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picture yourself as a fashion designer needing images of fabrics 
with a particular mixture of colors, a museum cataloger looking 
for artifacts of a particular shape and textured pattern, or a movie 

producer needing a video clip of a red car-like object moving from right 
to left with the camera zooming. How do you find these images? Even 
though today's technology enables us to acquire, manipulate, transmit, 
and store vast on-line image and video collections, the search method-
ologies used to find pictorial information are still limited due to difficult 
research problems (see "Semantic versus nonsemantic" sidebar). Typ-
ically, these methodologies depend on file IDs, keywords, or text associ-
ated with the images. And, although powerful, they 

• don't allow queries based directly on the visual properties of the images, 
• are dependent on the particular vocabulary used, and 
• don't provide queries for images similar to a given image. 

Research on ways to extend and improve query methods for image data-
bases is widespread, and results have been presented in workshops, con-
ferences,L2  and surveys. 

We have developed the QBIC (Query by Image Content) system to 
explore content-based retrieval methods. QBIC allows queries on large 
image and video databases based on 

• example images, 
• user-constructed sketches and drawings, 
• selected color and texture patterns, 

QBIC* lets users 

find pictorial information 

in large image and video 

databases based on color, 

shape, texture, and sketches. 

QBIC technology is part of 

several IBM products. 

*To run an interactive query, visit the QBIC Web server 
' at lutp://wwwqbic. alma den. ibm. con✓. 

Semantic versus nonsemantic information 
At first glance, content-based querying appears deceptively 

simple because we humans seem to be so good at it. If a pro-
gram can be written to extract semantically relevant text 
phrases from images, the problem may be solved by using 
currently available text-search technology. Unfortunately, in 
an unconstrained environment, the task of writing this pro-
gram is beyond the reach of current technology in image 
understanding. At an artificial intelligence conference sev-
eral years ago, a challenge was issued to the audience to write 
a program that would identify all the dogs pictured in a chil-
dren's book, a task most 3-year-olds can easily accomplish. 
Nobody in the audience accepted the challenge, and this 
remains an open problem. 

Perceptual organization—the process of grouping image 
features into meaningful objects and attaching semantic  

descriptions to scenes through model matching—is an 
unsolved problem in image understanding. Humans are 
much better than computers at extracting semantic descrip-
tions from pictures. Computers, however, are better than 
humans at measuring properties and retaining these in 
long-term memory. 

One of the guiding principles used by QBIC is to let com-
puters do what they do best—quantifiable measurement—
and let humans do what they do best—attaching semantic 
meaning. QBIC can find "fish-shaped objects," since shape 
is a measurable property that can be extracted. However, 
since fish occur in many shapes, the only fish that will be 
found will have a shape close to the drawn shape. This is not 
the same as the much harder semantical query of finding 
all the pictures of fish in a pictorial database. 
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tions from pictures. Computers, however, are better than 
humans at measuring properties and retaining these in 
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One of the guiding principles used by QBIC is to  let com- 
puters do what they do best-quantifiable measurement- 
and let humans do what they do best-attaching semantic 
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• camera and object motion, and 
• other graphical information. 

Two key properties of QBIC are (1) its 
use of image and video content—com-
putable properties of color, texture, shape, 
and motion of images, videos, and their 
objects—in the queries, and (2) its graph-
ical query language in which queries are 
posed by drawing, selecting, and other 
graphical means. Related systems, such as 
MIT's Photobook' and the Trademark and 
Art Museum applications from ETL,4  also 
address these common issues. This article 
describes the QBIC system and demon-
strates its query capabilities. 

QBIC SYSTEM OVERVIEW 
Figure 1 illustrates a typical QBIC query.' 

The left side shows the query specification, 
where the user painted a large magenta cir-
cular area on a green background using standard drawing 
tools. Query results are shown on the right: an ordered list of 
"hits" similar to the query. The order of the results is top to 
bottom, then left to right, to support horizontal scrolling. In 
general, all queries follow this model in that the query is spec-
ified by using graphical means—drawing, selecting from a 
color wheel, selecting a sample image, and so on—and results 
are displayed as an ordered set of images. 

To achieve this functionality, QBIC has two main com-
ponents: database population (the process of creating an 
image database) and database query. During the popula-
tion, images and videos are processed to extract features 
describing their content—colors, textures, shapes, and 
camera and object motion—and the features are stored in 
a database. During the query, the user composes a query 
graphically. Features are generated from the graphical 
query and then input to a matching engine that finds 
images or videos from the database with similar features. 
Figure 2 shows the system architecture. 

Data model 
For both population and query, the QBIC data model has 

• still images or scenes (full images) that contain objects 
(subsets of an image), and 

• video shots that consist of sets of contiguous frames and 
contain motion objects. 

For still images, the QBIC data model distinguishes between 
"scenes" (or images) and "objects." A scene is an image or 
single representative frame of video. An object is a part of 
a scene—for example, the fox in Figure 3—or a moving 
entity in a video. For still image database population, fea-
tures are extracted from images and objects and stored in a 
database as shown in the top left part of Figure 2. 

Videos are broken into clips called shots. Representative 

The scene image database used in the figures  consists of about 7,450 
images from the Mediusource Series of images and audio from Applied 
Optical Media Corp., 4,100 images from the PhotoDisc sampler CD, 950 
images from the Corel Professional Photo CD collection, and 450 images 
from an IBM collection. 

frames, or r-frames, are generated for each extracted shot. 
R-frames are treated as still images, and features are 
extracted and stored in the database. Further processing 
of shots generates motion objects—for example, a car 
moving across the screen. 

Queries are allowed on objects ("Find images with a red, 
round object"), scenes ("Find images that have approxi-
mately 30-percent red and 15-percent blue colors"), shots 
("Find all shots panning from left to right"), or any com-
bination ("Find images that have 30 percent red and con-
tain a blue textured object"). 

In QBIC, similarity queries are done against the data-
base of pre-extracted features using distance functions 
between the features. These functions are intended to 
mimic human perception to approximate a perceptual 
ordering of the database. Figure 2 shows the match 
engine, the collection of all distance functions. The match 
engine interacts with a filtering/indexing module (see 
'Fast searching and indexing" sidebar, next page) to sup-
port fast searching methodologies such as indexing. Users 
interact with the query interface to generate a query spec-
ification, resulting in the features that define the query. 

DATABASE POPULATION 
In still image database population, the images are 

reduced to a standard-sized icon called a thumbnail and 
annotated with any available text information. Object 
identification is an optional but key part of this step. It lets 
users manually, semiautomatically, or fully automatically 
identify interesting regions—which we call objects—in 
the images. Internally, each object is represented as a 
binary mask. There may be an arbitrary number of objects 
per image. Objects can overlap and can consist of multi-
ple disconnected components like the set of dots on a 
polka-dot dress. Text, like "baby on beach," can be associ-
ated with an outlined object or with the scene as a whole. 

Object-outlining tools 
Ideally, object identification would be automatic, but 

this is generally difficult. The alternative—manual iden-
tification—is tedious and can inhibit query-by-content 

Figure 3. QBIC still image population interface. Entry for scene 
text at top. Tools in row are polygon outliner, rectangle outliner, 
ellipse outliner, paintbrush, eraser, line drawing, object 
translation, flood fill, and snake outliner. 
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general, all queries follow this model in that the query is spec- 
ified by using graphical means-drawing, selecting from a 
color wheel, selecting a sample image, and so on-and results 
are displayed as an ordered set of images. 

To achieve this functionality, QBIC has two main com- 
ponents: database population (the process of creating an 
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tion, images and videos are processed to extract features 
describing their content-colors, textures, shapes, and 
camera and object motion-and the features are stored in 
a database. During the query, the user composes a query 
graphically. Features are generated from the graphical 
query and then input to a matching engine that finds 
images or videos from the database with similar features. 
Figure 2 shows the system architecture. 
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“scenes” (or images) and “objects.” A scene is an image or 
single representative frame of video. An object is a part of 
a scene-for example, the fox in Figure 3-or a moving 
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frames, or r-frames, are generated for each extracted shot. 
R-frames are treated as still images, and features are 
extracted and stored in the database. Further processing 
of shots generates motion objects-for example, a car 
moving across the screen. 

Queries are allowed on objects (“Find images with a red, 
round object”), scenes (“Find images that have approxi- 
mately 30-percent red and 15-percent blue colors”), shots 
(“Find all shots panning from left to right”), or any com- 
bination (“Find images that have 30 percent red and con- 
tain a blue textured object”). 

In QBIC, similarity queries are done against the data- 
base of pre-extracted features using distance functions 
between the features. These functions are intended to 
mimic human perception to approximate a perceptual 
ordering of the database. Figure 2 shows the match 
engine, the collection of all distance functions. The match 
engine interacts with a filteringhndexing module (see 
“Fast searching and indexing” sidebar, next page) to sup- 
port fast searching methodologies such as indexing. Users 
interact with the query interface to generate a query spec- 
ification, resulting in the features that define the query. 

DATABASE POPULATION 
In still image database population, the images are 

reduced to a standard-sized icon called a thumbnail and 
annotated with any available text information. Object 
identification is an optional but key part of this step. It lets 
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identify interesting regions-which we call objects-in 
the images. Internally, each object is represented as a 
binary mask. There may be an arbitrary number of objects 
per image. Objects can overlap and can consist of multi- 
ple disconnected components like the set of dots on a 
polka-dot dress. Text, like “baby on beach,” can be associ- 
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Object-outlining tools 
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Fast searching and indexing 
Indexing tabular data for exact matching or range 

searches in traditional databases is a well-understood prob-
lem, and structures like B-trees provide efficient access 
mechanisms. In this scenario, indexing assures sublinear 
search while maintaining completeness; that is, all records 
satisfying the query are returned without the need for 
examining each record in the database. However, in the con-
text of similarity matching for visual content, traditional 
indexing methods may not be appropriate. For queries in 
which similarity is defined as a distance metric in high-
dimensional feature spaces (for example, color histogram 
queries), indexing involves clustering and indexable repre-
sentations of the clusters. In the case of queries that com-
bine similarity matching with spatial constraints on objects, 
the problem is more involved. Data structures for fast access 
of high-dimensional features for spatial relationships must 
be invented. 

In a query, features from the database are compared to 
corresponding features from the query specification to 
determine which images are a good match. For a small data-
base, sequential scanning of the features followed by 
straightforward similarity computations is adequate. But as 
the database grows, this combination can be too slow. To 
speed up the queries, we have investigated a variety of tech-
niques. Two of the most promising follow. 

Filtering 
A computationally fast filter is applied to all data, and only 

items that pass through the filter are operated on by the sec-
ond stage, which computes the true similarity metric. For 
example, in QBIC we have shown that color histogram match-
ing, which is based on a 256-dimensional color histogram and 
requires a 256 matrix-vector multiply, can be made efficient 
by filtering. The filtering step employs a much faster com-
putation in a 3D space with no loss in accuracy. Thus, for a 
query on a database of 10,000 elements, the fast filter is 
applied to produce the best 1,000 color histogram matches. 
These filtered histograms are subsequently passed to the 
slower complete matching operation to obtain, say, the best 
200 matches to display to a user, with the guarantee that the 
global best 200 in the database have been found. 

Indexing 
For low-dimensional features such as average color and 

texture (each 3D), multidimensional indexing methods such 
as R*-trees can be used. For high-dimensional features—for 
example, our 20-dimensional moment-based shape feature 
vector—the dimensionality is reduced using the K-L, or prin-
cipal component, transform. This produces a low-dimen-
sional space, as low as two or three dimensions, which could 
be indexed by using R*-trees. 

applications. As a result, we have devoted considerable 
effort to developing tools to aid in this step. In recent 
work, we have successfully used fully automatic unsu-
pervised segmentation methods along with a fore-
ground/background model to identify objects in a re-
stricted class of images. The images, typical of museums 
and retail catalogs, have a small number of foreground 
objects on a generally separable background. Figure 4 
shows example results. Even in this domain, robust algo-
rithms are required because of the textured and varie-
gated backgrounds. 

We also provide semiautomatic tools for identifying 
objects. One is an enhanced flood-fill technique. Flood-fill 
methods, found in most photo-editing programs, start 
from a single object pixel and repeatedly add adjacent pix-
els whose values are within some given threshold of the 
original pixel. Selecting the threshold, which must change 
from image to image and object to object, is tedious. We 
automatically calculate a dynamic threshold by having the 
user click on background as well as object points. For rea-
sonably uniform objects that are distinct from the back-
ground, this operation allows fast object identification 

Figure 4. Top row is the original image. Bottom row contains the automatically extracted objects using a 
foreground/background model. Heuristics encode the knowledge that objects tend to be in the center of 
the picture. 
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Figure S. Scene cuts automatically extracted from a 1048-frame sales demo 

without manually adjust-
ing a threshold. The exam-
ple in Figure 3 shows an 
object, a fox, identified by 
using only a few clicks. 

We designed another 
outlining tool to help users 
track object edges. This tool 
takes a user-drawn curve 
and automatically aligns it 
with nearby image edges. 
Based on the "snakes" con-
cept developed in recent 
computer vision research, 
the tool finds the curve that 
maximizes the image gra-
dient magnitude along the 
curve. 

The spline snake formu-
lation we use allows for 
smooth solutions to the 
resulting nonlinear mini-
mization problem. The 
computation is done at 
interactive speeds so that, 
as the user draws a curve, it 
is "rubber-banded" to lie 
along object boundaries. 

Video data 
For video data, database 

population has three major 
components: 

• shot detection, 	 from Energy Productions. 
• representative frame cre- 

ation for each shot, and 
• derivation of a layered representation of coherently 

moving structures/objects. 

Shots are short sequences of contiguous frames that we 
use for annotation and querying. For instance, a video clip 
may consist of a shot smoothly panning over the skyline 
of San Francisco, switching to a panning shot of the Bay 
meeting the ocean, and then to one that zooms to the 
Golden Gate Bridge. In general, a set of contiguous frames 
may be grouped into a shot because they 

• depict the same scene, 
• signify a single camera operation, 
• contain a distinct event or an action like a significant 

presence and persistence of an object, or 
• are chosen as a single indexable entity by the user. 

Our effort is to detect many shots automatically in a pre-
processing step and provide an easy-to-use interface for 
the rest. 

SHOT DETECTION. Gross scene changes or scene cuts 
are the first indicators of shot boundaries. Methods for 
detecting scene cuts proposed in the literature essentially 
fall into two classes: (1) those based on global represen- 

tations like color/intensity histograms without any spa-
tial information, and (2) those based on measuring dif-
ferences between spatially registered features like 
intensity differences. The former are relatively insensi-
tive to motion but can miss cuts when scenes look quite 
different but have similar distributions. The latter are 
sensitive to moving objects and camera. We have devel-
oped a method that combines the strengths of the two 
classes of detection. We use a robust normalized corre-
lation measure that allows for small motions and com-
bines this with a histogram distance measure.' Results 
on a few videos containing from 2,000 to 5,000 frames 
show no misses and only a few false cuts. Algorithms for 
signaling edit effects like fades and dissolves are under 
development. The results of cut detection on a video con-
taining commercial advertisement clips are shown in 
Figure 5. 

Shots may also be detected by finding changes in camera 
operation. Common camera transformations like zoom, 
pan, and illumination changes can be modeled as unknown 
affine 2 x 2 matrix transformations of the 2D image coor-
dinate system and of the image intensities themselves. We 
have developed an algorithm6  that computes the dominant 
global view transformation while it remains insensitive to 
nonglobal changes resulting from independently moving 
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without manually adjust- 
ing a threshold. The exam- 
ple in Figure 3 shows an 
object, a fox, identified by 
using only a few clicks. 

We designed another 
outlining tool to help users 
track object edges. This tool 
takes a user-drawn curve 
and automatically aligns it 
with nearby image edges. 
Based on the “snakes” con- 
cept developed in recent 
computer vision research, 
the tool finds the curve that 
maximizes the image gra- 
dient magnitude along the 
curve. 

The spline snake formu- 
lation we use allows for 
smooth solutions to the 
resulting nonlinear mini- 
mization problem. The 
computation is done at 
interactive speeds so that, 
as the user draws a curve, it 
is “rubber-banded’’ to lie 
along object boundaries. 

Video data 
For video data, database 

population has three major 
components: 

Figure 5. Scene cuts automatically extracted from a 1,148-frame sales demo 
shot detection, 
representative frame cre- 
ation for each shot, and 

from Energy Productions. 

derivation of a layered representation of coherently 
moving structures/objects. 

Shots are short sequences of contiguous frames that we 
use for annotation and querying. For instance, a video clip 
may consist of a shot smoothly panning over the skyline 
of San Francisco, switching to a panning shot of the Bay 
meeting the ocean, and then to one that zooms to the 
Golden Gate Bridge. In general, a set of contiguous frames 
may be grouped into a shot because they 

depict the same scene, 
signify a single camera operation, 
contain a distinct event or an action like a significant 

are chosen as a single indexable entity by the user. 
presence and persistence of an object, or 

Our effort is to detect many shots automatically in a pre- 
processing step and provide an easy-to-use interface for 
the rest. 

SHOT DETECTION. Gross scene changes or scene cuts 
are the first indicators of shot boundaries. Methods for 
detecting scene cuts proposed in the literature essentially 
fall into two classes: (1) those based on global represen- 
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tations like color/intensity histograms without any spa- 
tial information, and (2) those based on measuring dif- 
ferences between spatially registered features like 
intensity differences. The former are relatively insensi- 
tive to motion but can miss cuts when scenes look quite 
different but have similar distributions. The latter are 
sensitive to moving objects and camera. We have devel- 
oped a method that combines the strengths of the two 
classes of detection. We use a robust normalized corre- 
lation measure that allows for small motions and com- 
bines this with a histogram distance m e a s ~ r e . ~  Results 
on a few videos containing from 2,000 to 5,000 frames 
show no misses and only a few false cuts. Algorithms for 
signaling edit effects like fades and dissolves are under 
development. The results of cut detection on a video con- 
taining commercial advertisement clips are shown in 
Figure 5 .  

Shots may also be detected by finding changes in camera 
operation. Common camera transformations like zoom, 
pan, and illumination changes can be modeled as unknown 
affine 2 x 2 matrix transformations of the 2D image coor- 
dinate system and of the image intensities themselves. We 
have developed an algorithm6 that computes the dominant 
global view transformation while it remains insensitive to 
nonglobal changes resulting from independently moving 
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