARM), the most notable is the HTC Dream,
a.k.a. the Android G1. To the best of our knowledge, other
than extensions to Linux, Cinder is the first research operat-
ing system that runs on a mobile phone. The reason for such
a first is simple: the closed nature of phone platforms makes
porting an operating system exceedingly difficult.

This paper makes three research contributions. First, it
proposes reserves and taps as new operating system mech-
anisms for managing and controlling energy consumption.
Second, it evaluates the effectiveness and power of these
mechanisms in a variety of realistic and complex application
scenarios running on a real mobile phone. Third, it describes
experiences in writing a mobile phone operating system, out-
lining the challenges and impediments faced when conduct-
ing systems research on the dominant end-user computing
platform of this decade.

2. A Case for Energy Control
This section motivates the need for low-level, fine-grained
energy control in a mobile device operating system. It starts
by reviewing some of the prior work on energy visibility and
the few examples of coarse energy control. Using several ap-
plication examples as motivation, it describes three mecha-
nisms an OS needs to provide for energy: isolation, dele-
gation, and subdivision. The next section describes reserves
and taps, abstractions which provide these mechanisms at a
fine granularity.

2.1 Prior Work on Visibility and Control
Managing energy requires accurately measuring its con-
sumption. A great deal of prior work has examined this prob-
lem for mobile systems, including ECOSystem [Zeng 2002],
Currentcy [Zeng 2003], PowerScope [Flinn 1999b], and
PowerBooter [Zhang 2010]. These systems use a model of
the power draw of hardware components based on hardware
states. For example, an 802.11b card draws only slightly
more power while transmitting than receiving, whereas a
CPU’s power draw increases with utilization. Current mo-
bile phone energy accounting systems, such as Android’s,
use this approach. Cinder also does as well; Section 4 pro-
vides the details.

Early systems like ECOSystem [Zeng 2002] proposed
mechanisms by which a user could control per-application
energy expenditure. ECOSystem, in particular, introduced
an abstraction called Currentcy, which gives an application
the ability to spend a certain amount of energy, up to a fixed
cap. This flat hierarchy of energy principals – applications
– is reasonable for simple large applications. Mobile appli-
cations and systems today, however, are far more complex
and involve multiple principals. For example, web browsers
run active code as well as possibly untrusted plugins, net-
work daemons control access to the cellular data network,
and peripherals have complex energy profiles.

2.2 Isolation, Delegation, and Subdivision
We believe that for applications to effectively control energy,
an operating system must provide three energy management
mechanisms: isolation, delegation, and subdivision. We mo-
tivate these mechanisms through application examples that
we follow through the rest of the paper.

The first mechanism is isolation. Isolation is a fundamen-
tal part of an operating system. Memory and inter-process
communication (IPC) isolation provide security, while CPU
and disk space isolation ensure that processes cannot starve
others. Isolating energy consumption is similarly important.
An application should not be permitted to consume inordi-
nate amounts of energy, nor should it be able to deprive other
applications. Consider two processes in a system, each with
some share of system energy. To improve system reliabil-
ity and simplify system design, the operating system should
isolate each process’ share from the other’s. If one process
forks additional processes, these children must not be able
to consume the energy of the other.

The second mechanism is delegation. Delegation allows
a principal to loan any of its available energy and power to
another principal. After delegation, either the resource donor
or the recipient can freely consume the delegated resources.
Furthermore, if there are multiple donors delegating to this
recipient, the resources are pooled for use by the recipi-
ent. Resource delegation is an important enabler of inter-
application cooperation. For example, the Cinder netd net-
working stack transfers energy into a common radio activa-
tion pool when an application cannot afford the high initial
expense of powering up the radio. By delegating their energy
to the radio, multiple processes can contribute to expensive
operations; this may not only improve quality of service, but
even reduce energy consumption.

The third mechanism is subdivision. Subdivision allows
applications to partition their available energy. Combined
with isolation, subdivision allows an application to give an-
other principal a partial share of its energy, while being as-
sured that sure that the rest will remain for its own use.
For example, modern web browsers commonly run plugins,
some of which may even be untrusted. If a browser is granted
a finite amount of power, it might want to protect itself from
buggy or poorly written plugins that could waste CPU en-
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ergy. Subdivision lets the browser give full control over a
fraction of its energy allotment to plugins. Isolation further
ensures that each plugin component does not consume more
than its share.

2.3 Prior Systems
Prior systems like ECOSystem [Zeng 2002, 2003] only
partially support isolation and subdivision: child processes
share the resources of their parent. This is sufficient when
applications are static entities, but not when they spawn new
processes and invoke complex services. The web browser
demonstrates the problem: it has no way to prevent its
plugins from consuming its own resources once they are
spawned. Cinder’s subdivision lends naturally to familiar
and standard abstractions such as process trees, resource
containers, and quotas.

Furthermore, prior systems do not permit delegation,
which is akin to priority inheritance. For always-on systems
which have small variations in power draw, such as the lap-
tops for which they were designed, this is not a serious lim-
itation. On mobile phones, however, which have almost two
orders of magnitude difference in active and sleep power, the
cost of powering up peripherals, such as the wireless data in-
terface, can be significant. Delegation provides a means to
facilitate application cooperation.

3. Design
Cinder is based on HiStar [Zeldovich 2006], a secure op-
erating system built upon information flow control. Cinder
adds two new fundamental kernel object types: reserves and
taps. This section gives a brief overview of HiStar and key
features related to resource management, describes reserves
and taps, gives examples of how they can be used, and details
how they are secured.

3.1 HiStar
HiStar is composed of six first-class kernel objects, all pro-
tected by a security label. Its segments, threads, address
spaces, and devices are similar to those of conventional ker-
nels. Containers enable hierarchical control over dealloca-
tion of kernel objects – objects must be referenced by a con-
tainer or face garbage collection. Gates provide protected
control transfer of a thread from one address space to a
named offset in another; they are the basis for all IPC.

3.2 Reserves
A reserve describes a right to use a given quantity of a re-
source, such as energy. When an application consumes a
resource the Cinder kernel reduces the values in the corre-
sponding reserve. The kernel prevents threads from perform-
ing actions for which their reserves do not have sufficient re-
sources. Reserves, like all other kernel objects, are protected
by a security label (§3.5) that controls which threads can ob-
serve, use, and manipulate it.

All threads draw from one or more energy reserves. Cin-
der’s CPU scheduler is energy-aware and allows a thread to
run only when at least one of its energy reserves is not empty.
Threads that have depleted their energy reserves cannot run.
Tying energy reserves to the scheduler prevents new spend-
ing, which is sufficient to throttle energy consumption.

Reserves allow threads to delegate and subdivide re-
sources. As a simple example, an application granted 1000 mJ
of energy can subdivide its reserve into an 800 mJ and a
200 mJ reserve, allowing another thread to connect to the
200 mJ reserve. However, threads rarely manage energy
in such concrete quantities, preferring instead to use taps
(§3.3). A thread can also perform a reserve-to-reserve trans-
fer provided it is permitted to modify both reserves.

Reserves also provide accounting by tracking applica-
tion resource consumption. Applications may access this ac-
counting information in order to provide energy-aware fea-
tures. Finally, reserves can be deleted directly or indirectly
when some ancestor of their container is deleted, just as a file
can be deleted either directly or indirectly when a directory
containing it is deleted in a Unix system.

3.3 Taps
A tap transfers a fixed quantity of resources between two
reserves per unit time, which controls the maximum rate at
which a resource can be consumed. For example, an appli-
cation reserve may be connected to the system battery via a
tap supplying 1 mJ/s (1 mW).

Taps aid in subdividing resources between applications
since partitioning fixed quantities is impractical for most
policies. A user may want her phone to last at least 5 hours
if she is surfing the web; the amount of energy the browser
should receive is relative to the length of time it is used.
Providing resources as a rate naturally addresses this.

Another approach, which Cinder does not take, would be
to implement transfer rates between reserves through threads
that explicitly move resources and enforce rate-limiting as
well as accounting. Given five applications, each to be lim-
ited to consume an average of 1 W, the system could cre-
ate five application reserves and threads, with each thread
transferring while tracking and limiting energy into each
of these applications’ reserves. However, this fine-grained
control would cause a proliferation of these special-purpose
threads, adding overhead and decreasing energy efficiency.

Taps are made up of four pieces of state: a rate, a source
reserve, a sink reserve, and a security label containing
the privileges necessary to transfer the resources between
the source and sink (§3.5). Conceptually, it is an efficient,
special-purpose thread whose only job is to transfer en-
ergy between reserves. In practice, transfers are executed
in batch periodically to minimize scheduling and context-
switch overheads.
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Figure 1. A 15 kJ battery, or root reserve, connected to a reserve
via a tap. The battery is protected from being misused by the web
browser. The web browser draws energy from an isolated reserve
which is fed by a 750 mW tap.

3.4 Resource Consumption Graph
Reserves and taps form a directed graph of resource con-
sumption rights. The root of the graph is a reserve represent-
ing the system battery; all other reserves are a subdivision
of this root reserve. Figure 1 shows a simple example of a
web browser whose consumption is rate limited using a tap.
The tap guarantees that even if the browser is aggressively
using energy the battery will last at least 5 hours (15,000 J at
0.750 J/s is about 5.6 hours).

3.5 Access Control & Security
Any thread can create and share reserves or taps to subdivide
and delegate its resources. This ability introduces a problem
of fine-grained access control. To solve this, reserves and
taps are protected by a security label, like all other kernel
objects. The label describes the privileges needed to observe,
modify, and use the reserve or tap.

Using resources from a reserve requires both observe and
modify privileges: observe because failed consumption indi-
cates the reserve level (zero) and modify for when consump-
tion succeeds. Since a tap actively moves resources between
a source and sink reserve, it needs privileges to observe and
modify both reserve levels; to aid with this, taps can have
privileges embedded in them.

4. Cinder on the HTC Dream
Controlling energy requires measuring or estimating its con-
sumption. This section describes Cinder’s implementation
and its energy model. The Cinder kernel runs on AMD64,
i386, and ARM architectures. All source code is freely avail-
able under open-source licenses. Our principal experimental
platform is the HTC Dream (Google G1), a modern smart-
phone based on the Qualcomm MSM7201A chipset.

4.1 Energy accounting
Energy accounting on the HTC Dream is difficult due to the
closed nature of its hardware. It has a two-processor design,
as shown in Figure 2. The operating system and applications
run on an ARM11 processor. A secure, closed ARM9 co-
processor manages the most energy hungry, dynamic, and
informative components (e.g. GPS, radio, and battery sen-
sors). The ARM9, for example, exposes the battery level as
an integer from 0 to 100.

Recent work on processors has shown that fine-grained
performance counters can enable accurate energy estimates

t

f(t)

ARM 9 (Closed):

Modem, Power, GPS

ARM 11: Cinder,

Application S/W

R

Figure 2. The two ARM cores in the MSM7201A chipset. Cinder
runs on the ARM11, whereas the ARM9 controls access to sensitive
hardware including the radio and GPS. The two communicate via
shared memory and interrupt lines.

within a few percent [Economou 2006; Snowdon 2009].
Without access to such state in the HTC Dream, however,
Cinder relies on the simpler well-tested technique of build-
ing a model from offline-measurements of device power
states in a controlled setting [Flinn 1999b; Fonseca 2008;
Zeng 2002]. Phones today use this approach, and so Cinder
has equivalent accuracy to commodity systems.

4.2 Power Model
Our energy model uses device states and their duration to
estimate energy consumption. We measured the Dream’s
energy consumption during various states and operations.
All measurements were taken using an Agilent Technolo-
gies E3644A, a DC power supply with a current sense re-
sistor that can be sampled remotely via an RS-232 interface.
We sampled both voltage and current approximately every
200 ms, and aggregated our results from this data.

While idling in Cinder, the Dream uses about 699 mW
and another 555 mW when the backlight is on. Spinning the
CPU increases consumption by 137 mW. Memory-intensive
instruction streams increase CPU power draw by 13% over
a simple arithmetic loop. However, the HTC Dream does
not have hardware support to estimate what percentage of
instructions are memory accesses. The ARM processor also
lacks a floating point unit, leaving us with only integer,
control flow, and memory instructions. For these reasons,
our CPU model currently does not take instruction mix into
account and assumes the worst case power draw (all memory
intensive operations).

4.3 Peripheral Power
The baseline cost of activating the radio is exceptionally
high: small isolated transfers are about 1000 times more ex-
pensive, per byte, than large transfers. Figure 3 demonstrates
the cost of activating the radio and sending UDP packets
to an echo server that returns the same contents. Results
demonstrate that the overhead involved dominates the total
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Figure 3. Radio data path power consumption for 10 second
flows across six different packet rates and three packet sizes. Short
flows are dominated by the 9.5 J baseline cost shown in Figure 4.
For this simple static test, data rate has only a small effect on the
total energy consumption. The average cost is 14.3 J (minimum:
10.5, maximum: 17.6).
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Figure 4. Cost of transitioning from the lowest radio power state
to active. One UDP packet is transmitted approximately every
40 seconds to enable the radio. The device fully sleeps after 20 sec-
onds, but the average plateau consumes an additional 9.5 J of en-
ergy over baseline (minimum 8.8 J, maximum 11.9 J). Power con-
sumption for a stationary device can often be predicted with rea-
sonable accuracy, but outliers, such as the penultimate transition,
occur unpredictably.

power cost for flows lasting less than 10 seconds in duration,
regardless of the bitrate.

Figure 4 shows this activation cost. An application pow-
ers up the radio by sending a single 1-byte UDP packet. The
secure ARM9 automatically returns to a low power mode
after 20 seconds of inactivity. Because the ARM9 is closed,
Cinder cannot change this inactivity timeout.

With this workload, it costs 9.5 joules to send a single
byte! One lesson from this is that coordinating applications
to amortize energy start-up costs could greatly improve en-
ergy efficiency. In §5.5 we demonstrate how Cinder can use
reserves and taps for exactly this purpose.

4.4 Mobility & Power Model Improvements
Cinder’s aim is to leverage advances in energy accounting
(see §8.2) to allow users and applications to provision and
manage their limited budgets. Accurate energy accounting
is an orthogonal and active area of research. Cinder is adapt-
able and can take advantage of new accounting techniques
or information exposed by device manufacturers.

// Create a reserve

object_id_t res_id;

res_id = reserve_create(container_id, res_label);

objref res = OBJREF(container_id, res_id);

// Create a tap and connect it between

// the battery and the new reserve

object_id_t tap_id;

tap_id = tap_create(container_id, root_reserve,

res, tap_label);

objref tap = OBJREF(container_id, tap_id);

// Limit the child to 1 mW

tap_set_rate(tap, TAP_TYPE_CONST, 1);

if (fork() == 0) {

// child process: switch to new reserve before exec

self_set_active_reserve(res);

execv(args[0], args);

}

Figure 5. energywrap excerpt without error handling.

5. Applications
To gain experience with Cinder’s abstractions, we devel-
oped applications using reserves and taps. This section de-
scribes these applications, including a command-line utility
that augments existing applications with energy policies, an
energy constrained web browser that further isolates itself
from its browser plugins, and a task manager application that
limits energy consumption of background applications.

5.1 energywrap

Taking advantage of the composability of Cinder’s resource
graph, the energywrap utility allows any application to be
sandboxed even if it is buggy or malicious. energywrap
takes a rate limit and a path to an application binary. The
utility creates a new reserve and attaches it to the reserve in
which energywrap started by a tap with the rate given as
input. After forking, energywrap begins drawing resources
from the newly allocated reserve rather than the original re-
serve of the parent process and executes the specified pro-
gram. This allows even energy-unaware applications to be
augmented with energy policies.

The sandboxing policy provided by energywrap is im-
plemented in about 100 lines of C++. An excerpt is shown
in Figure 5. HiStar provides a wrap utility designed to iso-
late applications with respect to privileges and storage re-
sources. Coupling this utility with energywrap allows any
application or user to provide a virtualized environment to
any thread or application. Section 6.1 evaluates the effec-
tiveness of energy sandboxing and isolation.

energywrap has proved useful in implementing policies
while designing and testing Cinder, particularly for legacy
applications that have no notion of reserves or taps. Since
energywrap runs an arbitrary executable, it is possible to
use energywrap to wrap itself or shell scripts, which may
invoke energywrap with other scripts or applications. This
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