
Query by Image
and Video Content:
The QBIC System
Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, Byron Dom,
Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele, and Peter Yanker

IBM Almaden Research Center

picture yourself as a fashion designer needing images of fabrics
with a particular mixture of colors, a museum cataloger looking
for artifacts of a particular shape and textured pattern, or a movie

producer needing a video clip of a red car-like object moving from right
to left with the camera zooming. How do you find these images? Even
though today's technology enables us to acquire, manipulate, transmit,
and store vast on-line image and video collections, the search method-
ologies used to find pictorial information are still limited due to difficult
research problems (see "Semantic versus nonsemantic" sidebar). Typ-
ically, these methodologies depend on file IDs, keywords, or text associ-
ated with the images. And, although powerful, they

• don't allow queries based directly on the visual properties of the images,
• are dependent on the particular vocabulary used, and
• don't provide queries for images similar to a given image.

Research on ways to extend and improve query methods for image data-
bases is widespread, and results have been presented in workshops, con-
ferences,L2 and surveys.

We have developed the QBIC (Query by Image Content) system to
explore content-based retrieval methods. QBIC allows queries on large
image and video databases based on

• example images,
• user-constructed sketches and drawings,
• selected color and texture patterns,

QBIC* lets users

find pictorial information

in large image and video

databases based on color,

shape, texture, and sketches.

QBIC technology is part of

several IBM products.

*To run an interactive query, visit the QBIC Web server
' at lutp://wwwqbic. alma den. ibm. con✓.

Semantic versus nonsemantic information
At first glance, content-based querying appears deceptively

simple because we humans seem to be so good at it. If a pro-
gram can be written to extract semantically relevant text
phrases from images, the problem may be solved by using
currently available text-search technology. Unfortunately, in
an unconstrained environment, the task of writing this pro-
gram is beyond the reach of current technology in image
understanding. At an artificial intelligence conference sev-
eral years ago, a challenge was issued to the audience to write
a program that would identify all the dogs pictured in a chil-
dren's book, a task most 3-year-olds can easily accomplish.
Nobody in the audience accepted the challenge, and this
remains an open problem.

Perceptual organization—the process of grouping image
features into meaningful objects and attaching semantic

descriptions to scenes through model matching—is an
unsolved problem in image understanding. Humans are
much better than computers at extracting semantic descrip-
tions from pictures. Computers, however, are better than
humans at measuring properties and retaining these in
long-term memory.

One of the guiding principles used by QBIC is to let com-
puters do what they do best—quantifiable measurement—
and let humans do what they do best—attaching semantic
meaning. QBIC can find "fish-shaped objects," since shape
is a measurable property that can be extracted. However,
since fish occur in many shapes, the only fish that will be
found will have a shape close to the drawn shape. This is not
the same as the much harder semantical query of finding
all the pictures of fish in a pictorial database.

0018-9162195154.00 	1995 IEEE September 1995 23

Query by Image

The QBIC System
Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, Byron Dom,
Monika Gorkani, Jim Hafher, Denis Lee, Dragutin Petkovie, David Steele, and Peter Yanker

ZBMAlmaden Research Center

m
QBlC* lets users

find pictorial information

in large image and video

databases based on color,

shape, texture, and sketches.

QBIC technology is part of

several IBM products.

‘To run an interacnve query, vult the QBIC Web sewer
at http //imwqbic almaden ibm COW

Semantic versus nonsemantic information

icture yourself as a fashion designer needing images of fabrics
with a particular mixture of colors, a museum cataloger looking P for artifacts of a particular shape and textured pattern, or a movie

producer needing a video clip of a red car-like object moving from right
to left with the camera zooming. How do you find these images? Even
though today’s technology enables us to acquire, manipulate, transmit,
and store vast on-line image and video collections, the search method-
ologies used to find pictorial information are still limited due to difficult
research problems (see “Semantic versus nonsemantic” sidebar). Typ-
ically, these methodologies depend on file IDS, keywords, or text associ-
ated with the images. And, although powerful, they

don’t allow queries based directly on the visual properties of the images,
are dependent on the particular vocabulary used, and
don’t provide queries for images similar to a given image.

Research on ways to extend and improve query methods for image data-
bases is widespread, and results have been presented in workshops, con-
ferences,’.* and surveys.

We have developed the QBIC (Query by Image Content) system to
explore content-based retrieval methods. QBIC allows queries on large
image and video databases based on

example images,
user-constructed sketches and drawings,
selected color and texture patterns,

At first glance, content-based querying appears deceptively
simple because we humans seem to be so good at it. If a pro-
gram can be written to extract semantically relevant text
phrases from images, the problem may be solved by using
currently available text-search technology. Unfortunately, in
an unconstrained environment, the task of writing this pro-
gram is beyond the reach of current technology in image
understanding. At an artificial intelligence conference sev-
eral years ago, a challenge was issued to the audience to write
a program that would identify all the dogs pictured in a chil-
dren’s book, a task most 3-year-olds can easily accomplish.
Nobody in the audience accepted the challenge, and this
remains an open problem.

Perceptual organization-the process of grouping image
features into meaningful objects and attaching semantic

descriptions t o scenes through model matching-is an
unsolved problem in image understanding. Humans are
much better than computers at extracting semantic descrip-
tions from pictures. Computers, however, are better than
humans at measuring properties and retaining these in
long-term memory.

One of the guiding principles used by QBIC is to let com-
puters do what they do best-quantifiable measurement-
and let humans do what they do best-attaching semantic
meaning. QBIC can find “fish-shaped objects,” since shape
is a measurable property that can be extracted. However,
since fish occur in many shapes, the only fish that will be
found will have a shape close t o the drawn shape. This is not
the same as the much harder semantical query of finding
all the pictures of fish in a pictorial database.

September 1995 0018-9162/95/$4 00 1995 IEEE

Page 1 of 10 MINDGEEK EXHIBIT 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Grid: 	 Undo

poly

elli

root

line

,ear? 	 -21 hits retuned (at loam 12941 palatial. results atorahma

User -Pia Color Texture Shape Multiobject Sketch Location Text

Positional Object Camera User Existing
color/texture motion motion defined image

Still images)

R-frames

Feature
extraction

Object

User 	 Location Shape defined Texture Color)

Database

Query interface

Objects
Motion objects

s,

Shots

mere
motion

•

Filtering/indexing i•41

Object Use
identification

Scene

Scene

Sketch 	
Positional

color/texture

att

It18 	.43/111 111 MIELe
11 	51.

4,111111M111111191111811 DN,
URI 	1111.,f

.111811 	.1111111 '
AM* ,IF.11*1111111111111111

g 	011till,n181111111112l
11
11101111111111M1111111111g11111111
811111110111111111111111M1111111111111
118118111111111111111111111111111111101111

Pft) Y & Query

	I -C ome

Figure 1. QBIC query by drawn color. Drawn query specification on left; best 21 results sorted by similarity

to the query on right. The results were selected from a 12,968-picture database.

Match engine

Color Texture Shape Multiobject Sketch Location Text +if_

Positional Object Camera User
color/texture motion motion defined

User-4 	 Best matches returned
in similarity order)

Figure 2. QBIC database population (top) and query (bottom) architecture.

Computer

Figure 1. QBlC query by drawn color. Drawn query specification on left; best 21 results sorted by similarity

t o the query on right. The results were selected from a 12,968-picture database.

~.

,-\,
S t i l l images)

Scene \, /Motion objects ‘ Shots
\ Feature f

I
Query interface

Shape Multiobject Sketch Location Text
I

I ional Object Camera User Existlng I

exture motion motlon deflned
,

1 *
Match engine

Color Texture Shape Multiobject Sketch Location Text -
Positional Object Camera User /’

color/texture motion motion defined

i
User

Computer

Page 2 of 10 MINDGEEK EXHIBIT 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

• camera and object motion, and
• other graphical information.

Two key properties of QBIC are (1) its
use of image and video content—com-
putable properties of color, texture, shape,
and motion of images, videos, and their
objects—in the queries, and (2) its graph-
ical query language in which queries are
posed by drawing, selecting, and other
graphical means. Related systems, such as
MIT's Photobook' and the Trademark and
Art Museum applications from ETL,4 also
address these common issues. This article
describes the QBIC system and demon-
strates its query capabilities.

QBIC SYSTEM OVERVIEW
Figure 1 illustrates a typical QBIC query.'

The left side shows the query specification,
where the user painted a large magenta cir-
cular area on a green background using standard drawing
tools. Query results are shown on the right: an ordered list of
"hits" similar to the query. The order of the results is top to
bottom, then left to right, to support horizontal scrolling. In
general, all queries follow this model in that the query is spec-
ified by using graphical means—drawing, selecting from a
color wheel, selecting a sample image, and so on—and results
are displayed as an ordered set of images.

To achieve this functionality, QBIC has two main com-
ponents: database population (the process of creating an
image database) and database query. During the popula-
tion, images and videos are processed to extract features
describing their content—colors, textures, shapes, and
camera and object motion—and the features are stored in
a database. During the query, the user composes a query
graphically. Features are generated from the graphical
query and then input to a matching engine that finds
images or videos from the database with similar features.
Figure 2 shows the system architecture.

Data model
For both population and query, the QBIC data model has

• still images or scenes (full images) that contain objects
(subsets of an image), and

• video shots that consist of sets of contiguous frames and
contain motion objects.

For still images, the QBIC data model distinguishes between
"scenes" (or images) and "objects." A scene is an image or
single representative frame of video. An object is a part of
a scene—for example, the fox in Figure 3—or a moving
entity in a video. For still image database population, fea-
tures are extracted from images and objects and stored in a
database as shown in the top left part of Figure 2.

Videos are broken into clips called shots. Representative

The scene image database used in the figures consists of about 7,450
images from the Mediusource Series of images and audio from Applied
Optical Media Corp., 4,100 images from the PhotoDisc sampler CD, 950
images from the Corel Professional Photo CD collection, and 450 images
from an IBM collection.

frames, or r-frames, are generated for each extracted shot.
R-frames are treated as still images, and features are
extracted and stored in the database. Further processing
of shots generates motion objects—for example, a car
moving across the screen.

Queries are allowed on objects ("Find images with a red,
round object"), scenes ("Find images that have approxi-
mately 30-percent red and 15-percent blue colors"), shots
("Find all shots panning from left to right"), or any com-
bination ("Find images that have 30 percent red and con-
tain a blue textured object").

In QBIC, similarity queries are done against the data-
base of pre-extracted features using distance functions
between the features. These functions are intended to
mimic human perception to approximate a perceptual
ordering of the database. Figure 2 shows the match
engine, the collection of all distance functions. The match
engine interacts with a filtering/indexing module (see
'Fast searching and indexing" sidebar, next page) to sup-
port fast searching methodologies such as indexing. Users
interact with the query interface to generate a query spec-
ification, resulting in the features that define the query.

DATABASE POPULATION
In still image database population, the images are

reduced to a standard-sized icon called a thumbnail and
annotated with any available text information. Object
identification is an optional but key part of this step. It lets
users manually, semiautomatically, or fully automatically
identify interesting regions—which we call objects—in
the images. Internally, each object is represented as a
binary mask. There may be an arbitrary number of objects
per image. Objects can overlap and can consist of multi-
ple disconnected components like the set of dots on a
polka-dot dress. Text, like "baby on beach," can be associ-
ated with an outlined object or with the scene as a whole.

Object-outlining tools
Ideally, object identification would be automatic, but

this is generally difficult. The alternative—manual iden-
tification—is tedious and can inhibit query-by-content

Figure 3. QBIC still image population interface. Entry for scene
text at top. Tools in row are polygon outliner, rectangle outliner,
ellipse outliner, paintbrush, eraser, line drawing, object
translation, flood fill, and snake outliner.

September 1995 25

camera and object motion, and
other graphical information.

Two key properties of QBIC are (1) its
use of image and video content-com-
putable properties of color, texture, shape,
and motion of images, videos, and their
objects-in the queries, and (2) its graph-
ical query language in which queries are
posed by drawing, selecting, and other
graphical means. Related systems, such as
MIT’s Photobook3 and the Trademark and
Art Museum applications from ETL,4 also
address these common issues. This article
describes the QBIC system and demon-
strates its query capabilities.

QBIC SYSTEM OVERVIEW
Figure 1 illustrates a typical QBIC query.”

The left side shows the query specification,
where the user painted a large magenta cir-

Figure 3. QBIC still image population interface. Entry for scene
text at top. Tools in row are polygon outliner, rectangle outliner,
ellipse outliner, paintbrush, eraser, line drawing, object
translation, flood fill, and snake outliner.

1
eJ

I $

cular area on a green background using standard drawing
tools. Query results are shown on the right: an ordered list of
“hits” similar to the query. The order of the results is top to
bottom, then left to right, to support horizontal scrolling. In
general, all queries follow this model in that the query is spec-
ified by using graphical means-drawing, selecting from a
color wheel, selecting a sample image, and so on-and results
are displayed as an ordered set of images.

To achieve this functionality, QBIC has two main com-
ponents: database population (the process of creating an
image database) and database query. During the popula-
tion, images and videos are processed to extract features
describing their content-colors, textures, shapes, and
camera and object motion-and the features are stored in
a database. During the query, the user composes a query
graphically. Features are generated from the graphical
query and then input to a matching engine that finds
images or videos from the database with similar features.
Figure 2 shows the system architecture.

Data model
For both population and query, the QBIC data model has

still images or scenes (full images) that contain objects

video shots that consist of sets of contiguous frames and
(subsets of an image), and

contain motion objects.

For still images, the QBIC data model distinguishes between
“scenes” (or images) and “objects.” A scene is an image or
single representative frame of video. An object is a part of
a scene-for example, the fox in Figure 3-or a moving
entity in a video. For still image database population, fea-
tures are extracted from images and objects and stored in a
database as shown in the top left part of Figure 2.

Videos are broken into clips called shots. Representative

’’ The scene image database used in thefigures consists of about 2 4 5 0
imagesfrom the Mediasource Series of images and audiofrom Applred
Optical Media Corp., 4,100 imagesfiom the PhotoDiscsampler CD, 950
imagesfrom the Corel Professional Photo CD collection, and 450 images
J?om an IBM collection.

frames, or r-frames, are generated for each extracted shot.
R-frames are treated as still images, and features are
extracted and stored in the database. Further processing
of shots generates motion objects-for example, a car
moving across the screen.

Queries are allowed on objects (“Find images with a red,
round object”), scenes (“Find images that have approxi-
mately 30-percent red and 15-percent blue colors”), shots
(“Find all shots panning from left to right”), or any com-
bination (“Find images that have 30 percent red and con-
tain a blue textured object”).

In QBIC, similarity queries are done against the data-
base of pre-extracted features using distance functions
between the features. These functions are intended to
mimic human perception to approximate a perceptual
ordering of the database. Figure 2 shows the match
engine, the collection of all distance functions. The match
engine interacts with a filteringhndexing module (see
“Fast searching and indexing” sidebar, next page) to sup-
port fast searching methodologies such as indexing. Users
interact with the query interface to generate a query spec-
ification, resulting in the features that define the query.

DATABASE POPULATION
In still image database population, the images are

reduced to a standard-sized icon called a thumbnail and
annotated with any available text information. Object
identification is an optional but key part of this step. It lets
users manually, semiautomatically, or fully automatically
identify interesting regions-which we call objects-in
the images. Internally, each object is represented as a
binary mask. There may be an arbitrary number of objects
per image. Objects can overlap and can consist of multi-
ple disconnected components like the set of dots on a
polka-dot dress. Text, like “baby on beach,” can be associ-
ated with an outlined object orwith the scene as a whole.

Object-outlining tools
Ideally, object identification would be automatic, but

this is generally difficult. The alternative-manual iden-
tification-is tedious and can inhibit query-by-content

September 1995

Page 3 of 10 MINDGEEK EXHIBIT 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Fast searching and indexing
Indexing tabular data for exact matching or range

searches in traditional databases is a well-understood prob-
lem, and structures like B-trees provide efficient access
mechanisms. In this scenario, indexing assures sublinear
search while maintaining completeness; that is, all records
satisfying the query are returned without the need for
examining each record in the database. However, in the con-
text of similarity matching for visual content, traditional
indexing methods may not be appropriate. For queries in
which similarity is defined as a distance metric in high-
dimensional feature spaces (for example, color histogram
queries), indexing involves clustering and indexable repre-
sentations of the clusters. In the case of queries that com-
bine similarity matching with spatial constraints on objects,
the problem is more involved. Data structures for fast access
of high-dimensional features for spatial relationships must
be invented.

In a query, features from the database are compared to
corresponding features from the query specification to
determine which images are a good match. For a small data-
base, sequential scanning of the features followed by
straightforward similarity computations is adequate. But as
the database grows, this combination can be too slow. To
speed up the queries, we have investigated a variety of tech-
niques. Two of the most promising follow.

Filtering
A computationally fast filter is applied to all data, and only

items that pass through the filter are operated on by the sec-
ond stage, which computes the true similarity metric. For
example, in QBIC we have shown that color histogram match-
ing, which is based on a 256-dimensional color histogram and
requires a 256 matrix-vector multiply, can be made efficient
by filtering. The filtering step employs a much faster com-
putation in a 3D space with no loss in accuracy. Thus, for a
query on a database of 10,000 elements, the fast filter is
applied to produce the best 1,000 color histogram matches.
These filtered histograms are subsequently passed to the
slower complete matching operation to obtain, say, the best
200 matches to display to a user, with the guarantee that the
global best 200 in the database have been found.

Indexing
For low-dimensional features such as average color and

texture (each 3D), multidimensional indexing methods such
as R*-trees can be used. For high-dimensional features—for
example, our 20-dimensional moment-based shape feature
vector—the dimensionality is reduced using the K-L, or prin-
cipal component, transform. This produces a low-dimen-
sional space, as low as two or three dimensions, which could
be indexed by using R*-trees.

applications. As a result, we have devoted considerable
effort to developing tools to aid in this step. In recent
work, we have successfully used fully automatic unsu-
pervised segmentation methods along with a fore-
ground/background model to identify objects in a re-
stricted class of images. The images, typical of museums
and retail catalogs, have a small number of foreground
objects on a generally separable background. Figure 4
shows example results. Even in this domain, robust algo-
rithms are required because of the textured and varie-
gated backgrounds.

We also provide semiautomatic tools for identifying
objects. One is an enhanced flood-fill technique. Flood-fill
methods, found in most photo-editing programs, start
from a single object pixel and repeatedly add adjacent pix-
els whose values are within some given threshold of the
original pixel. Selecting the threshold, which must change
from image to image and object to object, is tedious. We
automatically calculate a dynamic threshold by having the
user click on background as well as object points. For rea-
sonably uniform objects that are distinct from the back-
ground, this operation allows fast object identification

Figure 4. Top row is the original image. Bottom row contains the automatically extracted objects using a
foreground/background model. Heuristics encode the knowledge that objects tend to be in the center of
the picture.

26 Computer

Fast searching and indexing
Indexing tabular data for exact matching or range

searches in traditional databases is a well-understood prob-
lem, and structures like B-trees provide efficient access
mechanisms. In this scenario, indexing assures sublinear
search while maintaining completeness; that is, al l records
satisfying the query are returned without the need for
examining each record in the database. However, in the con-
text of similarity matching for visual content, traditional
indexing methods may not be appropriate. For queries in
which similarity is defined as a distance metric in high-
dimensional feature spaces (for example, color histogram
queries), indexing involves clustering and indexable repre-
sentations of the clusters. In the case of queries that com-
bine similarity matching with spatial constraints on objects,
the problem is more involved. Data structures for fast access
of high-dimensional features for spatial relationships must
be invented.

In a query, features from the database are compared to
corresponding features from the query specification to
determine which images are a good match. For a small data-
base, sequentigl scanning of the features followed by
straightforward similarity computations is adequate. But as
the database grows, this combination can be too slow. To
speed up the queries, we have investigated a variety of tech-
niques. Two of the most promising follow.

applications. As a result, we have devoted considerable
effort to developing tools to aid in this step. In recent
work, we have successfully used fully automatic unsu-
pervised segmentation methods along with a fore-
ground/background model to identify objects in a re-
stricted class of images. The images, typical of museums
and retail catalogs, have a small number of foreground
objects on a generally separable background. Figure 4
shows example results. Even in this domain, robust algo-
rithms are required because of the textured and varie-
gated backgrounds.

Filtering
A computationally fast filter is applied to all data, and only

items that passthrough the filter are operated on by the sec-
ond stage, which computes the true similarity metric. For
example, in QBlC we have shown that color histogram match-
ing, which is based on a 256-dimensional color histogram and
requires a 256 matrix-vector multiply, can be made efficient
by filtering. The filtering step employs a much faster com-
putation in a 3D space with no loss in accuracy. Thus, for a
query on a database of 10,000 elements, the fast filter is
applied to produce the best 1,000 color histogram matches.
These filtered histograms are subsequently passed to the
slower complete matching operation to obtain, say, the best
200 matches t o displayto a user, with the guarantee that the
global best 200 in the database have been found.

Indexing
For low-dimensional features such as average color and

texture (each 3D), multidimensional indexing methods such
as R*-trees can be used. For high-dimensional features-for
example, our 20-dimensional moment-based shape feature
vector-the dimensionality is reduced using the K-L, or prin-
cipal component, transform. This produces a low-dimen-
sional space, as low astwo or three dimensions, which could
be indexed by using /?*-trees.

We also provide semiautomatic tools for identifying
objects. One is an enhanced flood-fill technique. Flood-fill
methods, found in most photo-editing programs, start
from a single object pixel and repeatedly add adjacent pix-
els whose values are within some given threshold of the
original pixel. Selecting the chreshold, which must change
from image to image and object to object, is tedious. We
automatically calculate a dynamic threshold by having the
user click on background as well as object points. For rea-
sonably uniform objects that are distinct from the back-
ground, this operation allows fast object identification

Figure 4. Top row is the original image. Bottom row contains the automatically extracted objects using a
foregroundhackground model. Heuristics encode the knowledge that objects tend to be in the center of
the picture.

Computer

Page 4 of 10 MINDGEEK EXHIBIT 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure S. Scene cuts automatically extracted from a 1048-frame sales demo

without manually adjust-
ing a threshold. The exam-
ple in Figure 3 shows an
object, a fox, identified by
using only a few clicks.

We designed another
outlining tool to help users
track object edges. This tool
takes a user-drawn curve
and automatically aligns it
with nearby image edges.
Based on the "snakes" con-
cept developed in recent
computer vision research,
the tool finds the curve that
maximizes the image gra-
dient magnitude along the
curve.

The spline snake formu-
lation we use allows for
smooth solutions to the
resulting nonlinear mini-
mization problem. The
computation is done at
interactive speeds so that,
as the user draws a curve, it
is "rubber-banded" to lie
along object boundaries.

Video data
For video data, database

population has three major
components:

• shot detection, 	 from Energy Productions.
• representative frame cre-

ation for each shot, and
• derivation of a layered representation of coherently

moving structures/objects.

Shots are short sequences of contiguous frames that we
use for annotation and querying. For instance, a video clip
may consist of a shot smoothly panning over the skyline
of San Francisco, switching to a panning shot of the Bay
meeting the ocean, and then to one that zooms to the
Golden Gate Bridge. In general, a set of contiguous frames
may be grouped into a shot because they

• depict the same scene,
• signify a single camera operation,
• contain a distinct event or an action like a significant

presence and persistence of an object, or
• are chosen as a single indexable entity by the user.

Our effort is to detect many shots automatically in a pre-
processing step and provide an easy-to-use interface for
the rest.

SHOT DETECTION. Gross scene changes or scene cuts
are the first indicators of shot boundaries. Methods for
detecting scene cuts proposed in the literature essentially
fall into two classes: (1) those based on global represen-

tations like color/intensity histograms without any spa-
tial information, and (2) those based on measuring dif-
ferences between spatially registered features like
intensity differences. The former are relatively insensi-
tive to motion but can miss cuts when scenes look quite
different but have similar distributions. The latter are
sensitive to moving objects and camera. We have devel-
oped a method that combines the strengths of the two
classes of detection. We use a robust normalized corre-
lation measure that allows for small motions and com-
bines this with a histogram distance measure.' Results
on a few videos containing from 2,000 to 5,000 frames
show no misses and only a few false cuts. Algorithms for
signaling edit effects like fades and dissolves are under
development. The results of cut detection on a video con-
taining commercial advertisement clips are shown in
Figure 5.

Shots may also be detected by finding changes in camera
operation. Common camera transformations like zoom,
pan, and illumination changes can be modeled as unknown
affine 2 x 2 matrix transformations of the 2D image coor-
dinate system and of the image intensities themselves. We
have developed an algorithm6 that computes the dominant
global view transformation while it remains insensitive to
nonglobal changes resulting from independently moving

U-M-I
BEST COPY AVAILABLE

September 1995 27

without manually adjust-
ing a threshold. The exam-
ple in Figure 3 shows an
object, a fox, identified by
using only a few clicks.

We designed another
outlining tool to help users
track object edges. This tool
takes a user-drawn curve
and automatically aligns it
with nearby image edges.
Based on the “snakes” con-
cept developed in recent
computer vision research,
the tool finds the curve that
maximizes the image gra-
dient magnitude along the
curve.

The spline snake formu-
lation we use allows for
smooth solutions to the
resulting nonlinear mini-
mization problem. The
computation is done at
interactive speeds so that,
as the user draws a curve, it
is “rubber-banded’’ to lie
along object boundaries.

Video data
For video data, database

population has three major
components:

Figure 5. Scene cuts automatically extracted from a 1,148-frame sales demo
shot detection,
representative frame cre-
ation for each shot, and

from Energy Productions.

derivation of a layered representation of coherently
moving structures/objects.

Shots are short sequences of contiguous frames that we
use for annotation and querying. For instance, a video clip
may consist of a shot smoothly panning over the skyline
of San Francisco, switching to a panning shot of the Bay
meeting the ocean, and then to one that zooms to the
Golden Gate Bridge. In general, a set of contiguous frames
may be grouped into a shot because they

depict the same scene,
signify a single camera operation,
contain a distinct event or an action like a significant

are chosen as a single indexable entity by the user.
presence and persistence of an object, or

Our effort is to detect many shots automatically in a pre-
processing step and provide an easy-to-use interface for
the rest.

SHOT DETECTION. Gross scene changes or scene cuts
are the first indicators of shot boundaries. Methods for
detecting scene cuts proposed in the literature essentially
fall into two classes: (1) those based on global represen-

U-M-I
BEST COPY AVAILABLE

~ -~

tations like color/intensity histograms without any spa-
tial information, and (2) those based on measuring dif-
ferences between spatially registered features like
intensity differences. The former are relatively insensi-
tive to motion but can miss cuts when scenes look quite
different but have similar distributions. The latter are
sensitive to moving objects and camera. We have devel-
oped a method that combines the strengths of the two
classes of detection. We use a robust normalized corre-
lation measure that allows for small motions and com-
bines this with a histogram distance m e a s ~ r e . ~ Results
on a few videos containing from 2,000 to 5,000 frames
show no misses and only a few false cuts. Algorithms for
signaling edit effects like fades and dissolves are under
development. The results of cut detection on a video con-
taining commercial advertisement clips are shown in
Figure 5 .

Shots may also be detected by finding changes in camera
operation. Common camera transformations like zoom,
pan, and illumination changes can be modeled as unknown
affine 2 x 2 matrix transformations of the 2D image coor-
dinate system and of the image intensities themselves. We
have developed an algorithm6 that computes the dominant
global view transformation while it remains insensitive to
nonglobal changes resulting from independently moving

September 1995

Page 5 of 10 MINDGEEK EXHIBIT 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

