

Handbook of PHARMACEUTICAL EXCIPIENTS

Third Edition

Edited by

Arthur H. Kibbe, Ph.D.

Professor and Chair Department of Pharmaceutical Sciences Wilkes University School of Pharmacy Wilkes-Barre, Pennsylvania

American Pharmaceutical Association Washington, D.C.

Published by the American Pharmaceutical Association 2215 Constitution Avenue NW, Washington, DC 20037-2985, USA www.aphanet.org and the Pharmaceutical Press 1 Lambeth High Street, London SE1 7JN, UK www.pharmpress.com

© 1986, 1994, 2000 American Pharmaceutical Association and Pharmaceutical Press

First edition 1986 Second edition 1994 Third edition 2000

Printed in the United States of America

ISBN: 0-85369-381-1 (UK) ISBN: 0-917330-96-X (USA)

Library of Congress Cataloging-in-Publication Data

Handbook of pharmaceutical excipients / edited by Arthur H. Kibbe.--3rd ed. p. ; cm.
Includes bibliographical references and index.
ISBN 0-917330-96-X
1. Excipients--Handbooks, manuals, etc. I. Kibbe, Arthur H. II. American Pharmaceutical Association.
[DNLM: 1. Excipients--Handbooks. QV 735 H236 2000]
RS201.E87 H36 2000
615'.19--dc21

99-044554

A catalogue record for this book is available from the British Library.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the copyright holder. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Managing Editor:Melanie SegalaCopyeditor:Paul GottehrerIndexer:Lillian RodbergCompositor:Roy BarnhillCover Designer:Tim Kaage

~

Contents

Committees	vii	Cholesterol	138
Contributors	ix	Citric Acid Monohydrate	140
Additions to the Third Edition	xii	Colloidal Silicon Dioxide	143
Related Substances	xiii	Coloring Agents	146
Preface	xv	√Corn Oil	154
Acknowledgments	xvii	Cottonseed Oil	156
Notice to Readers	xviii	Cresol	158
Selected Bibliography	xviii	Croscarmellose Sodium	160
Abbreviations	xix	Crospovidone	163
Units of Measurement	XX	Cyclodextrins	165
		Dextrates	169
		Dextrin	172
Monographs		V Dextrose	175
Acacia	1	Dibutyl Sebacate	178
Acesulfame Potassium	3	Dietnanolamine Diethyl Phtholete	180
Albumin	5	Diffuoroothana (HEC)	182
Alcohol	7	Dimethyl Ether	184
Alginic Acid	10	Docusate Sodium	180
Aliphatic Polyesters	13	Edetic Acid	100
Alpha Tocopherol	18	Ethylcellulose	191
Ascorbic Acid	21	Ethyl Maltol	201
Ascorbyl Palmitate	25	Ethyl Oleate	201
Aspartame	27	Ethylparaben	205
Bentonite	30	Ethyl Vanillin	208
Benzalkonium Chloride	33	- Fructose	210
Benzethonium Chloride	36	Fumaric Acid	213
Benzoic Acid	38	Gelatin	215
Benzyl Alcohol	41	Glucose, Liquid	218
Benzyl Benzoate	44	Glycerin	220
Bronopol	46	Glyceryl Monooleate	223
Butylated Hydroxyanisole	49	Glyceryl Monostearate	225
Butylated Hydroxytoluene	51	Glyceryl Palmitostearate	228
Butylparaben	53	Glycofurol	230
V Calcium Carbonate	56	Guar Gum	232
Calcium Phosphate, Dibasic Anhydrous	60	Heptafluoropropane (HFC)	234
Calcium Phosphate, Dibasic Dinydrate	63	Hydrocarbons (HC)	236
Calcium Stoorate	08	Hydrochloric Acid	238
Calcium Sulfate	70	Hydroxyethyl Cellulose	240
	73	Hydroxypropyl Cellulose	244
Carbomer	70	Hydroxypropyl Cellulose, Low-substituted	249
Carbon Dioxide	83	V Hydroxypropyl Methylcellulose	252
Carbon Dioxide	85	Hydroxypropyl Methylcellulose Phthalate	256
Carboxymethylcellulose Sodium	87	Imidurea	201
Carrageenan	91	Isopropyl Alconol	203
Castor Oil, Hydrogenated	94	Isopropyl Palmitate	203
Cellulose Acetate	96	Kaolin	260
Cellulose Acetate Phthalate	99	Lactic Acid	209
Cellulose. Microcrystalline	102	Lactic Acid	272
Cellulose, Powdered	107	Lactose	276
Cellulose, Silicified Microcrystalline	110	Lanolin	286
Cetostearyl Alcohol	112	Lanolin Alcohols	288
Cetrimide	114	Lanolin, Hydrous	290
Cetyl Alcohol	117	Lecithin	292
Chlorhexidine	121	Magnesium Aluminum Silicate	295
Chlorobutanol	126	Magnesium Carbonate	299
Chlorocresol	129	Magnesium Oxide	303
Chlorodifluoroethane (HCFC)	132	Magnesium Stearate	305
Chlorofluorocarbons (CFC)	134	Magnesium Trisilicate	309
	А	potex (IPR2019-00400) Ex. 1045 p. 003	
	1.		

	Malic Acid
	Maltitol
	Maltitol Solution
1	Maltodextrin
,	Maltol
i	Maltose
	Mannitol
	Medium Chain Triglycerides
	Meglumine
	Menthol
	Methylcellulose
	Methylparaben
V	Mineral Oil
	Mineral Oil, Light
	Mineral Oil and Lanolin Alcohols
	Monoethanolamine
1	Nitrogen
	Nitrous Oxide
	Oleic Acid
	Paraffin
1	Peanut Oil
~	Petrolatum
	Petrolatum and Lanolin Alcohols
	Phenol
	Phenoxyethanol
	Phenylethyl Alcohol
	Phenylmercuric Acetate
	Phenylmercuric Borate
	Phenylmercuric Nitrate
	Polacrilin Potassium
	Poloxamer
	Polydextrose
	Polyethylene Glycol
	Polyethylene Oxide
	Polymethacrylates
	Polyoxyethylene Alkyl Ethers
	Polyoxyethylene Castor Oil Derivatives
	Polyoxyethylene Sorbitan Fatty Acid Esters
	Polyoxyethylene Stearates
	Polyvinyl Alcohol
	Potassium Chloride
	Potassium Citrate
	Potassium Sorbate
	Povidone
	Propylene Carbonale
	Propylene Glycol
	Propylene Olycol Alginate
	Propyl Gallate
	Propyrparaden
	Saccharin Sodium
1	Secome Oil
	Shellac
	Sodium Alginate
v	Southin Ingiliate

•

311	Sodium Ascorbate	468
313	Sodium Benzoate	471
315	Sodium Bicarbonate	474
317	Sodium Chloride	478
320	Sodium Citrate Dihydrate	482
322	Sodium Cyclamate	485
324	V Sodium Lauryl Sulfate	487
329	Sodium Metabisulfite	490
332	Sodium Phosphate, Dibasic	493
334	Sodium Phosphate, Monobasic	496
336	Sodium Propionate	498
340	Sodium Starch Glycolate	501
345	Sodium Stearyl Fumarate	505
347	V Sorbic Acid	508
349	Sorbitan Esters (Sorbitan Fatty Acid Esters)	511
350	Sorbitol	515
352	√Sovbean Oil	519
354	Starch	522
356	Starch, Pregelatinized	528
358	Starch Sterilizable Maize	531
360	Stearic Acid	534
362	Stearyl Alcohol	537
365	Sucrose	539
367	Sugar Compressible	544
370	Sugar, Confectioner's	546
372	Sugar, Spheres	548
374	Suppository Bases, Hard Fat	550
377	V Talc	555
379	Tartaric Acid	558
383	Tetrafluoroethane (HFC)	560
386	Thimerosal	562
389	Titanium Dioxide	565
392	Tragacanth	568
399	Triacetin	570
401	Triethanolamine	572
407	Triethyl Citrate	574
412	Vanillin	. 576
416	Vegetable Oil, Hydrogenated, Type I	578
420	Water	580
424	Wax, Anionic Emulsifying	585
426	Wax, Carnauba	587
429	Wax, Cetyl Esters	589
431	Wax, Microcrystalline	591
433	Wax, Nonionic Emulsifying	593
440	Wax, White	595
442	Wax, Yellow	597
445	Xanthan Gum	599
447	Xvlitol	602
450	Zein	606
454	Zinc Stearate	608
457		
460	Appendix I: Suppliers' Directory	611
462	Appendix II: HPE Laboratory Methods	641
465	Index	645

UK Steering Committee

Colin G Cable

Royal Pharmaceutical Society of Great Britain Edinburgh, UK

Andy Dundon Glaxo Wellcome

Ware, UK

Roger Guest SmithKline Beecham Pharmaceuticals Crawley, UK

John E Hogan Pfizer Ltd

Sandwich, UK

M Jayne Lawrence King's College London London, UK

J Mike Newton School of Pharmacy; University of London London, UK

Ray C Rowe Astra Zeneca Pharmaceuticals Macclesfield, UK

Ainley Wade Bath, UK

Paul J Weller Royal Pharmaceutical Society of Great Britain London, UK

Glycerin

1 Nonproprietary Names

BP: Glycerol IP: Concentrated glycerin PhEur: Glycerolum USP: Glycerin

2 Synonyms

Croderol; E422; glycerine; Glycon G-100; Kemstrene; Optim; Pricerine; 1,2,3-propanetriol; trihydroxypropane glycerol.

3 Chemical Name and CAS Registry Number

Propane-1,2,3-triol [56-81-5]

4	Empirical Formula	Molecular Weight
C ₃ I	H ₈ O ₃	92.09

5 Structural Formula

6 Functional Category

Antimicrobial preservative; emollient; humectant; plasticizer; solvent; sweetening agent; tonicity agent.

7 Applications in Pharmaceutical Formulation or Technology

Glycerin is used in a wide variety of pharmaceutical formulations including oral, otic, ophthalmic, topical, and parenteral preparations; see Table I.

In topical pharmaceutical formulations and cosmetics, glycerin is used primarily for its humectant and emollient properties. In parenteral formulations, glycerin is used mainly as a solvent.⁽¹⁾

In oral solutions, glycerin is used as a solvent, sweetening agent, antimicrobial preservative, and viscosity-increasing agent. It is also used as a plasticizer and in film coatings.^(2,3) Glycerin is additionally used in topical formulations such as creams and emulsions.⁽⁴⁾

Glycerin is used as a plasticizer of gelatin in the production of soft-gelatin capsules and gelatin suppositories.

Glycerin is employed as a therapeutic agent in a variety of clinical applications,⁽⁵⁾ and is also used as a food additive.

Table I: Uses of glycerin.

Use	Concentration (%)	
Antimicrobial preservative	<20	
Emollient	≤30	
Humectant	≤30	
Ophthalmic formulations	0.5-3.0	
Plasticizer in tablet film coating	Variable	
Solvent for parenteral formulations	≤50	
Sweetening agent in alcoholic elixirs	≤20	

8 Description

Glycerin is a clear, colorless, odorless, viscous, hygroscopic liquid; it has a sweet taste, approximately 0.6 times as sweet as sucrose.

9 Pharmacopeial Specifications

See Table II. See also Section 18.

Table II: Pharmacopeial specifications for glycerin.

Test	JP 2001	PhEur 2002	USP 25
Identification	+	+	+
Characters	+	+	-
Appearance of solution	+	+	+
Acidity or alkalinity	+	+	-
Refractive index	≤1.470	1.470-1.475	-
Aldehydes	-	+	-
Related substances	÷	+	-
Halogenated compounds	-	+	-
Limit of chlorinated compounds	-	÷	+
Sugars	-	+	-
Chloride	≤0.001%	≤10 ppm	≤0.001%
Heavy metals	≤5 ppm	≤5 ppm	≤5 ppm
Water		≤2.0%	≤5.0%
Sulfated ash	≤0.01%	≤0.01%	≤0.01%
Specific gravity	≥1.258	-	≥1.249
Sulfate	≤0.002%	-	≤0.002%
Ammonium	+	-	_
Calcium	+	-	-
Arsenic	≤2 ppm	-	-
Acrolein, glucose or other reducing substances	+	-	-
Fatty acids and esters	+	+	+
Organic volatile impurities	-	-	+
Readily carbonizable substances	+	- C. C.	-
Assay	≥98.0%	98.0-101.0%	99.0-101.0%

Apotex (IPR2019-00400) Ex. 1045 p. 006

258 Glycerin

10 Typical Properties

Boiling point: 290°C (with decomposition) Density: 1.2656 g/cm³ at 15°C 1.2636 g/cm³ at 20°C 1.2620 g/cm³ at 25°C Flash point: 176°C (open cup) Freezing point: see Table III. Hygroscopicity: hygroscopic. Melting point: 17.8°C Osmolarity: a 2.6% v/v aqueous solution is isoosmotic with serum. Refractive index: $n_{\rm D}^{15} = 1.4758$ $n_{\rm D}^{20} = 1.4746$ $n_{\rm D}^{25} = 1.4730$ Solubility: see Table IV. Specific gravity: see Table V. Surface tension: 63.4 mN/m (63.4 dynes/cm) at 20°C. Vapor density (relative): 3.17 (air = 1) Viscosity (dynamic): see Table VI.

Table III: Freezing points of aqueous glycerin solutions.

Concentration of aqueous glycerin solution (% w/w)	Freezing point (°C)	
10.0	-1.6	
20.0	-4.8	
30.0	-9.5	
40.0	-15.4	
50.0	-23	
60.0	-34.7	
66.7	-46.5	
80.0	-20.3	
90.0	-1.6	

Table IV: Solubility of glycerin.

Solvent	Solubility at 20°C	
Acetone	Slightly soluble	
Benzene	Practically insoluble	
Chloroform	Practically insoluble	
Ethanol (95%)	Soluble	
Ether	1 in 500	
Ethyl acetate	1 in 11	
Methanol	Soluble	
Oils	Practically insoluble	
Water	Soluble	

Table V: Specific gravity of glycerin.

Concentration of aqueous glycerin solution (% w/w)	Specific gravity at 20°C	
10	1.024	
20	1.049	
30	1.075	
40	1.101	
50	1.128	
60	1.156	

Table VI: Viscosity (dynamic) of aqueous glycerin solutions.

Concentration of aqueous glycerin solution (% w/w)	Viscosity at 20°C (mPa s)	
5	1.143	
10	1.311	
25	2.095	
50	6.05	
60	10.96	
70	22.94	
83	111.0	

11 Stability and Storage Conditions

Glycerin is hygroscopic. Pure glycerin is not prone to oxidation by the atmosphere under ordinary storage conditions but it decomposes on heating, with the evolution of toxic acrolein. Mixtures of glycerin with water, ethanol, and propylene glycol are chemically stable.

Glycerin may crystallize if stored at low temperatures; the crystals do not melt until warmed to 20°C.

Glycerin should be stored in an airtight container, in a cool, dry place.

12 Incompatibilities

Glycerin may explode if mixed with strong oxidizing agents such as chromium trioxide, potassium chlorate, or potassium permanganate. In dilute solution, the reaction proceeds at a slower rate with several oxidation products being formed. Black discoloration of glycerin occurs in the presence of light, or on contact with zinc oxide or basic bismuth nitrate.

An iron contaminant in glycerin is responsible for the darkening in color of mixtures containing phenols, salicylates, and tannin.

Glycerin forms a boric acid complex, glyceroboric acid, that is a stronger acid than boric acid.

13 Method of Manufacture

Glycerin is mainly obtained from oils and fats as a by-product in the manufacture of soaps and fatty acids. It may also be obtained from natural sources by fermentation of, for example, sugar beet molasses in the presence of large quantities of sodium sulfite. Synthetically, glycerin may be prepared by the chlorination and saponification of propylene.

14 Safety

Glycerin occurs naturally in animal and vegetable fats and oils that are consumed as part of a normal diet. Glycerin is readily absorbed from the intestine and is either metabolized to carbon dioxide and glycogen or used in the synthesis of body fats.

Glycerin is used in a wide variety of pharmaceutical formulations including oral, ophthalmic, parenteral, and topical preparations. Adverse effects are mainly due to the dehydrating properties of glycerin.⁽⁵⁾

Oral doses are demulcent and mildly laxative in action. Large doses may produce headache, thirst, nausea, and hyperglycemia. The therapeutic parenteral administration of very large glycerin doses, 70-80 g over 30-60 minutes in adults to reduce cranial pressure, may induce hemolysis, hemoglobin-uria, and renal failure.⁽⁶⁾ Slower administration has no deleterious effects.(7)

Apotex (IPR2019-00400) Ex. 1045 p. 007

Glycerin 259

Glycerin may also be used orally in doses of 1.0-1.5 g/kg body-weight to reduce intraocular pressure.

When used as an excipient or food additive, glycerin is not usually associated with any adverse effects and is generally regarded as a nontoxic and nonirritant material.

LD₅₀ (guinea pig, oral): 7.75 g/kg⁽⁸⁾ LD₅₀ (mouse, IP): 8.98 g/kg LD₅₀ (mouse, IV): 4.25 g/kg LD₅₀ (mouse, oral): 4.1 g/kg LD₅₀ (mouse, SC): 0.09 g/kg LD₅₀ (rabbit, IV): 0.05 g/kg LD₅₀ (rat, IP): 4.42 g/kg LD50 (rat, oral): 12.6 g/kg LD₅₀ (rat, SC): 0.1 g/kg

15 Handling Precautions

Observe normal precautions appropriate to the circumstances and quantity of material handled. Eye protection and gloves are recommended. In the UK, the recommended long-term (8hour TWA) exposure limit for glycerin mist is 10 mg/m³.⁽⁹⁾ Glycerin is combustible and may react explosively with strong oxidizing agents; see Section 12.

16 Regulatory Status

GRAS listed. Accepted as a food additive in Europe. Included in the FDA Inactive Ingredients Guide (inhalations; injections; nasal and ophthalmic preparations; oral capsules, solutions, suspensions and tablets; otic, rectal, topical, transdermal, and vaginal preparations). Included in nonparenteral and parenteral medicines licensed in the UK.

17 Related Substances

-

18 Comments

The EINECS number for glycerin is 200-289-5.

Some pharmacopeias also contain specifications for diluted glycerin solutions. The JP 2001 contains a monograph for 'glycerin' that contains 84-87% of propane-1,2,3-triol (C3H8O3). The PhEur 2002 contains a monograph for 'glycerol 85 per cent' that contains 83.5-88.5% of propane-1,2,3-triol (C3H8O3).

19 Specific References

- Spiegel AJ, Noseworthy MM. Use of nonaqueous solvents in 1 parenteral products. J Pharm Sci 1963; 52: 917-927.
- 2 Kumar V, Kang J, Yang T. Preparation and characterization of spray-dried oxidized cellulose particles. Pharm Dev Technol 2001; 6(3): 449-458.
- 3 Palviainen P, Heinamaki J, Myllarinen P, et al. Corn starches as film formers in aqueous-based film coating. Pharm Dev Technol 2001; 6(3): 353-361.
- 4 Viegas TX, Van-Winkle LL, Lehman PA, et al. Evaluation of creams and ointments as suitable formulations for peldesine. Int J Pharm 2001; 219(1-2): 73-80.
- Sweetman SC, ed. Martindale: The Complete Drug Reference, 5 33rd edn. London: Pharmaceutical Press, 2002: 1616-1617.
- 6 Hägnevik K, Gordon E, Lins LE, et al. Glycerol-induced haemolysis with haemoglobinuria and acute renal failure. Lancet 1974; i: 75-77.
- 7 Welch KMA, Meyer JS, Okamoto S, et al. Glycerol-induced haemolysis. Report of three cases. [letter]. Lancet 1974; 1(7847): 416-417.
- 8 8, Lewis RJ, ed. Sax's Dangerous Properties of Industrial Materials, 10th edn. New York: Wiley, 2000: 1874-1875.
- Health and Safety Executive. EH40/2002: Occupational Exposure Limits 2002. Sudbury: Health and Safety Executive, 2002.

20 General References

- Grissom CB, Chagovetz AM, Wang Z. Use of viscosigens to stabilize vitamin B12 solutions against photolysis. J Pharm Sci 1993; 82(6): 641-643.
- Jungermann E, Sonntag NOV, eds. Glycerine: A Key Cosmetic Ingredient. New York: Marcel Dekker, 1991.
- Smolinske SC. Handbook of Food, Drug, and Cosmetic Excipients. Boca Raton, FL: CRC Press, 1992: 199-204.
- Staples R, Misher A, Wardell J. Gastrointestinal irritant effect of glycerin as compared with sorbitol and propylene glycol in rats and dogs. J Pharm Sci 1967; 56: 398-400.

21 Author

JC Price.

22 Date of Revision

8 October 2002.

Apotex (IPR2019-00400) Ex. 1045 p. 008