Notice of Intent to Issue	Control No. $90 / 013,106$	Patent Under Reexamination5796183	
Ex Parte Reexamination Certificate	Examiner HENRY N. TRAN	Art Unit 3992	AIA (First Inventor to File) Status No

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

1. \boxtimes Prosecution on the merits is (or remains) closed in this ex parte reexamination proceeding. This proceeding is subject to reopening at the initiative of the Office or upon petition. Cf. 37 CFR 1.313 (a). A Certificate will be issued in view of
(a) \boxtimes Patent owner's communication(s) filed: 07 May 2014.
(b) \square Patent owner's failure to file an appropriate timely response to the Office action mailed: \qquad -
(c) \square Patent owner's failure to timely file an Appeal Brief (37 CFR 41.31).
(d) \square The decision on appeal by the \square Board of Patent Appeals and Interferences \square Court dated \qquad
(e) \square Other: \qquad .
2. The Reexamination Certificate will indicate the following:
(a) Change in the Specification: \square Yes \boxtimes No
(b) Change in the Drawing(s): \square Yes \boxtimes No
(c) Status of the Claim(s):
(1) Patent claim(s) confirmed: \qquad .
(2) Patent claim(s) amended (including dependent on amended claim(s)): \qquad
(3) Patent claim(s) canceled: 18,27 and 35.
(4) Newly presented claim(s) patentable: 40-117.
(5) Newly presented canceled claims: \qquad _.
(6) Patent claim(s) \square previously \square currently disclaimed:
(7) Patent claim(s) not subject to reexamination: 1-17,19-26,28-34 and 36-39.
3. \square A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on \qquad .
4. \boxtimes Note the attached statement of reasons for patentability and/or confirmation. Any comments considered necessary by patent owner regarding reasons for patentability and/or confirmation must be submitted promptly to avoid processing delays. Such submission(s) should be labeled: "Comments On Statement of Reasons for Patentability and/or Confirmation."
5. \square Note attached NOTICE OF REFERENCES CITED (PTO-892).
6. \square Note attached LIST OF REFERENCES CITED (PTO/SB/08 or PTO/SB/08 substitute).
7. \square The drawing correction request filed on \qquad is: \square approved \square disapproved.
8. \square Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)-(d) or (f). a) \square All b) \square Some* c) \square None of the certified copies have
\square been received.
\square not been received.
\square been filed in Application No. \qquad
\square been filed in reexamination Control No
\square been received by the International Bureau in PCT Application No. \qquad .

* Certified copies not received: \qquad .

9. \square Note attached Examiner's Amendment.
10. \square Note attached Interview Summary (PTO-474).
11. \square Other: \qquad
All correspondence relating to this reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

	HENRY N TRAN/ Primary Examiner Art Unit: 3992	
cc: Requester (if third party requester)		
U.S. Patent and Trademark Office PTOL-469 (Rev. $08-13)$$\quad$ Notice of Intent to Issue Ex Parte Reexamination Certificate	Part of Paper No 20140603	

The present application is being examined under the pre-AIA first to invent provisions.

NOTICE OF INTENT TO ISSUE EX PARTE REEXAMINATION CERTIFICATE

INTRODUCTION

1. This Notice of Intent to Issue Ex Parte Reexamination Certificate (NIRC) action concerns the Ex Parte Reexamination Request (hereinafter "the Request") filed by patent owner on December 24, 2013 for the Ex Parte Reexamination Certificate, the U.S. Patent No. 5,786,183 C1, issued on April 29, 2013 to Hourmand et al. (hereinafter "the '183 patent"); and it is responsive to the patent owner's response filed on May 7, 2014 (hereinafter "the response"). The response has been entered. Claims 40-117 are subject to this reexamination; and they are found patentable and/or confirmed.

RESPONSE TO THE RESPONSE

2. Patent owner's proposed amendment to the claims, see pages $2-14$, filed with the response is in compliance with 37 CFR 1.530(d)-(j), and it has been entered. See M.P.E.P. § 2250. Claims 18,27 , and 35 are canceled; claims 1-17, 19-26, 28-34, and 36-39 are unamended and they are not subject to reexamination; claims 40-105 were previously added, and of which, claims 40, 41, $56,66,67,71$, and 95 are amended; and claims 106-117 are newly added. Thus, claims 40-117 are subject to this reexamination.
3. Patent owner's arguments, see pages $15-141$, filed with the response, with respect to the claim rejections under 35 U.S.C. $\S 305$, the prior art references of Boie, Gerpheide, Lee, and Casio, and

Art Unit: 3992
the supports for new claims 40-117, have been fully considered and are persuasive. The
rejection of claims $18,27,40-44,56-71$, and $95-105$ under 35 U.S.C. § 305 as recited in the prior Office action mailed on March 27, 2014 has been overcome, and it has been withdrawn.

REFERENCES CITED IN THIS OFFICE ACTION

3. The prior art patents and printed publications (the prior art references) cited in the Request pursuant to C.F.R. § 1.510 (b) (3), see the Request page 10, and relied upon are relisted below:

- U.S. Patent No. 5,463,388 issued to Boie et al. on October 31, 1995 ("Boie" or the '388 patent), which was submitted with the request as Exhibit C.
- U.S. Patent No. 5,565,658 issued to Gerpheide et al. on October 15, 1996 ("Gerpheide" or the ' 658 patent), which was submitted with the request as Exhibit D.
- Casio advertisement entitled "Now... The Invisible Casio Calculator Watch," published in Popular Science by On the Run in 1984 ("Casio"), which was submitted with the request as Exhibit E.
- Lee, thesis entitled "A Fast Multiple-Touch-Sensitive Input Device," and published October 1984 ("Lee"), which was submitted with the IDS filed with the request.

ALLOWABLE SUBJECT MATTER

4. New claims 40-117 are patentable.

STATEMENT OF REASONS FOR PATENTABILITY AND/OR CONFIRMATION

5. The following is an examiner's statement of reasons for patentability and/or confirmation of the claims found patentable in this reexamination proceeding:

Art Unit: 3992
The '183 patent generally relates to a capacitive responsive electronic switching circuit including an oscillator $\mathbf{2 0 0}$ providing a periodic output signal, a keypad having a plurality of input touch terminals $\mathbf{4 5 0}$ defining areas for an operator to provide inputs by proximity and touch, a microcontroller $\mathbf{5 0 0}$ using the periodic output signal from the oscillator for selectively providing signal output frequencies to the input touch terminals(e.g., touch terminals 57 and 59), and a detector circuit $\mathbf{4 0 0}$ coupled to the oscillator, the input touch terminals, and the microcontroller for providing a control output signal based on the presence of operator's body capacitance to ground coupled to the input touch terminal when in proximity or touched by an operator. An array of touch terminals may be provided in close proximity due to the reduction in crosstalk that may result from contaminants by utilizing an oscillator outputting signal having a frequency of 50 KHz or greater. See, the ' 183 patent Abstract, and Figures 3, 4 and 11. Each of the new independent claims $45,56,72,84,95,106$, and 111 identifies the uniquely distinct features that are not taught or suggested by the cited prior art references, either alone or in any reasonable combinations. Specifically,
(i) Independent claim 45 inludes the new limitation of "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad" (ii) Independent claim 56 requires, inter alia, the features: "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage";
(iii) Independent claim 72 requires, inter alia, the features: "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad", and " a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touch said second touch terminal after the operator is proximal or touches said first touch terminal"
(iv) independent claims 84 and 95, each requires, inter alia, the features: "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage";
(v) Independent claim 106 requires, inter alia, the features: " a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of a keypad"; and
(vi) Independent claim 111 requires, inter alia, the features: "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminal, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of closely spaced array of input touch terminals of a keypad.".

Whereas, the cited prior art references:

Boie

Boie discloses a computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an array $\mathbf{1 0 0}$ of electrodes arranged in a grid pattern and connected in columns and rows, each column and row is connected to circuitry $\mathbf{4 0 1}$, which can be selected by multiplexer 402 under control of microcontroller 406. See $i d$. at col. 3:56-61. The selected output is forwarded to summing circuit $\mathbf{4 0 3}$, the output of which is converted by synchronous detector and filter circuit $\mathbf{4 0 4}$ to a signal related to the capacitance of the row or column selected by the multiplexer. See id. at col. 3:62-67. The RF oscillator $\mathbf{4 0 8}$ provides an RF signal of, for example , 100 Kilohertz, to circuits 401, synchronous detector and filter circuit 404 via inverter 410 , and guard plane 411 , which is a substantially continuous plane parallel to array $\mathbf{1 0 0}$ and associated connections, and serves to isolate array $\mathbf{1 0 0}$ from extraneous signals. See $i d$. at col. 3:67-col. 4:5. To measure separate capacitance values for each electrode in array 100 instead of the collective capacitances of subdivided electrode elements connected in rows and columns, a circuit $\mathbf{4 0 1}$ is provided for each electrode in array $\mathbf{1 0 0}$ and multiplexer $\mathbf{4 0 2}$ is enlarged to accommodate the outputs from all circuits 401. See id. at col. 4:14-21. The output of
synchronous detector and filter 404 is converted to digital form by analog-to-digital converter 405 and forwarded to microcontroller 406 so that microcontroller 406 obtains a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. See id. at col. 4:22-28. Particularly, Boie discloses driving the electrodes of electrode array 100 and guard planes 411 with a single RF signal for minimizing the effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances. See id. at col. 4:58-61.

Thus, Boie does not teach or suggest the microcontroller is used to selectively providing signal output frequencies to input touch terminals of a keypad.

Accordingly, Boie does not teach or suggest the above-identified underlined claimed features.

Gerpheide

Gerpheide teaches a system and method for a capacitance-based proximity sensor with interference rejection. See Abstract. The system 10 comprises an electrode array 12, a synchronous electrode capacitance measurement unit 14, a reference frequency generator 16, and a position locator 18. See $i d$. at Figure 1, and col. 3:52 to col. 4:26. The electrode array consists of multiple X electrodes 20 and Y electrodes 22. See $i d$. at Figures 2A and 2B. The synchronous electrode capacitance measurement unit $\mathbf{1 4}$ is connected to the electrode array $\mathbf{1 2}$ and the reference frequency generator 16 for producing capacitive measurement signals. See id. at Figure 4, and col. 5:50-67. Particularly, Gerpheide teaches that the reference frequency generator $\mathbf{1 6}$ includes an oscillator $\mathbf{1 0 0}$ for driving a microcontroller $\mathbf{1 0 2}$ and a divide-by- $(\mathrm{M}+\mathrm{N})$ circuit 104, for providing signal output frequencies and always selecting a reference frequency away from frequencies which have been found to result in measurement interference; wherein, N

Art Unit: 3992
is a fixed constant, approximately 50 , and M is specified by the microcontroller 102 to be, for example, one of four values in the ranges 61 KHz to 80 KHz as specified by the microcontroller 102; and wherein, the microcontroller $\mathbf{1 0 2}$ performs the functions of interference evaluation 106 and frequency selection 108. See id. at Figure 7, and col. 8:20-43.

Thus, Gerpheide does not teach or suggest the synchronous electrode capacitance measurement unit is responsive to signals from the oscillator via said microcontroller and the presence of an operator's body capacitance to ground.

Accordingly, Gerpheide does not teach or suggest the above-identified underlined claimed features.

Casio

Casio teaches a Casio Calculator Watch, which is a timepiece product employing electro-touch technology. The watch works by reading finger-strokes traced across its face. See id.at col. 1 . The transparent touch panel construction includes a fiberglass panel having a transparent conductor film pattern (first layer) and a dielectric layer (second layer) overlying the fiberglass. See id.at col. 2. The touch panel determines figure and math symbols outlined with fingerstrokes traced across the face. See id.at col. 1. The touch panel senses the input, and then digitizes it to extract features of the figure or math symbol. See id. at col. 2. The watch then outputs the corresponding figure or math symbol on the screen.

Thus, Casio does not teach or suggest the microcontroller is used to selectively providing signal output frequencies to input touch terminals of a keypad.

Accordingly, Casio does not teach or suggest the above-identified underlined claimed features.

Lee

Lee discloses a fast-scanning multiple-touch-sensitive input device comprising: a sensor matrix board, row and column selection registers, A/D converting circuits and a dedicated CPU. See id. at Figure 3.4. The row selection registers select one or more rows by setting the corresponding bits to a high state in order to charge up the sensors while the column selection registers select one or more columns by turn on corresponding analog switches to discharge the sensors through timing resistors. The intersecting region of the selected rows and the selected columns represents the selected sensors as a unit. See id. at Figure 3.1(a) shows a model of a selected sensor in the sensor matrix, Figure 3.1 (b) shows the timing diagram for discharging time measurement of a selected sensor, and Figure 3.2 illustrates a small section of a sensor matrix. Particularly, Lee describes the interface between the CPU and the sensor matrix as follows: The CPU selects the row or rows of a sensor group, initiating charging of all the associated sensors. After a charging interval, the CPU discharges the selected column or columns corresponding to a sensor group by connecting a group of discharge resistors whose current is summed via a high slew rate operational amplifier. Wherein, the CPU selects or deselects the row(s) by sending binary signals to the selected row(s). See id. at Figs. 3.1(a), 3.1(b), and 3.4, and page 3-10. As illustrated by the data bus of Figure 3.4.

Thus, Lee does not teach or suggest sending signal output frequencies to the selected rows and/or column.

Accordingly, Lee does not teach or suggest the above-identified underlined claimed features.

Art Unit: 3992

Further, the examiner agrees with the discussion articulated by patent owner that the prior art references, Boie, Gerpheide, Lee, and Casio, either alone or in combinations, fails to teach the above-identified claimed, see the response pages 16-20.

Accordingly, the independent claims $45,56,72,84,95,106$, and 111 are patentable over the prior art references of Boie, Gerpheide, Lee, and Casio.

Dependent claims 40-44, 46-55, 57-71, 73-83, 85-94, 96-105, 107-110, and 112-117, each is dependent upon one of said independent claims, and it is patentable based on at least the reasons set forth for the independent claim due to its dependency.

Any comments considered necessary by PATENT OWNER regarding the above statement must be submitted promptly to avoid processing delays. Such submission by the patent owner should be labeled: "Comments on Statement of Reasons for Patentability and/or Confirmation" and will be placed in the reexamination file.

CLAIM RENUMBERS

6. Claims 40-117 are renumbered consecutively in compliance with 37 CFR 1.126 and 37 CFR $1.530(\mathrm{~g})$, see MPEP $608.01(\mathrm{j})$ and MPEP $\S 2250$, as shown in the table below.

Art Unit: 3992

芴	Clams renumbered in the same onder as presented by applicant							¢	CPA		T. D.		R. 7.47		
Finat	Original	Frinat	Criginai	Finat	-niginat	Fina:	Erigita	Fina!	Omginet	Einal	Emginal	Finet	Ormainat	Final	Originat
$!$:		18		35	0	Ez	153	59	85	S5	423	483		
z	2	5	3	3	35	\%	± 3	150	5	87	si	84	40%		
3	3	28	93	32	3	Es	Ef	$11:$	$7:$	98	s3	85	*se		
4	4	24	3	28	38	E5	E5	7	2	35	89	45	$4{ }^{5}$		
\pm	5	22	22	33	39	51	55	-3	73	35	\% 0	± 5	ssi		
\pm	5	25	23	45	40	82	57	$7{ }^{4}$	7	37	7	$\because 7$	sos		
\checkmark	7	24	24	4	4	83	53	\%	-5	32	72	- 5	103		
s	$\stackrel{3}{ }$	25	25	42	42	8	Es	5	-s	± 3	93	43	4×2		
3	3	25	25	4	$\stackrel{+}{1}$	9	-0	7	7	34	94	\$0	4		
9	10		37	4	4	85	s:	T	7	84	35	12	\% 2		
4	1	25	35	50	. 5	85	32	i	7	53	35	313	123		
12	12	23	27	s:	45	72	53	72	30	F?	97	194	394		
15	3	35	$3)$	5	47	$5:$	54	30	35	75	Fs	145	15		
4	$4{ }^{4}$	34	31	5	43	5	s5	81	32	Fs	93	495			
4	5	32	32	$5 \cdot$	49	:ss	ss	$s=$	53	103	400	817	\% $\%$		
\%	TE	3	33	5 s	s	105	it	S3	S4	101	54				
$?$	\because	34	34	53	5 ?	403	58	85	35	152	122				

CONCLUSION

7. Extensions of Time

Extensions of time under 37 CFR $1.136(a)$ will not be permitted in these proceedings because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a reexamination proceeding. Additionally, 35 U.S.C. 305 requires that reexamination proceedings "will be conducted with special dispatch" (37 CFR 1.550(a)). Extension of time in ex parte reexamination proceedings are provided for in 37 CFR 1.550(c).

8. Litigation Reminder

The patent owner is reminded of the continuing responsibility under 37 CFR $1.565(a)$ to apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the ' 183
patent throughout the course of this reexamination proceeding. See MPEP $\S \S 2207,2282$ and 2286.

9. Correspondence and Inquiry as to Office Actions

All correspondence related to this ex parte reexamination proceeding should be directed as follows:

By EFS: \quad Registered users may submit via the electronic filing system EFS-Web, at https://efs.uspto.gov/efile/myportal/efs-registered

By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450

By FAX to: (571) 273-9900
Central Reexamination Unit

By hand: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 2231
For EFS-Web transmissions, 37 CFR 1.8(a)(1)(i) (C) and (ii) states that correspondence (except for a request for reexamination and a corrected or replacement request for reexamination) will be considered timely filed if (a) it is transmitted via the Office's electronic filing system in accordance with 37 CFR 1.6(a)(4), and (b) includes a certificate of transmission for each piece of correspondence stating the data of transmission, which is prior to the expiration of the set period of time in the Office action.

Art Unit: 3992

Any inquiry by the patent owner concerning this communication or earlier communications from the Legal Advisor or Examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.

Signed:
/Henry N Tran/
Patent Reexamination Specialist, CRU - Art Unit 3992

Conferees:

//

Patent Reexamination Specialist, CRU - Art Unit 3992
//
Supervisory Patent Examiner, Art Unit 3992

Issue Classification	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

NONE			Total Claims Allowed:
(Assistant Examiner)	(Date)		
/HENRY N TRAN/ Primary Examiner.Art Unit 3992 (Primary Examiner)	$06 / 03 / 2014$	O.G. Print Claim(s)	O.G. Print Figure

Issue Classification	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

NONE (Assistant Examiner)	(Date)	Total Claims Allowed:78	
/HENRY N TRAN/ Primary Examiner.Art Unit 3992 (Primary Examiner)	$06 / 03 / 2014$ (Date)	O.G. Print Claim(s) 40	O.G. Print Figure 4

Issue Classification	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

Final	Claims renumbered in the same order as presented by applicant							Final	CPA		T.D. Original	$\square \quad \mathrm{R} .1 .47$			Original
	Original	Final	Original	Final	Original	Final	Original		Original	Final		Final	Original	Final	
1	1		18		35	60	52	109	69	86	86	103	103		
2	2	19	19	36	36	53	53	110	70	87	87	104	104		
3	3	20	20	37	37	54	54	111	71	88	88	95	105		
4	4	21	21	38	38	55	55	71	72	89	89	40	106		
5	5	22	22	38	39	61	56	73	73	90	90	46	107		
6	6	23	23	45	40	62	57	74	74	91	91	47	108		
7	7	24	24	4.1	41	63	58	75	75	92	92	48	109		
8	8	25	25	42	42	66	59	76	76	93	93	49	110		
9	9	26	26	43	43	67	60	77	77	84	94	105	111		
10	10		27	44	44	68	61	78	78	94	95	112	112		
11	11	28	28	50	45	69	62	79	79	96	96	113	113		
12	12	29	29	51	46	70	63	72	80	97	97	114	114		
13	13	30	30	52	47	64	64	80	81	98	98	115	115		
14	14	31	31	56	48	65	65	81	82	99	99	116	116		
15	15	32	32	57	49	106	66	82	83	100	100	117	117		
16	16	33	33	58	50	107	67	83	84	101	101				
17	17	34	34	59	51	108	68	85	85	102	102				

NONE		
(Date)		Total Claims Allowed:
(HENRY N TRAN/ Primary Examiner.Art Unit 3992 (Primary Examiner)	$06 / 03 / 2014$	O.G. Print Claim(s)
O.G. Print Figure		

P.O. Box 1450
www.usptogov

BIB DATA SHEET

CONFIRMATION NO. 9188

Reexamination	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Certificate Date 04/29/2013	Certificate Number $5796183 \mathrm{C} 1$

Requester Correspondence Address:
区
Patent Owner
\square Third Party

SLATER \& MATSIL, L.L.P.
17950 PRESTON RD, SUITE 1000
DALLAS, TX 75252-5793

LITIGATION REVIEW 区	/HT/ (examiner initials)	$\begin{gathered} 01 / 26 / 2014 \\ \text { (date) } \end{gathered}$
Case Name		Director Initials
1:06cv 1777 - CLOSED		
2:03cv75169 - CLOSED		
1:10cv691-CLOSED		
2:06cv500 -CLOSED		

COPENDING OFFICE PROCEEDINGS	
TYPE OF PROCEEDING	
1. NONE	

Search Notes	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

CPC- SEARCHED		
Symbol	Date	Examiner

CPC COMBINATION SETS - SEARCHED		
Symbol	Date	Examiner

US CLASSIFICATION SEARCHED			
Class	Subclass	Date	Examiner
307	$112,113,116,125,139,140,157$	$6 / 2 / 2014$	HT
361	181	$6 / 2 / 2014$	HT

SEARCH NOTES		
Search Notes	Date	Examiner
Review of patented file's prosecution history	$03 / 102014 /$	HT
Review of patented file's prosecution history	$05 / 30 \&$	HT

INTERFERENCE SEARCH			
US Class/ CPC Symbol	US Subclass / CPC Group	Date	Examiner
307	$112,113,116,125,139,140,157$		
361	181	$6 / 2 / 14$	HT

Index of Claims	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
O	Objected

Index of Claims	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
\mathbf{O}	Objected

(12) EX PARTE REEXAMINATION CERTIFICATE (10211th) United States Patent
 (10) Number: US 5,796,183 C2
 Hourmand et al.
 (45) Certificate Issued: Jun. 27, 2014

(54)	CAPACIT SWITCHI	VE RESPONSIVE ELECTRONIC VG CIRCUIT
(75)	Inventors:	Byron Hourmand, Hersey, MI (US); John M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US)
(73)	Assignee:	Nartron Corporation, Reed City, MI (US)

Reexamination Request:
No. 90/013,106, Dec. 24, 2013
Reexamination Certificate for:

Patent No.:	$\mathbf{5 , 7 9 6 , 1 8 3}$
Issued:	Aug. 18, 1998
Appl. No.:	$\mathbf{0 8 / 6 0 1 , 2 6 8}$
Filed:	Jan. 31, 1996

Reexamination Certificate C1 5,796,183 issued Apr. 29, 2013
Certificate of Correction issued May 11, 1999
Certificate of Correction issued Oct. 11, 2011
(51) Int. Cl.

H03K 17/96 (2006.01)
H03K 17/94 (2006.01)
(52) U.S. Cl.

USPC
307/116; 307/125; 307/139; 307/140;
307/112; 307/113; 361/181
(58) Field of Classification Search

USPC 307/112, 113, 116, 125, 139, 140, 157; 361/181
See application file for complete search history.

References Cited

To view the complete listing of prior art documents cited during the proceeding for Reexamination Control Number 90/013,106, please refer to the USPTO's public Patent Application Information Retrieval (PAIR) system under the Display References tab.

Primary Examiner - Henry N Tran

ABSTRACT

A capacitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal having a frequency of 50 kHz or greater, an input touch terminal defining an area for an operator provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. Preferably, the oscillator provides a periodic output signal having a frequency of 800 kHz or greater. An array of touch terminals may be provided in close proximity due to the reduction in crosstalk that may result from contaminants by utilizing an oscillator outputting a signal having a frequency of 50 kHz or greater.

EX PARTE

REEXAMINATION CERTIFICATE

 ISSUED UNDER 35 U.S.C. 307
THE PATENT IS HEREBY AMENDED AS INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the patent, but has been deleted and is no longer a part of the patent; matter printed in italics indicates additions made to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMINED THAT:

Claims 18, 27 and $\mathbf{3 5}$ are cancelled.
New claims 40-117 are added and determined to be patentable.

Claims 1-17, 19-26, 28-34 and 36-39 were not reexamined.
40. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control 55 output signal.
41. The capacitive responsive electronic switching circuit as defined in claim 40, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.
42. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
43. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
44. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
45. The capacitive responsive electronic switching circuit 5 as defined in claim 40, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.
46. The capacitive responsive switching circuit as defined in claim 40, wherein said oscillator provides a periodic output signal having a frequency of 800 kHz or greater.
47. The capacitive responsive electronic switching circuit as defined in claim 40, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
48. The capacitive responsive electronic switching circuit as defined in claim 40, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
49. The capacitive responsive electronic switching circuit as defined in claim 40, wherein the detector circuit comprises a plurality of touch circuits, and wherein the microcontroller selectively provides the signal output frequencies to the plurality of small sized input touch terminals of the keypad via the plurality of touch circuits.
50. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
51. The capacitive responsive electronic switching circuit as defined in claim 50, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and
wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
52. The capacitive responsive electronic switching circuit as defined in claim 50, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
53. The capacitive responsive electronic switching circuit as defined in claim 50, wherein a peak voltage of the signal output frequencies is greater than a supply voltage.
54. The capacitive responsive electronic switching circuit as defined in claim 53, wherein the supply voltage is a battery supply voltage.
55. The capacitive responsive electronic switching circuit as defined in claim 53, wherein the supply voltage is a voltage regulator supply voltage.
56. The capacitive responsive electronic switching circuit as defined in claim 50, wherein the signal output frequencies have a same Hertz value.
57. The capacitive responsive electronic switching circuit as defined in claim 50, wherein each signal output frequency is selected from a plurality of Hertz values.
58. The capacitive responsive electronic switching circuit as defined in claim 57, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
59. The capacitive responsive electronic switching circuit as defined in claim 57, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
60. The capacitive responsive electronic switching circuit as defined in claim 57, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
61. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator 50 to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and 60 said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to
ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
62. The capacitive responsive electronic switching circuit as defined in claim 61, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
63. The capacitive responsive electronic switching circuit as defined in claim 61, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
64. The capacitive responsive electronic switching circuit as defined in claim 61, wherein the supply voltage is a battery supply voltage.
65. The capacitive responsive electronic switching circuit as defined in claim 61, wherein the supply voltage is a voltage regulator supply voltage.
66. The capacitive responsive electronic switching circuit as defined in claim 61, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.
67. The capacitive responsive electronic switching circuit as defined in claim 61, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.
5 68. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
69. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
70. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
71. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or
touches said second touch terminal after the operator is proximal or touches said first touch terminal.
72. The capacitive responsive electronic switching circuit as defined in claim 71, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
73. The capacitive responsive electronic switching circuit as defined in claim 71, wherein the signal output frequencies have a same Hertz value.
74. The capacitive responsive electronic switching circuit as defined in claim 71, wherein each signal output frequency is selected from a plurality of Hertz values.
75. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
76. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
77. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
78. The capacitive responsive electronic switching circuit as defined in claim 71, wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
79. The capacitive responsive electronic switching circuit as defined in claim 71, further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
80. The capacitive responsive electronic switching circuit as defined in claim 71, wherein a peak voltage of the signal output frequencies is greater than a supply voltage.
81. The capacitive responsive electronic switching circuit as defined in claim 80, wherein the supply voltage is a battery supply voltage.
82. The capacitive responsive electronic switching circuit as defined in claim 80 , wherein the supply voltage is a voltage regulator supply voltage.
83. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having $a 45$ predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals 50 comprising first and second input touch terminals, wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and 55 touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said 60 oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said 65 detector circuit being configured to generate said control output signal when the operator is proximal or

 comprises Hertz values greater than 800 kHz .90. The capacitive responsive electronic switching circuit as defined in claim 83, wherein the supply voltage is a battery supply voltage.
91. The capacitive responsive electronic switching circuit as defined in claim 83, wherein the supply voltage is a voltage regulator supply voltage.
92. The capacitive responsive electronic switching circuit as defined in claim 83, wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
93. The capacitive responsive electronic switching circuit as defined in claim 83, further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
94. A capacitive responsive electronic switching circuit for
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or
touches said second touch terminal after the operator is proximal or touches said first touch terminal.
95. The capacitive responsive electronic switching circuit as defined in claim 94, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
96. The capacitive responsive electronic switching circuit as defined in claim 94, wherein each signal output frequency selectively provided to each row of the closely spaced array of 10 input touch terminals of the keypad has a same Hertz value.
97. The capacitive responsive electronic switching circuit as defined in claim 94, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.
98. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
99. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
100. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
101. The capacitive responsive electronic switching circuit as defined in claim 94, wherein the supply voltage is a battery supply voltage.
102. The capacitive responsive electronic switching circuit as defined in claim 94, wherein the supply voltage is a voltage regulator supply voltage.
103. The capacitive responsive electronic switching circuit as defined in claim 94, wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
104. The capacitive responsive electronic switching circuit as defined in claim 94, further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
105. A capacitive responsive electronic switching circuit for a controlled kevpad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said
a

selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.
106. The capacitive responsive electronic switching circuit as defined in claim 107, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
107. The capacitive responsive electronic switching circuit as defined in claim 107, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
108. The capacitive responsive electronic switching circuit as defined in claim 107, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
109. The capacitive responsive electronic switching circuit as defined in claim 105, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
110. The capacitive responsive electronic switching circuit as defined in claim 105, wherein said first and second touch terminals are adapted to be mounted on different surfaces of the controlled keypad device.
111. The capacitive responsive electronic switching circuit as defined in claim 105, wherein said first and second touch terminals are adapted to be mounted on non-parallel planar surfaces of the controlled keypad device.
112. The capacitive responsive electronic switching circuit as defined in claim 105, wherein said first and second touch terminals are adapted to be mounted on perpendicular planar surfaces of the controlled keypad device.
113. The capacitive responsive electronic switching circuit as defined in claim 105 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said first touch terminal.
114. The capacitive responsive electronic switching circuit as defined in claim 105 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said second touch terminal.
115. The capacitive responsive electronic switching circuit 5 as defined in claim 105, wherein the detector circuit comprises a plurality of touch circuits, and wherein the microcontroller selectively provides the signal output frequencies to the closely spaced array of input touch terminals of the keypad via the plurality of touch circuits.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Tradenark Office Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
www uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Notice of Intent to Issue	Control No. $90 / 013,106$	Patent Under Reexamination5796183	
Ex Parte Reexamination Certificate	Examiner HENRY N. TRAN	Art Unit 3992	AIA (First Inventor to File) Status No

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

1. \boxtimes Prosecution on the merits is (or remains) closed in this ex parte reexamination proceeding. This proceeding is subject to reopening at the initiative of the Office or upon petition. Cf. 37 CFR $1.313(\mathrm{a})$. A Certificate will be issued in view of
(a) \boxtimes Patent owner's communication(s) filed: 07 May 2014.
(b) \square Patent owner's failure to file an appropriate timely response to the Office action mailed: \qquad —.
(c) \square Patent owner's failure to timely file an Appeal Brief (37 CFR 41.31).
(d) \square The decision on appeal by the \square Board of Patent Appeals and Interferences \qquad Court dated \qquad
(e) \qquad
\qquad -.
2. The Reexamination Certificate will indicate the following:
(a) Change in the Specification: \square Yes \boxtimes No
(b) Change in the Drawing(s): \square Yes \boxtimes No
(c) Status of the Claim(s):
(1) Patent claim(s) confirmed: \qquad .
(2) Patent claim(s) amended (including dependent on amended claim(s)): \qquad
(3) Patent claim(s) canceled: 18,27 and 35.
(4) Newly presented claim(s) patentable: 40-117.
(5) Newly presented canceled claims: \qquad -.
(6) Patent claim(s) \square previously \square currently disclaimed:
(7) Patent claim(s) not subject to reexamination: 1-17,19-26,28-34 and 36-39.
3. \square A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on \qquad -
4. \boxtimes Note the attached statement of reasons for patentability and/or confirmation. Any comments considered necessary by patent owner regarding reasons for patentability and/or confirmation must be submitted promptly to avoid processing delays. Such submission(s) should be labeled: "Comments On Statement of Reasons for Patentability and/or Confirmation."
5.Note attached NOTICE OF REFERENCES CITED (PTO-892).
6.Note attached LIST OF REFERENCES CITED (PTO/SB/08 or PTO/SB/08 substitute).
7.The drawing correction request filed on \qquad is: \square approveddisapproved.
5. \square Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)-(d) or (f).
a) \square All b) \square Some* \quad c) \square None of the certified copies have
\square been received.
\square not been received.
\square been filed in Application No. \qquad
\square been filed in reexamination Control No. \qquad . \square been received by the International Bureau in PCT Application No. \qquad .

* Certified copies not received: \qquad .
9.Note attached Examiner's Amendment.
10.Note attached Interview Summary (PTO-474).Other: \qquad
All correspondence relating to this reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

The present application is being examined under the pre-AIA first to invent provisions.

NOTICE OF INTENT TO ISSUE EX PARTE REEXAMINATION CERTIFICATE

INTRODUCTION

1. This Notice of Intent to Issue Ex Parte Reexamination Certificate (NIRC) action concerns the Ex Parte Reexamination Request (hereinafter "the Request") filed by patent owner on December 24, 2013 for the Ex Parte Reexamination Certificate, the U.S. Patent No. 5,786,183 C1, issued on April 29, 2013 to Hourmand et al. (hereinafter "the '183 patent"); and it is responsive to the patent owner's response filed on May 7, 2014 (hereinafter "the response"). The response has been entered. Claims 40-117 are subject to this reexamination; and they are found patentable and/or confirmed.

RESPONSE TO THE RESPONSE

2. Patent owner's proposed amendment to the claims, see pages $2-14$, filed with the response is in compliance with 37 CFR 1.530(d)-(j), and it has been entered. Claims 18, 27, and 35 are canceled; claims $40,41,56,66,67,71$, and 95 of the previously added new claims 40-105 are amended; and claims 106-117 are newly added. Claims 1-17, 19-26, 28-34, and 36-39 are not subject to reexamination. Thus, only claims $40-117$ are subject to this reexamination. 3. Patent owner's arguments, see pages 15-141, filed with the response, with respect to the claim rejections under 35 U.S.C. § 305, the prior art references of Boie, Gerpheide, Lee, and Casio, and the supports for new claims 40-117, have been fully considered and are persuasive. The

Art Unit: 3992
rejection of claims $18,27,40-44,56-71$, and $95-105$ under 35 U.S.C. $\S 305$ as recited in the prior
Office action, see pages 9-11, mailed on March 27, 2014 has been overcome due to the amendment to the claims, and it has been withdrawn.

REFERENCES CITED IN THIS OFFICE ACTION

3. The prior art patents and printed publications (the prior art references) cited in the Request pursuant to C.F.R. § 1.510 (b) (3), see the Request page 10 , and relied upon are relisted below:

- U.S. Patent No. 5,463,388 issued to Boie et al. on October 31, 1995 ("Boie" or the '388 patent), which was submitted with the request as Exhibit C.
- U.S. Patent No. 5,565,658 issued to Gerpheide et al. on October 15, 1996 ("Gerpheide" or the ' 658 patent), which was submitted with the request as Exhibit D.
- Casio advertisement entitled "Now... The Invisible Casio Calculator Watch," published in Popular Science by On the Run in 1984 ("Casio"), which was submitted with the request as Exhibit E.
- Lee, thesis entitled "A Fast Multiple-Touch-Sensitive Input Device," and published October 1984 ("Lee"), which was submitted with the IDS filed with the request.

ALLOWABLE SUBJECT MATTER

4. New claims 40-117 are patentable.

STATEMENT OF REASONS FOR PATENTABILITY AND/OR CONFIRMATION

5. The following is an examiner's statement of reasons for patentability and/or confirmation of the claims found patentable in this reexamination proceeding:

Art Unit: 3992
Each of the newly added independent claims $45,56,72,84,95,106$, and 111 identifies the uniquely distinct features that are not taught or suggested by the cited prior art references, either alone or in any reasonable combinations. Specifically,

Regarding independent claim 45, claim 45 is similar to cancelled patent claim 18 but includes the new limitation of "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad;".

The combination of Boie, Gerpheide, Lee and/or Casio does not disclose or fairly suggest this limitation. The examiner agrees with the discussion articulated by the patent owner for claim 45; see the $12 / 24 / 2013$ Amendment filed with the Request at pages 24-25.

Regarding independent claim 56, claim 56 is similar to cancelled patent claim 18 but includes the new limitation of "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of a keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;".

The combination of Boie, Gerpheide, Lee and/or Casio does not disclose or fairly suggest this limitation. The examiner agrees with the discussions articulated by the patent owner for claim 56, see the $12 / 24 / 2013$ Amendment filed with the Request at page 26 and the $5 / 7 / 14$ Response at pages 16-17.

Art Unit: 3992

Regarding independent claim 72, claim 72 is similar to cancelled patent claim 27 but includes the new limitation of "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;".

The combination of Boie, Gerpheide, Lee and/or Casio does not disclose or fairly suggest this limitation. The examiner agrees with the discussion articulated by the patent owner for claim 72, see the 5/7/14 Response at pages 27-28.

Regarding independent claim 84, claim 84 is similar to cancelled patent claim 27 but includes the new limitation of "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein a peak voltage of the signal output frequencies is greater than a supply voltage;".

The prior references, Boie, Gerpheide, Lee, and Casio, either alone or in any combination, do not disclose or fairly suggest this limitation. The examiner agrees with the discussions articulated by the patent owner for claim 84 , see the $12 / 24 / 2013$ Amendment filed with the Request at page 26 and the 5/7/14 Response at pages 28-29.

Regarding independent claim 95, claim 95 is similar to cancelled patent claim 27 but includes the new limitation of "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller
selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;".

The prior references, Boie, Gerpheide, Lee, and Casio, either alone or in any combination, do not disclose or fairly suggest this limitation. The examiner agrees with the discussion articulated by the patent owner for claim 95, see the 5/7/14 Response at pages 17-19.

Regarding independent claim 106, claim 106 is similar to cancelled patent claim 18 but includes the limitation of "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of a keypad."

The prior references, Boie, Gerpheide, Lee, and Casio, either alone or in any combination, do not disclose or fairly suggest this limitation. The examiner agrees with the discussion articulated by the patent owner for claim 106, see the 5/7/14 Response at pages 19-20.

Regarding independent claim 111, claim 111 is similar to cancelled patent claim 27 but includes the limitation of "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, and wherein the selectively providing comprises the microcontroller selectively

Art Unit: 3992
providing a signal output frequency to each row of closely spaced array of input touch terminals of a keypad."

The prior references, Boie, Gerpheide, Lee, and Casio, either alone or in any combination, do not disclose or fairly suggest this limitation. The examiner agrees with the discussion articulated by the patent owner for claim 111, see the 5/7/14 Response at page 20.

Regarding dependent claims 46-55, claims 46-55 depend from claim 45 and add further limitations. They are allowable at least by the reason set forth for claim 45 .

Regarding dependent claims 57-65, claims 57-65 depend from claim 56 and add further limitations. They are allowable at least by the reason set forth for claim 56 .

Regarding dependent claims 73-83, claims 73-83 depend from claim 72 and add further limitations. They are allowable at least by the reason set forth for claim 72 .

Regarding dependent claims 85-94, claims 85-94 depend from claim 84 and add further limitations. They are allowable at least by the reason set forth for claim 84 .

Regarding dependent claims 96-104, claims 96-104 depend from claim 95 and add further limitations. They are allowable at least by the reason set forth for claim 95 .

Regarding dependent claims 40-44 and 107-110, claims 40-44 and 107-110 depend from claim 106 and add further limitations. They are allowable at least by the reason set forth for claim 106. Regarding dependent claims 66-71 and 112-117, claims 66-71 and 112-117 depend from claim 111 and add further limitations. They are allowable at least by the reason set forth for claim 11.

Any comments considered necessary by PATENT OWNER regarding the above statement must be submitted promptly to avoid processing delays. Such submission by the patent owner should

Art Unit: 3992
be labeled: "Comments on Statement of Reasons for Patentability and/or Confirmation" and will be placed in the reexamination file.
6. Claims 40-117 are renumbered consecutively in compliance with 37 CFR 1.126 and 37 CFR $1.530(\mathrm{~g})$, see MPEP $608.01(\mathrm{j})$ and MPEP § 2250, as shown in the table below.

CONCLUSION

7. Extensions of Time

Extensions of time under 37 CFR 1.136(a) will not be permitted in these proceedings because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a reexamination proceeding. Additionally, 35 U.S.C. 305 requires that reexamination proceedings "will be conducted with special dispatch" (37 CFR 1.550(a)). Extension of time in ex parte reexamination proceedings are provided for in 37 CFR 1.550(c).

Art Unit: 3992

8. Litigation Reminder

The patent owner is reminded of the continuing responsibility under 37 CFR 1.565 (a) to apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the ' 183 patent throughout the course of this reexamination proceeding. See MPEP §§ 2207, 2282 and 2286.

9. Correspondence and Inquiry as to Office Actions

All correspondence related to this ex parte reexamination proceeding should be directed as follows:

By EFS: \quad Registered users may submit via the electronic filing system EFS-Web, at https://efs.uspto.gov/efile/myportal/efs-registered

By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450

By FAX to: (571) 273-9900
Central Reexamination Unit

By hand: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 2231

For EFS-Web transmissions, 37 CFR $1.8(\mathrm{a})(1)(\mathrm{i})(\mathrm{C})$ and (ii) states that correspondence (except for a request for reexamination and a corrected or replacement request for reexamination) will be considered timely filed if (a) it is transmitted via the Office's electronic filing system in

Art Unit: 3992
accordance with 37 CFR 1.6(a)(4), and (b) includes a certificate of transmission for each piece of correspondence stating the data of transmission, which is prior to the expiration of the set period of time in the Office action.

Any inquiry by the patent owner concerning this communication or earlier communications from the Legal Advisor or Examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.

Signed:
/Henry N Tran/
Patent Reexamination Specialist, CRU - Art Unit 3992

Conferees:

/Albert Gagliardi/

Patent Reexamination Specialist, CRU - Art Unit 3992
/SUDHANSHU PATHAK/
Supervisory Patent Examiner, Art Unit 3992

Reexamination	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Certificate Date 04/29/2013	Certificate Number $5796183 \mathrm{C} 2$

Requester Correspondence Address:
『
Patent Owner
\square Third Party

SLATER \& MATSIL, L.L.P.
17950 PRESTON RD, SUITE 1000
DALLAS, TX 75252-5793

LITIGATION REVIEW 区	$\begin{gathered} \text { /HT/ } \\ \text { (examiner initials) } \end{gathered}$	$\begin{gathered} 01 / 26 / 2014 \\ \text { (date) } \\ \hline \end{gathered}$
Case Name		Director Initials
1:06cv 1777 - CLOSED		
2:03cv75169 - CLOSED		
1:10cv691-CLOSED		
2:06cv500 -CLOSED		

COPENDING OFFICE PROCEEDINGS	
TYPE OF PROCEEDING	
1. NONE	

	/HENRY N TRAN/ Primary Examiner.Art Unit 3992

P.O. Box 1450
www.usptogov

BIB DATA SHEET

CONFIRMATION NO. 9188

SERIAL NUMBER 90/013,106		FILING 12/24 RU	371(c) 13	$\begin{gathered} \text { CLASS } \\ 307 \end{gathered}$			$\begin{array}{\|c\|} \hline \text { ATTO } \\ \text { NAF } \end{array}$	$\begin{aligned} & \text { ORNEY DOCKET } \\ & \text { NO. } \\ & \text { AR-5796183RX2 } \end{aligned}$
** CONTINUING DATA ************************* This application is a REX of 08/601,268 01/31/1996 PAT 5796183 ** FOREIGN APPLICATIONS \qquad ** IF REQUIRED, FOREIGN FILING LICENSE GRANTED **** SMALL ENTITY **								
Foreign Priority claim 35 USC 119 (a-d) co Verified and Acknowledged	ed ditions IMENRY			STATE OR COUNTRY	$\begin{array}{r} \text { SH } \\ \text { DRA } \end{array}$		AL 2114	$\begin{gathered} \text { INDEPENDENT } \\ \text { CLAIMS } \\ . \overbrace{}^{\prime} 14 \end{gathered}$
SLATER \& MATSIL, L.L.P. 17950 PRESTON RD, SUITE 1000 DALLAS, TX 75252-5793 UNITED STATES								
TITLE Capacitive Responsive Electronic Switching Circuit								
FILING FEE RECEIVED 6000	FEES: Authority has been given in Paper No. \qquad to charge/credit DEPOSIT ACCOUNT No. \qquad for following:					\square All Fees		
						1.16 Fees (Filing)		
						1.17 Fees (Processing Ext. of time)		
						1.18 Fees (Issue)		
						\square Other		
						\square Credit		

Search Notes	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

CPC- SEARCHED		
Symbol	Date	Examiner

CPC COMBINATION SETS - SEARCHED		
Symbol	Date	Examiner

US CLASSIFICATION SEARCHED			
Class	Subclass	Date	Examiner
307	$112,113,116,125,139,140,157$	$6 / 2 / 2014$	HT
361	181	$6 / 2 / 2014$	HT

SEARCH NOTES		
Search Notes	Date	Examiner
Review of patented file's prosecution history	$03 / 102014 /$	HT
Review of patented file's prosecution history	$05 / 30 \&$	HT

INTERFERENCE SEARCH			
US Class/ CPC Symbol	US Subclass / CPC Group	Date	Examiner
307	$112,113,116,125,139,140,157$		
361	181	$6 / 2 / 14$	HT

Issue Classification	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

NONE			Total Claims Allowed:
(Assistant Examiner)	(Date)		
/HENRY N TRAN/ Primary Examiner.Art Unit 3992 (Primary Examiner)	$06 / 03 / 2014$	O.G. Print Claim(s)	O.G. Print Figure

Issue Classification	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

US ORIGINAL CLASSIFICATION						INTERNATIONAL CLASSIFICATION									
CLASS			SUBCLASS			CLAIMED						NON-CLAIMED			
307			116			н	0	3	k	k	17 / 96 (2006.01.01)				
CROSS REFERENCE(S)						н	0	3	k	k	$17 / 94$ (2006.01.01)				
CLASS	SUBCLASS (ONE SUBCLASS PER BLOCK)														
307	125	139	140	112	113										
361	181														

NONE		
(Assistant Examiner)	(Date)	Total Claims Allowed:
lHENRY N TRAN/ Primary Examiner.Art Unit 3992 (Primary Examiner)	$06 / 03 / 2014$	O.G. Print Claim(s)
O.G. Print Figure		

Issue Classification	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

Final	Claims renumbered in the same order as presented by applicant							Final	CPA		T.D. Original	$\square \quad \mathrm{R} .1 .47$			Original
	Original	Final	Original	Final	Original	Final	Original		Original	Final		Final	Original	Final	
1	1		18		35	60	52	109	69	86	86	103	103		
2	2	19	19	36	36	53	53	110	70	87	87	104	104		
3	3	20	20	37	37	54	54	111	71	88	88	95	105		
4	4	21	21	38	38	55	55	71	72	89	89	40	106		
5	5	22	22	38	39	61	56	73	73	90	90	46	107		
6	6	23	23	45	40	62	57	74	74	91	91	47	108		
7	7	24	24	4.1	41	63	58	75	75	92	92	48	109		
8	8	25	25	42	42	66	59	76	76	93	93	49	110		
9	9	26	26	43	43	67	60	77	77	84	94	105	111		
10	10		27	44	44	68	61	78	78	94	95	112	112		
11	11	28	28	50	45	69	62	79	79	96	96	113	113		
12	12	29	29	51	46	70	63	72	80	97	97	114	114		
13	13	30	30	52	47	64	64	80	81	98	98	115	115		
14	14	31	31	56	48	65	65	81	82	99	99	116	116		
15	15	32	32	57	49	106	66	82	83	100	100	117	117		
16	16	33	33	58	50	107	67	83	84	101	101				
17	17	34	34	59	51	108	68	85	85	102	102				

NONE		
(Dssistant Examiner)	(Date)	
/HENRY N TRAN/ Primary Examiner.Art Unit 3992 Claims Allowed: (Primary Examiner)	$06 / 03 / 2014$	O.G. Print Claim(s)
O.G. Print Figure		

Index of Claims	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
O	Objected

Index of Claims	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
O	Objected

U.S. Patent and Trademark Office

Part of Paper No. : 20140603

Index of Claims	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
\mathbf{O}	Objected

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

U.S. Patent No.:	$5,796,183 \mathrm{~B} 1$	\S	Docket No.:	$5796183 R X 2$
Issued:	August 18, 1998	\S	Inventors:	Hourmand et al.
Filed:	January 31, 1996	\S	Patent Owner:	UUSI, LLC
Control No.	TBD	\S	Examiner:	TBD

For: Capacitive Responsive Electronic Switching Circuit
Mail Stop Ex Parte Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

RESPONSE TO OFFICE ACTION

Dear Sir:
Patent Owner UUSI, LLC respectfully submits the following amendments and remarks in response to the Examiner's Office Action dated March 27, 2014. The Patent Owner respectfully requests the following amendments and remarks be entered and respectfully requests reconsideration of claims 40-117.

In the Claims:

18. (Canceled)
19. (Canceled)
20. (Canceled)
21. (New - Once Amended) The capacitive responsive electronic switching circuit as defined in claim 106, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.
22. (New - Once Amended) The capacitive responsive electronic switching circuit as defined in claim 106, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.
23. (New) The capacitive responsive electronic switching circuit as defined in claim 41. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
24. (New) The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
25. (New) The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
26. (New) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency; a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric
substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
27. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
28. (New) The capacitive responsive electronic switching circuit as defined in claim 45. wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
29. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein the signal output frequencies have a same Hertz value.
30. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein each signal output frequency is selected from a plurality of Hertz values.
31. (New) The capacitive responsive electronic switching circuit as defined in claim 49. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
32. (New) The capacitive responsive electronic switching circuit as defined in claim 49. wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
33. (New) The capacitive responsive electronic switching circuit as defined in claim 49. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
34. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein a peak voltage of the signal output frequencies is greater than a supply voltage.
35. (New) The capacitive responsive electronic switching circuit as defined in claim 53 , wherein the supply voltage is a battery supply voltage.
36. (New) The capacitive responsive electronic switching circuit as defined in claim 53 , wherein the supply voltage is a voltage regulator supply voltage.
37. (New - Once Amended) A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency: a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body
capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
38. (New) The capacitive responsive electronic switching circuit as defined in claim 56 , wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
39. (New) The capacitive responsive electronic switching circuit as defined in claim 56, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
40. (New) The capacitive responsive electronic switching circuit as defined in claim 56, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.
41. (New) The capacitive responsive electronic switching circuit as defined in claim 56, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.
42. (New) The capacitive responsive electronic switching circuit as defined in claim 60, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
43. (New) The capacitive responsive electronic switching circuit as defined in claim 60 . wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
44. (New) The capacitive responsive electronic switching circuit as defined in claim 60 . wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
45. (New) The capacitive responsive electronic switching circuit as defined in claim 56. wherein the supply voltage is a battery supply voltage.
46. (New) The capacitive responsive electronic switching circuit as defined in claim 56. wherein the supply voltage is a voltage regulator supply voltage.
47. (New - Once Amended) The capacitive responsive electronic switching circuit as defined in claim 111, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.
48. (New - Once Amended) The capacitive responsive electronic switching circuit as defined in claim 111, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.
49. (New) The capacitive responsive electronic switching circuit as defined in claim 67. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
50. (New) The capacitive responsive electronic switching circuit as defined in claim 67. wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
51. (New) The capacitive responsive electronic switching circuit as defined in claim 67. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
52. (New - Once Amended) The capacitive responsive electronic switching circuit as defined in claim 111, wherein the detector circuit is configured to inhibit the control output
signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
53. (New) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals:
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
54. (New) The capacitive responsive electronic switching circuit as defined in claim 72, wherein the signal output frequencies have a same Hertz value.
55. (New) The capacitive responsive electronic switching circuit as defined in claim 72, wherein each signal output frequency is selected from a plurality of Hertz values.
56. (New) The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
57. (New) The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
58. (New) The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
59. (New) The capacitive responsive electronic switching circuit as defined in claim 72 , wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
60. (New) The capacitive responsive electronic switching circuit as defined in claim 72, further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
61. (New) The capacitive responsive electronic switching circuit as defined in claim 72. wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
62. (New) The capacitive responsive electronic switching circuit as defined in claim 72 , wherein a peak voltage of the signal output frequencies is greater than a supply voltage.
63. (New) The capacitive responsive electronic switching circuit as defined in claim 81. wherein the supply voltage is a battery supply voltage.
64. (New) The capacitive responsive electronic switching circuit as defined in claim 81, wherein the supply voltage is a voltage regulator supply voltage.
65. (New) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein
a peak voltage of the signal output frequencies is greater than a supply voltage;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
66. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein the signal output frequencies have a same Hertz value.
67. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein each signal output frequency is selected from a plurality of Hertz values.
68. (New) The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
69. (New) The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
70. (New) The capacitive responsive electronic switching circuit as defined in claim 86. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
71. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein the supply voltage is a battery supply voltage.
72. (New) The capacitive responsive electronic switching circuit as defined in claim 84. wherein the supply voltage is a voltage regulator supply voltage.
73. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
74. (New) The capacitive responsive electronic switching circuit as defined in claim 84 , further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
75. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
76. (New - Once Amended) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad
device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
77. (New) The capacitive responsive electronic switching circuit as defined in claim 95, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.
78. (New) The capacitive responsive electronic switching circuit as defined in claim 95, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.
79. (New) The capacitive responsive electronic switching circuit as defined in claim 97. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
80. (New) The capacitive responsive electronic switching circuit as defined in claim 97. wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
81. (New) The capacitive responsive electronic switching circuit as defined in claim 97. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
82. (New) The capacitive responsive electronic switching circuit as defined in claim 95 , wherein the supply voltage is a battery supply voltage.
83. (New) The capacitive responsive electronic switching circuit as defined in claim 95. wherein the supply voltage is a voltage regulator supply voltage.
84. (New) The capacitive responsive electronic switching circuit as defined in claim 95 , wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
85. (New) The capacitive responsive electronic switching circuit as defined in claim 95 , further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
86. (New) The capacitive responsive electronic switching circuit as defined in claim 95 , wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
87. (New) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency: a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
88. (New) The capacitive responsive switching circuit as defined in claim 106, wherein said oscillator provides a periodic output signal having a frequency of 800 kHz or greater.
89. (New) The capacitive responsive electronic switching circuit as defined in claim 106, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
90. (New) The capacitive responsive electronic switching circuit as defined in claim 106, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
91. (New) The capacitive responsive electronic switching circuit as defined in claim 106. wherein the detector circuit comprises a plurality of touch circuits, and wherein the microcontroller selectively provides the signal output frequencies to the plurality of small sized input touch terminals of the keypad via the plurality of touch circuits.
92. (New) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency:
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being

Page 13 of 141
responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
112. (New) The capacitive responsive electronic switching circuit as defined in claim 111. wherein said first and second touch terminals are adapted to be mounted on different surfaces of the controlled keypad device.
113. (New) The capacitive responsive electronic switching circuit as defined in claim 111. wherein said first and second touch terminals are adapted to be mounted on non-parallel planar surfaces of the controlled keypad device.
114. (New) The capacitive responsive electronic switching circuit as defined in claim 111. wherein said first and second touch terminals are adapted to be mounted on perpendicular planar surfaces of the controlled keypad device.
115. (New) The capacitive responsive electronic switching circuit as defined in claim 111 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said first touch terminal.
116. (New) The capacitive responsive electronic switching circuit as defined in claim 111 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said second touch terminal.
117. (New) The capacitive responsive electronic switching circuit as defined in claim 111, wherein the detector circuit comprises a plurality of touch circuits, and wherein the microcontroller selectively provides the signal output frequencies to the closely spaced array of input touch terminals of the keypad via the plurality of touch circuits.

REMARKS

Claims 1-17, 19-26, 28-34, and 36-39 are unamended with respect to the first Ex Parte Reexamination Certificate No. 5,796,183 C1 issued April 29, 2013. Claims 18, 27, and 35 are canceled herein. Claims 40-105 were previously added, and claims 106-117 are newly added by this amendment. The present amendment neither enlarges the scope of the claims of the patent nor introduces new matter.

Allowance of Claims

The Patent Owner acknowledges allowance of claims 45-55 and 72-94.

Claim Rejections under 35 U.S.C. $\$ 305$

Claims 18, 27, 40-44, 56-71, and 95-105 were rejected under 35 U.S.C. § 305 as enlarging the scope of claims 18 and 27 of the patent being reexamined. The Patent Owner respectfully submits that the amendments made herein overcome these rejections. In particular, the amendments to each independent claim restore the amended clause to its original form, and add the new claim language as a separate clause, so that the original clause retains its original scope. The Patent Owner further provides below a discussion of the newly-amended claims with respect to the cited prior art references.

Independent Claim 18

Independent claim 18 has been canceled and rewritten as new claim 106 per the Examiner's suggestion in Section 5 of the Office Action. Dependent claims 40-44 now depend from new claim 106. Likewise, dependent claims 107-109 - corresponding to claims 19, 33, and 34 - have been added and depend from claim 106. Each of these claims is allowable at least for the reasons discussed below with respect to claim 106.

Independent Claim 27

Independent claim 27 has been canceled and rewritten as new claim 111 per the Examiner's suggestion in Section 5 of the Office Action. Dependent claims 66-71 now depend from new claim 111. Likewise, dependent claims 112-117 - corresponding to claims 28-32 and 36 - have been added and depend from claim 111. Each of these claims is allowable at least for the reasons discussed below with respect to claim 111.

Independent Claim 56

Claim 56 has been amended to restore the previously amended clause to its original form and to add the new claim language as a separate clause, so that the original clause retains its original scope. More specifically, independent claim 56 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that " $[t]$ he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances are minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60; see id. at Fig. 4. Thus, Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. As acknowledged by the Examiner, "Boie does not teach or suggest the microcontroller is used to selectively provid[e] signal output frequencies to input touch terminals of a keypad." Office Action, p. 15. Therefore, Boie does not teach or suggest a microcontroller providing signal output frequencies to these components, wherein the microcontroller selectively provides a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad.

Neither Gerpheide nor Lee cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies selectively to each row of the input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the "reference frequency signal is supplied to unit 14 via an AND gate $72 \ldots$. The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78." See id. at col. 6:19-26; Fig. 4. Thus, the output of AND gate 72 is
sent to every row of electrode array 12 via one of inverter 74 and noninverting buffer 76 at the same time. Therefore, Gerpheide does not disclose a microcontroller selectively providing a signal output frequency to each row of a plurality of small sized input touch terminals of a keypad.

Likewise, Lee does not teach or suggest that a microcontroller selectively provides a signal output frequency to each row of a plurality of small sized input touch terminals of a keypad. The Examiner has also acknowledged Lee does not disclose this limitation. See, e.g., Office Action, p. 16 ("Lee does not teach or suggest sending signal output frequencies to the selected rows."). Rather, Lee teaches the CPU selects or deselects row(s) by sending binary signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. Therefore, Lee does not teach or suggest a microcontroller selectively providing a signal output frequency to each row of a plurality of small sized input touch terminals of a keypad.

Moreover, none of the cited references teaches or suggests wherein a peak voltage of the signal output frequencies is greater than a supply voltage.

Accordingly, Boie in combination with Gerpheide and/or Lee does not disclose all of the elements of claim 56 , and therefore claim 56 is patentable over these references.

New claims 57-65 depend from claim 56 and add further limitations. The Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Independent Claim 95

Claim 95 has been amended to restore the previously amended clause to its original form and to add the new claim language as a separate clause, so that the original clause retains its original scope. More specifically, independent claim 95 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that " $[\mathrm{t}]$ he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances are minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60; see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. As acknowledged by the Examiner, "Boie does not teach or suggest the microcontroller is used to selectively provid[e] signal output frequencies to input touch terminals of a keypad." Office Action, p. 15. Therefore, Boie does not teach or suggest the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad, the input touch terminals comprising first and second input touch terminals.

None of Gerpheide, Lee or Casio cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies selectively to each row of the input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the "reference frequency signal is supplied to unit 14 via an AND gate $72 \ldots$. The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78." See id. at col. 6:19-26; Fig. 4. Thus, the output of AND gate 72 is sent to every row of electrode array 12 via one of inverter 74 and noninverting buffer 76 at the same time. Therefore, Gerpheide does not disclose a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad.

Likewise, Lee does not teach or suggest that a microcontroller selectively provides a signal output frequency to each row of a plurality of small sized input touch terminals of a keypad. The Examiner has also acknowledged Lee does not disclose this limitation. See, e.g., Office Action, p. 16 ("Lee does not teach or suggest sending signal output frequencies to the selected rows."). Rather, Lee teaches the CPU selects or deselects row(s) by sending binary
signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. In contrast, claim 95 recites selectively providing a signal output frequency to each row of the touch terminals. Therefore, Lee does not teach or suggest a microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad.

Casio discloses input touch terminals comprising first and second input touch terminals, see, e.g., Figure, but fails to provide any teaching with respect to the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad.

Moreover, none of the cited references teaches or suggests wherein a peak voltage of the signal output frequencies is greater than a supply voltage.

Accordingly, Boie in combination with Gerpheide, Lee and/or Casio does not disclose all of the elements of claim 95 , and therefore claim 95 is patentable over these references.

New claims 96-105 depend from claim 95 and add further limitations. The Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Independent Claim 106

As discussed above, independent claim 18 has been canceled and rewritten as new claim 106 per the Examiner's suggestion in Section 5 of the Office Action. Claim 106 also restores the previously amended clause of claim 18 to its original form and adds the new claim language as a separate clause, so that the original clause retains its original scope. More specifically, independent claim 106 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad." None of the cited references, alone or in combination, teaches or suggests these limitations.

As discussed above with respect to claim 56, the cited references, either alone or in combination, fail to teach or suggest the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the
selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad. For at least these same reasons, claim 106 is allowable over the cited art.

New claims 40-44 and 107-110 depend from claim 106 and add further limitations. The Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Independent Claim 111

As discussed above, independent claim 27 has been canceled and rewritten as new claim 111 per the Examiner's suggestion in Section 5 of the Office Action. Claim 111 also restores the previously amended clause of claim 27 to its original form and adds the new claim language as a separate clause, so that the original clause retains its original scope. More specifically, independent claim 111 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad." None of the cited references, alone or in combination, teaches or suggests these limitations.

As discussed above with respect to claim 95 , the cited references, either alone or in combination, fail to teach or suggest the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad.

Accordingly, Boie in combination with Gerpheide, Lee and/or Casio does not disclose all of the elements of claim 111, and therefore claim 111 is patentable over these references.

New claims 66-71 and 112-117 depend from claim 111 and add further limitations. The Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Support for New Claims

Support for each of the new claims 40-117 may be found throughout the `183 Patent, and particular support may be found, for example, as set forth in the charts below. These charts follow the same organizational structure as those provided in the Amendment Accompanying Request for Ex Parte Reexamination under 35 U.S.C. §§ 302-307 filed on December 24, 2013

A. Canceled Claim 18

Claim 18 has been canceled herein, thus no chart of claim support is provided.

B. Canceled Claim 27

Claim 27 has been canceled herein, thus no chart of claim support is provided.

C. New Claim 40

183 Patent Claim Language	183 Patent Support
40. The capacitive responsive electronic switching circuit as defined in claim 106, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This

183 Patent Claim language	183 Patent Support
	allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability

183 Patent Claim Language	183 Patent Support
	requirements of a given application." Col. 14:65 - Col. 15:1.

D. New Claim 41

183 Patent Claim language	183 Patent Support
41. The capacitive responsive electronic switching circuit as defined in claim 106, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at

Page 23 of 141

183 Patent Claim Language	183 Patent Support
	10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

E. New Claim 42

\begin{tabular}{|c|c|}
\hline 183 Patent Clam language \& 183 Patent Support

\hline 42. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater \& | See Figure 11. |
| :--- |
| The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of |

\hline
\end{tabular}

Page 24 of 141

183 Patent Claim Ianguage	183 Patent Support		
than 50 kHz .	surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & frequencies as low as 50 kHz may also be \\ possible depending upon the type of glass or \\ covering or the thickness thereof used for the \\ touch pad. Col. 10:60 - Col. 11:27. \\ & \begin{tabular}{l} The`183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.			

F. New Claim 43

183 Patent Claim Language	183 Patent Support
43. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate

183 Patent Claim Language	183 Patent Support		
	between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

G. New Claim 44

183 Patent Claim language	183 Patent Support
44. The capacitive responsive electronic switching circuit as defined in claim 41 , wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges

Page 28 of 141

183 Patent Claim Language	\% 183 Patent Support
	between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

H. New Claim 45

For ease of analysis, new independent claim 45 is shown below with pseudo-amendments illustrating the differences between new claim 45 and claim 18 of the ${ }^{`} 183$ Patent following the first reexamination proceeding.

183 Patent Claim Language	\$183 Patent Support
45. A capacitive responsive electronic switching circuit comprising:	See Claim 18.

183 Patent Claim Language	183 Patent Support
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 18.
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad;	See Figures 4, 11; and Claims 8, 12, 16. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The`183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\ The `183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via

183 Patent Claim Language	\#183 Patent Support
	line 201 to a floating common generator 300, a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\ The`183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components

183 Patent Claim Language	183 Patent Support
	similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900_{nm} by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and	See Claim 18.
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when	See Claim 18.

183 Patent Claim Language	
proximal or touched by the operator to provide a control output signal,	
of sherein said predefined frequency frequencies are selected to signal output impedance of said dielectric substrate a first	See Claim 18.
relative to a second impedance of any	
contaminate that may create an electrical	
path on said dielectric substrate between	
said adjacent areas defined by the	
plurality of small sized input touch	
terminals, and wherein said detector	
circuit compares a sensed body	
capacitance change to ground proximate	
an input touch terminal to a threshold	
level to prevent inadvertent generation of	
the control output signal.	

I. New Claim 46

For ease of analysis, new dependent claim 46 is shown below with pseudo-amendments illustrating the differences between new claim 46 and claim 33 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim Language	183 Patent Support
46. The capacitive responsive electronic switching circuit as defined in claim 45 , further comprising wherein said detector eirevit compares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input ouch terminal is compared to a second threshold level to generate the control output signal.	See Claims 1, 18, 28, and 33. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The`183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line

183 Patent Claim Language	183 Patent Support
	451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Col. 10:54-Col. 11:9. \\ The ` 183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF . The base terminal of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is

183 Patent Claim Language	183 Patent Support
	present by the user touching the touch pad 450, transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413 , thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time. Col. 15:29-47.

J. New Claim 47

For ease of analysis, new dependent claim 47 is shown below with pseudo-amendments illustrating the differences between new claim 47 and claim 34 of the ` 183 Patent following the first reexamination proceeding.

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support \\
\hline 47. The capacitive responsive electronic switching circuit as defined in claim 45, futher comprising wherein said detector eircuit compares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input toweh is compared to a second threshold level to generate the control output signal. \& \begin{tabular}{l}
See Claims 1, 18, 28, and 34. \\
The `183 Patent discloses "Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. \(4,758,735\) and U.S. Pat. No. 5,087,825. With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183, Patent Clatm language \& 183 Patent Suppor \\
\hline \multirow[t]{4}{*}{} \& amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56. \\
\hline \& The ' 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
\hline \& The `183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. \\
\hline \& The '183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support \\
\hline \& \begin{tabular}{l}
by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Col. 10:54-Col. 11:9. \\
The `183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF . The base terminal of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450, transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413 , thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time. Col. 15:29-47.
\end{tabular} \\
\hline
\end{tabular}

K. New Claim 48

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 48. The capacitive responsive electronic switching circuit as defined in claim 45 , wherein the signal output \& | See Figure 11. |
| :--- |
| The `183 Patent discloses "The touch detection |

\hline
\end{tabular}

Page 37 of 141

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline frequencies have a same Hertz value. \& | circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. |
| :--- |
| The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57 . For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance |

\hline
\end{tabular}

183 Patent Claim Language	\% 183 Patent Support
	paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

L. New Claim 49

183 Patent Clam language	183 Patent Support
49. The capacitive responsive electronic switching circuit as defined in claim 45 , wherein each signal output frequency is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are

Page 39 of 141

183 Patent Claim Language	183 Patent Support		
	comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

M. New Claim 50

183 Patent Claim Language	183 Patent Support
50. The capacitive responsive electronic switching circuit as defined in claim 49, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched

Page 41 of 141

183 Patent Claim Language	183 Patent Support
	pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65

¢183 Patent Claím Language	־183 Patent Support
	-Col. 15:1.

N. New Claim 51

183 Patent Clam Language	183 Patent Support
51. The capacitive responsive electronic switching circuit as defined in claim 49 , wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass

183 Patent Claim Language	183 Patent Support
	becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

O. New Claim 52

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 52. The capacitive responsive electronic switching circuit as defined in claim 49 , wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz . \& | See Fig. 11. |
| :--- |
| The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a |

\hline
\end{tabular}

Page 44 of 141

183 Patent Claim Language	183 Patent Support
	[sic] skin oils and water. Col. 5:49-53.
	The `183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\ The` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however,

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| :--- |
| The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

P. New Claim 53

183 Patent Claim language	183 Patent Support		
53. The capacitive responsive electronic switching circuit as defined in claim 45 , wherein a peak voltage of the signal output frequencies is greater than a supply voltage.	See Figures 4, 5; Claims 27 and 37. The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. \\ Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. \\ Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6." Col. 11:60-Col. 12:13. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Clam Language & 183 Patent Suppor \\ \hline & \begin{tabular}{l} The `183 Patent discloses "Microcontroller 500 selects each row of the touch circuits 900_{1} to 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s)." Col. 18:4349. The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130 . AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. \\ The`183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of $-40^{\circ} \mathrm{C}$. to $105^{\circ} \mathrm{C}$. The output of the touch switch circuitry drops at a rate of approximately $40 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. when temperature falls below $0^{\circ} \mathrm{C}$. If application requires operation at low temperatures $\left(-40^{\circ} \mathrm{C}\right.$.), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41.

Q. New Claim 54

183 Patent Clam Language	\$183 Patent Support
54. The capacitive responsive	The `183 Patent discloses "It will be apparent to

183 Patent Claim Language	183 Patent Support
electronic switching circuit as defined in claim 53 , wherein the supply voltage is a battery supply voltage.	those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31.

R. New Claim 55

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 55. The capacitive responsive electronic switching circuit as defined in claim 53 , wherein the supply voltage is a voltage regulator supply voltage. \& | Figures 4, 5, 11, and 12. |
| :--- |
| The `183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64-Col. 12:5; see also Col. 12:50 - Col. 13:31. |

\hline
\end{tabular}

S. New Claim 56

For ease of analysis, new independent claim 56 is shown below with pseudo-amendments illustrating the differences between new claim 56 and claim 18 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim Language	Satent Support
56. A capacitive responsive electronic switching circuit comprising:	See Claim 18.
an oscillator providing a periodic output signal having a predefined	See Claim 18.

183 Patent Claim Language	183 Patent Support
frequency;	
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;	See Figures 4, 5, 11; and Claims 8, 12, 16, 18, 27 and 37. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The`183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\ The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage

183 Patent Claim Language	183 Patent Support
	regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. Upon being powered by voltage regulator 100, oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad

183 Patent Claim Language	183 Patent Support
	450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 11:60-12:33. The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated \(D C\) power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130 . \(\mathrm{AC} / \mathrm{DC}\) convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. \\ The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. The `183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The output of the touch switch circuitry drops at a rate of approximately \(40 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). when temperature falls below \(0^{\circ} \mathrm{C}\). If application requires operation at low temperatures \(\left(-40^{\circ} \mathrm{C}\right.\).), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41. \\ The`183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components

183 Patent Claim Language	183 Patent Support
	similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900_{nm} by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and	See Claim 18.
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when	See Claim 18.

183 Patent Claim Language	
proximal or touched by the operator to provide a control output signal,	
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.	

T. New Claim 57

For ease of analysis, new dependent claim 57 is shown below with pseudo-amendments
illustrating the differences between new claim 57 and claim 33 of the ` 183 Patent following the
first reexamination proceeding.

183 Patent Claim Language	183 Patent Support		
57. The capacitive responsive electronic switching circuit as defined in claim 56 , futher comprising wherein said detector eirevit compares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input toueh terminal is compared to a second threshold level to generate the control output signal.	See Claims 1, 18, 28, and 33. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & \#183 Patent Support \\ \hline & \begin{tabular}{l} The` 183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Col. 10:54-Col. 11:9. \\ The`183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF . The base terminal

183 Patent Claim Language	183 Patent Support
	of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450, transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413, thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time. Col. 15:29-47.

U. New Claim 58

For ease of analysis, new dependent claim 58 is shown below with pseudo-amendments illustrating the differences between new claim 58 and claim 34 of the ' 183 Patent following the first reexamination proceeding.

183 Patent Clam Language	183 Patent Support				
58. The capacitive responsive electronic switching circuit as defined in claim 56 , futher comprising wherein said detector eirevit compares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input toueh terminat is compared to a second threshold level to generate the control output signal.	See Claims 1, 18, 28, and 34. The `183 Patent discloses "Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. \(4,758,735\) and U.S. Pat. No. \(5,087,825\). With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56. \\ The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. The ' 183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Col. 10:54-Col. 11:9. \\ The `183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF . The base terminal of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450 , transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413 , thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time. Col. 15:29-47.

V. New Claim 59

183 Patent Claim Language	183 Patent Support
59. The capacitive responsive	See Figure 11.

183 Patent Claim Language	183 Patent Support
electronic switching circuit as defined in claim 56 , wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.	The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies

183 Patent Claim Language	\% 183 Patent Support
	as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

W. New Claim 60

183 Patent Clam language	§83 Patenl Support
60. The capacitive responsive electronic switching circuit as defined in claim 56, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| :--- |
| The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

X. New Claim 61

183 Patent Claim Language	183 Patent Support
61. The capacitive responsive electronic switching circuit as defined in claim 60, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10

183 Patent Claim Language	183 Patent Support
	to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily

183 Patent Claim Language	183 Patent Support
	vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

Y. New Claim 62

183 Patent Claim language	183 Patent Support
62. The capacitive responsive electronic switching circuit as defined in claim 60 , wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. |
| :--- |
| The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| The "183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

Z. New Claim 63

183 Patent Claim Language	183 Patent Support					
63. The capacitive responsive electronic switching circuit as defined in claim 60 , wherein the plurality of Hertz values comprises Hertz values greater	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline than 800 kHz . & \begin{tabular}{l} at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The ` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59 . In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & \multicolumn{1}{c	}{183 Patent Support } \\ \hline & \begin{tabular}{l} provide for different oscillator output \\ frequencies. As discussed above, however, \\ oscillator 200 is preferably constructed so as to \\ output a square wave having a frequency of 50 \\ kHz or greater, and more preferably, of 800 kHz \\ or greater. Col. 14:22-28. \\ \\ The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

AA. New Claim 64

183 Patent Claim Language	183 Patent Support
64. The capacitive responsive electronic switching circuit as defined in claim 56 , wherein the supply voltage is a battery supply voltage.	The ` 183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31.

BB. New Claim 65

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 65. The capacitive responsive electronic switching circuit as defined in claim 56 , wherein the supply voltage is a voltage regulator supply voltage. \& | Figures 4, 5, 11, and 12. |
| :--- |
| The ` 183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105 . |
| Voltage regulator also supplies oscillator 200 |

\hline
\end{tabular}

183 Patent Claim Language	183 Patent Support
	with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64-Col. 12:5; see also Col. 12:50 - Col. 13:31.

CC. New Claim 66

183 Patent Claim Language	183 Patent Support
66. The capacitive responsive electronic switching circuit as defined in claim 111, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift

183 Patent Claim Language	\% 183 Patent Support
	and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

DD. New Claim 67

183 Patent Clam language	\$183 Patent Support		
67. The capacitive responsive electronic switching circuit as defined in claim 111, wherein each signal output frequency selectively provided to each	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values. & \begin{tabular}{l} at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57 . For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough

183 Patent Claim Language	\% 183 Patent Support
	to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

EE. New Claim 68

183 Patent Claim Language	183 Patent Support
68. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator

183 Patent Claim Language	183 Patent Support		
	frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

FF. New Claim 69

183 Patent Clam Language	183 Patent Support
69. The capacitive responsive electronic switching circuit as defined in claim 67 , wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad

183 Patent Claim Language	183 Patent Support
	resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

GG. New Claim 70

183 Patent Claim language	183 Patent Support
70. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or

183 Patent Claim Language	183 Patent Support
	covering or the thickness thereof used for the touch pad. Col. 11:1-27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

HH. New Claim 71

183 Patent Claim I anguage	183 Patent Support
71. The capacitive responsive electronic switching circuit as defined in claim 111, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	See Figures 19, 20A-C; and Claims 28 and 35. The `183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201, a second palm button 2202 , and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\ The `183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310, is initiated when the operator inserts his hands and touches the vertical touch sensor

183 Patent Claim Language	183 Patent Support
	2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.

II. New Claim 72

For ease of analysis, new independent claim 72 is shown below with pseudo-amendments illustrating the differences between new claim 72 and claim 27 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim language	Is3 Patent Support
72. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:	See Claim 27.
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 27.
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;	See Figures 4, 11; and Claims 8, 12, 16. circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& \#183 Patent Support

\hline \& | very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. |
| :--- |
| The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\ The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col . 11:19-27. |
| The ` 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator |

\hline
\end{tabular}

183 Patent Claim Language	\% 183 Patent Support
	200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\ The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900_{nm} by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller

183 Patent Claim Language	500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the first and second input touch	See Claim 27.
terminals defining areas for an operator to provide an input by proximity and touch; and	a detector circuit coupled to said
oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	

JJ. New Claim 73

	183 Patent Clam Language	183 Patent Support
73.	The capacitive responsive	See Figure 11.

183 Patent Claim Language	183 Patent Support
electronic switching circuit as defined in claim 72 , wherein the signal output frequencies have a same Hertz value.	The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies

183 Patent Claim Language	183 Patent Support
	as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

KK. New Claim 74

183 Patent Clam language	§183 Patent Support
74. The capacitive responsive electronic switching circuit as defined in claim 72, wherein each signal output frequency is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that

Page 81 of 141

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| :--- |
| The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

LL. New Claim 75

183 Patent Claim Language	183 Patent Support
75. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10

183 Patent Claim Language	183 Patent Support
	to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily

183 Patent Claim Language	183 Patent Support
	vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

MM. New Claim 76

183 Patent Claim language	183 Patent Support
76. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. |
| :--- |
| The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| The "183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

NN. New Claim 77

183 Patent Claim Language	183 Patent Support					
77. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline than 800 kHz . & \begin{tabular}{l} at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59 . In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & \multicolumn{1}{c	}{183 Patent Support } \\ \hline & \begin{tabular}{l} provide for different oscillator output \\ frequencies. As discussed above, however, \\ oscillator 200 is preferably constructed so as to \\ output a square wave having a frequency of 50 \\ kHz or greater, and more preferably, of 800 kHz \\ or greater. Col. 14:22-28. \\ \\ The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

OO. New Claim 78

For ease of analysis, new dependent claim 78 is shown below with pseudo-amendments illustrating the differences between new claim 78 and claim 28 of the $` 183$ Patent following the first reexamination proceeding.

183 Patent Claim Language	183 Patent Support
78. The capacitive responsive	See Claims 27 and 28.
electronic switching circuit as defined in	
claim 72, wherein said detector circuit	
enerates is configured to generate said	
control output signal only when the	
operator is proximal or touches said	
second touch terminal within a	
predetermined time period after the	
operator is proximal or touches said first	
touch terminal.	

PP. New Claim 79

For ease of analysis, new dependent claim 79 is shown below with pseudo-amendments illustrating the differences between new claim 79 and claim 36 of the ` 183 Patent following the first reexamination proceeding.

	183 Patent Claim Language	183 Patent Support
	The capacitive responsive	See Claims 32 and 36.

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline electronic switching circuit as defined in claim 72, andfurther ineluding comprising an indicator for indicating when said the detector circuit determines has determined that the operator is proximal or touches said second touch terminal. \& | The `183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. \\ The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. |
| :--- |
| The ` 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310." Col. 23:28-30. |

\hline
\end{tabular}

QQ. New Claim 80

183 Patent Claim Language	183 Patent Support
80. The capacitive responsive	See Figures 19, 20A-C; and Claims 28 and 35.

183 Patent Claim Language	183 Patent Support
electronic switching circuit as defined in claim 72 , wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	The `183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201, a second palm button 2202 , and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\ The ` 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.

RR. New Claim 81

\begin{tabular}{|c|c|}
\hline 183 Patent Claim language \& ת183 Patent Support

\hline 81. The capacitive responsive electronic switching circuit as defined in claim 72 , wherein a peak voltage of the signal output frequencies is greater than a \& | See Figures 4, 5; Claims 27 and 37. |
| :--- |
| The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic |

\hline
\end{tabular}

183 Patent Claim Language	183 Patent Support
supply voltage.	construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. Upon being powered by voltage regulator 100, oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6." Col. 11:60-Col. 12:13. The `183 Patent discloses "Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s)." Col. 18:4349. \\ The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130 . AC/DC convertor 110 includes

| `183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. \\ The ` 183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of $-40^{\circ} \mathrm{C}$. to $105^{\circ} \mathrm{C}$. The output of the touch switch circuitry drops at a rate of approximately $40 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. when temperature falls below $0^{\circ} \mathrm{C}$. If application requires operation at low temperatures $\left(-40^{\circ} \mathrm{C}\right.$.), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41. |
| :---: | :---: |

\hline
\end{tabular}

SS. New Claim 82

183 Patent Claim I anguage	183 Patent Support
82. The capacitive responsive electronic switching circuit as defined in claim 81 , wherein the supply voltage is a battery supply voltage.	The ` 183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200 . For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31.

TT. New Claim 83

\begin{tabular}{|c|c|}
\hline 183 Patent Claim language \& 183 Patent Support

\hline 83. The capacitive responsive electronic switching circuit as defined in claim 81 , wherein the supply voltage is a \& | Figures 4, 5, 11, and 12. |
| :--- |
| The ` 183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for |

\hline
\end{tabular}

Page 92 of 141

183 Patent Claim Language	183 Patent Support
voltage regulator supply voltage.	receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64-Col. 12:5; see also Col. 12:50 - Col. 13:31.

UU. New Claim 84

For ease of analysis, new independent claim 84 is shown below with pseudo-amendments illustrating the differences between new claim 84 and claim 27 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim Language							
84. capacitive responsive electronic switching circuit for a controlled keypad device comprising:	See Claim 27.						
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 27.						
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals wherein a peak voltage of the signal output frequencies is greater than a	See Figures 4, 5, 11; and Claims 8, 12, 16, 27 and 37. The `183 Patent discloses "The touch detection \\ circuit of the present invention features operation \\ at frequencies at or above 50 kHz and preferably \\ at or above 800 kHz to minimize the effects of \\ surface contamination from materials such a \\ [sic] skin oils and water. It also offers \\ improvements in detection sensitivity that allow \\ close control of the degree of proximity (ideally \\ very close proximity) that is required for \\ actuation and to enable employment of a \\ multiplicity of small sized touch terminals in a \\ physically close array such as a keyboard." Col. \\ \(5: 49-57\). \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\ The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. \\ Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. \\ Upon being powered by voltage regulator 100, oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500 . Oscillator 200 is described below with reference \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} to FIG. 6. \\ Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. \\ Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. \\ Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 11:60-12:33. \\ The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130 . AC/DC convertor 110 includes diodes $112,114,116$, and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. The `183 Patent discloses "As will be apparent \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & \% 183 Patent Support \\ \hline & \begin{tabular}{l} to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\ The`183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of $-40^{\circ} \mathrm{C}$. to $105^{\circ} \mathrm{C}$. The output of the touch switch circuitry drops at a rate of approximately $40 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. when temperature falls below $0^{\circ} \mathrm{C}$. If application requires operation at low temperatures $\left(-40^{\circ} \mathrm{C}\right.$.), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41. The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900_{nm}, which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900_{nm} by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection
183 Patent Claim Language	circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.						
:---	:---						
the first and second input touch	See Claim 27.						
terminals defining areas for an operator to provide an input by proximity and touch; and							
oscillator for receriving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.							

VV. New Claim 85

\begin{tabular}{|c|c|}
\hline 183 Patent Claim language \& 183 Patent Support

\hline 85. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the signal output frequencies have a same Hertz value. \& | See Figure 11. |
| :--- |
| The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a |

\hline
\end{tabular}

Page 97 of 141

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | [sic] skin oils and water. Col. 5:49-53. |
| :--- |
| The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be |

\hline
\end{tabular}

183 Patent Claim Language	183 Patent Support
	possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

WW. New Claim 86

183 Patent Claim language	183 Patent Support
86. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein each signal output frequency is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads

Page 99 of 141

183 Patent Claim Language	183 Patent Support		
	by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

XX. New Claim 87

183 Patent Claim language	183 PatentSupport
87. The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of

183 Patent Claim Language	183 Patent Support
	operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

YY. New Claim 88

183 Patent Claim language	183 Patent Support
88. The capacitive responsive electronic switching circuit as defined in claim 86 , wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at

183 Patent Claim Language	183 Patent Support
	or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

ZZ. New Claim 89

183 Patent Claim language	ת/ת/ 183 Patent Support
89. The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower

183 Patent Claim Language	183 Patent Support		
	giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & . \\ \hline & \begin{tabular}{l} The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

AAA. New Claim 90

183 Patent Clatmlanguage	\$183 Patent Support
90. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the supply voltage is a battery supply voltage.	The `183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200 . For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31.

BBB. New Claim 91

The capacitive responsive	Figures 4, 5, 11, and 12.
91. electronic switching circuit as defined in claim 84, wherein the supply voltage is a voltage regulator supply voltage.	The '183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for
receiving a 24 V AC line voltage and a line 103	
for grounding the circuit. Voltage regulator 100	
converts the received AC voltage to a DC	
voltage and supplies a regulated 5 V DC power	
to an oscillator 200 via lines 104 and 105.	
Voltage regulator also supplies oscillator 200	
with 26 V DC power via line 106. The details of	
voltage regulator 100 are discussed below with	
reference to FIG. 5." Col. 11:64 - Col. 12:5; see	
also Col. 12:50 - Col. 13:31.	

CCC. New Claim 92

For ease of analysis, new dependent claim 92 is shown below with pseudo-amendments illustrating the differences between new claim 92 and claim 28 of the ' 183 Patent following the first reexamination proceeding.

183 Patent Clam Language	ת/8183 Patent Support
92. The capacitive responsive electronic switching circuit as defined in claim 84, wherein said detector circuit generates is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.	See Claims 27 and 28.

DDD. New Claim 93

For ease of analysis, new dependent claim 93 is shown below with pseudo-amendments illustrating the differences between new claim 93 and claim 36 of the ' 183 Patent following the first reexamination proceeding.

\begin{tabular}{|c|c|}
\hline I183 Patent Clim language \& ת183 Pateni Support

\hline 93. The capacitive responsive electronic switching circuit as defined in claim 84, and-further ineluding comprising an indicator for indicating When said the detector circuit determines has determined that the operator is proximal or touches said second touch terminal. \& | See Claims 32 and 36. |
| :--- |
| The `183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of |

\hline
\end{tabular}

183 Patent Claim language	183 Patent Support
	touches." Col. 6:31-42.
	The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. \\ The` 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310." Col. 23:28-30.

EEE. New Claim 94

183 Patent Clam language	\#183 Patent Support
94. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	See Figures 19, 20A-C; and Claims 28 and 35. The `183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201, a second palm button 2202 , and an indicator light 2205 . Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\ The ` 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to

183 Patent Claim Language	183 Patent Support
	FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.

FFF. New Claim 95

For ease of analysis, new independent claim 95 is shown below with pseudo-amendments illustrating the differences between new claim 95 and claim 27 of the ' 183 Patent following the first reexamination proceeding.

183 Patent Claim Language	183 Patent Support		
95. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:	See Claim 27.		
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 27.		
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to	See Figures 4, 5, 11; and Claims 8, 12, 16, 27 and 37. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline '183 Patent Claim Language & 183 Patent Support \\ \hline each row of the closed spaced array of input touch terminals of the keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage; & \begin{tabular}{l} [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The`183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\ The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with

183 Patent Claim Language	183 Patent Support		
	{reference to FIG. 5. Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300, a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501, which is preferably a two way optical coupling bus." Col. 11:60-12:33. The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 \end{tabular}} \\ \hline & \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130 . AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. \\ The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. The `183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The output of the touch switch circuitry drops at a rate of approximately \(40 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). when temperature falls below \(0^{\circ} \mathrm{C}\). If application requires operation at low temperatures \(\left(-40^{\circ} \mathrm{C}\right.\).), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col . 16:33-41. \\ The`183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900_{nm}, which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4).

183 Patent Claim Language	Microcontroller 500 selects each row of the touch circuits 900_{1} to $900_{\text {nm by providing the }}$ signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the first and second input touch	See Claim 27. a detector circuit coupled to said
terminals defining areas for an operator to provide an input by proximity and touch; and	See Claim 27.
oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	

GGG. New Claim 96

183 Patent Claim language	183 Patent Support
96. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at

183 Patent Claim Language	183 Patent Support
	or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

HHH. New Claim 97

183 Patent Claim language	ת/als 183 Patent Supporr
97. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to

Page 115 of 141

183 Patent Claim language	,anal
	approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27.

183 Patent Claim Language	183 Patent Support
	The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

III. New Claim 98

183 Patent Claim Language	183 Patent Support
98. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to

183 Patent Claim Language	183 Patent Suppor
	ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of

183 Patent Claim Language	183 Patent Support
	oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

JJJ. New Claim 99

183 Patent Clam language	183 Paten Support
99. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components

183 Patent Claim Language	183 Patent Support
	and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

KKK. New Claim 100

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 100. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz \& | See Fig. 11. |
| :--- |
| The `183 Patent discloses "The touch detection |

\hline
\end{tabular}

Page 120 of 141

183 Patent Claim Language	183 Patent Support
values comprises Hertz values greater than 800 kHz .	circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. The `183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59 . In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\ The`183 Patent discloses "As will be apparent to those skilled in the art, the values of the

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& \% 183 Patent Support

\hline \& | resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| :--- |
| The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

LLL. New Claim 101

183 Patent Claim Language	183 Patent Support
101. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein the supply voltage is a battery supply voltage.	The ` 183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200 . For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the $\mathrm{AC} / \mathrm{DC}$ convertor among other components may be eliminated." Col 13:23-31.

MMM. New Claim 102

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Ianguage \& 183 Patent Support

\hline 102. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein the supply voltage is a voltage regulator supply voltage. \& | Figures 4, 5, 11, and 12. |
| :--- |
| The `183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power |

\hline
\end{tabular}

183 Patent Claim Language	. 183 Patent Support
	to an oscillator 200 via lines 104 and 105.
	Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64 - Col. 12:5; see also Col. 12:50 - Col. 13:31.

NNN. New Claim 103

For ease of analysis, new dependent claim 103 is shown below with pseudo-amendments illustrating the differences between new claim 103 and claim 28 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim Language	Per Patent Support
103. The capacitive responsive	See Claims 27 and 28.
electronic switching circuit as defined in	
claim 95, wherein said detector circuit	
generates is configured to generate said	
control output signal only when the	
operator is proximal or touches said	
second touch terminal within a	
predetermined time period after the	
operator is proximal or touches said first	
touch terminal.	

OOO. New Claim 104

For ease of analysis, new dependent claim 104 is shown below with pseudo-amendments illustrating the differences between new claim 104 and claim 36 of the ` 183 Patent following the first reexamination proceeding.

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 104. The capacitive responsive electronic switching circuit as defined in claim 95, and-further ineluding comprising an indicator for indicating When said the detector circuit determines has determined that the operator is proximal or touches said second touch terminal. \& | See Claims 32 and 36. |
| :--- |
| The ` 183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio |

\hline
\end{tabular}

183 Patent Claim Language	183 Patent Support
	indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. \\ The ` 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310." Col. 23:28-30.

PPP. New Claim 105

183 Patent Claim Language	183 Patent Support		
105. The capacitive responsive electronic switching circuit as defined in claim 95, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	See Figures 19, 20A-C; and Claims 28 and 35. The `183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201, a second palm button 2202 , and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} window before a desired actuation can occur." Col. 22:49-55. \\ The `183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310 . The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.

QQQ. Claim 106

For ease of analysis, new independent claim 106 is shown below with pseudoamendments illustrating the differences between new claim 106 and claim 18 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim language	183 Patent Support
106. A capacitive responsive electronic switching circuit comprising:	See Claim 18.
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 18.
a microcontroller using the	See Figures 4, 11; and Claims 8, 12, 16, 18.

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the plurality of small sized input touch terminals of the keypad; \& | The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. |
| :--- |
| The '183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. |
| The `183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460, a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. |

\hline
\end{tabular}

183 Patent Claim Language	\% 183 Patent Support
	Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\ The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of

183 Patent Claim Language	183 Patent Support
	the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and	See Claim 18.
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,	See Claim 18.
wherein said predefined frequency of said oscillator and said signal output	See Claim 18.

183 Patent Claim Language	183 Patent Support
frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.	

RRR. New Claim 107

Isa Patent Claim Language	Then Support
107. The capacitive responsive switching circuit as defined in claim 106, wherein said oscillator provides a periodic output signal having a frequency of 800 kHz or greater.	

SSS. New Claim 108

For ease of analysis, new dependent claim 108 is shown below with pseudo-amendments illustrating the differences between new claim 108 and claim 33 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim Language	183 Patent Support				
108. The capacitive responsive electronic switching circuit as defined in claim 106, futher comprising wherein said detector eireuit compares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body	See Claims 1, 18, 28, and 33. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline capacitance change to ground whem proximate to the imput toueh terminat is compared to a second threshold level to generate the control output signal. & \begin{tabular}{l} close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The ` 183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} inadvertent actuation of adjacent touch pads to that of the touched pad. Col. 10:54-Col. 11:9. \\ The ` 183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF . The base terminal of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450, transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413 , thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time. Col. 15:29-47.

TTT. New Claim 109

For ease of analysis, new dependent claim 109 is shown below with pseudo-amendments illustrating the differences between new claim 109 and claim 34 of the ' 183 Patent following the first reexamination proceeding.

183 Patent Claim language	183 Patent Support		
109. The capacitive responsive electronic switching circuit as defined in claim 106, futher comprising wherein suid detector eirevit compares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on	See Claims 1, 18, 28, and 34. The `183 Patent discloses "Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. \(4,758,735\) and U.S. Pat. No. \(5,087,825\). With \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input toueh is compared to a second threshold level to generate the control output signal. & \begin{tabular}{l} this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56. \\ The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. The `183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col . 12:24-28. \\ The` 183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal $1 \mathrm{M} \Omega$ of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at

| 183 Patent Claim Language | . 183 Patent Support |
| :--- | :--- | :--- |
| | voltage to -0.7 V and also reduce the forward
 recovery and turn-on time. Col. 15:29-47. |

UUU. New Claim 110

183 Patent Claim Language	Sen Support
110. The capacitive responsive electronic switching circuit as defined in claim 106, wherein the detector circuit comprises a plurality of touch circuits, and wherein the microcontroller selectively provides the signal output frequencies to the plurality of small sized input touch terminals of the keypad via the plurality of touch circuits.	Sicrocontroller 500 selects each row of the touch circuits 9001 to 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. Col. 18:43-52.

VVV. New Claim 111

For ease of analysis, new independent claim 111 is shown below with pseudoamendments illustrating the differences between new claim 111 and claim 27 of the ${ }^{`} 183$ Patent following the first reexamination proceeding.

183 Patent Claim Language	
111. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:	See Claim 27.
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 27.
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals	The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of

Page 134 of 141

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline comprising first and second input touch terminals, wherein the selectively providing comprises the microcontroller selectively providing a signal output frequency to each row of the closely spaced array of input touch terminals of the keypad; \& | surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. |
| :--- |
| The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\ The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. |
| The `183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and |

\hline
\end{tabular}

183 Patent Claim Language	183 Patent Support
	frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501, which is preferably a two way optical coupling bus." Col. 12:6-33. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\ The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4).

183 Patent Claim Language	Microcontroller 500 selects each row of the touch circuits 900_{1} to $900_{\text {nm by providing the }}$ signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the first and second input touch	See Claim 27. a detector circuit coupled to said
terminals defining areas for an operator to provide an input by proximity and touch; and	See Claim 27.
oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	

WWW. New Claim 112

183 Patent Claim Language	The capacitive responsive
112. electronic switching circuit as defined in claim 111, wherein said first and second touch terminals are adapted to be mounted on different surfaces of the controlled keypad device.	

XXX. New Claim 113

183 Patent Claim Language	Ratent Support
113. The capacitive responsive electronic switching circuit as defined in claim 111, wherein said first and second touch terminals are adapted to be mounted on non-parallel planar surfaces of the controlled keypad device.	

YYY. New Claim 114

183 Patent Claim Language	Paten Support
114. The capacitive responsive electronic switching circuit as defined in claim 111, wherein said first and second touch terminals are adapted to be mounted on perpendicular planar surfaces of the controlled keypad device.	

ZZZ. New Claim 115

183 Patent Clain language	183 Pateni Support
115. The capacitive responsive electronic switching circuit as defined in	See Claim 32.

183 Patent Claim Language	Patent Support
claim 111 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said first touch terminal.	

AAAA. New Claim 116

183 Patent Claim Language	183 Patent Support
116. The capacitive responsive electronic switching circuit as defined in claim 111 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said second touch terminal.	See Claims 32 and 36. The `183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. \\ The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone

183 Patent Claim Language	183 Patent Support
	or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. The ' 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step tum-on and activation of output relay 2310." Col. 23:28-30.

BBBB. New Claim 117

183 Patent Claim Language	183 Patent Support
117. The capacitive responsive electronic switching circuit as defined in claim 111, wherein the detector circuit comprises a plurality of touch circuits, and wherein the microcontroller selectively provides the signal output frequencies to the closely spaced array of input touch terminals of the keypad via the plurality of touch circuits.	See Figures 4 and 11; Claims 6, 27. Microcontroller 500 selects each row of the touch circuits 900_{1} to 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. Col. 18:43-52.

I. CONCLUSION

In view of the above, the Patent Owner submits that the claims are in condition for allowance. The present amendment neither enlarges the scope of the claims of the patent nor introduces new matter. If the Examiner should have any questions, please contact the Patent Owner's Attorney, Brian A. Carlson, at 972-732-1001. The Commissioner is hereby authorized to charge any fees due in connection with this filing, or credit any overpayment, to Deposit Account No. 50-1065.

Respectfully submitted,

May 7, 2014
Date
/Brian A. Carlson/
Brian A. Carlson
Reg. No. 37,793

Slater \& Matsil, L.L.P. 17950 Preston Rd.
Suite 1000
Dallas, TX 75252
972-732-1001
972-732-9218 (fax)

Electronic Patent Application Fee Transmittal				
Application Number:	90013106			
Filing Date:	24-Dec-2013			
Title of Invention:	Capacitive Responsive Electronic Switching Circuit			
First Named Inventor/Applicant Name:	5796183			
Filer:	Brian A. Carlson/Michelle Hatcher			
Attorney Docket Number:	NAR-5796183RX2			
Filed as Large Entity				
ex parte reexam Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Reexamination claims in excess of 20	1822	10	80	800
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Extension-of-Time:				

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:	Total in USD (\$)	800		

Electronic Acknowledgement Receipt	
EFS ID:	18972281
Application Number:	90013106
International Application Number:	
Confirmation Number:	9188
Title of Invention:	Capacitive Responsive Electronic Switching Circuit
First Named Inventor/Applicant Name:	5796183
Customer Number:	25962
Filer:	Brian A. Carlson/Michelle Hatcher
Filer Authorized By:	Brian A. Carlson
Attorney Docket Number:	NAR-5796183RX2
Receipt Date:	07-MAY-2014
Filing Date:	24-DEC-2013
Time Stamp:	18:11:47
Application Type:	Reexam (Patent Owner)

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 800$
RAM confirmation Number	4565
Deposit Account	501065
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \quadCharge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees) \mathbf{l}	

File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		NAR_5796183RX_ResponseTo OfficeAction.pdf		yes	141
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Response after non-final action-owner timely		1	1	
	Claims		2	14	
	Applicant Arguments/Remarks Made in an Amendment		15	141	
Warnings:					
Information:					
2	Fee Worksheet (SB06)	fee-info.pdf	30097	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			625273		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Tradenark Office Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
www uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$90 / 013,106$	5796183	NAR-5796183RX2		
25962	$12 / 24 / 2013$	9188		
SLATER \& MATSLL, L.L.P.				
17950 PRESTON RD, SUITE 1000				
DALLAS, TX 75252-5793		EXAMINER		

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

| Office Action in Ex Parte Reexamination | Control No.
 $90 / 013,106$ | Patent Under Reexamination
 5796183 |
| :--- | :--- | :--- | :--- |
| | Examiner
 HENRY N. TRAN | Art Unit
 3992AIA (First Inventor to
 File) Status
 No |

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
a. \boxtimes Responsive to the communication(s) filed on 12/24/2013.
\square A declaration(s)/affidavit(s) under 37 CFR 1.130 (b) was/were filed on \qquad
b.This action is made FINAL.
c. \boxtimes A statement under 37 CFR 1.530 has not been received from the patent owner.

A shortened statutory period for response to this action is set to expire $\underline{2}$ month(s) from the mailing date of this letter. Failure to respond within the period for response will result in termination of the proceeding and issuance of an ex parte reexamination certificate in accordance with this action. 37 CFR 1.550(d). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550(c).
If the period for response specified above is less than thirty (30) days, a response within the statutory minimum of thirty (30) days will be considered timely.

Part I THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1. \square Notice of References Cited by Examiner, PTO-892.
3.Interview Summary, PTO-474.
2. \boxtimes Information Disclosure Statement, PTO/SB/08.
3. \qquad —.

Part II SUMMARY OF ACTION
1a. \boxtimes Claims 18.27 and $40-105$ are subject to reexamination.
1b. \boxtimes Claims 1-17,19-26,28-34 and 36-39 are not subject to reexamination.
2. \boxtimes Claims $\underline{35}$ have been canceled in the present reexamination proceeding.
3. \boxtimes Claims $45-55$ and $72-94$ are patentable and/or confirmed.
4. \boxtimes Claims 18,27,40-44, 56-71 and 95-105 are rejected.
5.Claims \qquad are objected to.
6.The drawings, filed on \qquad are acceptable.
7. \square The proposed drawing correction, filed on \qquad has been (7a)approved (7b)disapproved.
8. \square Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)-(d) or (f).
a)All b)Some* c) \qquad None of the certified copies havebeen received.
$2 \square$not been received.been filed in Application No. \qquad -

4been filed in reexamination Control No. \qquad _.
\qquadbeen received by the International Bureau in PCT application No. \qquad -

* See the attached detailed Office action for a list of the certified copies not received.

9.

\square Since the proceeding appears to be in condition for issuance of an ex parte reexamination certificate except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
10.Other: \qquad

The present application is being examined under the pre-AIA first to invent provisions.
DETAILED EX PARTE REEXAMINATION NON-FINAL ACTION

I. INTRODUCTION

1. This Non-Final Office action concerns the Ex Parte Reexamination of the U.S. Patent No.

5,796, 183 C 1 issued April 29, 2013 to Hourmand et al. (the '183 patent or "Hourmand"). Patent
Owner's waiver of its statement under 37 CFR 1.530 filed on March 4, 2014 after the Order Granting Request for Ex Parte Reexamination of claims 18 and 27 of the ' 183 patent mailed on February 26, 2014. Patent owner's Amendment under rule 37 CFR 1.510 filed with the Request on December 24, 2013 has been entered. Claims 18, 27, and 40-105 are considered in this reexamination proceeding. The examination results are: Claims $18,27,40-44,56-71$, and $95-$ 105 are rejected; and claims 45-55 and 72-94 are found patentable because of the reasons set forth below.

II. RULES, REGULATIONS AND REEXAMINATION PROCEDURE

2. The following rules and procedures are applicable to this action:

35 U.S.C. 305 Conduct of reexamination proceedings.

After the times for filing the statement and reply provided for by section $\mathbf{3 0 4}$ of this title have expired, reexamination will be conducted according to the procedures established for initial examination under the provisions of sections $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$ of this title. In any reexamination proceeding under this chapter, the patent owner will be permitted to propose any amendment to his patent and a new claim or claims thereto, in order to distinguish the invention as claimed from the prior art cited under the provisions of section $\mathbf{3 0 1}$ of this title, or in response to a decision adverse to the patentability of a claim of a patent. No proposed amended or new claim enlarging the scope of a claim of the patent will be permitted in a reexamination proceeding under this chapter. All reexamination proceedings under this section, including any appeal to the

Board of Patent Appeals and Interferences, will be conducted with special dispatch within the Office.

37 C.F.R. 1.552 Scope of reexamination in ex parte reexamination proceedings.

- (a) Claims in an ex parte reexamination proceeding will be examined on the basis of patents or printed publications and, with respect to subject matter added or deleted in the reexamination proceeding, on the basis of the requirements of 35 U.S.C. $\mathbf{1 1 2}$.
- (b) Claims in an exparte reexamination proceeding will not be permitted to enlarge the scope of the claims of the patent.
- (c) Issues other than those indicated in paragraphs (a) and (b) of this section will not be resolved in a reexamination proceeding. If such issues are raised by the patent owner or third party requester during a reexamination proceeding, the existence of such issues will be noted by the examiner in the next Office action, in which case the patent owner may consider the advisability of filing a reissue application to have such issues considered and resolved.

The reexamination proceeding provides a complete reexamination of the patent claims on the basis of prior art patents and printed publications. Issues relating to $\mathbf{3 5}$ U.S.C. 112 are addressed only with respect to new claims or amendatory subject matter in the specification, claims or drawings. Any new or amended claims are examined to ensure that the scope of the original patent claims is not enlarged, i.e., broadened. See 35 U.S.C. 305.

See MPEP 2258

MPEP 2260.01 Dependent Claims [R-2] provides:

If ** $>$ an unamended base patent claim (i.e., a claim appearing in the reexamination as it appears in the patent) < has been rejected or canceled, any claim which is directly or indirectly dependent thereon should be confirmed or allowed if the dependent claim is otherwise allowable. The dependent claim should not be objected to or rejected merely because it depends on a rejected or canceled patent claim. No requirement should be made for rewriting the dependent claim in independent form. As the original patent claim numbers are not changed in a reexamination proceeding, the content of the canceled base claim would remain in the printed patent and would be available to be read as a part of the confirmed or allowed dependent claim.

If a new base claim (a base claim other than a base claim appearing in the patent) has been canceled in a reexamination proceeding, a claim which depends thereon should be rejected as * > indefinite < . If a new base claim > or an amended patent claim < is rejected, a claim dependent thereon should be objected to if it is otherwise patentable and a requirement made for rewriting the dependent claim in independent form

III. PRIOR ART PATENTS AND PRINTED PUBLICATIONS

3. The prior art patents and printed publications cited in the request pursuant to C.F.R. § 1.510 (b)
(3), see id., Request page 10, and relied upon in this Office action are relisted below:

- U.S. Patent No. 5,463,388 issued to Boie et al. on October 31, 1995 ("Boie" or the '388 patent), which was submitted with the request as Exhibit C.
- U.S. Patent No. 5,565,658 issued to Gerpheide et al. on October 15, 1996 ("Gerpheide" or the ' 658 patent), which was submitted with the request as Exhibit D.
- Casio advertisement entitled "Now... The Invisible Casio Calculator Watch," published in Popular Science by On the Run in 1984 ("Casio"), which was submitted with the request as Exhibit E.
- Lee, thesis entitled "A Fast Multiple-Touch-Sensitive Input Device," and published October 1984 ("Lee"), which was submitted with the IDS filed with the request.

4. Boie filed on January 29, 1993, Gerpheide filed on December 7, 1994, Casio published in 1984, and Lee published in October 1984; and they are all prior to the Critical Date of January 31,1996 - which is the filing date of the ' 183 patent - constitute effective prior art reference as to the claims of the '183 patent under 35 U.S.C. §102(a), 102(e), or 102(b).

It is noted that Boie was previously cited and considered, i.e., "old art", by the Office in an earlier concluded ex parte reexamination control number 90/012,439 of the patent being reexamined, which is hereinafter referred to as "the first request"; and Lee was newly cited with the Amendment and its content and pertinent information thereof as explained by the patent owner have been noted.

Art Unit: 3992

IV. RESPONSE TO AMENDMENT

Patent owner's Amendment under 37 CFR 1.510 filed on December 24, 2013 has been entered. Patent owner's amendments to the claims and the remarks, see id. Amendment pp. 2-142, with respect to the claims status, claims support, and prior art references have been fully considered with the results set forth below.
5. Regarding the status of the claims
(Amendment Section II page 17)
Claims 18 and 27 have been amended, claims 40-105 are new, claim 35 is canceled, and claims 1-17, 19-26, 28-34, and 36-39 are original and they have not been requested for reexamination; thus, claims 18, 27, and 40-105 are considered in this reexamination proceeding.

It is noted that claims 18 and 27 each has dependent claims (i.e., claims 19, 33, and 34, or 28-32, and 36 , respectively) that are not subject to reexamination. Because the effect that they would have on the scope of claims that are not subject to reexamination, no amendments to any of these claims that would change the scope of each respective claim may be made, unless all claims that are dependent upon the claim are also made subject to this reexamination proceeding.

In order to make the dependent claims subject to reexamination, the patent holder should submit for each such dependent claim:
(a) a statement pointing out at least one substantial new question of patentability based on the prior patents and printed publications of record as to the dependent claim, and

Art Unit: 3992
(b) a detailed explanation of the pertinency and manner of applying the prior art patents and printed publications of record to that dependent claim.

As an alternative, the patent holder may submit new claims that consist of the same limitations as the original parent claims, with any desired amendments to the claims being made to those new claims; and the patent holder may also choose to amend any other claims that are subject to reexamination so that they are properly dependent upon these new claims, as appropriate. In this case, claims 18 and 27 should be canceled and have them rewritten into two new claims; also, new claims 40-44 and 66-71 should be amended, where applicable, to reflect the dependency to the two new claims; and non-reexamined dependent claims19, 28-34, and 36 are not changed (see MPEP 2260.01 recited above).

Appropriate correction is required.
6. Regarding Patent owner's discussion of claims and prior art references
(a) Regarding Lee

Patent owner's arguments, see Amendment pp. 18-20, with respect to the teachings of the Lee's system and method of A Fast Multiple-Touch-Sensitive Input Device, has been fully considered and are persuasive. The examiner agrees that Lee does not disclose sending signal output frequencies to the selected rows.
(b) Regarding Claims 18, 27, 40-44, and 66-71

Patent owner's arguments, see id. at Amendment pp. 21-24, with respect to the combinations of prior art references, Boie, Gerpheide, Lee, and/or Casio, for the rejections of independent claims 18 and 27 , and their dependent claims $40-44$, and 66-71, respectively, have been fully considered but they are not persuasive because the discussion is directed to the issues and/or limitations that enlarge the scope of the claims of the ' 183 patent. Such issues may be considered and resolved in a reissue application. See 37 C.F.R. 1.552(c). It is noted that claims $18,27,40-44$, and 66-71 are rejected under 35 U.S.C. 305 (see the rejections under 35 U.S.C. 305 below).

(c) Regarding Claims 45-55

Patent owner's arguments, see id. at Amendment pp. 24-26, with respect to claims 45-55, have been fully considered and are persuasive. The examiner agrees that Boie in combination with Gerpheide and/or Lee does not disclose at least all the limitations of base claim 45. Claims 4555 are patentable.
(d) Regarding Claims 56-65

Patent owner's arguments, see id. at Amendment p. 26, with respect to the combinations of prior art references, Boie, Gerpheide, and/or Lee, for the rejections of independent claim 56 and its dependent claims 57-65, have been fully considered but they are not persuasive because the discussion is directed to the issues and/or limitations that enlarge the scope of the claims of the ' 183 patent. As noted in claims 18 and 27 above, such issues may be considered and resolved in a reissue application. See 37 C.F.R. 1.552(c). It is noted that claims 56-65 are rejected under 35 U.S.C. 305 (see the rejections under 35 U.S.C. 305 below).

Art Unit: 3992
(e) Regarding Claims 72-83

Patent owner's arguments, see $i d$. at Amendment pp. 27-28, with respect to claims $72-83$, have been fully considered and are persuasive. The examiner agrees that Boie in combination with Gerpheide, Lee and/or Casio does not disclose at least all the limitations of base claim 72. Claims 72-83 are patentable.

(f) Regarding Claims 84-94

Patent owner's arguments, see id. at Amendment pp. 28-29, with respect to claims 84-94, have been fully considered and are persuasive. The examiner agrees that Boie in combination with Gerpheide, Lee and/or Casio does not disclose at least all the limitations of base claim 84 . Claims 84-94 are patentable.
(g) Regarding Claims 95-105

Patent owner's arguments, see $i d$. at Amendment pp. 29-30, with respect to the combinations of prior art references, Boie, Gerpheide, Casio and/or Lee, for the rejections of independent claim 95 and its dependent claims 96-105, have been fully considered but they are not persuasive because the discussion is directed to the issues and/or limitations that enlarge the scope of the claims of the ' 183 patent. As noted in claims 18 and 27 above, such issues may be considered and resolved in a reissue application. See 37 C.F.R. 1.552(c). It is noted that claims 95-105 are rejected under 35 U.S.C. 305 (see the rejections under 35 U.S.C. 305 below).

Art Unit: 3992

V. RELEVANT STATUTE - CLAIMS REJECTIONS

7. Relevant Statute

35 U.S.C. 305 Conduct of reexamination proceedings
After the times for filing the statement and reply provided for by section $\mathbf{3 0 4}$ of this title have expired, reexamination will be conducted according to the procedures established for initial examination under the provisions of sections $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$ of this title. In any reexamination proceeding under this chapter, the patent owner will be permitted to propose any amendment to his patent and a new claim or claims thereto, in order to distinguish the invention as claimed from the prior art cited under the provisions of section 301 of this title, or in response to a decision adverse to the patentability of a claim of a patent. No proposed amended or new claim enlarging the scope of a claim of the patent will be permitted in a reexamination proceeding under this chapter. All reexamination proceedings under this section, including any appeal to the Board of Patent Appeals and Interferences, will be conducted with special dispatch within the Office.

8. Claim Rejections

(a) Claim Rejections - 35 U.S.C. 305

Claims 18, 27, 40-44, 56-71, and 95-105 are rejected under 35 U.S.C. 305 as enlarging the scope of the claims 18 and 27 of the patent being reexamined. In 35 U.S.C. 305 , it is stated that "[n]o proposed amended or new claim enlarging the scope of a claim of the patent will be permitted in a reexamination proceeding... ." A claim presented in a reexamination "enlarges the scope" of the patent claim(s) where the claim is broader than any claim of the patent. A claim is

Art Unit: 3992
broader in scope than the original claims if it contains within its scope any conceivable product or process which would not have infringed the original patent. A claim is broadened if it is broader in any one respect, even though it may be narrower in other respects.

Regarding amended base claim 18, the limitation: "the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad;" recited in lines 3-5 enlarges the scope of the original patent claim 18 because it is different from the term "the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad;" recited in lines $6-8$ of the original base patent claim 18. The scope of patent claim 18 has been redefined and enlarged by said limitation in at least one respect. Specifically, the microcontroller is no longer being required to selectively provide signal output frequencies to a plurality of small sized input touch terminals of a keypad as compared with that of the original base patent claim 18; and thus, the claim is broader in scope in this respect. Claim 18 is therefore rejected.

Regarding new claims 40-44, which are dependent upon the amended base claim 18, and they are rejected on the same reason set forth for the amended base claim 18 above due to their dependency.

Regarding amended base claim 27, the limitation: "the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;" recited in lines 4-7 enlarges the scope of the original patent claim 27 because it is different from the term "the microcontroller selectively
providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;" recited in lines $6-9$ of the original base patent claim 27. The scope of patent claim 27 has been redefined and enlarged by said limitation in at least one respect. Specifically, the microcontroller is no longer being required to selectively provide signal output frequencies to a closely spaced array of input touch terminals of a keypad as compared with that of the original base patent claim 27; and thus, the claim is broader in scope in this respect. Claim 27 is therefore rejected.

Regarding new claims 66-71, which are dependent upon the amended base claim 27, and they are rejected on the same reason set forth for the amended base claim 27 above due to their dependency.

Regarding new claims 56-65, each recites the limitation: "the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad;" in lines 3-5 of base claim 56 , and which has been found to enlarge the scope of the ' 183 patent claim 18 (see the discussion for claim 18 above). Claim 56-65 are therefore rejected.

Regarding new claims 95-105, each recites the limitation: "the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;" in lines 4-7, and which has been found to enlarge the scope of the ' 183 patent claim 27 (see the discussion for claim 27 above). Claim 95-105 are therefore rejected.

Art Unit: 3992
VI. ALLOWABLE SUBJECT MATTER
9. Claims 45-55 and 72-94 are allowed.

STATEMENT OF REASONS FOR PATENTABILITY AND/OR CONFIRMATION

10. The following is an examiner's statement of reasons for patentability and/or confirmation of the claims found patentable in this reexamination proceeding:

The ' 183 patent generally relates to a capacitive responsive electronic switching circuit including an oscillator $\mathbf{2 0 0}$ providing a periodic output signal, a keypad having a plurality of input touch terminals $\mathbf{4 5 0}$ defining areas for an operator to provide inputs by proximity and touch, a microcontroller 500 using the periodic output signal from the oscillator for selectively providing signal output frequencies to the input touch terminals, and a detector circuit $\mathbf{4 0 0}$ coupled to the oscillator, the input touch terminals, and the microcontroller for providing a control output signal based on the presence of operator's body capacitance to ground coupled to the input touch terminal when in proximity or touched by an operator. See, e.g., the ' 183 patent, Abstract, Figures 4 and 11. Each of the independent claims 45, 72 and 84 identifies the uniquely distinct features that are not taught or suggested by the cited prior art patents and publications, either alone or in any reasonable combinations. Specifically, (i) Independent claim 45 requires, inter alia, the features: "an oscillator (200) providing a periodic output signal having a predefined frequency;", "the microcontroller (500) selectively providing signal output frequencies directly to a plurality of small sized input touch terminals $(57,59)$ of a keypad", and "a detector circuit (400) coupled to said oscillator (200) for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said
detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance (CBODY) to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal, wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.", see Figures 3 and 4;
(ii) Independent claim 72 requires, inter alia, the features: "an oscillator (200) providing a periodic output signal having a predefined frequency;", "a microcontroller (500) using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals (57,59) of a keypad,", and "a detector circuit (400) coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals (57,59), said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance (CBODY) to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal." , see Figures 3 and 4; and

Art Unit: 3992
(iii) independent claim 84 requires, inter alia, the features: "an oscillator (200) providing a periodic output signal having a predefined frequency:", "a microcontroller(500) using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals $(57,59)$ of a keypad, the input touch terminals comprising first and second input touch terminals $(57,59)$, wherein a peak voltage of the signal output frequencies is greater than a supply voltage:", and "a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.", see Figures 3 and 4

Whereas, the cited prior art:

Boie

Boie discloses a computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an array $\mathbf{1 0 0}$ of electrodes arranged in a grid pattern and connected in columns and rows, each column and row is connected to circuitry 401 , which can be selected by multiplexer $\mathbf{4 0 2}$ under control of microcontroller 406. See id. at col. 3:56-61. The selected output is forwarded to summing circuit 403, the output of which is converted by synchronous detector and filter circuit $\mathbf{4 0 4}$ to a signal related to the capacitance of the row or column selected by the multiplexer. See id. at col. 3:62-67. The RF oscillator $\mathbf{4 0 8}$ provides an RF signal of, for example , 100 Kilohertz, to circuits 401, synchronous detector and filter circuit 404 via inverter $\mathbf{4 1 0}$, and guard plane 411, which is a substantially continuous plane parallel to array $\mathbf{1 0 0}$ and associated connections, and serves to isolate array $\mathbf{1 0 0}$ from extraneous signals. See id. at col. 3:67-col. 4:5. To measure separate capacitance values for each electrode in array 100 instead of the collective capacitances of subdivided electrode elements connected in rows and columns, a circuit $\mathbf{4 0 1}$ is provided for each electrode in array $\mathbf{1 0 0}$ and multiplexer $\mathbf{4 0 2}$ is

Art Unit: 3992
enlarged to accommodate the outputs from all circuits 401. See id. at col. 4:14-21. The output of synchronous detector and filter 404 is converted to digital form by analog-to-digital converter 405 and forwarded to microcontroller 406 so that microcontroller 406 obtains a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. See id. at col. 4:22-28. Particularly, Boie discloses driving the electrodes of electrode array 100 and guard planes 411 with a single RF signal for minimizing the effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances. See id. at col. 4:58-61.

Thus, Boie does not teach or suggest the microcontroller is used to selectively providing signal output frequencies to input touch terminals of a keypad.

Accordingly, Boie does not teach or suggest the above-identified underlined claimed features.

Gerpheide

Gerpheide teaches a system and method for a capacitance-based proximity sensor with interference rejection. See Abstract. The system $\mathbf{1 0}$ comprises an electrode array 12, a synchronous electrode capacitance measurement unit 14, a reference frequency generator 16, and a position locator 18. See id. at Figure 1, and col. 3:52 to col. 4:26. The electrode array consists of multiple X electrodes 20 and Y electrodes 22. See $i d$. at Figures 2A and 2B. The synchronous electrode capacitance measurement unit $\mathbf{1 4}$ is connected to the electrode array $\mathbf{1 2}$ and the reference frequency generator 16 for producing capacitive measurement signals. See id. at Figure 4, and col. 5:50-67. Particularly, Gerpheide teaches that the reference frequency generator $\mathbf{1 6}$ includes an oscillator $\mathbf{1 0 0}$ for driving a microcontroller $\mathbf{1 0 2}$ and a divide-by-(M+N) circuit 104, for providing signal output frequencies and always selecting a reference frequency away from frequencies which have been found to result in measurement interference; wherein, N is a fixed constant, approximately 50 , and M is specified by the microcontroller $\mathbf{1 0 2}$ to be, for example, one of four values in the ranges 61 KHz to 80 KHz as specified by the microcontroller 102; and wherein, the microcontroller $\mathbf{1 0 2}$ performs the functions of interference evaluation 106 and frequency selection 108. See id. at Figure 7, and col. 8:20-43.

Thus, Gerpheide does not teach or suggest the synchronous electrode capacitance measurement unit is responsive to signals from the oscillator via said microcontroller and the presence of an operator's body capacitance (CBODY) to ground.

Accordingly, Gerpheide does not teach or suggest the above-identified underlined claimed features.

Casio

Casio teaches a Casio Calculator Watch, which is a timepiece product employing electro-touch technology. The watch works by reading finger-strokes traced across its face. See id.at col. 1 . The transparent touch panel construction includes a fiberglass panel having a transparent

Art Unit: 3992
conductor film pattern (first layer) and a dielectric layer (second layer) overlying the fiberglass. See id.at col. 2. The touch panel determines figure and math symbols outlined with fingerstrokes traced across the face. See id.at col. 1. The touch panel senses the input, and then digitizes it to extract features of the figure or math symbol. See id.at col. 2. The watch then outputs the corresponding figure or math symbol on the screen.

Thus, Casio does not teach or suggest the microcontroller is used to selectively providing signal output frequencies to input touch terminals of a keypad.

Accordingly, Casio does not teach or suggest the above-identified underlined claimed features.

Lee

Lee discloses a fast-scanning multiple-touch-sensitive input device comprising: a sensor matrix board, row and column selection registers, A/D converting circuits and a dedicated CPU. See id. at Figure 3.4. The row selection registers select one or more rows by setting the corresponding bits to a high state in order to charge up the sensors while the column selection registers select one or more columns by turn on corresponding analog switches to discharge the sensors through timing resistors. The intersecting region of the selected rows and the selected columns represents the selected sensors as a unit. See id. at Figure 3.1(a) shows a model of a selected sensor in the sensor matrix, Figure 3.1 (b) shows the timing diagram for discharging time measurement of a selected sensor, and Figure 3.2 illustrates a small section of a sensor matrix. Particularly, Lee describes the interface between the CPU and the sensor matrix as follows: The CPU selects the row or rows of a sensor group, initiating charging of all the associated sensors. After a charging interval, the CPU discharges the selected column or columns corresponding to a sensor group by connecting a group of discharge resistors whose current is summed via a high slew rate operational amplifier. Wherein, the CPU selects or deselects the row(s) by sending binary signals to the selected row(s). See id. at Figs. 3.1(a), 3.1(b), and 3.4, and page 3-10. As illustrated by the data bus of Figure 3.4.

Thus, Lee does not teach or suggest sending signal output frequencies to the selected rows and/or column.

Accordingly, Lee does not teach or suggest the above-identified underlined claimed features.

The above cited prior art references, Boie, Gerpheide, Casio and/or Lee, disclose conventional capacitive responsive switching devices for an operator provide an input by proximity and touch.

However, said cited prior art references, either alone or in any reasonable combinations, fail to teach or suggest the above-identified underlined claimed features.

Any comments considered necessary by PATENT OWNER regarding the above statement must be submitted promptly to avoid processing delays. Such submission by the patent owner should be labeled: "Comments on Statement of Reasons for Patentability and/or Confirmation" and will be placed in the reexamination file.

VII. INFORMATION DISCLOSURE STATEMENT

With respect to the Information Disclosure Statements (PTO/SB/08A and 08B or its equivalent) filed on $12 / 24 / 2013$, the material has been considered with this action, the information cited thereon has been considered to the extent suggested in the MPEP. Note that MPEP §§ 2256 and 2656 indicate that degree of consideration to be given to such information will be normally limited by the degree to which the party filing the information citation has explained the content and relevance of the information.

Any duplicate citations noticed by the examiner have been lined through.

VIII. CONCLUSION

A. Extensions of Time

Extensions of time under 37 CFR 1.136(a) will not be permitted in these proceedings because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a reexamination proceeding. Additionally, 35 U.S.C. 305 requires that reexamination proceedings "will be conducted with special dispatch" (37 CFR 1.550(a)). Extension of time in ex parte reexamination proceedings are provided for in 37 CFR 1.550(c).

B. Litigation Reminder

The patent owner is reminded of the continuing responsibility under 37 CFR $1.565(\mathrm{a})$ to apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the '183 patent throughout the course of this reexamination proceeding. See MPEP $\S \$ 2207,2282$ and 2286.

C. Amendment Proposed in Reexamination - 37 CFR 1.530(d)-(j)

Patent owner is notified that any proposed amendment to the specification and/or claims in this reexamination proceeding must comply with 37 CFR 1.530 (d)-(j), must be formally presented pursuant to 37 CFR 1.52 (a) and (b), and must contain any fees required by 37 CFR 1.20 (c).

D. Correspondence and Inquiry as to Office Actions

All correspondence related to this ex parte reexamination proceeding should be directed as follows:

By EFS: \quad Registered users may submit via the electronic filing system EFS-Web, at https://efs.uspto.gov/efile/myportal/efs-registered

By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450

By FAX to: (571) 273-9900
Central Reexamination Unit

By hand: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 2231

Art Unit: 3992

For EFS-Web transmissions, 37 CFR 1.8(a)(1)(i) (C) and (ii) states that correspondence (except for a request for reexamination and a corrected or replacement request for reexamination) will be considered timely filed if (a) it is transmitted via the Office's electronic filing system in accordance with 37 CFR 1.6(a)(4), and (b) includes a certificate of transmission for each piece of correspondence stating the data of transmission, which is prior to the expiration of the set period of time in the Office action.

Any inquiry by the patent owner concerning this communication or earlier communications from the Legal Advisor or Examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.

Signed:

/Henry N Tran/
Patent Reexamination Specialist, CRU - Art Unit 3992

Conferees:

/Albert Gagliardi/
Patent Reexamination Specialist, CRU - Art Unit 3992

/SUDHANSHU PATHAK/
Supervisory Patent Examiner, Art Unit 3992

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	
	First Named Inventor	Byron Hourmand
	Art Unit	3992
	Examiner Name	H. Tran
	Attorney Docket Number	er 5796183 RX

U.S.PATENTS Remove						
Examiner Initial*	Cite No	Patent Number	Kind Code ${ }^{1}$	Issue Date	Name of Patentee or Applicant of cited Document	Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear
	1	4766368		1988-08-23	Cox	
	2	4825385		1989-04-25	Dolph, et al.	
	3	5305017		1994-04-19	Gerpheide	
	4	5337353		1994-08-09	Boie, et al.	
	5	5463388		1995-10-31	Boie, et al.	
	6	5565658		1996-10-15	Gerpheide, et al.	
If you wish to add additional U.S. Patent citation information please click the Add button. Add						
U.S.PATENT APPLICATION PUBLICATIONS Remo						
Examiner Initial*	Cite No	Publication Number	Kind Code ${ }^{1}$	Publication Date	Name of Patentee or Applicant of cited Document	Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear

6	HLADY, A.M., "A touch sensitive X-Y position encoder for computer input," Proceedings of the Fall Joint Computer Conference, November 18-20, 1969, pp. 545-551.	\square
7	SASAKI, L., et al., "A Touch-Sensitive Input Device," International Computer Music Conference Proceedings, November 1981, pp. 293-296.	\square
8	CALLAHAN, J., et al., "An Empirical Comparison of Pie vs. Linear Menus," Human Factors in Computing Systems: Chicago '88 Conference Proceedings: May 15-19, 1988, Washington DC: Special Issue of the SIGCHI Bulletin, New York, Association for Computing Machinery, pp. 95-100.	\square
9	CASIO, AT-550 Advertisement, published in Popular Science by On The Run, February 1984, p.-129.	\square
10	CASIO, "Module No. 320," AT-550 Owner's Manual, at least as early as December 1984, 14 pages.	\square
11	SMITH, S.D., et al., "Bit-slice microprocessors in h.f. digital communications," The Radio and Electronic Engineer, Vol. 51, No. 6, June 1981, pp. 299-301.	\square
12	BOIE, R.A., "Capacitive Impedance Readout Tactile Image Sensor," Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 1, March 1984, pp. 370-372.	\square
13	THOMPSON, C., "Clive Thompson on The Breakthrough Myth," Wired Magazine, http://www.wired.com/ magazine/2011/07/st_thompson_breakthrough, August 2011, 3 pages.	\square
14	"Innovation in Information Technology," National Research Council of the National Academies, Computer Science and Telecommunications Board, Division on Engineering and Physical Sciences, http://www.nap .edu/catalog/10795.html, 2003, 85 pages.	\square
15	BUXTON, W., et al., "Issues and Techniques in Touch-Sensitive Tablet Input," Proceedings of SIGGRAPH '85, Vol. 19 No. 3, July 22-26, 1985, pp. 215-223.	\square
16	BUXTON, W., et al., "Large Displays in Automotive Design," IEEE Computer Graphics and Applications, July/August 2000, pp. 68-75.	\square

17	BUXTON, W., "Lexical and Pragmatic Considerations of Input Structures," ACM SIGGRAPH Computer Graphics, Vol. 17, No. 1, January 1983, pp. 31-37.	\square
18	BETTS, P., et al., "Light Beam Matrix Input Terminal," IBM Technical Disclosure Bulletin, October 1966, pp. 493-494.	\square
19	BUXTON, B., "Multi-Touch Systems that I Have Known and Loved," downloaded from http://www.billbuxton.com/ multitouchOverview.html, January 12, 2007, 22 pages.	\square
20	HEROT, C.F., et al., "One-Point Touch Input of Vector Information for Computer Displays," Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, August 23-25, 1978, pp. 210-216	\square
21	WOLFELD, J.A., "Real Time Control of a Robot Tacticle Sensor," University of Pennslyvania, Department of Computer \& Information Science, Technical Reports (CIS), Master Thesis, http://repository.upenn.edu/cis reports/678, August 1981, 68 pages.	\square
22	LEWIS, J.R., "Reaping the Benefits of Modern Usability Evaluation: The Simon Story," Advances in Applied Ergonomics: Proceedings of the 1st International Conference on Applied Ergonomics, ICAE May 21-24, 1996, pp. 752-755.	\square
23	NAKATANI, L.H., et al., "Soft Machines: A Philosophy of User-Computer Interface Design," Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, December 1983, Chicago, pp. 19-23.	\square
24	RUBINE, D.H., "The Automatic Recognition of Gestures," Carnegie Mellon University, Master Thesis, CMU-CS-91-202, December, 1991, 285 pages.]
25	KURTENBACH, G.P., "The Design and Evaluation of Marking Menus," University of Toronto, Graduate Department of Computer Science, Master Thesis, May 1993, 201 pages.	\square
26	HOPKINS, D., "The Design and Implementation of Pie Menus," originally published in Dr. Dobb's Journal, December 1991, lead cover story, user interface issue, reproduced at www. DonHopkins.com, 8 pages.	\square
27	BUXTON, B., "The Long Nose of Innovation," Bloomberg Businessweek, Innovation \& Design, January 2, 2008, 3 pages, downloaded from: http://www.businessweek.com/stories/2008-01-02/the-long-nose-of-innovationbusinessweek-business-news-stock-market-and-financialadvice.	\square

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).
\square See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
\times A certification statement is not submitted herewith.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR $1.33,10.18$. Please see CFR 1.4(d) for the form of the signature.

Signature	/Brian A. Carlson/	Date (YYYY-MM-DD)	2013-12-24
Name/Print	Brian A. Carlson	Registration Number	37,793

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Index of Claims	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
\mathbf{O}	Objected

\square Claims renumbered in the same order as presented by applicant							CPA	\square	T.D	\square	R.1.47
CLAIM		DATE									
Final	Original	03/20/2014									
	1	N									
	2	N									
	3	N									
	4	N									
	5	N									
	6	N									
	7	N									
	8	N									
	9	N									
	10	N									
	11	N									
	12	N									
	13	N									
	14	N									
	15	N									
	16	N									
	17	N									
	18	\checkmark									
	19	N									
	20	N									
	21	N									
	22	N									
	23	N									
	24	N									
	25	N									
	26	N									
	27	\checkmark									
	28	N									
	29	N									
	30	N									
	31	N									
	32	N									
	33	N									
	34	N									
	35	-									
	36	N									

Index of Claims	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

\mathbf{A}	Appeal
\mathbf{O}	Objected

\square Claims renumbered in the same order as presented by applicant							CPA	\square	T.D	\square	R.1.47
CLAIM		DATE									
Final	Original	03/20/2014									
	37	N									
	38	N									
	39	N									
	40	\checkmark									
	41	\checkmark									
	42	\checkmark									
	43	\checkmark									
	44	\checkmark									
	45	$=$									
	46	=									
	47	=									
	48	=									
	49	=									
	50	$=$									
	51	=									
	52	=									
	53	=									
	54	=									
	55	=									
	56	\checkmark									
	57	\checkmark									
	58	\checkmark									
	59	\checkmark									
	60	\checkmark									
	61	\checkmark									
	62	\checkmark									
	63	\checkmark									
	64	\checkmark									
	65	\checkmark									
	66	\checkmark									
	67	\checkmark									
	68	\checkmark									
	69	\checkmark									
	70	\checkmark									
	71	\checkmark									
	72	=									

Reexamination	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Certificate Date 04/29/2013	Certificate Number $5796183 \mathrm{C} 1$

Requester Correspondence Address:
囚
Patent Owner
\square
Third Party

SLATER \& MATSIL, L.L.P.
17950 PRESTON RD, SUITE 1000
DALLAS, TX 75252-5793

COPENDING OFFICE PROCEEDINGS	
TYPE OF PROCEEDING	
1. NONE	

	/HENRY N TRAN/ Primary Examiner.Art Unit 3992

Search Notes	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRYN TRAN	Art Unit 3992

CPC- SEARCHED		
Symbol	Date	Examiner

CPC COMBINATION SETS - SEARCHED		
Symbol	Date	Examiner

US CLASSIFICATION SEARCHED			
Class	Subclass	Date	Examiner

SEARCH NOTES		
Search Notes	Date	Examiner
Review of patented file's prosecution history	$03 / 102014 /$	HT

INTERFERENCE SEARCH

US Class/	US Subclass / CPC Group	Date	Examiner
CPC Symbol			

	/HENRY N TRAN/ Primary Examiner.Art Unit 3992

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

U.S. Patent No.:	$5,796,183 ~ B 1 ~$	\S	Docket No.:	$5796183 R X 2$
Issued:	August 18, 1998	\S	Inventors:	Hourmand et al.
Filed:	January 31, 1996	\S	Patent Owner:	UUSI, LLC
Control No.	$90 / 013,106$	\S	Examiner:	Henry N. Tran
For: \quad Capacitive Responsive Electronic Switching Circuit				
Mail Stop Ex Parte Reexam				
Attn: Central Reexamination Unit				
Commissioner for Patents				
P.O. Box 1450				
Alexandria, VA $22313-1450$				

WAIVER OF PATENT OWNER'S STATEMENT

Dear Sir:
Patent Owner UUSI, LLC respectfully notifies the Office that Patent Owner waives the filing of a statement under 37 C.F.R. § 1.530 to expedite the reexamination proceeding. Patent Owner respectfully requests that the reexamination proceeding be allowed to proceed immediately pursuant to 37 C.F.R. § 1.550(a). See M.P.E.P. § 2249.

If the Examiner should have any questions, please contact the Patent Owner's Attorney, Brian A. Carlson, at 972-732-1001. The Commissioner is hereby authorized to charge any fees due in connection with this filing, or credit any overpayment, to Deposit Account No. 50-1065.

Respectfully submitted,

March 4. 2014
Date
Slater \& Matsil, L.L.P. 17950 Preston Rd., Suite 1000
Dallas, TX 75252
972-732-1001
972-732-9218 (fax)
/Brian A. Carlson/
Brian A. Carlson
Reg. No. 37,793

Electronic Acknowledgement Receipt	
EFS ID:	18368569
Application Number:	90013106
International Application Number:	
Confirmation Number:	9188
Title of Invention:	Capacitive Responsive Electronic Switching Circuit
First Named Inventor/Applicant Name:	5796183
Customer Number:	25962
Filer:	Brian A. Carlson/Michelle Hatcher
Filer Authorized By:	Brian A. Carlson
Attorney Docket Number:	NAR-5796183RX2
Receipt Date:	04-MAR-2014
Filing Date:	24-DEC-2013
Time Stamp:	18:08:23
Application Type:	Reexam (Patent Owner)

Payment information:

Submitted w	yment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Miscellaneous Incoming Letter	NAR-5796183RX2_WaiverOfPat entOwnerStatement.pdf		no	1
Warnings:					
Information:					

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Tradenark Office Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
www uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$90 / 013,106$	5796183	NAR-5796183RX2		
25962	$12 / 24 / 2013$	9188		
SLATER \& MATSLL, L.L.P.				
17950 PRESTON RD, SUITE 1000				
DALLAS, TX 75252-5793		EXAMINER		

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Order Granting / Denying Request For	Control No.	Patent Under Reexamination
	Examiner	5796183
	HENRY N. TRAN	Art Unit

--The MAILING DATE of this communication appears on the cover sheet with the correspondence address--

The request for ex parte reexamination filed 24 December 2013 has been considered and a determination has been made. An identification of the claims, the references relied upon, and the rationale supporting the determination are attached.

Attachments: a) \square PTO-892, b) \boxtimes PTO/SB/08, c) \square Other:

1. \boxtimes The request for ex parte reexamination is GRANTED.

RESPONSE TIMES ARE SET AS FOLLOWS:
For Patent Owner's Statement (Optional): TWO MONTHS from the mailing date of this communication (37 CFR 1.530 (b)). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550 (c).

For Requester's Reply (optional): TWO MONTHS from the date of service of any timely filed Patent Owner's Statement (37 CFR 1.535). NO EXTENSION OF THIS TIME PERIOD IS PERMITTED. If Patent Owner does not file a timely statement under 37 CFR 1.530(b), then no reply by requester is permitted.
2. \square The request for ex parte reexamination is DENIED.

This decision is not appealable (35 U.S.C. 303(c)). Requester may seek review by petition to the Commissioner under 37 CFR 1.181 within ONE MONTH from the mailing date of this communication (37 CFR 1.515(c)). EXTENSION OF TIME TO FILE SUCH A PETITION UNDER 37 CFR 1.181 ARE AVAILABLE ONLY BY PETITION TO SUSPEND OR WAIVE THE REGULATIONS UNDER 37 CFR 1.183.

In due course, a refund under 37 CFR 1.26 (c) will be made to requester:
a)
\square by Treasury check or,
b)by credit to Deposit Account No. \qquad or
c) \square by credit to a credit card account, unless otherwise notified (35 U.S.C. 303(c)).

/HENRY N TRAN/ Primary Examiner, Art Unit 3992		
cc:Requester (if third party requester)US P Patent tand Trademark oficice		

Art Unit: 3992

The present application is being examined under the pre-AIA first to invent provisions.

> DECISION GRANTING EX PARTE REEXAMINATION

I. DECISION

1. A substantial new question of patentability (SNQ) affecting claims 18 and 27 of United States Patent Number 5,796,183 C1 to Hourmand et al. (the ' 183 patent) is raised by the request for $e x$ parte reexamination under 35 U.S.C §§ 301-307 filed by the Patent Owner on December 24, 2013.
2. Pursuant to 37 CFR 1.515 , it is agreed that a SNQ affecting claims 18 and 27 of the ' 183 patent has been found based on the request and the prior art patents and/or publications cited therein.
3. The request for ex parte reexamination is granted.

II. PRIOR ART PATENTS AND PUBLICATION CITED IN THE REQUEST

4. In the request for reexamination, the requester alleged that the following prior art patents and publication raise a SNQ as to claims 18 and 27 of the ' 183 patent:

- U.S. Patent No. 5,463,388 issued to Boie et al. on October 31, 1995 ("Boie" or the '388 patent), and filed with the request as Exhibit C.
- U.S. Patent No. 5,565,658 issued to Gerpheide et al. on October 15, 1996 ("Gerpheide" or the ' 658 patent), and filed with the request as Exhibit D.
- Casio advertisement entitled "Now... The Invisible Casio Calculator Watch," published in Popular Science by On the Run in 1984 ("Casio"), and filed with the request as Exhibit E.

Art Unit: 3992

The cited prior art patents and/or publication submitted with the request pursuant to C.F.R. §
1.510 (b) (3) are listed in form $\mathrm{PTO} / \mathrm{SB} / 08$ filed with the request.

Boie filed on January 29, 1993, Gerpheide filed on December 7, 1994, and Casio published in 1984; and which are all prior to the Critical Date of January 31, 1996 - which is the filing date of the '183 patent - constitute effective prior art reference as to the claims of the ' 183 patent under 35 U.S.C. §102(a), 102(e), or 102(b).

It is noted that Boie was previously cited/considered, i.e., "old art", by the Office in an earlier concluded ex parte reexamination control number 90/012,439 of the patent being reexamined, which is hereinafter referred to as "the first request".

III. A SUBSTANTIAL NEW QUESTION OF PATENTABILITY (SNQ)

5. The requester alleges that the combination of Boie with Gerpheide and/or Casio raises a SNQ regarding claims 18 and 27 of the ' 183 patent (see the request, section III.C page 17).

IV. PROSECUTION HISTORY OF THE ‘183 PATENT

6. The ' 183 patent stems from United States Patent Application No. 08/601,268 (hereinafter referred to as "the base application") and the first request for ex parte reexamination.

The examiner generally agrees with the description of the prosecution history found in section I.
B of the request at pp. 5-9.
With respect to the Examiner's statement of reasons for patentability of claims $18,27,28$, and 32-39, the prosecution history of the first request indicates:

- On April 10, 2013, the Notice of Intent to Issue Ex Parte Reexamination Certificate was issued with the Examiner's statement of reasons for patentability of the claims provided in pp. 3-4, which is repeated below:
"There is not taught or disclosed in the prior art a capacitive responsive electronic switching circuit having a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, as called for in independent claim 18; nor a capacitive responsive electronic switching circuit having a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, as called for in independent claims 27 and 37 . The examiner agrees with the discussion articulated by Patent Owner in the Statement that Boie does not teach or suggest these claim elements. Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401, synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that "[t]he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances are minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60 (emphasis added); see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components. Accordingly, claims 18,27 , amended non-requested claims 28,32 , and newly added claims 33-39 are patentable."

Art Unit: 3992

- On April 29, 2013, the Ex Parte Reexamination Certificate was issued as United States Patent Number 5,796,183 C1.

7. In view of the prosecution history, it appears that the reason for allowance of claims 18 and 27 is the fact that no cited prior art reference was considered during the prosecution of the ' 183 patent that teaches or suggests the following limitation or limitations: "a capacitive responsive electronic switching circuit having a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad" (independent claim 18); and "a capacitive responsive electronic switching circuit having a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals" (independent claim 27).

V. CRITERIA FOR DECIDING REQUEST

8. MPEP § 2240 provides:

37 C.F.R. 1.515 Determination of the request for ex parte reexamination.

- (a) Within three months following the filing date of a request for an ex parte reexamination, an examiner will consider the request and determine whether or not a substantial new question of patentability affecting any claim of the patent is raised by the request and the prior art cited therein, with or without consideration of other patents or printed publications. The examiner's determination will be based on the claims in effect at the time of the determination, will become a part of the official file of the patent, and will be mailed to the patent owner at the address as provided for in $\S \underline{1.33(c)}$ and to the person requesting reexamination.

Art Unit: 3992

9. MPEP § 2242 provides:

For "a substantial new question of patentability" to be present, it is only necessary that: (A) the prior art patents and/or printed publications raise a substantial question of patentability regarding at least one claim, i.e., the teaching of the (prior art) patents and printed publications is such that a reasonable examiner would consider the teaching to be important in deciding whether or not the claim is patentable; and (B) the same question of patentability as to the claim has not been decided by the Office in a previous examination or pending reexamination of the patent or in a final holding of invalidity by the Federal Courts in a decision on the merits involving the claim. It is not necessary that a "prima facie" case of unpatentability exist as to the claim in order for "a substantial new question of patentability" to be present as to the claim. Thus, "a substantial new question of patentability" as to a patent claim could be present even if the examiner would not necessarily reject the claim as either fully anticipated by, or obvious in view of, the prior art patents or printed publications. As to the importance of the difference between "a substantial new question of patentability" and a "prima facie" case of unpatentability see generally In re Etter, 756 F.2d 852, 857 n.5, 225 USPQ 1, 4 n. 5 (Fed. Cir. 1985).

VI. ANALYSIS OF PRIOR ART AND PROPOSED REJECTIONS

10. In view of the prosecution history and the criteria for deciding request noted above, it is considered that a prior art reference or a combination of prior art references that discloses or fairly suggests at least some or all of the main components of the claimed invention noted in the reasons for patentability of claims in the first request reexamination of the ' 183 patent, or an equivalent thereof, would raise a $S N Q$.

11. Summary of the ' 183 patent

The ' 183 patent relates to a capacitive responsive electronic switching circuit including an oscillator providing a periodic output signal, an input touch terminal defining an area for an operator to provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. See Abstract.

An embodiment with a single touch terminal is shown in Figure 4, and an embodiment with multiple touch terminals is shown in Figure 11, both of which are reproduced below:

The multiple touch pad circuit of Figure 11 is a variation of the embodiment shown in Figure 4, but with an array of touch circuits designated as $\mathbf{9 0 0}$ through $\mathbf{9 0 0}_{\mathbf{n m}}$. Microcontroller $\mathbf{5 0 0}$ selects each row of the touch circuits $\mathbf{9 0 0}_{\mathbf{1}}$ to $\mathbf{9 0 0}_{\mathrm{nm}}$ by providing the signal from oscillator $\mathbf{2 0 0}$ to selected rows of touch circuits. See, id. at col.18:43-46. The values of the resistors and capacitors utilized in oscillator $\mathbf{2 0 0}$ may be varied to provide for different oscillator output frequencies. See, id. at col. 14:22-25. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. See, id. at col. 11:19-25. Microcontroller $\mathbf{5 0 0}$ sequentially activates the touch circuit rows and associates the received inputs from the columns
of the array with the activated touch circuit(s). See, id. at col. 18:46-49. The detector circuit is responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. See, id. at Abstract. Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. See, id. at col. 3:44-46. "

12. Summary of the prior art references

Boie

Boie teaches a computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an array of electrodes arranged in a grid pattern and connected in columns and rows, each column and row is connected to circuitry for measuring the capacitance seen by each column and row, and the position of an object with respect to the array is determined from the centroid of such capacitance values, which is calculated in a microcontroller. See Abstract. Particularly, Boie Figure 4 illustrates a block diagram of a twodimensional capacitive position sensor device.

PIG. 1

The device comprises an electrode array $\mathbf{1 0 0}$ having rows and columns of electrodes, each row and column of electrodes is connected to an integrating amplifier and bootstrap circuit 401, each of the outputs from circuits $\mathbf{4 0 1}$ can be selected by multiplexer $\mathbf{4 0 2}$ under control of microcontroller 406. The selected output is then forwarded to summing circuit 403, where such output is combined with a signal from trimmer resistor 409. Synchronous detector and filter $\mathbf{4 0 4}$ convert the output from summing circuit to a signal related to the capacitance of the row or column selected by the multiplexer. RF oscillator $\mathbf{4 0 8}$ provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter $\mathbf{4 1 0}$, and guard plane 411. Guard plane 411 is a substantially continuous plane parallel to array $\mathbf{1 0 0}$ and associated

Art Unit: 3992
connections, and serves to isolate array $\mathbf{1 0 0}$ from extraneous signals. See id. at col. 3:67 to col. 4:5. To measure separate capacitance values for each electrode in array $\mathbf{1 0 0}$ instead of the collective capacitances of subdivided electrode elements connected in rows and columns, a circuit $\mathbf{4 0 1}$ is provided for each electrode in array $\mathbf{1 0 0}$ and multiplexer $\mathbf{4 0 2}$ is enlarged to accommodate the outputs from all circuits 401. See id. at col. 4:14-21. The output of synchronous detector and filter $\mathbf{4 0 4}$ is converted to digital form by analog-to-digital converter 405 and forwarded to microcontroller 406. Thus, microcontroller 406 can obtain a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. See id. at col. 4:22-28.

Gerpheide

Gerpheide teaches a system and method for a capacitance-based proximity sensor with interference rejection. See Abstract. The system $\mathbf{1 0}$ comprises an electrode array 12, a synchronous electrode capacitance measurement unit 14, a reference frequency generator 16, and a position locator 18. See Figure 1, and col. 3:52 to col. 4:26. The electrode array consists of multiple X electrodes 20 and Y electrodes 22. See Figures 2A and 2B. The synchronous electrode capacitance measurement unit 14 is connected to the electrode array 12 and the reference frequency generator 16 for producing capacitive measurement signals. See Figure 4, and col. 5:50-67.

The reference frequency generator includes an oscillator 100 for driving a microcontroller 102 and a divide-by- $(\mathrm{M}+\mathrm{N})$ circuit 104 , for providing signal output frequencies in the range 61 KHz to 80 KHz ; wherein, N is a fixed constant, and M is specified by the microcontroller using capacitive measurement signals and position signals. See Figure 7, and col. 8:20-38.

Art Unit: 3992

Casio

Casio discloses a Casio Calculator Watch, which is a timepiece product employing electro-touch technology. The watch works by reading finger-strokes traced across its face. See, Casio, col. 1. The transparent touch panel construction includes a fiberglass panel having a transparent conductor film pattern (first layer) and a dielectric layer (second layer) overlying the fiberglass. See id. at col. 2. The touch panel determines figure and math symbols outlined with fingerstrokes traced across the face. See id. at col. 1. The touch panel senses the input, and then digitizes it to extract features of the figure or math symbol. See id. at col. 2. The watch then outputs the corresponding figure or math symbol on the screen.

13. Discussion of the Issues

Issue 1: The requester alleges that the combination of Boie with Gerpheide raises a SNQ regarding claim 18 of the ' 183 patent.

It is agreed that the combination of Boie with Gerpheide raises a SNQ regarding claim 18 of the '183 patent.

As pointed out in the request sections II.B pp. 10-15 and III.A of the claim chart pp. 21-27 for claim 18, Boie teaches a capacitive sensor array 100 comprises a RF oscillator 408 for providing an RF signal having a predefined frequency, e.g., 100 KHz , to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411, see Figure 4, and col. 3:67 to col. 4:2. Gerpheide teaches a capacitive sensor system 10 comprises a reference frequency generator 16 that seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference; wherein, the reference frequency generator includes an oscillator 100 for driving a microcontroller 102 and a divide-by-(M+N) circuit 104 for providing signal output frequencies in the range 61 KHz to 80 KHz . See Figure 7, and col. 8:20-38.

Thus, Boie and Gerpheide teach the elements and limitations that led to the patentability of claim 18 of the ' 183 patent.

Art Unit: 3992

The teachings of Boie and Gerpheide present a new, non-cumulative technological teachings that was not previously considered in the prosecution of the ' 183 patent. Furthermore, there is a substantial likelihood that a reasonable examiner would consider the teachings of Boie and Gerpheide important in deciding whether or not claim 18 is patentable.

Accordingly, it is agreed that the combination of Boie and Gerpheide raises a SNQ of claim 18 which has not been decided in the prior examinations of the ' 183 patent.

Issue 2: The requester allege that the combination of Boie with Gerpheide and/or Casio raises a SNQ regarding claim 27 of the ' 183 patent.

It is agreed that the combination of Boie with Gerpheide and/or Casio raises a SNQ regarding claim 27 of the ' 183 patent.

As pointed out in the request sections II.B pp. 10-17 and III.A of the claim chart pp. 27-33 for claim 27, Boie teaches a capacitive sensor array 100 comprises a RF oscillator 408 for providing an RF signal having a predefined frequency, e.g., 100 KHz , to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411, see Figure 4, and col. 3:67 to col. 4:2. Gerpheide teaches a capacitive sensor system 10 comprises a reference frequency generator 16 that seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference; wherein, the reference frequency generator includes an oscillator 100 for driving a microcontroller 102 and a divide-by-(M+N) circuit 104 for providing signal output frequencies in the range 61 KHz to 80 KHz . See Figure 7, and col. 8:20-38. Casio teaches a calculator watch employing electro-touch technology using a transparent touch panel (a keypad). The transparent touch panel construction includes a fiberglass panel having a

Art Unit: 3992
transparent conductor film pattern (first layer) and a dielectric layer (second layer) overlying the fiberglass. See Figure at col. 2.

Thus, Boie and Gerpheide and/or Casio teach the elements and limitations that led to the patentability of claim 27 of the ' 183 patent.

The teachings of Boie and Gerpheide and/or Casio present a new, non-cumulative technological teachings that was not previously considered in the prosecution of the ' 183 patent. Furthermore, there is a substantial likelihood that a reasonable examiner would consider the teachings of Boie and Gerpheide and/or Casio important in deciding whether or not claim 27 is patentable.

Accordingly, it is agreed that the combination of Boie and Gerpheide and/or Casio raises a SNQ of claim 27 which has not been decided in the prior examinations of the ' 183 patent.

VII. INFORMATION DISCLOSURE STATEMENT

14. With respect to the Information Disclosure Statement (PTO/SB/08A and 08B or its equivalent) filed on $12 / 24 / 2013$, the material has been considered with this action; the information cited thereon has been considered to the extent suggested in the MPEP.

Note that MPEP $\S \S 2256$ and 2656 indicate that degree of consideration to be given to such information will be normally limited by the degree to which the party filing the information citation has explained the content and relevance of the information. Any duplicate citations noticed by the examiner have been lined through.

Art Unit: 3992
It is noted that, according to 37 C.F.R. 1.515 (a), the examiner's decision on the SNQ issues recited in this order is based on only the consideration of patents and publication cited in the request section II.A (page 10). The other patents or printed publications listed in form $\mathrm{PTO} / \mathrm{SB} / 08$ a filed with the request have not been considered and been lined through; and they will be considered after this order as appropriate.

VIII. CONCLUSION

15. The prior art patents and publication, Boie and Gerpheide and Casio, set forth in the request have been considered. They raise SNQs affecting claims 18 and 27 of the ' 183 patent. Accordingly, the request for ex parte reexamination is granted. Claims 18 and 27 of the ' 183 patent will be reexamined. Claims 1-17, 19-26, and 28-39 of the ' 183 patent will not be reexamined.
16. The patent owner is reminded of the continuing responsibility under 37 CFR $1.565(\mathrm{a})$, to apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the '183 patent throughout the course of this reexamination proceeding. See MPEP $\S \$ 2207,2282$ and 2286 .
17. Extensions of time under 37 CFR 1.136 (a) will not be permitted in these proceedings because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a reexamination proceeding. Additionally, 35 U.S.C. 305 requires that ex parte reexamination proceedings "will be conducted with special dispatch" (37 CFR 1.550(a)). Extensions of time in ex parte reexamination proceedings are provided for in 37 CFR 1.550 (c).

Art Unit: 3992
18. Patent owner is notified that any proposed amendment to the specification and/or claims in this reexamination proceeding must comply with 37 CFR 1.530 (d)-(j), must be formally presented pursuant to 37 CFR 1.52 (a) and (b), and must contain any fees required by 37 CFR 1.20(c).

It is noted that the Patent Owner's Amendment Accompanying Request filed on 12/24/2013 will be addressed subsequently following this Order Granting Request for ex parte reexamination as appropriate.
19. All correspondence related to this ex parte reexamination proceeding should be directed as follows:

By EFS: Registered users may submit via the electronic filing system EFS-Web, at https://efs.uspto.gov/efile/myportal/efs-registered

By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450
By FAX to: (571) 273-9900
Central Reexamination Unit
By hand: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314

Art Unit: 3992

For EFS-Web transmissions, 37 CFR $1.8(\mathrm{a})(1)(\mathrm{i})(\mathrm{C})$ and (ii) states that correspondence (except for a request for reexamination and a corrected or replacement request for reexamination) will be considered timely filed if (a) it is transmitted via the Office's electronic filing system in accordance with 37 CFR $1.6(a)(4)$, and (b) includes a certificate of transmission for each piece of correspondence stating the data of transmission, which is prior to the expiration of the set period of time in the Office action.

Any inquiry by the patent owner concerning this communication or earlier communications from the Legal Advisor or Examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.

/Henry N Tran/

Patent Reexamination Specialist, CRU - Art Unit 3992

Conferees:

/Albert Gagliardi/
Patent Reexamination Specialist, CRU - Art Unit 3992
/Sudhanshu C. Pathak/
Supervisory Patent Reexamination Specialist, CRU - Art Unit 3992

Order Granting / Denying Request For	Control No.	Patent Under Reexamination
	Examiner	5796183
	HENRY N. TRAN	Art Unit

--The MAILING DATE of this communication appears on the cover sheet with the correspondence address--

The request for ex parte reexamination filed 24 December 2013 has been considered and a determination has been made. An identification of the claims, the references relied upon, and the rationale supporting the determination are attached.

Attachments: a) \square PTO-892, b) \boxtimes PTO/SB/08, c) \square Other:

1. \boxtimes The request for ex parte reexamination is GRANTED.

RESPONSE TIMES ARE SET AS FOLLOWS:
For Patent Owner's Statement (Optional): TWO MONTHS from the mailing date of this communication (37 CFR 1.530 (b)). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550 (c).

For Requester's Reply (optional): TWO MONTHS from the date of service of any timely filed Patent Owner's Statement (37 CFR 1.535). NO EXTENSION OF THIS TIME PERIOD IS PERMITTED. If Patent Owner does not file a timely statement under 37 CFR 1.530(b), then no reply by requester is permitted.
2. \square The request for ex parte reexamination is DENIED.

This decision is not appealable (35 U.S.C. 303(c)). Requester may seek review by petition to the Commissioner under 37 CFR 1.181 within ONE MONTH from the mailing date of this communication (37 CFR 1.515(c)). EXTENSION OF TIME TO FILE SUCH A PETITION UNDER 37 CFR 1.181 ARE AVAILABLE ONLY BY PETITION TO SUSPEND OR WAIVE THE REGULATIONS UNDER 37 CFR 1.183.

In due course, a refund under 37 CFR 1.26 (c) will be made to requester:
a)
\square by Treasury check or,
b)by credit to Deposit Account No. \qquad or
c) \square by credit to a credit card account, unless otherwise notified (35 U.S.C. 303(c)).

/HENRY N TRAN/ Primary Examiner, Art Unit 3992		

Search Notes	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Examiner HENRY N TRAN	Art Unit 3992

CPC- SEARCHED		
Symbol	Date	Examiner

CPC COMBINATION SETS - SEARCHED		
Symbol	Date	Examiner

US CLASSIFICATION SEARCHED			
Class	Subclass	Date	Examiner

SEARCH NOTES		
Search Notes	Date	Examiner
Review of patented file's prosecution history	$02 / 06 / 2014$	HT

INTERFERENCE SEARCH

US Class/	US Subclass / CPC Group	Date	Examiner
CPC Symbol			

Reexamination	Application/Control No. 90013106	Applicant(s)/Patent Under Reexamination 5796183
	Certificate Date 04/29/2013	Certificate Number $5796183 \mathrm{C} 1$

Requester Correspondence Address:
『
Patent Owner
\square Third Party

SLATER \& MATSIL, L.L.P.
17950 PRESTON RD, SUITE 1000
DALLAS, TX 75252-5793

LITIGATION REVIEW 区	$\begin{gathered} \text { /HT/ } \\ \text { (examiner initials) } \end{gathered}$	$\begin{gathered} 02 / 06 / 2014 \\ \text { (date) } \end{gathered}$
Case Name		Director Initials
1:06cv 1777 - CLOSED		
2:03cv75169 - CLOSED		
1:10cv691-CLOSED		
2:06cv500 -CLOSED		

COPENDING OFFICE PROCEEDINGS	
TYPE OF PROCEEDING	
1. NONE	

	/HENRY N TRAN/ Primary Examiner.Art Unit 3992

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		90/013106
	Filing Date		12/24/2013
	First Named Inventor	Byron Hourmand	
	Art Unit		3992
	Examiner Name		H. Tran
	Attorney Docket Numb		

	1							
If you wish to add additional U.S. Published Application citation information please click the Add button. Add								
FOREIGN PATENT DOCUMENTS Remove								
Examiner Initial*	Cite No	Foreign Document Number ${ }^{3}$	Country Code² i	Kind Code ${ }^{4}$	Publication Date	Name of Patentee or Applicant of cited Document	Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear	T5
	1							\square
If you wish to add additional Foreign Patent Document citation information please click the Add button Add								
NON-PATENT LITERATURE DOCUMENTS Remove								
Examiner Initials*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the itegn (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s) publisher, city and/or country where published.						T5
	1	BUXTON, B., "31.1: Invited Paper: A Touching Story: A Personal Perspective on the History fouch Interfaces Past and Future," Society for Information Display (SID) Symposium Digest of Technical Papes, Vol. 41, No. 1, Session 31, May 2010, pp. 444-448.						\square
	2	HINCKLEY, K., et al., "38.2: Direct Display Interaction via Simultaxous Pen + Multi-touch Input," Society for 						\square
	3	LEE, S., "A Fast Multiple-Touch-Sensitiyghnt Device," University of Toronto, Department of Electrical Engineering, Master Thesis, October 1984, 118 ges.						\square
	4	HILLIS, W.D., "Adigh-Resolution Imaging Touch Sensor," The International Journal of Robotics Research, Vol. 1, No. 2, Summer botne - Aug.) 1982, pp. 33-44.						\square
	15	LEE, S.K., et al., "A Multi-Touch Three Dimensional Touch-Sensitive Tablet," Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, April 1985, pp. 21-25.						\square

Receipt date: 12/24/2013
INFORMATION DISCLOSURE STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

Application Number	90013106 ~ GAU: 3992	
Filing Date		
First Named Inventor	Byron Hourmand	
Art Unit		
Examiner Name		
Attorney Docket Number	5796183 RX	

	6	HLADY, A.M., "A touch sensitive X-Y position encoder for computer input," Proceedings of the Fall Joimputer Conference, November 18-20, 1969, pp. 545-551.	\square
	7	SASAKI, L., et al., "A Touch-Sensitive Input Device," Internatioflal Computer Music Conference Proceedings, November 1981, pp. 293-296	\square
	8	CALLAHAN, J., et abmin Limpirical Comparison of Pie vs. Linear Menus," Human Factors in Computing Systems: Chicago ' 88 demference Proceedings: May 15-19, 1988, Washington DC: Special Issue of the SIGCHI Bulletin, New York Lesociation for Computing Machinery, pp. 95-100.	\square
/HT/	9	CASIO, AT-550 Advertisement, published in Popular Science by On The Run, February 1984, p.-129.	\square
	10	CASIO, "Module No. 320," AT-550 Owner's Manual, at least as early as December 1984, 14 pages.	\square
	11	SMITH, S.D., et al., "Bit-slice microprocessors in h.f. digital communications," The Radio azk Electronic Engineer, Vol. 51, No. 6, June 1981, pp. 299-301.	\square
	12	BOIE, R.A., "Capacitive Impedance Readout Tactile Image Sensor," Pbceedings of the IEEE International Conference on Robotics and Automation, Vol. 1, March 1984, pp. 370-372.	\square
	13	THOMPSON, C., "Clive Thompson on The Breaktbough Myth," Wired Magazine, http://www.wired.com/ magazine/2011/07/st_thompson_breakthroug/. August 2011, 3 pages.	\square
	14	"Innovation in Information Techyenogy," National Research Council of the National Academies, Computer Science and Telecommunications Boarg Fivision on Engineering and Physical Sciences, http://www.nap.edu/catalog/10795.html, 2003, 85 pages.	\square
	15	BUXTON N., et al., "Issues and Techniques in Touch-Sensitive Tablet Input," Proceedings of SIGGRAPH '85, Vol. 19 No. 3 fuly 22-26, 1985, pp. 215-223	\square
	16	BUXTON, W., et al., "Large Displays in Automotive Design," IEEE Computer Graphics and Applications, July/August 2000, pp. 68-75.	\square

Application Number	90013106 ~ GAU:3992	
Filing Date		
First Named Inventor	Byron Hourmand	
Art Unit		
Examiner Name		
Attorney Docket Number	5796183 RX	

INFORMATION DISCLOSURE STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

Application Number	90013106 ~ GAU: 3992	
Filing Date		
First Named Inventor	Byron Hourmand	
Art Unit		
Examiner Name		
Attorney Docket Number	5796183 RX	

Receipt date: 12/24/2013 INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		90013106 - GAU: 3992
	Filing Date		
	First Named Inventor Byron Hourmand		
	Art Unit		
	Examiner Name		
	Attorney Docket Numb	5796183RX	

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56 (c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR $1.33,10.18$. Please see CFR 1.4 (d) for the form of the signature.

Signature	/Brian A. Carlson/	Date (YYYY-MM-DD)	2013-12-24
Name/Print	Brian A. Carlson	Registration Number	37,793

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Litigation Search Report CRU 3999

TO: Henry Tran	From: Shanette Brown
Location: CRU	Location: CRU 3999
Art Unit: 3992	MDE 05D10
Date: 01/27/2014	Phone: (571) 272-6632
	Shanett.Brown@uspto.gov

Searcinnotes

RE: 90/013,106-Litigation was found for US Patent Number: 5,796,183

Patent	Class	Subclass	Description	Court	Docket Number	Filed	Date Retrieved
5,796,183	307	116	QRG, Ltd, A/K/A Quantum Research Group, Ltd v. Nartron Corporatio	US-DISPAMD	$\begin{aligned} & 1: 06 \mathrm{cv} 1777 \\ & \text { CLOSED } \end{aligned}$	9/12/2006	5/7/2008
5,790,183	307	110	Nartion Copporation el al y Houmand	USDIS MW』	$\begin{aligned} & \text { Mer691 } \\ & \text { 1\%s! } \end{aligned}$	712012010	$10 / 29 / 2010$
5,796,183	307	116	Nartron Corp v. Gen Elec, et al	US-DISMIED	$\begin{aligned} & \text { 2:03cv75169 } \\ & \text { CLOSED } \end{aligned}$	12/24/2003	1/5/2012
F,790,183	307	1\%			$\begin{aligned} & \text { Meysug } \\ & \text { Mrsill } \end{aligned}$	41312000\%	5172008

Sources:

1) I performed a KeyCite Search in Westlaw, which retrieves all history on the patent including any litigation.
2) I performed a search on the patent in Lexis CourtLink for any open dockets or closed cases.
3) I performed a search in Lexis in the Federal Courts and Administrative Materials databases for any cases found.
4) I performed a search in Lexis in the IP Journal and Periodicals database for any articles on the patent.
5) I performed a search in Lexis in the news databases for any articles about the patent or any articles about litigation on this patent.

Westlaw Delivery Summary Report for BROWN,SHANETTE L

Date/Time of Request:
Client Identifier:
Database:
Citation Text:
Service:
Lines:
Documents:
Images:

Sunday, January 26, 2014 14:47 Central SB
KEYCITE-HIST
US PAT 5796183
KeyCite
369
1
0

The material accompanying this summary is subject to copyright. Usage is governed by contract with Thomson Reuters, West and their affiliates.

Westlaw

KEYCITE

\& US PAT 5796183 CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT, Assignee: Nartron Corporation (Aug 18, 1998)

History

Direct History
=> I CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT, US PAT 5796183, 1998 WL 1463338 (U.S. PTO Utility Aug 18, 1998)

Patent Family
2 CAPACITIVE REACTION ELECTRONIC SWITCH FOR ZERO FORCE APPLICATION CONTAINS OSCILLATOR SUPPLYING FREQUENCY OF 50 KHZ OR HIGHER, AND INPUT TOUCH TERMINAL, Derwent World Patents Legal 1997-394976+

Assignments

3 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Aug 17, 2012)
4 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Aug 17, 2012)
5 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 011, (DATE RECORDED: Dec 22, 2009)
6 ASSIGNEE(S): NARTRON CORPORATION, (DATE RECORDED: Feb 04, 1997)
7 Assignee(s): NARTRON CORPORATION, (DATE RECORDED: Jan 31, 1996)
Patent Status Files
.. Re-Examination Certificate, (OG DATE: May 07, 2013)
.. Request for Re-Examination, (OG DATE: Oct 02, 2012)
.. Certificate of Correction, (OG DATE: Nov 01, 2011)
.. Certificate of Correction, (OG DATE: May 11, 1999)

Docket Summaries

12 NARTRON CORPORATION ET AL v. HOURMAND, (W.D.MICH. Jul 20, 2010) (NO. 1:10CV00691), (28 USC 1338 PATENT INFRINGEMENT)
13 "QRG, LTD. v. NARTRON CORPORATION", (M.D.PA. Sep 12, 2006) (NO. 1:06CV01777), (28 USC 2201 DECLARATORY JUDGEMENT)
© 2014 Thomson Reuters. All rights reserved.

14 "NARTRON CORP v. GEN ELEC, ET AL", (E.D.MICH. Dec 24, 2003) (NO. 2:03CV75169)

Litigation Alert

15 Derwent LitAlert P2010-30-63 (Jul 20, 2010) Action Taken: complaint for PATENT INFRINGEMENT
16 Derwent LitAlert P2007-35-68 (Sep 12, 2006) Action Taken: A complaint was filed 17 Derwent LitAlert P2007-02-10 (Apr 13, 2006) Action Taken: Order of court - Ordered that motion to dismiss by defendant is denied. Further ordered that the case is to be transferred to the US District Court for the Middle Dist of Pennsylvania

Prior Art (Coverage Begins 1976)

* 18 CAPACITIVE PRESS CONTROL ACTUATION SYSTEM, US PAT 5235217Assignee: ISB Ltd., (U.S. PTO Utility 1993)
< 19 CAPACITIVE SENSOR CONTROL SYSTEM, US PAT 4323829Assignee: Fish, Barry M., (U.S. PTO Utility 1982)

20 CAPACITY RESPONSIVE CONTROL CIRCUIT, US PAT 4831279Assignee: Nartron Corporation, (U.S. PTO Utility 1989)

* 21 CAPACITY RESPONSIVE KEYBOARD, US PAT 5087825Assignee: Nartron Corporation, (U.S. PTO Utility 1992)
* 22 CHARGE SENSITIVE SWITCH, US PAT 4159473Assignee: Johnson-Lazare Canada Limited, (U.S. PTO Utility 1979)
(23 CONTROL-SAFE CAPACITIVE SWITCH, US PAT 5233231Assignee: Pepperl + Fuchs, Inc., (U.S. PTO Utility 1993)
* 24 DC TOUCH CONTROL SWITCH CIRCUIT, US PAT 4758735Assignee: Nartron Corporation, (U.S. PTO Utility 1988)
\% 25 DISCRIMINATING CONTACT SENSOR, US PAT 3911215Assignee: ELOGRAPHICS, INC., (U.S. PTO Utility 1975)
* 26 DISPLAY DEVICE HAVING UNPATTERNED TOUCH DETECTION, US PAT 4476463Assignee: Interaction Systems, Inc., (U.S. PTO Utility 1984)
* 27 ELECTROGRAPHIC SENSOR FOR DETERMINING PLANAR COORDINATES, US PAT 3798370Assignee: ELOGRAPHICS, INC., (U.S. PTO Utility 1974)
* 28 ELECTRONIC SWITCH ARRANGEMENTS, US PAT 3651391Assignee: BLACK \$\#amp;amp; DECKER INC., (U.S. PTO Utility 1972)
29 ELECTRONIC WATCH WITH TOUCH-SENSITIVE KEYS, US PAT 4257117Assignee: Ebauches S.A., (U.S. PTO Utility 1981)
* 30 ELECTRONICALLY ACTUATED ELECTRIC SWITCH, US PAT 4213061 (U.S. PTO Utility 1980)
* 31 HAND SANITIZING STATION, US PAT 4942631Assignee: Barry Robertson; Rosa, Rudy, (U.S. PTO Utility 1990)
\& 32 INDUCTION COOK-TOP WITH IMPROVED TOUCH CONTROL, US PAT 4308443Assignee:
© 2014 Thomson Reuters. All rights reserved.

```
        Rangaire Corporation, (U.S. PTO Utility 1981)
* 33 KEYBOARD SWITCH, US PAT 4503294Assignee: Nippon Mektron Ltd., (U.S. PTO Utility
    1985)
```

* 52 TOUCH CONTROL SYSTEM, US PAT 5572205Assignee: Donnelly Technology, Inc., (U.S. PTO Utility 1996)
« 53 TOUCH CONTROLLED DISPLAY DEVICE, US PAT 4910504Assignee: Touch Display Systems AB, (U.S. PTO Utility 1990)
\& 54 TOUCH CONTROLLED ELECTRIC LIGHT SOCKET WITH HIGH CURRENT TOLERANCE, US PAT 5208516 (U.S. PTO Utility 1993)

[^0]
US District Court Civil Docket

 (Soskhern Division :)

1:10cv691

Nartron Corporation et al C . Hoummand

This case was retrieved from the court on Sunday, January 26, 2014

Sase miest 07/20/2010			
Assignes Yo: Judge Robert Holmes Bell Feverses ro:		Clase Code: CLOSED	
		Coses: 09/08/2010	
Naters of sust: Patent (830)		Starute: 28:1338	
Cassse: Patent Infringement		Swy Vemass*: None	
Eeas Dosker: None		Oemand Amonnt \$0	
Ormer bocker: None		Nos Beserssson: Patent	
Surscickiom: Federal Question			
Efigands		Anorneys	
Nartron Corporation Plaintiff		Robert C.J. Tuttle ATTORNEY TO BE NOTICED Brooks Kushman PC 1000 Town Ctr., 22nd Fl. Southfield, MI 48075-1238 USA (248) 358-4400 Fax: (248) 358-3351 Email:Rtuttle@brookskushman.Com	
Uusi, Llc Plaintiff		Robert C.J. Tuttle ATTORNEY TO BE NOTICED Brooks Kushman PC 1000 Town Ctr., 22nd FI. Southfield, MI 48075-1238 USA (248) 358-4400 Fax: (248) 358-3351 Email:Rtuttle@brookskushman.Com	
Byron Hourmand Defendant			
Date	\% \%rooce	edimeg Text	Source
07/20/2010	1 COMPLAINT against Byron Hourm LLC (Attachments: \# 1 Exhibit A D, \# 5 Exhibit E, \# 6 Exhibit F, \# 10 Exhibit J, \# 11 Exhibit K, \# 07/21/2010)	and filed by Nartron Corporation, UUSI, 2 Exhibit B, \# 3 Exhibit C, \# 4 Exhib Exhibit G, \# 8 Exhibit H, \# 9 Exhibit 2 Civil Cover Sheet)(rmw) (Entered:	

07/20/2010		RECEIPT: in the amount of \$350.00, receipt number GR020949; for filing fees (rmw) (Entered: 07/21/2010)
07/20/2010		SUMMONS ISSUED as to defendant Byron Hourmand (rmw) (Entered: $07 / 21 / 2010)$
07/20/2010	2	CORPORATE DISCLOSURE STATEMENT by Nartron Corporation (rmw) (Entered: 07/21/2010)
07/20/2010	3	CORPORATE DISCLOSURE STATEMENT by UUSI, LLC (rmw) (Entered: $07 / 21 / 2010)$
07/21/2010	4	REPORT from the Clerk, WDMI, to the Director of the U.S. Patent and Trademark Office on the filing of a PATENT ACTION (rmw) (Entered: 07/21/2010)
08/16/2010	5	SUMMONS returned executed; Byron Hourmand served on 8/4/2010, answer due 8/25/2010 (Brandenburg, Robert) (Entered: 08/16/2010)
08/16/2010	6	SUMMONS returned executed; Byron Hourmand served on 7/27/2010, answer due 8/25/2010 (Brandenburg, Robert) (Entered: 08/16/2010)
09/01/2010	7	UNOPPOSED MOTION to approve consent judgment by plaintiffs Nartron Corporation, UUSI, LLC; (Tuttle, Robert) (Entered: 09/01/2010)
09/08/2010	8	ORDER granting 7 motion to approve consent judgment ; signed by Judge Robert Holmes Bell (Judge Robert Holmes Bell, kcb) (Entered: 09/08/2010)
09/09/2010	9	REPORT from the Clerk, WDMI, to the Director of the U.S. Patent and Trademark Office on the determination of a PATENT ACTION (gjf) (Entered: 09/09/2010)

[^1]
US District Court Civil Docket

(Harriscksws

1:06cv1777

Qrg. Lidn, $A / K / A$ Qumbum Research Group, Lid. v. Nartron Corporation
This case was retrieved from the court on Sunday, January 26, 2014

```
        Vx\e&ses: 09/12/2006
    Assignes Fo: Honorable Sylvia H. Rambo
    fsserres ro:
        Na\sre of
            ssis:Patent (830)
            Cassse: Declaratory Judgement
&.aas bockes: None
            Ober U.S. District Court, Western
            bocke:: District of PA, 2:06-CV-500
    sursaicism: Federal Question
```

Qrg, Ltd.
a/k/a Quantum Research Group, Ltd. Plaintiff

Eitgants

surselsesm: Federal Question

```
        C&ss E0s*: CLOSED
            Coses: 11/28/2007
            Sva\sis: 28:2201
        sury Oemand: Both
S*mans Amscums:$0
NOs Peseripion: Patent
```

Athonneys
Andrew E. Falsetti
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
[Term: 10/23/2007]
Reed Smith LLP
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412-288-3844
Email: Afalsetti@reedsmith.Com
Clay P. Hughes
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Reed Smith
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412.288.3008

Email:Chughes@reedsmith.Com
Gene A. Tabachnick
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Reed Smith LLP
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412-288-3258
Email: Gtabachnick@reedsmith.Com
Robert B. Hoffman

	LEAD ATTORNEY; ATTORNEY TO BE NOTICED Eckert Seamans Cherin \& Mellott, LLC 213 Market Street, 8th Floor Harrisburg, PA 17101 USA (717) 237-7182 Email:Rhoffman@eckertseamans.Com
Nartron Corporation Defendant	Mark D. Chuey LEAD ATTORNEY; ATTORNEY TO BE NOTICED Brooks Kushman P.C. 1000 Town Center 22nd Floor Southfield, MI 48075-1238 USA 248-358-4400 Email:Mchuey@brookskushman.Com
	Mark A. Grace LEAD ATTORNEY; ATTORNEY TO BE NOTICED Cohen \& Grigsby PC 11 Stanwix Street 15th Floor Pittsburgh, PA 15222-1319 USA 412-297-4900 Email:Mgrace@cohenlaw.Com
	Robert C.J. Tuttle LEAD ATTORNEY; ATTORNEY TO BE NOTICED Brooks Kushman P.C. 1000 Town Center 22nd Floor Southfield, MI 48075-1238 USA 248-358-4400 Email:Rtuttle@brookskushman.Com
	Thomas C. Wettach LEAD ATTORNEY; ATTORNEY TO BE NOTICED Cohen \& Grigsby, PC 11 Stanwix Street 15th Floor Pittsburgh, PA 15222 USA 412-297-4900 Email:Twettach@cohenlaw.Com
	Jill L. Bradley ATTORNEY TO BE NOTICED Cohen \& Grigsby, P.C. 625 Liberty Avenue Pittsburgh, PA 15222-3152 USA 412-297-4707 Email:Jbradley@cohenlaw.Com
Nartron Corporation Counterclaim Plaintiff	Mark D. Chuey LEAD ATTORNEY; ATTORNEY TO BE NOTICED Brooks Kushman P.C. 1000 Town Center 22nd Floor Southfield, MI 48075-1238 USA

```
248-358-4400
Email:Mchuey@brookskushman.Com
Mark A. Grace
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Cohen & Grigsby PC
11 Stanwix Street 15th Floor
Pittsburgh, PA 15222-1319
USA
412-297-4900
Email:Mgrace@cohenlaw.Com
Robert C.J. Tuttle
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Brooks Kushman P.C
1000 Town Center 22nd Floor
Southfield, MI 48075-1238
USA
248-358-4400
Email:Rtuttle@brookskushman.Com
Thomas C. Wettach
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Cohen & Grigsby, PC
11 Stanwix Street 15th Floor
Pittsburgh, PA }1522
USA
412-297-4900
Email:Twettach@cohenlaw.Com
Jill L. Bradley
ATTORNEY TO BE NOTICED
Cohen & Grigsby, P.C
625 Liberty Avenue
Pittsburgh, PA 15222-3152
USA
412-297-4707
Email:Jbradley@cohenlaw.Com
```

Andrew E. Falsetti
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
[Term: 10/23/2007]
Reed Smith LLP
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412-288-3844
Email:Afalsetti@reedsmith.Com
Clay P. Hughes
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Reed Smith
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412.288.3008

Email:Chughes@reedsmith.Com
Gene A. Tabachnick
LEAD ATTORNEY; ATTORNEY TO BE NOTICED

Qrg, Ltd.
Counterclaim Defendant

Reed Smith LLP
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412-288-3258
Email:Gtabachnick@reedsmith.Com
Robert B. Hoffman
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Eckert Seamans Cherin \& Mellott, LLC
213 Market Street, 8th Floor
Harrisburg, PA 17101
USA
(717) 237-7182
Email:Rhoffman@eckertseamans.Com

इxte	*	Pracearng Tex
09/12/2006	1	Case transferred in from District of Western District of Pennsylvania; Case Number 2:06-CV-500. Original file with documents numbered 1-17, certified copy of transfer order and docket sheet received., filed by QRG, LTD.. (Attachments: \# 1 Civil Cover Sheet \# 2 Receipt\# 3 Doc. 2Disclosure Statement\# 4 Doc. 3-Summons\# 5 Doc. 4- Motion to Dismiss\# 6 Proposed Order to Motion to Dismiss\# 7 Doc. 5- Brief in Support to Motion to Dismiss\# 8 Exhibit A\# 9 Exhibit B\# 10 Exhibit C\# 11 Doc. 6- Notice of Appearance by Thomas C. Wettach\# 12 Doc. 7- Notice; Response to Motion to Dismiss\# 13 Doc. 8- Motion for Discovery\# 14 Proposed Order for Motion for Discovery\# 15 Exhibit 1\# 16 Exhibit 2\# 17 Exhibit 3\# 18 Exhibit 4\# 19 Exhibit 6\# 20 Exhibit 7\# 21 Exhibit 8\# 22 Exhibit 9\# 23 Exhibit 5 (Motion for Discovery)\# 24 Doc. 9- Notice: Response to Motion for Discovery\# 25 Doc. 10- Brief in Opp. to Motion for Discovery\# 26 Exhibit A (Brief in Opp. to Discovery)\# 27 Exhibit B (Brief in Opp. to Discovery)\# 28 Exhibit C (Brief in Opp. for Discovery)\# 29 Exhibit D- (Brief in Opp. to Discovery)\# 30 Doc. 11- Order Granting Motion for Discovery\# 31 Doc. 12- Brief in Opp. to Motion to Dismiss\# 32 Exhibit A (Brief in Opp. to Motion to Dismiss)\# 33 Exhibit B (Brief in Opp. to Motion to Dismiss)\# 34 Exhibit C (Brief in Opp. to Motion to Dismiss)\# 35 Declaration of Richard T. Ting\# 36 Declaration of Andrew E. Falsetti\# 37 Declaration of Harald Philipp\# 38 Declaration of Chris Bede\# 39 Doc. 3 - Motion for Leave to File a Brief in Reply\# 40 Exhibit A (Motion to File Brief in Reply)\# 41 Doc. 14-Response to Motion for Leave to File a Brief in Reply\# 42 Supplemental Declaration of Richard Ting\# 43 Doc. 15-Order Granting Motion to File Brief in Reply\# 44 Doc. 16- Brief in Reply\# 45 Exhibit A (Brief in Reply)\# 46 Doc. 17-Order Denying Motion to Dismiss. ADDITIONAL ATTACHMENTS ADDED-TRANSFER LETTER AND DOCKET FROM WESTERN DISTRICT OF PA(s) added on 9/13/2006 (crh,). (Entered: 09/13/2006)
09/13/2006		SPECIAL ADMISSION FORM SENT to Andrew E. Falsetti, Mark A. Grace \& Thomas C. Wettach (crh,) (Entered: 09/13/2006)
09/13/2006	2	Transfer Letter to Counsel (crh,) (Entered: 09/13/2006)
09/20/2006	3	NOTICE: A Case Mgmnt Conf has been set for 10/24/2006@9:15 AM before Honorable Sylvia H. Rambo. This conference is by phone and the call is to initiated by the pltf. unless otherwise agreed upon. A joint case mgmnt plan is to be filed $\mathrm{n} / \mathrm{/} / \mathrm{t} 10 / 17 / 06$.(ma,) (Entered: 09/20/2006)
09/21/2006	4	PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Andrew E. Falsetti on behalf of QRG, LTD. Attorney Andrew E. Falsetti is seeking special admission. Filing Fee: 25.00 Receipt Number: 111146455 (Attachments: \# 1 Receipt) (jc) (Entered: 09/21/2006)

09/13/2006 2 Transfer Letter to Counsel (crh,) (Entered: 09/13/2006) before Honorable Sylvia H. Rambo. This conference is by phone and the call is to initiated by the pltf. unless otherwise agreed upon. A joint case mgmnt plan is to be filed $\mathrm{n} / \mathrm{l} / \mathrm{t}$ 10/17/06.(ma,) (Entered: 09/20/2006) (Attachments: \# 1 Receipt) (jc) (Entered: 09/21/2006)
$\left.\begin{array}{rrl}\text { 09/21/2006 } & 5 & \begin{array}{l}\text { PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Gene A. } \\ \\ \\ \\ \\ \\ \text { Tabachnick on behalf of QRG, LTD. Attorney Gene A. Tabachnick is } \\ \text { seeking special admission. Filing Fee: } 25.00 \text { Receipt Number: } 111146455\end{array} \\ & \text { (Attachments: \# 1 Receipt) (jc) (Entered: 09/21/2006) }\end{array}\right\}$

11/01/2006	22	BRIEF IN SUPPORT re 21 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12 (b)(1) filed by NARTRON CORPORATION. (Attachments: \# 1 Declaration of John E. Nemazi\# 2 Exhibit(s) A - G)(Grace, Mark) (Entered: 11/01/2006)
11/16/2006	23	BRIEF IN OPPOSITION re 21 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12(b)(1) filed by QRG, LTD.. (Attachments: \# 1 Affidavit / Declaration of Harald Philipp\# 2 Exhibit(s) 1\# 3 Exhibit(s) 2\# 4 Exhibit(s) 3\# 5 Exhibit (s) 4\# 6 Exhibit(s) 5\# 7 Exhibit(s) 6\# 8 Exhibit(s) 7)(Falsetti, Andrew) (Entered: 11/16/2006)
11/27/2006	24	REPLY BRIEF re 21 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12(b)(1) filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit(s) 1)(Grace, Mark) (Entered: 11/27/2006)
11/30/2006	25	MOTION to Clarify The Case Caption by QRG, LTD.. (Attachments: \# 1 Certificate of Compliance with Local Rule 7.1\# 2 Proposed Order)(Falsetti, Andrew) (Entered: 11/30/2006)
12/01/2006	26	BRIEF IN SUPPORT re 25 MOTION to Clarify The Case Caption filed by QRG, LTD..(Falsetti, Andrew) (Entered: 12/01/2006)
12/01/2006	27	ORDER deferring ruling on Motion to Clarify 25 pending decision on dft's mtn to dismissSigned by Judge Sylvia H. Rambo on 12/01/06 (ma,) (Entered: 12/01/2006)
02/12/2007	29	NOTICE by QRG, LTD. of Dismissal of Related Action (Attachments: \# 1 Appendix Eastern District of Michigan Order and Opinion Granting Motion to Dismiss)(Falsetti, Andrew) (Entered: 02/12/2007)
03/02/2007	30	MEMORANDUM AND ORDER: Denying in part dft's mtn to dismiss 21 as follows: a) The Court will reserve ruling with regard to the "capacitivetouch sensor products and related components" issue and grant Pltf Iv toamend the complaint on or before 4/2/07.b) Mtn is denied in all other respects.2) Pltf's Mtn to Clarify the Case Caption 25 isGRANTED. The Clrk shall change the case caption as to pltf to read: "QRG, Ltd., a/k/a Quantum Research Group,Ltd., Plaintiff." All future filings shall display this caption. 3) An amended cmo will follow. Signed by Judge Sylvia H. Rambo on 03/02/07 (ma,) (Entered: 03/02/2007)
03/02/2007	31	AMENDED CASE MANAGEMENT ORDER: J/S and Trial continued to the 10/1/2007 list beginning at 9:30 AM before Honorable Sylvia H. Rambo. Discovery due by $3 / 30 / 2007$. Dispositive Mts ddl $7 / 20 / 2007$. PTMs due by 9/7/2007. PTC rescheduled for 9/14/2007 @ 10:00 AM before Honorable Sylvia H. Rambo. See order for other ddls. Signed by Judge Sylvia H. Rambo on 03/02/07. (ma,) (Entered: 03/02/2007)
03/08/2007	32	AMENDED COMPLAINT against NARTRON CORPORATION, filed by QRG, LTD..(Falsetti, Andrew) (Entered: 03/08/2007)
03/19/2007	33	ANSWER to Amended Complaint, COUNTERCLAIM against all defendants by NARTRON CORPORATION.(Grace, Mark) (Entered: 03/19/2007)
03/20/2007		Correction made to docket sheet to reflect QRG, LTD. as the Counterclaim Defendant with appropriate counsel listed as per the 3/19/07 Amended Complaint and Counterclaim 33. (dfm) (Entered: 03/20/2007)
03/23/2007	34	MOTION to Strike Counterclaim by QRG, LTD.. (Attachments: \# 1 Exhibit (s) A\# 2 Exhibit(s) B\# 3 Exhibit(s) C\# 4 Exhibit(s) D\# 5 Brief in Support\# 6 Proposed Order)(Falsetti, Andrew) (Entered: 03/23/2007)
03/26/2007	35	BRIEF IN SUPPORT re 34 MOTION to Strike Counterclaim filed by QRG, LTD..(Falsetti, Andrew) (Entered: 03/26/2007)
03/29/2007	36	REPLY BRIEF re 34 MOTION to Strike Counterclaim filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit(s) A\# 2 Exhibit(s) B\# 3 Exhibit (s) C - Part 1\# 4 Exhibit(s) C - Part 2\# 5 Exhibit(s) D\# 6 Exhibit(s) E\# 7 Exhibit(s) F\# 8 Exhibit(s) G\# 9 Exhibit(s) H\# 10 Exhibit(s) I)(Grace, Mark) (Entered: 03/29/2007)

03/29/2007	37	CERTIFICATE of of Compliance by NARTRON CORPORATION re 36 Reply Brief,. (Grace, Mark) (Entered: 03/29/2007)
04/12/2007	38	REPLY BRIEF re 34 MOTION to Strike Counterclaim filed by QRG, LTD.. (Falsetti, Andrew) (Entered: 04/12/2007)
04/23/2007	39	MEMORANDUM AND ORDER denying pltf's Motion to Strike 34 . Signed by Judge Sylvia H. Rambo on 04/23/07 (ma,) (Entered: 04/23/2007)
04/23/2007	40	NOTICE: A scheduling Conference has been scheduled for 5/10/2007 @ 9:00 AM before Honorable Sylvia H. Rambo. This conference is by phone with the call to be initiated by the pltf. Signed by Judge Sylvia H. Rambo on 04/23/07. (ma,) (Entered: 04/23/2007)
05/07/2007	41	REPLY/ ANSWER to Counterclaim for Patent Infringement by QRG, LTD.. (Falsetti, Andrew) (Entered: 05/07/2007)
05/07/2007	42	MOTION for Partial Summary Judgment on Plaintiff QRG's Declaratory Judgment Claim for Unenforceability of The Five Nartron Patents-In-Suit by NARTRON CORPORATION.(Grace, Mark) (Entered: 05/07/2007)
05/07/2007	43	STATEMENT OF FACTS re 42 MOTION for Partial Summary Judgment on Plaintiff QRG's Declaratory Judgment Claim for Unenforceability of The Five Nartron Patents-In-Suit filed by NARTRON CORPORATION. (Attachments: \# 1 Index of Exhibits\# 2 Exhibit(s) A\# 3 Exhibit(s) B\# 4 Exhibit(s) C) (Grace, Mark) (Entered: 05/07/2007)
05/07/2007	44	BRIEF IN SUPPORT re 42 MOTION for Partial Summary Judgment on Plaintiff QRG's Declaratory Judgment Claim for Unenforceability of The Five Nartron Patents-In-Suit filed by NARTRON CORPORATION. (Grace, Mark) (Entered: 05/07/2007)
05/07/2007	45	EXHIBIT A to Brief in Support by NARTRON CORPORATION re 44 Brief in Support. (Grace, Mark) (Entered: 05/07/2007)
05/07/2007	46	EXHIBIT PROPOSED ORDER by NARTRON CORPORATION re 42 MOTION for Partial Summary Judgment on Plaintiff QRG's Declaratory Judgment Claim for Unenforceability of The Five Nartron Patents-In-Suit. (Grace, Mark) (Entered: 05/07/2007)
05/07/2007	47	MOTION for Partial Summary Judgment that the Nartron Patents-In-Suit Are Not Invalid by NARTRON CORPORATION. (Attachments: \# 1 Proposed Order)(Grace, Mark) (Entered: 05/07/2007)
05/07/2007	48	STATEMENT OF FACTS re 47 MOTION for Partial Summary Judgment that the Nartron Patents-In-Suit Are Not Invalid filed by NARTRON CORPORATION. (Attachments: \# 1 Index\# 2 Exhibit(s) A\# 3 Exhibit(s) B\# 4 Exhibit(s) C\# 5 Exhibit(s) D\# 6 Exhibit(s) E)(Grace, Mark) (Entered: 05/07/2007)
05/07/2007	49	BRIEF IN SUPPORT re 47 MOTION for Partial Summary Judgment that the Nartron Patents-In-Suit Are Not Invalid filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit(s) A)(Grace, Mark) (Entered: 05/07/2007)
05/08/2007	50	CERTIFICATE of Compliance with Word-Count Limit by NARTRON CORPORATION re 44 Brief in Support. (Grace, Mark) (Entered: 05/08/2007)
05/08/2007	51	CERTIFICATE of Compliance with Word-Count Limit by NARTRON CORPORATION re 49 Brief in Support. (Grace, Mark) (Entered: $05 / 08 / 2007)$
05/08/2007		Pursuant to the Local Rules and ECF User Manual, all motions and briefs should be filed simultaneously with their corresponding proposed orders, exhibits and any certificates as attachments to the main documents and not as individual documents. (dfm) (Entered: 05/08/2007)
05/10/2007	54	ORDER: 1) The fact discovery ddl shall be ext'd to (90) daysfrom the date of this order;2) $\mathrm{W} / \mathrm{i}(30)$ days of this order, the parties shall depose

		Mr.Ingraham, an inventor;3) W/i (30) days of this order, the parties shall jointlydetermine whether the issues and patents involved in this case can be narrowed;4) A telephonic status conference shall take place on 6/26/07, at 9:30 a.m. Pltf shall initiate the call; 5) Briefing of Nartrons two partial mtns for sum jgm (Docs. 42 and 47) is STAYED until 8/17/07. On or before that date, Nartron shall notify the crt and QRG whether it intends to rely upon the mtnsas they are, or withdraw the mtns and file a new dispositive mtn. If Nartronelects to file a new dispositive mtn, it must do so by $8 / 17 / 07$. If Nartronleaves the $m t n s$ as they are, briefing will resume in accord w/LRs and QRGs responses will be due on or before $9 / 4 / 07 ; 6$) The case management deadlines are amended as follows: Jury Selection/Trial Date December 3, 2007@ 9:30 AMFact Discovery Ddl 8/10/07;Amended Dispositive Mtns \& Brsups 08/17/07; Pltfs Expert Reports 08/24/07;Dfts Expert Reports 09/7/07;Supplemental Reports 09/21/07; Mtns in Limine \& Brsups 10/09/07; Mts in Limine Response 10/19/07; Mtns in Limine Reply 10/26/07;P-T Conference 11/16/07@ 11:00 AM; P-T Memoranda 11/9/07; Signed by Judge Sylvia H. Rambo on 05/10/07. (ma,) (Entered: 05/10/2007)
06/14/2007	55	STATUS REPORT to the Court on Narrowing of Issues and Patents Involved, and Request for Order for Mandatory Rule 26(a)(1) Disclosures by the Parties by NARTRON CORPORATION. (Attachments: \# 1 Exhibit(s) A\# 2 Exhibit(s) B\# 3 Exhibit(s) C\# 4 Exhibit(s) D)(Grace, Mark) (Entered: 06/14/2007)
06/19/2007	56	ORDER: Pltf QRG, Ltd. a/k/a Quantum Research Group, Ltd. shall respond to thepoints and proposals set forth in Nartrons status report 55 and proposed order no later thanJuly 9, 2007. Signed by Judge Sylvia H. Rambo on 06/19/07. (ma,) (Entered: 06/19/2007)
07/09/2007	58	NOTICE by QRG, LTD. in Response to Nartron's Report and Proposed Order (Attachments: \# 1 Word-Count Certificate\# 2 Proposed Order \# 3 Exhibit(s) 1\# 4 Exhibit(s) 2\# 5 Exhibit(s) 3\# 6 Exhibit(s) 4\# 7 Exhibit(s) 5\# 8 Exhibit(s) 6\# 9 Exhibit(s) 8\# 10 Exhibit(s) 9\# 11 Exhibit(s) 10\# 12 Exhibit(s) 11\# 13 Exhibit(s) 12\# 14 Exhibit(s) 7)(Falsetti, Andrew) (Entered: 07/09/2007)
07/13/2007	59	RESPONSE by NARTRON CORPORATION to 58 Notice,. (Attachments: \# 1 Exhibit(s) 1-4)(Grace, Mark) (Entered: 07/13/2007)
07/27/2007	60	Joint MOTION for Extension of Time to Complete Discovery by QRG, LTD.. (Attachments: \# 1 Proposed Order)(Falsetti, Andrew) (Entered: 07/27/2007)
08/01/2007	61	MEMORANDUM AND ORDER: 1) The claims and counterclaim in the captioned case are limited tothose involving QRGs QProx E2SR, QT110, QT113, QT9701, and QT1106products, and Nartrons patents U.S. patents: $4,731,548 ; 4,758,735 ; 4,831,279 ; 5,087,825 ; 5,796,183$. All other claims are DISMISSED for lack of subject matterjurisdiction.2) Defendant Nartron Corporations Motion for Partial Summary Judgment on Plaintiff QRGs Declaratory Judgment Claim for Unenforceability ofthe Five Nartron Patents-in-Suit 42 and Motion for Partial SummaryJudgment that the Nartron Patents-in-Suit are not Invalid 47 areSTRICKEN.3) Disposition of the parties Joint Motion to Revise Case ManagementOrder 60 is deferred pending the outcome of mediation.4) The parties shall notify the court no later than August 10, 2007, whether they intend to obtain their own mediator or request the court to appoint amediator.5) Mediation shall be completed no later than September 14, 2007. Signed by Judge Sylvia H. Rambo on 08/01/07 (ma,) (Entered: 08/01/2007)
08/10/2007	62	NOTICE by QRG, LTD. and Nartron Corporation Regarding Mediator Selection (Falsetti, Andrew) (Entered: 08/10/2007)
09/26/2007	63	STATUS REPORT by NARTRON CORPORATION. (Grace, Mark) (Entered: 09/26/2007)

10/22/2007	64	STATUS REPORT (Joint) by NARTRON CORPORATION. (Grace, Mark) (Entered: 10/22/2007)
10/23/2007	65	PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Clay P. Hughes on behalf of QRG, LTD. Attorney Clay Hughes is seeking special admission. Filing fee \$ 25, receipt number 1136392.. (Hughes, Clay) (Entered: 10/23/2007)
10/23/2007	66	ATTORNEY SUBSTITUTION - Withdrawal and Entry of Attorney Appearance. Attorney Andrew E. Falsetti terminated. Attorney Clay P. Hughes and Clay P. Hughes for QRG, LTD. added. (Hughes, Clay) (Entered: 10/23/2007)
10/23/2007	67	SPECIAL ADMISSIONS FORM APPROVED as to Clay Hughes, Esq. on behalf of QRGSigned by Judge Sylvia H. Rambo on 10/23/07. (ma,) (Entered: 10/23/2007)
11/28/2007	68	STIPULATION of Dismissal with Prejudice by NARTRON CORPORATION. (Grace, Mark) (Entered: 11/28/2007)
11/28/2007	69	ORDER APPROVING STIPULATION OF DISMISSAL. Signed by all parties. Case termed.Signed by Judge Sylvia H. Rambo on 11/28/07. (ma,) (Entered: 11/28/2007)

Copyright © 2014 LexisNexis CourtLink, Inc. All rights reserved.
*** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

US District Court Civil Docket

2：06cv500

Qrg．Ald．V．Napron Corporation

This case was retrieved from the court on Sunday，January 26， 2014

Assisned Fo：Donetta W．Ambrose	Clsss Code CLOSED
Astarsoste：	Gsoses：09／07／2006
Nature of suit：Patent（830）	Stakre：28：2201
ごふ心ss：Declaratory Judgment	
Lesa woekst：None	Demame Amovnt：\＄0
Strsersokst None	Nos bescryswom：Patent
Sursasiosion：Federal Question	

Eifiganls
Qrg，Ltd．
Plaintiff

Andrew E．Falsetti
LEAD ATTORNEY
Reed Smith
435 Sixth Avenue
Pittsburgh，PA 15219－1886
USA
（412）288－3844
Fax：（412）288－3063
Email：Afalsetti＠reedsmith．Com

Nartron Corporation
Defendant
Mark A．Grace
LEAD ATTORNEY；ATTORNEY TO BE NOTICED

Anlorseys

Cohen \＆Grace，LLC
105 Braunlich Dr．Suite 300
Pittsburgh，PA 15237
USA
（412）680－1266
Email：Mgrace＠cohengrace．Com

Thomas C．Wettach
LEAD ATTORNEY；ATTORNEY TO BE NOTICED
Cohen \＆Grace LLC
105 Braunlich Drive，Suite \＃ 300
Pittsburgh，PA 15237－3351
USA
（412）847－0300
Email：Twettach＠cohengrace．Com

04/13/2006	1	COMPLAINT against NARTRON CORPORATION (Filing fee $\$ 350$ receipt number 3312.) filed by QRG, LTD.. (Attachments: \# 1 Civil Cover Sheet \# 2 Receipt \# 3312)(jsp) (Entered: 04/14/2006)
04/13/2006	2	Disclosure Statement by QRG, LTD. (jsp) (Entered: 04/14/2006)
04/14/2006		Summons Issued as to NARTRON CORPORATION. (jsp) (Entered: 04/14/2006)
04/14/2006		Remark: E-mail notification to the U.S. Patent and Trademark Office with complaint and docket entries attached sent this date. (jsp,) (Entered: 04/14/2006)
04/24/2006	3	SUMMONS/ Return of Service Returned Executed by QRG, LTD.. NARTRON CORPORATION served on $4 / 18 / 2006$, answer due $5 / 8 / 2006$. (Tabachnick, Gene) (Entered: 04/24/2006)
05/08/2006	4	MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12(b)(2) by NARTRON CORPORATION. (Attachments: \# 1 Proposed Order (Grace, Mark) (Entered: 05/08/2006)
05/08/2006	5	BRIEF in Support re 4 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12(b) (2) filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit A\# 2 Exhibit B\# 3 Exhibit C)(Grace, Mark) (Entered: 05/08/2006)
05/09/2006	6	NOTICE of Appearance by Thomas C. Wettach on behalf of NARTRON CORPORATION (Wettach, Thomas) (Entered: 05/09/2006)
05/09/2006	7	NOTICE: Response to Defendant's Motion to Dismiss (Docket No. 4) due by 5/30/2006. (jlh) (Entered: 05/09/2006)
05/12/2006	8	MOTION for Discovery on Personal Jurisdiction by QRG, LTD.. (Attachments: \# 1 Proposed Order \# 2 Exhibit 1\# 3 Exhibit 2\# 4 Exhibit 3\# 5 Exhibit 4\# 6 Exhibit 5\# 7 Exhibit 6\# 8 Exhibit 7\# 9 Exhibit 8\# 10 Exhibit 9)(Falsetti, Andrew) (Entered: 05/12/2006)
05/22/2006	9	NOTICE: Response to Plaintiff's Motion for Leave to Take Discovery on the Personal Jurisdiction Issue Raised by Defendant's Motion to Dismiss shall be due by $5 / 29 / 2006$. In addition, the Plaintiff's response to the Defendant's Motion to Dismiss shall be continued from May 30, 2006 until a date set forth in a future order of this court. (jlh) (Entered: 05/22/2006)
05/26/2006	10	BRIEF in Opposition re 8 MOTION for Discovery on Personal Jurisdiction filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit A\# 2 Exhibit B\# 3 Exhibit C\# 4 Exhibit D)(Grace, Mark) (Entered: 05/26/2006)
05/30/2006	11	ORDER granting 8 Motion for Discovery (as stated more fully in order). Signed by Judge Donetta W. Ambrose on 5/30/06. (jlh) (Entered: $05 / 30 / 2006)$
05/30/2006		Response to Motion to Dismiss due by 7/30/2006. (jlh) (Entered: 05/30/2006)
07/31/2006	12	BRIEF in Opposition re 4 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12 (b)(2) filed by QRG, LTD.. (Attachments: \# 1 Exhibit A\# 2 Exhibit B\# 3 Exhibit C\# 4 Affidavit / Declaration of Richard T. Ting in Support of Qrg's Oppostion to Defendant's Motion to Dismiss\# 5 Affidavit / Declaration of Andrew E. Falsetti in Support of Qrg's Oppostion to Defendant's Motion to Dismiss\# 6 Affidavit / Declaration of Harald Philipp in Support of Qrg's Oppostion to Defendant's Motion to Dismiss\# 7 Affidavit / Declaration of Chris Bede in Support of QRG's Oppostion to Defendant's Motion to Dismiss)(Falsetti, Andrew) (Entered: 07/31/2006)
08/04/2006	13	MOTION for Leave to File A Brief in Reply to Plaintiff QRG's Opposition to Defendant's Motion to Dismiss by NARTRON CORPORATION. (Attachments: \# 1 Exhibit A)(Grace, Mark) (Entered: 08/04/2006)
08/07/2006	14	RESPONSE to Motion re 13 MOTION for Leave to File A Brief in Reply to Plaintiff QRG's Opposition to Defendant's Motion to Dismiss filed by QRG,

		LTD.. (Attachments: \# 1 Affidavit /Supplemental Declaration of Richard T. Ting)(Falsetti, Andrew) (Entered: 08/07/2006)
08/09/2006	15	ORDER granting 13 Motion for Leave to File Reply Brief. Signed by Judge Donetta W. Ambrose on 8/8/06. (jlh) (Entered: 08/09/2006)
08/09/2006	16	BRIEF IN REPLY to Response to Motion re 4 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12(b)(2) filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit A)(Grace, Mark) Modified text to reflect title of document on 8/10/2006 (jsp,). (Entered: 08/09/2006)
09/07/2006	17	ORDER denying 4 Motion to Dismiss, as set forth more fully in the Opinion accompanying this Order; It is further ORDERED that the within case is transferred to the United States District Court for the Middle District of Pennsylvania. The Clerk of Court is directed to transfer this case forthwith to the U.S. District Court for the Middle District of Pennsylvania. Signed by Judge Donetta W. Ambrose, Chief Judge, on 09/07/2006. (adb) (Entered: 09/07/2006)
09/07/2006		Case transferred to District of USDC Middle District of PA. Original file, certified copy of transfer order, retrieval instructions and docket sheet sent. (jsp) (Entered: 09/07/2006)
09/07/2006		Remark: E-mail notification to the U.S. Patent and Trademark Office with copy of order transferring this action to the USDC for the Middle District of Pennsylvania sent on September 7, 2006. (jsp) (Entered: 09/07/2006)

[^2]
US District Court Civil Docket

(Sarsor)

2:03cv75169

Nartron Corp Y. Gen Elec, et ah
This case was retrieved from the court on Sunday, January 26, 2014

```
        Sa\s:Fisc: 12/24/2003
Assigses To: District Judge Nancy G.
            Edmunds
Bess<rss To: Magistrate Judge Virginia M.
                    Morgan
        Nawsre os
                sus:: Patent (830)
            Cavssa:
Nesd bockes: None
            OSF&%
        Oockes: None
    SN:\sducvsom: Federal Question
```

घitiganis
Nartron Corporation Plaintiff

Atcomeys

```
Ernie L. Brooks - INACTIVE
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Brooks Kushman
1000 Town Center 22nd Floor
Southfield, Ml 48075
USA
248-358-4400
John E. Nemazi
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Brooks Kushman
1000 Town Center 22nd Floor
Southfield, MI 48075
USA
248-358-4400
Email:Jnemazi@brookskushman.Com
Sangeeta G. Shah
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Brooks Kushman
1000 Town Center 22nd Floor
Southfield, MI 48075
USA
248-358-4400
Email:Sshah@brookskushman.Com
Thomas W. Cunningham
```

	LEAD ATTORNEY;ATTORNEY TO BE NOTICED Brooks Kushman 1000 Town Center 22nd Floor Southfield, MI 48075 USA 248-358-4400 Email:Tcunningham@brookskushman.Com
General Electric Defendant	J. Michael Huget
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Honigman Miller Schwartz and Cohn LLP
	130 South First Street 4th Floor
	Ann Arbor, MI 48104-1386
	USA
	734-418-4254
	Fax: 734-418-4255
	Email:Mhuget@honigman.Com
	James W. Stuart
	LEAD ATTORNEY
	[Term: 03/10/2004]
	Ogne, Alberts,
	1869 E. Maple Road Suite 100
	Troy, MI 48083
	USA
	248-362-3707
	Fax: 248-382-0422
	Email: Jstuart@oaspc.Com
	Laurie J. Michelson
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Butzel Long
	150 W. Jefferson Suite 100
	Detroit, MI 48226-4430
	USA
	313-225-7000
	Email:Orlowski@butzel.Com
	Marshall J. Schmitt
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Jenner and Block
	330 N. Wabash Avenue
	One lbm Plaza
	Chicago, IL 60611
	USA
	312-923-2759
	Philip J. Kessler
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Thompson \& Knight LLP
	2000 Town Center, Suite 1900
	Southfield, MI 48075
	USA
	248-233-0852
	Fax: 214-999-1576
	Email: Philip.Kessler@tklaw.Com
	Stanley A. Schlitter
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	One IBM Plaza

	Suite 4700 Chicago, IL 60611-7603 USA $312-222-9350$
Maytag Corporation Defendant	J. Michael Huget
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Honigman Miller Schwartz and Cohn LLP
	130 South First Street 4th Floor
	Ann Arbor, MI 48104-1386
	USA
	734-418-4254
	Fax: 734-418-4255
	Email:Mhuget@honigman.Com
	James W. Stuart
	LEAD ATTORNEY
	[Term: 03/10/2004]
	Ogne, Alberts,
	1869 E. Maple Road Suite 100
	Troy, MI 48083
	USA
	248-362-3707
	Fax: 248-382-0422
	Email: Jstuart@oaspc.Com
	Laurie J. Michelson
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Butzel Long
	150 W. Jefferson Suite 100
	Detroit, MI 48226-4430
	USA
	313-225-7000
	Email:Orlowski@butzel.Com
	Marshall J. Schmitt
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Jenner and Block
	330 N. Wabash Avenue
	One Ibm Plaza
	Chicago, IL 60611
	USA
	312-923-2759
	Philip J. Kessler
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Thompson \& Knight LLP
	2000 Town Center, Suite 1900
	Southfield, MI 48075
	USA
	248-233-0852
	Fax: 214-999-1576
	Email: Philip.Kessler@tklaw.Com
	Stanley A. Schlitter
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	One IBM Plaza
	Suite 4700
	Chicago, IL 60611-7603
	USA

	312-222-9350
Touchsensor Technologies, L. L. C. Defendant	J. Michael Huget
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Honigman Miller Schwartz and Cohn LLP
	130 South First Street 4th Floor
	Ann Arbor, Ml 48104-1386
	USA
	734-418-4254
	Fax: 734-418-4255
	Email:Mhuget@honigman.Com
	James W. Stuart
	LEAD ATTORNEY
	[Term: 03/10/2004]
	Ogne, Alberts,
	1869 E. Maple Road Suite 100
	Troy, MI 48083
	USA
	248-362-3707
	Fax: 248-382-0422
	Email: Jstuart@oaspc.Com
	Laurie J. Michelson
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Butzel Long
	150 W. Jefferson Suite 100
	Detroit, MI 48226-4430
	USA
	313-225-7000
	Email:Orlowski@butzel.Com
	Marshall J. Schmitt
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Jenner and Block
	330 N. Wabash Avenue
	One Ibm Plaza
	Chicago, IL 60611
	USA
	312-923-2759
	Philip J. Kessler
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	Thompson \& Knight LLP
	2000 Town Center, Suite 1900
	Southfield, MI 48075
	USA
	248-233-0852
	Fax: 214-999-1576
	Email:Philip.Kessler@tklaw.Com
	Stanley A. Schlitter
	LEAD ATTORNEY; ATTORNEY TO BE NOTICED
	One IBM Plaza
	Suite 4700
	Chicago, IL 60611-7603
	312-222-9350


```
Ann Arbor, Ml 48104-1386
USA
734-418-4254
Fax: 734-418-4255
Email:Mhuget@honigman.Com
Laurie J. Michelson
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Butzel Long
150 W. Jefferson Suite 100
Detroit, Ml 48226-4430
USA
313-225-7000
Email:Orlowski@butzel.Com
Marshall J. Schmitt
LEAD ATTORNEY;ATTORNEY TO BE NOTICED
Jenner and Block
330 N. Wabash Avenue
One Ibm Plaza
Chicago,IL 60611
USA
312-923-2759
Philip J. Kessler
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Thompson & Knight LLP
2000 Town Center, Suite 1900
Southfield, MI 48075
USA
248-233-0852
Fax: 214-999-1576
Email:Philip.Kessler@tklaw.Com
Stanley A. Schlitter
LEAD ATTORNEY;ATTORNEY TO BE NOTICED
One IBM Plaza
Suite 4700
Chicago,IL 60611-7603
USA
312-222-9350

Sangeeta G. Shah
ATtORNEY TO BE NOTICED
Brooks Kushman
1000 Town Center 22nd Floor
Southfield, MI 48075
USA
248-358-4400
Email:Sshah@brookskushman.Com
```

J. Michael Huget

```
J. Michael Huget
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Honigman Miller Schwartz and Cohn LLP
Honigman Miller Schwartz and Cohn LLP
130 South First Street 4th Floor
130 South First Street 4th Floor
Ann Arbor, Ml 48104-1386
Ann Arbor, Ml 48104-1386
USA
USA
734-418-4254
734-418-4254
Fax: 734-418-4255
```

```
Fax: 734-418-4255
```

```

Nartron Corporation
Counter Defendant

General Electric
Counter Claimant

\begin{tabular}{|c|c|c|}
\hline 01/14/2004 & 4 & SUMMONS Returned Executed. General Electric served on 1/12/2004, answer due 2/2/2004 (NHoll, ) (Entered: 02/03/2004) \\
\hline 01/30/2004 & 7 & SUMMONS Returned Executed. Touchsensor Technologies, L. L. C. served on \(1 / 15 / 2004\), answer due \(2 / 4 / 2004\) (NHoll, ) (Entered: 02/11/2004) \\
\hline 02/02/2004 & 5 & ATTORNEY APPEARANCE: James W. Stuart appearing on behalf of General Electric, Maytag Corporation. (NHoll, ) (Entered: 02/11/2004) \\
\hline 02/02/2004 & 6 & SUMMONS Returned Executed. Maytag Corporation served on 1/16/2004, answer due 2/5/2004. (NHoll, ) (Entered: 02/11/2004) \\
\hline 02/04/2004 & 8 & ATTORNEY APPEARANCE: James W. Stuart appearing on behalf of Touchsensor Technologies, L. L. C. (NHoll, ) (Entered: 02/12/2004) \\
\hline 02/11/2004 & 9 & ANSWER to Amended Complaint with Affirmative Defenses, COUNTERCLAIM filed by Touchsensor Technologies, L. L. C. against Nartron Corporation (NHoll, ) (Entered: 02/17/2004) \\
\hline 02/11/2004 & 10 & ANSWER to Amended Complaint with Affirmative Defenses, COUNTERCLAIM filed by Maytag Corporation against Nartron Corporation (NHoll, ) (Entered: 02/17/2004) \\
\hline 02/11/2004 & 11 & ANSWER to Amended Complaint with Affirmative Defenses, COUNTERCLAIM filed by General Electric against Nartron Corporation (NHoll, ) (Entered: 02/17/2004) \\
\hline 02/18/2004 & 12 & ANSWER to 9 Counterclaim by Nartron Corporation. (NHoll, ) Modified on 2/23/2004 (NHoll,). (Entered: 02/23/2004) \\
\hline 02/18/2004 & 13 & ANSWER to 11 Counterclaim by Nartron Corporation. (NHoll, ) (Entered: 02/23/2004) \\
\hline 02/18/2004 & 14 & ANSWER to 10 Counterclaim by Nartron Corporation.(NHoll,) (Entered:
\[
02 / 24 / 2004)
\] \\
\hline 03/03/2004 & 16 & STATEMENT of DISCLOSURE of CORPORATE AFFILIATIONS and FINANCIAL INTEREST by General Electric (DTyle, ) (Entered: 03/16/2004) \\
\hline 03/03/2004 & 17 & STATEMENT of DISCLOSURE of CORPORATE AFFILIATIONS and FINANCIAL INTEREST by Maytag Corporation (DTyle, ) (Entered: 03/16/2004) \\
\hline 03/03/2004 & 18 & STATEMENT of DISCLOSURE of CORPORATE AFFILIATIONS and FINANCIAL INTEREST by Touchsensor Technologies, L. L. C. (DTyle, ) (Entered: 03/16/2004) \\
\hline 03/04/2004 & 15 & NOTICE TO APPEAR: Scheduling Conference set for 4/1/2004 02:00 PM before Honorable Nancy G Edmunds. (CHem, ) (Entered: 03/04/2004) \\
\hline 03/10/2004 & 19 & STIPULATED ORDER substituting attorneys Philip J. Kessler, J. Michael Huget and Laurie J. Michelson for Maytag Corporation, Touchsensor Technologies, L. L. C. and General Electric in place of attorney James W. Stuart Signed by Judge Nancy G Edmunds. (DTyle, ) (Entered: 03/23/2004) \\
\hline 03/30/2004 & 21 & DISCOVERY plan jointly filed pursuant to Federal Rules of Civil Procedure 26(f) (NHoll, ) (Entered: 04/14/2004) \\
\hline 03/31/2004 & 22 & REVISED DISCOVERY plan jointly filed pursuant to Federal Rules of Civil Procedure 26(f) (NHoll, ) (Entered: 04/14/2004) \\
\hline 04/06/2004 & & Minute Entry -Scheduling Conference held on 4/6/2004 before Honorable Nancy G Edmunds. Status Conference set for 7/13/2004 02:00 PM before Honorable Nancy G Edmunds. (CHem, ) (Entered: 04/07/2004) \\
\hline 04/06/2004 & 27 & SCHEDULING ORDER: Status Conference set for 7/13/2004 02:00 PM before Honorable Nancy G Edmunds. Signed by Honorable Nancy G Edmunds. (Refer to image for additional dates)(CHem, ) (Entered: 06/10/2004) \\
\hline 04/08/2004 & 23 & STIPULATED PROTECTIVE ORDER Signed by Judge Nancy G Edmunds. (DTyle, ) (Entered: 04/22/2004) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 05/04/2004 & 24 & NOTICE of Appearance by Marshall J. Schmitt, Stanley A. Schlitter on behalf of General Electric, Maytag Corporation, Touchsensor Technologies, L. L. C. (DTyle, ) (Entered: 05/06/2004) \\
\hline 06/07/2004 & & (STICKEN 6/10/04) Ex Parte MOTION to Amend/Correct 20 Scheduling Conference, Set Scheduling Order Deadlines by Nartron Corporation. (Attachments: \# 1 Index of Exhibits \# 2 Exhibit 6/4/04 letter regarding mediation\# 3 Exhibit 6/4/04 letter regarding document production)(Shah, Sangeeta) Modified on 6/10/2004 (CHem, ). (Entered: 06/07/2004) \\
\hline 06/10/2004 & 26 & ORDER to Strike 25 Ex Parte MOTION to Amend/Correct 20 Scheduling Conference, Set Scheduling Order Deadlines filed by Nartron Corporation. Signed by Honorable Nancy G Edmunds. (CHem,) (Entered: 06/10/2004) \\
\hline 06/14/2004 & 28 & MOTION to Amend/ Correct 27 Scheduling Order by Nartron Corporation. (Attachments: \# 1 Index of Exhibits \# 2 Exhibit 6/4/04 letter regarding mediator\# 3 Exhibit 6/4/04 letter regarding document production)(Shah, Sangeeta) (Entered: 06/14/2004) \\
\hline 06/24/2004 & 29 & RESPONSE to 28 Motion to amend scheduling order filed by General Electric, Maytag Corporation and Touchsensor Technologies, L. L. C.; with exhibit A. (DPer, ) (Entered: 06/30/2004) \\
\hline 07/01/2004 & 30 & REPLY to Response re 28 MOTION to Amend/Correct 27 Scheduling Order filed by Nartron Corporation. (Shah, Sangeeta) (Entered: 07/01/2004) \\
\hline 07/13/2004 & & Minute Entry -Status Conference held on \(7 / 13 / 2004\), parties agreed to special master, before Honorable Nancy G Edmunds. (CHem, ) (Entered:
\[
07 / 21 / 2004)
\] \\
\hline 07/27/2004 & 31 & DECLARATION of compliance by John Robinson Thomas (DTyle, ) (Entered: 08/02/2004) \\
\hline 07/27/2004 & 32 & AFFIDAVIT of John R. Thomas (DTyle, ) (Entered: 08/02/2004) \\
\hline 07/29/2004 & 33 & AMENDED SCHEDULING ORDER: Signed by Honorable Nancy G Edmunds. (Refer to image for dates)(DTyle, ) (Entered: 08/05/2004) \\
\hline 07/29/2004 & 34 & APPOINTMENT AND ORDER of reference to Special Master Signed by Honorable Nancy G Edmunds. (DTyle, ) (Entered: 08/05/2004) \\
\hline 08/13/2004 & 35 & MOTION to Amend the scheduling order and MOTION to Compel Discovery by Nartron Corporation. (Attachments: \# 1 Document Continuation \# 2 Document Continuation \# 3 Document Continuation \# 4 Document Continuation)(DTyle,) (Entered: 08/16/2004) \\
\hline 08/19/2004 & 36 & RESPONSE to 35 Motion to Amend scheduling order and Motion to Compel discovery filed by defendants. (DTyle, ) (Entered: 08/23/2004) \\
\hline 08/31/2004 & 37 & ORDER REFERRING MOTION to Magistrate Judge Komives: 35 MOTION to Amend/Correct MOTION to Compel filed by Nartron Corporation. Signed by Honorable Nancy G Edmunds. (CHem,) (Entered: 08/31/2004) \\
\hline 08/31/2004 & 39 & REPLY to Response re 35 MOTION to Amend Scheduling Order and MOTION to Compel filed by Nartron Corporation. (CMul, ) (Entered: 09/02/2004) \\
\hline 09/02/2004 & 38 & NOTICE of hearing on 35 MOTION to Amend/Correct MOTION to Compel. Motion Hearing set for 9/15/2004 11:00 AM before Honorable Paul J Komives. (SJef, ) (Entered: 09/02/2004) \\
\hline 09/16/2004 & & Minute Entry -Motion Hearing held on 9/16/2004 re 35 MOTION to Amend/Correct MOTION to Compel filed by Nartron Corporation before Honorable Paul J Komives. Disposition: TAKEN UNDER ADVISEMENT (Tape \#04-010) (SJef, ) (Entered: 09/16/2004) \\
\hline 09/23/2004 & 40 & ORDER of DISQUALIFICATION and REASSIGNING CASE from Magistrate Judge Paul J Komives to Magistrte Judge Virginia M Morgan Signed by Honorable Paul J Komives. (SSchoe, ) (Entered: 09/24/2004) \\
\hline 09/27/2004 & 41 & TRANSCRIPT of Proceedings held on 9/15/04 of plaintiff's motion to amend \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & scheduling order and motion to compel discovery (DTyle, ) (Entered:
09/28/2004) \\
\hline 09/29/2004 & 42 & ORDER Referring Pretrial Matters to Magistrate Judge Virginia M Morgan. Signed by Honorable Nancy G Edmunds. (CHem, ) (Entered: 09/29/2004) \\
\hline 10/08/2004 & 43 & AMENDED DISCOVERY plan jointly filed pursuant to Federal Rules of Civil Procedure 26(f); with exhibit A. (Attachments: \# 1 Document Continuation)(DPer, ) (Entered: 10/13/2004) \\
\hline 10/27/2004 & 44 & NOTICE of hearing on 35 MOTION to Amend/Correct MOTION to Compel. Resolved/Unresolved Issues due by 11/8/2004. Motion Hearing set for 11/15/2004 10:30 AM before Honorable Virginia M Morgan. (JOwe, ) (Entered: 10/27/2004) \\
\hline 10/29/2004 & 45 & STATEMENT of Claim Construction Statement by Nartron Corporation. (Attachments: \# 1 Index of Exhibits \# 2 Exhibit A - Table with Parties' Proposed Constructions)(Shah, Sangeeta) (Entered: 10/29/2004) \\
\hline 10/29/2004 & 46 & STATEMENT regarding claim construction by General Electric, Maytag Corporation, Touchsensor Technologies, L. L. C.. (Attachments: \# 1 Document Continuation \# 2 Document Continuation)(DTyle, ) (Entered: 11/01/2004) \\
\hline 11/15/2004 & & Minute Entry -Motion Hearing not held on 11/15/2004 re 35 MOTION to Amend/Correct MOTION to Compel filed by Nartron Corporation before Honorable Virginia M Morgan. Disposition: WITHDRAWN; CASE SETTLED (JOwe, ) (Entered: 11/15/2004) \\
\hline 11/15/2004 & 47 & ORDER withdrawing 35 Motion to Amend/Correct, withdrawing 35 Motion to Compel- Signed by Honorable Virginia M Morgan. (JOwe, ) (Entered: 11/16/2004) \\
\hline 11/30/2004 & 48 & STIPULATED ORDER STAYING CASE. Signed by Honorable Nancy G Edmunds. (LBeh,) (Entered: 12/07/2004) \\
\hline 02/14/2005 & 49 & STIPULATED ORDER DISMISSING CASE with prejudice Signed by Honorable Nancy G Edmunds. (DTyle, ) (Entered: 02/15/2005) \\
\hline
\end{tabular}

\footnotetext{
Copyright © 2014 LexisNexis CourtLink, Inc. All rights reserved *** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***
}

\section*{Lexis:}




\author{
5,796, 193 Apr. 29, 2013 Houmand, et. at. §, \(796,3 \% 3\) EX PARTE REEXAMMATON CERTIFIOATE CI (OB14th) \\ Apr. 29,2010 \\ Capachive Responsive Electrono Swithing Circult
}

Cong rephes: touch, termina, oscllator, mput, output signal, detecto, responsive, second touch, electronto switching, capacilive...

Source: Command Searching > Unhay, Design and Plani Fatents is
Terms: pannom 5756383 (Suges: Tems for My Gearon) Vew: KNC
Datelime: Sunday, Januay 26, 2014-3:57 FM EST

\footnotetext{
Lexshexth: About LexisNexis Pivacy Poicy Terms \& Conditone Conact Us Copyight 2014 Lexishexis, a division of Reed Elseifer ho All rights reseryed.
}

\section*{Lexis:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline My kexis'* & Seaves & Get a Documen & Shepard's & More & & History & Alerts \\
\hline A 1 ) & Edic & & & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Search} & & & & & \multicolumn{2}{|l|}{Vew Tutoria) : Heto} \\
\hline \multicolumn{8}{|l|}{Select Ssarch Type and Enter Search Terms} \\
\hline \multicolumn{2}{|l|}{Terms \& Comnsctor} & \multicolumn{2}{|l|}{5796183 or 5,796,183} & & \begin{tabular}{l}
Suggest isms \\
for my seart
\end{tabular} & \multicolumn{2}{|l|}{Sescs} \\
\hline \multicolumn{6}{|r|}{Natral Laggeage \({ }^{\text {aramen }}\)} & & \\
\hline \multicolumn{5}{|c|}{......asy Searomp} & \multicolumn{3}{|l|}{Oneck spelling} \\
\hline \multicolumn{8}{|l|}{Bostrict by Document Segment} \\
\hline \multicolumn{8}{|l|}{Seiect a document segment, enter searon terms for the segment, then tlick Add.} \\
\hline \multicolumn{2}{|l|}{Select a Segment} & & & \multicolumn{2}{|c|}{\(\mathrm{ADCA} \times\)} & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{8}{|l|}{Fantrict gy Date} \\
\hline \multicolumn{2}{|l|}{* No Date Restrictions} & From & To & \multicolumn{3}{|c|}{Date tormats...} & \\
\hline \multicolumn{4}{|l|}{Search Connectors} & \multicolumn{4}{|l|}{} \\
\hline and & and & w/o ins & , same paragraph & \multicolumn{2}{|l|}{\begin{tabular}{l}
Combine souroes? \\
Pestrat by dse?
\end{tabular}} & & \\
\hline 0 & or & w/seg ir & : same segment & \multicolumn{2}{|l|}{Restric by document segment?
Gse whildards as olacoholders} & & \\
\hline \[
w i N
\] & \multirow[t]{2}{*}{withis N wor} & \[
\mathrm{w} / \mathrm{s} \quad \text { in sa }
\] & In same sertence & \multicolumn{4}{|l|}{ search term?} \\
\hline preik & & \multicolumn{2}{|l|}{and not and not} & \multicolumn{2}{|l|}{Vew Tutorias} & & \\
\hline \multicolumn{4}{|l|}{More Conectors \& Commands...} & & & & \\
\hline
\end{tabular}



... Ines do not intringe U.S. patents: 4,731,548: 4,758,735; 4,834,270; 5,087,825; \(5,796,73\) ("patents") Nantron aseate a counterclam that some of ORG's Oprox ... products, and Natron's patenis .-. U.S patents: 4,734,543: 4,758,735; \(4,837,279 ; 5,087,825 ; 5,79 \mathrm{~B}, 83\). Al other clams are DISMISSED for lack of subject matter ...
\# * ORG, M. V Natron COP, CVII NO \(1: 06-\mathrm{OV}-1777\), UNITED STATES DISTEICT OOURT FOR THE MIDDLE DISTRICT OF FENNSYLVANI A, 2007 U.S. DISL. WXIS 29725, April 23, 2007, Decided, Apmi 23, 2007, Gled, Ohm dismiseed by QRG, Ltd. v. Nartror Corp. 2007 U.S. Dist LEXIS 55848 (M.O. Pa., Aug, 1, 2007)
 deay, infringement, bad iath, futhty, patent, procuct lines ...
... not volate Nartron's patents (u.S. patents: 4,731,548; 4,758,735; 4,831,279; \(5,087,825 ; 5,796,38 \$\) ("patents"), Nartron has fled an answer to ORG's amended decaratory ...
 COUFT FOR THE MODLE OISTPIOT OF PENNSYUANI A, 513 F. Supp. 2d \(149 ; 2007\) U.S. Dist. LEXIS 14782, March 2, 2007, Deciod, March 2, 2007, Filed, Notion to sume denied by ORQ, Ld v. Nartron Oorp., 2007 U. 5 Dist LEXS 29725 (MD. Pa. Ap: 23, 2007)

OVEpylew : Court reserved ruhe on the holder's moton to demise in part, because the competitor's attempt to identify other allegedly infringing procucts was insulficient to satisy the second prong of the patent nfrimement declaratory jugment test; ramely, thas undear what products and components the competitor was referring.

CokE TERMS: patent, apprehension, infringement, declaratory jugment, patent
intringement, prong, patentee's, mather fuedictor, actual controvesy, aption ...
 \(5,087,825 ; 5,795,383\) ("Oatents")). Natron has fied this motion to diemiss pursuant to Federal Fule of Civil Procedure \(12(b)(1)\)...
4. Nartron Gorp. v. Quantum Research Group, Ld, Case Number 06-13792, UNIED STATES DISTACT OOUFT FOR THEEASTERN DISTRIOT OF MOHGAN, SOUTHEAN DIVISION, 473 F. Supp. 2d 790; 2007 U.S. Dist LEXIS 12373, February 12, 2007, Decioed, Felated proceeding at ORG, Ld. v. Nartron Coro. 2007 U.S. Dist LEXIS 14782 (M.D. Pa., Mar. 2, 2007)

OVEFVIEW: Company's motion to dimiss was granted becase a prior lawsuit in Pennsyivania involing the same olams between the same partee was thed in a federal court of equalrank and the matier should proceed there. Noreover, the court did not have personal jurediction over the company on the basis of Fed. R Civ. P. \(4(\mathrm{k})(2)\).

Cofe TERMS: patent, persona jurisciction, enty, inmmement, webste, aprox, declaratory, technology, lawsut, replles ...
... reads as follows: Re: U6 patents \(4,731,548 ; 4,758,735 ; 4,831,279 ; 5,087,825\); 5,798, 783 Dear Mr. Phillp: We have recently been made aware of ...
* 5. QRG, Mo. v Nentron Cotp, Civi ACion No. 06-500, UnTED STATES DISTRICT COURT FOR THE WESTERN DISTRICT OF PENSYLVANA, 2OOS U.S. DIBE. LEXIS 6412t, September 7, 2008, Decided, September 7, 2008, Fled, Related proceedng at Nartron Corp. w. Quantum Pesearch Group, hid, 2007 U.S Dist. LEXIS 12373 (ED. Mich., Feb. I2, 2007 )

OVERYI mb: The fact that Michgan paient holder weekly shipped goods to Pennsy:vania rendered it subject lo genera persona jurisdiction in Pennsylvania. Cont sua sponte exercised ms dscretion under 28 US.S.S. \(81406(a)\) and transemed patent declaratory judgment sut to Mdole District of Fennsylvana, which was proper venue under 28 U.S. \(\mathrm{O} .5 . \$ 1391(c)\).

Cobe bexms: personal furisciction, continuous, systematic, venue, general Jurisdiction, ludiol district, reside, asserting, patents, sua sponte...
... Paten Nos 4,737,548 ("the 543 Patent"), \(4,753,795\) ("he " 735 Patent"),
 ("the'825 Patent ...

Source: Command Searchmg >atent Casestrom Federal Courts and Administrative Materiass
Tems: 5796383 or 5,796,183 (Suggest Terms for My Search)
Vew: Cite
Date/Tme: Sunday, danuary 26, 2014-3:58 PMEST
* Signal Legend:
* Warning Negative tratment is indicated
7. Questioned: Valldity questioned by citing refs
* - Caution Passble negative treatment
* - Positive treatment is indicated
* Citing Fefs. With Analysis Available
- Gtaton niomation ava!able
* Click on any Ghepara's signal to Shepardize@ that case.
 Copyright 2014 LexisNexis, a division of Reed Esevier inc. All rights reserved.

\section*{Lexis:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline My kexis \({ }^{\text {w }}\) & Seases & cet a Dowsment & shspard's* & Smare & Mistory & Alerss \\
\hline A \(\mathrm{S}^{\text {a }}\) & \multicolumn{6}{|c|}{Aceredt Subtavs} \\
\hline
\end{tabular}

 Copyrght 2044 LexisNexis, a digign of Reed Elsevier Inc. All rights yessmed
```

Me Deckmants Found
No documents were found for your search terms

```

```

 Click "Save this search as an Aler" to schedute your search to run in the foture
 - OR -
 Chok "Search Using Natural Language" to run your search as Natural Language searoh
 OR
 Click "Edit Search" to return to the search form and modity your search
 Guggestions
* Check for spethng errors.
* Remove some search terms
* Use more common search terms, such as those listed in "Suggested Words and
Conoepts."
* Use a iess restrictive date range.
* Use "OR" in between terms to search for one term or the other.
Save this Search as an Alert Search Using Natural Language Edit Search

```

LexisNexis
About LexisNexis Privaoy Poiny Terms \(\&\) Conditone Contact Us Copyight (0) 2044 texiskexts, a division of heed grevier lra. At rights reserved.

\section*{Lexis:}

 Copyrght 2044 LexisNexis, a digign of Reed Elsevier Inc. All rights yessmed
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sty lexis \({ }^{7 \pi}\)} & Sas \(\mathrm{c}_{\text {ch }}\) & Qet 3 Wosumemt & Shepars's & More & History \\
\hline & & & & & Alerts \\
\hline Focusm Term & 5796183 & 796,183 & \multicolumn{2}{|l|}{Search whthir: Original Results (1-1)} & Advanced.. \\
\hline
\end{tabular}

Vew Tutoria:

```

Terms: 5796 68s of $5,796,183$ (Suggest Terms for My Search)

```

\title{
Qumberiand Fharmaceutioais Roports \(58 \%\) hnorease in Net Fevenue Whth Thio Guater aoog Fhanciai Results; - Galdolor (F) begins geneteting revenue; - 20\% increase in tevenue for
 Newswire Novenber to, 200S Tuesday 7: SO AM EST
}

Gomyight 2009 PR Newswira Association LC
Al Righis Reserved
PA Newswire
November 10, 2009 Tuescay 7.30 AM EST

EENGTM: 5124 words
HEADM NE: Oumberiand Phamacentioais Feporis \(58 \%\) Increase in Net Revenue Win Third Quarter 2009 Enanoial Results;
- Cadolor(R) begins generatng revenua;
- 20\% increase in revenue for Aceiadote(A) and tistabse(P);
- Probtabilny mantaned hrough Cabolor(a) bumoh

BATEMBE: NASHVIEETOnn. NOV. TO

900Y:

NASHVILEE Tenn. Nov. TO PRNewswiremistCali - OMberand Phammaceutioais lnc. wi जasdaq: CPX wi, a speciaty pharmaceutical company focused on he hospatak acuse are and gastroenterology markets, \}oday announced third quarter 2009 financial results.
"With an ablief-han-anticheted Galdolor aunch, we were able to dramathally exceed our
 Gumberland Phamaceuticals. "Additionaty, the completion of our intial publio otiering in August provides us with the strongest balanes sheet in the history of the Company. We intend to put that capitat to good use not only by supporting the Gabolor launch, but also by adding select new procucts to our poritolo that can benefit patiente and onhance shareholder value."

Net Fevenue: Fon the three months onded September 30,2009 , net revenue was \(\$ 13.6\) millom, up \(58 \%\) from the corespondmo petod in 200 . The growth was atributabie to inial revenue Irom Gadotor (buproten) Indection, the Company's recenty approved lv treatment for pain and
 treatment lor acetaminopher overdose. Net revenue for the nhe months ended September 30 , 2009, was \(\$ 2.8\) million, up \(30 \%\) from 25.3 milion for the same period in 2008 , abo pumarly due to the Gadotor haunch and Acetadote sales growth.

Operating Expenses: Tota operating expenses for the thes months ended Sepiember 30, 2003 , were \(\$ 11.2\) millon, comparecto \(\$ 6.5\) millon for the same period in 2008 . This norease was due primanty to sales and markeling expense associated with the Gadotor bunch, higher cost of prodects sold resulting from sales grow in and a change in product mas well as a signticant, non-recuring payroll tax expense of \(\$ 1.0\) milion related to the exacise of non-qualfed optons. For the nine-month period ended September 30,2009 , totaloperating expenses were \(\$ 27.7\) millon, compared with \(\$: 2.5\) millon for the corresponding period in 2008 . This increase primarily reflected Cadolor milestone obligations related to FDA approval, the atorementoned payrol tax expense, costs incurred in connection with the Company's hospital sales torce expansion, and moreased matketng and adverting costs assocated with the Caldolor launch.

Net Moome: Net noome for the three months ended September 30,2009 , grew \(10 \$ 1.3\) mmon, or \(\$ 0.07\) per dibted share, compared to \(\$ 1.2\) millon, \(\$ \$ 0.07\) per diluted share, for the same period in 2008 . Excluding the non-recurring payroll tax expense, net income tor the thee months ended September 30, 2003, would have increased \(54 \%\) to \(\$ 1.3\) milion, on 30.10 per diluted share.

Net income for the nine months ended September 30,2009 , was \(\$ 2.8\) milhon, or 30.18 per diluted share, compared to \(\$ 3.7\) milion, or \(\$ 0.22\) per dituted share, for the corresponding period in 200e. The decrease is due primarily to milestone obligations triggered Dy FDA approval of Caldot in the second quarter of 2009 , as well as the atorementioned sates force expansion and option related payroll tax. Excuding Cabolor milestone bayments and the non-recurring payrolk tax expense, net income for thenne months ended September 30,2009 would have grown \(25 \%\) \(10 \$ 4.6\) milion, or \(\$ 0.27\) per diluted share.

Cash and Cash Equvalents: As of September 30, 2009, Cumbertand had \(\$ 79.5\) milion in cash and cash equivalents, a \(\$ 67.7\) millon increase from lune 30,2009 . The increase was argely due to the Company's mitial public offering in August. At quarter's end, Cumbetand had totaldebt of \(\$ 19.8\) milion, includng \(\$ 4.5\) million in current fablities. The Company had net acounts recelvable and inventories of \(\$ 7.3\) millon and \(\$ 1.7\) million, respectively, at September 30,2009 .

\section*{Third Quarter Hghlights}

Oadolor Launch
In September 2003. Ombertand successtuly launched Caidotor in the U.S., and the Company's hosplat and feld ables torces comprised of 113 experienced sales protesabonals are now promoting the product, Calolor is fulty stocked at whotesalers serving hospitals nationwide, and is avalabie in both 400 mg and 800 mg vais. The Company is workng to mtroduce Caldolor and secure formblary approval nationally. The product is now stocked in a number of medical facilties across the country, In additon to personat sates promotion Cumberiand is supporting the product through a mult-faceted campaign, including internet and media advertising, medical society and convention presence, joumal publicatons, and its medical information oal center, among othey methatives.

Inita Publo Oftering
In August 2009, Cumberiand completed ts initial public offering of \(5,000,000\) shares of common stock at a price to the public of 17.00 per share, raisma \(\$ 85.0\) millon in gross proceeds. Net proceeds to the Company were 174.8 millon after commissions and offering expenses. The proceeds from this offering are being used primarily for potential acquisitions, the launoh of Cadolor, expansion of the Company's hosphal sales force, product development, debt repayment and general corporate purposes. Cumberland's common stock began trading on the NASQAQ Global Select Market on August 11, 2009, under the trading symbol "CPIX"

Recent Events
Intemaliona markets

In October 2003, the Company amounced that has entered into an exolusive agrement win Phebra Ply Lid., an Austalian-based specialty phamaceutical company, for the commercialiation of Cadotor in Australia and New Zeaband. Bhebra will be responsbie for obtaining any regulatory approva for the product, and for handing ongong regulatory reguirements, product markeing. distribution and sales in the territories. Cumberiand will maintan responsibilty for product tormulation, development and manufacturing, and wilf provide finished product to Phebra. Under the terms of the agreement, Cumbenland will receive uptront and milestone payments as well as a transter price, and will also recelve ryaties on any future sales of Caldolor in those teritories.

New Intellectual Froperty Intiative for Caldolor
In addition to Cumberlands issued patent for Cadolor the Company has fled the fret of several expected new patent applicatons for the product. Cumberfand's dinical research uncovered several new product-elated discoveries, tor whioh the Company fied severa provisional patent applications. Part of an ongoing intiative to protect the Company's intellectual property, this new patent application addresses Gumbertands proprietary method of dosing intravenous buprofen.

\section*{Supplemental Financial Information}

The following tables provide a reconciliation of Cumberland's repored (GAAP) statement of income to adusted (non-GAAP) statements of ncome for the three and nie-month periods ended September 30,2009 . The adusteo statements exchue certan non-recurng iems, and are provided by management to assiat investors in evabatng Cumberands operaing results. The adusted statements should not be consideted a subathte or Cumbenands reported statements of income.


```

statement of income:
J. To exciuce mjuestone expences associated with the FDA amptoval of
Caldolor.
2. To enchude payxolu-related taxed assocjated whtr the enerodise at
aOn-quainfied options in 200g.
3. To incmude the taz imeact of adjustments.

```

\section*{Conterence Call and Weboast}

A conterence call and live webeast will be hed on Tuesday, November 10,2009 , at \(10.00 \mathrm{a} . \mathrm{m}\). Eastem Time to discuss the Company's third quarter 2000 financia resuts. To participate on the cal, pease dial 988-447-8462 (for U.S, calers) or \(719-457-2552\) (for monational callers). A rebroadcast of the teleconference will be avalable for one week and can be accessed by daling 388-203-1112 (for U.S callers) or 719-467-0820 (for intemational callers). The passcode for the rebroadcast is 9695493 . The twe webcast and rebroadoast oan be aocessed via Cumbenand Pharmaceuticals' website at htip//investor shareholder.com/opk/events.om.

About Ombentand Pharmaceulicals
Omberland Pharmaceuticals inc. wis a Tennessee-based specaty phamaceutical company fooused on the acqustion, development and commerobization of branded preseriotion products. The Company's primary target makets incude hospita: acute care and gastroenterology. Cumberlands product ponfolo includes Acetadoted (acetyloyeteine) Injection for the treament of acetaminophen poisoning and Kristaloses (actulose) for Onal Bolution, aprescription laxative. The Company ako :ecently launched Caloborg (buprofen) Ingection, the first mectable treatment for pain and tever avaliable the United States. Cumbertand is dedicated to proving innovative products which inprove gualty of care for patients. The Conpany completed the initial publie oferng of tes common stock in August 2009. Formore information on Cumberland Pharmaceuticals, please visit ww. cumbertandphama com.

About Caldolor

Cadotor is indicated for the management of mild to moderate pain and management of moderate to severe pan as an adjunct to opioid anagesios, as well as the reduction of fever in aduts. it is the first FDA-approved intravenous therapy for fever. Cadolor is contrandioated in patents with known hypersensitivity to buproten or other NSAOS, patents with asthma, utheara, or allergio type reactons after taking aspirin or other NSADS. Caldolor is contraindoated for use during the peri-operative period n the settng of ooronary artery bypass grat (CAEQ) surgery Cadolo: should be used with cauton in patients whin prior history of uloer disease or g bleedrg, in patients whif flud retention or hath talure, in the elderly, those whin renalmpamment, heart fallure, fiver impamment, and those taking diuretios or ACE inhbitors. Bood presaure should be montored during treatment with Caldor. For full prescribing information, including boxed wanng, vist wow caldolor com.

\section*{Abou: Acetadote}

Acetadote is used in the omergenoy department to prevent or lessen potential iver danage resulting fron an overdose of acetaminophen, a common ingredient in many over the counte: pankillers. It is the only approvec injectable product in the United States tor the treatment of acetaminophen overdose, the leading cause of posonings presenting in emergency deparments in the country(1). Acetacote is contrandicated in patients with hypersensitiviy or prevous anaphylactoid reactions to acevloysteme or any components of the preparation. Berous anaphyactoid reactions, including death in a patient with asthma, have been reported in patients admmistered acetyloysteme intravenously. Acetadote should be used with caution in patients with asthma, or where there is a history of bronchospasm. The total volume admintered should be
adjusted for patents less than 40 kg and for those requing tuid restriction. To avoid fud overload, the whme of dhent should be reduced as needed. If wome is not adusted, hud overload can occur, potentaly resting in mponatemia, seizure, and deah. For full prescribing mormation, visit wwo aceladotenet.

About Kristaiose
Kriatase is indicated for the treatment of acute and chronic constpation. it is a unique, proprietary, crystaline form of lactulose, with no restrictions on length of therapy or patient age. Initial dosing may produce flatulence and intestinat cramps, which are usualy transient. Excessive dosage can lead to diamhea with potential complications such as loss of fluids, fypokatemia and hyoenatrema. Nausea and voming have been ropored. Use with authon in dabetws Kristabese is contraindicated in patients who require a low galactose dict. Elerly, ceblitated patients who recelve lactulose tor more than six months should have serum electrolytes (potassium, chtoride. carbon doxide) measured pertodically. For ful prescribing intormation, visit www kistalose com.

Forward Looking Statements
This press release contans "forward-loking statements", including statements regarding estmated results of operations in future periods. These statements are subject to the thalization of Cumberland's quarterly financial and acoounting procedures and refiect Cumberland's ourrent vews with respect to future events, based on what it belfeves are reasonable assumptions. No assurance can be given that these events will ocour. As with any business, all phases of Cumberfand's operations are subject to miluences outside ts control. Any one or a combination of these tactors coud matenally abect the esums of Cumberands operatons. These factors indude, among oher things, market conditions, commercaizathon of Cadotor, compettion from exising and new products, which couid diminish the commercia potentia of Cumberland's products, an mabitty of manufacturers to produce Cumberbads products on a timely basis or a fallure of manufacturers to comply with stringent regulations applcabie to pharmaceutical manuacturers, maintaining and bulding an effective sales and marketing infrasiructure, Cumberland ability to identify and acquire rights to products, govermment regulation, the possibity that Cumbertand's marketing exclusivity and patent rights may provide limied protecton from competition, and other facors discussed in the Company's Registation Statement deolared offectraby the SEC on August 10, 2003. There can be mo assurance that the results of developments anticipated by the Company will be realzed or, even if aubstantally reatized, that they will have the expected elfects on the Company's business and operaions. Feaders are cauloned not to place undue relance on these torward-looking atatements, which speak only as of the date hereo. The Company does not undertake any oblgation to release publicly any revisions to these statements to reflect events or circumstances after the date hereot or to reflect the ocourrence of unanticpated events.
(1) National Foison Data System, American Association of Poison Control Centers

SOUPCE: Cumberland Fharmaceuthals inc *
```

CUMBERYAND PAARMACEUTHCALS TMC. * COWDEVSED COMBODTDATED RALAMCE BUEETS (UNAUDTTED)

December 31, September 30,	
2003	2009

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{ASSECS} \\
\hline \multicolumn{3}{|l|}{Current assets:} \\
\hline Cash and cash equivalents & \$11, 829,551 & 979,541,274 \\
\hline Acconts receivabie, net of & & \\
\hline allowances & \(3,129,347\) & \(7,282.373\) \\
\hline
\end{tabular}
```

 Mrugntories
 Frepaid ard other ourrent ascets
 Deferred tax assets
 Total cuxment assets
 Property and equipment, net
Intarcible assets, ret
De:erred tax acsets
Other assets
Total assets
JTARTLTTTES AND EOUTTY
Curreme lawajitijes:
Current portion of long-wterm cebt
Gurent portion of other long-temm
obligations
Acoounts payable
other acorued liakilitjes
Total Gument Labalitage
Revolving line of orecit
Long-icrm debt, exoduding curcent
portion
Othax lonc-term okifgatjoos, excluderg
current portion
Total Liabuluties
Commements ard contingenctes
Rodegmable common stock
\$1,250,000
\$4,500,000
457.915
3,257,].64
2,640,855
797,596
3,056,945
7,605,934
3.558,538
2.825.951 2.825,951
3,750,000
382,487
-.................
13,564,372
29,065,-44
.- -. -- -- .- .- -.........
-- -.- -...-..........
2,030,000
Ghareboldexs' equity:
Cumberland pharmaceuticals Inc. *
ghatebolders' gunity:
Convextible preferred stock -
no par value; 3,000,000 shares
Euthorimed; 842,749 and 0 shaxes
issued and outstanding
2,604,070
as of necember 31, 2008 ard
September 30, 200%, respectively
Common stock -- no par value;
100,000,000 sharea autrowi%ed;
9,903,047 and 20,129,791(1) shaxes
jssued and outstandjug as of
Decembex 31, 2008 and
September 30, 200%, respectively
13,500,034
66.434,206
Retained earnangs

2,762.776	1,687,591
481,312	$2,536,202$
507.212	505.617
17.710 .190	92,553,055
432.413	59\%,238
8,528,732	$8,099,612$
1,000,032	990,663
$3,447.313$	415.170
331, 19.187	3101, 655,736
$41,250,000$	\$4,500,000
457.915	204,027
$3,257,164$	$5.797,596$
$2,640,855$	$3,056,915$
$7,605,934$	13,553,538
2.825,951	2, 825,951
$3,750,000$	$13,500,000$
382.487	180,652
13,564,372	29.065 .141
-. -- -- -- -. -. -- --....	-- -. -- -- --. --............
-	$2.930,000$
$2,604.070$	\cdots
13,500,034	65.434 .206
3, 450,711	4, 25,2,809

Inveritories	2.762.776	2, 687,591.
Frepaid ard other ourrert ascets	481.312	$2,536,202$
Deferred tax assets	507,212	$505.6: 7$
Total Guxtent assets	17.710 .198	92,593,055
roperty and egulpment, net	432.413	597,236
atargible asaets, net	5,528,732	$8,099,612$
eterred tax assets	[,000,032	990,663
cher assets	$3,447.813$	415.170
Total assets	531.119.187	$3101.655,736$

 204,027
 13,500,000
 180,652
 4,252,809
    ```

```

 attributable to
    ```

```

COMREPLOND PHARMACEUTCDLS TWC, %
(ONDODITED)
Nine Months Ended September 30,

2008 2009
.-....---

Cash Elows from operatimo actuvities:
Net income
33,662,682
\$2,775,678
Acjustments to reconcile ret income
to net casi flowe from operating
activities:
Gain on egrly extingumshment of other
long-term obligations
(38, 577)
589.72% 605,514
Derreciation and amortization expense
Wonemptoyee stook grarted Eor servioes
received
104,716
205.693
Nonembloyee stock ogtion grant expense
840,499
Stock-based oompensation - emoloyee
stoc] ortions
274.534 455,502
Excess tax benefit derived from
exereise of stock options
254,681
(2,842,025)
Woncash interest expense
67,523
83,420
Net changes in assets and liabilities
affecting operating activities:
Aocourte receivable (828,880) (4,054,700)
Inventory (849,460) 75,185
Wrewaid, other curremt assets
and other assets 849,062 936,286

```

```

OONTAOT:mvestors, Angea Nowak, Corporate Relarona of Cumberland Pharmaceubmats inc, w

+ 1-615-255-0065, amovak@oumberamdphamma.oom; or Kathy Walar of Fmancial Relatuns
Board; + 1-312-543-6708; or Media, Faula Lovellol Lovell Commumoations, + 1-6t5-297-7766,
both lor Gumberland Pharmaceutcats lnc.*
3\&k: nttp:/www.prnewswire.com
BOAD-DATE:November 14,2009
Source: Command Searching = Ant Engbsh Lamgunge News S.
Terms: 5796103 or 5,796,\83 (Suggest Terms for My Searon)
Viow: Full
OalemTme: Sumday, daruary 20, 2014. 4:00 PM EST

```

\begin{tabular}{|c|c|c|}
\hline REEXAM CONTROL NUMBER & FILING OR 371 (c) DATE & PATENT NUMBER \\
\hline \multirow[t]{2}{*}{90/013,106} & 12/24/2013 & 5796183 \\
\hline & & CONFIRMATION NO \\
\hline \multicolumn{2}{|l|}{25962} & REEXAMINATION REQ \\
\hline \multicolumn{2}{|l|}{SLATER \& MATSIL, L.L.P.} & \\
\hline \multicolumn{2}{|l|}{17950 PRESTON RD, SUITE 1000} & \\
\hline \multicolumn{2}{|l|}{DALLAS, TX 75252-5793} & ||||||||||||||||||||||||||| \\
\hline
\end{tabular}

Date Mailed: 01/15/2014

\section*{NOTICE OF REEXAMINATION REQUEST FILING DATE \\ (Patent Owner Requester)}

Requester is hereby notified that the filing date of the request for reexamination is \(12 / 24 / 2013\), the date the required fee of \(\$ 2,520\) was received. (See CFR 1.510(d)).
A decision on the request for reexamination will be mailed within three months from the filing date of the request for reexamination. (See 37 CFR 1.515(a)).

Pursuant to 37 CFR 1.33(c), future correspondence in this reexamination proceeding will be with the latest attorney or agent of the record in the patent file.

The paragraphs checked below are part of this communication:
\(\qquad\) 1. The party receiving the courtesy copy is the latest attorney or agent of record in the patent file.
__ 2. The person named to receive the correspondence in this proceeding has not been made the latest attorney or agent of record in the patent file because:
\(\qquad\) A. Requester's claim of ownership of the patent is not verified by the record.
\(\qquad\) B. The request papers are not signed with a real or apparent binding signature.

C . The mere naming of a correspondence addressee does not result in that person being appointed as the latest attorney or agent of record in the patent file.
\(\qquad\) 3. Addressee is the latest attorney or agent of record in the patent file.
4. Other
/rbell/
Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900


\section*{NOTICE OF ASSIGNMENT OF REEXAMINATION REQUEST}

The above-identified request for reexamination has been assigned to Art Unit 3992. All future correspondence to the proceeding should be identified by the control number listed above and directed to the assigned Art Unit.

A copy of this Notice is being sent to the latest attorney or agent of record in the patent file or to all owners of record. (See 37 CFR 1.33(c)). If the addressee is not, or does not represent, the current owner, he or she is required to forward all communications regarding this proceeding to the current owner(s). An attorney or agent receiving this communication who does not represent the current owner(s) may wish to seek to withdraw pursuant to 37 CFR 1.36 in order to avoid receiving future communications. If the address of the current owner(s) is unknown, this communication should be returned within the request to withdraw pursuant to Section 1.36.

\section*{/rbell/}

Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900

\title{
Patent Assignment Abstract of Title
}

Total Assignments: 5
Application \#: 08601268
Filing Dt: 01/31/1996 PCT \#: NONE

Publication \#: NONE
Inventors: JOHN M. WASHELESKI, STEPHEN R. W. COOPER, BYRON HOURMAND Title: CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT

\section*{Assignment: 1}

Reel/Frame: 008254/0496 Received: 02/10/1997 Recorded: 01/31/1996
Mailed: 02/12/1997
Pages: 2
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: HOURMAND, BYRON
Exec Dt: 01/31/1996
Assignee: NARTRON CORPORATION
5000 NORTH U.S. 131
REED CITY, MICHIGAN 49677
Correspondent: PRICE, HENEVELD, COOPER,
DEWITT \& LITTON
TERRY S. CALLAGHAN, ESQ.
P.O. BOX 2567

GRAND RAPIDS, MI 49501

\section*{Assignment: 2}

Reel/Frame: 008443/0749 Received: 04/17/1997 Recorded: 02/04/1997
Mailed: 05/28/1997
Pages: 2
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: HOURMAND, BYRON
Exec Dt: 01/31/1996
Assignee: NARTRON CORPORATION
5000 NORTH US 131
REED CITY, MICHIGAN 49677
Correspondent: PRICE, HENEVELD, COOPER, ET AL
TERRY S. CALLAGHAN, ESQ.
P.O. BOX 2567

GRAND RAPIDS, MI 49501

\section*{Assignment: 3}

Reel/Frame: 023679/0803 Received: 12/22/2009 Recorded: 12/22/2009 Mailed: 12/23/2009 Pages: 11
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: NARTRON CORPORATION
Exec Dt: 12/17/2009
Assignee: UUSI. LLC
5000 NORTH US HIGHWAY 131
REED CITY, MICHIGAN 49677
Correspondent: TAROLLI, SUNDHEIM, COVELL \& TUMMINO LLP
1300 EAST NINTH STREET
SUITE 1700
CLEVELAND, OH 44114

\section*{Assignment: 4}

Reel/Frame: 028804/0075 Received: 08/17/2012 Recorded: 08/17/2012 Mailed: 08/20/2012 Pages: 2
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: WASHELESKI, JOHN M.
Exec Dt: 04/14/2010
Assignee: NARTRON CORPORATION
5000 NORTH US-131
REED CITY, MICHIGAN 49677
Correspondent: SLATER \& MATSIL, L.L.P.
17950 PRESTON RD.
SUITE 1000
DALLAS, TX 75252

\section*{Assignment: 5}

\section*{Reel/Frame: 028804/0137 Received: 08/17/2012}

Recorded: 08/17/2012
Mailed: 08/20/2012
Pages: 2
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: COOPER, STEPHEN R.W.
Exec Dt: 04/14/2010
Assignee: NARTRON CORPORATION
5000 NORTH US-131
REED CITY, MICHIGAN 49677
Correspondent: SLATER \& MATSIL, L.L.P.
17950 PRESTON RD.
SUITE 1000
DALLAS, TX 75252

Under the Paperwork Reduction Act of 1995 , no persons are requived to respond to a collection of infomation uniess it displays a yalid Onf controi number.

[Page 1 of 2]
This oolection of information is required by 37 CFR 1.510 . The iniometion is requite to obtan or retain a benerit by the pubie which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This colection is estimated to take 18 minutes to complete, including gathering, preparing, and submitting the compieted application form to the USPTO. Time wili vary depending upon the individual case. Any comments on the amoun of time you requre to complete this form andion suggestons for reducing this burden, should be sent to the Chief infomation Officer, US, Patent and Trademark Offoe, U.S. Deparment of Commerce, F.O. Box 1450 , Aexandria, VA 22343-1450. DO NOT SEND FEES OR CONPLETED FORDAS TO THIS ADDRESS. SEND TO: Mail Stop Ex Parte Reexam, Commissioner for Patents, P. O. Box 1450 , Alexandria, VA \(22313=1450\).

If you need assistance in oompleting the fom, oall 1-800-pro-9199 and select option 2.

The attached detailed request includes at least the following items:
3. A statement identifying each substantial new question of patentabithy based on prior patents and printed publications. 37 CFR \(1.510(\mathrm{~b})(1)\).
b. An identification of every claim for which reexamination is requested, and a detaibed explanation of the pertinency and manner of applying the cited an to every clam for which reexamination is requested. 37 CFR 1.510(0)(2).
14. \(\checkmark\) A proposed amenoment is included (onty where the patent owner is the requester). 37 CFR 1.510 (e).
15.a. It is certified that a copy of this request (if filed by other than the patent owner) has been served in its entirety on the palent owner as provided in 37 CFR 1.33 (c).
The name and address of the party served and the date of service are:
\(\qquad\)

Date of Service \(\qquad\) : or
\(\square\) b. A duplicate copy is enclosed since semice on patent owner was not possible. An explanation of the efforts made to serve patent owner is attached. See MPEP \(\$ 2220\).
16. Correspondence Aderess: Direct all communication about the reexamination to:

The address associated with Customer Number:
25962

Firm or
Individual Name \(\qquad\)
Address
\begin{tabular}{|c|c|c|}
\hline City & State & Zip \\
\hline \multicolumn{3}{|l|}{Country} \\
\hline Telephone & Email & \\
\hline
\end{tabular}
17.

The patent is currently the subject of the following concurrent proceeding(s):a. Copending reissue Application No.b. Copending reexamination Control No. \(\qquad\)c. Copending Interference No.d. Copending litgation styled:
\(\qquad\)

WAFNING: Information on this form may become pubic. Credit card information should not be included on this form, frovide credit card information and anthorization on pro-2038.
/Brian A. Carlson/
Authorized Signature
\begin{tabular}{ll} 
December 24, 2013 \\
Date \\
37,793 & \(\square\) For Patent Owner Requester \\
Registation No. & \(\square\) For Third Party Requester
\end{tabular}

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.k. \(93-579\) ) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. \(2(\mathrm{~b})(2)\); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process andor examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The infomation on this form will be treated confidentially to the extent allowed under the freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552 a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or adminstrative tribunal, including disclosures to opposing counsel in the course of settement negotations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individua, to whom the record pertans, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routhe use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. \(552 \mathrm{a}(\mathrm{m})\).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routne use, to the international Bureau of the Worid Intellectual Properly Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review ( 35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. \(218(\mathrm{c})\) ).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or hisher designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA reguations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was fled in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a vilation or potential violation of law or regulation.

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
\begin{tabular}{lllll} 
U.S. Patent No.: & \(5,796,183 \mathrm{~B} 1\) & \(\S\) & Docket No.: & \(5796183 R X 2\) \\
Issued: & August 18, 1998 & \(\S\) & Inventors: & Hourmand et al. \\
Filed: & January 31, 1996 & \(\S\) & Patent Owner: & UUSI, LLC \\
Control No. & TBD & \(\S\) & Examiner: & TBD \\
For: \(\quad\) Capacitive Responsive Electronic Switching Circuit & \\
Mail Stop Ex Parte Reexam & & & \\
Attn: Central Reexamination Unit & & & \\
Commissioner for Patents & & \\
P.O. Box 1450 & & & \\
Alexandria, VA \(22313-1450\) & & &
\end{tabular}

\section*{REQUEST FOR EX PARTE REEXAMINATION UNDER 35 U.S.C. \(\$ \$\) 302-307}

Dear Sir:
Patent Owner UUSI, LLC respectfully requests Ex Parte Reexamination, pursuant to the provisions of 35 U.S.C. §§ 302-307 (2002), of claims 18 and 27 of United States Patent No. 5,796,183 C1 (the " 183 Patent"). This patent is still enforceable.

As set forth below, some of the prior art references submitted herewith were not previously before the Office, and the combination of these references with previously considered references presents new, non-cumulative technological teachings not considered during the `183 Patent prosecution history including the first reexamination proceeding having control number 90/012,439.

\section*{I. OVERVIEW OF THE `183 PATENT AND ITS PROSECUTION HISTORY}

Section I.A below provides an overview of the subject matter of the ` 183 Patent, while Section I.B provides an overview of its prosecution history.

\section*{A. The \({ }^{`} 183\) Patent}

The ` 183 Patent, a copy of which is provided as Exhibit A, issued on August 18, 1998 from an application filed on January 31, 1996. Ex Parte Reexamination Certification Number \(5,796,183 \mathrm{C} 1\) was issued for the ` 183 Patent on April 29, 2013. The ` 183 Patent generally relates to a capacitive responsive electronic switching circuit including an oscillator providing a periodic output signal, an input touch terminal defining an area for an operator to provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. See, e.g., ` 183 Patent, Abstract.

The ` 183 Patent as reexamined contains 39 total claims, with claims \(1,9,12,16,18,20\), 24,27 , and 37 being independent. Claims 18 and 27, which are the subject of this reexam request, require an oscillator, a microcontroller, a plurality of touch terminals, and a detector circuit.

An embodiment with a single touch terminal is shown in Figure 4, and an embodiment with multiple touch terminals is shown in Figure 11, both of which are reproduced below:


Fig. 4 of the ` 183 Patent


Fig. 11 of the 183 Patent
Page 3 of 34

The multiple touch pad circuit of Figure 11 is a variation of the embodiment shown in Figure 4, but with an array of touch circuits designated as \(900_{1}\) through \(900_{\mathrm{nm}}\). See, e.g., id. at col. 18:34-43. The touch detection circuit offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard. See, e.g., id. at col. 5:53-57.

Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to \(900_{\mathrm{nm}}\) by providing the signal from oscillator 200 to selected rows of touch circuits. See, e.g., id. at col. 18:43-46. The values of the resistors and capacitors utilized in oscillator 200 may be varied to provide for different oscillator output frequencies. See, e.g., id. at col. 14:22-25. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. See, e.g., id. at col. 11:19-25.

Microcontroller 500 sequentially activates the touch circuit rows and associates the received inputs from the columns of the array with the activated touch circuit(s). See, e.g., id. at col. 18:46-49. The detector circuit is responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. See, e.g., id. at Abstract. Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. See, e.g., id. at col. 3:44-46.

\section*{B. The Prosecution History of the ` \(\mathbf{1 8 3}\) Patent}

A copy of selected portions of the prosecution history of the ` 183 Patent is provided in Exhibit B.

The `183 Patent issued from U.S. Patent Application Serial No. 08/601,268 ("the `268 application"), filed on January 31, 1996, and naming Byron Hourmand as the sole inventor. A request for ex parte reexamination of the `183 Patent was filed on August 17, 2012 and assigned control number 90/012,439. Ex Parte Reexamination Certificate No. 5,796,183 C1 was thereafter issued on April 29, 2013.

The `268 application was filed with 20 total claims, of which four were independent.
Claims 21-32 were added by subsequent amendment. A cross-reference between the originally issued claims and the application claims from which they issued is provided below for convenience.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Issued Claim & Appl. Claim & Issued Claim & Appl. Claim & Issued Claim & Appl. Claim & Issued Claim & Appl. Claim \\
\hline 1 & 1 & 9 & 5 & 17 & 16 & 25 & 25 \\
\hline 2 & 2 & 10 & 6 & 18 & 18 & 26 & 26 \\
\hline 3 & 3 & 11 & 7 & 19 & 19 & 27 & 27 \\
\hline 4 & 4 & 12 & 12 & 20 & 20 & 28 & 28 \\
\hline 5 & 8 & 13 & 13 & 21 & 21 & 29 & 29 \\
\hline 6 & 9 & 14 & 14 & 22 & 22 & 30 & 30 \\
\hline 7 & 10 & 15 & 17 & 23 & 23 & 31 & 31 \\
\hline 8 & 11 & 16 & 15 & 24 & 24 & 32 & 32 \\
\hline
\end{tabular}

In an Office Action dated April 22, 1997, the Examiner rejected application claims 6, 7 and 16 under 35 U.S.C. § 112, second paragraph, as being indefinite. See Ex. B, ` 183 Patent File History, Office Action, p. 2 (Apr. 22, 1997). Claims 6,7 and 16 would be allowable if rewritten to overcome the section 112 rejection, and to include all of the limitations of the base claim and any intervening claims. See id. at p. 5 .

Claims 1-4 and 12-14 were rejected under 35 U.S.C. § 102(b) as being anticipated by U.S. Patent No. 4,352,141 to Kent ("Kent). See id. Claims 8-11, 18, and 19 were rejected under 35 § U.S.C. 103(a) as being unpatentable over Kent in view of U.S. Patent No. \(5,087,825\) to Ingraham ("Ingraham"), see id. at p. 3, and claims 8-11, 18 and 19 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Kent in view of U.S. Patent No. 5,235,217 to Kirton ("Kirton"). See id. at p. 4. Lastly, claims 5 and 15 were objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all the limitations of the base claim and any intervening claims. See id. at p. 5 .

In response, the Applicant filed an amendment on August 22, 1997, amending claims 1, 3, 5, 6, 12-18 and 20, and adding new claims 21-32. In particular, the Applicant amended independent claim 18 as follows:
18. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency;
a plurality of input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or touched by an operator to provide a control output signal,
wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electrical on said dielectric substrate path between said adjacent areas, and wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.

Ex. B, `183 Patent File History, Amendment, p. 11 (Aug. 22, 1997). The Applicant argued that the Kent and Ingraham patents both fail to teach or suggest a capacitive responsive electronic switching circuit comprising a detector circuit that compares the sensed body capacitance proximate an input touch terminal to a threshold level in order to prevent inadvertent generation
of a control output signal. See id. at p. 19. The Applicant further argued that the Kirton patent, like the Kent and Ingraham patents, does not disclose a touch control circuit that is capable of discriminating between a full intentional touch of a touch terminal and an inadvertent touch of a portion of the surface of the touch terminal. See id.

With respect to new independent claim 27, the Applicant argued none of the cited references teaches or suggests a switching circuit for a control device that comprises at least first and second touch terminals and a detector circuit that generates a control output signal for actuation of the control device when an operator is proximal or touches the second touch terminal after the operator is proximal or touches the first touch terminal. See id. at pp. 20-21.

The Examiner issued a Notice of Allowance on October 27, 1997, allowing all of the pending claims. See Ex. B, `183 Patent File History, Notice of Allowance, p. 2 (Oct. 27, 1997). The Applicant then filed a section 312 amendment on November 3, 1997 to delete the word "said" after the word "when" in claim 27, line 11. See Ex. B, '183 Patent File History, Amendment Under 37 C.F.R. § 1.312, p. 1 (Nov. 3, 1997). The issue fee was paid on January 26, 1998, see Ex. B, `183 Patent File History, Issue Fee Transmittal, p. 1 (Jan. 26, 1998), and the `183 Patent subsequently issued on August 18, 1998.

The Applicant filed a certificate of correction on January 20, 1999, which was accepted by the patent office on May 11, 1999. In claim 18, the word "path" was inserted after the word "electrical" in column 27, line 44 of the ` 183 Patent, and the word "path" was deleted from column 27, line 45 of the `183 Patent. See Ex. B, `183 Patent File History, Cert. of Correction, p. 3 (May 11, 1999). In claim 27, the word "said" was deleted after the word "when." See id.

The Patent Owner subsequently made several attempts to correct the inventorship of the patent, which resulted in the inventorship being changed to be Byron Hourmand, John M.

Washeleski and Stephen R. W. Cooper. See Ex. B, `183 Patent File History, Petition Decision (Aug. 25, 2011); see also Corrected Filing Receipt, p. 1 (Aug. 25, 2011); Certificate of Correction (Oct. 11, 2011).

On August 17, 2012, the Patent Owner filed a request for ex parte reexamination of claims 18 and 27 of the \(` 183\) Patent. See Ex. B, ` 183 Patent File History, Request for Ex Parte Reexamination under 35 U.S.C. §§ 302-307 (Aug. 17, 2012). The reexamination request was granted on September 20, 2012 and assigned control number 90/012,439. See Ex. B, '183 Patent File History, Order Granting / Denying Request for Ex Parte Reexamination (Sep. 20, 2012). Thereafter, the Patent Owner filed a Patent Owner Statement amending claims 18, 27, 28, and 32 and adding claims 33-39. See Ex. B, `183 Patent File History, Patent Owner Statement (Nov. 19, 2012).

In the Patent Owner Statement, claim 18 was amended to recite "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad." See id. at p. 2. Claim 27 was amended to recite "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." See id. at p. 3. New independent claim 37 recited "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." See id. at p. 5. The Patent Owner argued that the cited art, U.S. Patent No. 5,463,388 ("Boie"), does not teach or suggest these claim elements. See id. at pp. 7-9.

In the Statement of Reasons for Patentability and/or Confirmation, the Examiner agreed with the Patent Owner that Boie does not teach or suggest these elements. See Ex. B, `183 Patent File History, Notice of Intent to Issue Ex Parte Reexamination Certificate (Apr. 10, 2013), pp. 3-4. The Examiner stated, "Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components." See id. at p. 4.

The Ex Parte Reexamination Certificate thereafter issued on April 29, 2013. See Ex. A, Ex Parte Reexamination Certificate (Apr. 29, 2013).

\section*{II. SUBSTANTIAL NEW OUESTION ("SNQ") OF PATENTABILITY}

Section II.A below provides a list of the prior art references relied upon in the present request. Section II.B provides an overview of the prior art references. Section II.C provides a statement regarding an SNQ of patentability for claims 18 and 27 of the \(\begin{gathered} \\ 183 \text { Patent with respect }\end{gathered}\) to the new references.

\section*{A. Listing of Prior Art Patents and Publications}

Reexamination of claims 18 and 27 of the ` 183 Patent is requested in view of the following references:

Exhibit C Boie et al., U.S. Patent No. 5,463,388, filed on January 29, 1993 and issued on October 31, 1995 ("Boie"), which qualifies as 35 U.S.C. § 102(a)-type prior art.

Exhibit D Gerpheide et al., U.S. Patent No. 5,565,658, filed on December 7, 1994 and issued on October 15, 1996 ("Gerpheide"), which qualifies as 35 U.S.C. § 102(e)-type prior art.

Exhibit E Casio advertisement entitled "Now... The Invisible Casio Calculator Watch," published in Popular Science by On the Run in 1984 ("Casio"), which qualifies as 35 U.S.C. § 102(b)-type prior art.

\section*{B. Overview of Prior Art Patents and Publications}

As discussed in more detail below, combinations of Boie, Gerpheide, and Casio present new, non-cumulative technological teachings not considered during the `183 Patent prosecution history.

\section*{1. Boie}

Boie generally relates to sensors for capacitively sensing the position or movement of an object, such as a finger, on a surface. See, e.g., Boie, col. 1:6-8. A computer input device comprises a thin, insulating surface covering an array of electrodes arranged in a grid pattern and connected in columns and rows. See, e.g., id. at Abstract. Each column and row is connected to
circuitry for measuring the capacitance seen by each column and row. See, e.g., id. The position of an object with respect to the array is determined from the centroid of such capacitance values, which is calculated in a microcontroller. See, e.g., id. Figure 4, reproduced below, illustrates a block diagram of a two-dimensional capacitive position sensor.

FIG. 4


Fig. 4 of Boie
Each row and column of electrodes from array 100 is connected to an integrating amplifier and bootstrap circuit 401 , each of which can be selected by multiplexer 402 under control of microcontroller 406. See, e.g., id. at col. 3:56-61. The selected output is forwarded to summing circuit 403 , the output of which is converted by synchronous detector and filter 404 to a signal related to the capacitance of the row or column selected by multiplexer 402. See, e.g., \(i d\). at col. 3:62-67. RF oscillator 408 provides an RF signal of, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411, which is a substantially continuous plane parallel to array 100 and associated connections, and serves to isolate array 100 from extraneous signals. See, e.g., id. at col. 3:67-col. 4:5.

To measure separate capacitance values for each electrode in array 100 instead of the collective capacitances of subdivided electrode elements connected in rows and columns, a circuit 401 is provided for each electrode in array 100 and multiplexer 402 is enlarged to accommodate the outputs from all circuits 401. See, e.g., id. at col. 4:14-21. The output of synchronous detector and filter 404 is converted to digital form by analog-to-digital converter 405 and forwarded to microcontroller 406 so that microcontroller 406 obtains a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. See, e.g., id. at col. 4:22-28.

\section*{2. Gerpheide}

Gerpheide generally relates to the rejection of electrical interference in capacitance-based touch detection apparatuses and methods. See, e.g., Gerpheide, col. 1:12-14. In discussing the shortcomings of the prior art, Gerpheide states
> [A] capacitance-based detection device may suffer from electrical background interference from its surroundings, which is coupled onto the sensing electrodes and interferes with position detection. These spurious signals cause troublesome interference with the detection of finger positioning. The device operator may even act as an antenna for electrical interference which may cause a false charge injection or depletion from the detecting electrodes. Accordingly, there is a need for a touch detection system which has the following characteristics: ... (3) electrical interference signals are rejected and eliminated from the detection system regardless of their frequency and without requiring possibly expensive nulling apparatus.

\(I d\) at col. 2:37-57.
Figure 1 of Gerpheide (reproduced below) illustrates a capacitance variation finger (or other conductive body or non-body part) position sensing system 10 that includes an electrode array 12 , a synchronous electrode capacitance measurement unit 14 , a reference frequency generator 16, and a position locator 18. See id. at col. 3:52-col. 4:26.


Fig. 1

\section*{Gerpheide, Figure 1}

The electrode array 12 is described in relation to Figures 2a and 2b. See generally id. at col. 4:41 - col. 5:48; Figs. 2a and 2b. In Gerpheide, electrode array 12 consists of multiple X electrodes 20 and Y electrodes 22 and is preferably fabricated as a multi-layer printed circuit board 24. See id. at col. 4:41-48.

The synchronous electrode capacitance measurement unit 14 is connected to the electrode array 12 and one embodiment is further described with reference to Figure 4, reproduced below.


Gerpheide, Figure 4
According to Gerpheide,
The key elements of the synchronous electrode capacitance measurement unit 14 are (a) an element for producing a voltage change in the electrode array synchronously with a reference signal, (b) an element producing a signal indicative of the displacement charge thereby coupled between electrodes of the electrode array, (c) an element for demodulating this signal synchronously with the reference signal, and (d) an element for low pass filtering the demodulated signal.

See id. at col. 5:52-63; Fig. 4.
The reference frequency signal is preferably a digital logic signal from the reference frequency generator 16 (FIG. 1). The reference frequency signal is supplied to unit 14 via an AND gate 72 also having a "drive enable" input, supplied by the reference frequency generator 16 (FIG. 1). The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78.

See id. at col. 6:19-26; Fig. 4. The reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency. In the event that substantial
interference is detected, the generator 16 selects a different frequency for further measurements.
The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference." See id. at col. 8:22-30; Fig. 7. Reference frequency generator 16 is further illustrated with respect to Figure 7, reproduced below.


Fig. 7

\section*{Gerpheide, Figure 7}

The generator 16 includes an oscillator 100. See id. at col. 8:31. The oscillator 100 drives a microcontroller 102 and a divide-by-(M+N) circuit 104. See id. at col. 8:31-33. Value N is a fixed constant, for example, approximately 50. See id. at col. 8:33-34. Microcontroller 102 specifies value M to be, for example, one of four values in the range 61 KHz to 80 KHz . See id. at col. 8:34-36. The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108. See id. at col. 8:37-38.

\section*{3. Casio}

Casio generally relates to a timepiece product employing electro-touch technology. See, e.g., Casio, col. 1. The watch works by reading finger-strokes traced across its face. See id. The transparent touch panel construction includes a fiberglass panel having a transparent conductor film pattern (first layer) and a dielectric layer (second layer) overlying the fiberglass. See id. at col. 2; see also Figure in col. 2 (reproduced below).

HERES HOW THIS MARVEL WORKS


Id., col. 2.
The touch panel determines figure and math symbols outlined with finger-strokes traced across the face. See id. at col. 1. As shown in the figure above, the touch panel senses the input, and then digitizes it to extract features of the figure or math symbol. See id. at col. 2. The watch then outputs the corresponding figure or math symbol on the screen. See id. The advertisement states

This ... timepiece has a transparent crystal that reads finger-strokes you trace across its face. Each figure and math symbol you outline appears on the background digital display. Take your finger across twice ( \(=\) ) and the answer presents itself like magic.

No keys, no keyboards, no need to use stylus or pen. Even the broadest fingers will work. Add, subtract, multiply, divide - perform chain and mixed calculations
to eight places, plus decimal. There's even an indicator telling you which function is being performed.

See id. at col. 1.

\section*{C. Statement Pointing Out Each SNQ of Patentability}

Boie was not cited during the original patent prosecution of the ` 183 Patent and was cited as an anticipatory reference in the first reexamination proceeding. The combination of Boie with Gerpheide and/or Casio presents new, non-cumulative technological teachings with respect to claims 18 and 27 of the \(\begin{aligned} & \\ & 183 \text { Patent. }\end{aligned}\)

\section*{1. Claim 18}

During the first reexamination prosecution, the Patent Owner amended independent claim 18 to recite "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad," and argued that the cited art did not teach or suggest these limitations. After the Patent Owner made this amendment, the Examiner allowed claim 18 stating, "Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components." See Ex. B, `183 Patent File History, Notice of Intent to Issue Ex Parte Reexamination Certificate, p. 4 (Apr. 10, 2013).

Gerpheide discloses,
[A reference frequency generator 16] observes position signals to evaluate the extent of interference at some reference frequency. In the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference, as described below. The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by-(M+N) circuit 104. Value N is a fixed constant, approximately 50. Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102 .

The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108.

Gerpheide, col. 8:22-38; Fig. 7. Thus, Gerpheide discloses selectively providing signal output frequencies.

It would have been obvious to one of ordinary skill in the art at the time of the invention to determine the single RF signal of Boie by evaluating the extent of interference at a given signal frequency and selecting a different frequency when substantial interference is detected as taught by Gerpheide. See, e.g., Gerpheide, col. 8:22-38; Fig. 7.

The combination of Boie with Gerpheide thus presents new, non-cumulative technological teachings related to the elements of claim 18 added by amendment, and such teachings were not considered in the cited art during the `183 Patent prosecution history including the reexamination proceeding. If the original Examiners had known of each of these references, the Examiners likely would have considered them relevant, and likely would have cited them during the respective prosecution/proceeding. Boie in view of Gerpheide therefore raises an SNQ of patentability with respect to independent claim 18.

\section*{2. Claim 27}

During the first reexamination prosecution, the Patent Owner amended independent claim 27 to recite "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals," and argued that the cited art did not teach or suggest these limitations. After the Patent Owner made this amendment, the Examiner allowed claim 27 stating, "Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components." See Ex. B,
`183 Patent File History, Notice of Intent to Issue Ex Parte Reexamination Certificate (Apr. 10,
2013), p. 4.

Gerpheide discloses,
[A reference frequency generator 16] observes position signals to evaluate the extent of interference at some reference frequency. In the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference, as described below. The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by- \((\mathrm{M}+\mathrm{N})\) circuit 104 . Value N is a fixed constant, approximately 50. Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102. The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108.

Gerpheide, col. 8:22-38; Fig. 7. Thus, Gerpheide discloses selectively providing signal output frequencies.

It would have been obvious to one of ordinary skill in the art at the time of the invention to determine the single RF signal of Boie by evaluating the extent of interference at a given signal frequency and selecting a different frequency when substantial interference is detected as taught by Gerpheide. See, e.g., Gerpheide, col. 8:22-38; Fig. 7.

Casio discloses first and second input touch terminals. See, e.g., Casio, figure at col. 2, reproduced below. Specifically, the finger drawn 6 in the box in the lower left hand corner includes two black portions illustrating first and second input touch terminals.


It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the apparatus of Boie to sense first and second input touch terminals (electrodes) as taught by Casio in order to provide finger-stroke or finger-trace recognition capability. See, e.g., Casio, col. 1, fourth paragraph and col. 3, third paragraph; figure (reproduced above).

The combination of Boie with Gerpheide and Casio thus presents new, non-cumulative technological teachings related to the elements of claim 27 added by amendment, and such teachings were not considered in the cited art during the ` 183 Patent prosecution history including the reexamination proceeding. If the original Examiners had known of each of these references, the Examiners likely would have considered them relevant, and likely would have cited them during the respective prosecution/proceeding. Boie in view of Gerpheide and Casio therefore raises an SNQ of patentability with respect to independent claim 27.

\section*{III. DETAILED EXPLANATION OF THE RELEVANCY AND MANNER OF APPLYING THE PRIOR ART REFERENCES TO EVERY CLAIM FOR WHICH REEXAMINATION IS REQUESTED}

A detailed explanation pointing out the relevance and application of the prior art references to each of claims 18 and 27 is provided below. The charts below indicate what the Patent Owner believes are the portions of the cited art most relevant to the elements of the claims for which reexamination is requested. The Patent Owner, however, reserves the right to take positions asserting and submit arguments explaining why various claim elements are not disclosed or suggested by the cited art.

\section*{A. Claim 18}
\begin{tabular}{|l|l|}
\hline Is3 Patent Claim Language & Bote in viev of Cerpheide \\
\hline \begin{tabular}{l} 
18. A capacitive responsive electronic \\
switching circuit comprising:
\end{tabular} & \begin{tabular}{l} 
"The capacitive sensor of the invention \\
comprises a thin, insulating surface covering a \\
plurality of electrodes. The position of an object, \\
such as a finger or hand-held stylus, with respect \\
to the electrodes, is determined from the centroid \\
of capacitance values measured at the electrodes. \\
_. The x and y coordinates of the centroid are \\
calculated in a microcontroller from the \\
measured capacitances." Boie, col. 1:61-col. \\
2:5, Fig. 4.
\end{tabular} \\
\hline \begin{tabular}{l} 
an oscillator providing a periodic output \\
signal having a predefined frequency;
\end{tabular} & \begin{tabular}{l} 
"RF oscillator 408 provides an RF signal, for \\
example, 100 kilohertz, to circuits 401, \\
synchronous detector and filter 404 via inverter \\
410, and guard plane 411." Boie, col. 3:67-col. \\
4:2, Fig. 4.
\end{tabular} \\
\hline \begin{tabular}{l} 
a microcontroller using the periodic \\
output signal from the oscillator, the \\
microcontroller selectively providing \\
signal output frequencies to a plurality of \\
small sized input touch terminals of a \\
keypad;
\end{tabular} & \begin{tabular}{l} 
A reference frequency generator 16 "observes \\
position signals to evaluate the extent of \\
interference at some reference frequency. In the \\
event that substantial interference is detected, the \\
generator 16 selects a different frequency for \\
further measurements. The generator 16 seeks to \\
always select a reference frequency away from \\
frequencies which have been found to result in \\
measurement interference, as described below.
\end{tabular} \\
\hline
\end{tabular}

Page 21 of 34
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & \begin{tabular}{l}
The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by-(M+N) circuit 104. Value N is a fixed constant, approximately 50 . Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102. The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108." Gerpheide, col. 8:22-38; Fig. 7. \\
"FIG. 2A illustrates the electrodes in a preferred electrode array 12 , together with a coordinate axes defining \(X\) and \(Y\) directions. One embodiment includes sixteen \(X\) electrodes and twelve Y electrodes, but for clarity of illustration, only six X electrodes 20 and four Y electrodes 22 are shown. It is apparent to one skilled in the art how to extend the number of electrodes. The array is preferably fabricated as a multilayer printed circuit board 24 . The electrodes are etched electrically conductive strips, connected to vias 26 which in turn connect them to other layers in the array. Illustratively, the array 12 is approximately 65 millimeters in the X direction and 49 millimeters in the Y direction. The X electrodes are approximately 0.7 millimeters wide on 3.3 millimeter centers. The Y electrodes are approximately three millimeters wide on 3.3 millimeter centers." Gerpheide, col. 4:41-55; Fig. 2A. \\
"FIG. 4 shows one embodiment of the synchronous electrode capacitance measurement unit 14 in more detail. The key elements of the synchronous electrode capacitance measurement unit 14 are (a) an element for producing a voltage change in the electrode array synchronously with a reference signal, (b) an element producing a signal indicative of the displacement charge thereby coupled between electrodes of the electrode array, (c) an element
\end{tabular} \\
\hline
\end{tabular}

Page 22 of 34
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & \begin{tabular}{l}
for demodulating this signal synchronously with the reference signal, and (d) an element for low pass filtering the demodulated signal. Unit 14 is coupled to the electrode array, preferably through a multiplexor or switches." Gerpheide, col. 5:52-63; Fig. 4. \\
"The reference frequency signal is preferably a digital logic signal from the reference frequency generator 16 (FIG. 1). The reference frequency signal is supplied to unit 14 via an AND gate 72 also having a "drive enable" input, supplied by the reference frequency generator 16 (FIG. 1). The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78." Gerpheide, col. 6:1926; Fig. 4. \\
"The operational principle of the capacitive position sensor of the invention is shown in FIG. 1. Electrode array 100 is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an array of tiles. . . . The electrodes are covered with a thin layer of insulating material (not shown). . . . Histogram 110 shows the capacitances for electrodes 101 in array 100 with respect to finger 102." Boie, col. 2:49-62, Fig. 1. \\
"FIG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and two columns in array 100. As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Boie, col. 3:16-20, Fig. 2. \\
"As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a multi-layer printed circuit board together with one set of interconnections, for example, the horizontal row connections 203. The vertical row connections 204 can then be fabricated in another plane of the circuit board
\end{tabular} \\
\hline
\end{tabular}
U.S. Patent No. 5,796,183
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & with appropriate via connections between the planes." Boie, col. 3:30-36, Fig. 2. \\
\hline the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and & \begin{tabular}{l}
"The operational principle of the capacitive position sensor of the invention is shown in FIG. 1. Electrode array 100 is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an array of tiles. . . . The electrodes are covered with a thin layer of insulating material (not shown). . . . Histogram 110 shows the capacitances for electrodes 101 in array 100 with respect to finger \(102 . "\) Boie, col. 2:49-62, Fig. 1. \\
"FIG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and two columns in array 100 . As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Boie, col. 3:16-20, Fig. 2. \\
"As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a multi-layer printed circuit board together with one set of interconnections, for example, the horizontal row connections 203. The vertical row connections 204 can then be fabricated in another plane of the circuit board with appropriate via connections between the planes." Boie, col. 3:30-36, Fig. 2.
\end{tabular} \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal, & "[E]ach row and column of electrodes from array 100 is connected to an integrating amplifier and bootstrap circuit 401, .... Each of the outputs from circuits 401 can be selected by multiplexer 402 under control of microcontroller 406. The selected output is then forwarded to summing circuit 403 , where such output is combined with a signal from trimmer resistor 409. Synchronous detector and filter 404 convert the output from summing circuit 403 to a signal related to the capacitance of the row or column selected by multiplexer 402 . RF oscillator 408 provides an RF signal, for \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & \begin{tabular}{l}
example, 100 kilohertz, to circuits 401, synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:53-col. 4:2, Fig. 4. \\
"The output of synchronous detector and filter 404 is converted to digital form by analog-todigital converter 405 and forwarded to microcontroller 406. Thus, microcontroller 406 can obtain a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. . . . Microcontroller 406 sends data to utilizing means, such as a personal computer (not shown) over lead 420." Boie, col. 4:21-32, Fig. 4.
\end{tabular} \\
\hline wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and & \begin{tabular}{l}
"RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:67-col. 4:2, Fig. 4. \\
"The effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances are minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Boie, col. 4:58-61. \\
"[A] capacitance-based detection device may suffer from electrical background interference from its surroundings, which is coupled onto the sensing electrodes and interferes with position detection. These spurious signals cause troublesome interference with the detection of finger positioning. The device operator may even act as an antenna for electrical interference which may cause a false charge injection or depletion from the detecting electrodes. Accordingly, there is a need for a touch detection system which has the following characteristics: ... (3) electrical interference signals are rejected and eliminated from the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & \begin{tabular}{l}
detection system regardless of their frequency and without requiring possibly expensive nulling apparatus." Gerpheide, col. 2:37-57. \\
A reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency. In the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference, as described below. The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by-(M+N) circuit 104. Value N is a fixed constant, approximately 50 . Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102. The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108." Gerpheide, col. 8:22-38; Fig. 7.
\end{tabular} \\
\hline wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal. & "Referring to FIG. 6, microcomputer 406 reads the initial capacitance values for all the elements in array 100 and stores such values (step 601). Such initial values should reflect the state of array 100 without a finger or other object being nearby, accordingly, it may be desirable to repeat step 601 a number of times and then to select the minimum capacitance values read as the initial values, thereby compensating for the effect of any objects moving close to array 100 during the initialization step. After initialization, all capacitance values are periodically read and the initial values subtracted to yield a remainder value for each element (step 602). If one or more of the remainders exceeds a preset threshold (step 603), indicating that an object is close to or touching array 100 , then the x and y coordinates of the centroid of capacitance for such object can be calculated from such \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & remainders (step 604). . . . To avoid spurious operation, it may be desirable to require that two or more measurements exceed the preset threshold. The threshold can be set to some percentage of the range of \(A / D\) converter 405, for example \(10-15 \%\) of such range." Boie, col. 5:10-48, Fig. 6. \\
\hline
\end{tabular}

\section*{B. Claim 27}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & Boie in view of Gerpheide and Casio \\
\hline 27. A capacitive responsive electronic switching circuit for a controlled keypad device comprising: & \begin{tabular}{l}
"The capacitive sensor of the invention comprises a thin, insulating surface covering a plurality of electrodes. The position of an object, such as a finger or hand-held stylus, with respect to the electrodes, is determined from the centroid of capacitance values measured at the electrodes. \(\ldots\) The x and y coordinates of the centroid are calculated in a microcontroller from the measured capacitances." Boie, col. 1:61-col. 2:5, Fig. 4. \\
"A computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an array of electrodes. . . . For applications in which the input device is used as a mouse, the microcontroller forwards position change information to the computer. For applications in which the input device is used as a keyboard, the microcomputer identifies a key from the position of the touching object and forwards such key identity to the computer." Boie, Abstract.
\end{tabular} \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:67-col. 4:2, Fig. 4. \\
\hline a microcontroller using the periodic output signal from the oscillator, the & A reference frequency generator 16 "observes position signals to evaluate the extent of \\
\hline
\end{tabular}

Page 27 of 34
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide and Casio \\
\hline microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals; & \begin{tabular}{l}
interference at some reference frequency. In the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference, as described below. The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by-(M+N) circuit 104 . Value N is a fixed constant, approximately 50 . Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102 . The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108." Gerpheide, col. 8:22-38; Fig. 7. \\
"FIG. 2A illustrates the electrodes in a preferred electrode array 12 , together with a coordinate axes defining \(X\) and \(Y\) directions. One embodiment includes sixteen \(X\) electrodes and twelve Y electrodes, but for clarity of illustration, only six X electrodes 20 and four Y electrodes 22 are shown. It is apparent to one skilled in the art how to extend the number of electrodes. The array is preferably fabricated as a multilayer printed circuit board 24 . The electrodes are etched electrically conductive strips, connected to vias 26 which in turn connect them to other layers in the array. Illustratively, the array 12 is approximately 65 millimeters in the X direction and 49 millimeters in the Y direction. The X electrodes are approximately 0.7 millimeters wide on 3.3 millimeter centers. The Y electrodes are approximately three millimeters wide on 3.3 millimeter centers." Gerpheide, col. 4:41-55; Fig. 2A. \\
"FIG. 4 shows one embodiment of the synchronous electrode capacitance measurement unit 14 in more detail. The key elements of the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide and Casio \\
\hline & \begin{tabular}{l}
synchronous electrode capacitance measurement unit 14 are (a) an element for producing a voltage change in the electrode array synchronously with a reference signal, (b) an element producing a signal indicative of the displacement charge thereby coupled between electrodes of the electrode array, (c) an element for demodulating this signal synchronously with the reference signal, and (d) an element for low pass filtering the demodulated signal. Unit 14 is coupled to the electrode array, preferably through a multiplexor or switches." Gerpheide, col. 5:52-63; Fig. 4. \\
"The reference frequency signal is preferably a digital logic signal from the reference frequency generator 16 (FIG. 1). The reference frequency signal is supplied to unit 14 via an AND gate 72 also having a "drive enable" input, supplied by the reference frequency generator 16 (FIG. 1). The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78." Gerpheide, col. 6:1926; Fig. 4. \\
"The operational principle of the capacitive position sensor of the invention is shown in FIG. 1. Electrode array 100 is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an array of tiles. . . . The electrodes are covered with a thin layer of insulating material (not shown). . . . Histogram 110 shows the capacitances for electrodes 101 in array 100 with respect to finger 102." Boie, col. 2:49-62, Fig. 1. \\
"FIG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and two columns in array 100. As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Boie, col. 3:16-20, Fig. 2.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide and Casio \\
\hline & "As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a multi-layer printed circuit board together with one set of interconnections, for example, the horizontal row connections 203. The vertical row connections 204 can then be fabricated in another plane of the circuit board with appropriate via connections between the planes." Boie, col. 3:30-36, Fig. 2. \\
\hline the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and & \begin{tabular}{l}
"The operational principle of the capacitive position sensor of the invention is shown in FIG. 1. Electrode array 100 is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an array of tiles. . . . The electrodes are covered with a thin layer of insulating material (not shown). . . . Histogram 110 shows the capacitances for electrodes 101 in array 100 with respect to finger 102." Boie, col. 2:49-62, Fig. 1 . \\
"FIG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and two columns in array 100 . As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Boie, col. 3:16-20, Fig. 2. \\
"As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a multi-layer printed circuit board together with one set of interconnections, for example, the horizontal row connections 203. The vertical row connections 204 can then be fabricated in another plane of the circuit board with appropriate via connections between the planes." Boie, col. 3:30-36, Fig. 2.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide and Casio \\
\hline & \begin{tabular}{l}
HERES now THIS MARVEL WORKS \\
Casio, col. 2.
\end{tabular} \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, & \begin{tabular}{l}
" \([E]\) ach row and column of electrodes from array 100 is connected to an integrating amplifier and bootstrap circuit \(401, \ldots\). Each of the outputs from circuits 401 can be selected by multiplexer 402 under control of microcontroller 406. The selected output is then forwarded to summing circuit 403, where such output is combined with a signal from trimmer resistor 409. Synchronous detector and filter 404 convert the output from summing circuit 403 to a signal related to the capacitance of the row or column selected by multiplexer 402 . RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:53-col. 4:2, Fig. 4. \\
"The output of synchronous detector and filter 404 is converted to digital form by analog-todigital converter 405 and forwarded to microcontroller 406. Thus, microcontroller 406 can obtain a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. . . . Microcontroller 406 sends data to utilizing means, such as a personal computer (not shown)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide and Casio \\
\hline & \begin{tabular}{l}
over lead 420." Boie, col. 4:21-32, Fig. 4. \\
"A computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an array of electrodes. . . . For applications in which the input device is used as a mouse, the microcontroller forwards position change information to the computer. For applications in which the input device is used as a keyboard, the microcomputer identifies a key from the position of the touching object and forwards such key identity to the computer." Boie, Abstract. \\
HERES HOW THS \\
MARVEL WORKS \\
Casio, col. 2.
\end{tabular} \\
\hline said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal. & "In using the position sensor of the invention as a computer mouse or trackball to control a cursor, movement of the mouse or trackball is emulated by touching array 100 with finger 102 , or some other object, and stroking finger 102 over array 100 to move the cursor. Changes in position of the finger with respect to array 100 are reflected in corresponding changes in position of the cursor. Thus, for such an application, microcontroller 406 sends data over lead 420 relating to changes in position. FIG. 6 is a flow chart of the operation of microcontroller 406 in such an application." Boie, col. 4:67-col. 5:9, Fig. 6. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claím Language & Boie in view of Gerpheide and Casio \\
\hline & \begin{tabular}{l}
HERES HOW THIS MABVEX WOKK \\
Casio, col. 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{IV. CONCLUSION}

A substantial new question of patentability is raised based on the newly cited prior art combinations, and therefore a reexamination of claims 18 and 27 is warranted. Again, the Patent Owner reserves the right to take positions asserting and to submit arguments explaining why various claim elements are not disclosed or suggested by the cited art.

If the Office should have any questions, please contact the undersigned attorney. The Commissioner is hereby authorized to charge any fees due in connection with this filing, or credit any overpayment, to Deposit Account No. 50-1065.

Respectfully submitted,

December 24, 2013
Date

Slater \& Matsil, L.L.P.
17950 Preston Rd.
Suite 1000
Dallas, TX 75252
972-732-1001
972-732-9218 (fax)
/Brian A. Carlson/
Brian A. Carlson
Reg. No. 37,793

\section*{EXHIBIT A}

\section*{ SWTRCEXNG CRPCUTY}

Assignce: Nartron Corpomtiona. Reed City. Mich.

Jaxя, 31, 199\%
[51] 3xat. \(\mathrm{Cl}^{6}{ }^{6}\) \(\qquad\) ,
\([52]\) U.S. CR, ........................ 367/616, 361/181; 307/125; 307/139
[58] Wield an Searcx \(\qquad\) \(307 / 112.113\)
307/116, 123. 139.140. 157; 361/181
Beferences Cited
US. FATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|}
\hline 3,549,9009 & 12/5970 & Adelsom et al. & \\
\hline 3,441,410 & 211972 & Vogestiter & \\
\hline 3,651,391 & \(3 / 1972\) & Vogessiberg & \\
\hline 3,666,988 & 511972 & Bellis & \\
\hline 3,798,370 & 3/197.4 & Hirss & \\
\hline 3,879,618 & \(4 / 1975\) & Larson & 307/116 \\
\hline 3,899,713 & \(8 / 1975\) & Barkau et al. & \\
\hline 3,911,215 & \(10 / 1975\) & Hurse ex al. & \\
\hline 3,919596 & 11/1975 & Gellis & \\
\hline 3,965,465 & \(6 / 1976\) & Alexamber & \\
\hline 3,984,757 & \(10 / 1976\) & Gott et al. & \\
\hline 4,916,453 & 41977 & Moenmig & \\
\hline 4,031,408 & 601977 & Holz & \\
\hline 4,071,689 & 1/1978 & Talmage et nu. & \\
\hline 4.101 .805 & 71978 & Stione. & \\
\hline 4,119,864 & 101975 & Perizio & \\
\hline 4,152,629 & 5/1979 & Raupp & \\
\hline 4,159,473 & \(6 / 1979\) & Senk & \\
\hline 4,210,322 & \(7 / 1980\) & Wern & \\
\hline 4,211,959 & 711980 & Deaveapart et ail. & \\
\hline 42130061 & 711980 & Conmer & \\
\hline 4200815 & \(9 / 1080\) & Gibsoz et al. & \\
\hline 4,237,421 & 12/1980 & Whadron & \\
\hline 4,246,533 & 1/1981 & Change & \\
\hline 4,257,117 & 3/19\% & Bersom & \\
\hline 4,264,831 & \(4 / 1981\) & Wem & \\
\hline 42389972 & \(9 / 1981\) & Wers & \\
\hline 4,289,980 & 911981 & McLaughlin & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 4,208,443 & 321983 & Tweker et as & \\
\hline 4,323,829 & \(4 / 1982\) & Witmey et al. & \\
\hline 4.352 .148 & 94982 & Keat & \(363 / 881\) \\
\hline 4369,737 & 11/1982 & lisopold & \\
\hline 4.374.381 & \(2 / 1983\) & Ng et \(\mathrm{al}_{\text {d }}\) & \\
\hline 4,476.463 & 101984 & Ngetal. & \\
\hline 4503294 & \(3 / 1985\) & Matsumanu & 2005 A \\
\hline 4.731 .548 & 31988 & Yatraham. & \\
\hline 4.758,735 & \(7 / 1988\) & lugraham & \\
\hline 4,831,279 & \(5 / 1989\) & Engraham & \\
\hline 4910504 & 31990 & Erikssou . & \\
\hline 4,939,382 & \(7 / 1990\) & Smuodis & \\
\hline 4,942,631 & \(7 / 1990\) & Rosa & 4/623 \\
\hline 5012,124 & 41991 & Hoslaway & \\
\hline 5,066,898 & [1/1991 & Miller et al. & \\
\hline 5,057,825 & 211992 & hugraham & \\
\hline 5208.516 & 511993 & Saidian & \\
\hline 5,233,231 & 811993 & Wheth et \({ }_{\text {did }}\). & \\
\hline 5,235,217 & \$1993 & Kirton & \(307 / 326\) \\
\hline 5,386,219 & 11995 & \(G r e a n i s s x^{\text {et al }}\) & \\
\hline 5,453,644 & 911995 & Yay ex \({ }^{\text {d }}\) & \\
\hline 5,572,205 & 111996 & Caldwell et \(\mathrm{al}^{\text {d }}\). & 341/33 \\
\hline
\end{tabular}

Primary Evaminer-wihiam M. Shoop, St.
Assistom Examine --Ionathan Kaphan
Attomey, Agemt, or Firm-Price. Heneveld. Cooper. De Witt \& Litton
[57]

\section*{ABSTRACT}

A capacritve responsive clectronic switching ciscuit comprises an oscillator providing a periodic oxtput signal having a frequency of 50 kHz or greater, an input touch terminal defining an area for an operator grovide an input by proximity and touch. and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and compled to the inpat. tonch terminal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the wosch terminal when in proximity or touched by an opestor to provide a condrol output signal. Preferably, the oscillator provides a periodic ontput sigual having a frequency of 800 kHx or greater. An array of touch termisals may be grovided is close proximity due to the reduction in crosstalk that may result from contaminants by utilizing an oscilliator oupputing a signal having a frequeacy of 50 kHz or greater.

32 Claines, 13 Hrawimg Sureets



Fig. 2


Fig. 8


Fig. 3A




Fig. 9

S/N VS. BOEY CAPACITANCE TEMPERATURE \(=25^{\circ} \mathrm{C}\)


Fig. 10



Fig. 12




Fig. 15C


Fig. 16


\section*{U.S. Patent}

Aug. 18, 1998 Sheet 13 of 13


Fig. 20B 2304

\section*{CAPACRETVE RESPONSYE ELECTRONXC SWTTCHEG CIRCUTT}

\section*{BACKGROUND OF THE RVENTKON}

The present invention relates to an electrical circuit and particularly a capacitive responsive electronic switching circuil used to make possible a "zero force" manual electronic switch.
Manual switches are well known in the art existing in the fanuliae forms of the comrmon toggle light switch, puls cord swithes. push button switches, and keyboard swithes among others. The majority of such switches employ a mechmionl contact that "makes" and "ureaks" the circuit to be switched as the switch is moved to a closed or an open condition.
Swithes ftat operte by a mechamical contact have a number of well known problems. First, mechanical movements of components within any mechanism make those components susceptibue wo wear, fatigue, and loosening. This is a progressive problem that occurs with use and leads to eventual failure when a sumicient amount of movement has occurred.

Second, a sudden "make" or "break" between conductive contacts typically produces an electrical asc as the contacts cons into close proximity. This arcing action generates both radio trequency emissions and high frequency noise on the line that is switched.
Third, the segraration between comacts that weurs on each break exposes the contact surfaces to corrosion and contamination. A particular problem occurs when the are associnted with a "make" of "break" occurs is an oxidizing atmosphere. The heat of the axc in the presence of oxygen facilitues the fomation of oxides on the contact surfaces. Once exposed. the pontact surfaces of mechanical switches are also vulnexable to contaminants. Water borme contamimans such as obls and salts can be a particular problem on the contact surfaces of switches. A related problem occurs in that the repeated arcing of mechanical contact can result in a miscation of contact materials away from the area of the mechanical oontact. Corrosion, contamination, and migration operating independently or in combination often lead to cventual switch failure where the switch seizes in a closed or opened cometrion.

An aditional problem results from the mechanical force required in operating a machasical switch. Thes problem ocurs in systems where a human rperator is required so repetively operate a given switch or a number of switches. Such repetitive motions commonly occur in the operation of electronic keyboards such as those used with computers and in industrial switches suct as used in forming and assembly equipment among other applications. A common type of industrial switch is the palm button seen in pressing and inscrion equipment. For safety purposes, the operator must press the switch before an imsertion or pressing can occur. This ensures that the operators hand(s) is(are) on the bution (s) and not in the field of motion of the associated machinery. It abso emsures that the mechanieal motion occurs at a desired and controllable point in time. The dificulty arises from the motion and force required of the operator. 期recent years, it bas becn noted that repeated kuman motions can result in debilitating and painful wear on joints and soft tissucs yiehding arthritis like symptoms. Such tepetitive motion may result in swelling and samping in muscle tissues associated with conditions such as Carpal Tunnel Syndrome. Bquipment desigmers combat these Repetitive Motion or Cumu-
lative frauma Disorders by adopting ergonomic designs that more fayrably contol the range angle, number, and force of motions required of an operator as well as the number of the operator's muscle groups involved in the required motions. Prosthetics and tests are used as well to provide swain rehief for the operator's mascles. joints, and teratons.
In mechanical switches, the force required to actuate the switch may be minimized by reducing spring forces and fictional forces benween moving parts. \(\$\) owevex, redibing such forces makes such switches more vulnerable to failure. For instance. weaker springs typically lower the pressure between contacis in a "make" condition. This lower contact pressure increases the resistance in the switch which can lead to fatal heating in the switch andor loss of voltage applied to the switched load. Reducing frictional forces in the switch by increasing the use of lubricants is undesirable hecause the lubricants can migrate and contaminate the contact surfaces. A switch designer may also reduce friction by providing looser fits between moving parts. However, fooser liss tend to increase wear and contribute to earlier swith failure. A desiguer can also reduce friction by using higher quality, higher cost. surface binishes on the parts. Thus, as apparent from the forcgoing description. rreasures taken to reduce actuator force in mechanical switch parts generally reduce the reliability and performance of the switch andor increase the cont of the switch.
In applications such as computer keybourds or appliance controls. the electric load switched by a given switch can be quide bow in terms of curment andlor vollage. 耳o sbch cases it is possible to use low force membrame switches such as described in U.S. Pat. No. 4.503,294. Such switches can relieve sperator strain and are not as susceptible to arcing problems because they switch small loads. However, the flexible membrane remans susceptible to wear, corrosion. and combmination, Alhough such switches require very low actuation force, they are still mechanically based and thus suffer from the same groblems as any other mechanical switch.

A more recent innovation is the development of "zero force" touch switches. These swithes have no moving parts and moo contact suffaces that directly switch lowds. Rather. these switches operate by detecting the operator's touch and then use solid state electronics to switch the loads or activate mechamical relays or triacs to switch even larger loads. Approaches include optical proximity or motion detectors to detex the preseace or motion of a body part suck as in the automatic controls used in uribals in some public rest rooms or as disclosed in U.S. Fiat. No. 4,942.631. Although these mon-contact switches are by their very nature truly zero force, they are eot practical where a multighicity of swithenes are required in a small area such as a keyboard. Among other problems, these non-contact switches suffer from the comparatively high cost of electro-ophics and from false detections when the operator's hand or other body part unintentionally comes close to the swith's area of detection. Some optical touch keybuards have been proposed, but nowe have emoyed commercial stocess due to performanoe and/or cost considerations.

A further solution has been to detect de operator's touch via the electrical conductivity of the operator's skim. Such a system is described in U.S. Pat. No. 3.879,618. Problems with this system resuh from variations in the clectrical conductivity of different operators due to variations in sweat. skin oifs. or drymess, and from variable ambient conditions such as humidity. A further problem anises in that the touch sufface of the switch that the operator touches must remain clean enough to grovide an electrical conductivity path so
the operator. Such surfaces can be susceptible to contamination. oorrosion, andlor a wearing away of the conductive material, Also, these switches do mot work if the operator is wearing a glove. Safety considecations also arise by virtue of the operators placiag their body in electrical contact with the switch electonics. A further problems arises in that such systems are vulnerable to contact with materiats that are equally or more conductive than human skin. For instance, water condensation can provide a conductive path as good as that of an operator's skin, resulting in a false activation.

A conmon solution used to achieve a zero force touch switch has been to make use of the capactance of the human operator. Such switches. which are bereinafter referred to as capacitive touch switches. utilize one of at least thee different methodologies. The first method involves detecting RF or other high frequency noise that a bunas oycrator cam capacitvely cougle to a touch terminal when the operator makes contact such as is disclosed in U.S. Pat. No. 5.066. 898. One common source of noise is 60 Hz noise radiated from commercial power lines. A drawback of this approabh is that radiated electrical noise can vary in intensity from locale to locale and thereby cause variations in switch seasitivity. In somete cases, devices implemented using this frest method, rely on conductive contact between the operator and the touch terminal of the switch. As stated, such surfaces are subject to comtamifation. corrosion, and wear and will not work with gloved hands. An additional problem can arise in the presence of moisture when multiple switches are employed in ad dense array such as a geyboard. In such instances, the operator may touch one wuch terminal, but end up inadvertenty activating others through the path of conduction caused by the moisture condamination.

A second method for implementing capacitive touch switches is to cougle the capacitance of the operator into a variable oscillator circuit that outputs a signal having a frequency that yanies with the capacitance seen at a towch terminal. An example of such a system is described in U.S. Pat. No. 5.235.217. Froblems with such a system can arise where conductive contact with the operator is required and where the frequency change cabsed by a touch is close to the frequency charges that would result from unintentionally coming into contact with the touch terminal.

Another method for implementing capacitive tomeh switches relies on the change in capacitive coupling between a couch terminal and ground. Systerns utiliziag such a mothod are described in U.S. Pa\&. No. 4,758,735 and US. Pat. No. 5.087.825. With this methodology the detection circuit consists of an oscillator for \(A C\) line voltage derivaxive) providing a signal to a touch teminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with ofter components that function in part as a charge pamp. The touch of an operator then provides a capacitive short to ground via the operatos's own body capacitance that lowers the amplitude of oscillator voltage seen at the fouch terminal. A major advantige of this methodology is that the operator need not come in conductive contact with the touch terminal but rather only in close proximity to it. A further advantage arises in that the system does not rely upon radiated emissions picked up by the operator's body which can vary with locale, but relles instead upon the human dowly's capacitance. which can vary over an acceptable range of 20 pF to 300 pF .

An additional condideration in usiag zero force switches resides in the difficuities that arise in trying to employ dense arrays of such switches. Touch switches that do not require physical contact with the operator but ather rely on be and maintain specific optical aliguments. A further problem
is that this system considerably constrains the angle and direction of motion that the operator must use in activating the switch.

Curnentiy, there are several zero force palm buttons in the market. These groducts whize opticat and/or capacitive compling to activate a mormally closed (NC) or a mommally open (NO) relay, and thereby switching 110 V AC. 220 V AC, or 24 Y OC to machine controllers. The bika Touch by Pinnacle Systems Inc, uses two sensors (infrared \& capacitive) with isolated circuits to activate a selay when a machine operator inserts his hand into a II-shaped sensor actuatoon tumel. The company clams that by permitting the machine operator to activate the machine with no force or pressure and with the operator's hatd and wrist in the ergonomic nembal position (i.e. \(0^{\circ}\) wrist joint bagle and \(100 \%\) hand power positions as shown in FIG. 1. (1), hand wrist, and arm stresses are manimized and contributing elements to Carpal Tunnel Syndrome are negated. After a machine cycle is initiated, the operator must maintain an initial grostare until the sycle is completed. A typical cycle time lasts approximately one to two seconds and is repeated about 3000 times daily. This zadds up to abont one hour to one hour and a half ger day white the operator is in the posture. While this module reduces stress on wrist and hand. it strains the muscles in the forearm. Also, because of bimited space germitted for the operator to hasert his band, it stresses the operator mentally and reduces productivity by causing fatigue. Furthemore, the infrared emitters and detectors rely on a clean path betwecs the tramsmither and receiver amd will not operate properly if contamimants block the beam of light.

\section*{SUMMAEX OF TEEE TNVENTION}

The present invertion overcomes the above problems by using the method of sensiag tady capacitance to ground in contumetion with redundant detection circuits. Adtitional improvements are offered in the construction of the souch terminal (palm button) itself and in the regime of body capacitance to ground setection wisich minimizes sensibivity to skin oils and other contaminams. The invention also sllows the operator to utilize the system with or without gloves which is a paticular advantage in the industaial settiag.

The specific tosch detection method of the present invention has simularities to the devices of U.S. Pat No. 4,758.735 and U.S. Pat. No. \(5,087.825\). However, significant improvements are ofored in the means of detection and in the development of an overall system to employ the touch switches in a dense array and in an improved zero force palm button. The towh detection curcuit of the present inveation features operation an frequencies at or above 50 kBl and preferably at or above 800 kHz to minmize the effects of surface contarmination from rmaterials such a skin oils and waler, It also offers improvements im detection sensitivity that allow close control of the degree of proximity (deally very dose proximity) that is required for acmation and to enable employmeat of a monthpliciry of smad sized touch terminals in a physically close array such as a keyboard. The circuitry of the present invertion minimizes the force requited in buman operator motions and climinates awkward angles and other constraints required in those moions. The outer surface of the souch switoh typucally consists of a continuous dielectric layer such as glass or polycarbonate with no mechanical or electrical feed-throughs. The surface can be shaped to have no recesses that would trap or hold organic material. As a resul it is easiby cleaned and kept clean and so is ideal for hygienic applications such as medical or food processing equigment.


In a first preferred embodirnent the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) twoch pads. Susceptibibity to variations in supply voltage and noise are minimized by use of a floating common and supply that follow the oscinlator sigad to powes the detection circuit. The enhanced sensitivity allows the use of a 26 vor lower amplitude oscillator signal applied to the touch temminal and detection circuit. This bower voltage as comyared to the device of U.S. Pat. No. 4.758. 735) obviates the need for expensive UL listed higher voltage construction measures and testing to handle what would otherwise be large enough voltages to cause safety concerms. A further advantage of the present invention is seen in the manner in which the touch terminal detection circuit is interfaced to the toucis termibats and to extemal control systems. A dedicated microprocessor referenced to the flozting supply and floating common of the detection circuit maybe used to cost effectively muitiplex a number of touch terminal detection circuis and multiplex the associated tonch terminal output signals over a two line optical bus to a dedicated microprocessor referenced to a fixed supply and grosud. Arr additional advantage of the microprocessor is an expanded ablity to detect faults. i.e. a pad that is fouched for an excessive amoun of time that is known a priori to be an unlikely mode of operation or two or more pads tonched at the same tinne or in an improper order. Additionally, the raicroprocessor can be used to distinguish desired multiple pad touches in simultaneous or sequential modes. L.e. two or more swithes touched in a given order within a given amonal of time. The microgrocessor can be used to perform system diagnostics as well. The microprocessor also allows the use of visull indicatons such as LEDs or annunciators such as a bell or tone generator to confirm the actation of a given touch switch or switches. This is particularly useful in cases where a soquence of actuations is required before an action occurs. The fecdback to the operator provided by a visual or audio indicator activated by the microprocessor in response to infermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touckes or wroag actuations from fouching the wroag pad in a given required sequenos or combination of touches. The second microgrocessor may be used to conmunicate with the user's control system. Additional featares include a "sleep mode" to rainimaze power consumprion during periods of non-use or power brown outs. and redundant conmol circuits to facilitate "frail to safe" operation. Another improvernent is offered in a mreans to move much of the cost of the system into simplified custom integated circuits that allow ease of sensitivity adjusment and assembly.
In a second preferred cmbodiment, a improved paim button is featured. Through the use of a dielectric cover, at large metallic towch terminal can be used dhat diferentiates betwen the touch of a finger or partial touch and the full touch of a palm. In this way the system avoids fakse friggers due to inadvertent finger touches or brushing contact with the palm prior or after an interded touch. The seoond embodiment also features redurdant control circuits to facilitate "fail to safe" operation.

To achieve these and other advantages, and in accordance with the porpose of the invention as embodied and described herein, the capracitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal having a trequency of 50 kHz or greater. an anput towh terminal defning an area for ans operator to provide an ingat by touch. and a detector circuit coupled to the oscillator for geceiving the periodic output signal from the oscillator, and
coupled to the input touch terminal. The detector circuit being responsive to signals from the oscillaton and the presence of an operator's bo3y capacimace to ground coupled to the touch terminal when touched by an operator to provide a conmrol ontput signal. Preferably the oscillator provides a periodic output signal having a trequency of 300 kHtz or greater.
These and ofter features. objects, and adyantages of the invention may ge realized and obtained by means of the instrumentalities and combinations particularly pointed out in the writhen description and charras hereof, as well as by the appended drawings.

\section*{BRIEF DESCRTPTION OF THE DRAWMRGS}

FIG. 3 is an electrical schematic of a testing circuit used to measure the impedance of the human body;

FIG. 2 is an electrical schematic of a testing circuit used \}o measure the impedance of water;

FIG 3 is an electrical schematic of an equivalent circuit model for analyzing a buman body in contact with glass covered with water:

FHG. \(\Delta\) is a block diagram of a capacitive responsive elecronic switching circuit constructed in accosdance with af first enbodiment of the presem invention;

EKG. 5 is an electrical schematic of a preferred woltage regulatar carcuit for use in the capacitive responsive electronic switching circuit shown in FGG. 4 ;

FlG. \(\sigma\) is an electrical schematic of a prefersed oscillator circuit for use in the capacitive responsive electronic swiching circuit shown in FIG. 4;

FHG. 7 is 38 efectrical schermatic of a preferred foating common generator circuit for use in the capacitive responsive electronic switchiag circuil shown in FhG. A:

FIG. 8 is an electrical schematic of a greferred knsca circuit for use in the capacitive responsive electronic switching circuit shown in FIG. 4;

FIG 9 is a three timensional bar graph flustrating signal-to-noise ratio vs. body capacitance at \(\mathrm{T}=105^{\circ} \mathrm{C}\).;

FIG. 10 is a three dimensional bar graph illustrating signal-to-moise satio vs body capacibance at \(T=22^{\circ} \mathrm{C}\).;

FIG. Il is a block diagram of a capacitive responsive electronic switchang circuit constructed in accordance with a second embodiment of the present invertion;

FIG. 12 is a block diagram of a capacitive responsive clectronic switching circuit constructed in accordance with a third emboriment of the present invention;

FIG. 13 is an electrical schematic of a preferred voltage regulator, oscillator, and touch circuits for use in the capacitive respomsive electonic switumg circait shown in XrG. 12;

FEG. 14 is an electrical schematic of preferxed driver sircuits for use in the capacitive responsive electronic switching circuit shown in FIG. 2 ;
 of an examole of a fiat palm butron constructed in accor-dance with the present invention:

FlG. \(\frac{16}{6}\) is a cross-sectional view of an example of a dome-shaped palm button constructed in accordance with the present invention;

FPG. 17 is ant electrical schematic of a touch circuit of the present invention implemented in a custom integrated circuit;

FIG. 移 is an electrical schernatic of an oscinator having a sleeper circuit for use in the capacitive responsive elecwonic switching circuits of the present invention; present invention operates at a higher frequency than prior touch sebsing circuits. A move to high frequency operation ( 30 to 800 kHz ) is not a bewign choice relative to ble lower frequency ( 60 to 1000 Hz ) operation seen in existing ant such as U.S. Bat. No. 4,758,735 and U.S. Pat. No. 5,087.825. Higher trequencies require gencrally more costly, inghes speed parts, and often resuits in the abded cost of special design measures to minimize electronic emissions and the introduction of high frequency noise on power supply lines. The prefereace for using such higher frequencies is based on o a study gerformed to determine if high frequency operation would allow a touch of an operator and conduction via suriace contamination films. such as moisture. providing a conducize path from a non-lowised arca to the touched area. The study also determined whether a bigh frequency touch circuit could operate over a sufficiently wide temperatare range, an assontment of overlying dielectric layer thicknesses and materials, and in the हुलesence of likely power supply fuctuations. The following calculations and measurements are the results of this study. The results summa30 rize the investigation condacted to redace crosstalk due to condensation of water on the dielectric member (ghass). By incrassing the frequency of operation, the impedance of the body-glass combination is reduced as compared to the impedance of water between the touch pads.

The equivalent circuit of fody impedance was measured using the testing circuit 1 shown in FIG. B. Testing circuit 19 includes \(2 n\) oscillator 24 coupled between cround plate axd a \(100 \mathrm{k} \Omega\) series resistor 22 and in parallel with a 10 Ma resistor 24 , a 20 pro capacitor 26 , ant contacts for conbsectibeg 4 to a human body identified in the figure as an impedance load 15 having at maredance \(Z_{s i}\) representing the body's inpedance.

Two types of masurements were taken: one with the gerson buder test stamiang on a large ground plame lee. concrete shab; and another while standiag on a subfoor. The subfoor was used to simulate a typical morthera home, i.e.. wrood joists with plywood sheeting, Carpeting was used as an added iasulation layer. Table 1 below shows the measured body resistance and capacitance for five individuals.
\begin{tabular}{|c|c|c|c|}
\hline CONCRETE SLASS & CONCRETE SLAB & SUBPLDOR & SUBFLOOR \\
\hline 1.480 & 100 pF & 1.7 kis & 79 pr \\
\hline 1.480 & 2 F p & 19 ka & 78 FF \\
\hline 1380 & 174 pr & 1.980 & 93 pF \\
\hline 1.280 & 16) \(\mathrm{p}^{\mathrm{p}}\) & 1.6 km & \(85{ }^{\text {PF }}\) \\
\hline 1.0 \% & \(107 \mathrm{p}^{\text {F }}\) & 1.4 kn & 75 FF \\
\hline
\end{tabular}
6) As apparcat from Table 1 above and the discussion to follow, a human body's bapedance may be represented by the series
 resistor.

The impedance of water, which is mainly resisive, was 65 neasured using ghe testing circuit 3t shown in FlG. 2 Testing circuit 30 includes an oscillator 4 coupled in series with a 1 MS resistor 42 and contacts actoss which water is
applied to define an impedance load 35 having an impedance \(Z_{3}\) representing the impedance of water, A urse \(R M S\) volbage meter 45 is connected across the contacts of the impedance load 35.

The resistance of tap water over a \(1 \times 1\) inch area and \(1 / 32\) inch deap. was measured to be around 160 kS .

The following calculation is for resistance of rain water where c is the conductivity for sain:
\[
k=\left(\frac{1}{\operatorname{cin}}\right) \times\left(\frac{L}{\lambda}\right)
\]
where.
\[
\begin{aligned}
& s=128 \times 10^{-5}(\mathrm{O}-\mathrm{c} 8 \mathrm{~m})^{-1} \\
& \operatorname{cin}=c\left(\frac{100 \mathrm{cma}}{\mathrm{~m}}\right)\left(\frac{0254 \mathrm{~m}}{12}\right) \\
& L=1.0 \mathrm{in} \\
& A=(1.0) \times\left(\frac{1}{32}\right)=\frac{1}{32} 13^{2} \\
& \text { thurefore. }
\end{aligned}
\]
\[
A=\left(\frac{1}{325.12 \times 10^{-6}}\right) \times\left(\frac{10 \mathrm{in}}{\frac{1}{32} \mathrm{ma}^{2}}\right)=98.43 \mathrm{ka}
\]

However, the thickness of a layer of water condensed on the surface of glass is masch less than lis inch and if's resistance is higher than that of tap water. For design purposes. a resistance value of 1 MQ was used to simulate water.

The capacieate of a picce of glass measuring \(8 / x^{n} \times 8 / 3^{n} \times\) \(1 / 4^{\prime \prime}\), is approximately 2 pr .
where,
\[
\begin{aligned}
& C=K_{\text {dass }} K_{r} \frac{A\left(\mathrm{~cm}^{2}\right)}{A_{1}(\mathrm{~cm})}\left(\mu{ }^{\circ}\right) \\
& \delta_{a}=0,08842 \times 10^{-6} \text { for vacuwisi } \\
& 60<K_{\sin }<10 \\
& A=0.25 \mathrm{in}^{2} \\
& 1=0.25 \mathrm{a}
\end{aligned}
\]
\[
\begin{aligned}
& C_{\max }=10 \times 0.68842 \times 10^{-5} \times 2.54 \times 10^{-6}=2.35 \mathrm{p}^{2} \\
& C_{\min }-6 \times 0.08842 \times 10^{-6} \times 2.54 \times 10^{-6}=1.35 \mathrm{pF}
\end{aligned}
\]

Table 2 below shows the dielectric constant for several so types of glass:

TABEE2
\begin{tabular}{|c|c|}
\hline TYPE OF GASS & Bielemis Constant (K) \\
\hline Corning 0010 & 6.32 \\
\hline Coming gabo & 6.73 \\
\hline Combiss 020 & 6.65 \\
\hline Comming 8870 & 9.5 \\
\hline
\end{tabular}

The equivalent circuit 58 of body touchiag the glass with the presence of water is shown in Fll. 3. As shown, the equivaleat circuit 50 tacludes a polycarton ( PCF ) plate 55 having at least kwo pads 57 and \(5 y\) fomed thereon, a glass plate 6 adjacent to PCB plate 55. water 65 on glass plate 60 spanning at least two touch pad areas, and a body 74 in

\(\qquad\) Wis will have the effect of pulling any voltage on the pad towards ground. Pad 59 will be sinilarly effected. however it's compling to ground will mot only be through capacitance 64, and the series capacitance and resistance of the human body, but will also be through the ohmic resistance of water on on the glass cover between the proximate bocation of pad 5 and the touched pad 57 . Because the human capacitance is considerably greater than the \(2 \mathrm{pF}^{\text {capacitance of the glass. }}\) the impedance of the path to ground for yads 57 and 59 will be dominated by the glass and water impedances. If the 25 impedance of the water gath is significant compared to that of the glass, then the effect of a touch will be more significant at pad 57 than at pad 59. To overoome the effect of condensation or possible water spills. the incedance of the glass is preterably made as small as is practical com3 gared to the impedance of the water. This allows discrimnation betweep touched and adjaceat pads. As the water bumedance is primarily resistive and the glass impedance is primarily capacitive, the impelance of the glass will drop with frequency.

An shows the masimum and minimum glass impedance as a fuaction of frequency. The maximum and minimum glass impedances shown were computed as follows:
\[
\begin{aligned}
& e_{0}=8.354 \times 15^{-22} C^{2}\left(\operatorname{man}^{2}\right) \\
& X_{\mathrm{g} \times x_{2}}=6 \\
& x_{s m a x}=10 \\
& A=0.25 \mathrm{in}^{2} \\
& L=0.25 \text { iv }
\end{aligned}
\]

As can be seen. at 1 kHz . the capacitive impedance of the 55 glass is rouch greater thas the nommal \(\mid \mathrm{MO}\) of the water Grige between the pads. As a result. at 1 kHz . there would be little difference in the impedance paths to ground of the two adjacent pads when either is souched. This wowld result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely. at 100 kHz . the glass impedance drogs to appoximately \(I M \Omega\) resulting in the impedance of the path to ground for pad S\$ being wice that of the touched pad 57. For cases where background noise and temperature dififts are comparatively small, a 100 kFl oscillator frequency wond allow a sufficiently low detection threshold to be set to differentiate between the signal changes induces at both pads by a human touch sprosite a
single pad．At 800 kHz ．the imredance of the glass drops to 200 kS or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to gronnd of the touched pad 57 and adpacent pads 59 ．In fact the impedance ratio may exceed 10 so 1 ．as illustrated in the calculation below．This allows the detection threshold for the tonched pad to be set well below that of an adjacent pad resulting in a much lower incidesce of inadvertent achation of adjacent touch pads to that of the touched pad locally，the frequency of operation would be kept at the 800 kHz of the preferred erubobiment or even higher．However，as noted earlier． higher frequency operation forces the use of more expensive components and designs．For applications where thermal drift and electronic noise levels wre low．operation at or mear 100 kHz may be possble．However，at 10 kyz and below． the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the wuched pad itself．Although the preferred frequency is at or above 100 kHz ，and mare preferably as or above 800 kHz ．it is conccivable that frequencies as low as 50 kHz conld be used provided the frequency creates a differeace in the impedance praths of adjacent pads that is sufficicme erough to accurately distinguish benween an intended touch and the touch of an adjacent pad．Use of frequencies as low as 50 kHz may also the possible depeading upon the type of glass or covering o the thichoess thereof used for the touch pad．However，in cases where there is litile or nos surface contamination，the frequency of operation can go well below 50 kHz ． Htimately，the frequency chosem will be a tradeoll between the likelihood of surface contamination and the cost of going to higher frequegcies to prevent cross talle due to such contamination．The following analysis illustates one example of how a frequency may be calculated based on the typical parameters used to construct a touch swisch and the typical impedance of a contaminamt，such as rain water．In the analysis below a 10 to 1 ratio of water to glass impedance is sought．

To eliminate crosstak due to condensation of water on the glass，the imgedance of body \(\left(Z_{-8}\right)\) and glass \(\left(Z_{8}\right)\) combina－ bion mast be much lower than inngedance of water（ \(\mathcal{Z}_{W}\) ） Since the impedance of glass is much higher tham body impedance，\(Z_{s}\) will be considered only．Therefore，
\[
100 Z_{g^{2}} k \alpha_{w^{\prime}}
\]

Eq． 3
where．
\[
\begin{aligned}
& Z_{3}=\frac{1}{2 \pi V_{8}}=\frac{796 \times 10^{30}}{f} \\
& 10 \times\left(\frac{7.90 \times 10^{10}}{7}\right)<1 \mathrm{MLS}
\end{aligned}
\]

Therefore

\section*{\(f>796 \mathrm{kFLz}\)}

Having provided a basis for the use of higher frequencies． the basic construction of the electronic switching circuit constructed in accordance with a first erabordinent of the present invention is now described with reference to FlG．A． The electronic switching cirosit includes a voltage regulator low including input lines 143 and 192 for receiving a 24 V AC line voltage and a line 183 for groundiag the circuit． Voltage regulator 1 M converts the received AC voltage to a the basic andion of the first embodireat，the preferced detained construction of the depicted components will now be described with FigS．5－5．In cases where the mumber of knes to be swithed is low，microcomtroller 6乡y can be replaced by addisional ophical cospling lines．The number of bues to be switched will dictate whether it is more cost effective to multiplex over a two hine optical bus such as line 501 and use a microconsoller to demultiplex，or to use is multiplicity of optical compling kines．Ther contiderations such as reliabilily and power consumption may also affect this choice．In this preferred enobodiment．the use of a sibgle gair of optical coupling gaths（bine 501）and a maicroco3s－ croller 6＠a，is shown to emphasize the capability to swich a large mamber of lines． 114，136．and 118 ，which rectify bes supplied 24 V AC power provides on power lines 101 and 182 ．The anode of the frsi diode 182 is conpled to power biac 101 and to the cathode of the second diode 3HA．The cathode of the first diode In is ou coupled to output line 195 ．The anode of the second dicule 31 is coughed to ground via line 183 and to the anode of the fouth diode 1 18 ．The arode of the thirs diode lis is coupled to the cathode of the fourth diate 具瘄 and to power line 152 ． The cathode of be third diode 116 is coupled to line 119 and 5 to the sathode of the frost diode \(\$\) B2．The anome of the fourth diode 318 is compled to ground via line 163 ．Diodes \(112_{n} 114\) ． 114s．and 118 are preferably diones having past no． 1 N 4002
available from LTEON. AC/DC convertor Hi\$ also greferably includes a capacitor 115 for fitering the rectified outpat of the diodes. Capacitor 13 is preferahty a \(\{000 \mu \mathrm{~F}\) capacitor coupled between output line 149 and ground via line 103 .
The 5 V regulator \(12 \$\) preferably includes a \(500 \Omega\) resistor 822 couphed between line 119 and 5 V output tine 184 . and a zenar diode 124. a first capacitor 126, and second capacitor 128 all connected and parallel between output power lines 1 14 and 1 bls. Ereferably. zener diode 124 is a 5.1 V zener diode having gart no. 1N4733A available from LTYEON. first capacitor 126 has a capacitance of \(10 \mu\) F, and second capaciror 128 has a capacitance of \(0.1 \mu \mathrm{~F}\).
The \(26 \vee\) regulator 130 preferably includes a transistor 13 having a collector connceted to line lly via a first resistor 132, a base comnected to line 119 via a second resistor 136 , and an enitter coupled to the regulated 26 V ouquet power line 1864 . The 26 V regusator 13 also preferably includes a capacitor 137 and zener diode 138 connected in parallel between the base of transistor 134 and ground line 803. Preferably, first resibtor 132 is a \(20 \Omega .0 .5 \mathrm{~W}\) resistor, second resistor 136 is a 1 kS 0.5 W resistor. capacitor 137 is a \(0.1 \mu \mathrm{~F}\) capacitor, and zener diode 133 is a 27 V .0 .5 W dode having part mo. liv2548 avaibble from LTEON. It will be asparent to those skilled in the art, that various components of voltage regulator low may be added or excluded depending upon the source of power availabie to power the oscillator 263 . For example, if the available power is a 110 V AC 60 Hz commercial power line, a transfomer may be added to convert the 110 V Act power to 24 V AC. Altematively, if a DC battery is used, the ACIDC convertor among other comaponeats masy be eliminated.

A preferred example of an 800 kH z oscillator is shown in FIG. 6. Oscillator 206 preferably includes a square wave generator 218, which is powered by 5 V regulator 120 via
 having the desired trequency, and at buffer circuit 23 , powered by 26 V regulator 13 via line 1 泡 for buffering the output of square wave generator 216 and boonting its peak from 5 V to 26 V while maintaining the preferred frequency. Square wave gemerator 210 is preferably an astable multivibrator constructed with at least two serially connected invertor gates 212 and 214. and optionally, a third serially connected invertor gate 216. Imvertor gates 212.214 aad 216 are preterably rrovided in a single integrated circuit desigBated as part 74yC04 available from National Semiconductor. The output of the first invertor gate 212 is compled to it's input via resistors 218 and 222 and is coupled to the output of the second invertor gate 214 yia a capacitor 224 . The input of the second invertor gate \(2 l 4\) is directly connected to the output of the first invertor gate 212 and the output of the second invertor gate 214 is directly connected to the inpus of the optional therd invertor gate 216. To provide an \(800 \mathrm{k} \xi \mathrm{zz}\) outpat resistor 238 preterably has a 10.0 kS vaiue, resistur 222 preferably has a \(1.78 \mathrm{k} \Omega\) value. and capacitor 224 is preferably a 220 pF capacitor.

The 5 y peak square wave generated by şare wave generator 21 is is supplied from either the output of invertor gate 214 or the output of optional invertor gate 216 to the base of a first transisfor 238 via a first resistor 232 connected and garallel a capacitor 234 . The base of first transistor 238
 second resistor 236 . The collector of frrst transistor 238 is commected to 26 V power line 106 via a third resistor 246 and to the base of a second transistor 2 *\& . The emitter of frast transistor 238 is coupled to ground and to at's own collector and the base of second transistor 244 wia a fourth resistor 242. The collector of the second transistor 240 is connected oscillator vollage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost,
safety and reliability requirements of a given application. The present combination was chosen to keep the oscillatox Voltage down and allow ogeration at 800 kHz to mimimuze cross talk. At higher frequencies a higber gain bandwidth product transistor would be required in both the oscillator 265 and detection \(4 \times\) curcuits. Touch circuit 4 ank aso preferably includes resistor 412 and a diode 414 having an anode comnected to the base of cransistor 416 and to resistor 413, and a cathode connected to the emitter of transistor 418 and to 3 resistor 412 comected in paralle with diode 414 between the base and emiter of tramsistor 4igh. The pulse stretcher circuit 417 is identifed as sbeh because bhe semsitivity of the touch circuit may be increased or decreased by varying the resistance of resistor 416. The base of transistor 410 is connected via resistor 413 to lne 451 connected to touch pad 455.

Additionally, touch circuit 43 y may include at least one Schmitt triggered gate \(\$ 24\) powered by the vollage difference existing between oscillator line 241 and 361 , and haviag an input terminal compled to the collector of transistor 419 and an ontput coupled to microcontroller 5 Wh via output line 49 . Schmitt triggered invertor gate 420 is optionally provided to buprove the rise time of the tobch switch outgut and to butier the ostput. Freferably transistor 410 is part no. BC858CL available from Motorola, resistor 412 is 212 MS remistor, diocke 414 is part ao. 1 NSI 4 B
 capacitor 418 is a \(0.001 \mu F\) capacitor, and resistor 413 is a 10 kQ resistor.

As stated above, the operator's booly includes a capacitance to grourd, which may range in a typical person from berween 20 to 300 pF . The base texminal of trasistor \(4 \mathbf{0}\) is coupted to it's enotter by restator 412 such that undess capacitance is present by the user touching the touch pad 45\%. transistor aly will not be forward siased and will now conduct Thus, when touch pad 659 is not touched. the output signal at the collector terminal of Gansistor 418 and across pulse stretcher circuit A17 will be zero yolts. When, however, a person couches the touch pad 43?. that person's body capacitance to ground couples the base of mansistor 416 to ground 163 through resistor 433 , thereby forwisn biasing eramistor 411 into conduction. This charges cagscifor 488 providing a posinve DC voltage with respect to the line 301 and causes the output of the Schmitt trigger \(42 \%\) to go low. Diode 414 is coupled across the base to emitter: junction of transistor Al\$ to clanap the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turm-on time.
Touch pad asw includes a substrate on which a plurality of electically conductive plate members are mounted om one sufface fhereof. The substrate is sum insulator and the plates are spaced apart in order to insulate the plates from one another and from ground. Also, positioned on the subsrase is a guard tand. genecally shown as 468 . Guard band 6 is a grid of conductor segments extending berween adjacent pairs of plate members. All conductor segments are physicaly interconnected to define a phurality of spaces with one plate nember positioned centraliy within each space. Components of the touch circuit may be positioned on the side of substrate opposite plate members and guard band 464.

A pianar dielectric member is spaced from the substrate facing plate members The dielectric member is made from a now-porous insulating material such as polycarbonate or glass. A plurality of electrically conductiye spring contacts are sandwiched betwesn the inner surface of the dielectric member and the substrate. An indicia layes may be adhered to the inner surface of the dielectric member to provide an indication of the function of each input portion.

As mentioned above, interface between the dielectric member and a conductive plate is a metallic spring contact that is atached to the back of the dielectric member. The spring contacts offer adyantages at high temperature extremes. However for sufficiently narrow temperature ranges, conductive pobyner fom pads cut to the size of the touch pads are preferably used to fill the gap between conductive pad and didectric layes. The function of the spring contacts of conductive form pads is to eliminate that capacitive contribution of the air flled gap between the conductive pads and the overlying diclectic layer.

A problem with capacity responsive seyboards is the lendency of switches that are closely positioned in a keyboard system to inadvertently become actuated even though the user is touching wadjacent switch. Furthermore, this problem is greatly aggrayated by the presence of contamination on the outer surface of dielectric member. Contanination such as skin oil or moisture causes enctic keyboard operation and multiple switches will turn on even though one switch is touched. By operating at a high frequency such as 100 kHz or 800 kHz . the imppedarice of we series combination of body and glass capacitance are lowered as compared to the impedance of contamination present on the glass theceby reducing crossalk.

If glass thickness is smaller than \(3 / 16\) inch the towch circuit becomes more sensitive to body capacitance. There are two ways to adjust the sensitivity so that crosstalk does not occur: remove biode Alas andior reduce the resistance of resistor 416. Increasing the resistance of resistor 416 would allow usage of thecker glass. Howewer, this resistance pretexably shouk not go above \(750 \mathrm{k} \Omega\). This is becanse of the maximum low input voltage of 0.8 V and input leakage cument of \(1 \mu A\) at the Schmitt trigger gate 320 .

The oscillator circuitry shown in PIG. 6is very stable over the teruperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The output of the touch switch circuitry drogs at a cate sit approximatcly 40 \(\mathrm{m} /{ }^{\circ} \mathrm{C}\). when temperature falls below \(6^{\circ} \mathrm{C}\). If asplication requires operation at low temperatures ( \(-40^{\circ} \mathrm{C}\).), the following three methods may be ased to increase be output of the switch: imcrease the oscillator's regulated supply voltage, increase the resistance of resistor 416 and use a higher gain tramsistor 48 . All of these methods would increase sensitivity at high temperatures. Another way bo correct this problem is to use a thesmistor to vary the regulated supply voltage as a fundion of temperature.

Since the infur power is regutated down to 26 V DC , variation of power ( \(24 \mathrm{~V} \mathrm{AC}+10 \%\) or 29 V DC to 36 V DC ) does not affect circuit operation. Table 3 below shows the measured ourgat voltage of the switch for various supply yoltages.

YABCD 3
\begin{tabular}{|c|c|}
\hline SUPPLY VOLTAGE & SWKMCH OUTEUS \\
\hline 36 v8c & 4.68 y \\
\hline 35 Y/8C & 4.66 V \\
\hline 34. VDC & 4.95 V \\
\hline 33 VDC & 495 V \\
\hline 32 V W & 4.34 V \\
\hline 31 VDC & 4.93 V \\
\hline 30 V TC & 4.93 V \\
\hline \(29 \times \mathrm{x}\) & 4.92 V \\
\hline
\end{tabular}

\section*{\(P S A R=6 \mathrm{~m} N=-45 \mathrm{c}\)}

In order to determbe the effect of body capacitance on s circoit operation, the circuit of EGG. 3 was used to simulate glass. water resistance. and body capacitance. The following two conditions were simulated and tested:

\section*{17}

1--The maximum body capacitance that does not cause crosswalk when
Temperature \(105^{\circ} \mathrm{C}\)
Supply Voltage \(=36 \mathrm{VDC}\)
Glass Capacitance \(=2\) pr
* Yater Resistance 330 k to 1 MS

2-The minimum capacitance to turn on a switch when: Temperature \(=0^{\circ} \mathrm{C}\).
Supply Voltagem29VDC
Glass Capacitance \(=2 \mathrm{pF}\)
3 -Operation at room temperature.
Table 4 below shows the signal and noise voltages at the switch output for diferent vabues of body capacitance and contamination resistance.

TABXXS 4
\begin{tabular}{|c|c|c|c|c|c|}
\hline CONTAMENATHON RE- & \multicolumn{5}{|c|}{RODY CAPACSAMCE} \\
\hline SETAHCE & 20 pa & 220 pF & 330 PF & 550 pF & 1230 pm \\
\hline \multirow[t]{2}{*}{330 en} & S: 5.15 & 5: 5.1 y & S: 5.1 y & S: 5.1 V & s: 5.1 V \\
\hline & N: 2.0 V & k: 4.0 V & N: 4.5 V & N: 49 V & \(\mathrm{N}: 50 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{500 xa} & S 518 & S. 5.1 V & 3: 5.1 y & Sis. 19 & S: 5.1 Y \\
\hline & \(\mathrm{N}: 0.2 \mathrm{~V}\) & N: 0.6 V & d: 0.78 & N: 0.8 V & \(\mathrm{N}: 0.8 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 \mathrm{ML} 2 \\
\left(\begin{array}{c}
\text { Condersed } \\
\text { W/atery }
\end{array}\right.
\end{gathered}
\]} & s: 5.1 V & 5: 5.1 V & \(\mathrm{S}: 5.1 \mathrm{~V}\) & S: 5.1 V & S: 5.1 Y \\
\hline & P: 0.1 V & N:01V & N: 0.1 V & N: 0.1 Y & N:0.1 Y \\
\hline \multirow[t]{2}{*}{NORE} & S: 5.1 y & S: 5.1 V & S: 5.1 V & S: 5.1 y & Sis 5.1 \\
\hline & \(\mathrm{N}: 10 \mathrm{mV}\) & \(\mathrm{N}: 10 \mathrm{mY}\) & \(\mathrm{N}: 10 \mathrm{mV}\) & \(\mathrm{N}: 10 \mathrm{mV}\) & \(\mathrm{N}: 10 \mathrm{mV}\) \\
\hline
\end{tabular}
\(\mathrm{s}=\mathrm{Sigra}\) (Tourch)
\(\mathrm{N}=\) Noise ( NO TOUCH )
supply voltage \(=36\) VIC
tempersture \(=105^{\circ} \mathrm{C}\)
With contarmination resistance of \(1 \mathrm{M} \Omega\) or more, the circuit is insensitive to body capacitance variatoms amo has m minimum signal-to-noise zatio of -34 dK. Whth no contamination. signal-to-noise ratio is approximately - -54 dif. The gragh in FlG. ghows the signal-to-moise xatio versus body capacitance, for dfferent values of contamination resistance at \(105^{\circ} \mathrm{C}\). The minimum body capacitance to tum on a switch is 20 pF .

At room temperafure, crosstalk decreases boosuse of gaim drop of transistor 419 . Table 5 below shows that at room temperature the circuit rejects \(250 \mathrm{k} \Omega\) of comamination. independent of body capacitance. Below 250 kr , body sapacisance will affect crosstalk

TABLE 5
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
CORTAM- \\
TMATKON EE-
\end{tabular} & \multicolumn{5}{|c|}{BCDE CAPACEIAMCE} \\
\hline SISTANCE & 20 pF & 220 pF & 330 pF & \(550 \mathrm{P}^{\mathrm{F}}\) & 1230 pr \\
\hline & & &  & & \\
\hline 20060 & \[
\begin{aligned}
& 5: 5.3 \mathrm{~V} \\
& \mathrm{~N}: 0.2 \mathrm{y}
\end{aligned}
\] & \[
\begin{aligned}
& 5: 5.1 \mathrm{~V} \\
& \mathrm{~N}: 10 \mathrm{Y}
\end{aligned}
\] & \begin{tabular}{l}
\(\$: 5.1 \bigvee\) \\
N: 12 V
\end{tabular} & \[
\begin{aligned}
& \mathrm{S}: 5.1 \mathrm{Y} \\
& \mathrm{~N}: 1.8 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 3: 5.1 \% \\
& \mathrm{~N}: 2.2 \mathrm{Y}
\end{aligned}
\] \\
\hline 25060 & S: 5.3 V & S. 5.1 V & S. 5.1 V & 3: 5.1 V & 5:5.: V \\
\hline & N: 0.1 V & 紋0.1 V & N: 0.5 V & N: 0.5 Y & \(\mathrm{N}: 0.5 \mathrm{Y}\) \\
\hline 330 kS & S: 5.1 V & S. 5.1 V & S. 5.1 V & S; 5.1 V & S: 5.1 V \\
\hline & \(\mathrm{N}: 0.1 \mathrm{~V}\) & N:0.1V & \(\mathrm{N}: 0.1 \mathrm{~V}\) & N: 0.1 V & N: 0.1 V \\
\hline 1 Mrl & S: 5.1 V & S. 5.1 V & S: 5.1 V & S: 5.1 Y & S: 5.1 V \\
\hline (Courcinsed Water) & \[
\mathrm{N}: 0.1 \mathrm{~V}
\] & N:0.3 & 敝: D. 1 V & N: 0.1 v & \(\mathrm{N}: 0.1 \mathrm{~V}\) \\
\hline \multicolumn{6}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

The graph of Fug. 18 shows the measured signaf-to-noise ratio versus body capacitance, for different contamibation resistance valaes at room temperature.

The particular advantages of the preceding circuit over that of existing touch detection circuits such as that disclosed in U.S. Pat. No. 4.758 .735 are the use of diode 414 (selected for high speed) to minimize forward recovery time 5 rather than merely provide reverse polarity protection (as with the slower bype of diode used in the existing circuits) and the omissions of a capacitor coupled across the base to enitter junction of the detection transistor flag to make the circuit nore sensitive and operable with a lower oscillator 10 amplitude and higher oscillator frequency. These features along with appropriate choices in component values make possible operation at significantly higher frequencies ( \(>50\) to 800 kFE ) than are seen in existing art ( 60 to 1000 Hz ) At frequencies at or near 800 kHz . the \(20-300 \mathrm{pF}\) of capaci15 tance to ground offered by the human body presents a considerably lower impedance than the primarily resistive impeaknce of shin oil or water fikms that mayy appear on the dielectric layer overlying the conductive souch pads. This allows the peak voltage of a pad that is touched to come 20 considerably closer to ground than adjacent pads which wink have a voltage drop across any contaminating film layer that is providing a conductive path to the area that is touched. The enkanced sensidivity offeced by the omsssion of any capacitor between the base and emitter of the detection 25 uransistor 410 . allows the threshold of detection fo be set much closer to ground than would be the case otherwise. This allows discriminatoon between the Fad that is touched and adjacent pads that might be pulled towards ground via khe conductive path to the touch formed by a comtaninatimg 30 fim. This high frequency regime of operation offers a considerable advantage relative to the existing art in terms of inmumity to surface contaminants such as skim oil and moisture.

A multiple touch pad circuil constructed in accordance 5 with the second embodiment is shown in FIG. In the second embodiment of Fig. 11, components similat to those in the first enabodiment in FH , 4 are designated with the same ceferences numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the forst embodiment in that it inchudes an array of touch circuits
 both the touch circuit 4ss shown in FICiS. 4 and \(\$\) and the input touch terminal pad 4E1 (FGG. 4). Microcontroller 5 (9)
 5 providing the signal from oscillator 2 ph so selected rows of touch circuits. In this manarer, microcontroller 5 \$90 can sequentallly activate the touch circuit rowe and associate the received inputs from the columss of the array with the ackivated touch circuit(s). To keep the path length ast o benween the fown pad aya and the base to the detection transistor 811 to a mininum. the detection circuits 9 shk are physically bocated directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldah, Inc. or Circuit Etching Technics, Inc. can be used ss for this purpose. Ideally, the printed circuit wit be fixed directy against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foan pads atd spring contacts which were used so fill 183 s gaps.

For this second embodiment. the oscillator 20, of the first embodinent may be slightly moudined from that show3 in Fich for include a transistor (not shown) coupled berween the oncillator output and ground with it's base connected to microcontroller \(\$ 6\) sib such that microcontroller s 40 may 5 selectively disable the oritput of oscillator 203 .

The use of a bigh Freguency in accordance with the present invention provides distinct adyantages for circuits
such as the mustiple touch pad circuit of the present invention due to the rannocr in which crosstalk is sabstantially reduced withon requiring any physical structure to isolate the tosch terminalls. Further, the reduction in crosstabk afforded by the present invention, allows the touch ferminals in the array to be rrore closely spaced together.

A third embodiment of the present invention, which provides touch circuit redundancy, is described below with reference to FlGS. 12-14. As shown in FIG. 12, the switching circuit according to the third embodiment includes a voltage regulator 1 hom for regelating power supplied by 24 V DC power lines 1 ligl and 1 H2 with ground connection 403, for supplying the regulated power to an oscillator 1290 via lines 1 Hid and \(118 \%\).

Oscillator 1280 supplies a continuons and periodic signal to touch circuits 140 pars and \(1400 b\) via line 120 . Preferably, the frequency of the oscillator output semal is at least 100 \(k H z\), and more preferably. at least 800 kHz . The two towch circuits \(1496 a\) and 14095 are identical ion construction and both recive the ouput of touch terminall \(\$ 450\) via line \(\$ 4 \xi 1\). A detailed description of the preferred voltage regulator circuit \(\$ 102\), oscillator 1200 , and touch circuits \(1409 a\) and 1Afble is provided below with reference to FIG. 13 following the description of the renaining portion of the thind embodiment.

The output of the ferst touch circoif 14489 is supplied eo a first driver circuit 159 via line 1.80 la while the output of the second touch circuit \(14 \$ 0\) is supplied to a second driver
 1684 are provided to drive first and second serially connected switching tramsistors \(17 \$ 9\) and \(\% 710\). The switching transistars 176 and \(17 x\) must both be conductine to supply power to a relay switch 1800 . Thus, if one of kouch circuits

 conduct and power will not be surplied to relay switch \(\$ \$ \$\}\) The preferred construction of diver circuits \(155 \times 1\) and 1680 and relay switch 183 are described below with reference to EHG. 14.

As shown in FIG. 13. voltage regulator 1186 may be construcced by providing de first capacitor 3 nd and a varistor H11 connected in parallel across inpant power terminals
 connected via lise 1183 to grourd. Varistor 1132 is used to protect the circuit for over-voltage conditions. Also con-
 are the serially connexted conbination of a fuse 11H4, a diode 1116 a resistor 1818 and two parallel connected capacitors 112 and \(\$ 122\). The voltage regulator llapk is reverse polanty protected by diode lly and cument limited by resistor 118 . Capacitors 122 and 1122 provide filtering.

Yoltage regulator 1 las further includes a zener dioue H28 baviag it's cathode commected wa awse between resistor 1118 and capacitors 1320 and 1122 and to output power lise 1144 . The anode of zener diode 1128 is coupled to outpue power cormmon line 137 and to ground line 138 Via two serially conneced resistors 1824 and 8.26 . Zener diode 1238 and resistors \(112 \Delta\) and 1126 generate regulated 15 V MC . Tho capacitors 133 and 132 are connected in parallet with zener diode 1128 between power lines ryad
 decoupling. respectively. Preferably. capacitor 14 has a capacitance of 1000 pF . 1000 V , varistor 1112 is part no. S14 25 available from Siencrs, fuse 1144 is a \(1 / 4 \mathrm{~A}\) fuse.
 resistor 1118 has a resistance of \(10 \Omega, 1 / 2 \mathrm{~W}\), capacitor 1120 has a capacitance of \(22 \mu \mathrm{~F} .35 \mathrm{~V}\). capacitor 122 has a on operational ampliner 1514. the non-inverting inpar terminal of operational anyplifier 1514 is connected to line 1502, which rums between first and second diver circuits

15lpe and lofth and is connected to power line 1188 via a resistor \(162 \%\). The ontput of op amp 1514 is connected 6 power line \(\}\) las via a resistor 1518 and to the input of a Schmitt trigger invertor gate \(\mathbf{1 5 1 6}\). The output of Sohmith trigger invertor gate 1516 is connected to the input of a second Schmitt trigger invertor gate 1526 via a resistor 1523. A diode 1522 is conneded in parallel with resistor \(\$ 524\) with it's cathode connected to the ouput of invertor gate 8516 and it's anode connected to the inpur of invertor gate 1528 and to power common line 1107 via capacitor 1524. The orfput of invertor gate \(15 \%\) is connected to the base of bipolar PNP switching transistor 17 (ef via a resistor 1528. The base of transistor \(17 \oplus \beta\) is also connected to power common line 8137 vin a capacitor 1538 and to power bine 1104 and it's cmitter via a resistor 1533 .

Preferably, resistor 1516 has resistance of 10 MD . capacitor 1512 has a capacitance of 0.01 pF. op armp comparator BEsA is part no. LM393 available from National Semiconductor, invertor gate 1516 is part no. CD40106B availisble from Harris, resistor 3.518 has a tesistance of 10 \(\mathrm{k} \Omega\). resistor 1520 has a resistance of \(1 \mathrm{M} \Omega\). diode 1522 is part no. RLS 4448 available from LIMEOA, capacitor 1524 has a capacitance of \(0.22 \mu \mathrm{~F}\). invertor gate \(152 \pi\) is part no. CDA0106 available from Harris, resistor 1528 has a resistance of 12 kS . resistor 153 m bas a resistance of 100 kS . capacitor 1532 has a capacitance of \(0.01 \mu \mathrm{~F}\), and transistor 1709 is part no. MMBTA56L available from Motorola.

In second driver circuit \(16 \% \mathrm{y}\), the output line \(14 \mathrm{mb}_{3}\) of second touch circuit \(188 \$ 8\) is commected to power common line 1103 via a resistor 1610 and also via a capacitor 1612 connected in parallel therewith. The output line 14618 is also connected bo the inverting input texminal of an oparotional amplifer 16 \& \(A\). The non-inverting input temmal of operational amplifier \(\mathbf{1} 614\) is connected to line \(\mathbf{3} 52\), which is comacted to power lime 1 lig via resistor lg2s. The non-imyerting input temninal of op amp laxis is also connected to power common line 1167 via a capacitor 1616 and a resistor 168 . which are commeted in parallch ghe ongen of op amp 1614 is connected to power line 1184 via a resistor 1639 and to the coupled inputs of a Schmitt migger invertor gase 16\%. The oxtput of op amp 1614 is also connected to it's non-inventing input terminal via a resistor 1624 . The output of Schmitt trigger zavertor NAND gate 1628 is comaected to the input of a secogd Schmith triger invertor gate 1638 via a resimor 1632 . A diode 184 is conmected in parallel with resistor 1632 with it's cathode conacted to the output of investor NAND gate bins and it"s anode connected to the ingut of invertor NAND gate 1638 and to power common line 1167 via a capacitos 1636 . The outpus of invertor gate \(3633_{\text {a }}\) is wonncoted to the base of swithing bipolar PNP tansistor 1719 via a resistor 16046. The base of transistor 1719 is also comected to power common hine
 resistor 1643 . Second driver circuit \(\mathbf{1 6 8 \%}\) also preferably includes capacitors 1626 and 1622 connected in parallel 55 between it's conncctions to pown lincs \(18 \%\) and 1197.
Preferably, resistor 1610 has a resistance of \(10 \mathrm{M} \Omega\) capacitor 1612 has a capacitamce of 0.01 gra op ampe comparator 164 is part no. LMB93 avalable from National Semiconductor, capacitor 1616 has a capacitance of 0.03 mF resistor 1618 kas a resistance of 20 ks . capacitor \(162 \%\) has a capacitance of 0.1 WP, capacitor 1622 hats a capacitance of \(0.1 \mu \mathrm{~F}\), resistor 1624 has a resistance of 100 kS . resistor 1626 hass a resistance of 10 kS . invertor NANB gate 162 is part no. CD4093B available from Haris, resistor 1638 kas a resistance of 10 kQ . resistor 1632 has a resistance of 1 MS. diode 1634 is part no. RLS4448 available from against inadvertent actuations and forces the operator to have both hads in a desired safe location once a desired
actuation occurs. A further option is to provide one or more LEDs 2205 or audible anmunciators for visuaf or audible feedback to the operator. Spectically, in FuG. 19 the LED 2205 will come on when bution 22011 has been successfully activated to cue the operator that it is time to move to button 2232. Where required a second \&ED with a diferent colos than the first (yellow for the first LED and red for the second) can be provided to provide visalal contirmation that the second bution 2202 has heen activated of that the required combination of the two butons has been activated. Two diferent budible tone or sobad generators could also be used in lieu of the EADs to provide feeaback to the operatos. In industrial or other challenging settings, the housing is made of higin streagth polycarthomate (or other high strength non-metalic material) to meet high impact and vibration requirements, preferably NEMA 4. A further option is to grovide lightisg for the switches to allow operation in the dark

In a variation of the multi-step process. two touch plates within a housing (one vertical and one bonizontal) are used to provide a two-step turn-on. Referring to FHGS. 20A-C. the first step to actuate the output relay 2315 . is initiated when the operator inserts his hamds and sourbes the vertical touch seasor 23 解 with the dorsal side of the hands. A yellow LED 2344 on top of the device show the successful completion of the first step. The second step is to hip the havad oveg and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2385 on top of the device shows the completion of the two sten murnom and activation of output relay 2310. The fippiag action of the hand is the second step causes the forearm muscles to flex. thereby reducing staffecss and fatigue, Ahso, the hands, and ams can rest on the rua bar until the machine cycle is complete. The second step of the swo-step turn-on must occur within some predetermined thme (for exampte 2 secombs) after the release of vertical touch sensor or the first step must be reperated. In this proposed enbodiment, the second step provides an added stimulus and reduces operator erross due to mental and physical fatighe. The top cover prevents actuation of two devices by the use of one hand and eltow of the same arm. as required by ANSE Stadard \(\$ 11.19\)-1990. The enclo sure must be a high strength polycarbonate module to meet the high impact and vibration requirements of the industry, greberably NEMAA 4. In both cmbodimems. bigh frequency switching is used to desensitize the unit against moisture and contaminants that could generate a path between the button and grounded chassis. The palm button nay be fonmed as the flat pabra button shown in FIGS. 15A-C or as a dome-shaped palm bution shown in PIG. 16. The button is made of a bass glate 194 (1939) and can be covered with a plastic or ghass 1925 ( 1933 ) cover or membrane to desensitize the unit even more against contamimants and other inadvertent actuation. The plastic cover 1925 (1933) acts as a diehectric and capacitance is varied as a function of the area of the plastic being touched. Therefore, if button is towathed by fuger, a mouch smakler series captoitance is genernted as opposed to button being touched by the paim of a hand. "his capacitarace is placed in series with the capacitance of the body to ground when the button is souched. Since the capacitance of the body to ground is much larger than the capacitance generated by the button, the functionsity of the unt is independent of the variations in body capacitance to ground from person to person. The other factor that needs to be considered here is body resistance. If the button is not coverce with an insulator such as plastic. the unit wound become sensituve to body resistance. Body resistance to ground changes as a function of moiseure in the work area.
skin dryness. floor structure and shoes. By using a plastic cover, the unit is made insensitive to variations of body resistance and capacitance. The shape of the buttom is also a factor in sensitivity. If the button is flat. less of the button area would be covered by the patn of the hand as opposed to a dome shape betton that matches the contour of the pairs. Therefore, if the bution is dome-shaped. the umit can be even more desensitized against inadvertent operation.

By providing a large space for hand insertion atd switch activation and a flat or dome shape button where the palm of the hawd rests while machime cycle is in process, stress on the foreams is exgonomically reduced. The palm button of the present invention can be activated with or withont gloves. The zero force palm buton of the present invention may be used to activate electric. pneumatic. air clutch. and hydraulic equipment such as punch presses, molding machimes. etc.

As shown in Friss. 15A-C. the fiat palm bution may include a plastic housing 1917 having an opional metallic enclosure 1922 for surface moumting. The button also may include a sush mount surface 1915 and optional guarding 1929.

The civeuit board 1935 used with the palm button of the present invention may be packaged on two printed circuit boards. One board for power and relay and the other for touch switches and relay trivers. The touch circuit on the touch switch board is unterfaced to the button through a screw that also holds the button in place. The powerirelay board is interfaced to the touch switch board through a there pian nigh angle connector. Wiring to the unit is done throught a seven gosition terminal block on the power/relay board. The powerfelay board is designed for 24 V DC innur power and provides two double-throw rebay contacts. However, it can be modified to accommodate different power inputs and switch ouguts. For examble. a cuasfonmer may be added io tise power board so that the unit is powered 110 VAC 220 FAC instead of 24 V DC. Also, the relays may be replaced with obher oughuts such as digital or \(4-20\) raA outputs.

The touch circuit components can be integrated in a custom CC 2000 . ss shown in Bry. 17 , to facibitabe mannsfacturing and to reduce cost. Components 413. 412, 414,
 in FRG. \$. Preferably. resiscor 28 B has a resistance of 470 ka and diode \(\mathbf{z s} \$ 2\) has characteristics similar to part no.
 are used b) adyunt the semsitivity. Yiode \(2 \$ 932\) at the output of alt, allows the IC to be used in applications where several toach circuit IC's are maskiplexed
As shown in FhG. IS. a sleep circuit 248 may be added to the oscillator cirenit 246 (FIG. 6) to allow microcontroller 8 (8) to turn off the oscillator circuit 2095. The disabling of oscillator circuit 2 the is done to reduce arajange of capacitor 126 in the regulator circuit 126 during brown oats. The carcuil diagrame shown in FlG. 18 is a modified version of
 troller 69 pulls the input of gate 2116 w ground and causes the output of gate 2116 to go high (power line los), Ghesefore. transistor 2tis is biased on and oscillator 2098 is functionsh. When in a slecp mode. microcontroller 6 (9) sonrces the inpat to gate 2176 high and causes the output of gate 2116 to go low which burns of transistor 2116 ated pulls the input of gate 212 low. Therefore, the oscillator will stop ascillating and drainage on capacitor 186 decreases considerably.

The above described embodiments were chosen for purposes of describing but one application of the presens
invention. It will be understood by those who practice the invention and by those skilled in the ant. that various modifrations and improvements may be made to the invention without departing from the spinit or scope of the invention as defined by the appended claims.
The embouknents of the invention in which an exchusive propenty or privilege is claimed are defined as follows:
1. A capacitive resgonsive clectronic switching circuit comprising:
an oscillator providing a periodic output signal having a frequency of \(50 \mathrm{k} / \mathrm{zz}\) or greater;
an imput toveh terminal having a dictectric cover defining an area for an operator to provide an input by proximity and touch. an operator's body capacitance to ground as sensed through sais impot touch terminal yarying as in function of the area of said input touch terminal that is proximate the operator's body; and
a detector circuit coupled to said oscilhator for receiving said periodic output signal from said oscillator. and coupled to said mput woch termimal, said detector cricuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said houch terminal when proximal or touched by an operator to provide a control output signal. wherein said detector circuit includes means for generating said control signal when the sensed body capacitance to ground exceeds a threshold level in order to prevent unintended activation bssed upon an ogerator's inadvertent proximity and touch with said input touch terminal.
2. The switching circuit as defined in claim 1, wherein said oscillator provides a periodic oupput signal haviag a trequency of 800 kHz or greater.
3. The switching circuit as defned in claim 1 and further including do Dower supply for supplying power to said oscillater and a ground.
4. The switching circuit as defned in claim 1, wherein said periodic output signal provided by said oscillator is a square wave oupub signal, said oncillator includes a square waye generator for geberating a square wave, and a plarality of active elements coupled to ans output of said square wave generator to buffer and improve the shape of the suare wave cutput therefrom.
5. The switching circuit as tefined in claim 1. wherein said detector circuit includes a microcontroller and a charge pump circuit coupled between said input touch terminal and said mioroconeroller.
6. The switching circuit as defined in claim 1. whercin said detector circuit includes a microcoatroller and a bouch circuit coupled berween said inpas touch teminal and said ruicroontroller.
7. The switching circuit as defined in claim 6 and further includitag a plarabity of said ingut tonch terminals and as plurality of said rouch circuits respectively associated with said input touch terminals.
8. The swiching circuit as defined in dam 7. wherein said microcontroller selectively applies said peniodic output signals received from said oscillator to cach of said touch circuits to segurately activate each touch circuit.
9. A capacitive responsive electronic switching circuit comprising:
an woillator providing a periodic uatrat signal having a frequency of 50 kHz or greater;
an imput touch termual defring an area for an operafor to provide an imput by proximity and touch;
a detector circuit coupled to said oscillator for receiving said periodic ontput signal from said oncillator, and
coupled to said input touch terminal, said detector circuit being responsive to signals from said oscilator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal: and
a floating common generator coupled to said oscillator for receiving said square wave output signal. said floating common generator gencrating a floating common reference for said detector circuit that is set at a fixed voltage below and tracks the spuare wave ontput signal.
10. The switching circuit as defined in chaim 9 . whercin said detector circuit is powered by said square wave output signal provided by said oscillator and by said floating common teference provided by said floating common generator thereby increasing the sensitivity of said detector circuit to proximity and tonching of said touch teminal by am operator"s body.
11. The switching circuit as defined in claim 19. wherein said detector circuit inchudes a microcomboller and a change pump circuit compled between said input touch terminal and said microcontroller. by an operator's body. wherein said charge pump circuit ibcludes at least one high speed diocie coupled between said oscillator and said touch tembinat, for enhancing a sensitivity at which said charge pump responds to sensed body capacitance at said touch termuni for higher frequencies.
12. A proximity and touch concrolled switching circuit comprising:
an osciluator groviding a square wave ontput signal having a frequency of 50 kHz os greater;
a touch terminal having a diefectric cover definimg an ingout terminal for coupling to an operator's body capacitance to ground; and
a charge purap curwit compled to waid aseilator for recciving said square wave output signal, and coupled to said touch temminal, said charge pump circuit having an output ferminal that suphies an output signal having a voltage that varies when said touch temmal is proximal or touchod by an operator's body, the voltage of said output signal yaries as a function of the area of said touch terminal that is groximal or touched by an operator.
wherein said charge pumpe circuit includes at least one high speed diode compled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed bousy capraciance to gromad at saxd touch terminal for higher frequencies.
13. The proximity abd touch controhed circuik as detined in clairn 12 and further including a DC power supply for supplying power to said oscillator and a ground.
14. The proximity and touch controlled circuit as defirsed in claires 12. Wherein said oscillator includes a square wave generator for generating a square wave and a pharality of active elements coupled to an output of said square wave generator to buffer and imgrove the shape of the square wave outpul therefrom.
15. The proximity and touch controlled circuit as defined in clam 12 , whercis said oscillator grovides a periodic output signal having a frequency of 800 kHz or greater.
16. A proximity and touch controlled switching circant cormprising:
an oscillator providing a square wave cutput signal having a frequency of 50 kHz or greater;
a touch terminal defining an imput terminal for coupling to an operator's body capacitance to ground;
a charge pump circuis coupled to said oscillator for receiving said square waye onkput signal. and coupled to said touch terminat. said charge pump circuit having an output terminal that supplies an ontput signal having a voltage that varies when said buch terminal is proximal or touched by an operator's body; and
a floating common generator coupled to said oscillator for receiving said square wave ouput signal, said tlontimg common generator generating a foating common reference for said charge gump circuit that is set at a fixed voltage behow and tracks said square wave output signal.
wherein said charge purnp circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed body capacitamee to gromm at said touch terminal for higher frequeacies.
17. The proximity and touch contolled circuit as defined in clain 16. Whercin said charge phap circuit is powered by said square wave output signal provided by said oscillator and by said floaing common referebce provided by said foating common generator thereby increasing the sensitivity of said charge pump circuit to proximity and touching of said touch terminal by an operator's body.
18. A capacitive resporasive electronio swicheng circuit comprisisg:
an osciutor groviding a periodic ouphut signal having a predefined frauency;
a plurality of input touch terminals definiag adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and towch; and
a detector circuit coupled to said oscillator for receiving said periondic outper signal from said oscillator, and coupled to said input touch termimals, said debector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to grownd coupled said fouch terminals when proximat or touched by an operator to provide a control oumput signal.
Wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the inyodance of any contaminate that may create an electrical on said dielectric substrate path betweea said adjacent areas, and wherein said detector circuit compares the sensed boby capacitance to ground proximate an input touch teminal to a threshold leyel to prevent inadyertem generation of the control outgur signal.
39. The switching circait as derined in claim 3 \$, wherein said oscillator provides a periobic output signal having a frequeacy of 800 kHz or greater.
210. A capacitive responsive electronic swithing circibit comprisimg:
an oscillaror providing a periodic ontput signas having a pretefined fequency;
a dome-shaped touch terminal defining an area for an operator to provide an inpus by proximity and touch. wherein the come shape of the touch terminal is constructed to ergonomicaly fit the palm of a human hamd, and
a detector circuit coupled to said oscilator for receiving said periodic outgot signal froms sisid oscillator, and compled to said towh temminal, said detector circuit being responsive to signals from said oscillator and the presence of isa operator's trody capaciance to ground
coupled to said touch teminal when proximal or touched by an operator to provide a control output signal. sad detector circuit including means for discriminating between a proximity and touch of said dome-shaped touch terminal by the galm of a human hand and a proximity and touch by a human finger.
21. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a touch terminal denining an area for an operator to provide an imput by proximity and tousch; and
a detector circuit couphed to said oscillistor for receiviag said periodic outpaz signal from said oscillazor, and coupled to said touch terminal. said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground cougted to said touch temminal when proximal or touched by an operator to provide a control outpse sigual, said detector circuit including discriminating means for discriminating berweem a proximity and touch of said souch terminal covering substamtially ath of said area of said touch terminal and a proximity and touch covering less than substantially all of said area of said touch terminal.
22. The switching circuit as defined in claim 21. wheroin said touch teminal includes a donne-shaped dielectric cover.
23. The swithing circuit as fômed in claim. 21. whereim said touch terminal includes a palm-sized dielectric cover.

2A. The switching circuit as denaed in claim 23 . wherein said discrimubiang means deternines that a proximity and tonch of said touch terminal covers substantially all of said area of said touch terminal when said diclectric cover is proximal or touched with the palm of an oretator's fiand and determines that a proximity or touch covers less tham substantially all of said area of said touch terminal when said delectric cover is proximal or towehed with one of an operator's hagers.
25. The switching circoit as defeed in claim 21, whereia said discriminating means discrimimates beween a groximity and touch of said towh terminal covering substantially all of said area of said tonch terminal and a proximity and touch covering less than substamerably all of said area of said tonch terminal based upon a sensed level of body capacitance to ground groximate said touch temainal.
23. 'The switching circuik as defined in claim 2l, whercin said courbling of capacitance to ground occurs whem an operator"s body is proximate, but not tosiching, said touch termimal.
27. A capacitive responsive electronic switching circuit for controlled device comprising:
an oscillator providing a gericulic onfput signal haying a predefined frequency;
first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and
A detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector ciroubt beise responsive to signals from said oscillator and the presence of aB operator's body capacitance to ground coupled to saik first and second toach emminals when proximat or touched by at operator to provide a control outpus signal for actuation of the controlled device. said detector circuit being con-
igured to gemerate said control output signal whea said an operator is proximal or touches said second touch terminal after the cqerator is proximal or kouches said first touch terminal.
28. The capacitive responsive electronic switching circuit as defned in cham 27. wherein said detector circuit generates said control signal only when an operator is proximal or touches said second touch terminal within a predetemined time period after the operator is proximal or touches said first touch temminal.
29. The capacitive responsive electronic swithing cicuit as defned in claim 27 . wherein said hirst and second touch terminals are adapted to be mounted on different surfaces of the controlled device.

\section*{30}
30. The capacitive responsive electronic switching circuit as defined in claim \(2 \gamma\), wherein said fras and second touch terminals are adapted to be momated on non-parallel planar surfaces of the controlled device.
31. The capacitive responsive electronic switching cirouit as defined in claim z7. wherein said first and second touch terminals are adapted to be mounted on perpendicular planar surfaces of the controlled device.
32. The capactuve responsive electronic switching circuit 10 as defned in claim 27 and further including an indicator for indicating whem said detector circuit determines that an operator is proximal or souches sad first touch terminat.

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

\author{
PATENT MO. : \(5,736,183\) \\ Page 3 of 3 \\ DATED : August 18, 1998 \\ \{NVENTOR\{S\} : Byron Hourmand
}

It is certified that error appears in the above-identiged patent and that saird Lethers Patent is hersoy corrected as shown below:

Column 5 , line 52 , "such a" should be --such as--.
Column 9, line 31, before "water" insert --condensed-.
Column 14, hine 35, "is" should be -as-.
Column 13, line 65, "it's" should be -its--
Column 18, tine 38. "reterences" should be -reference".
Column 20, line 7, "it's" should be -its- (both occurrences).
Column 20, line 9 , "it's" should be - its--
Column 20. line 10. "it's" should be -its- (both occurrences).
Column 20, line 13, "it's" should be -its-".
Column 20, line 20, "it's" should be -its--
Column 20, line 39, "it's" should be -its".
Colurnn 20, line 40 , "it's" should be - its--.
Column 20, line 46, "it's" should be --its--.
Column 20, tine 47, "it \(s\) " should be -its-

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

PATENT NO. : \(5,796,183\)
DATED : Augusi 18,1998
WVENTOR(S) : Byron Hourmand

Page 2 of 3

It is cerified that error apyears in the above-identifed patent and that said Letters Patent is hereby corrected as shown below:

Column 21 , hine 8 , "it's" should be - its -
Column 21, me 9, "it's" should be -its-.
Column 21, line 15, "it's" should be -its-".
Column 21, line 42, "it's" should be -its-".
Column 21 , line 46 , "it's" should be -its".
Column 2\(\}\), line 47 , "it's" should be -its-.

Column 21, line 56, "it's" should be -its--
Column 22, line 8 , "it's" should be - its--.
Column 22, line 13, "schmitt" should be --Schmitt--.
Column 26, lines 22-27, after "microcontrober." delete "by an operator's body . . . higher frequencies."

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

\author{
PATENT NO. : \(5,796,183\) \\ Page 3 of 3 \\ DATED : August 18, 1998 \\ inventor ls) : Byron Hourmand
}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 27, line 44, after "electrical" insert - path-..
Column 27, line 45, delete "path".
Column 29, line 1, after "when" delete "said".

\section*{Signed and Sealed this}

Eleventh Day of May, 1999

\section*{Attest}

Q. TODD DICKINSON

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

\author{
PATENT NO. \\ : 5,796,183 \\ APPLICATION NO. :08/601268 \\ DATED : August 18, 1998 \\ INVENTOR (S) : Byron Hourmand et al. \\ It is certified that error appears in the above identified patent and that said Letters Patent is hereby corrected as shown below:
}

Title Page, Item (75) Inventor, should read -(75) Inventors: Byron Gourmand, Hersey, MI (US); John M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US)--.

Signed and Sealed this
Eleventh Day of October, 2011


David J. Kappes
Director of the United States Patent and Trademark Office

\title{
(12) EX PARTE REEXAMINATION CERTEICATE (9614th) \\ United States Patent \\ Hourmand et al. \\ (10) Number: US \(5,796,183 \mathrm{Cl}\) \\ (45) Certincate Issued: Apr. 29, 2013
}
 SWHTCHRQ CIRCUT
(75) Inventors: Byron Fourmand, Hersey, MI (US); John M. Wasbeleski, Cadillac, M (US); Stephen R. W. Cooper, Fowlerville, MI (US)
(73) Assignee: Nartron Corporation, Reed City, MI (US)

Reexamination Request:
No. 90/012,439, Aug. 17, 2012
Reexamination Certificate for:
\begin{tabular}{ll} 
Patent No.: & \(5,796,183\) \\
Issued: & Aug. 18,1998 \\
Appl. No.: & \(68 / 601,268\) \\
Fied: & fam. 31,1996
\end{tabular}

Certificate of Correction issued May 11, 1999
Certificate of Correction issued Oct. 11, 2011
(51) \{nt. C\}.

1103K \(17 / 96\)
1103K 17/94
(2006.01)
(2006.01)
(52) U.S.Cl

USPC ........... 307/116; 307/125; 307/139; 361/181
(58) 8ueld of Classibcatime Gearsh

None
See application file for complete search history.

\section*{References Clited}

To view the complete listing of prior art documents cited daring the proceeding for Reexamination Control Number 90/012,439, please refer to the USPTO's public Patent Application hafomation Retrieval (PAR) system under the Display References tab.
Primary Examimer -- Linh M. Nguyen
(57)

ABSTRACT
A capacitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal having a frequency of 50 kJz or greater, an mput towh terminal defining an area for an operator provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receivity the periodic output signal from the obilator, and coupled to the input touch terminal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output sigual. Preferably the oschlator provides a periodic output signal having a frequency of 800 kHz or greater. An array of wuch terminals may be provided in close proximity due to the reduction in crosstall that may resuit from contaminants by utilizing an oscillator outputing a signal having a frequency of 50 kHz or greater.


EX PARTE
REEXAMINATION CERTEICATE ISSUED UNDER 35 U.S.C. 307

\section*{THE PATENT IS HEREBY AMENDED AS indICATED BELOW.}

Matter enclosed in havy brackets [] appeared in the patent, bust has been deleted and is mo longer a part of the patent; matter printed in italies indicates addihions made to the patent.

\section*{AS A RESULT OF REEXAMMNATION, TT HAS BEEN DETERMNED THAT:}

Caims \(18,27,28\) and 32 are detemined to be patentable as amended.

New clams 33-39 are added and determined to be patentable.

Claims 1-17, 19-26 and 29-31 were not reexamined.
18. A capactive responsive electronic swith ing circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a phirality of small sized input iouch terminals of a keypad;
[a] the pluralty of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said uscilator for receiving said perodic output signal from said oscillator, and coupled to said input tobich terminals, said detector circuit being responsive to signals from said osellator via said microcontroller and fhe] a presence of an operator's body capacitance to ground coupled to said touch terninals when proximalor tonched by [m] the operator to provide a control output signal,
wherein said predefined frequency of said oscillator 【is】 and said signal ouipui fregucmeies are selected to decrease the a first impedance of said dielectric substrate relative to [he] a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas deflned by the pharality of small sized inout touch terminals, and wherein said detector circuit compares [the] \(a\) sensed body capacitance change to ground proximate an input 50 touch teminal to a threshold level to prevent inadvertent generation of the control output signal.
27. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a perodic output signal having a 55 predefined frequency;
a microcontroller using the periodic output signal from the oscllator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad the input touch terminals 6 comprising first and second input tonch temminats;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving 65 said periodic output signal from said oscillator, and coupled to said first and second tonch teminals, said
 as defmed in claim 27 , wheren when the second touch terminal is not touched on its defining area by the operator to provide input, the controi output signal is prevented.
36. The capacitive responsive electronic switching circait as defined in dam 27 and further inchding an indicator for indicating when said detector circuit determines that the operator is proximal or touches said second towich terminal.
37. A cupacitive responsive efectronic switching cimuit for a controlled device comprising:
an ascillator providing a periodic output signal having a predefned frequeno, wheren on oscillator voltage is greater than a supply voltage;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of inpat touch terminals of a keypad, the input touch terminals comprising first and second input towch temminals;
the first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said osciliator for receiving said periodic output signal from said ascillator, and coupled to said first and second touch terminais, said detector cirouit being responsive to signals from sald oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or towched by the operator to provide a control output signal for actuation of the controlled device, said detector circuit being confgured to gemerate said control outhot signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
38. The capscitive responsive eloctronic switching circuit as defined in claim 3?, wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator tonches the second touch terminal.
39. The capacitive responsive electronic swiching cirait 5 as defined in claim 37 ,
wherein said detector circuit compares a sensed body capacitance change caused by the body apacitance decreasing a second touch terminal signal on the detector to ground when proximate to the second touch ter- 10 minal to a threshoid level to generate the controt ontont signal, and
wherein feedback to the operator is provided by an indicator activated by the miorocontroller after the operator touches the second touch terminal.

\section*{EXHIBIT B}


หКฟร

Adress: COMMUSSONER OF PATEATS AND TRADEMAMKS Washingrixs, D.C. so234

phase find below and/or attaksed an Onfe communication concombny this appleation or proceeding.
Responsive to communication(s) filed on \(\qquad\) .This action is FINAL.
Since this application is in condition for allowance except for formal matters, prosection as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.0. 11; 453 O.G. 213.
A shortened statutory period for response to this action is set to expire _ three month(s), or thirty days, whichever is longer, from the maling date of this communication. Failure to respond within the period for response will cause the application to become abandoned. (35 U.S.C. § 133). Extensions of time may be obtained under the provisions of 37 CFR 1.1364 al.

\section*{Disposition of Claims}

X Claim(s) \(1-20\) is/are pending in the application.
Of the above, clam\{s \(\qquad\) is/are withdrawn from consideration.Claim(s) \(\qquad\) is/are allowed

X Claim(s) 1-4, 6-14 and 16-20 is/are rejected.
( \(X\) Claim(s) 5 and 15 is/are objected to.Claims \(\qquad\) are subject to restriction or election requirement.

Application Papers
\(X\) See the attached Notice of Draftsperson's Patent Drawing Review, Pro. 948.The drawing(s) thed on \(\qquad\) is/are objected to by the Examiner.The proposed drawing correction, fled on \(\qquad\) is Gapproved Cisapproved.The specification is objected to by the Examiner.The oath or declaration is objected to by the Examiner.
Priority under 35 U.S.C. 5119Acknowledgement is made of a claim for foreign priority under 35 U.S.C. \(\$ 119(a)\)-(d).AllSome*\(\square\) None of the CERTIFED copies of the priority documents have beenreceived.received in Application No. Series Code/Serial Number) \(\qquad\) .
\(\square\) received in this national stage application from the International Bureau (PCT Rule \(17.2(\mathrm{al})\).
* Cermfied copies not received:
\(\square\) Acknowledgement is made of a claim for domestic priority under 35 U.S.C. 5119 (e).
Attachment(s)
\(X\) Notice of References Cited, PTO-892
X information Disclosure Statement(s), PTO.1449, Paper Nols). 5 and 6
\(\square\) Interview Summary, PTO-413
X Notice of Drattsperson's Patent Orawing Review, PTO-948
\(\square\) Notice of Informal Patent Application, PTO-152

\section*{DETALLEB ACTION}

\section*{Claim Rejections - 35 USC \(\$ 112\)}
1. Claims 6,7 , and 16 are rejected under 35 U.S.C. 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Claims 6 and 16 are vague and indefinite because it is unclear what is meant by "to increase the sensitivity of said charge pump circuit to touching of said touch terminal by an operator's body."

\section*{Claim Rejections - 35 USC 102}
2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -..
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
3. Claims 1-4 and 12-14 are rejected under 35 U.S.C. 102(b) as being anticipated by Kent. \((4,352,141)\)

Kent discloses a capacitive responsive switching comprising: an oscillator (N5, N6, R1, C1) having a frequency of 1 MHZ , an input touch terminal (3), a detector circuit (E) coupled to said oscillator and said touch input terminal, DC power supply (1), wherein said periodic input signal provided by said oscillator is a square wave see column 2 , lines \(9-12\), and a plurality of

Art Unit: 2107
active elements coupled to an output of said oscillator to buffer and improve the shape of the square wave output therefrom ( \(\mathrm{C} 3, \mathrm{C} 4, \mathrm{R} 2\) ), and a charge pump ( \(\mathrm{Dl}, \mathrm{N} 1, \mathrm{R} 4\), and C ).

\section*{Claim Rejections - 35 USC \& 103}
4. The following is a quotation of 35 U.S.C. 103 (a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this titie, if the differences between the subject matter sought to be patented and the prior ant are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patextability shall not be negatived by the manner in which the invention was made.
5. Claims \(8-11,18\), and 19 are rejected under 35 U.S.C. 103 (a) as being unpatentable over Kent in view of Ingraham ( \(5,087,825\) ).

Claims 8 and 9 add the limitations of a microcontroller. Kent does not disclose the detector circuit including a microcontroller. However, Ingraham discloses a detector circuit including a microcontroller. (80) It would have been obvious to one of ordinary skill in the att to replace the detector circuit of Kent with the detector circuit of Ingraham in order to provide a computerized control circuit that can control a pluality of different load requirements sent by a plurality of touch sensors.

Claims 10 and In add the limitations of a plurally of input touch terminals and a plurality of touch circuits. Kent only teaches one touch input terminal and one touch circuitry. However, Ingraham discloses a plurality of input touch terminals (18) with corresponding touch circuits. It would have been obvious to one of ordnary skill in the art at the time the invention was made to
utilize the teachings of Ingraham into Kent's device for the purpose of providing a plurality of ways in which the load may be controlled see column 2 , lines 36-40.

As to claims 18 and 19, Kent discloses a capacitive responsive switching comprising: an oscillator (NS, N6, R1, C1) having a frequency of 1 MHZ , an input touch terminal (3), and a detector circuit (E) coupled to said oscillator and said touch input terminal. Kent ondy teaches one touch input terminal and one touch circuitry. However, Ingraham discloses a plurality of input touch terminals (18) with corresponding touch circuits. It would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize the teachings of Ingraham into Kent's device for the purpose of providing a plurality of ways in which the load may be controlled see column 2, lines \(36-40\). Kent also does not disclose the details of the touch input comprising a dielectric substrate. However, Ingraham does disclose a touch sensor comprising a dielectric layer substrate (26). It would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize the teachings of Ingraham into Kent's device as this is a well known way to activate a capacitor switch input.
6. Claims 8-11, 18, and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kent in view of Kirton \((5,235,217)\).

Kent discloses a capacitive responsive switching comprising: an oscillator (N5, N6, R1, C1) having a frequency of 1 MHZ , an input touch terminal (3), and a detector circuit ( \(E\) ) coupled to said oscillator and said touch input terminal.

Kent does not disclose the shape of the touch terminal. However, Kirton discloses a touch terminal (14) which is domed shaped. It would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize the teachings of Kinton into Kent's device for the purpose of providing a touch sensor which is easy to operate.
7. Claims 5 and 15 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervering claims.
8. Claims 6,7 , and 16 would be allowable if rewritten to overcome the rejection(s) under 35
U.S.C. 112 set forth in this Office action and to include all of the limitations of the base claim and any intervening claims.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jonathan S . Kaplan whose telephone number is (703) 308-1216.

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-1782.



\section*{NOTICE OF DKAETSPERSON'S PATENT DRAWING REVIEW}
 patent Examiners will review the drawings for compliance with the regulations. Direct telephone impuinies conceming this review to the Drawing Review Branch 763-305s804.


COMMENTS:




W. S. 2ATEME DOCWNENTS




OTHER DOCVMENTS (Incyudirg Authox, Tithe, Date, pertirent Pages. ztc.)



Washington, D.C. 20231
Dear Sir:
AMENDMENT
This is a response to the Office Action mailed April 22, 1997. The tme for filing a response to the Office Action has been extended by the petition for a one-month extension of time and payment of the appropriate fee filed concurrently with this amendment. Applicant requests that the Examiner amend the above-captioned application as follows.

\section*{In the Drawings:}
Subject to the approval of the Examiner, please amend Figs. 1, 3, 4, 5, 11, 12, 13, 14 , and 18 as shown in red on the attached sheets of drawings.
In the Specification:
Please amend the specification as follows:
Page 1 , line 9 , change "movement" to - movernents-..
Page 2, line 17, after "is" insert …(are) - .
* Page 12, line 1, change "ground" to --common--.
Page 12, line 5, change "approved" to - listed - .
Page 12, line 9 , change "ground" to - -floating common--
- Page 12, line 12, delete "true".
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Hourmand \\
Appla. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 2
\end{tabular}

Page 13, line 19, after "operator" insert - -to - .
Page 14, line 2, after "capacitance" insert --to ground--
\ Page 15, line 2, change "ground" to --common--.
Page 17, line 9, change "an extemal" to -a-a.
Page 17, line 12 , change " \(2 B\) " to \(-Z_{8} \sim\).
Page 18, line 11 , change " \(Z W\) " to \(-Z_{W}-\)
- Page 21, line 11, change "an external" to \(-\mathrm{a}-\mathrm{a}\).

Page 21, line 16, change "it's" to -its-.
Page 23, line 12 , change "will" to --wehl-.
- Page 23, line 20, delete "preterably".

Page 25, line 7, delete "relative to an external ground such as the earth".
Page 26, line 4, change "ground" to --common--
Page 26, line 6, change "ground" to \(\sim\) common-..
Page 26, line 7, change "ground" to -.common--.
- Page 26, line 9, change "ground" to - common \(\cdots\).

To Page 26, hne 10, change "ground" to - common- (both occurrences).
Page 26, line 12, change "ground" to -common--
- Page 26, hine 14, after "capacitance" insert --10 ground-.

Page 26, line 17, after "capacitance" insert --to ground-...
- Page 29, line 13, change "coupled" to --directly connected-..

Page 29, line 14, change "coupled" to -directly connected-.

\title{
Applicant : Byron Gourmand \\ Appln. No. : 08/601,268 \\ Page : 3
}

Page 29 , line 14, delete "output of the".
Page 29, line 14, change " 213 " to -216 .
Page 30 , line 8 , after "between" insert -near to--.
Page 30 , line 15 , change "generate" to the floating common generator 300 such that
together they supply a-*,
Page 30, line 16, change "and powers up" to - to power- .
Page 30 , line 16 , change "circuits" to - circuit (s) \(\cdots\).
Page 31 , line 4 , change "must" to --can--.
Page 31, line 6, delete "and preferably".
Page 31, line 17, delete "between the".
- Page 31, line 18, delete "collector of transistor 410 and floating ground line 301 ".

Page 32, line 11, after "includes" insert -resistor 412 and \(\sim\).
Page 32, line 12, before "resistor" insert - to - .
- Page 32, line 16, change "Resistor 413 is used to limit the base current." to The
\(\qquad\)
Page 33, line 5, after "capacitance" insert -to ground--
Page 33, line 11, after "capacitance" insert --to ground--.
Page 33, line 11, delete "earth".
\(\searrow\) Page 33, line 15, after "reverse" insert --bias-".
- Page 33, line 15 , change "thereby reducing" to - and also reduce \(-\cdots\).
- Page 40, line 11, after "length" insert -451…
\begin{tabular}{lcl} 
Applicant & \(:\) & Byron Hourmand \\
Appin. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 4
\end{tabular}

Page 40, line 11, change "pad 451" to --pad 450--
\Page 41, line 9 , change "and an earth relative ground" to --with ground connection--.
Page 41, line 10, after "1103," delete "and".
Page 42, line 9, change "to relative earth ground 1103" to --via line 1103 to ground--.
Page 42, line 17, change "power line" to - -power common line - .
Page 42, line 17, delete "relative".
Page 44, line 8 , change " \(a\) transistor" to - a bipolar \(P N P\) transistor--.
Page 44, line 8, change " 1420 " to \(-1420 a-\).
Page 44, line 9, change "power line" to --power common line--.
Page 44, line 18, change "1424" to \(-1424 a \cdots\).
Page 45 , line 2, change "power line" to \(\cdots\) power common line....
Page 45, line 4, change "negative" to - -inverting input-.
Page 45, line 4, change "positive" to - non-inverting input--.
Page 45 , line 11 , change "power line" to --power common line -...
Page 45, hine 12, after "base of" insert --bipolar PNP--.
Page 45 , line 13 , change "power line" to - -power common line-...
Page 46, line 4, change "power line" to --power common line-..
Page 46, line 5 , change "negative" to - -inverting input--.
Page 46, line 6 , change "positive" to - non-inverting input-- .
Page 46, line 7, change "positive" to - non-inverting input--.
Page 46, line 8 , change "power line" to --power common line--.
Applicant : Byron Houmand

Appln. No. : 08/601,268
Page : 5
Page 46 , line 10 , change " 1639 " to \(-1630-\).
Page 46 , line 11 , change "positive" to - non-inverting--.
Page 46, line 12, change "invertor gate" to --invertor NAND gate--.
Page 46 , line 14 , change "invertor gate" to --invertor NAND gate--.
Page 46 , line 15 , change "invertor gate" to --invertor NAND gate-- (both occurrences).

Page 46, line 15, change "power line" to --power common line--.
Page 46, line 16, after "switching" insert --bipolar PNP....
Page 46, line 17, change "power line" to --power common line-...
Page 47, line 15 , change "(1628)" to --(invertor NAND gate 1628)-.
Page 47, line 17, change " \((1536)^{\prime \prime}\) " to \(-(1636)-\).
Page 47, line 18, after "when" insert --the---
Page 47, line 19, change "button" to --touch terminal--.
Page 48, line 15, after "one" insert -of the touch switch circuits-..
Page 48 , line 15, after "redundant" insert --relay driver--.
Page 48, line 16, after "one" insent -of the driver circuits--.
Page 48 , line 20, change "2201" to -2205 . Palm button \(2201 \cdots\).
Page 49, line 1, delete "second" (first occurrence).
Page 50 , line 6 , change "sid" to - side \(\cdots\).
Page 51, line 4, after "smaller" insert -series-".
Page 51, line 6, after "body" insert --to ground-- (both occurrences).

Applicant : Byron Hourmand
Appla, No. : 08/601,268
Page : 6
1
Page 51, line 8, after "capacitance" insert --to ground--
1
Page 51 , line 10 , change "earth" to --ground-.
Page 53 , line 1, change "decrease and increase" to -adjust--.
Page 53, line 2, delete "respectively".
Page 53, line 5, after " 200 " insert --(Fig. 6)- (first occurrence).
Page 53, line 10 , change "pulls" to --sources--.

\section*{In the Abstract:}

Please amend the abstract as follows:
Line 6, before "touch" insert --proximity and-...
Line 9, after "capacitance" insert -to ground - .
Line 9, atter "when" insert --in proximity or-".

\section*{In the Clams:}

Please amend clams 1, 3, 5, 6, 12-18, and 20, and add new clams 21-32 as follows:
1. Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a frequency of 50 kHz or greater;
an input touch terminal having a dielectric cover defining an area for an operator to provide an input by proximity and touch, an operator's body capacitance to ground as sensed through said input touch terminal varying as a function of the area of said input touch terminal that is proximate the operator's body; and
```

Applicant : Byron Hourmand
Appln.No. : 08/601,268
Page :
7

```
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal, wherein said detector circuit includes means for generating said control signal when the sensed body capacitance to ground exceeds a threshold level in order to prevent unintended activation based upon an operator's inadvertent proximity and touch with said input touch terminal.

Claim 3, line 2, delete "reference to an external".
9. * (Amended) A capacitive responsive electronic [The] switching circuit [as defined in clam I and further inching comprising:
an oscillator providing a periodic output signal having a frequency of 50 kHz or greater:
an input touch terminal defining an area for an operator to provide an input by proximity and touch:
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance
\begin{tabular}{l:l} 
Applicant & \(:\) \\
Byron Hourmand \\
Appin. No. & \(:\) \\
Page & \(:\) \\
P8/601,268 \\
& 8
\end{tabular}
to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal, and
a floating [ground] common generator coupled to said oscillator for receiving said square wave output signal, said floating [ground] common generator generating a floating [ground] common reference for said detector circuit that is set at a fixed voltage below and tracks the square wave output signal.
10. (Amended) The switching circuit as defined in claim-f, wherein said detector circuit is powered by said square wave output signal provided by said oscillator and by said floating [ground] common reference provided by said floating [ground] common generator [to increase thereby increasing the sensitivity of said detector circuit to proximity and touching of said touch terminal by an operator's body.
12. (Amended) A proximity and touch controlled switching circuit comprising:
an oscillator providing a square wave output signal having a frequency of 50 kHz or
greater;
a touch terminal having a dielectric cover defining an input terminal for coupling to an operator's body capacitance to ground; and
a charge pump circuit coupled to said oscillator for receiving said square wave output signal, and coupled to said touch terminal, said charge pump circuit having an output terminal that supplies an output signal having a voltage that varies when said touch terminal
```

Applicant : Byron Hoummand
Appln. No. : 0S/601,268
Page : 9

```
is proximal or touched by an operator's body, the voltage of said output signal varies as a function of the area of said touch terminal that is proximal or touched by an operator,
wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed body capacitance to ground at said touch terminal for higher frequencies.
13. (Amended) The [touch control] proximity and touch controlled circuit as defined in claim 12 and further including a DC power supply for supplying power to said oscillator and a [reference to an external] ground.

16.
(Amended) A proximity and [The] touch [control] controlled switching circuit [as defined in claim 12 and further includingl comprising:
an oscillator providing a square wave ourput signal having a frequency of 50 kHz or
greater:
a touch terminal defining an input terminal for coupling to an operator's body capacitance to ground:
a charge pump circuit coupled to said oscillator for receiving said square wave output signal. and coupled to said touch terminal, said charge pump circuit having an output
\begin{tabular}{lcl} 
Applicant & \(:\) & Byron Hourmand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page. & \(:\) & 10
\end{tabular}
terminal that supplies an oupput signal having a voltage that varies when said touch terminal is proximal or touched by an operator's body; and
a floating [ground] common generator coupled to said oscillator for receiving said square wave output signal, said floating [ground] common generator generating a floating [ground] common reference for said charge pump circuit that is set at a fixed voltage below and tracks said square wave output signal
wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed body capaciance to ground at said touch terminal for higher frequencies.
17.
76. (Amended) The proximity and touch [control] controlled circuit as defined in clam tris wherein said charge pump circuit is powered by said square wave output signal provided by said oscillator and by said floating [gromd] common reference provided by said floating [ground] common generator [to increase] thereby increasing the sensitivity of said charge pump circuit to proxinity and touching of said touch terminal by an operator's body.

```

Applicant : Byron Hourmand
Appln. No. : 08/601,268
Page
11

```
18. (Amended) A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a plurality of input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and

a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or touched by an operator to provide a control output signal,
wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electricalon said dielectric substrate path between said adjacent areas, and wherein said detector circuit compares the sensed body capacitance to ground proximate an input Wuch terminal to a threshold level to prevent inadverten generation of the control output signal.

20. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic ouput signal having a predefined frequency; a dome-shaped touch terminal defining an area for an operator to provide an input by proximity and touch, wherein the dome shape of the touch terminal is constructed to ergonomically fit the palm of a human hand; and
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Gourmand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 12
\end{tabular}
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said [input] touch terminal [terminals], said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch [terminals] terminal when proximal or touched by an operator to provide a control output signal, said detector circuit including means for discriminating between a proximity and touch of said dome-shaped touch terminal by the palm of a human hand and a proximity and touch by a human finger.
21. (New) A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a touch terminal defining an area for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal, said detector circuit including discriminating means for discriminating between a proximity and touch of said touch terminal covering substantially all of said area of said touch terminal and a proximity and touch covering less than substantially all of said area of said touch terminal.
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Gourmand \\
Appin. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 13
\end{tabular}
22. (New) The switching circuit as defined in claim 21, wherein said touch terminal includes a dome-shaped dielectric cover.
23. (New) The switching circuit as defined in claim 21, wherein said touch terminal includes a palm-sized dielectric cover.
24. (New) The switching circuit as defined in claim 23, wherein said discriminating means determines that a proximity and touch of said touch terminal covers substantially all of said area of said touch terminal when said dielectric cover is proximal or touched with the palm of an operator's hand and determines that a proximity or touch covers less than substantially all of said area of said touch terminal when said dielectric cover is proximal or touched with one of an operator's fingers.
25. (New) The switching circuit as defined in clam 21, wherein said discriminating means discriminates between a proximity and touch of said touch terminal covering substantially all of said area of said touch terminal and a proximity and touch covering less than substantially all of said area of said touch terminal based upon a sensed level of body capacitance to ground proximate said touch terminal.

Applicant : Byron Houmand
Appln. No. : 08/601,268
Page : 14
26. (New) The switching circuit as defined in claim 21, wherein said coupling of capacitance to ground occurs when an operator's body is proximate, but not touching, said touch terminal.
27. (New) A capacitive responsive electronic switching circuit for a controlled device comprising:
an oscillator providing a periodic output signal having a predefined frequency; first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by an operator to provide a control output signal for actuation of the controlled device, said detector circuit being configured to generate said control output signal whe said an operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
28. (New) The capacitive responsive electronic switching circuit as defined in claim 27, wherein said detector circuit generates said control signal only when an operator is proximal
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Hoummand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 15
\end{tabular}
or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
29. (New) The capacitive responsive electronic switching circuit as defined in claim 27 , wherein said first and second touch terminals are adapted to be mounted on different surfaces of the controlled device.
30. (New) The capacitive responsive electronic switching circuis as defined in claim 27 , wherein said first and second touch terminals are adapted to be mounted on non-parallel planar surfaces of the controlled device.
31. (New) The capacitive responsive electronic swithing circuit as defined in claim 27 , Wherein said first and second touch terminals are adapted to be mounted on perpendicular planar surfaces of the controlled device.
32. (New) The capacitive responsive electronic switching circuit as defined in claim 27 and further including an indicator for indicating when sad detector circuit determines that an operator is proximal or touches said first touch terminal.
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Hourmand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 16
\end{tabular}

\section*{REMARKS}

In the Office Action, the Examiner indicated that claims 5 and 15 would be allowed if rewritten in independent form including all the limitations of the base claim and any intervening claims, and that claims 6,7 , and 16 would also be allowed if rewritten to overcome the rejection under 35 U.S.C. \(\$ 112\). Applicant wishes to thank the Examiner for the early indication of allowable subject matter. By this amendment, Applicant has amended claims 5 and 15 by rewriting them in independent form and by amending clams 6 and 16 to overcome the rejection under 35 U.S.C. § 112 . Therefore, claims \(5-7,15\), and 16 are in condition for allowance.

In the Office Action, the Examiner rejected clams 6, 7 , and 16 under 35 U.S.C. \(\$ 112\), second paragraph; rejected clams 14 and \(12-14\) under 35 U.S.C. \(\$ 102(\mathrm{~b})\) as being anticipated by U. \(\$\) Patent No. \(4,352,141\) issued to Kent; rejected clams \(8-11,18\), and 19 under 35 U.S.C. \(\$ 103\) as being urpatentable over Kent in view of U.S. Patent No. \(5,087,825\) issued to Ingraham; and rejected clams \(8-11,18\), and 19 under 35 U.S.C. 8103 as being unpatentable over Kent in view of U.S. Patent No. 5,235,217 issued to Kirton.

By this amendment, Applicant has amended claims 1, 5, 6, 12-18, and 20 to more clearly define the present invention, and has added new claims \(21-32\) to defne additional features of the present invention. Accordingly, clams \(1-32\) are now pending.

With respect to the rejection of claims 6,7 , and 16 under 35 U.S.C. \(\$ 112\), second paragraph, Applicant has amended claims 6 and 16 to more clearly recite the present
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Hourmand \\
Appla. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 17
\end{tabular}
invention. Applicant submits that amended claims 6,7 , and 16 meet the requirements of 35 U.S.C. §112, second paragraph.

Applicant respectfully traverses the rejection of clairns \(1-4\) and \(12-14\) under \(35 \mathrm{U} . \mathrm{S} . \mathrm{C}\). \(\$ 102\) (b) as being anticipated by Kent. As pointed out on page 51 of the present specification, the present invention provides a mechanism by which the touch control circuit can discriminate between an intentional touching of the touch teminal and an inadventent contact by the operator. Specifically, when the touch terminal is palm-sized and includes a dielectric cover, users may intentionally touch the touch terminal by placing their palm over the entire surface of the touch teminal. When the operator touches the touch teminal in this maner, the touch control circuit of the present invention generates a contol signal. On the other hand, if the operator madvertently touches the touch teminal with one or two fingers, the touch control circait of the present invention senses a lower body capacitance in the proximity of the touch terminal and thereby determines that the touch was uninentional and thus does not generate the control signal.

As amended, independent claim 1 recites a capacitive response electronic switching circuit comprising a combination of elements including at least "an input touch terminal having a dielectric cover defining an area for an operator to provide an input by touch, an operator's body capacitance as sensed through said input touch terminal varying as a function of the area of said input touch terminal that is proximate the operator's body," and a detector circuit that "includes means for generating said control signal when the sensed body
\begin{tabular}{lll} 
Appicant & \(:\) & Byron Yourmand \\
Applus. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 18
\end{tabular}
capacitance exceeds a threshold level in order to prevent unintended activation based upon an operator's inadvertent contact with said input touch terminal."

The Kent patent discloses a touch switch device that also generates the control signal in response to the touching of a touch terminal. The Kent patent, however, fails to teach or suggest a capacitive responsive electronic switching circuit having a detector circuit that includes means for generating a control signal when the sensed body capacitance exceeds a threshold level in order to prevent unintended activation based upon an operator's inadvertent contact with the input touch teminal. Thus, the Kent patent does not anticipate nor render obvious the invention as defined in independent claim 1. Clearly, the Kent patent does not disclose any way of discriminating between a partial touch and a full touch of the touch terminak.

With respect to independent clam 12 , the Kent patent fails to teach or suggest a touch-controlled switching circuit comprising a charge pump circuit that supphes an output signal having a voltage that varies as a function of the area of the touch terminal that is touched by an operator. Therefore, the Kent patent fails to teach or suggest each and every element recited in independent claim 12.

For these reasons, independent claims 1 and 12 , as well as clams \(2-4,13\), and 14 which depend therefrom, are allowable over the Kent patent.

Applicant respectully traverses the rejection of claims \(8-11,18\), and 19 under 35 U.S.C. \(\$ 103\) as being unpatentable over Kent in view of Ingraham. Like the Kent patent, the Ingraham patent, which is assigned to the assignee of the present invention, fails to teach
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Hoummand \\
Appin. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 19
\end{tabular}
or suggest a touch control circuit that discriminates between a full intentional contact with a touch terminal and an inadvertent partial contact of the same touch terminal. Therefore, the combination of the Kent and Ingraham patents fails to teach or suggest each and every element recited in independent claim 1 . For this reason claims \(8-11\), which depend from independent claim 1, are allowable over the combination of the Kent and Ingraham patents.

With respect to independent claim 18, the Kent and Ingraham patents both fail to teach or suggest a capacitive responsive electronic switching circuit comprising a detector circuit that compares the sensed body capacitance proximate an input touch terminal to a threshold level in order to prevent inadverten generation of a control output signal. For these reasons, Applicant submits that independent claims 1 and 18 , as well as claims 8 - 1 and 19 which depend therefrom, are allowable over the Kent and Ingraham patents whether considered separately or in combination.

Applicant respectully traverses the rejection of clams 8-11, 18, and 19 under 35 U.S.C. §103 as being unpatentable over Kent in view of Kirton. The Kirton patent, like the Kent and Ingraham patents, does not disclose a touch control circuit that is capable of discriminathg between a full intentional touch of a touch temminal and an inadvertent touch of a portion of the surface of the touch temminal. For these reasons, independent claims 1 and 18 , as well as clains \(8-11\) and 19 which depend therefrom, are allowable over the teachings of the Kent and Kirton patents whether considered separately or in combination.

It is noted that the Examiner has not rejected claims 17 and 20 in the Office Action. Claim 17 depends from independent claim 12 and is believed to be allowable for the reasons
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Hourmand \\
Appla. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 20
\end{tabular}
discussed above with respect to claim 12. Independent claim 20 recites a dome-shaped touch terminal. By this amendment, Applicant has amended independent claim 20 to recite that the detector circuit includes means for discriminating between a touch of the dome-shaped touch terminal by the palm of a human hand and a touch by a human finger. For the reasons stated above with respect to independent claims 1, 12, and 18, Applicant submits that independent claim 20 is allowable over the combined teachings of the Kent, Ingraham, and Kirton patents.

In this amendment, Applicant has presented new independent claim 21, and claims 22 26 which depend therefrom. New independent claim 21 defines a capacitive responsive electronic switchng circuit comprising at least a detector circuit "including discriminating means for discriminating between the touch of said touch terminal covering substantially all of said area of said touch terminal and a touch covering less than substantially all of said area of said touch terminal. For the reasons discussed above with respect to the other independent claims, Applicants submit that neither the Kent, Ingraham, nor Kirton patents teach or suggest the touch control circuit including a detector circuit having such discriminating means. Therefore, new independent claim 21 as well as claims \(22-26\) are allowable over the references cited of record.

New independent claim 27 recites a switching circuit for a control device that comprises at least first and second touch terminals and a detector circuit that generates a control output signal for actuation of the control device when an operator is proximal or touches the second touch terminal after the operator is proximal or touches the first touch
\begin{tabular}{lcl} 
Applicant & \(:\) & Byron Hoummand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 21
\end{tabular}
terminal. Dependent claim 28 recites that the detector circuit generates the control signal only when the second touch terminal is actuated within a predetermined time period after the actuation of the first touch terminal. Applicant submits that none of the cited references teaches or suggests such features. New claims 29-32 depend from new independent claim 27 and are believed to be allowable for the same reasons stated above with respect to independent claim 27.

In view of the foregoing amendments and remarks, Applicant submits that the present invention as defined in the pending claims, is allowable over the prior ant of record. The Examiner's reconsideration and timely allowance of the claims are requested. A Notice of Allowance is therefore respectully solicited.


TSC/ras


FIG. 2
\[
\begin{aligned}
& 5070 \\
& \text { FIG. } 3
\end{aligned}
\]


FIG. 8



100


FIG. 6







FIG. 17



Enclosed is a response to the Office Action dated April 22, 1997. Also enclosed are nine sheets of corrected drawings. The items checked below are appropriate:
\(x\) Applicants hereby petition for a one-month extension of time to respond to the above Office Action. The fee of \(\$ 55.00\) for the Extension is enclosed.

Any fee for additional claims has been calculated as shown below:

\section*{CLAIMS AS AMENDED}


Applicant : Byron Hourmand
Apple. No. : 08/601,268
Page : 2
* If the entry in Col. 1 is less than the entry in Col. 2, write " 0 " in Col. 3
** If the "Highest No. Previously Paid For" IN THIS SPACE is less than 20, write " 20 " in this space.
*** If the "Highest No. Previously Paid For" IN THIS SPACE is less than 3, write "3" in this space.
The "Highest No. Previously Paid For" (Total or Independent) is the highest number found from the equivalent box in Col. 1 of a prior amendment or the number of clams originally filed.
\(x\) Small entity status of this application under 37 C.F.R. \(\S 81.9\) and 1.27 has been established by a verified statement previously submitted.
___ No additional fee is required.
\(x\) A fee of \(\$ 292.00\) to cover the cost of the additional claims added by this response is enclosed.
\(x\) Please charge any additional fees or credit overpayment to Deposit Account 162463. A duplicate copy of this sheet is attached.

> PRICE, HENEVELD, COOPER, DEWITT \& LITTON
\[
8-22-97
\]

Date


695 Kenmoor, S.E.
Post Office Box 2567
Grand Rapids, Michigan 49501
(616) 949-9610

TSC/ras

\section*{NOTICE OF ALLOWANCE AND ISSUE FEE DUE}

21m1/627
```

PFMCE MENEUELS GOOFER
DEWETT \& LITTON
655 KENMOOR QRTVE SE
F0 g0x 2567
GRAND RAPTHS MI 4OSOL

```

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline APpuc & ATION No. & Fling date & total clams & Exam & ER & & DATE MAMEO \\
\hline \multicolumn{2}{|r|}{08/631. 268} & 01/31/96 & 332 & \multicolumn{2}{|l|}{GAFLAN: 3} & 2107 & 14/27/97 \\
\hline First Named Appicant & HOUFMAMS: & & & & & & \\
\hline
\end{tabular}
title of INEETTION

CAFACITIVE RESPONETVE ELEETFONIC SUTTCHING EIFCUTT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ATTYS DOCKET NO. & CLASS-SUBCLASS & BATCHNO. & APpi & Ype & SMA & trity & Fee due & date due \\
\hline NAFSI-F-310 & \(310 \quad 307\) & 307-116.839 & T51 & \multicolumn{2}{|l|}{UTILSTY} & \(Y E 5\) & \$66\%, 00 & 0112 \\
\hline
\end{tabular}

THE APPLACATION IDENTIFED AEQVE MAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTHON ONTHE MEFTYS IS CLOSEDO.

THE SSSUE FEE MUST घE PAM WITHM THREE MONTHS FROM THE MARLING DATE OF THS NOTTGE OF THS


\section*{HOW TO RESPOND TO THIS NOTICE:}
1. Review the SMALL ENTITY status shown above. If the SMALL ENTITY is shown as YES, verify your current SMAll ENTITY status:
A. If the status is changed, pay twice the amount of the FEE DUE shown above and notify the Patent and Trademark Office of the change in status, or
B. If the status is the same, pay the FEE DUE shown above.

If the SMALk ENTTTY is shown as NO:
A. Pay FEE DUE shown above, or
Q. File verified statement of Small Entity Status belore, or with, payment of \(1 / 2\) the FEE DUE shown above.
11. Pant B of this notice should be completed and returned to the Patent and Trademark Office (PTO) with your (SSUE FEE. Even if the ISSUE FEE has already been paid by charge to deposit account, Fart 8 should be completed and retumed. II you are charging the SSSUE FEE to your deposit account, section "Ob" of Part \(B\) should be completed.
III. Alt communications regarding this application must give application number and baich number.

Please direct all communication prior to issuance to Box ISSUE FEE unless advised to the contrary.
maimtenance fees. It is patentee's responsibibity to ensure timely payment of maintenance
fexs when due.


All claims being allowable, PROSECUTION ON THE MERTS IS (OR REMAINS) CLOSED in this application. If not included herewith for previously malled, a Notice of Allowance and lssue Fee Due or other appropriate communication will be malled in due course.
\(X\) This communication is responsive to the amendnent filed \(8 / 27 / 97\)
\(X\) The allowed clam(s) is/are 1.32
\(\square\) The drawings flled on \(\qquad\) are acceptable.
\(\square\) Acknowledgement is made of a clim for foreign prionity under 35 U.S.C. \$ \(119\{a\}\)-id .
\(\square \mathrm{Al}\) \(\qquad\) Some* \(\qquad\) None of the CEFTIFICO copies of the priority documents have beenreceved.received in Application No. (Series Code/Serial Number) \(\qquad\) . \(\square\) received in this national stage application from the international Bureau (PCT Rule \{7.2(a)).
*Certified copies not received: \(\qquad\) .
\(\square\) Acknowledgement is made of a cham for domestic priority under 35 U.S.C. \(5119(\) e).
A SHORTENED STATUTORY PEALOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE "DATE MALLED" of this Office action. Fallure to timely comply will result in ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CFR 1,136 (a).

Note the attached EXAMINER'S AMENOMENT or NOTICE OF INFORMAL APPLICATION, FTO-152, which discloses that the oath or declaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REOURED.

X Applicant MUST submit NEW FORMAL DRAWINGS
\(\square\) because the orignally filed drawings were declared by applicant to be informal.
Q including changes required by the Notice of Draftsperson's Patent Drawing Review, Pro-948, attached hereto or to Paper No. \(\qquad\) …
X including changes required by the proposed drawing correction filed on \(\qquad\) , which has been approved by the examiner.including changes required by the attached Examiner's Amendment/Comment.
Sdentifying indicia such as the application number (see \(37 \mathrm{CFS}\{.84 \mathrm{ch}\) ) should be witten on the reverse side of the ofrawirgs. The drawings should be filed as a separate paper with a transmittal lettter addressed to the official Oraftsperson.Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.
Any response to this letter should include, in the upper right hand corner, the APPLICATION NUMBER (SERIES COOE/SERIAL NUMBERI. If applicant has feceived a Notice of Allowance and issue Fee Due, the ISSUE BATCH NUMBER and DATE of the NOTICE OF ALLOWANCE should also be included.

\section*{Attachment(s)}
\(\square\) Notice of References Cited, PTO-892
Xinformation Disclosure Statement(s), PTO-1449, Paper No(s). \(\qquad\)
Q Notice of Draftsperson's Patent Drawing Review, PTO-948Notice of Informal Patent Application, PTO-152Interview Summary, PTO-413Examiner's Amendment/CommentExaminer's Comment Regarding Requirement for Deposit of Biological MateriahExaminer's Statement of Reasons for Allowance


\(07 / 31 / 97\)
Sheet 1 of 1
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
FORM ETO-1449 U.S. DEPARTMERY OF COMMERCE (REv. 2-32) PATEMT AND TRADEMRRK ORETCE \\
TNFORMBTION DISCLOSURE \\
STATEMENT BY APPLICANT \\
(Use several sheets if necessary)
\end{tabular}} & ATTY. DOCKET NO. NARO1 E-310 & SERIAL NO. 08/601.268 \\
\hline & AEELICMATS (S) BYRON YOURMAKD & \\
\hline & EIKIMG DATE
\[
01 / 31 / 96
\] & \[
\begin{aligned}
& \text { ART UNIT } \\
& 2107
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{U.S. BATENT DOCUMENTS}


FOREIGN PATENT DOCOMENTS


\footnotetext{
OTher Documents (Including Author, Title, Date, Fertinent Pages, Etc.)
}
EXAMINER
EXAMSNER

the approval of the Commissioner, and without withdrawing the case from issue, kindly amend the subject application as follows.

\section*{In the Clams:}

Claim 27, line 11, after "when" delete "said".

\section*{REMARKS}

The above-identified application was allowed in the Office Action mailed October 27,
1997. The issue fee has not been paid. Subsequent to the receipt of the Notice of


Allowance, Applicant noted a typographical error in claim 27. The requested amendment is submitted to correct this error. The requested amendment is fully supported by the specification and drawings, will not require an additional search, and does not raise new issues. Therefore, Applicant respectully requests that this amendment be entered and the requested change made.

The reference for the application within the issue branch as indicated on the Notice of Allowance, is T51. If there are any fees due in connection with the filing of this amendment, please charge the fees to our deposit account No. 162463.

Respectully submitted,

\section*{BYRON HOURMAND}

By: Price, Heneveld, Cooper, DeWitt \& Litton


TSC/ras

 inctuding the lsisue Fee Receipt，the Patent，advance orders and notification of maintenance fees will be mailed to addresses entered in Block 1 unless you direct otherwise． by：（a）specitying a new correspondence address in Block 3 betow；or（by providing the PTO with a separase＂FEE AODRESS＂for maintenance fee notificasions with she payment

Under the Paperwork Peduction Act of 1995，no persons are reguired to respond to a coltrotion of information untiess it displays a vedid OME control numbur．
 depardimg on the nesuds of the individual case．Any comments on the mmonnt of time required to complete this form should be sem to the Chier intormation Othicer，Patent and Trademark Office． Washingron，D．C． 20231.
WO AOT SEND FEES OR COMPRETED FORRS TO THIS ADDRESS．SEND TO：EOX \＆SUE FEe， Assistant Commissioner for Patents，Washingion D．C． 20231
1．CORAESPOBEMCE AOORESS

RMENTOR＇S NAME

Strogi Adiness
City，Stato ard ZP CodB
COWVEATOAS NARRE
Stramy Addrass

DCheck il addiional changes are ercicosed
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline APPL & ATION SO． & Fung Daye & TOTAL CLABS & \multicolumn{2}{|r|}{EXABHNEA ASDD GROUP ART BAIT} & & DATE RAALED \\
\hline & \multicolumn{2}{|l|}{日E／E01， 6 E （－11／31／9E} & 132 & CAFLAN． & 3 & 2117 & \(16 / 279\) \\
\hline First Aamed Applicants & HOL & & EYF & & & & \\
\hline
\end{tabular}

TIILE OF
INVENTON GAFACITIVE RESFGNSIVE ELECTRONIG SWITEHINE GIRGUIT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{ATTY＇S DOCXET NO．} & & JRCLASS & EATCH PO． & APP & YPE & SmA & my & FEE DUE & DATE OUE \\
\hline 2 & NAFDI－F－310 & & \multicolumn{2}{|l|}{\(307-216.960\)} & T51 & \multicolumn{2}{|l|}{MTILTTY} & YES & \％60．6n & ¢ 51\％ \\
\hline
\end{tabular}


4．For printrg of the patent front page，湤t the names of not more than 3 registared patert attomeys or agenis OR，athematively，the name of a flm having as a member a reghitared atiomay or agent． 38 mo name is isters． no name smlil be printed．
Price，Heneveld
Copore Devitt
Litton
2
3.



50．The toflowing fees should bo changex is：

（ENCXOSEA OOPY OF THAS FORA）
\(\square\) isme Fee \(\square\) Abrance Orier－ 2 of Copos
（xinw Dofeckuches in Endosed Fixs


whren



\section*{}





Aksk
\＄2


Rebecca \(A . S C h w a r t z \quad\)（Name of pernsorn maning ceposit）

\％。



Menase find besow andor atached an Ohee communication concemiry this application or proceeding.


All claims being allowable, PROSECUTION ON THE MERITS IS IOR REMAINS) CLOSED in this application. If not included herewith (or previously malled, a Notice of Allowance and issue Fee Due or other appropriate communication will be malled in due course.

X This communication is responsive to the letter malled \(2 / 3 / 98\)
[X The allowed claim\{s) is/are \(1-32\)
\(\square\) The drawings hiled on \(\qquad\) are acceptable.Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d).AllSome*None of the CERTIFIED copies of the prionity documents have beenreceived.received in Application No. (Series Code/Serial Number) \(\qquad\) .
\(\square\) received in this national stage application from the international Bureau (PCT Rule \(17.2(a)\) ),
* Certified copies not received: \(\qquad\) .
\(\square\) Acknowledgement is made of a clam for domestic priority under 35 U.S.C. \(\$ 119\{e\}\).
A SHORTENED STATUTORY PERIOD FOR RESPONSE to COMPly with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE "DATE MALLED" of this Office action. Fallure to timely comply will result in ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CFR 1.136(a).

Note the attached EXAMINER'S AMENOMENT O NOTICE OF SNFORMAL APPLICATION, PTO-352, which discloses that the oath or deciaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REQUIRED.

\section*{Applicant MUST submit NEW FORMAL VRAWINGS}because the originally filed drawings were declared by applicant to be informal,including chan
to Paper No. \(\qquad\) -.including changes required by the proposed drawing correction filed on \(\qquad\) , which has been approved by the examiner.including changes required by the attached Examiner's Amendment/Comment.
 drawiftgs. The drawings should be fied as a segarate paper with a transmittal letter addressed to the Oficiak Draftsperson.

Note the attached Examiner's comment regarding REOUIREMENT FOR THE OEPOSTT OF BIOLOGICAL MATERIAL.
Any response to this letter should inelude, in the upper right hand conner, the APPLICATION NUMBER (SERIES CODE/SERIAL NUMBERI, If applicant has received a Notice of Allowance and issue Fee Due, the ISSUE BATCH NUMBER and DATE of the NOTICE OF AllOWANCE should also be included.

\section*{Attachments)}Notice of Peferences Cted, Pro-892
[X] Information Disclosure Statement(s), PTO-1449, Paper Nols). \(\qquad\) 5Notice of Wraftsperson's Patent Drawing Review, PTO-948Notice of दnformal Patent Application, PTO-152Interview Summary, PTO-413Examiner's AmendmenvCommentExaminer's Comment hegarding Requirement for Deposir of Biological MateriaExaminer's Statement of Reasons for Allowance





Dear Sir:
A request is being made for a Certificate of Correction in the above-identified patent, which issued with the following errors identified by page and line from the application file.
* Page 11, line 9, "such a" should be --such as-...

Page 19, line 4, before "water" insert --condensed-.
* Page 31, line 5, "is" should be --as--.
* Page 30, line 3, "it's" should be -its--.
* Page 40, line 3, "references" should be --reference--.
* Page 43, line 8, "it's" should be -its--.
* Page 43, line 9, "it's" should be -its--.

* Page 43, line 10, "it's" should be -its-- (all occurrences).
* Page 43, line 12, "it's" should be -its--
* Page 43, line 17, "it's" should be - -its--.
* Page 44, line 8, "it's" should be -its--.
* Page 44, line 9, "it's" should be -its--.
* Page 44, line 13, "it's" should be --its-" (both occurrences).
* Page 45, line 10, "it's" should be -its---
\begin{tabular}{lll} 
Patentee & \(:\) & \(\quad\) Byron Hourmand \\
Patent No. & \(:\) & \(5,796,183\) \\
Page & \(:\) & 2
\end{tabular}
* Page 45, line 11, "it's" should be --its--.
* Page 45, line 14, "it's" should be --its--.
* Page 46, line 11, "it's" should be --its--.
* Page 46, line 14, "it's" should be --its-- (both occurrences).
* Page 46, line 19, "it's" should be --its--.
* Page 47, line 11, "it's" should be --its--.
* Page 47, line 15, "schmitt" should be --Schmitt-.

Page 55, claim 7 [11], line 3, after "microcontroller." delete "by an operator's body . . . higher frequencies."
* Amendment A, page 11, claim 18, line 12, after "electrical" insert - path--
* Amendment A, page 11, claim 18, line 12, delete "path".

312 Amendment, page 1 , claim 27, line 11, after "when" delete "said".

Enclosed is the Certificate of Correction Form PTO 1050 identifying errors by column and line from the patent which are chargeable to the Official Printer. Also enclosed is a check for \(\$ 100.00\) to cover our errors, which are identified with an asterisk. The Commissioner is hereby authorized to charge any additional payment, or to credit any overpayment, to Deposit Account No. 16-2463.

TSC/ras


Respectully submitted,

\section*{BYRON HOURMAND}

By: Price, Heneveld, Cooper,


695 Kenmoor, S.E./Post Office Box 2567
Grand Rapids, Michigan 49501
(616) 949-9610
\begin{tabular}{lll} 
PATENT NO. & \(:\) & \(5,796,183\) \\
DATED & \(:\) & August 18,1998 \\
INVENTOR(S) & \(:\) & Byron Hourmand
\end{tabular}
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
Column 5, line 52, "such a" should be --such as--.
Column 9, line 31, before "water" insert --condensed--
Column 14, line 35, "is" should be -as-". G1

Column 13, line 65, "its" should be -its-".
Column 18, line 38, "references" should be --reterence-~. \(a\)
Column 20, line 7, "its" should be --its-- (both occurrences).

Column 20, line 9 , "it's" should be -its--
Column 20, line 10, "it's" should be -its-- (bot hoccurrences).
Column 20, line 13, "it's" should be - its \(\cdots\)

Column 20, line 20, "it's" should be - its- .

Column 20, line 40, "it's" should be -its-.

Column 20, line 46, "it's" should be -its.

Column 20, line 47, "it's" should be -its-".

Column 21, line 8, "it's" should be -its-",

Column 21 , line \(9, ~ " i t s s^{\prime \prime}\) should be \(\cdots\) its \(\cdots\).

Column .21, line 15, "it's" should be -its". \(\qquad\)

Terry S. Callaghan
Price, Heneveld, Cooper, DeWitt \& Litton Post Office Box 2567
Grand Rapids, M 49501



Terry S. Callaghan
Price, Heneveld, Cooper, DeWitt \& Litton
Post Office Box 2567
Grand Rapids, M1 49501


\section*{SBOOKS KUSMMAN P.C. \\ 1600 TOWN CENFER \\ TWENTY-SECOND FLOOR \\ SOUTEFLEKD, NY 48075}
n re Patent No. 5,796,183:
Issue Date: August 18, 1998 :
Application No.08/601,268
Filed: January 31, 1996
Attomey Docket No.
:
:

MAILED
AUG 252011
OFICE OF PETTIONS

ON PETITION

This is a decision on the petition filed August 19,2011 under 37 CFR 1.323 , which is being treated as a request under 37 CFR 1.324 to correct the name of the inventors by way of a Certificate of Correction.

The petition is GRANTED.

Petitioner request that the inventorship of this application be amended by the addition of \(5 O W \mathrm{~N}\) M. WASEELESK of Cadillac, Michigan, and SEESYEN R. W, COOPER, of Fowlerville, Michigan, based on the Consent Judgment dated September 82010 under 35 USC 256.
Petitioner includes with the renewed petition an Oath having the above inventors.

The inventorship of this patent has been amended by the addition of \(3 O M N \mathbb{M}\). WASEXEESKL and STEPHEN R. W. COOPER .

Telephone inquiries concerning this decision may be directed to the undersigned at (571) 2720602. Inquiries regarding the issuance of a centificate of correction should be directed to the Certificate of Correction Branch at (571) 272-4200.


Thumman K. Yage
Petitions Examiner
Office of Petitions

Enclosure: Corrected filing receipt
WH NDSTAKE DEPAKTMENT OF CORAMERCE Onited States fatent and Trademark Office

Alexandria, Vaguzia 22313-1450
Alexamation vazia
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ARTLCATMOM Number & FIUNGOF
3h(c) DATE & \[
\begin{aligned}
& \text { GRP ARE } \\
& \text { UNIT }
\end{aligned}
\] & FIL FEERECD & ATYY DOCKETKO & TOT CLAIMS & END CLAMS \\
\hline 08/601,268 & 01/31/1996 & 2836 & 771 & NAR0227L & 20 & 4 \\
\hline
\end{tabular}
CONF\&MATON NO. 317 O
22045
gROOKS KUSHMAN P.C.
1000 TOWN CENTER
TWENTY-SECOND FLOOR
SOUTHFIELD. M1 48075

Date Mailed: 08/25/2011

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence conceming the application must include the following identification information: the U.S. APPLGCATION NUMBER, FILINO DATE, NAME OF APPLICANT, and TTLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. It an error is noted on this Filing Receipt, please submit w wittern request for a changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Fing keceigt with your reply to the dotice. When the UझpTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

\section*{Applicantss\}}

BYRON HOURMAND, HERSEY, MI;
JOHN M. WASHELESKI, Cadillac, M;
STEPHENR. W. COOPER, Fowerville, MH:
Power of Attorney: The patent practitioners associated with Customer Number 22045
Domestic Prioriyy data cs clamed by applicant
Foreign Applications (You may be eigible to beneft from the Patent Prosecution Highway program at the USPTO. Please see htto//wmw. uspto goy for more information.)

\section*{If Reçuired, Foreign Filing License Granted: 07/24/1996}

The country code and number of your prionity application, to be used for fing abroad under the Paris Convention, is \(4508 / 601,258\)

Projected Publication Date: None, application is not eligible for pre-grant publication
Non-publication Request: No
Earsy Publcation Request: No
**SMALL ENTITY **

\section*{Title}

CAPACITIVE RESPONSVE ELECTRONIC SWITCHING CIRCUIT

\section*{Prebminary Class}

307

\section*{PROTECTING YOUR INVENTION OUTSIDE THE UNTTED STATES}

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent ofices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular nationat patent application in each PCT-member country. The PCT process simplifies the fiting of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Amost every country has its own patent law, and a person desining a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in varous respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign fing license. The application's fing recerpt contains further information and guidance as to the status of applicant's hicense for foreign filing.

Applicants may wish to consult the USPTO booklet, "General information Concerning Patents" (specifically, the section entited "Treaties and Foreign Patents") for more information on timeframes and deadines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at \(800-786-9199\), or it can be viewed on the USPTO website at htp:/hww.uspto.gov/webloffices/paddodgeneralindex.htm.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Govemment website, hitp:/wnw stopfakes.gov. Part of a Deparment of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexica. For questions regarding patent enforcement issues, applicants may call the U.S. Govemment hotine at \(1-866-999-H A l T\) (1-866-999-4158).

LICENSE FOR FOREIGN FILING UNDER

\section*{Title 35, United States Code, Section 184}

Title 37, Code of Federal Reguations, 5.11 \& 5.15

\section*{GRANTED}

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "F REQUIREO, FOREIGN FILING LICENSE GRANTED" followed by date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15 (a) unfess an eartier license has been issued under 37 CFR \(5.15(\mathrm{~b})\). The license is subject to revocation upon writen notification. The date indicated is the effective date of the license, uniess an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This icense is to be retained by the licensee and may be used at any time on or after the effective date thereof untess it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53 (d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relaing to espionage and the nationas security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particulary the Office of Defense Trade Controls, Deparment of State (with respect to Arms, Munitions and implements of War (22 CFR 121~128)); the Bureau of Industry and Security, Department of Commerce ( 15 CFR parts 730-774); the Office of Foreign AsselsControl, Deparment of Treasury (3) CFR Parts 500t) and the Deparment of Energy.

\section*{NOT GRANTED}

No ficense under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REOURED, FOREIGN FILING UICENSE GRANTED" DOES NOT appear on this fom. Applicant may still petition for a bicense under 37 CFR 5.12 . if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this appication and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign fie the application pursuant to 37 CFR \(5.15(\mathrm{~b})\).

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE \\ CERTIFICATE OF CORRECTION
}

\author{
PATENTNO. \(: 5,796,183 \quad\) Page 1 of 1 \\ APPLICATION NO. :08/601268 \\ DATED \(\quad\) August 18,1998 \\ INVENTOR(S) : Byron Hourmand et al. \\ It is cetfied that error appears in the above identifed paien and that said Letters Patent hereby corrected as shown below:
}

Thle Page, Item (75) Inventor, should read -(75) Inventors: Byron Hourmand, Hersey, MI (US); John M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US)--.

\section*{Signed and Sealed this}

Eleventh Day of October, 2011


David J. Kappos
Director of the United Stoter Patent and Trademark Office

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
\begin{tabular}{lllll} 
U.S. Patent No.: & \(5,796,183 \mathrm{~B} 1\) & \(\S\) & Docket No:: & 5796183 RX \\
Issued: & August 18,1998 & \(\S\) & Inventors: & Hourmand et al. \\
Filed: & January 31,1996 & \(\S\) & Patent Owner: & UUSI, LLC \\
Control No. & TBD & \(\S\) & Examiner: & TBD
\end{tabular}

For: Capacitive Responsive Electronic Switching Circuit
Mail Stop Ex Parte Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{REOUEST FOR EXPARTE REEXAMHATION UNDER 35 U.S.C. \(\$ \mathbf{3 0 2} .307\)}

Dear Sir:
Patent Owner UUSI, LLC respectully requests Ex Parte Reexamination, pursuant to the provisions of 35 U.S.C. \(\$ \$ 302-307\) (2002), of claims 18 and 27 of United States Patent No. 5,796,183 (the "183 Patent"). This patent is still enforceable.

As set forth below, the prior art reference submitted herewith was not previously before the Office, and presents new, non-cumulative technological teachings not considered during the `183 Patent prosecution history.

\section*{1. OYERVIEW OF THE 183 PATENT AND ITS PROSECUIION MISTORX}

Section II. A below provides an overview of the subject matter of the ' 183 Patent, while Section II.B provides an overview of its prosecution history.

\section*{A. The 183 Patent}

The ' 183 Patent, a copy of which is provided as Exhibit A, issued on August 18, 1998 from an application filed on January 31, 1996. The " 183 Patent generally relates to a capacitive responsive electronic switching circuit including an oscillator providing a periodic output signal, an input touch terminal defining an area for an operator to provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. See, e.g., ' 183 Patent, Abstract.

The 183 Patent contains 32 total claims, with clams \(1,9,12,16,18,20,24\) and 27 being independent. Claims 18 and 27 , which are the subject of this reexam request, require an oscillator, a plurality of touch terminals, and a detector circuit.

An embodiment with a single touch terminal is shown in Figure 4, and an embodiment with multiple touch terminals is shown in Figure 11, both of which are reproduced below:


Fig. 4 of the 183 Patent


Fig. Il of the 183 Patent

Page 3 of 18

The multiple touch pad circuit of Figure 11 is a variation of the embodiment shown in Figure 4, but with an array of touch circuits designated as 900 , through \(900_{\mathrm{nm}}\). See, e.g., id at col. 18:34-41. The touch detection circuit offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard. See, e.g., id at col. 5:53-57.

Microcontroller 500 selects each row of the touch circuits \(900{ }_{1}\) to \(900_{\mathrm{nm}}\) by providing the signal from oscillator 200 to selected rows of touch circuits. See, e.g., id. at col. 18:43-46. The values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. See, e.g., id at col. 14:2225. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. See, e.g., id. at col. 11:19-25.

Microcontroller 500 sequentially activates the touch circuit rows and associates the received inputs from the columns of the array with the activated touch circuit(s). See, e.g., id. at col. 46-49. The detector circuit is responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. See, e.g., id. at Abstract. Another method for implementing capacitive touch switches relles on the change in capacitive coupling between a touch terminal and ground. See, e.g., id. at col. 3:44-46.

\section*{B. The Prosecution History of the ' 183 Patent}

A copy of selected portions of the prosecution history of the \(\begin{aligned} & \\ & 183\end{aligned}\) Patent is provided in Exhibit B.

The `183 Patent issued from U.S. Patent Application Serial No. 08/601,268 ("the '268 application"), filed on January 31, 1996, and naming Byron Hourmand as the sole inventor. The -268 application was filed with 20 total clams, of which four were independent. Claims 21-32 were added by subsequent amendment. A cross-reference between the issued claims and the application claims from which they issued is provided below for convenience.
\begin{tabular}{|l|l|}
\hline Issued & Appl. \\
Claim & Claim \\
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline 3 & 3 \\
\hline 4 & 4 \\
\hline 5 & 8 \\
\hline 6 & 9 \\
\hline 7 & 10 \\
\hline 8 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Issued \\
Claim
\end{tabular} & \begin{tabular}{l} 
Appl. \\
Claim
\end{tabular} \\
\hline 9 & 5 \\
\hline 10 & 6 \\
\hline 11 & 7 \\
\hline 12 & 12 \\
\hline 13 & 13 \\
\hline 14 & 14 \\
\hline 15 & 17 \\
\hline 16 & 15 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Issued & Appl. \\
Claim & Claim \\
\hline 17 & 16 \\
\hline 18 & 18 \\
\hline 19 & 19 \\
\hline 20 & 20 \\
\hline 23 & 21 \\
\hline 22 & 22 \\
\hline 23 & 23 \\
\hline 24 & 24 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Issued \\
Claim & \begin{tabular}{l} 
Appl. \\
Claim
\end{tabular} \\
\hline 25 & 25 \\
\hline 26 & 26 \\
\hline 27 & 27 \\
\hline 28 & 28 \\
\hline 29 & 29 \\
\hline 30 & 30 \\
\hline 31 & 31 \\
\hline 32 & 32 \\
\hline
\end{tabular}

In an Office Action dated Apri1 22, 1997, the Examiner rejected application claims 6, 7 and 16 under 35 U.S.C. \(\$ 112\), second paragraph, as being indefinite. See Ex. B, " 183 Patent File History, Office Action, p. 2 (Apr. 22, 1997). Claims 6,7 and 16 would be allowable if rewriten to overcome the section 112 rejection, and to include all of the limitations of the base claim and any intervening claims. See id. at p. 5.

Claims 1-4 and 12-14 were rejected under 35 U.S.C. § 102 (b) as being anticipated by U.S. Patent No. 4,352,141 to Kent ("Kent). See id. Claims 8-11, 18, and 19 were rejected under 35 § U.S.C. 103 (a) as being unpatentable over Kent in view of U.S. Patent No. 5,087,825 to Ingraham ("Ingraham"), see id. at p. 3, and claims 8-11, 18 and 19 were rejected under 35 U.S.C.
\$103(a) as being unpatentable over Kent in view of U.S. Patent No. 5,235,217 to Kirton
("Kirton"). See id. at p. 4. Lastly, claims 5 and 15 were objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all the limitations of the base claim and any intervening claims. See id. at p. 5 .

In response, the Applicant filed an amendment on August 22, 1997, amending claims 1,
3, 5, 6, 12-18 and 20, and adding new claims 23-32. In particular, the Applicant amended independent claim 18 as follows:
18. Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency;
a plurality of input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or touched by an operator to provide a control output signal, wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electrical on said dielectric substrate path between said adjacent areas, and whercin said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output siznal.

Ex. B, 183 Patent File History, Amendment, p. 11 (Aug. 22, 1997). The Applicant argued that the Kent and Ingraham patents both fail to teach or suggest a capacitive responsive electronic switching circuit comprising a detector circuit that compares the sensed body capacitance proximate an input touch terminal to a threshold level in order to prevent inadvertent generation of a control output signal. See id. at p. 19. The Applicant further argued that the Kirton patent, like the Kent and Ingraham patents, does not disclose a touch control circuit that is capable of discriminating between a full intentional touch of a touch terminal and an inadvertent touch of a portion of the surface of the touch terminal. See id.

With respect to new independent claim 27, the Applicant argued none of the cited references teaches or suggests a switching circuit for a control device that comprises at least first and second touch terminals and a detector circuit that generates a control output signal for actuation of the control device when an operator is proximal or touches the second touch terminal after the operator is proximal or touches the first touch terminal. See id. at pp. 20-21.

The Examiner issued a Notice of Allowance on October 27, 1997, allowing all of the pending claims. See Ex. B, 183 Patent File Fistory, Notice of Allowance, p. 2 (Oct. 27, 1997). The Applicant then filed a section 312 amendment on November 3, 1997 to delete the word "said" after the word "when" in claim 27, line 11. See Ex. B, '183 Patent File History, Amendment Under 37 C.F.R. § 1.312, p. 1 (Nov. 3, 1997). The issue fee was paid on January 26, 1998, see Ex. B, '183 Patent File History, Issue Fee Transmittal, p. 1 (an. 26, 1998), and the `183 Patent subsequently issued on August 18, 1998.

The Applicant filed a certificate of correction on January 20, 1999, which was accepted by the patent office on May 11, 1999. In claim 18, the word "path" was inserted after the word "electrical" in column 27, line 44 of the "183 Patent, and the word "path" was deleted from column 27 , line 45 of the ' 183 Patent. See Ex. B, ' 183 Patent File History, Cert. of Correction, p. 3 (May 11, 1999). In claim 27, the word "said" was deleted after the word "when." See id.

The Patent Owner subsequenty made several attempts to correct the inventorship of the patent, which resulted in the inventorship being changed to be Byron Hourmand, John M. Washeleski and Stephen R. W. Cooper. See Ex. B, `183 Patent File History, Petition Decision (Aug. 25, 2011); see also Corrected Filing Receipt, p. 1 (Aug. 25, 2011); Certificate of Correction (Oct. 11, 2011).

\section*{11. SUBSTANTIAL NEW OUESTION ("SNO" OF PATENTABLLITY}

Section III.A below provides a list of the prior art reference relied upon in the present request. Section III.B provides an overview of the prior art reference. Section III.C provides a statement regarding an \(S N Q\) of patentability for claims 18 and 27 of the " 183 Patent with respect to the new reference.

1

\section*{A. Listing of Prior Art Patents and Publications}

Reexamination of claims 18 and 27 of the ' 183 Patent is requested in view of the following reference:

Exhibit C Boie et al., U.S. Patent No. 5,463,388, filed on January 29, 1993 and issued on October 31, 1996 ("Boie '388"), which qualifies as 35 U.S.C. § \(102(\mathrm{a}\)-type prior art.

\section*{B. Overview of Prior Art Patents and Publications}

As discussed in more detail below, Boie' 388 presents new, non-cumulative technological teachings not considered during the ` 183 Patent prosecution history,

\section*{1. Boie 388}

Boie ` 388 generally relates to sensors for capacitively sensing the position or movement of an object, such as a finger, on a surface. See, e.g., Boie '388, col. 1:6-8. A computer input device comprises a thin, insulating surface covering an array of electrodes arranged in a grid pattem and comnected in columns and rows. See, e.g., id. at Abstract. Each column and row is connected to circuitry for measuring the capacitance seen by each column and row. See, e.g., id. The position of an object with respect to the array is determined from the centroid of such capacitance values, which is calculated in a microcontroller. See, e.g., id. Figure 4, reproduced below, illustrates a block diagram of a two-dimensional capacitive position sensor.


Fig. 4 of Boie '38
Each row and column of electrodes from aray 100 is connected to an integrating amplifier and bootstrap circuit 401 , each of which can be selected by multiplexer 402 under control of microcontroller 406. See, e.g., Boie ' 388, col. \(3: 56-61\). The sekected output is forwarded to summing circuit 403 , the output of which is converted by synchronous detector and fiter 404 to a signal related to the capacitance of the row or column selected by multiplexer 402 . See, e.g., id. at col. 3:62.67. RF oscillator 408 provides an RF signal of, for example, 100 kilohertz, to circuits 401, synchronous detector and filter 404 via inverter 410 , and guard plane 411, which is a substantially continuous plane parallel to array 100 and associated connections, and serves to isolate array 100 from extraneous signals. See, e.g., id. at col. 3:67-col. 4:5.

To measure separate capacitance values for each electrode in array 100 instead of the collective capacitances of subdivided electrode elements connected in rows and columns, a circuit 401 is provided for each electrode in array 100 and multiplexer 402 is enlarged to accommodate the outputs from all circuits 401. See, e.g., id. at col. 4:14-21. The output of synchronous detector and filter 404 is converted to digital form by analog-to-digital converter

405 and forwarded to microcontroller 406 so that microcontroller 406 obtains a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. See, e.g., id. at col. 4:22-28.

\section*{C. Statement Pointing Out Each SNQ of Patentabihty}

Boie 388 was not cited during the original patent prosecution of the 183 Patent, and presents new, non-cumulative technological teachings with respect to " 183 Patent claims 18 and 27.

\section*{1. Clam 18}

During the original prosecution, the Applicant amended independent claim 18 to recite
"wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal," and argued that the cited art did not teach or suggest these limitations. After the Applicant made this amendment, the Examiner allowed claim 18.

Boie ` 388 discloses,
Referring to FIG. 6, microcomputer 406 reads the initial capacitance values for all the elements in array 100 and stores such values (step 60 ). Such initial values should reflect the state of array 100 without a finger or other object being nearby, accordingly, it may be desirable to repeat step 601 a number of times and then to select the minimum capacitance values read as the initial values, thereby compensating for the effect of any objects moving close to array 100 during the initialization step. After initialization, all capacitance values are periodically read and the initial values subtracted to yield a remainder value for each element (step 602). If one or more of the remainders exceeds a preset threshold (step 603), indicating that an object is close to or touching array 100 , then the x and y coordinates of the centroid of capacitance for such object can be calculated from such remainders (step 604). . . To To avoid spurious operation, it may be desirable to require that two or more measurements exceed the preset threshold. The threshold can be set to some percentage of the range of A/D converter 405 , for example \(10-15 \%\) of such range.

Boie '388, col. 5:10-48; see also id. at Fig. 6. Boie ' 388 thus presents new, non-cumulative technological teachings related to the elements of claim 18 added by amendment, and such teachings were not considered in the cited art during the " 183 Patent prosecution history. If the original Examiner had known of Boic ' 388 , the Examiner likely would have considered it relevant, and likely would have cited it during the original prosecution. Boie " 388 therefore raises an SNQ of patentability with respect to independent clam 18.

\section*{2. Cหखim 27}

During the prosecution of the ' 183 Patent, the Applicant added independent claim 27 , and argued that the cited ant did not teach or suggest a detector circuit that generates a control output signal for actuation of the control device when an operator is proximat or touches the second touch terminal after the operator is proximal or touches the first touch temmal. After the Applicant added claim 27 and made this argument, the Examiner allowed claim 27.

Boie " 388 discloses,

In using the position sensor of the invention as a computer mouse or trackball to control a cursor, movement of the mouse or trackball is emulated by touching array 100 with finger 102 , or some other object, and stroking finger 102 over array 100 to move the cursor. Changes in position of the finger with respect to array 100 are reflected in corresponding changes in position of the cursor. Thus, for such an application, microcontroller 406 sends data over lead 420 relating to changes in position. FIG. 6 is a flow chart of the operation of microcontroller 406 in such an application.

Boie '388, col. 4:67-col. 5:9; see also id. at Fig, 6. Bole 388 thus presents new, non-cumulative technological teachings related to the elements of claim 27 argued by the Applicant, and such teachings were not considered in the cited art during the ' 183 Patent prosecution history. If the original Examiner had known of Boie ' 388 , the Examiner likely would have considered it relevant, and likely would have cited it during the original prosecution. Boie 388 therefore raises an SNQ of patentability with respect to independent claim 27.

Page 3 \} of 18

\section*{II. DEYAILED EXPLANATION OF THE RELEYANCY AND MANNER OF APPL YING THE PRIOR ART REFERENCES TO EVERY CLAIM FOR WHICH REEXAMINATION IS REQUESTED}

A detailed explanation pointing out the relevance and application of the prior art references to each of claims 18 and 27 is provided below. The charts below indicate what the Patent Owner believes are the portions of the cited art most relevant to the elements of the claims for which reexamination is requested. The Patent Owner, however, reserves the right to take positions asserting and submit arguments explaining why various claim elements are not disclosed or suggested by the cited art.

\section*{A. Clam 18}
\begin{tabular}{|l|l|}
\hline 18. A capacitive responsive electronic \\
switching circuit comprising: & \begin{tabular}{l} 
The capacitive sensor of the invention \\
comprises a thin, insulating surface covering a \\
plurality of electrodes, The position of an object, \\
such as a finger or hand-held stylus, with respect \\
to the electrodes, is determined from the centroid \\
of capacitance values measured at the electrodes. \\
_. The x and y coordinates of the centroid are \\
calculated in a microcontroller from the \\
measured capacitances," Boie '388, col. 1:61- \\
col. 2:5, Fig. 4.
\end{tabular} \\
\hline
\end{tabular}

Page 12 of 18
\begin{tabular}{|c|c|}
\hline 183 Patent Clam lamguage & Wenie 38\% \\
\hline & \begin{tabular}{l}
2:49-62, Fig. 1. \\
"PIG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and two columns in array 100 . As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Id at col. 3:16-20, Fig. 2. \\
"As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a multi-layer printed circuit board together with one set of interconnections, for example, the borizontal row connections 203. The vertical row comections 204 can then be fabricated in another plane of the circuit board with appropriate via connections between the planes." Id. at col. 3:30-36, Fig. 2.
\end{tabular} \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or touched by an operator to provide a control output signal, & \begin{tabular}{l}
"[E]ach row and column of electrodes from aray 100 is connected to an integrating amplifier and bootstrap circuit \(401, \ldots\). Each of the outputs from circuits 401 can be selected by multiplexer 402 under control of microcontroller 406. The selected output is then forwarded to summing circuit 403 , where such outpot is combined with a signal from trimmer resistor 409. Synchronous detector and filter 404 convert the output from summing circuit 403 to a signal related to the capacitance of the row or column selected by multiplexer 402 . RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Id. at col. 3:53-col. \(4: 2\), Fig. 4. \\
"The output of synchronous detector and filter 404 is converted to digital form by analog-todigital converter 405 and forwarded to microcontroller 406. Thus, microcontroller 406 can obtain a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured
\end{tabular} \\
\hline
\end{tabular}

Page 13 of 18
\begin{tabular}{|c|c|}
\hline 183 Patme Chim limguase & Soie 388 \\
\hline & separately) selected by multiplexer 402. .. Microcontroller 406 sends data to utilizing means, such as a personal computer (not shown) over lead 420." Id at col. 4:21-32, Fig. 4. \\
\hline \begin{tabular}{l}
wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas, and \\
wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
\end{tabular} & \begin{tabular}{l}
"RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411. . \(/\) d. at col. 3.67 col . 4:2, Fig. 4. \\
"The effects of electrode-to-electrode capacitances, wining capacitances and other extraneous capacitances are minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-61. \\
"Referring to FIG. 6, microcomputer 406 reads the initial capacitance values for all the elements in aray 100 and stores such values (step 601 ). Such initial values should reflect the state of array 100 without a finger or other object being nearby, accordingly, it may be desirable to repeat step 601 a number of times and then to select the mimimum capacitance values read as the initial values, thereby compensating for the effect of any objects moving close to array 100 during the initialization step. After initialization, all capacitance values are periodically read and the initial values subtracted to yield a remainder value for each element (step 602). If one or more of the remainders exceeds a preset threshold (step 603), indicating that an object is close to or touching array 100 , then the \(x\) and \(y\) coordinates of the centroid of capacitance for such object can be calculated from such remainders (step 604). . . To avoid spurious operation, it may be desirable to require that two or more measurements exceed the preset threshold. The threshold can be set to some percentage of the range of \(A / D\) converter 405 , for example \(10-15 \%\) of such range." Id. at col. 5:10-48, Pig. 6.
\end{tabular} \\
\hline
\end{tabular}

\section*{B. \(\mathrm{Claim}_{27}\)}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam lamguage & Finie 388 \\
\hline 27. A capacitive responsive electronic switching circuit for a controlled device comprising: & \begin{tabular}{l}
"The capacitive sensor of the invention comprises a thin, insulating surface covering a plurality of electrodes. The position of an object, such as a finger or hand-held stylus, with respect to the electrodes, is determined from the centroid of capacitance values measured at the electrodes. . . The \(x\) and \(y\) coordinates of the centroid are calculated in a microcontroller from the measured capacitances." Boie `388, col. 1:61col. 2:5, Fig. 4. \\
"A computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an array of electrodes. . . . For applications in which the input device is used as a mouse, the microcontroller forwards position change information to the computer. For applications in which the input device is used as a keyboard, the microcomputer identifies a key from the position of the touching object and forwards such key identity to the computer." Id. at Abstract.
\end{tabular} \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 yia inverter 410, and guard plane 411." Id. at col. 3:67-col. \(4: 2\), Fig. 4. \\
\hline first and second touch terminals defining areas for an operator to provide an imput by proximity and touch; and & \begin{tabular}{l}
"The operational principle of the capacitive position sensor of the invention is shown in FIG , \\
1. Electrode array 100 is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an array of tiles.... The electrodes are covered with a thin layer of insulating material (not shown). . . Histogram 110 shows the capacitances for electrodes 101 in array 100 with respect to finger \(102 . " I d\) at col. 2:49-62, Fig. 1 . \\
"FG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and
\end{tabular} \\
\hline
\end{tabular}

Page 15 of 18
\begin{tabular}{|c|c|}
\hline 183 Primm Chim limgumbe & Soie 388 \\
\hline & \begin{tabular}{l}
two columns in array 100 . As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Id. at col. 3:16-20, Fig. 2. \\
"As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a muli-layer printed circuit board together with one set of interconnections, for example, the horizontal row connections 203. The vertical row connections 204 can then be fabricated in another plane of the circuit board with appropriate via connections between the planes." 1 d . at col. 3:30-36, Fig. 2.
\end{tabular} \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by an operator to provide a control output signal for actuation of the controlled device, & \begin{tabular}{l}
"[E]ach row and column of electrodes from array 100 is connected to an integrating amplifier and bootstrap circuit \(401, \ldots\). Each of the outputs from circuits 401 can be selected by multiplexer 402 under control of microcontroller 406. The selected output is then forwarded to summing circuit 403 , where such output is combined with a signal from trimmer resistor 409. Synchronous detector and filter 404 convert the output from summing circuit 403 to a signal related to the capacitance of the row or column selected by multiplexer 402 . RF oscillator 408 provides an \(R F\) signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane \(411 . " / d\). at col. \(3: 53-\mathrm{col}\). 4:2, Fig. 4. \\
"The output of synchronous detector and filter 404 is converted to digital form by analog-todigital converter 405 and forwarded to microcontroller 406. Thus, microcontroller 406 can obtain a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. Microcontroller 406 sends data to utilizing means, such as a personal computer (not shown) over lead 420." Id. at col. 4:21-32, Fig. 4.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Primm Chimm linguale & Whie 388 \\
\hline said detector circuit being configured to generate said control output signal when an operator is proximal or touches said second touch temminal after the operator is proximal or touches said first touch terminal. & \begin{tabular}{l}
"A computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an amay of electrodes. . . For applications in which the input device is used as a mouse, the microcontroller forwards position change information to the computer. For applications in which the input device is used as a keyboad, the microcompater identifies a key from the position of the touching object and formards such key identity to the computer." \(h\). at Abstract. \\
"In using the position sensor of the invention as a computer mouse or trackball to control a cursor, movement of the mouse or trackball is emulated by touching array 100 with finger 102 , or some other object, and stroking finger 102 over array 100 to move the cursor. Changes in position of the finger with respect to array 100 are reflected in corresponding changes in position of the cursor. Thus, for such an application, microcontroller 406 sends data over lead 420 relating to changes in position. FIG. 6 is a flow chart of the operation of microcontroller 406 in such an application." \(I d\). at col. 4:67-col. 5:9, Fig. 6.
\end{tabular} \\
\hline
\end{tabular}

\section*{IV. CONCLUSION}

A substantial new question of patentability is raised based on the newly cited prior art, and therefore a reexamination of claims 18 and 27 is warranted. Again, the Patent Owner reserves the right to take positions asserting and submit arguments explaining why various claim elements are not disclosed or suggested by the cited art.

If the Office should have any questions, please contact the undersigned atomey. The Commissioner is hereby authorized to charge any fees due in connection with this filing, or credit any overpayment, to Deposit Account No. 50-1065.

Respectully submitted,

August 17, 2012 Date

Slater \& Matsil, L.L.P. 17950 Preston Rd.
Suite 1000
Dallas, TX 75252
972-732-1001
972-732-9218 (fax)

Brian A. Carison'
Brian A. Carlson
Reg. No. 37,793

United States Patent and Trademark Office
\begin{tabular}{|c|c|c|}
\hline - & \multicolumn{2}{|r|}{} \\
\hline RefXam contror ntiner & Fiiling or 371 (c) DATE & Patient numier \\
\hline \multirow[t]{2}{*}{90012,439} & 08/17/2012 & 5796183 \\
\hline & & CONFIRMATION NO.4155 \\
\hline 22045 & & REEXAMINATION REQUEST \\
\hline \multicolumn{2}{|l|}{BROOKS KUSHMAN P.C.} & NOTICE \\
\hline \multicolumn{2}{|l|}{1000 TOWN CENTER} & \\
\hline TWENTY-SECOND FLOOR & &  \\
\hline SOUTHFIELD, M 48075 & & \\
\hline
\end{tabular}

Date Malled: 08/24/2012

\section*{NOTICE OF REEXAMINATION REQUEST FILING DATE}
(Patent Owner Requester)
Requester is hereby notifed that the ming date of the request for reexamination is 08/17/2012, the date the required fee of \(\$ 2,520\) was received. (See CFR \(1.510(\mathrm{~d})\) ).

A decision on the request for reexamination will be mailed within three months from the filing date of the request for reexamination. (See 37 CFR \(1.515(a)\) ).

Pursuant to 37 CFR \(1.33(\mathrm{c})\), future correspondence in this reexamination proceeding will be with the latest attorney or agent of the record in the patent file.

The paragraphs onecked below are part of this communication:
\(\ldots-\ldots .-1\). The party receiving the courtesy copy is the latest attorney or agent of record in the patent file.
_ 2. The person named to receive the correspondence in this proceeding has not been made the latest attomey or agent of record in the patent file because:
\(\qquad\) A. Requester's claim of ownership of the patent is not verified by the record.
\(\qquad\) \(B\). The request papers are not signed with a real or apparent binding signature.
\(C\). The mere naming of a comespondence addressee does not result in that person being appointed as the latest attomey or agent of record in the patent file.
-.-... 3. Addressee is the latest attomey or agent of record in the patent file.
4. Other
/sdstevenson/

Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900


Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Order Granting / Denying Request For Ex Parte Reexamination} & Control Na. 901012,439 & Patent Under Reexamination 5796183 \\
\hline & Examiner LINH M NGUYEN & \begin{tabular}{l}
Art Unit \\
3992
\end{tabular} \\
\hline
\end{tabular}
-The MAlLING DATE of this communication appears on the cover sheet with the correspondence address.

The request for ex parte reexamination flied 17 August 2012 has been considered and a determination has been made. An identifcation of the claims, the references relied upon, and the rationale supporting the determination are attached.
Attachments: a \(\square\) Pro-892,
b) \(\triangle \mathrm{PTO/SB} 108\),
c) \(\square\) Other: \(\qquad\)
1. \(\triangle\) The request for ex parte reexamination is GRANTED.

RESPONSE TIMES ARE SET AS FOLLOWS:
For Patent Owner's Statement (Optional); TWO MONTHS from the maling date of this communication ( 37 CFR 1.530 (b)). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR \(1.550(\mathrm{c})\).

For Requester's Reply (optional): TWO MONTHS from the date of service of any timely filed Patent Owner's Statement ( 37 CFR 1.535). NO EXTENSION OF THIS TIME PERIOD IS PERMITTED. If Patent Owner does not file a timely statement under 3 ? CFR \(1.530(\mathrm{~b})\), then no reply by requester is permitted.
2. \(\square\) The request for ex parte reexamination is DENIED.

This decision is not appealable ( 35 U.S.C. 303(c)). Requester may seek review by petition to the Commissioner under 37 CFR 1.181 within ONE MONTH from the mailing date of this communication ( 37 CFR \(1.515(\mathrm{C})\) ). EXTENSION OF TIME TO FILE SUCH A PETITION UNDER 37 CFR 1.181 ARE AVALLARLEONLY BY PETITION TO SUSPEND OR WAVE THE REGULATIONS UNDER 37 CFR 1.183.

In due course, a refund under 37 CFR 1.26 (c) will be made to requester:
a)by Treasury check or,
b)by credit to Deposit Account No. \(\qquad\) or
c)by credit to a credit card account, unless otherwise notified (35 U.S.C. 303(c)).


\section*{DECISION}

A substantial new question (SNQ) of patentability affecting claims 18 and 27 of United States Patent Number 5,796,183 ("the base patent" or "the 183 ' patent") is raised by the request for ex parte reexamination.

\section*{Information Disclosure Statement}

The Information Disclosure Statement submission of August 17, 2012 has been considered. It is to be noted, however, that where patents, publications, and other such items of information are submitted by a patent owner in compliance with the requirements of the rules, the requisite degree of consideration to be given to such information will be limited by the degree to which the patent owner has exphaned the content and relevance of the information. In instances where no explanation of citations (items of information) is required and none is provided for an information citation, only a cursory review of that information is required. The examiner need only perform a cursory evaluation of each unexplained item of information, to the extent that he/she needs in order to determine whether he/she will evaluate the item further. If the cursory evaluation reveals the item not to be useful, the examiner may simply stop looking at it. This review may often take the form of considering the documents in the same manner as other documents. in Office search files are considered by the examiner while conducting a search of the prior art in a proper field of search. The initials of the examiner, in this preceeding, placed adjacent to the citations on the PTO-1449 or PTO/SB/08A and 08B or its equivalent, without an indication in the record to the contrary in the record, do not

Art Unit: 3992
signify that the information has been considered by the examiner any further than to the extent noted above. See MPEP 609, seventh paragraph, Revision 5, Aug. 2006 [page 600-141].

\section*{References}

Boie et al., U.S. Patent No. 5,463,388, filed on January 29, 1993 and issued on October 31, 1996 ("Boie '388").

\section*{Prosecution History}

The base patent stems from United States Fatent Application No. \(08 / 601,268\) (hereinafter "the base application").

The examiner generally agrees with the description of the prosecution history found in the Request at pp. 5-7, and that discussion is incorporated by reference. The base application was ultimately allowed without a statement of reasons for allowance. From the prosecution history, it appears likely that claims 18 and 27 were allowed in the base application because of the amendatory language in claim 18 and the new independent claim 27 , as discussed at page 6.7 of the Request.

\section*{Proposed Rejections}

\section*{Under 35 US.C. \(102(a)\)}

Claims 18 and 27 of the ' 183 patent are unpatentable under 35 U.S.C. \& 102 (a) as being anticipated by Boie ' 388 .

\section*{Analysis of the Prior Art Provided in the Request}

35 U.S.C. \(102(a)\)
Boie ‘388:
It is agreed that Boie ' 388 raises SNQ for claims 18 and 27 of the ' 183 patent. Insofar as the explanation at pages \(8-12\) of the Request and the item-matching at page \(12-17\) of Claim Chart of the Request at least facially suggest that Boie ' 388 teaches a substantial number of claimed features. A reasonable examiner would consider that Boie ' 388 important in deciding whether or not claims 18 and 27 of the ' 183 patent are patentable. Accordingly, Boie ' 388 raises a substantial new question of patentability as to claims 18 and 27 , which question has not been decided in a previous examination of the ' 306 patent.

Such teachings are not cumulative to any written discussion on the record of the teachings of the prior art, were not previously considered nor addressed during a prior examination and the same question of patentability was not the subject of a final holding of invalidity by Federal Courts.

\section*{Correspondence}
```

All correspondence relating to this ex porte reexamination proceeding should be directed:
By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Uni\&
Commissioner for Patents
United States Patent \& Tradmmark Office
P.O. Box }145
Alexandria, VA 22313-1450
By FAX t0: (571)273-9900
Central Reexamination Unit
By hand: Customer Serwice Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314

```

Registered users of EFS Web may alternatively submit such correspondence via the electronic filing system EFS-Web, at https://efs.uspto.gov/efile/myportal/efs-registered. EFS-Web offers the benefit of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS-Web submissions are "soft scanned" (i.e., electronically uploaded) directly into the official file for the reexamination proceeding, which offers parties the opportunity to review the content of their submissions after the "soft scanning" process is complete.

Any inquiry conceming this communication should be directed to Linh M. Nguyen at telephone number 571-272-1749.

\section*{Signed:}

\author{
/Link M. Nguyen/ \\ Primary Examiner \\ Central Reexamination Unit 3992
}

\section*{Conferees:}

\section*{/Margaret Rubin/}

Primary Examiner CRU 3992


BARK J AEINHART
Supervisory Patent Reexamination Specialist
cRU - An Unit 3992
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{} \\
\hline EES 10 : & 14267867 \\
\hline Application Number: & 90012439 \\
\hline International Applicanion Number: & \\
\hline Contirmation Number: & 4155 \\
\hline Title of Invention: & Capactive Responsive Electronic Swithing Circuit \\
\hline First Ramed inventor/Applicant Name: & 5796183 \\
\hline Customer Number: & 25962 \\
\hline Filer: & Brian A. Carson/Michelle Hatcher \\
\hline Filer Authorized By: & Brian A. Carison \\
\hline Attorney Docket Number: & NAR-5796183RX \\
\hline Receipt Date: & 19-NOV-2012 \\
\hline Filing Dates & 17-AUG-2012 \\
\hline Time Stamp: & 17:13:34 \\
\hline Application Type: & Reexam (Patent Owner) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Deposit Account \\
\hline Payment was successfuly received in RAM & \$436 \\
\hline RAM confirmation Number & 5429 \\
\hline Deposit Account & 501065 \\
\hline Authorized User & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \\
Charge any Additional Fees required under 37 CF.R. Section 1.16 (National application fing, search, and examination fees) \\
Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Documens Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Mulsi Part/amp & Pages (if appl.) \\
\hline 1 & Reexam Timely Patent Owner's Stmint in Resp to Order & NAR 5796183RX PatentOwner Statement.pdf &  & no & 37 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 2 & Fee Worksheet (SR06) & fee-info.pdf &  & no & 2 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Flles Size (in bytes)} & \multicolumn{3}{|c|}{193580} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
This Acknowledgement Receipt exidences receipt on the noted dake by the USpTO of the indicased documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in Mpep 503. \\
New Applications Under 35 U.S.C. 111 \\
If a new application is being filed and the apphicakion includes the necessary components for s filing date (see 37 CFR \(1.53(b)\)-(d) and MPEP 506), a Filing Receipt ( 37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the Yhing date of the application. \\
National Stage of an international Application under 35 U.S.C. 371 \\
If a timely submission to enter she national stage of an international appication is compliant with the condisions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/SOS indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. \\
New international Application Filed with the USPTO as a Receiving Office \\
ff a new international application is being filed and the international application includes the necessary componems for an international filing date (see PCT Article 11 and MPEP 1810 ), a Notification of the International Application Number and of the International Fibing Dase (Fomm PCH/RO/105) with be issued in due cousse, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.
\end{tabular}} \\
\hline
\end{tabular}

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
}
\begin{tabular}{lllll} 
U.S. Patent No.: & \(5,796,183 \mathrm{BI}\) & \(\S\) & Docket No:: & NAR-5796183RX \\
Issued: & August 18,1998 & \(\$\) & Inventors: & Hourmand et al. \\
Filed: & January 31,1996 & \(\S\) & Patent Owner: & UUSI, LLC \\
Control No. & TBD & \(\S\) & Examiner: & Nguyen, Linh M.
\end{tabular}

For: Capacitive Responsive Electronic Switching Circuit
Mail Stop Ex Parte Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{PATENT OWNER STATEMENT}

Dear Sir:
Patent Owner respectully submits this Patent Owner Statement in response to the September 20, 2012 Order Granting Request for Ex Parte Reexamination of U.S. Patent Number 5,796,183 B1 (the " 183 Patent"). Patent Owner respectfully requests that the following amendments and remarks be entered, and respectfully requests consideration of amended claims 18,27,28 and 32, and newly-added claims 33-39.

\section*{1. Listing Of The 183 Patent Clains Cinder Reexamination}

A listing of each claim under reexamination is provided below. Reexamination of claims 18 and 27 was granted in the Order dated September 20, 2012. Accordingly, please amend claims 18 and 27, as well claims 28 and 32, which depend from claim 27, as provided below. In addition, please add new claims 33-39 as follows.
18. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency; a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad:
[a] the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by [an] the operator to provide a control output signal,
wherein said predefined frequency of said oscillator [is] and said signal ouput frequencies are selected to decrease [the] a first impedance of said dielectric substrate relative to [the] a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares [the] a sensed body capacitance change to
ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
27. (Amended) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals:
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by [an] the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when [an] the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
28. (Amended) The capacitive responsive electronic switching circuit as defined in claim 27, wherein said detector circuit generates said control signal only when [an] the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
32. (Amended) The capacitive responsive electronic switching circuit as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that [an] the operator is proximal or touches said first touch terminal.
33. (New) The capacitive responsive electronic switching circuit as defined in claim 18. further comprising wherein said detector circuit compares the sensed body capacitance change caused by the body capacitance decreasing an input touch terminal signal on the detector to ground when proximate to the input touch terminal to a second threshold level to generate the control output signal.
34. (New) The capacitive responsive electronic switching circuit as defined in claim 18. further comprising wherein said detector circuit compares the sensed body capacitance change caused by the body capacitance decreasing an inpot touch terminal signal amplitude on the detector to ground when proximate to the input touch terminal to a second threshold level to generate the control output signal.
35. (New) The capacitive responsive electronic switching circuit as defined in claim 27. wherein when the second touch terminal is not touched on its defining area by the operator to provide input, the control output signal is prevented.
36. (New) The capacitive responsive electronic switching circuit as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said second touch terminal.
37. (New) A capacitive responsive electronic switching circuit for a controlled device comprising:
an oscillator providing a periodic output signal having a predefined frequency, wherein an oscillator voltage is greater than a supply voltage:
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch teminals of a keypad, the input touch terminals comprising first and second input touch terminals:
the first and second touch terminals defining areas for an operator to provide an input by proximity and touch: and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled device. said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
38. (New) The capacitive responsive electronic switching circuit as defined in claim 37. wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.
39. (New) The capacitive responsive electronic switching circuit as defined in claim 37. wherein said detector circuit compares a sensed body capacitance change caused by the
body capacitance decreasing a second touch terminal signal on the detector to ground when proximate to the second touch terminal to a threshold level to generate the control output signal, and
wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.

\section*{11. Status of the Claims}

Claims 1-39 are pending in the present reexamination proceeding, of which claims 18 , 27,28 and 32 are amended herein and 33-39 are added herein.

\section*{HI. Discussion of Claims and Prior Art Reference}

Patent Owner filed a Request for Ex Parte Reexamination on August 17, 2012, submiting that a substantial new question of patentability of claims 18 and 27 is raised by Boie et al., U.S. Patent No. \(5,463,388\) ("Boie"). Reexamination of these claims was granted in the Order dated September 20, 2012.

Patent Owner is amending claims 18 and 27 in this Patent Owner Statement. Because some of these amendments were made to provide better antecedent basis for some claim terms, Patent Owner is amending dependent claims 28 and 32 for the same reason. Patent Owner also is adding new claims 33-39. Accordingly, Patent Owner respectfully requests consideration of amended claims \(18,27,28\) and 32 , and new claims 33-39. No new matter has been added.

\section*{A. Independent Claim 18}

Independent claim 18 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad." Boie does not teach or suggest these claim elements.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilobertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. \(3: 67-\mathrm{col} .4: 2\). Boie further discloses that " \([t] h e\) effects of electrode-to-electrode
capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408. . Id at col. 4:58-60 (emphasis added); see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode amay 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components. Accordingly, Boie does not disclose all of the elements of claim 18 , and therefore claim 18 is patentable over Boie.

New claims 33 and 34 depend from claim 18 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{B. Independent Claim 27}

Independent claim 27 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." Boie does not teach or suggest these claim elements.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that "[t]he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." \(/ \mathrm{d}\). at col. 4:58-60 (emphasis added); see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode amay 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest
providing signal output frequencies to these components. Accordingly, Boie does not disclose all of the elements of claim 27 , and therefore claim 27 is patentable over Boie.

Amended claims 28 and 32, and new claims 35-36, depend from claim 27 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable clam as well as for adding new himitations.

\section*{C. Independent Clam 37}

Independent claim 37 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." Boie does not teach or suggest these claim elements.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that "[The effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." \(I d\). at col. 4:58-60 (emphasis added); see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components.

Independent claim 37 further recites "an oscillator providing a periodic output signal having a predefined frequency, wherein an oscillator voltage is greater than a supply voltage." Boie is silent regarding an oscillator voltage being greater than a supply voltage,

For at least the above reasons, Boie does not disclose all of the elements of claim 37, and therefore claim 37 is patentable over Boie.

New claims \(38-39\) depend from claim 37 and add further limitations. Patent Owner respectully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{IV. Support for Claim Amendments and New Claims}

Support for each of the amendments to claims \(18,27,28\) and 32 , and for new claims 33 39, may be found throughout the ` 183 Patent, and particular support may be found, for example, as set forth in the charts below.

\section*{A. Amended Claim 18}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 18. A capacitive responsive electronic switching circuit comprising: & -- \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & -- \\
\hline a microcontroller using the periodic output signal from the oscillator. the microcontroller selectively providing signal output freguencies to a plurality of small sized input touch terminals of a keypad: & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard." Col. 5:49-57. \\
The ` 183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The ` 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Palemt Clitm laturage & 183 Pitenl Suppuri \\
\hline & \begin{tabular}{l}
distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The ` 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6 , Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 lupon detecting a capacitance to ground at touch pad 450 that exceeds a bureshold value. The details of touch circuit 400 are described below with reference to FIG. 8 . Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501, which is preferably a two way optical coupling bus." Col. 12:6-33.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Chim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The " 183 Patent discloses "A multiple tonch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in EIG .4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as \(900_{1}\) through 900 mm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). \\
Microcontroller 500 selects each row of the touch circuits 900 , through 900 man by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directy beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to climinate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline [a] the plurality of small sized input touch terminals defining adjacent & See Figure 11. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Palemt Clam limguage & 183 Patent Support \\
\hline areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and & The ' 183 Patent discloses "It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard." Col. 5:53-57. \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said touch teminals when proximal or touched by [an] the operator to provide a control output signal, & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The ` 183 Patent discloses The ` 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FlG. 6 . \\
Floating cormon generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave outpur from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circait 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discussed below with reference to FG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 lupon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Palemt Claim lianguate & 183 Puleni Suppurt \\
\hline & \begin{tabular}{l}
(typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. \\
The ` 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FGS. 4 are designated with the same references numerals and will not be discussed in detaif. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 9000 m , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 45 ( \(\mathrm{FIG}, 4\) ). Microcontroller 500 selects each row of the touch circuits 9001 through 900 mm by providing the signal from oscillator 200 to selected rows of touch citcuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the aray with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directy beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline wherein said predefined frequency of said oscillator [is] and said signal output freguencies are selected to decrease [the] a first impedance of said dielectric & \begin{tabular}{l}
See Figure 11; and Claims 12, 16. \\
The ' 183 Patent discloses "Another method for implementing capacitive touch switches relies on
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 133 Patemt Climm langurge & \$83 Pilent SuMpMr! \\
\hline substrate relative to [the] a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares [the] a sensed body capacitance change to ground proximate an input touch temminal to a threshold level to prevent inadvertent generation of the control output signal. & \begin{tabular}{l}
the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. 4,758,735 and U.S. Pat. No. 5,087,825. With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pomp. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56. \\
The ' 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard." Col. 5:49-57. \\
The " 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The ' 183 Patent discloses "As will be apparent
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Palent Climm langurge & 183 Prieni Suppurs \\
\hline & to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
\hline
\end{tabular}

\section*{B. Amended Claim 27}
\begin{tabular}{|c|c|}
\hline 183 Patrin Clam linguage & \$83 Patent Suppurt \\
\hline 27. A capacitive responsive electronic switching circuit for a controlled keypad device comprising: & \begin{tabular}{l}
The " 183 Patent discloses "It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard," Col. 5:53-57. \\
The ` 183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3.
\end{tabular} \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & --- \\
\hline a microcontroller using the periodic output signal from the oscillator. the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals: & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The " 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to mimmize the effects of surface contamination for materials such a skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close amay such as a keyboard." Col. 5:49-57.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 153 Palent Climm langurige & \$83 Palent Support \\
\hline & \begin{tabular}{l}
The '183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460, a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6 . Floating common generator 300 receives the 26 \(V\) peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Palem Climm lingurae & \$83 Palemi Sumporl \\
\hline & \begin{tabular}{l}
400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 lupon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8 . Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col, 12:6-33. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The ` 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an aray of touch circuits designated as 9001 through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 9001 through 900 mm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the amay with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor: 410 to a minimum, the detection circuits 900 are
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Palemt Climm langurge & 183 Piteni Suppurt \\
\hline & physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc, or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59. \\
\hline the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and & \begin{tabular}{l}
See Figure 11. \\
The " 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FlG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 900 nm , which, as shown, include both the touch circuit 400 shown in FlGS. 4 and 8 and the input touch terminal pad 453 (FIG. 4)," Col. 18:34-43.
\end{tabular} \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by \([a n]\) the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when [an] the operator is proximal or touches said second touch terminal after the operator is & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The ' 183 Patent discloses "It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard," Col. 5:53-57. \\
The " 183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The "183 Patent discloses "Upon being powered
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 133 Patemt Climm I anguate & \$83 Palemi Suypurt \\
\hline proximal or touches said first touch terminal. & \begin{tabular}{l}
by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating cornmon generator 300, a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 \(\checkmark\) peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 lupon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The detalls of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. \\
The ` 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 153 Palemt Climmlangunge & \$83 Piolent Suppurl \\
\hline & touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 900 nm , which, as shown, include both the touch circuit 400 shown in FGGS. 4 and 8 and the input touch terminal pad 45 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 9001 through 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59. \\
\hline
\end{tabular}

\section*{C. Amended Clam 28}
\begin{tabular}{|c|c|}
\hline 133 ratent Climin Lamgame & 383 Prienl Support \\
\hline 28. The capacitive responsive electronic switching circuit as defined in claim 27, wherein said detector circuit generates said control signal only when [an] the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal. & The amendment does not substantively change original claim 28. \\
\hline
\end{tabular}

\section*{D. Amended Claim 32}
\begin{tabular}{|l|l|}
\hline 32. The capacitive responsive electronic & The amendment does not substantively change \\
switching circuit as defined in claim 27 \\
and further including an indicator for \\
indicating when said detector circuit \\
otermines that [an] the operator is \\
deximal or touches said first touch \\
terminal. & \\
\hline
\end{tabular}

\section*{E. New Claim 33}
\begin{tabular}{|l|l|}
\hline 33. The capacitive responsive electronic \\
switching circuit as defined in claim 18, \\
further comprising wherein said detector \\
circuit compares the sensed body \\
capacitance change caused by the body \\
capacitance decreasing an input touch \\
terninal signal on the detector to ground \\
when proximate to the input touch \\
terminal to a second threshold level to \\
generate the control output signal.
\end{tabular} \begin{tabular}{l} 
See 183 Patent discloses "The touch detection \\
circuit of the present invention features operation \\
at frequencies at or above 50 kHz and preferably \\
at or above 800 kHz to minimize the effects of \\
surface contamination for materials such a skin \\
oils and water. It also offers improvements in \\
detection sensitivity that allow close control of \\
the degree of proximity (ideally very close \\
proximity) that is required for actuation and to \\
enable employment of a multiplicity of small \\
size touch terminals in a physical close aray \\
such as a keyboard." Col. \(5: 49-57\).
\end{tabular}

\section*{F. New Claim 34}
\begin{tabular}{|c|c|}
\hline 183 Patimi Clam language & \$83 Patent Support \\
\hline 34. The capacitive responsive electronic switching circuit as defined in claim 18, further comprising wherein said detector circuit compares the sensed body capacitance change caused by the body capacitance decreasing an input touch terminal signal amplitude on the detector to ground when proximate to the input touch terminal to a second threshold level to generate the control output signal. & \begin{tabular}{l}
See Claims 1, 18, 28. \\
The ' 183 Patent discloses "Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. 4,758,735 and U.S. Pat. No. 5,087,825. With this methodology the detection citcuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the toweh terminal." Col. 3:44-56. \\
The '183 Patent discloses "The touch detection circuit of the present mvention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable enploynent of a multiplicity of small size touch terminals in a physical close array such as a keyboard." Col 5:49-57. \\
The " 183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 453 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a the shold value. The detalls of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28.
\end{tabular} \\
\hline
\end{tabular}

\section*{G. New Claim 35}
\begin{tabular}{|c|c|}
\hline 183 Patmi Clam linuguage & \$83 Patent Simport \\
\hline 35. The capacitive responsive electronic switching circuit as defined in clam 27 , wherein when the second touch temminal is not touched on its defining area by the operator to provide input, the control output signal is prevented. & \begin{tabular}{l}
See Figures 19, 20A-C; and Claim 28. \\
The ' 183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to \(\mathrm{FlG}, 19\), a device is shown having a first palm buton 2201, a second palm button 2202 , and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\
The " 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step tum-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor: 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step tum-on and activation of ouput relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.
\end{tabular} \\
\hline
\end{tabular}

\section*{H. New Claim 36}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Ianguage & 183 Pateni Support \\
\hline 36. The capacitive responsive electronic switching circuit as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said second touch terminal. & \begin{tabular}{l}
See Claim 32. \\
The `183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col, 6:31-42. \\
The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator," Col. 23:1-12. \\
The ` 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step tum-on and activation of output relay 2310." Col. 23:28-30.
\end{tabular} \\
\hline
\end{tabular}

\section*{1. New Claim 37}

For ease of analysis, new independent claim 37 is shown below with pseudo-amendments illustrating the differences between new claim 37 and original claim 27 of the ` 183 Patent.
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 37. A capacitive responsive electronic switching circuit for a controlled device comprising: & See Clam 27. \\
\hline an oscillator providing a periodic output signal having a predefined frequency, wherein an oscillator voltage is greater than a supply voltage; & \begin{tabular}{l}
See Figures 4, 5; and Claim 27. \\
The ` 183 Patent discloses "Having provided a basis for the use of higher frequencies the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC yoltage to a DC voltage and supplies a regulated 5 VDC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106 . The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:60-Col. 12:5. \\
The ` 183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an ACIDC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130. AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101and 102." Col. 12:50-57; see also Col. 12:58-Col. 13:31. \\
The " 183 Patent discloses "The oscillator
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 163 Palemt Climm Inmurge & 183 Prient Support \\
\hline & circuitry shown in FIG. 6 is very stable over the temperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The ouput of the touch switch circuitry drops at a rate of approximately \(40 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) when temperature falls below \(0^{\circ} \mathrm{C}\). If application requires operation at low temperatures \(\left(-40^{\circ} \mathrm{C}\right.\). the following three methods may be used to increase the output of the switch:increase the oscillator's regulated supply voltage, increase the resistance of resistor 416 , and use a 40 higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41. \\
\hline a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals; & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16, 27. \\
The '183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard." Col. 5:49-57. \\
The " 183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The ` 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 183 Pallemt Climm lamgurge & 183 Pilenl Support \\
\hline & \begin{tabular}{l}
resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The ` 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FlG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 900 mm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 9001 through 900 mm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the amay with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline the first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and & See Claim 27. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Pallent Climm lingurage & \#83 Palent Sumpurl \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by [an] the operator to provide a control output signal for actuation of the controlled device, said detector circuit being configured to generate said control output signal when [an] the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal. & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16, 27. \\
The " 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460, a touch circuit 400, and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 lupon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. \\
The "183 Patent discloses "A multiple tonch pad circuit constructed in accordance with the second embodiment is shown in FIG. 1\}. In the second embodiment of FIG. 11, components similar to
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 153 Pallem Clum liangurge & 183 Paleni Suppus \\
\hline & those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 900 nm , which, as shown, include both the touch circuit 400 shown in PGGS. 4 and 8 and the input towch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 9001 through 900 mm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldah, Inc. or Circuit Etching Technies, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59. \\
\hline
\end{tabular}

\section*{J. New Claim 38}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam limuquge & 183 Pitent Support \\
\hline 38. The capacitive responsive electronic switching circuit as defined in claim 37 , wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal. & \begin{tabular}{l}
See Claims 27, 32. \\
The ' 183 Paten discloses "The microprocessor" also allows the use of visual indicators such as LEDS or amunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is reguired before an action occurs. The feedback
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Pallent Clirm lamgunge & 183 Palent Suppur \\
\hline & \begin{tabular}{l}
to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of tonches." Col. 6:31-42. \\
The ' 183 Patent discloses "A further option is to provide one or more LEDs 2205 or andible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202 . Where required a second LED with a different color than the furst (yellow for the frast LED and red for the second) can be provided to provide visual confimation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. \\
The ' 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step tum-on and activation of output relay 2310." Col. 23:28-30.
\end{tabular} \\
\hline
\end{tabular}

\section*{K. New Claim 39}
\begin{tabular}{|c|c|}
\hline 133 Patent Climm language & 183 Palent Suppurt \\
\hline 39. The capacitive responsive electronic switching circuit as defined in claim 37 , & Clam 27. \\
\hline wherein said detector circuit compares a sensed body capacitance change caused by the body capacitance & \begin{tabular}{l}
See Figure 11; and Claims 1, 12, 16, 18, 27, 28. \\
The ' 183 Patent discloses "Another method for
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Palemt Climm lamgunge & \$83 Pulent Support \\
\hline decreasing a second touch terminal signal on the detector to ground when proximate to the second touch terminal to a threshold level to generate the control output signal, and & \begin{tabular}{l}
implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. 4,758,735 and U.S. Pak. No. 5,087,825. With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that fonction in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56. \\
The '183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size tonch terminals in a physical close aray such as a keyboard." Col. 5:49-57. \\
The " 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Palemt Climm languate & 183 Polemi Suppurl \\
\hline & \begin{tabular}{l}
The 183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to PIG. 8." Col. 12:24-28. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the ant, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25.
\end{tabular} \\
\hline wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal. & \begin{tabular}{l}
See Claims 27,32. \\
The " 183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDS or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actoations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. \\
The " 183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible ammunciators for visual or audible feedback to the operator, Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202 . Where required a second LED with a different color than the first (yellow for the first LED and red for the second)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 153 Patent Climm lamgurge & 183 Potemi Suppurt \\
\hline & \begin{tabular}{l}
can be provided to provide visual confimation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in heu of the LEDs to provide feedback to the operator." Col. 23:1-12. \\
The " 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step tom-on and activation of output relay 2310." Col. 23:28-30.
\end{tabular} \\
\hline
\end{tabular}

\section*{V. Conclusion}

In view of the above, Patent Owner submits that the claims are in condition for allowance. No new matter has been added by this submission. If Examiner should have any questions, please contact Patent Owner's Attomey, Brian A. Carlson, at 972-732-1001. The Commissioner is hereby authorized to charge any fees due in connection with this fillog, or credit any overpayment, to Deposit Account No. 50-1065.

Respectfully submitted,

November 19. 2012
Date

LATER \& MATSLL, L.L.P. 17950 Preston Rd., Suite 1000
Dallas, Texas 75252
Tel.: 972-732-1001
Fax: 972-732-9218

Brian A. Canson
Brian A. Carlson
Attomey for Patent Owner
Reg. No. 37,793
    PO. Box 1450
    Aexandria, Virginia 22313-1450
www uspogove


Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
\begin{tabular}{|c|l|l|}
\hline Notice of Intent to fssue & Control No. & Patent Under Reexamination \\
Ex Parte Feexammation Certificate & 9012,439 & 5796183 \\
\hline
\end{tabular}
- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
1. \(\square\) Prosecution on the merits is (or remains) closed in this ex parte reexamination proceeding. This proceeding is subject to reopening at the initiative of the Office or upon petition. Of. 37 CFR \(1.313(\mathrm{a})\). A Certificate will be issued in view of
(a) \(\boxtimes\) Patent owner's communication(s) filed: 19 November 2012
(b) \(\square\) Patent owner's fallure to fle an appropriate timely response to the Office action mailed: \(\qquad\) -
(c) \(\square\) Patent owner's fallure to timely file an Appeal Brief (37 CFR 41.31).
(d) \(\square\) The decision on appeal by the \(\square\) Board of Patent Appeals and interferences \(\square\) Cout dated \(\qquad\)
(c)Other: \(\qquad\) -.
2. The Reexamination Certificate will indicate the following:
(a) Change in the Specification: \(\square\) Yes \(X\) No
(b) Change in the Drawing(s): \(\square\) Yes \(\mathbb{X}\) No
(c) Status of the Clain(s):
(1) Patent claim(s) conirmed: \(\qquad\) .
(2) Patent claim(s) amended (including dependent on amended claim(s)): 18.2728 and 32
(3) Patent claim(s) canceled: \(\qquad\) .
(4) Newly presented claim(s) patentable: 33-39.
(5) Newly presented canceled claims: \(\qquad\) .
(6) Patent claim(s) \(\square\) previously \(\square\) currently disclained: \(\qquad\)
(7) Patent claim(s) not subject to reexamination: 1-17, 19-26 and 29-31.
3. \(\triangle\) Note the attached statement of reasons for patentability andor confimation. Any comments considered necessary by patent owner regarding reasons for patentability and/or confirmation must be submitted prompty to avoid processing delays. Such submission(s) should be labeled: "Comments On Statement of Reasons for Patentability and/or Confirmation."
4. \(\square\) Note attached NOTICE OF PEFERENCES CITED (PTO-892).
5.Note attached LIST OF REFERENGES CITED (PTO/SB/08 or PTO/SB/08 substitute).
6. \(\square\) The drawing correction request flled on \(\qquad\) is:approveddisapproved.
7. \(\square\) Acknowledgment is made of the priority claim under 35 U.S.C. § 119 (a)-(d) or (f).
a) \(\square \mathrm{All} \frac{\mathrm{bj}}{\square}\)been received.
not been received. \(\square\) been filed in Application No. \(\qquad\) .
\(\square\) been filed in reexamination Control No. \(\qquad\) been received by the Intemational Bureau in PCT Application No. \(\qquad\) .
* Certified copies not received: \(\qquad\) \(\ldots\)
8.Note attached Examiner's Amendment.
\(3 .[\)Note attached Interview Summary (PTO-474).
10. \(\square\) Other: \(\qquad\)
Al correspondence relating to this reexamination proceeding should be directed to the Centrat Feexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.
\begin{tabular}{|l|l|}
\hline & \\
\hline \begin{tabular}{l} 
CC: Requester (il third yarty requester)
\end{tabular} \\
\begin{tabular}{l} 
US. Patent and Trademark Office \\
PTOL-469 (Rev. 07-10) Notice of Intent to lssue Ex Parke Reexamination Certiticake
\end{tabular} \\
\hline
\end{tabular}

\section*{Notice of Intent to Issue Reexamination Certificate}

This is a reexamination of United States Patent Number 5,796,183 ("the 183 ' patent"). In the reexamination request filed 08/17/2012 ("Request"), by Patent Owner, a substantial new question (SNQ) of patentability was raised as to claims 18 and 27. Those claims are thus reexamined herein. Reexamination was not requested of claims \(1-17,19-26\) and \(28-32\). Therefore, claims 1-17, 19-26, and 27-31 will not be reexamined. See MPEP 2243. However, clams 28 and 32 will be reexamined, as forther explained below.

A Patent Owner Statement was filed \(11 / 19 / 2012\), in which claims 18 and 27 were amended, as well as claims 28 and 32 due to their dependencies from claim 27. Furthemore, new claims \(33-39\) were added.

Within the examiner's discretion, the newly added clams \(33-39\) and the non-requested amended claims 28 and 32 are now subject to reexamination.

\section*{References}

Boie et al. U.S. Patent No. 5,463,388, filed on January 29,1993 and issued on October 31, 1996 ("Boie "388").

\section*{Statenent of Reasons for Patentability and/or Comfirmation}

Clams 18, 27, amended non-requested claims 28, 32 and newly added claims 33-39 are patentable.

The examiner has no opinion as to the claims that were not reexamined. The following is an examiner's statement of reasons for patentability of the claims found patentable in this reexamination proceeding:

There is not taught or disclosed in the prior ant a capacitive responsive electronic switching circuit having a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, as called for in independent claim 18; nor a capacitive responsive electronic switching circuit having a microcontroller using the periodic oupit signal from the oscillator, the microcontroller selectively providing signal outpuifrequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second imput touch terminals, as called for in independent claims 27 and 37. The examiner agrees with the discussion articulated by Patent Owner in the Staternent that Boie does not teach or suggest these claim elements. Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3.67-col. 4:2. Boie further discloses that "[the effects of electrode-to-electrode capacitances, wiring capacitances and other extaneous

Art Unit: 3992
capacitances are minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60 (emphasis added); see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components. Accordingly, claims 18,27 , amended non-requested claims 28,32 , and newly added claims 33-39 are patentable.

Any comments considered necessary by PATENT OWNER regarding the above statement must be submitted promptly to avoid processing delays. Such submission by the patent owner should be labeled: "Comments on Statement of Reasons for Patentability and/or Confirmation" and will be placed in the reexamination file.

\section*{Correspondence}

All correspondence relating to this inter partes reexamination proceeding should be directed:
By Mail to: Mail Stop Inter Partes Reexam
Attr: Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademank Office
P.O. Box 1450

Alexandria, VA 22313-1450
By BAX to: (571) 273-9900
Central Reexamination Unit
By hand: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314
Registered users of EFS-Web may alternatively submit such correspondence via the electronic fimg system EFS-Web, at https://efs, uspto.gov/efile/myportal/efs-registered EFS-Web offers the benefit of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS-Web submissions are "sof scamed" (i.e., electronically uploaded) directly into the official file for the reexamination proceeding, which offers parties the opportunity to review the content of their submissions after the "soft scanning" process is complete.

Any inquiry conceming this communication or earlier communications from the examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272 7705.
/Linh M. Nguyen/
Primary Examiner, Art Unit 3992

\section*{Conferees:}
/Games Menefee/
Primary Examiner, Art Unit 3992
/Daniel Ryman/
Supervisory Patent Examiner, Art Unit 3992

\section*{(12) EX PARTE REEXAMENATION CERTIEICATE (9614th) United States Batent \\ (10) Number: US \(5,796,183 \mathrm{Cl}\) \\ Hourmand et al. \\ (45) Certificate Issued: Apr. 29, 2013}
(54) CABACITYE SESPGNSMVE EXCBRONIC SWITCHING CRCUR
(75) Inventors:

Byron Hourmand, Hersey, MT (US); Tohn M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US)
(73)

Assignee:
Nartron Corporation, Reed City, MI (US)

Reexamination Request:
No. 90012,439, Aug, 17, 2012

Reexamination Certificate for:
\begin{tabular}{|c|c|}
\hline atent No.: & 5,796,183 \\
\hline Issued: & Aug. 18, 1998 \\
\hline Appl. No.: & 68/601,268 \\
\hline Piled: & Э3n. 31, 19 \\
\hline
\end{tabular}

Certifacate of Correction issued May 11, 1999
Certificate of Correction issued Oct. 11, 2011
(51) Int. Cl.

1703K \(77 / 96\)
\(103 \mathrm{~K} / 7 / 94\)
(2006.01)
(2006.01)
(52) U.S. Cl.

USPC ............ 307/316; 307/125; 307/139; 361/181
(58) Geid uf Classification Search

None
See application file for complete search history.

\section*{References Cited}

To view the complete listing of prior art documents cited daring the proceeding for Reexamination Control Number \(90 / 012,439\), please refer to the USPTO's public Patent Application Information Retrieval (PAR) system under the Display References tab.
Primary Examiner -- Linh M. Nguyen

A capactive responsive electronic switching circuit comprises an oscillator providing a peniodic output signal having a frequency of 50 kHz or greater, an ioput touch termma defining an area for an operator provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oschator, and coupled to the imput touch terminal. The detectorcircuit beng responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. Preferably, the oscillator provides a penodic output signal having a frequency of 800 kHz or greater. An array of touch terminals may be provided in close proximity due to the reduction in crosstalk that may resuit from contaminants by utilang an oschlator outputing a signal having a frequency of 50 kHz or greater.


\section*{REEXAMMNATON CERTHECATE} ISSUED UNDER 35 U.S.C. 307

\section*{THE PATENT IS HEREBY AMENDED AS INJICATHD BELOW.}

Matter encosed in heavy brackets \(\lfloor\) appeared in the patent, but hass been deleted and is no \}onger as part of the patent; matter printed in itabies indicates addetions made to the patent.

\section*{AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMINED THAT:}

Clams \(18,27,28\) and 32 are detemined w be patentableas amended.

New claims 33-39 are added and detemined to be patentable.

Clams 1-17, 19-26 and 29-31 were not reexamined.
18. A capacitive responsive electronic swithing circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic ontput signal from the oscillator, the michocontroller selectively providing signal outwat frequencies to a piurality of small sized input touch terminals of a keypad;
[a the purality of small sized input touch teminais defining adjacent areas on a dielectric stbstrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and the] a presence of an operator's body capacitance to ground coupled to said touch terminals when proximat or touched by [an] ine operator to provide a control output signal,
wherein said predefined frequency of said oscillator [is] and sald signal output frequencies are selected to decrease fithel a first impedance of said dielectric substrate relative to the a second impedance of any contaminate that may create an elcetrical path on said dielectric substrate between said adjacent areas defined by the plarality of smail sized input touch terminais, and wherein said detector circuit compares the] \(a\) sensed body capacitance change to ground proximate an imput 50 touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
27. A capacitive responsive electronic switching circuit for a controlled heypad device comprising:
an oscillator providug a periodic ouput signal having a 55 predefined frequency;
a microcontroller using the periodic output signal from the weillator, the minocontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch iemminals 6 comprising first and second inpur touch terminals;
the first and second inpit towch terminals defning areas for an onerator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving 65 said periodic output signal from said oscillator, and compled to said first and second tonch teminals, said
 as defned in clain 27 , wherein when the second touch terminal is not touched on its defining area by the operator io provide imput, the conirol output signal is prevented.
36. The capacitive responsive electronic switching cireuit as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said second touch terminal.
37. A capacitive responsive electronic switching circuit for a controlled device comprising:
an oscillator providing a periodic output signal having a predefned frequency, wheren an oscillator voltage is greater than a supply voltage;
a microcontroller using the periodic output signal from the oscillator: the microcontroller selectwely providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the inmut tonch terminals comprising first and second input touch terminals:
the first and second towch terminals defining areas for an operator to provide an input byproximity and touch; and
a detector circuit coupled to ssia onolifator for receiving said periodic output signal from saia oscillator and coupled to said first and second touch terminals, said detccior circuit being responsive to signais from said oscillator via said microcontroller and a presence of an operator's body capacitance to gromd coupied to said firsi and second tonch teminals when proxinal or towched by the operator to provide a control output signal for achation of the controlled device, said detector circuit being omfigured to gewerate sald control output signal when the operator is proximal or touches said second towch terminal after the operator is proximal or touches said first towh terminal.
38. The capacilve responsive electronic swithing circuit as defined in clain 37 , wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.
39. The capacinve responsive electronic switching cimait 5 as defthed in claim 3 ?
wherein said detector circuit compares a sensed body capacitance change coused by the body capacitance decreasing a second wuch terminal signal on the detector to grownd when proximate to the second touch ter- 10 minal to a threshold level to generste the control ontout signal, and
wherein feedhack to the operator is provided by an indicator activated by the mictocontroller afler the operator touches the second touch terminal.
* \(\% ~ * ~ * ~+~\)

\section*{EXHIBIT C}
[54] COMPUTER MOUSE OR XEYEOARO GNPYT DEVICE URLIZXNG CABACITIVE SENSGRS
[75] Inventors: Roblert A. Bose, Westield; Laurence W. Ruedisucli, Berkeley Heights: Eric R. Wageer, South Plainield, all of NJ.
[73] Assignee: AT\&T [PM Corpe, Coral Gables, Ha.
[*] Notice: The porion of the term of this patent subsequent to May 12, 2009, has been disclaimed.
[21] Appi. No.: 11, 1840
(22) Filed:

3am. 29, 1993
[51] Int. C. \({ }^{6}\) \(\qquad\) H03K \(17 / 94\)
(52) U.S. Cl \(\qquad\) 341/33; 345/174
(58) Field of Search \(\qquad\) 341/33; 178/18,
178/19; 345/174

\section*{References Cited}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|}
\hline 2 & 3/1988 & Ev \\
\hline 4,737,768 & \(4 / 1988\) & Lewiner et ai. ........................ 341/33 \\
\hline 4,772,374 & 9/1988 & Hasegawa ............................. 341/33 \\
\hline 4,806,709 & \(2 / 1989\) & Evans .................................. 178/19 \\
\hline 4,852,443 & 8/1989 &  \\
\hline 4,893,071 & 1/1990 & Miller ................................. 324/660 \\
\hline & & \\
\hline
\end{tabular}

"The Art of Elearomics," Second Edition, Horowitz and Hill, p. 889, Cambridge University Press (1989).

Primary Examiner-Brent Swarthout Assistont Examiner-Thomas J. Mullen, Ir. Ationey, Agent, or Firm- Geoffey D. Green

\section*{ABSTRACT}

A computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an array of clectrodes. Such electrodes are arranged in a grid pattern and can be comected in columns and rows. Each colum and row is connected to circuitry for measuring the capacitance seen by each column and row. The position of an object, such as a finger or handheld stylus, with respect to the array is detemined from the centrond of such capacitance values, which is calculated in a microcontroller. For applications in which the input device is used as a mouse, the microcontroller forwards position change information to the computer. For applications in which the input device is used as a keyboatd, the micrwompher identines a key from the position of the tolubing object and forwards such key identity to the computer.

10 Clams, 6 Drawing Sheets


\author{
U.S. Patent \\ Oct. 31, 1995 \\ Sheet 1 of 6 \\ \(5,463,388\)
}



FIG. 3

U.S. Patent

Oct. 31, 1995
FIG. 4

U.S. Patent Oct. 31, \(1995 \quad\) Sheet 4 of \(6 \quad 5,463,388\)

FIG. 5


FIG. 7

U.S. Patent

U.S. Patent

FIG. 8


\section*{COMMPTER MOUSE OR KEYBOARD INPUT GEYCE UTLLELNG CAPACHTVE SENSORS}

\section*{FIELD OF THE INVENTION}

This invention relates to sensors for capacitively sensing the position or movement of an object, such as a finger, on a surface.

\section*{BACKGROUND OF THE INVENTHON}

Numerous cevices are krown for sensing the postion of objects on surfaces, many of which relate to computer input. tablets. For example, U.S. Pat. No. 5,113,041 to Greg E. Blonder et al. discioses a computer wout tablet for use with a stylus in which the position of the syyus can be determined from signals transmitted to the styhes from a grid of signal lines embertsed in the tablet, and U.S. Pat. No. 4,806,709 to Blair Evans discloses a touch-screen having a resistive layer with a number of point electrodes spaced thereon such that the posithon of a finger towening the sereen can be determined from the relative values of the currents drawn from the point electroder. The first such device requires means for the stylus iteelf to transmit information, such as a drect electrical comection. The second such device, and other kinds of tablets that sense the pressure of a finger or stylus, do not require such information-tansmitting means

Comptter input tablets can be used for input of textual or graphical information. Various systems are kiown in the art which process hendwrimen text as if it were entered on a keyboard. Graphical information can also be captured by means of such tablets.

Other input devices such as comphter "mice", joysticks and trackballs can be used with computers to control the position of a cursor on a display screen, steld as a video terminal, for input of graphical information amd for interactive programs such as computer games and programs using "windows" for display of information, Moyement of a mouse in a particular direction on a sirface causes a corresponding movement of the cursor or other object on the screen. Similarly, movement of a joystick ot trackball in a particular direction causes sweh movement.

Irput devices such as mice, joysticks and tackballs can be cumbersome becanse of their size and shape and, particularly with mice, the room needed for use. These drawbacks are more apparent with respect to portable computers, such as the so-called "notebook" computers it is deskable, therefore, to furnsh such control capabihites in an input device that can be incorporated in a small space, but without sacrificing ease of use. It is also desirable to be able to use such a device for multiple ñnctions, for example, a particular area of a computer keyboard that can also be used as a monse without losing its functionahty as a keyboand. Fisther, it is desirabie that such an input device be capable of operation by a finger or handheld stylus that does not require an elcctrical connction or other means for tansmitung imformation.

\section*{SUMMARY OF THE INVENTION}

The capacitive sensor of the invention comprises a thin, insulating surface covering a plurality of electrodes. The posxion of an object, such as a finger on hand-held stylus, with respect to the electrodes, is determined from the centroid of capacitance values measured at the electrodes. The electrodes can be arranged in one or two dimensions. In a two-dimensional amay, the capaciance for each electrode
can be measured separately or the electrodes car be divided into separate elements connected in columns and rows and the capacitances measbied for each column and row. The \(x\) and y coordinates of the centroid are calculated in a microcontroler forn the measured capacitances. For applications in which the sensor is used to emblate a mouse or trackball, the microcontroller forwards position change information to utilizing means. For applications in which the sensor is used to emulate a keyboard, the microcontroller identifes a key from the position of the touching object and forwards sech key identifcation to utilizing means.
These and other aspects of the invention will become apparent from the attached drawings and detailed descriphion.

\section*{BRIEF DESCRIPTION OF THE DRAWING}

Fra. 1 is a graphic diagram showing the relationsing between the position of a user's finger and capacitances at electrodes in a two dimensional sensor constucted in accordance with the invention.

FIG. 2 is a more detailed repsesentation of interdigitated electrode components at the intersections of rows and columas in a two-dimensional sensor.
FIG. 3 is an altenate arrangenent for electrodes in the array

FCG. 4 is an overall block diagram of a two-dimensional capacitive position sensor in accordance with the invention.

FIG. 5 is a diagram of an integrating amphifer and bootstrap circuit associated with the electrocies.

FIG. \(\xi\) is a flow chart showing operation of the capacitive position sensor of the invention as a computer mouse or trackbull.

FIG. 7 is a diagram showing use of the capacitive position sensor of the invention as a keyboard.

FIG. 8 is a fiow cham showing operation of the capacitive position sensor of the invention as a keyboard

\section*{DETAMED DESCRIPTION}

The invention will be described in terms of a exemplary two-dimensional embodiment adapted to emulate a computer mouse or keyboard for use with a personal computer. However, it will be clear to those skilled in the ant that the principtes of the invention can be utilized in oher applications in which it is convenient to sense position of an object capacitively in one or more dimensions.

The operational principle of the capacitive position sensor of the invention is shown in FlC. 1. Electrode array 100 is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an array of tiles. A \(4 \times 4\) array is shown, which we have found adeguate for emukating a computer mouse by tinger strokes on the array. However, the invention can be used with arrays of other sizes, if desired. The electrodes are covered with a thin layer of insulating material (not shown). Finger 162 is shown positioned with respect to array \(\mathbf{1 6 0}\). Electrode atray 100 can be one- dimensional for applications in which position in only one dimension is to be sensed.

Histogram 110 shows the capacitances for electrodes 101 in atray 106 with respect to finger 1 fip Suct capactiances ate a two-dinensional sampling of the distribution of capacitance between array 100 and finger 102. The centroid (center of gravity or first moment) hli of such distribution will correspond to the position of finger \(\mathbf{1 9 2}\), or some other object touching array 190 , if suitable sampling criteria are
met; that is, by choosing electrodes of sufficienty smill size when compared to the extent of the disiribution. Such criteria are discussed in the Blonder et al. patent referred to aboye.

The \(x\) and \(y\) coondinates of the centroid can be determined by directly measuring the capacitance at each electrode 101 and calculating such \(x\) and \(y\) coordinates from such measured capacitances. Thus, for the \(4 \times 4\) aray 100 , sixteen capacitance measurements would be needed. The mumer of measurements can be reduced, however, by taking adyantage of the fact that the one-dimensional centroids of the projections of the distribution onto the \(x\) and \(y\) axes also correspond to the finger position. Such projections can be formed by subdividing each electrode 101 into two elcmetts, as shown in FIG. 2.

FIG. 2 shows four sueh subdivided electrodes in more detal at an intersection of two tows and two colmans in array 100. As can be seen from FC. 2 , a horizontal element 291 and a vertical element 202 are situated at each intersection of a row and colamn. Horizontal elements 201 are interconnteted by leads 263 and vertical elements 202 are interconnected by leads 29 . Elements 20 l and 292 can be interdightated as shown. It is advantageous for the conducting areas of elements 201 and 202 to cover the sutface of array 100 as compietely as possible. For finger strokes, we have used interdigitated olements 20 an and 202 that are approximately 0.37" square. Smaler electrodes 101 or elements 201 and 202 be desirable for use with a hand-held scylus having a maller cross-section than a finger.

As will be clear to those skilied in the att, elements 201 and 202 can be fabricated in one plane of a mult-layer printed circuit boud tegether with one set of intercomeetions, for cxample, the honzontal row connections 243 . The vertical row connections 204 can then be fabricated in anothet plane of the circuit board with appropriate via connections between the planes.

Other electrode array configutions can be used, if desired. For example, FlG. 3 shows horizontal strip clectrodes \(203^{\prime}\) overlapping vertical strip electrodes 204. Elecirodes 203 and \(20 \mathbf{S}^{\prime}\) are separated by a thin insulating layer (not shown) and covered by another thin insulating layer (not shown). In such a configuration, areas of electrodes 204' must be left ummasked by electrodes 203 so that electrodes 204 can still "see" the capacitance of an object touching the surface in which such electrodes are embedded. A similar configuration of electrodes is shown in the Blonder et at. patent. However, the strwate of PGG. 2 is preferred because the interdigitated elements 201 and 202 do not overiap and the capacitance values measured can be highar for a given area of atray 100 , thus providing greater noise immurity.

FIG. 4 is an overall block diagram of a capacitive sensor 400 in accordance with the invention. Electrode array 100 comprises rows and colimus of electrodes, for exampie, rows and colums of connected horizontal and vertical elements as shown in FJG. 2. Referring again to FIG. 4, each row and column of electrodes from array 160 is connected to an integrating amplifier and bootstrap circuit 401 , which is shown in more detail in FlG. 5 and will be described below. Each of the ouiputs from circuts 401 can be selected by multiplexer 462 under control of microcontroller 406. The selected output is then forwarded to summing circuit 483 , where such output is combined with a signal from trimmer resistor 409 . Synchronous detector and fiter 404 convert the output from summing circuit 493 to a signal related to the capacitatice of the row or columt selceted by moltiplexer 402. RE oscillator 408 provides an KF signal,
for example, 100 kilohertz, to circuits 401 , synchronolis detector and filter 494 via inverter 40 , and gard plame 41 . Guard plate 411 is a substantially contimous plane parallel to array 10 m and associated connections, and serves to isolate array 100 from extraneous signals. The operation of synchronous tetector and fiter 404 is well known in the ari, for example, see page 889 of "The Art of Electronics," Second Edition, by Horowitz and Hil, Cambridge University Press (1989). A capacitive proximify detector having a single electrode, a guard plane and similar circuitry is disclosed in co-pending Application No. 07/861,667 for F . A. Boie et ai. ilied aps. 1, 1992, now U.S. Pa: No. 5,337,353.

Apparas similar to that shown in FlG. 4 can aiso be bsed for applications in which it is cesired to measure separate capacitance values for each clectrode in array 100 instead of the collective capacitanoes of stbdivjded eleotrode elements comested in sows and colums. To measure such capacitances separately, a circuit 401 is provided for each electrode in array 1064 and multiplexer 402 is enlarged to accommodate the outhits from all circuits 401.

The output of synchronous detector and filter 404 is converted to digital form by analog-to-digita converter 465 and forwarded to microcontsoller 406 . Thus, microcontroher 4ifs can obain a digital vahe representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) seleeted by muitiplexes 402. Buttons 407, which can be auxiliary pushbuttons o: switches situated near array 400 , are also connected to merocontroller 406. Buttons 407 can be used, for example, for the same purposes as the butons on a computer mouse. Microcontroller 406 sends chata to wtizing means, such as a personal computer (not shown) over lead 426. A particular device that can be used for \(A / D\) converier 405 and microcontroller 406 is the 87 C 552 circuit made by lntel Corporation, which includes both an AD converter and a mioroprocessor.

FIG. \(\mathbf{5}\) is a circuit diagram of each integraring amplifer and bootstrap cincuit 40R. The RF signal from Re oschlawor 408 drives the base of transistor Q1 and the bootstrap circuit comprised of resistor 501 ard capactor 502 . Cument source 563 provides a constant DC bias current through transistor Q1. An electrode in array 100 is contected to the emitter of transistor Ol. The RF cument io an electrode is determined by the capacitnce sten by the electrode; thas, an increase in canacitance caused by the proximity of an object, such as a finger, causes in increase in such current. Such an increase is refleted as a change in the RF current fowing from the collector of transistor Ql. The collector of transistor Q1 is comected to the input node of integrating amplifier 505 via couphing capacitor 566 . For a change in capacitance, \(-C\), at the electrode, the change in the amplitude of the ouppot signal from amplifter 505 wil be appoximately \(A(A C / C)\), where \(A\) is the amphinde of the RF signal from ochllator Ans and \(\mathrm{C}_{f}\) is the valne of integrating capacitor 507. Resistor 508 provides a bias current for amplifier 505 and resistor 504 provides bias current for transistor Q1.

The effects of electrode-to-elcetrode capacitatices, witing capactances and ober extraneous capmothances are minimized by drivity all efectrodes and guand plane 4 gs in unison with the same EF signal from EF oscillator 408 . The bootstrap crruit serves to minimize any signal due to the finte impedance of the biasing circuit of transistor Q1. The base-to-collector capacitance of transistors Q1 and othor stray capacitances in the circuit can be compensated for by adjusting trim resistor 1099 shown in FIG. 1.

In using the position sensor of the invention as a computer
mouse or trackball to contuol a cursor, movement of the Blowse or trackball is emulated by touching aray 100 with Anger 102, or some other object, and stroking finger 102 over array 106 to move the cursor. Changes in position of the finger with respect to aray 100 are reflected in corresponding changes in position of the cursor. Thus, for such an application, microcontroller 406 sends data over lead 420 relating to changes in position. FIG. 6 is a flow chati of the operation of microcontroller 406 in such an application.
kelening to FlG. 6 , microcomputer 406 reads the initial capacitance values for all the elements in array 104 and stores such values (step 601). Such initial values should reflect the state of artay 100 without a finger or other object being nearby, accordingly, it may be desirable to repeat step 601 a number of times and then to select the minimum capacitance values read as the initial vaiues, thereby compensating for the effect of any objects moving close to array 100 during the intiabization step. After initialization, ail capacitance values are periodically read and the inital values suburacted to yield a remainder value for each element (step 6(2). If one or thone of the remainders exceeds a preser thteshold (step fit3), indicating that an object is close to or touching array 190 , then the \(x\) and \(y\) coordinates of the centroid of capacitance for suoh object can be caleulated from such remainders (step 6(14). For applicarions in which the electrodes of array 100 are connected in rows and columms, as shown in FIG. 2 and FIG. 3, such calculation can be perfomed as follows:


where:
\(\mathrm{u}_{\mathrm{s}}\) is the rumber of columms, \(\mathrm{V}\left(\mathrm{n}_{x}\right)\) is the remainder value for colum \(n_{x}\), \(u_{y}\) is the number of rows and \(V\left(n_{y}\right)\) is the remainder value for row \(n\). To avoid spurious operation, it may be desirable to require that two cr more measurements exceed the preset theshold. The threshold can be set to some percentage of the tange of A/D converter 405, for example \(10-15 \%\) of such range. Note that the vaiue of \(x\) can neither be less than 1 nor more than \(n_{x}\) and the value of \(y\) can nother be less than 1 nor more than \(u_{y}\).

For applications in which the capractance valucs for the electode 101 in array 160 are measured separately, the \(x\) and \(y\) yalues of the centroid can also be calculated using equations (1) and (2) by adding ail the capacitances measured for a row or column to bbain the value of \(V\) for such row or column. Such addition has the same effect as if the electrodes were connected together in a row or column.

When set, the "T" flag indicates that remainders were above the ihreshold during the previous iteration through step 603. Swh flag is set durixg step 6tf and cleared during step 607. Thus, after the first iteration through steg 6933, indicating a new stroke of finger 102 on aray \(\mathbf{1 0 0}\), the "T" flag is set and the \(x\) and \(y\) values just catolated are stored. During each subsequent iteration during such stroke, the changes in \(x\) and \(y(d x\) and dy) are calculated (step 608) as follows:
\[
\begin{equation*}
d x=x_{i}-x_{j} \tag{3}
\end{equation*}
\] can be printed on the insulating layer covering the clectrodes. Note that the individual "keys" in the keyboard do
not necessarily correspond to the underlying electrodes. The \(x\) and \(y\) coordinates are shown for wforenoe purposes. Since the values obtained for \(x\) and \(y\) in a \(4 \times 4\) matrix using cquations (1) and (2) will range from 1 to 4 , this range is shown on the coordinates.

The identity of a key touched is determined from the x and \(y\) values compuled for the centroid of capacitance resulting from the touch For example, asing the \(x\) and \(y\) coordinates shown in FIG. 7 , a " 5 " can be defned as a touch with \([1.7 \leqq x \leqq 2.3,2.3 \leq y \leq 2.77 ;\) a "0" can be defined as a touch wilh \([1 \leq x \leq 23,1 \leq y \leq 1.33\); and a " + " can be defined as a touch with \(3.7 \leq x \leq 4,2.4 \leq y \leq 35\). These ranges are chosen to leave guard bads between adjacent keys. Such a range for each key ot the keyboard is stored in microprocessor 46

FIG. is a flow chart showing operation of microcontroller 486 when the caracitive position sensor of the invention is used as a keyboard. Steps \(801,802,893\) and 805 are similar to steps \(601,6022,603\) and 604 , respectively, in FIG. 6. In step 805, the identity of the key touched is determined from the stored ranges and the values of \(x\) and \(y\) calculated in step 806 . In step 807 , the idenity of the key touched is sent to utilizing means. The " T " Hag is set in step 808 , cleared in step 803 and tested in step 804 . Sooh flag assures that the key identity is sent to utilizing means only once.

It should be clear that the various ways described above of using the capacitive position sensor of the invention can be combined. For example, a combination mouse-keyboard can be implemented in which one portion of aray 100 is used as a mouse responsive to finger strokes and a second portion is used as a keyboard responsive to finger touches. Altematively, aray 100 can be adapted to operate in different modes: the frst mode as a mouse, the second as a koyboard. Switching between modes can be accomplished, for example, with one of buthons 497 , or with extra pressure in a specifed region of array 100 . Thus, where space is at a preminm, such as in a potable computer, the capacitive position sensor of the invention can be used as part of the keyboard and also as a mouse.

The invention has been shown and described with reference to particular embodinents. However, it will be undetstood by those sciled in the att that various changes may be made therein without departing from the spinit and scope of the invention.

What is clamed is:
1. A sensor for capacitively sensing the postion in a continuous range of positions of an object on a surace of an inpur device, which comprises:
an array of electrodes on said surface;
an inmating layer covering said electrodes;
means conncted to said electrodes for measuring a capacitance value for each said electrode;
means responsive to said measuring means for comparing said capacitance values with a first preset tireshold and, if at least one of said caracitance values exceeds said fret preset theshoid, for calculating the position of a centroid of capacilance for said array from sad measured capacitance values, sad first preset threshold being set at a capacitance value that is exceeded for a given clectrode only when said object is close to or touching said given electrode, said centroid of capacitance being the first moment of the distribution of said capacitance values in said array and representing substantially the position of said object on said surface; and
means responsive to said calculating means and con-
nected to utilizing means for sending said centroid of capacitance postion to said utilizing moans.
2. The sensor of claim 1 in which said amay is a wodimensional array and said electrodes are aranged in rows and columns.
3. The sensor of clam 2 wherein said imput device is a keyboard, said sensor further comprising:
means for designating portions of the surface of said keybourd to represent different keys; and
said calcuiating means comprises:
means for storing a range of coordimates for cach key in said keyboard;
means for comparing said centroid of capacitance position with said ranges of coordibates and selecting the range of coorcinates in which said centroid of capacitance position falls, and
said sending means comprises means for scading the identity of the key associated with said selected range of coordinates to said uthizing means.
4. The sensor of elam 2 wherein each said electode comprises:
at each intersection of a row and a column, a first electrode element connected to other first electrode elements in said row and a second electrode clement connected to other second electrode elements in said column,
and wherein said means for measuring a capacitance value for each electrode is adapted to measure the capacitance value for each row of said first elecrode elements and the capacitance value for each column of said second electrode elementis.
5. The sensor of clam 4 wherein said firs and second electrode elements at each intersection are interdigitated.
6. The sensor of claim 1 wherein said calcolating means periodically caicuiates changes in said centroid of capacitance position and said sending means periodically sends said changes to said utizing means.
7. The sensor of claime 1 which further comprises:
means responsive to said measuring means for comparing said capacitance values with a second breset threshold and for indicathg to saici uilizing means wher saic second preset theshold is exceeded, said second preset threshold being set at a capacitance value higher than said first preset theshold.
8. The sensor of claim 1 wherein said measuring means comprises:
means comected to said electrodes for supplying the same RF signal in unison to each said electrode,
means comecled to said electrodes for sensing Re curtents flowing between said electrodes and said object in response to said \(R F\) signal, and
means comected to said \(R P^{F}\) ourtent sensing meats for converting said RF currents into signals sepresentative of said capactance values for cach said electrode.
9. The sensor of claim 8, which narther comprises:
a guard plane substantially parallel to said electrodes, and said means for supplying an RF signal further comprises:
means connected to said guard plane for supplying said RF sigmal to send guard plane in unison with the RF signals supplied to said electrodes.
16. A touch-sensitive input device for a computer, which comprises:
an array of electrodes on a sarface of said tnput device, said electrodes being artanged in rows and columns;
an insulating layer covering said electrodes; means connected to said electrodes for measuring a capacitance value for cach said electrode;
means responsive to said measuning means for comparing said capacitance values with a first preset threshold and, if at least one of said capacitance values exceeds said first preset threshold, for calculating the coordinates of a centroid of capacitanee for said array from said measured capactance values, said centroid of canacitance corresponding to the position of a finger or 10 other object towching said surface, said first preset threshold being set at a capacitance value that is exceeded for a given electrode only when said finger or

10
Oher object is close to or touching said surface in the vicinity of said given ciectrode, said centroid of capacitance being the first moment of the distribution of said capacitance values in said aray and representing substantially the position of said obeet in a contintous range of positions on said surface, and
means responsive to said calculating means and connected to said computer for sending information to said computer indicative of or derived from said calculated comrdinates.

\section*{EXHIBIT D}

United States Patent
Gerpheide et ak.
|||||||||||||||||||||||||||||||||||||
US005565653A
[1] Patent Number: \(5,565,658\)
[45] Date of Patent
Oct. 15, 1996
[54] CAPACITANCE-BASED PROXIMYPY WYGH
[NGYRFERENCR RESECRYON APEARATUS ANG METHOMS
[75] Inventors: George E. Gerpheide; Michamel 0 .
Gaytom, both of Sall Lake City, Uah
[73] Assignee: Cirque Corporation, Salt Lake City, Utah
\([21]\) Appl. Nō.: \(\mathbf{3 5 1 , 6 9 8}\)
22] Filed:
Dec. 7, 1994

\section*{Refated U.S. Application Data}
(63] Continuation in-patt of Ser. No. 193,275, Feh. 8, 1994, Pat. No. \(5,478,70\), which is a contination of Ser No. 914,043 , 3ul. 13, 1992, Pat. No. 5,305,017.
[51] Int. C. \({ }^{6}\) \(\qquad\) G08C 21/00
[52] U.5. CR \(\qquad\) 17519, 345/74
58) Field of Search ................................. 178/18, 19, 20,
\(345 / 168,173,174 ; 328 / 5 ; 342 / 16\)
[56]

\section*{Referemers Cited}
U.S. PATENT DOCUNENTS

4,237,421 12/1980 Waldron \(\qquad\) \(325 / 5\)
\begin{tabular}{|c|c|c|}
\hline 746 & 2/1983 & Pepper, Jr. .............................. 178/18 \\
\hline 4,476,463 & 101984 & Ng et al. ............................. 178/187 \\
\hline 4,8,45,682 & 711989 & Boozer et â. ..................... 342n6 X \\
\hline 5,053,757 & \(10 / 1991\) & Meadows ........................... 178118 X \\
\hline 5,305,017 & \(4 / 199\) & crp \\
\hline
\end{tabular}

Primary Examiner--Stephen Chin
Assistoni Examiner-Paul Loomis Athomey, Agent, or Fim Thorpe, North \& Western

\section*{[57]}

\section*{ABSTRACT}

Apparaus and method for a capacitance based proximity sensor with interierence rejection, A pair of clectrode arrays establish a capacitance on a touch detection pad, the capacitance varying with movement of a conchetive object near the pad. The capacitance variations are measured synchronously witi a reference frequency signal to thus provide a measute of the position of the object. Electrical interference is rejected by producing a reference frequency signal which is not coberent with the interference.




Fig. 2a


Fig. \(2 b\)


Fig. \(3 a\)


Fig. \(3 b\)



Fig. \(6 a\)


Fig. \(6 b\)


Fig. 6c


Fig. 6d



Fig. 7
U.S. Patent Oct. 15,1996 Shcet 8 of 8 5,565,658


Fig. 8

\section*{CAPACTANCE-SASED PROXMMTY WITH [NTEREGRENCE RESECTION APPARATES AND METHODS}

The following paten is a continualion-in-pant patent of 5 U.S. patent application Ser. No. 08/193,275, fled Feb. 8, 1094, now U.S. Pat. No. \(5,478,170\), which is a contimution of Ser. No. 914,043, nied Jul. 13, 1092, now U.S. Pal. No. 5,305,017.

This invention relates generally to apparatus and meth- to ods for touch sensitive input devices, and more particularly, to apparatus and methods for capacitance based touch detecthon wherein electrical interference is effectively rejected from the detecion system.

\section*{BACKGROUND OF THE INVENTION}

Numerous prior at devices and systems exist by winich tactile sensing is used to provide data inpus to a data processor. Such devices are used in place of common pointing devices (swein as a "mouse" or stylus) to provide data imput by finger positioning on a pad or display device. These devices sense fnget position by a capacitive touch pad wherein scaming signals are applied to the pad and variations in capacitance caused by a finger touching or approaching the pad are detected. By sensing the finger position at successive times, the motion of the finger can be detected. This sensing apparatus has application for controlhng a compuler screen cursor. More generally it can provide a variety of electrica equipment with information corresponding to finger movements, gestures, positions, writing, signatures and dawing motions.

In U.S. Pat. No. 4,698,461, Meadows et al., a touch surface is covered with a layer of invariant resistivity. Panel scaming signals are applied to excite selected touch surface edges so as to establish an altemating cument voltage gradient across the panel surface. When the surface is towohed, a wuch curtent flows from each excited edge through the tesistive surface and is then coupled to a nser's finger (by enpacitance or conduction), through a user's body, and fackly coupled by the user's body capacitance to earth ground potential. Different scanning sequences and modes of voltage are applied to the edges, and in each case the currents are measured. It is possible to deternine the location of touch by measuring these currents. In particular, the physical parameter which indicates touch location is the resistance from the edges to the point ol touch on the surface. This resistance varies as the touch point is closer or farther from each edge. For this system, the term "capacitive twoh pad" may be a mismomet because capacitance is invoived as a means of coupting current from the surface twach point through the user's finger but is not the parameter indicative of nager position. A disadvantage of this invention is that accurate touch location measurement depends on uniform resistivity of the sufface. Fabricating such a uniformly resistive surface layer can be dificuli and expensive, and require special fabrication methods and equipment.

The panel of the Meadows '46l patent also includes circitity for "nulling", or offseting to zew, the touch currents which are present when the panel is not touched. This nulling can be accomplished while the panel operates, and allows touches wheh generaie a relatively weak signal, such as from a gloved finger, to be more accurately determinad. The Meadows ' 461 panel also includes circuitry for antomatically shifung the frequency of pancl scaming signals away from spectra of spurious signals, such as those developed by cathode-ray tube transfomers, which may be
present in the environment. The panel seeks to avoid interference from the spurious signals, which could happen if the frequency of scanning was nearly equal to that of the spurious signals. A microcontroller determines whether the sommity frequency should be shtited by montoritg the tate at which adjustments are required in muling of the touch cuments, as described above. The only means described for generating frequency comerol signals is based on this nulling adjustment.
U.S. Pat. No. 4,922,06t, Meadows et al., is similar to the Meadows ' 461 patent in that the touch panel determines touch location based on variations in resistance, rot capacitance. This is particularly evident from EIG. 2 where the resistanees from edge to totich goint are shown as Kx times Rx , where Kx is conesponds to the distance indicated by 76A. The apparatus uses a measurement signal of a froquency that varies in a substantially randon mamer, thus reducing susceptibility to interference from spurious electromagnetic spectra.
U.S. Pat. No. 4,700,022, Salvador, describes an array of detectung conducive strips, each laid between resistive emitting strips. The finger actually makes electrical contact from an emiting strip to derecting strip. Touch location is determined from resistance variation (as with Meadows ' 461 and ' 061 above) in the strip contacted by the finger. Averages are taken of a certain mumber of symbhronous sampies. A design formula is mresented to choose a sampling frecuency so that it is not a multiple of the most undesired predetermined interfering signal. No suggestion is made that sampling frequency is adjusted or adapts automatically.

In U.S. Pat. No. 5,305,017, Gerpheide, touch location is detemited by true capacitance variation, instead of resistance variation, using a plurality of electrode strips forming virtual electrodes. This approach eliminates the necessity of a coating having unifom resistance across a display screem. However, such a capacitance-based detection device may suffer frome electrical background interference from its sutroundings, which is compled onto the sensing electrodes and interferes with position detection. These spurious signals cause troublesome interference with the detcction of funger positioning. The device operator may even act as an antema for electrical interference which may cause a false charge injection or depletion from the detecting electrodes.
Accordingly, there is a need for a touch detection system which has the following characteristics:
(1) the touch location is cetermined without the need of resistance variation so as to avoid the high cost of requiting uniform tesistance daring fabrication;
(2) the touch hocation is measmred in a manner indenendent of resistance of the electrodes or their connceting wiring, thus broadening the range of materials and processes which may be used for fabrication; and
(3) electrical interference signals are tejected and eliminated from the detection system regardless of their frequency and without reguing possibly expensive nulling apparatus.

\section*{SUMMARY OF THE INVENTION}

The present invention employs a touch location deviee having true capacitance variation by using insulated dectrode arrays to form virtual clectrodes. The capacitance variation is measured by means independent of the resistance of the electrodes, 50 as to elminate that parameler as a fabrication consideration. The electrical interference is eliminated regardless of frequency to provide a clear detec-
tion signal.
An illustative extbodment of the present invention includes an electrode aray for developing capacitances which vary with movement of an object (such as finger, other body part, conductive styhus, ete.) near the array, a 5 synchrorous capacitance measurement element which measures variation in the capacitances, such measurements beitig symetronized with a reference frequency signal, and a reference frequency signal generator for generating a reference frequency signal which is not coherent with electrical interference which could otherwise interfere with capacitance measurements and thas position location.

Imerierence rejection is carvied out by generating a tefetence frequency signal whose frequency is तifferent from the interletence frequency. Alternately, the reference sigual is generated with random frequencies so as not to be coherent with the interference frequencies and thus the electrical interference is effectively rejected.

\section*{BRIEF DESCRIFTION OF THE DRAWINGS}

FIG. 1 is a block diagram of a capacitance variation position measuring device made in accordance with the principles of the present invention;

EKG. 2A is a plat view of one illustrative cribodment of the electrode artay shown in FIG. 1 ;

FG. 28 is a side, cross-sectional view of one illustative embodiment of the electrode array of FlG. 2A;
FIC. 3 A is a side, cross-scetional view of another embodiment of the electrode array of FIG. B;

PIG. 33 is a plan view of the electrode amay of FiG. 3A;
FIG. 4 is a schematic of one embodiment of the synchronous electrode capacitance measurement device of FlG. 1;

FG. 5 is a schematic of another embodiment of the synchronous electrode capacitance neasurement device of EIG. 1 ;

FIGS. 6A-6D are circuit diagtams of alternative embodiments of the capacitance measurement elements shown it गGS. 4 and 5 ;
FIG. 7 is a block diagram of one cmbodiment of the reference trequency generator shown in FG . 1 ; and

FIG. \$is ablock diagram showing an altemative cnobodi- \& ment of the reference frequency generator shown in FIG. 1.

\section*{DETAILED DESCRIPTION OF PREFERRED EMBODMERTS}

FIG. 1 shows the essential elements of a capacitance variation inger (or other conductive body or non-hody par) position sensing system 10, made in accordance with the invention. An electrode array 12 includes a plurality of hayers of conductive electrode strips. The electrodes and the wiring connecting them to the device may have substantial resistance, which permits a variety of materials and processes to be used for fabricating them. The electodes are electrically insulated from one another. Mutwal capacitance exisis between each two of the electrodes, and stray capacitance exists between each of the electrodes and ground. A finger positioned in proximity to the aray alters these motual and stray capacitance values. The degree of alteration depends on the position of the finger with respect to electrodes. In general, the atieration is greater when the inger is closer to the electrode in question.

A synchronous elecitode capacitance measurement unit 14 is connected to the electrode array 12 and determines selected mutual and/or stray capacitanoe values associated with the electrodes. To minimize interference, a number of measurements are peformed by unit 14 with timing sytchronized to a refercnee frequency signal provided by reference frequency generator 16 . The desired capacitance value is determined by integrating, averaging, or in more gencral terms, by fitering the individual measurements made by unit 14. In this way, interference in the measurement is substantially rejected except for spurious signals having strong frequency spectra near the reference ficequency.

The reference frequency generator 16 attempts to antomatically select and generate a reference frequency which is not coherent with the most undesirable fiequency of spurious signals. This approach substantally eliminates interierence even though its frequoncy is likely to be initially unknown and may even change during operation.
A position locator 18 processes the capacitance measurement signal from the synchronous electrode capacitance measurement unit 14 and provides position signals for use by a hos computer, for example, and to the reference frequency gencrator \(\mathbf{1 6}\). The position locator unit 18 determines finger position signals based on the capacitance measurments. Several different systems are commonly kiown in the art for determining finger position based on measuremens of capacitance associated with electrodes in an amtay. Position locators may provide one-dimensionas sersity (such as for a volume slider control), two-dimensional sensing with contact determination (such as for computer onsor control), or full thee-dimensional sensing (such as for games and three-dimensional computer graphics.) An example of a prior art position locator unt is shown in the Gerpheide ' 017 patent mentioned above, as mits 40 and 50 of FIG. 1 of the patert.

\section*{Electrode Array}

FIG. 2A ilustrates the electrodes in a preferred electrode array 12 , together witi a coordinate axes defining \(X\) and \(Y\) directions. Onc cmbodiment includes sixteen \(X\) electrodes and twelve Y electrodes, but for clanty of illustration, only six X electrodes 28 and fout \(Y\) electrodes 22 are shown. It is apparent to one skilled in the att how to extend the number of electrodes. The array is preferably fabricated as a multilayer printed circuit board 24. The electrodes are etohed electrically conductive strips, connected to vias 26 which in tum connect them to other layers in the array Mustratively, the amtay 12 is approximately 65 millimeters in the \(X\) directon and 49 millimeters in the \(Y\) direction. The \(X\) electodes are approximately 0.7 milhmeters wide on 3.3 milhmeter centers. The \(Y\) electroces are approximately three milimeters wide on 3.3 millimeter centers.

Fig. \(2 b\) illustrates the eleorode array 12 from a side, cross-sectional view At insulating overlay 23 is an approximately 0.2 milimeters thick clear polycaroonate sheet with a texture on the top side which is comfortable to touch. Wear resistance may be enhanced by adding a textured clear hatd coating over the top surface. The overiay bottom surface may be silk-screened with ink to provide graphics designs and colors.

The \(X\) clectrodes \(233, Y\) electrodes 22 , ground plane 25 and component taces 27 are etched copper traces within a multhayer printed cirout board. The ground plane 25 covers the cntire array area and shields the clectrodes from elec-
trical interference which may be generated by the parts of the circuitry. The component traces 27 comed the vias 28 and hence the slectrodes 20,22 , to other circuit components of FIG. 1. Insulator 31, insulator 32 and insulator 33 are fiberglass-epoxy layers withen the printed circuit board 24 . They have respective thicknesses of approximately 1.0 millirneter, 0.2 millimeters and 0.1 milimeters. Dimensions may be vanied considerably as long as consistency is maintained. However, all \(X\) electrodes 20 must be the same size, as must all \(Y\) electrodes 22.
One skilled in the art will realize that a variety of tectniques and matenals can be used to form the electrode array. For example, FIG. 3A ilhustrates an alternative embodiment in which the clectrode array includes an insalating overlay 40 as described above. Alternate layers of conductive ink 42 and insulating ink 43 are applied to the reverse suriace by a silk screen proces. The X electrodes 45 are positioned between the insulating overlay 40 and \(X\) electrode conductive ink layer 42. Another innnlating ink layer 43 is applied beiow layer 42 . The Y elecurdes 48 are postioned between insulating ink layer 43 and conductive ink layer 44. Another insubating ink layer 47 is apphied below conductive ink layer 44 , and gromd phane 48 is affixed to \(Y\) electrode conductive ink layer 47. Each layer is approximately 0.01 millimeters thick.

The resulting array is thin men Eexibue, whon allows it to be formed into curved surfaces. In use it would be laid over a strong, solid support. In other exampies, the electrode aray may utize a flexible printed circuit board, such as a hex circuit, or stampings of sheet metal or metal foil.
A yaniefy of clectrode geonetries and amangenents ate possible for hager position sensing. One example is shown in PIG. \(3 b\). This is an array of parallel electrode strips 50 for one-dimensional position sensing which coud be useful as a "sider voiume contro" or "ioaster darkness control". Other examples include a grid of diamonds, or sectors of a disk.

It is desired that the elecrode atray of the present itevention be easily fabricated by economical and widely avahlable printed circuit board processes, It is also desired wallow use of various overlay materials selected for texture and low friction, upon which logo att work and coloration ean be econmically priated A futher preference is that be overlay may be custom printed separately from fabrication of the electrode-containing part of the array. This allows an economical stardardized mass production of that part of the amay, and later affixing of the custom printed overlay.

\section*{Synchronous Electrode Capactance Measurement}

FIG. 4 shows one embodiment of the synchronous clectrode capacitance measurement unit 14 in more detail. The key elements of the synchronous electrode capacitance measurement unit 34 are (a) an element for producing a volage change in the electrode array synchromously with a reference signal, (b) an dement producing a signal indicative of the displacenent charge thereby conpied between electrodes ot the elecrode artay, (c) an element for demodulating thes signal synchronously with the reference sigual, and (d) an clement for low pass filtering the demodulated signal. Unit 14 is coupled to the electrode aray, preferably through a multiplexor or switches. The capacitances to be measured in this embediment are mutual capacitances between clectopdes but coud be stray capactances of electrodes to ground or algebrace sums (hat is sums and differcnces) of such mumal or stray capacitances.

FIG. 4 shows one specific embodiment of a synchronous electrode capacitance measurement unit 14 connected to the electrote array 12 , in which algebraic sums of mutual capacitances between electrodes are measured. The components are grouped inte four main functional blocks. A virual electroce symbesis block 76 comects each of the X ciectrodes to one of the wires CP or CN , and each of the Y electrodes to one of the wires RF or RN . The electrodes are selectively connected to the wires by switches, preferably CMOS switches under control of the position locator apparatus 38 (FIG. 5 ) :o select appropriate electrodes for capacitance measurement. (See Gerphede '077 which describes such electrode selection by signal \(S\) of PIG. 1 of the patert.) All electrodes connected to the CP wire at any one time are considered to form a single "positive vitual \(X\) electrode". Similanly, the electrodes connected to CN, RP, and RN form a "negative vitual \(X\) electrode", a "positive virtual \(Y\) electrode", and a "negative vinual Y electrode", respectively.

The reference frequency signal is preferably a digital logic signal from the reference frequency generator 16 (FIG. 1). The feference freguency signat is supplied to unit 14 via an AND gate 72 also having a "drive enable" input, supphed by the reference requency generator 16 (elG. 1). The AND gate output feeds through inverter 74 and monnverting buffer 76 to wires RP and \(R N\) respectively which are part or a capacitive measurement element 78. In the preferned embodiment, the dnve enable signal is always TRUE, to pass the referonce frequency signal. In further preferred embodiments, it is asserted PALSE by the reference frequency generator when interference evaluation is to be performed as described later. When the dive enable signal is FALSE, the drive sigmal stays at a contant voltage level. When the drive signal is TRUE, it is a copy of the reference frequency signal.

The capacitance measurement element 78 contans a differential charge transfer circuit 80 as illustrated in FIG. 4 of Gerpheide, U.S. Pat. 5,349,303, incorporated hercir: by reference. Capacitors Csl and CS2 of CG .4 of that patent correspond to the stray capacitances of the positive and negative virtual electrodes to ground. The CHOP signal of that FIG. 4 is conveniently supplied in the present invention as a square wave signal having half the frequency of the reference frequency signal, as generated by the divide-by- 2 circuit 81 shown herein. As desctibad in the Gerpheide "303 patent, the circuit maintains CP and CN (lines 68 and 72 therein) at a constant virtual ground voltage.
The capacitance measurement element 78 asso contains a non-inverting drive buffer 76 which drives RN and negative virtual \(Y\) electrodes to change voltage levels copying the drive enable signal transitions. The itherting buffer 74 drives RP and the positive virtual \(Y\) clectrodes to change voltage levels opposite the drive enable signal transitions. Since CP and CN are maintaned at virtual ground, these voltage changes are the net voltage changes across the mutwal capactunces which exist between virtual \(Y\) and virtual \(X\) electrodes. Charges proportiona to these volage charges multiplied by the appropriate capacitance values are theroby couplod onto nodes CP and CN (he "coupled chatges"). The charge tansfer circuit therefore supplies a proportional differential charges at outputs Qol and Qo2, which are proportional to the coupled charges and thus to the capacitances.

In short, this differential charge is a proportionality factor \(K\) tirmes the "balance" \(L\), which is a combination of these capacitances given by the equation:
\(L=A(x p, y n)+M(x n, y p)-M(x p, y p)-M(x, y n)\)
Where \(M(a, b)\) is the notation for the mutual capacitance between virtual clectrode " \(a\) " and virtual electrode " \(b\) ". Changes in balance are indicative of finger position relative to virtual electrode position as described in Gerpheide, U.S. Fat. No. 5,305,017. The proportionality factor K has a sign which is the same as the drive enable signal transition dienection.
Referring again to FIG. 4, the synchronous electrode capacitance measurement element 78 is connected via lines carrying charges Qol and Qoz to a synchronous demodilator 82 which may be a double-pole double-throw CMOS switch 84 controlled by the reference frequency signal. The synchronous demodulator 82 , which among other things functions to rectify the charges Qol and Qo\#, is conneted to a low-pass filer 86 which may be a pair of capacioms Cl , Ce contigured as an mtegrator for differential charges. (An integrator illustratively is a low pass filter with 6 db per octave frequency roll off.) Charges Qol and Qo2 are integrated onto capacitors Cl and C , respectively, when the reference frequency signa bas just transitioned positive, and \(K\) is positive. The charges are integrated onto opposite capacitors when \(K\) is negaive. In this way, a difecential charge proportional to the balance \(L\) is accumulated on Cl and C2.

FIG. 5 shows another embodiment of the synchronous aleotrode capactance measurement anit 14 . In this embodiment, each electrode in an electrode array 90 is connected to a dedicated capaciance measurement element 92 , cach of which is comected to a synchtonous demodulator 94 and then to a low pass filter 96 . This configuration has the advantage of contimously providing capacitance measuremens for each electrode, wheress the prior prefered embodiment measures a single conflguration of electrodes at any one time. The disadvantage of the embodiment of FIG. 5 is the greater expense which may be aswociated with the duplicated elements. This is a common tradeoff between providing multiple elements to process measurements at the same time versus muitiplexing a single element to process measurements sequentially. There is obviously a wide spectrum of variations applying this trade off

Also, many of the elements can be implemented an digital form using analog-digital converters and digital signal processing. While the prefered embociments currently use substantio malog processing, future digita processing costs may be expected to become relatively cheaper.
FIG. 6 provides a number of prefored allematives for the empacitame meambement element 78 (FIG, 4) or 92 (FIG. 5). FIGS. \(\mathrm{F}_{\mathrm{A}}\) and 6 B show circuits adapted for measuring mutual capacitances between electrodes (which may be physical or vitual electrodes), represented by Cmp, Cmn, and Cm . FIGS. 6 C and 6 D show circuits adapted for measuring electrode capacitance to ground represented by Cg. Each of these provides an output vohage change indicative of the capactiance being measured. These voltage changes are given by the following formulas:

For FG. \(6, A\) :
\[
\Delta V_{\text {out }}=A V \operatorname{cor} v e x(\mathrm{Cmp}-\mathrm{Cm}) \mathrm{Cr}
\]

For FlG. 6B:

\section*{AVorf=AVarivexCm/Cr}

For FIG. 6C:
\(\Delta \mathrm{Von}=\mathrm{AVdrivexCg} /(\mathrm{Cg}+\mathrm{Cr})\)
For FIG. GD:

\section*{\(A\) vout \(=A\) Vrive \((C g+C=/ C g\)}

The formulas depend on a known reference capaciance represented by Cr and a known drive voltage change represented by \(\Delta V d n v e\). Futher capacitance measurement elements may be based on charge balance techniques as described in Meyer, U.S. Pat. No. 3.857,092. Synchronous dernodulators may be implemented using an analog or digital multiplier, or a "double-balanced mixer" integrated circuit (such as part number LM1496) from Natona Semconductor Cotupany. There are different implementations known in the art for low pass, fitter elements, suct as switched capacitor integrators and filters, high-wrder analog filters, and digital filters.

\section*{Refermee Frequency Generator}

FIG. 7 illustrates a preferred embodiment of reference frequency generator 16 ( \(\mathrm{FIG}, 1\) ). The generator observes position signals to evaluate the extent of intererence at some reference frequency. In the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference, as described below.

The generator 16 includes an oscillator 100 which is, for examble, set at fou MHz, drivitg a mictocontroller 102 and a divide-by- \((\mathrm{M}+\mathrm{N})\) circuit 104 . Value N is a hed constant, approximately 50 . Value \(M\) is specified by the microcontroller 102 to be, for example, one of four values in the ratge 61 KHz to 80 KHz as specined by the microcontrolier 102 .
The microcontroller 102 performs the functions of interference evaluation 166 and frequency selection 308. It may perform other functions associated with the system such as position location. The prefered interference evaluation function 166 procuces a measure of the interference in the position signals generated by the position location unit 18 (FIG. 1). This is based on the principle that interference produces a spurious, relatively large magnitude hightrequency component of a position signal, and operates according to the following code description. It assumes position data points \(X, Y\), and \(Z\) occur approximately every ten milhseconds. in brief, it calculates an interference measure, M , as the sum of the absolute values of the second differences of \(X\) and \(Y\) logether whith the absolute values of the first differences of \(Z\) over 32 data points. Bhfferencing a stream of data has the effect of applying a bigh-pass fiter to it.

In detail, for each data point the interference evaluation function 106 executes the following steps, where ABSO means the absolue value function:

\footnotetext{
\(\mathrm{XD}=\mathrm{X}-\mathrm{Xl} A \mathrm{ST} \quad\) computes first differnces
\(X D=X-Y L A S T\)
\(Z D=Z,-Z L A S T\)
\(\mathrm{XDD}=\mathrm{XD}-\mathrm{XDI} A S T \quad\);omputes second differences
\(\mathrm{XDO}=\mathrm{XD}-\mathrm{XDLAST}\)
\(\mathrm{YDD}=\mathrm{YD}-\mathrm{YLAST}\)
\(\mathrm{M}=\mathrm{MN}+\mathrm{ABS}(\mathrm{XDC})+\mathrm{ABS}(\mathrm{YDO})+A B S(2)\)
[5 EVERY 32ND SAMPLE
[EXECUTE FREOUENCY SELECT YMNCTON 108
(See description below)
\(\mathrm{IN}=0\}\)
}
-continued
XLAST-X \(\quad\) move curtent vailues to last
\(Y L A S T=Y\)
ZLAST -2.
\(X D L A S T=X D\)
\(Y D L A S T=Y D\)

In another embodinent, the interferetoe evaluation function 1836 is not based on position signals. Instead the function asserts the drive enable signal deseribed above to a FALSE state and reads a resulting sytuhronous capacitance measurement. This measures charge coupled to the electrodes when no voltage is being driven across the electrodes by the apparatus. Sinch oharge must be the result of itterference, and so this interference (from spurious signals) is directly measured. This is another way to generate the interference measure, M ,
The pretered frequency select function 108 generates a table of historical intarference measurements for each frequency which may be selected. On system initialization, a each entry is set to zero. Thereafter, the frequency select function is activated approximately every 32 data points by the interference evaluation function \(\$ 6\). The curvent interference measure, \(\mathbb{M}\), is entered as the entry for the currenty selected ireguency in the table Then all table enties ate 2 scanned. The frequency having the lowesi interference measure entry is sclected as the new current frequency, and the corresponding \(M\) value is sent to the divide-by \((\mathrm{M}+\mathrm{N})\) clement 104. Approximately every 80 seconds, every entry in the table is decremented by an amount coresponding to 30 approximately 0.05 mm of position change. In this way, if a freguency is flagged as "bad" by having strong interference one time, it will not be flagged as "bad" permanentiy.

The functions described above for the ditherent embodiments could be caxisd out by a nicroprocessor such as part no. MC 68HC705P6 manufactured by Motorola, Inc. serving as the mictocontroller 182.

FiG. 8 shows an atternate preferied embodiment oif the reference frequency generator 16 ( P G. 1). It getierates a reference frequency signal that varies randomly. Each oycle of the signal has a different and substantially random period. It is extrenely unlikeby that a spurious signal would coherently follow the same sequence of random variation. Hence the spuriows signal is substantally repeoted by capacitatue measuremenths synchronous to the reference frequency. The degree of rejection is not as great as in the fommer embodiment, but the generator is simpler because interfenence cvaluation and frequency selection functions are not needed.

The generator of FRG. \& includes an oscillator 110 and a divide-by-( \(\mathrm{N}+\mathrm{M}\) ) circuit 112 . The value M supplied to the divider comes from a pseudo-randon number generator (RRNG) 114 which generates numbers in the range 0 to 15 . Each cycie of the reference ficquency clocks the PRNG 114 to produce a new number. PRNGs are well known in the art.

For cither embodiment in FIGS. 7 or 8 , the range of values for \(M\) in relation to the value of \(N\) can be increased or decreased to give a greater or lesser range of possible freguencies. The value of \(N\) or the oscillator frequency can be adjusted to change the maximum possible frequency. A phase-locked Irequency synthesizer such as the Motorola MC145151-2, or a voltage controlked oscillator diven by a DiA converter, coud also preferably be employed insead of the divide-by- \((\mathrm{M}+\mathrm{N})\) circuit.

It should be understood that other variations of the is prefered embodments described above fall with the scope of this invention. Such variations include different
electrode array geometry, such as a grid of strips, a grid of diamonds, paralle strips and various other shapes. Also included are different variations of electrode array fabrication, such as printed circait board (PCB), flex PCB, silk screen, sheet or foil metal stampings. Vanations of the kinds of eapachtance uilized are included, such as full balance (see Gerpheide '017), stray, mutual, half balance.

The above description has provided certain prefered embodiments in accordance with this invention. It is apparent by those skilled in the art that various modifications can be made within the spitit and scope of the invention, which are included within the soope of the following clams.

What is claimed is:
1. A capacitance-based proximity sensor for locating the position of an object white rejecting a frequency of electrical interference, comprising:
(a) an electrode array for forming capacitances which vaty with movernents of the object,
(b) measurement means coupled to the electrode array for mosuring the capacitances synchonobsy with a ref. erence signal, and
(c) generator means for supplying a reference signal to the measurement means, sad reference signal having a frequency which is not coberent with the frequency of electical interference, wherein the generator meats comprises mans for evaluating the electrical interference and for producing the reference signal, and wherein the evaluating means includes means for storing a table of frequencies of selected teference signals and measures of electrical interference IM for each of these frequencies, and for producing a reference signal whose frequenoy bas the lowest M associated therewith.
2. A capacitance-based proximity sensor for locating the position of an object while rejecting electrical intererence, comprising:
(a) an electode array for foming capacitances which vary with movements of the object,
(b) measurement means coupled to the electrode artay for measuring the capacitances synchronously with a reference signal,
(c) object locator means responsive to the measurement means for producing a position signal, having a high frequency component, indicating the postion of the object relative to the electrode amay,
(d) generator means for supplying a referenee signal to the measurement means, said reference signal having a trequency which is not coherent with the frequency of the electrical interierence, and wherein said generator means comprises
evaluation means responsive to the object locator means for determining the magnitude of the kigh frequency component of the position signal, and
means responsive to the evaluation means for changing the trequency of the reference signal when the magnitude of the high frequency component of the position signal exceeds a predetermined value.
3. A capacitance-based proximity sensor for locating the 0 position of an object while rejecting electrical interference, comprising:
(a) an electrode array for forming capacitances which vary with movements of the object,
(b) measurement means coupled to the electrode amay for measuring the capactances synchomonsly with a rederence signal, wherein said measurement means comprises
driver means for developing, synchronously with the reference signal, volkage changes on the electrode aray,
charge measuring means for measuring, synchonously with the reference signal, charges oupled to the 5 electrode array and thus capacitance,
means for selectively inhibiting the driver means from developing voitage changes, the coupled obarge measurements made during inhibition of the driver means representing the interference measure M , and
(c) generator means for supplying a reference signal to the measurement means, said reference signal having a frequency which is not cohertent with the frequency of the electrical interference, wherein said genemator means includes means for chatging the frequency of 1 the reference signal when the interference measure IM exoeds a predetermined level.
4. The proximity sensor as in clam 3 wherein the generator means further includes means for storing a table of freguencies of reference signals and associated interference measures M made for reference signals with each of such frequencies, and for producing a teference signal whose frequency has the lowest interference measure IM assuciated therewith.
5. A capacitance-based proximity sensor for locating the 2 position of an object whie rejecting electrical interference, comprising:
(a) an electrode array for forming capacitances which vary with movements of the object, wherein the electrode array comprises a plurality of first electrode sitrips spaced apart from each other in a first array, and a plutaity of second electude strips spaced apat from each other and in close proximity with the first clecrode strips;
(b) measurement means coupled to the electrode amay for measuring the capacitances synchronously with a relerence signal, and
(c) geterator mans for supplying a reference signal to the measurement means, said reference signal having a so frequancy which is not conerent with the frequency of the clectrical intericrence.
6. The proximity sensor of claim 5 wherein the measurement means includes
driver means for developing, synchronousiy with the 45 refetence signal, voltage changes on the electrode array,
a chatge transfer means coupled to the electrode array for prodacing synchronously with the frequency of the rcference signal, measutement signals representing charges couplect onto the elecrode array as a resut of the voltage changes,
sytichronous demodulator means coupled to the charge transer means for rectifying the measurement signals synchronously with the reference signal, and
low pass fiter means coupled to the synchronous femownator means for producing signals representing the average DC values of the rectified signals, and thus representiog the capacitances of the electrode aray.
7. The proximity sensor of cham 6 wherein the measurement means includes a plurality of capacitance measurement elements, each being connected to a respective electrode strip.
8. The proximity sensor of claim 7 further comprising a plurality of syuchronous demodulation elements, each con-
9. The proximity sensor of claim further including a position locator means connected to the output of the measurement means for providing a position signal representative of the location of the object relative to the electrode 0 array.
10. The detection symem of claim 1 wherein the electrode array comprises first and second electrode sets spaced from each other to develog a capacitance for the touch pad.
11. The detection system of claim 118 wherein the first and second set of electrodes are generally orthogonal to each other to form virual electrodes to provide capacitance.

12, The detection system of claim 1 wheren the measuring means comprises a capacitive measurement element coupled to the electrode amay, a synchronous demodulator coupled to the capactive measurement element, and a low-pass filter coupled to the demodulator
13. A method of sensing the position of an object on an electrode array comprising the steps of:
(a) generating capacitances on the amay which vary with movement of the object,
(b) measuring the capacitances on the array synchronously with the frequency of a reference signal, and
(c) generatug a reference signal having a frequency which is not coherent with the frequencies of the electricel interference affecting the ompactances by evaluaing the clectrical interference, storing a table of frequencies of selected reference signals and measures of eleurical interierence \(M\) for each of these frequencies, and for producing a reference signal whose ftequercy has the lowest M associated therewith.
14. The method of clam 13 and further including producing a signal indicating the position of the object relative to the electrode artay.

\section*{EXHIBIT E}


\title{
NOW... THE INVISIBLE CASIO CALCULATOR WATCH
}

\section*{Finger-write your figures on the watch face.}

 AK \(Q 6\)





 +80.



\section*{}












 metromes








 Tamos 8 8 man .







 8 s.
 MARYEx WORXS


\section*{}



 जि cेor mas








\section*{}

3 \% 《









 \(3 \% 36 \leqslant 813.58\).
 \(0 \times 0\).









\section*{}


 3 K


\section*{800-437-4385}

\section*{OnTheRun}









\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
\begin{tabular}{lllll} 
U.S. Patent No.: & \(5,796,183 \mathrm{~B} 1\) & \(\S\) & Docket No.: & \(5796183 \mathrm{RX2}\) \\
Issued: & August 18,1998 & \(\S\) & Inventors: & Hourmand et al. \\
Filed: & January 31, 1996 & \(\S\) & Patent Owner: & UUSI, LLC \\
Control No. & TBD & \(\S\) & Examiner: & TBD
\end{tabular}

For: Capacitive Responsive Electronic Switching Circuit
Mail Stop Ex Parte Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{AMENDMENT ACCOMPANYING REQUEST FOR EX PARTE REEXAMINATION UNDER 35 U.S.C. \(\$ \$\) 302-307}

Dear Sir:
Patent Owner UUSI, LLC respectfully submits the following amendments and remarks in conjunction with its contemporaneous request for Ex Parte Reexamination, pursuant to the provisions of 35 U.S.C. §§ 302-307 (2002), of claims 18 and 27 of United States Patent No. 5,796,183 C1 (the " 183 Patent"). The Patent Owner respectfully requests the following amendments and remarks be entered and respectfully requests consideration of amended claims 18 and 27 and newly added claims 40-105.

\section*{I. LISTING OF THE `183 PATENT CLAIMS UNDER REEXAMINATION}

A listing of each claim for which reexamination has been requested is provided below. Reexamination of claims 18 and 27 is requested contemporaneously with this amendment. Accordingly, please amend claims 18 and 27 and cancel claim 35 as provided below. In addition, please add new claims 40-105 as follows.
18. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency; a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad; the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an

Page 2 of 142
input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
27. (Amended) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
35. (Cancelled) [[The capacitive responsive electronic switching circuit as defined in claim 27 , wherein when the second touch terminal is not touched on its defining area by the operator to provide input, the control output signal is prevented.]]
40. (New) The capacitive responsive electronic switching circuit as defined in claim 18, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.
41. (New) The capacitive responsive electronic switching circuit as defined in claim 18 , wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.
42. (New) The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . 43. (New) The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
44. (New) The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
45. (New) A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from
said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
46. (New) The capacitive responsive electronic switching circuit as defined in claim 45 , wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
47. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
48. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein the signal output frequencies have a same Hertz value.
49. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein each signal output frequency is selected from a plurality of Hertz values.
50. (New) The capacitive responsive electronic switching circuit as defined in claim 49. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
51. (New) The capacitive responsive electronic switching circuit as defined in claim 49. wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
52. (New) The capacitive responsive electronic switching circuit as defined in claim 49. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
53. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein a peak voltage of the signal output frequencies is greater than a supply voltage.
54. (New) The capacitive responsive electronic switching circuit as defined in claim 53, wherein the supply voltage is a battery supply voltage.
55. (New) The capacitive responsive electronic switching circuit as defined in claim 53. wherein the supply voltage is a voltage regulator supply voltage.
56. (New) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency:
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
57. (New) The capacitive responsive electronic switching circuit as defined in claim 56. wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
58. (New) The capacitive responsive electronic switching circuit as defined in claim 56, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
59. (New) The capacitive responsive electronic switching circuit as defined in claim 56, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.
60. (New) The capacitive responsive electronic switching circuit as defined in claim 56, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.
61. (New) The capacitive responsive electronic switching circuit as defined in claim 60 , wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
62. (New) The capacitive responsive electronic switching circuit as defined in claim 60, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
63. (New) The capacitive responsive electronic switching circuit as defined in claim 60 . wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
64. (New) The capacitive responsive electronic switching circuit as defined in claim 56. wherein the supply voltage is a battery supply voltage.
65. (New) The capacitive responsive electronic switching circuit as defined in claim 56, wherein the supply voltage is a voltage regulator supply voltage.
66. (New) The capacitive responsive electronic switching circuit as defined in claim 27, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.
67. (New) The capacitive responsive electronic switching circuit as defined in claim 27. wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.
68. (New) The capacitive responsive electronic switching circuit as defined in claim 67. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
69. (New) The capacitive responsive electronic switching circuit as defined in claim 67. wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
70. (New) The capacitive responsive electronic switching circuit as defined in claim 67. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
71. (New) The capacitive responsive electronic switching circuit as defined in claim 27. wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
72. (New) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
73. (New) The capacitive responsive electronic switching circuit as defined in claim 72, wherein the signal output frequencies have a same Hertz value.
74. (New) The capacitive responsive electronic switching circuit as defined in claim 72, wherein each signal output frequency is selected from a plurality of Hertz values.
75. (New) The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
76. (New) The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
77. (New) The capacitive responsive electronic switching circuit as defined in claim 74. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz . 78. (New) The capacitive responsive electronic switching circuit as defined in claim 72. wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
79. (New) The capacitive responsive electronic switching circuit as defined in claim 72. further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
80. (New) The capacitive responsive electronic switching circuit as defined in claim 72 , wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
81. (New) The capacitive responsive electronic switching circuit as defined in claim 72. wherein a peak voltage of the signal output frequencies is greater than a supply voltage.
82. (New) The capacitive responsive electronic switching circuit as defined in claim 81 . wherein the supply voltage is a battery supply voltage.
83. (New) The capacitive responsive electronic switching circuit as defined in claim 81 , wherein the supply voltage is a voltage regulator supply voltage.

\section*{84. (New) A capacitive responsive electronic switching circuit for a controlled keypad} device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein a peak voltage of the signal output frequencies is greater than a supply voltage:
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
85. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein the signal output frequencies have a same Hertz value.
86. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein each signal output frequency is selected from a plurality of Hertz values.
87. (New) The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . 88. (New) The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
89. (New) The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
90. (New) The capacitive responsive electronic switching circuit as defined in claim 84. wherein the supply voltage is a battery supply voltage.
91. (New) The capacitive responsive electronic switching circuit as defined in claim 84. wherein the supply voltage is a voltage regulator supply voltage.
92. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
93. (New) The capacitive responsive electronic switching circuit as defined in claim 84, further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
94. (New) The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.

\section*{95. (New) A capacitive responsive electronic switching circuit for a controlled keypad} device comprising:
an oscillator providing a periodic output signal having a predefined frequency:
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad
device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
96. (New) The capacitive responsive electronic switching circuit as defined in claim 95, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.
97. (New) The capacitive responsive electronic switching circuit as defined in claim 95, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.
98. (New) The capacitive responsive electronic switching circuit as defined in claim 97. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
99. (New) The capacitive responsive electronic switching circuit as defined in claim 97. wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
100. (New) The capacitive responsive electronic switching circuit as defined in claim 97. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
101. (New) The capacitive responsive electronic switching circuit as defined in claim 95. wherein the supply voltage is a battery supply voltage.
102. (New) The capacitive responsive electronic switching circuit as defined in claim 95. wherein the supply voltage is a voltage regulator supply voltage.
103. (New) The capacitive responsive electronic switching circuit as defined in claim 95, wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
104. (New) The capacitive responsive electronic switching circuit as defined in claim 95 , further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
105. (New) The capacitive responsive electronic switching circuit as defined in claim 95, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.

\section*{II. STATUS OF THE CLAIMS}

Claims 1-17, 19-26, 28-34, and 36-39 are unamended with respect to the first Ex Parte Reexamination Certificate No. 5,796,183 C1 issued April 29, 2013. Claim 35 has been cancelled herein. Claims 18 and 27 have been amended, and claims 40-105 are newly added. The present amendment neither enlarges the scope of the claims of the patent nor introduces new matter.

\section*{III. DISCUSSION OF CLAIMS AND PRIOR ART REFERENCES}

Patent Owner has filed a Request for Ex Parte Reexamination contemporaneously with this amendment submitting that a substantial new question of patentability of claim 18 is raised by the combination of U.S. Patent No. 5,463,388 ("Boie") and U.S. Patent No. 5,565,658 ("Gerpheide") and a substantial new question of patentability of claim 27 is raised by the combination of Boie, Gerpheide and the advertisement entitled "Now...The Invisible Casio Calculator Watch" ("Casio").

Patent Owner is amending claims 18 and 27, canceling claim 35, and adding new claims 40-105 in this amendment. Accordingly, Patent Owner respectfully requests consideration of amended claims 18 and 27 and new claims 40-105. The present amendment neither enlarges the scope of the claims of the patent nor introduces new matter.

\section*{A. REFERENCES OF INTEREST}

Reference 1: Boie et al., U.S. Patent No. 5,463,388, filed on January 29, 1993 and issued on October 31, 1995 ("Boie"), which qualifies as 35 U.S.C. § 102(a)-type prior art.

Reference 2: Gerpheide et al., U.S. Patent No. 5,565,658, filed on December 7, 1994 and issued on October 15, 1996 ("Gerpheide"), which qualifies as 35 U.S.C. § 102(e)-type prior art.

Reference 3: Casio advertisement entitled "Now... The Invisible Casio Calculator Watch," published in Popular Science by On the Run in 1984 ("Casio"), which qualifies as 35 U.S.C. § 102(b)-type prior art.

Reference 4: Lee, thesis entitled "A Fast Multiple-Touch-Sensitive Input Device," and published October 1984 ("Lee"), which qualifies as 35 U.S.C. § 102(b)type prior art.

References 1-3 above are discussed in detail in the Request for Ex Parte Reexamination filed herewith, which discussion is incorporated herein by reference. A discussion of reference 4 (Lee) follows.

Lee generally relates to "the design and implementation of a fast-scanning multiple-touch-sensitive input device." See, e.g., Lee, Abstract. Lee describes the hardware of his device as consisting of a sensor matrix board, row and column selection registers, \(\mathrm{A} / \mathrm{D}\) converting circuits and a dedicated CPU. See id. Figure 3.4, reproduced below, illustrates a block diagram of the hardware.


ES. 3.4 Elank siagram of the hataware.

Lee, Figure 3.4

Page 18 of 142

Lee describes the operation of the row and column selection registers as follows:
The design of the sensor matrix is based on the technique of capacitance measurement between a finger tip and a metal plate. The row selection registers select one or more rows by setting the corresponding bits to a high state in order to charge up the sensors while the column selection registers select one or more columns by turn on corresponding analog switches to discharge the sensors through timing resistors. The intersecting region of the selected rows and the selected columns represents the selected sensors as a unit.

Id. at 3-1. Figure 3.1(a) shows a model of a selected sensor in the sensor matrix and Figure
3.1(b) shows the timing diagram for discharging time measurement of a selected sensor as shown in Figure 3.1(a). Figure 3.2 illustrates a small section of a sensor matrix according to Lee.


Lee, Figure 3.1(a)


Lee, Figure 3.1(b)

Page 19 of 142


\section*{Lee, Figure 3.2}

Lee describes the interface between the CPU and the sensor matrix as follows:
The CPU selects the row or rows of a sensor group, initiating charging of all the associated sensors. After a charging interval, the CPU discharges the selected column or columns corresponding to a sensor group by connecting a group of discharge resistors whose current is summed via a high slew rate operational amplifier.

Id. at 3-10. As illustrated by the data bus of Figure 3.4, Lee teaches the CPU selects or deselects the row(s) by sending binary signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. Lee does not disclose sending frequencies to the selected rows.

\section*{B. DISCUSSION OF CLAIMS}

\section*{Independent Claim 18}

Independent claim 18 as amended herein recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that " \([t]\) he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60; see id. at Fig. 4. Thus, Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest a microcontroller providing signal output frequencies to these components, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad.

Neither Gerpheide nor Lee cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies selectively to each row of the input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the "reference frequency signal is supplied to unit 14 via an AND gate \(72 \ldots\). The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive
measurement element 78." See id. at col. 6:19-26; Fig. 4. Thus, the output of AND gate 72 is sent to every row of electrode array 12 via one of inverter 74 and noninverting buffer 76 at the same time. Therefore, Gerpheide does not disclose a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad.

Likewise, Lee does not teach or suggest that a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad. Rather, Lee teaches the CPU selects or deselects row(s) by sending binary signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. In contrast, claim 18 recites selectively providing a signal output frequency to each row of the touch terminals.

Accordingly, Boie in combination with Gerpheide and/or Lee does not disclose all of the elements of claim 18, and therefore claim 18 is patentable over these references.

New claims 40-44 depend from claim 18 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{Independent Claim 27}

Independent claim 27 as amended herein recites "the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that " \([t]\) he effects of electrode-to-electrode
capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60; see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals.

None of Gerpheide, Lee or Casio cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies selectively to each row of the input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the "reference frequency signal is supplied to unit 14 via an AND gate \(72 \ldots\). The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78." See id. at col. 6:19-26; Fig. 4. Thus, the output of AND gate 72 is sent to every row of electrode array 12 via one of inverter 74 and noninverting buffer 76 at the same time. Therefore, Gerpheide does not disclose a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad.

Likewise, Lee does not teach or suggest that a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad. Rather, Lee teaches the CPU selects or deselects row(s) by sending binary signals to the selected row(s). See,
e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. In contrast, claim 27 recites selectively providing a signal output frequency to each row of the touch terminals.

Casio discloses input touch terminals comprising first and second input touch terminals, see, e.g., Figure, but fails to provide any teaching with respect to the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad.

Accordingly, Boie in combination with Gerpheide, Lee and/or Casio does not disclose all of the elements of claim 27, and therefore claim 27 is patentable over these references.

New claims 66-71 depend from claim 27 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{Independent Claim 45}

Independent claim 45 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that " \([t]\) he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id at col. 4:58-60; see id. at Fig. 4. Thus, Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal sent from oscillator 408. Therefore, Boie does not
teach or suggest a microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad.

Neither Gerpheide nor Lee cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies directly to a plurality of small sized input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the microprocessor provides value M , i.e., a selected frequency, to a divide-by- \((\mathrm{M}+\mathrm{N})\) circuit 104 which then outputs the reference frequency signal to AND gate 72. See, e.g., id. at col. 8:31-38; col. 6:1926; Figs. 4 and 7. Thereafter, the output of AND gate 72 is sent to electrode array 12 via one of inverter 74 and noninverting buffer 76. See, e.g., id. at col. 6:19-26; Fig. 4. Therefore, Gerpheide does not disclose the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad.

Lee does not teach or suggest that signal output frequencies are directly provided from a microcontroller to the plurality of small sized input touch terminals of a keypad. Rather, Lee teaches the CPU selects or deselects row(s) by sending binary signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. In contrast, claim 45 recites a microcontroller selectively provides signal output frequencies directly to the touch terminals.

Accordingly, Boie in combination with Gerpheide and/or Lee does not disclose all of the elements of claim 45 , and therefore claim 45 is patentable over these references.

New claims \(46-55\) depend from claim 45 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{Independent Claim 56}

Independent claim 56 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage." None of the cited references, alone or in combination, teaches or suggests these limitations.

As discussed above with respect to claims 18 and 27, the cited references, either alone or in combination, fail to teach or suggest the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad. Moreover, none of the cited references teaches or suggests wherein a peak voltage of the signal output frequencies is greater than a supply voltage.

Accordingly, Boie in combination with Gerpheide and/or Lee does not disclose all of the elements of claim 56, and therefore claim 56 is patentable over these references.

New claims 57-65 depend from claim 56 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{Independent Claim 72}

Independent claim 72 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that " \([t]\) he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60; see id. at Fig. 4. Thus, Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal sent from oscillator 408. Therefore, Boie does not teach or suggest a microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad.

None of Gerpheide, Lee or Casio cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies directly to a closely spaced array of input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the microprocessor provides value M, i.e., a selected frequency, to a divide-by-(M+N) circuit 104 which then outputs the reference frequency signal to AND gate 72. See, e.g., id. at col. 8:31-38;
col. 6:19-26; Figs. 4 and 7. Thereafter, the output of AND gate 72 is sent to electrode array 12 via one of inverter 74 and noninverting buffer 76. See, e.g., id. at col. 6:19-26; Fig. 4. Therefore, Gerpheide does not disclose the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad.

Lee does not teach or suggest that signal output frequencies are directly provided from a microcontroller to the plurality of small sized input touch terminals of a keypad. Rather, Lee teaches the CPU selects or deselects row(s) by sending binary signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. In contrast, claim 72 recites a microcontroller selectively provides signal output frequencies directly to the touch terminals.

Casio discloses input touch terminals comprising first and second input touch terminals, see, e.g., Figure, but fails to provide any teaching with respect to the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad.

Accordingly, Boie in combination with Gerpheide, Lee and/or Casio does not disclose all of the elements of claim 72 , and therefore claim 72 is patentable over these references.

New claims 73-83 depend from claim 72 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{Independent Claim 84}

Independent claim 84 recites "the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein a peak voltage of the signal output frequencies is greater than a supply voltage."

None of the cited references, alone or in combination, teaches or suggests at least wherein a peak voltage of the signal output frequencies is greater than a supply voltage. Accordingly, Boie in combination with Gerpheide, Casio and/or Lee does not disclose all of the elements of claim 84, and therefore claim 84 is patentable over these references.

New claims 85-94 depend from claim 84 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{Independent Claim 95}

Independent claim 95 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage." None of the cited references, alone or in combination, teaches or suggests these limitations.

As discussed above with respect to claims 18,27 and 56 , the cited references, either alone or in combination, fail to teach or suggest a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad. Moreover, none of the cited references teaches or suggests wherein a peak voltage of the signal output frequencies is greater than a supply voltage.

Accordingly, Boie in combination with Gerpheide, Casio and/or Lee does not disclose all of the elements of claim 95 , and therefore claim 95 is patentable over these references.

New claims 96-105 depend from claim 95 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{IV. SUPPORT FOR CLAIM AMENDMENTS AND NEW CLAIMS}

Support for each of the amendments to claims 18 and 27 and for each of the new claims 40-105 may be found throughout the ` 183 Patent, and particular support may be found, for example, as set forth in the charts below.

\section*{A. Amended Claim 18}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{183 Patent Claim Language } & \\
\hline \begin{tabular}{l} 
18. A capacitive responsive electronic \\
switching circuit comprising:
\end{tabular} & -- \\
\hline \begin{tabular}{l} 
an oscillator providing a periodic \\
output signal having a predefined \\
frequency;
\end{tabular} & -- \\
\hline \begin{tabular}{l} 
a microcontroller using the \\
periodic output signal from the oscillator, \\
the microcontroller selectively providing \\
signal output frequencies, wherein a \\
signal output frequency is selectively
\end{tabular} & \begin{tabular}{l} 
See Figures 4, 11; and Claims 8, 12, 16. \\
The `183 Patent discloses "The touch detection \\
circuit of the present invention features operation \\
at frequencies at or above 50kHz and preferably \\
at or above 800 kHz to minimize the effects of to each row of a plurality of \\
surface contamination from materials such a \\
small sized input touch terminals of a \\
keypad;
\end{tabular} \\
[sic] skin oils and water. It also offers \\
improvements in detection sensitivity that allow \\
close control of the degree of proximity (ideally \\
very close proximity) that is required for \\
actuation and to enable employment of a \\
multiplicity of small sized touch terminals in a \\
physically close array such as a keyboard." Col. \\
\(5: 49-57\).
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The `183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. \\
Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as \(900_{1}\) through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). \\
Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to \(900_{\mathrm{nm}}\) by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline 183 Patent Claim language & \begin{tabular}{l} 
(typically glass) bearing the conductive touch \\
pads to eliminate air gaps and the need for \\
conductive foam pads and spring contacts which \\
were used to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline \multicolumn{1}{|c|}{ the plurality of small sized input } & -- \\
\begin{tabular}{l} 
touch terminals defining adjacent areas on \\
a dielectric substrate for an operator to \\
provide inputs by proximity and touch; \\
and
\end{tabular} & \\
\hline \multicolumn{1}{|c|}{ a detector circuit coupled to said } & -- \\
\begin{tabular}{l} 
oscillator for receiving said periodic \\
output signal from said oscillator, and \\
coupled to said input touch terminals, said \\
detector circuit being responsive to signals \\
from said oscillator via said \\
microcontroller and a presence of an \\
operator's body capacitance to ground \\
coupled to said touch terminals when \\
proximal or touched by the operator to \\
provide a control output signal,
\end{tabular} & \\
\hline \multicolumn{1}{|c|}{ wherein said predefined frequency }
\end{tabular}\(\quad\)--

\section*{B. Amended Claim 27}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & 183 Patent Support \\
\hline 27. A capacitive responsive electronic switching circuit for a controlled keypad device comprising: & -- \\
\hline
\end{tabular}

Page 33 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & -- \\
\hline a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals; & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The `183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. \\
Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. \\
Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|c|l|}\hline \text { 183 Patent Claim Language } & \begin{array}{l}\text { similar to those in the first embodiment in FIG. 4 } \\ \text { are designated with the same references } \\ \text { numerals and will not be discussed in detail. } \\ \text { The multiple touch pad circuit is a variation of } \\ \text { the first embodiment in that it includes an array } \\ \text { of touch circuits designated as 900, through } \\ 900_{\text {nm, which, as shown, include both the touch }}^{\text {circuit 400 shown in FIGS. 4 and 8 and the input }} \\ \text { touch terminal pad 451 (FIG. 4). } \\ \text { Microcontroller 500 selects each row of the } \\ \text { touch circuits 900 to 900 } \\ \text { signal by prom oscillator 200 to selected rows of } \\ \text { touch circuits. In this manner, microcontroller }\end{array} \\ 500 \text { can sequentially activate the touch circuit } \\ \text { rows and associate the received inputs from the } \\ \text { columns of the array with the activated touch } \\ \text { circuit(s). To keep the path length 451 between } \\ \text { the touch pad 450 and the base to the detection } \\ \text { transistor 410 to a minimum, the detection } \\ \text { circuits 900 are physically located directly } \\ \text { beneath the touch pads. To simplify assembly, a } \\ \text { flexible circuit board such as vended by }\end{array}\right\}\)
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal. & \\
\hline
\end{tabular}

\section*{C. New Claim 40}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 40. The capacitive responsive electronic switching circuit as defined in claim 18, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value. & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{D. New Claim 41}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 41. The capacitive responsive electronic switching circuit as defined in claim 18, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values. & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{E. New Claim 42}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & 183 Patent Support \\
\hline 42. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Patent Claim Language & \begin{tabular}{l} 
of the path to ground for pad 59 being twice that \\
of the touched pad 57. For cases where \\
background noise and temperature drifts are \\
comparatively small, a 100 kHz oscillator \\
frequency would allow a sufficiently low \\
detection threshold to be set to differentiate \\
between the signal changes induced at both pads \\
by a human touch opposite a single pad. At 800 \\
kHz, the impedance of the glass drops to 200 k \(\Omega\) \\
or lower giving a ratio of a greater than 5 to 1 \\
impedance difference between the paths to \\
ground of the touched pad 57 and adjacent pads \\
59. In fact, the impedance ratio may exceed 10 \\
to 1, as illustrated in the calculation below. This \\
allows the detection threshold for the touched \\
pad to be set well below that of an adjacent pad \\
resulting in a much lower incidence of \\
inadvertent actuation of adjacent touch pads to \\
that of the touched pad. Ideally, the frequency of \\
operation would be kept at the 800 kHz of the \\
preferred embodiment or even higher. However, \\
as noted earlier, higher frequency operation \\
forces the use of more expensive components \\
and designs. For applications where thermal drift \\
and electronic noise levels are low, operation at \\
or near 100 kHz may be possible. However, at
\end{tabular} \\
10 kHz and below, the impedance of the glass \\
becomes much greater than that of likely water \\
bridges between pads resulting in adjacent pads \\
being effected as much by a touch as the touched \\
pad itself. Although the preferred frequency is at \\
or above 100 kHz, and more preferably at or \\
above 800 kHz, it is conceivable that frequencies \\
as low as 50 kHz could be used provided the \\
frequency creates a difference in the impedance \\
paths of adjacent pads that is sufficient enough \\
to accurately distinguish between an intended \\
touch and the touch of an adjacent pad. Use of \\
frequencies as low as 50 kHz may also be \\
possible depending upon the type of glass or \\
covering or the thickness thereof used for the \\
touch pad. Col. 10:60 - Col. 11:27.
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{F. New Claim 43}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 43. The capacitive responsive electronic switching circuit as defined in claim 41 , wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|c|l|}\hline 183 \text { Patent Claim Language } & \begin{array}{l}\text { 59. In fact, the impedance ratio may exceed 10 } \\ \text { to 1, as illustrated in the calculation below. This } \\ \text { allows the detection threshold for the touched } \\ \text { pad to be set well below that of an adjacent pad } \\ \text { resulting in a much lower incidence of } \\ \text { inadvertent actuation of adjacent touch pads to } \\ \text { that of the touched pad. Ideally, the frequency of } \\ \text { operation would be kept at the 800 kHz of the } \\ \text { preferred embodiment or even higher. However, } \\ \text { as noted earlier, higher frequency operation } \\ \text { forces the use of more expensive components } \\ \text { and designs. For applications where thermal drift } \\ \text { and electronic noise levels are low, operation at } \\ \text { or near 100 kHz may be possible. However, at } \\ 10 \text { kHz and below, the impedance of the glass } \\ \text { becomes much greater than that of likely water } \\ \text { bridges between pads resulting in adjacent pads } \\ \text { being effected as much by a touch as the touched } \\ \text { pad itself. Although the preferred frequency is at } \\ \text { or above 100 kHz, and more preferably at or } \\ \text { above 800 kHz, it is conceivable that frequencies } \\ \text { as low as 50 kHz could be used provided the } \\ \text { frequency creates a difference in the impedance } \\ \text { paths of adjacent pads that is sufficient enough } \\ \text { to accurately distinguish between an intended } \\ \text { touch and the touch of an adjacent pad. Use of } \\ \text { frequencies as low as 50 kHz may also be } \\ \text { possible depending upon the type of glass or } \\ \text { covering or the thickness thereof used for the } \\ \text { touch pad. Col. 10:60 - Col. 11:27. }\end{array} \\ \text { The `183 Patent discloses "As will be apparent } \\ \text { to those skilled in the art, the values of the } \\ \text { resistors and capacitors utilized in oscillator 200 } \\ \text { may be varied from those disclosed above to } \\ \text { provide for different oscillator output } \\ \text { frequencies. As discussed above, however, } \\ \text { oscillator 200 is preferably constructed so as to } \\ \text { output a square wave having a frequency of 50 } \\ \text { kHz or greater, and more preferably, of 800 kHz } \\ \text { or greater. Col. 14:22-28. } \\ \text { The `183 Patent disclosed "The combination of } \\ \text { oscillator voltage, frequency and transistor gain }\end{array}\right\}\)
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. \\
\hline
\end{tabular}

\section*{G. New Claim 44}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 PatentSupport \\
\hline 44. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz . & \begin{tabular}{l}
See Fig. 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{H. New Claim 45}

For ease of analysis, new independent claim 45 is shown below with pseudo-amendments illustrating the differences between new claim 45 and claim 18 of the ` 183 Patent following the
first reexamination proceeding.
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ 183 Patent Claim Language } & \\
\hline \begin{tabular}{l} 
45. A capacitive responsive electronic \\
switching circuit comprising:
\end{tabular} & See Claim 18. \\
\hline \begin{tabular}{c} 
an oscillator providing a periodic \\
output signal having a predefined \\
frequency;
\end{tabular} & See Claim 18. \\
\hline a microcontroller using the & See Figures 4, 11; and Claims 8, 12, 16. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad; & \begin{tabular}{l}
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The ` 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300, a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. \\
Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. \\
Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
the first embodiment in that it includes an array of touch circuits designated as \(900_{1}\) through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). \\
Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to \(900_{\mathrm{nm}}\) by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and & See Claim 18. \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal, & See Claim 18. \\
\hline wherein said predefined frequency of said oscillator and said signal output & See Claim 18. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{183 Patent Claim Language } & \\
\hline frequencies are selected to decrease a first & \\
impedance of said dielectric substrate \\
relative to a second impedance of any \\
contaminate that may create an electrical \\
path on said dielectric substrate between \\
said adjacent areas defined by the \\
plurality of small sized input touch \\
terminals, and wherein said detector \\
circuit compares a sensed body \\
capacitance change to ground proximate \\
an input touch terminal to a threshold \\
level to prevent inadvertent generation of \\
the control output signal.
\end{tabular}

\section*{I. New Claim 46}

For ease of analysis, new dependent claim 46 is shown below with pseudo-amendments
illustrating the differences between new claim 46 and claim 33 of the \(` 183\) Patent following the
first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 46. The capacitive responsive electronic switching circuit as defined in claim 45 , futher comprising wherein said detector eirevitcompares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input touch terminal is compared to a second threshold level to generate the control output signal. & \begin{tabular}{l}
See Claims 1, 18, 28, and 33. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
The `183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & . 183 Patent Support \\
\hline & \begin{tabular}{l} 
touched, the output signal at the collector \\
terminal of transistor 410 and across pulse \\
stretcher circuit 417 will be zero volts. When, \\
however, a person touches the touch pad 450, \\
that person's body capacitance to ground couples \\
the base of transistor 410 to ground 103 through \\
resistor 413, thereby forward biasing transistor \\
410 into conduction. This charges capacitor 418 \\
providing a positive DC voltage with respect to \\
the line 301 and causes the output of the Schmitt \\
trigger 420 to go low. Diode 414 is coupled \\
across the base to emitter junction of transistor \\
410 to clamp the base emitter reverse bias \\
voltage to -0.7V and also reduce the forward \\
recovery and turn-on time. Col. 15:29-47.
\end{tabular} \\
\hline
\end{tabular}

\section*{J. New Claim 47}

For ease of analysis, new dependent claim 47 is shown below with pseudo-amendments
illustrating the differences between new claim 47 and claim 34 of the ' 183 Patent following the
first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline \begin{tabular}{l}
47. The capacitive responsive electronic switching circuit as defined in claim 45, \\
futher comprising wherein said detector eirevit ompares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input toweh terminat is compared to a second threshold level to generate the control output signal.
\end{tabular} & \begin{tabular}{l}
See Claims 1, 18, 28, and 34. \\
The `183 Patent discloses "Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. \(4,758,735\) and U.S. Pat. No. \(5,087,825\). With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56.
\end{tabular} \\
\hline
\end{tabular}

Page 51 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
The '183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
The ` 183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. \\
The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Patent Claim Language & \begin{tabular}{l} 
Pr lower giving a ratio of a greater than 5 to 1 \\
impedance difference between the paths to \\
ground of the touched pad 57 and adjacent pads \\
59. In fact, the impedance ratio may exceed 10 \\
to 1, as illustrated in the calculation below. This \\
allows the detection threshold for the touched \\
pad to be set well below that of an adjacent pad \\
resulting in a much lower incidence of \\
inadvertent actuation of adjacent touch pads to \\
that of the touched pad. Col. 10:54 - Col. 11:9.
\end{tabular} \\
\begin{tabular}{l} 
The `183 Patent discloses "As stated above, the \\
operator's body includes a capacitance to \\
ground, which may range in a typical person \\
from between 20 to 300 pF. The base terminal \\
of transistor 410 is coupled to it's [sic] emitter \\
by resistor 412 such that unless capacitance is \\
present by the user touching the touch pad 450, \\
transistor 410 will not be forward biased and will \\
not conduct. Thus, when touch pad 450 is not \\
touched, the output signal at the collector \\
terminal of transistor 410 and across pulse \\
stretcher circuit 417 will be zero volts. When, \\
however, a person touches the touch pad 450, \\
that person's body capacitance to ground couples \\
the base of transistor 410 to ground 103 through \\
resistor 413, thereby forward biasing transistor \\
410 into conduction. This charges capacitor 418 \\
providing a positive DC voltage with respect to \\
the line 301 and causes the output of the Schmitt \\
trigger 420 to go low. Diode 414 is coupled \\
across the base to emitter junction of transistor \\
410 to clamp the base emitter reverse bias \\
voltage to - - 7V and also reduce the forward \\
recovery and turn-on time. Col. 15:29-47.
\end{tabular} \\
\hline
\end{tabular}

\section*{K. New Claim 48}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline 48. The capacitive responsive electronic switching circuit as defined in claim 45 , wherein the signal output & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably
\end{tabular} \\
\hline
\end{tabular}

Page 53 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline frequencies have a same Hertz value. & \begin{tabular}{l}
at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{L. New Claim 49}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline 49. The capacitive responsive electronic switching circuit as defined in claim 45 , wherein each signal output frequency is selected from a plurality of Hertz values. & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low
\end{tabular} \\
\hline
\end{tabular}

Page 55 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however,
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{M. New Claim 50}
\begin{tabular}{|c|c|}
\hline 18s Patent Clam language & \#183 Patent Support \\
\hline 50. The capacitive responsive electronic switching circuit as defined in claim 49, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The '183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{N. New Claim 51}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 51. The capacitive responsive electronic switching circuit as defined in claim 49 , wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{O. New Claim 52}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 52. The capacitive responsive electronic switching circuit as defined in claim 49 , wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz . & \begin{tabular}{l}
See Fig. 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & The "183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. \\
\hline
\end{tabular}

\section*{P. New Claim 53}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & I 183 Patent Support \\
\hline 53. The capacitive responsive electronic switching circuit as defined in claim 45 , wherein a peak voltage of the signal output frequencies is greater than a supply voltage. & \begin{tabular}{l}
See Figures 4, 5; Claims 27 and 37. \\
The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. \\
Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. \\
Upon being powered by voltage regulator 100, oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6." Col. 11:60-Col. 12:13. \\
The ` 183 Patent discloses "Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to 900 nm by providing the signal from oscillator
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s)." Col. 18:4349. \\
The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130 . AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. \\
The `183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The output of the touch switch circuitry drops at a rate of approximately \(40 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). when temperature falls below \(0^{\circ} \mathrm{C}\). If application requires operation at low temperatures \(\left(-40^{\circ} \mathrm{C}\right.\). \()\), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41.
\end{tabular} \\
\hline
\end{tabular}

\section*{Q. New Claim 54}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & Raten Support \\
\hline \begin{tabular}{l} 
54. The capacitive responsive \\
electronic switching circuit as defined in \\
claim 53 , wherein the supply voltage is a \\
battery supply voltage.
\end{tabular} & \begin{tabular}{l} 
The `183 Patent discloses "It will be apparent to \\
those skilled in the art, that various components \\
of voltage regulator 100 may be added or \\
excluded depending upon the source of power \\
available to power the oscillator 200. For \\
example, if the available power is a 110 V AC
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & .183 Patent Support \\
\hline & 60 Hz commercial power line, a transformer may \\
be added to convert the 100 V AC power to 24 V \\
& AC. Alternatively, if a DC batter is used, the \\
& AC/DC convertor among other components may \\
be eliminated." Col 13:23-31. \\
\hline
\end{tabular}

\section*{R. New Claim 55}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & \multicolumn{1}{|c|}{183 Patent Support } \\
\hline \begin{tabular}{l} 
55. The capacitive responsive \\
electronic switching circuit as defined in \\
claim 53, wherein the supply voltage is a \\
voltage regulator supply voltage.
\end{tabular} & Figures 4, 5, 11, and 12. \\
& \begin{tabular}{l} 
The `183 Patent discloses "The electronic \\
switching circuit includes a voltage regulator \\
100 including input lines 101 and 102 for \\
receiving a 24 V AC line voltage and a line 103 \\
for grounding the circuit. Voltage regulator 100 \\
converts the received AC voltage to a DC \\
voltage and supplies a regulated 5 V DC power \\
to an oscillator 200 via lines 104 and 105. \\
Voltage regulator also supplies oscillator 200 \\
with 26 V DC power via line 106. The details of \\
voltage regulator 100 are discussed below with \\
reference to FIG. 5." Col. 11:64 - Col. 12:5; see \\
also Col. 12:50 - Col. 13:31.
\end{tabular} \\
\hline
\end{tabular}

\section*{S. New Claim 56}

For ease of analysis, new independent claim 56 is shown below with pseudo-amendments
illustrating the differences between new claim 56 and claim 18 of the ` 183 Patent following the
first reexamination proceeding.
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & As Patent Support \\
\hline \begin{tabular}{l} 
56. A capacitive responsive electronic \\
switching circuit comprising:
\end{tabular} & See Claim 18. \\
\hline \begin{tabular}{c} 
an oscillator providing a periodic \\
output signal having a predefined \\
frequency;
\end{tabular} & See Claim 18. \\
\hline \begin{tabular}{c} 
a microcontroller using the \\
periodic output signal from the oscillator, \\
the microcontroller selectively providing
\end{tabular} & \begin{tabular}{l} 
See Figures 4, 5, 11; and Claims 8, 12, 16, 27 \\
and 37.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage; & \begin{tabular}{l}
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The ` 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The ` 183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. \\
Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300, a touch pad shield plate 460, a touch circuit 400, and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6. \\
Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. \\
Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. \\
Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 11:60-12:33.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim I anguage & 183 Patent Support \\
\hline & \begin{tabular}{l}
The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated \(D C\) power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130 . AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The `183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The output of the touch switch circuitry drops at a rate of approximately \(40 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). when temperature falls below \(0^{\circ} \mathrm{C}\). If application requires operation at low temperatures \(\left(-40^{\circ} \mathrm{C}\right.\). \()\), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41. \\
The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
the first embodiment in that it includes an array of touch circuits designated as \(900_{1}\) through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). \\
Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to \(900_{\mathrm{nm}}\) by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and & See Claim 18. \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal, & See Claim 18. \\
\hline wherein said predefined frequency of said oscillator and said signal output & See Claim 18. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{183 Patent Claim Language } & \\
\hline frequencies are selected to decrease a first & \\
impedance of said dielectric substrate \\
relative to a second impedance of any \\
contaminate that may create an electrical \\
path on said dielectric substrate between \\
said adjacent areas defined by the \\
plurality of small sized input touch \\
terminals, and wherein said detector \\
circuit compares a sensed body \\
capacitance change to ground proximate \\
an input touch terminal to a threshold \\
level to prevent inadvertent generation of \\
the control output signal.
\end{tabular}

\section*{T. New Claim 57}

For ease of analysis, new dependent claim 57 is shown below with pseudo-amendments
illustrating the differences between new claim 57 and claim 33 of the ` 183 Patent following the
first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 57. The capacitive responsive electronic switching circuit as defined in claim 56 , futher comprising wherein said detector eirevitcompares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input touch terminal is compared to a second threshold level to generate the control output signal. & \begin{tabular}{l}
See Claims 1, 18, 28, and 33. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
The `183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & . \\
\hline & \begin{tabular}{l} 
touched, the output signal at the collector \\
terminal of transistor 410 and across pulse \\
stretcher circuit 417 will be zero volts. When, \\
however, a person touches the touch pad 450, \\
that person's body capacitance to ground couples \\
the base of transistor 410 to ground 103 through \\
resistor 413, thereby forward biasing transistor \\
410 into conduction. This charges capacitor 418 \\
providing a positive DC voltage with respect to \\
the line 301 and causes the output of the Schmitt \\
trigger 420 to go low. Diode 414 is coupled \\
across the base to emitter junction of transistor \\
410 to clamp the base emitter reverse bias \\
voltage to -0.7V and also reduce the forward \\
recovery and turn-on time. Col. 15:29-47.
\end{tabular} \\
\hline
\end{tabular}

\section*{U. New Claim 58}

For ease of analysis, new dependent claim 58 is shown below with pseudo-amendments illustrating the differences between new claim 58 and claim 34 of the ` 183 Patent following the
first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 58. The capacitive responsive electronic switching circuit as defined in claim 56, futher comprising wherein said detector the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input touech teminat is compared to a second threshold level to generate the control output signal. & \begin{tabular}{l}
See Claims 1, 18, 28, and 34. \\
The ` 183 Patent discloses "Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. 4,758,735 and U.S. Pat. No. 5,087,825. With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
The '183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
The ` 183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. \\
The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Col. 10:54-Col. 11:9. \\
The `183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF . The base terminal of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450, transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413 , thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time. Col. 15:29-47.
\end{tabular} \\
\hline
\end{tabular}

\section*{V. New Claim 59}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim l anguage & 183 Patent Support \\
\hline 59. The capacitive responsive electronic switching circuit as defined in claim 56 , wherein each signal output frequency selectively provided to each row of the plurality of small sized input & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably
\end{tabular} \\
\hline
\end{tabular}

Page 73 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & \% 183 Patent Support \\
\hline touch terminals of the keypad has a same Hertz value. & \begin{tabular}{l}
at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & . \\
\hline & \begin{tabular}{l} 
touch and the touch of an adjacent pad. Use of \\
frequencies as low as 50 kHz may also be \\
possible depending upon the type of glass or \\
covering or the thickness thereof used for the \\
touch pad. Col. 10:60 - Col. 11:27. \\
The `183 Patent discloses "As will be apparent \\
to those skilled in the art, the values of the \\
resistors and capacitors utilized in oscillator 200 \\
may be varied from those disclosed above to \\
provide for different oscillator output \\
frequencies. As discussed above, however, \\
oscillator 200 is preferably constructed so as to \\
output a square wave having a frequency of 50 \\
kHz or greater, and more preferably, of 800 kHz \\
or greater. Col. 14:22-28.
\end{tabular} \\
\begin{tabular}{l} 
The `183 Patent disclosed "The combination of \\
oscillator voltage, frequency and transistor gain \\
bandwidth product that is used will necessarily \\
vary with the cost, safety and reliability \\
requirements of a given application." Col. 14:65 \\
- Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{W. New Claim 60}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline 60. The capacitive responsive electronic switching circuit as defined in claim 56, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values. & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low
\end{tabular} \\
\hline
\end{tabular}

Page 75 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however,
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{X. New Claim 61}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & 183 Patenl Support \\
\hline 61. The capacitive responsive electronic switching circuit as defined in claim 60, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The '183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{Y. New Claim 62}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 62. The capacitive responsive electronic switching circuit as defined in claim 60 , wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57 . For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{Z. New Claim 63}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 63. The capacitive responsive electronic switching circuit as defined in claim 60, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz . & \begin{tabular}{l}
See Fig. 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower
\end{tabular} \\
\hline
\end{tabular}

Page 80 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & . 183 Patent Support \\
\hline & \begin{tabular}{l} 
The `183 Patent disclosed "The combination of \\
oscillator voltage, frequency and transistor gain \\
bandwidth product that is used will necessarily \\
vary with the cost, safety and reliability \\
requirements of a given application." Col. 14:65 \\
- Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{AA. New Claim 64}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & 183 Patent Support \\
\hline 64. The capacitive responsive electronic switching circuit as defined in claim 56 , wherein the supply voltage is a battery supply voltage. & The `183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the \(\mathrm{AC} / \mathrm{DC}\) convertor among other components may be eliminated." Col 13:23-31. \\
\hline
\end{tabular}

\section*{BB. New Claim 65}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{183 Patent Claim Language } & The Patent Support \\
\hline \begin{tabular}{l} 
65. The capacitive responsive \\
electronic switching circuit as defined in \\
claim 56, wherein the supply voltage is a \\
voltage regulator supply voltage.
\end{tabular} & \begin{tabular}{l} 
Figures 4, 5, 11, and 12. \\
\\
The `183 Patent discloses "The electronic \\
switching circuit includes a voltage regulator \\
100 including input lines 101 and 102 for
\end{tabular} \\
receiving a 24 V AC line voltage and a line 103 \\
for grounding the circuit. Voltage regulator 100 \\
converts the received AC voltage to a DC \\
voltage and supplies a regulated 5 V DC power \\
to an oscillator 200 via lines 104 and 105. \\
Voltage regulator also supplies oscillator 200 \\
with 26 V DC power via line 106. The details of \\
voltage regulator 100 are discussed below with \\
reference to FIG. 5." Col. 11:64 - Col. 12:5; see \\
also Col. 12:50 - Col. 13:31.
\end{tabular}

\section*{CC. New Claim 66}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline 66. The capacitive responsive electronic switching circuit as defined in claim 27 , wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value. & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & \% 183 Patent Support \\
\hline & \begin{tabular}{l}
or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{DD. New Claim 67}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 67. The capacitive responsive electronic switching circuit as defined in claim 27, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values. & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{EE. New Claim 68}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & \$183 Pateni Support \\
\hline 68. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & \#183 Patent Support \\
\hline & oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. \\
\hline
\end{tabular}

\section*{FF. New Claim 69}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline 69. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

GG. New Claim 70
\begin{tabular}{|c|c|}
\hline 183 Patent Clam Language & 183 Patent Support \\
\hline 70. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz & \begin{tabular}{l}
See Fig. 11. \\
The ` 183 Patent discloses "The touch detection
\end{tabular} \\
\hline
\end{tabular}

Page 89 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline values comprises Hertz values greater than 800 kHz . & \begin{tabular}{l}
circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{HH. New Claim 71}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & \$183 Pateni Support \\
\hline 71. The capacitive responsive electronic switching circuit as defined in claim 27 , wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal. & \begin{tabular}{l}
See Figures 19, 20A-C; and Claims 28 and 35. \\
The `183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201, a second palm button 2202, and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\
The ` 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36. \\
\hline
\end{tabular}

\section*{II. New Claim 72}

For ease of analysis, new independent claim 72 is shown below with pseudo-amendments
illustrating the differences between new claim 72 and claim 27 of the ` 183 Patent following the
first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 72. A capacitive responsive electronic switching circuit for a controlled keypad device comprising: & See Claim 27. \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & See Claim 27. \\
\hline a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals; & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col.
\end{tabular} \\
\hline
\end{tabular}

Page 92 of 142

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
below with reference to FIG. 7. \\
Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. \\
Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as \(900_{1}\) through \(900_{\mathrm{nm}}\), which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). \\
Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to \(900_{\mathrm{nm}}\) by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline tra Patent Claim Language & \begin{tabular}{l} 
the touch pad 450 and the base to the detection \\
transistor 410 to a minimum, the detection \\
circuits 900 are physically located directly \\
beneath the touch pads. To simplify assembly, a \\
flexible circuit board such as vended by \\
Sheldahl, Inc. or Circuit Etching Technics, Inc. \\
can be used for this purpose. Ideally, the printed \\
circuit will be fixed directly against the surface \\
(typically glass) bearing the conductive touch \\
pads to eliminate air gaps and the need for \\
conductive foam pads and spring contacts which \\
were used to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline \multicolumn{1}{|c|}{ the first and second input touch } & See Claim 27. \\
\begin{tabular}{l} 
terminals defining areas for an operator to \\
provide an input by proximity and touch; \\
and
\end{tabular} & \begin{tabular}{l} 
a detector circuit coupled to said
\end{tabular} \\
\hline \begin{tabular}{l} 
oscillator for receiving said periodic \\
output signal from said oscillator, and \\
coupled to said first and second touch \\
terminals, said detector circuit being \\
responsive to signals from said oscillator \\
via said microcontroller and a presence of \\
an operator's body capacitance to ground \\
coupled to said first and second touch \\
terminals when proximal or touched by \\
the operator to provide a control output \\
signal for actuation of the controlled \\
keypad device, said detector circuit being \\
configured to generate said control output \\
signal when the operator is proximal or \\
touches said second touch terminal after \\
the operator is proximal or touches said \\
first touch terminal.
\end{tabular} & \\
\hline
\end{tabular}

\section*{JJ. New Claim 73}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 73. The capacitive responsive electronic switching circuit as defined in claim 72, wherein the signal output & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably
\end{tabular} \\
\hline
\end{tabular}

Page 95 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline frequencies have a same Hertz value. & \begin{tabular}{l}
at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & . \\
\hline & \begin{tabular}{l} 
touch and the touch of an adjacent pad. Use of \\
frequencies as low as 50 kHz may also be \\
possible depending upon the type of glass or \\
covering or the thickness thereof used for the \\
touch pad. Col. 10:60 - Col. 11:27. \\
\\
The `183 Patent discloses "As will be apparent \\
to those skilled in the art, the values of the \\
resistors and capacitors utilized in oscillator 200 \\
may be varied from those disclosed above to \\
provide for different oscillator output \\
frequencies. As discussed above, however, \\
oscillator 200 is preferably constructed so as to \\
output a square wave having a frequency of 50 \\
kHz or greater, and more preferably, of 800 kHz \\
or greater. Col. 14:22-28.
\end{tabular} \\
& \begin{tabular}{l} 
The `183 Patent disclosed "The combination of \\
oscillator voltage, frequency and transistor gain \\
bandwidth product that is used will necessarily \\
vary with the cost, safety and reliability \\
requirements of a given application." Col. 14:65 \\
- Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{KK. New Claim 74}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 74. The capacitive responsive electronic switching circuit as defined in claim 72, wherein each signal output frequency is selected from a plurality of Hertz values. & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low
\end{tabular} \\
\hline
\end{tabular}

Page 97 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however,
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{LL. New Claim 75}
\begin{tabular}{|c|c|}
\hline 18s Patent Clam language & \#183 Patent Support \\
\hline 75. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The '183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{MM. New Claim 76}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 76. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{NN. New Claim 77}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 77. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz . & \begin{tabular}{l}
See Fig. 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower
\end{tabular} \\
\hline
\end{tabular}

Page 102 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & Paten Support \\
\hline & \begin{tabular}{l} 
The `183 Patent disclosed "The combination of \\
oscillator voltage, frequency and transistor gain \\
bandwidth product that is used will necessarily \\
vary with the cost, safety and reliability \\
requirements of a given application." Col. 14:65 \\
- Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{OO. New Claim 78}

For ease of analysis, new dependent claim 78 is shown below with pseudo-amendments illustrating the differences between new claim 78 and claim 28 of the ` 183 Patent following the first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & 183 Patent Support \\
\hline 78. The capacitive responsive electronic switching circuit as defined in claim 72 , wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal. & See Claims 27 and 28. \\
\hline
\end{tabular}

\section*{PP. New Claim 79}

For ease of analysis, new dependent claim 79 is shown below with pseudo-amendments illustrating the differences between new claim 79 and claim 36 of the ` 183 Patent following the first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & 183 Patent Support \\
\hline 79. The capacitive responsive electronic switching circuit as defined in claim 72, and-further ineluding comprising an indicator for indicating when said the detector circuit determines has determined that the operator is & \begin{tabular}{l}
See Claims 32 and 36. \\
The ` 183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given
\end{tabular} \\
\hline
\end{tabular}

Page 104 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline proximal or touches said second touch terminal. & \begin{tabular}{l}
touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. \\
The ` 183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. \\
The ` 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310." Col. 23:28-30.
\end{tabular} \\
\hline
\end{tabular}

\section*{QQ. New Claim 80}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & 183 Paten Support \\
\hline 80. The capacitive responsive electronic switching circuit as defined in claim 72 , wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after & \begin{tabular}{l}
See Figures 19, 20A-C; and Claims 28 and 35. \\
The `183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a
\end{tabular} \\
\hline
\end{tabular}

Page 105 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline the operator is proximal or touches said first touch terminal. & \begin{tabular}{l}
first palm button 2201, a second palm button 2202, and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\
The `183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310 . The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.
\end{tabular} \\
\hline
\end{tabular}

\section*{RR. New Claim 81}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 81. The capacitive responsive electronic switching circuit as defined in claim 72 , wherein a peak voltage of the signal output frequencies is greater than a supply voltage. & \begin{tabular}{l}
See Figures 4, 5; Claims 27 and 37. \\
The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage
\end{tabular} \\
\hline
\end{tabular}

Page 106 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. \\
Upon being powered by voltage regulator 100, oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6." Col. 11:60-Col. 12:13. \\
The ` 183 Patent discloses "Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s)." Col. 18:4349. \\
The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130. AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & The ` 183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The output of the touch switch circuitry drops at a rate of approximately \(40 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). when temperature falls below \(0^{\circ} \mathrm{C}\). If application requires operation at low temperatures \(\left(-40^{\circ} \mathrm{C}\right.\).), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41. \\
\hline
\end{tabular}

\section*{SS. New Claim 82}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim L anguage & 183 Patent Support \\
\hline 82. The capacitive responsive electronic switching circuit as defined in claim 81 , wherein the supply voltage is a battery supply voltage. & The `183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31. \\
\hline
\end{tabular}

\section*{TT. New Claim 83}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 83. The capacitive responsive electronic switching circuit as defined in claim 81 , wherein the supply voltage is a voltage regulator supply voltage. & \begin{tabular}{l}
Figures 4, 5, 11, and 12. \\
The ` 183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & . 183 Patent Support \\
& \begin{tabular}{l} 
Voltage regulator also supplies oscillator 200 \\
with 26 V DC power via line 106. The details of \\
voltage regulator 100 are discussed below with \\
reference to FIG. 5." Col. 11:64 - Col. 12:5; see \\
also Col. 12:50 - Col. 13:31.
\end{tabular} \\
\hline
\end{tabular}

\section*{UU. New Claim 84}

For ease of analysis, new independent claim 84 is shown below with pseudo-amendments illustrating the differences between new claim 84 and claim 27 of the ` 183 Patent following the first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & /ת\183 Paten Support \\
\hline 84. A capacitive responsive electronic switching circuit for a controlled keypad device comprising: & See Claim 27. \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & See Claim 27. \\
\hline a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein a peak voltage of the signal output frequencies is greater than a supply voltage; & \begin{tabular}{l}
See Figures 4, 5, 11; and Claims 8, 12, 16, 27 and 37 . \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. \\
Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. \\
Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. \\
Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. \\
Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 11:60-12:33. \\
The ` 183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130. AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57 - Col. 13:31. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline \multirow[t]{3}{*}{} & frequencies.' Col. 14:22-25. \\
\hline & The `183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The output of the touch switch circuitry drops at a rate of approximately \(40 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). when temperature falls below \(0^{\circ} \mathrm{C}\). If application requires operation at low temperatures \(\left(-40^{\circ} \mathrm{C}\right.\).), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41. \\
\hline & \begin{tabular}{l}
The ` 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as \(900_{1}\) through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). \\
Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to \(900_{\mathrm{nm}}\) by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & \begin{tabular}{l} 
can be used for this purpose. Ideally, the printed \\
circuit will be fixed directly against the surface \\
(typically glass) bearing the conductive touch \\
pads to eliminate air gaps and the need for \\
conductive foam pads and spring contacts which \\
were used to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline \multicolumn{1}{|c|}{ the first and second input touch } & See Claim 27. \\
\begin{tabular}{l} 
terminals defining areas for an operator to \\
provide an input by proximity and touch; \\
and
\end{tabular} & \\
\hline \begin{tabular}{l} 
oscillator for receiving said periodic \\
output signal from said oscillator, and \\
coupled to said first and second touch \\
terminals, said detector circuit being \\
responsive to signals from said oscillator \\
via said microcontroller and a presence of \\
an operator's body capacitance to ground \\
coupled to said first and second touch \\
terminals when proximal or touched by \\
the operator to provide a control output \\
signal for actuation of the controlled \\
keypad device, said detector circuit being \\
configured to generate said control output \\
signal when the operator is proximal or \\
touches said second touch terminal after \\
the operator is proximal or touches said \\
first touch terminal.
\end{tabular} & \\
\hline
\end{tabular}

\section*{VV. New Claim 85}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 85. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the signal output frequencies have a same Hertz value. & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to
\end{tabular} \\
\hline
\end{tabular}

Page 113 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{WW. New Claim 86}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & \$183 Pateni Support \\
\hline 86. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein each signal output frequency is selected from a plurality of Hertz values. & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to
\end{tabular} \\
\hline
\end{tabular}

Page 115 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The ` 183 Patent disclosed "The combination of
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '183 Patent Claim Language & 183 Patent Support \\
\hline & oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. \\
\hline
\end{tabular}

\section*{XX. New Claim 87}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam language & 183 Patent Support \\
\hline 87. The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components
\end{tabular} \\
\hline
\end{tabular}

Page 117 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

YY. New Claim 88
\begin{tabular}{|c|c|}
\hline 183 Patent Clam Language & 183 Patent Support \\
\hline 88. The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection
\end{tabular} \\
\hline
\end{tabular}

Page 118 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline values comprises Hertz values greater than 100 kHz . & \begin{tabular}{l}
circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{ZZ. New Claim 89}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 89. The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz . & \begin{tabular}{l}
See Fig. 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59 . In fact, the impedance ratio may exceed 10 to 1 , as
\end{tabular} \\
\hline
\end{tabular}

Page 120 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline M. 183 Patent Claim Language & . 183 Patent Support \\
\hline & \begin{tabular}{l} 
vary with the cost, safety and reliability \\
requirements of a given application." Col. 14:65 \\
- Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{AAA. New Claim 90}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam Language & 183 Patent Support \\
\hline 90. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the supply voltage is a battery supply voltage. & The `183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200 . For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the \(\mathrm{AC} / \mathrm{DC}\) convertor among other components may be eliminated." Col 13:23-31. \\
\hline
\end{tabular}

\section*{BBB. New Claim 91}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 91. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the supply voltage is a voltage regulator supply voltage. & \begin{tabular}{l}
Figures 4, 5, 11, and 12. \\
The ` 183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64-Col. 12:5; see also Col. 12:50 - Col. 13:31.
\end{tabular} \\
\hline
\end{tabular}

\section*{CCC. New Claim 92}

For ease of analysis, new dependent claim 92 is shown below with pseudo-amendments illustrating the differences between new claim 92 and claim 28 of the ` 183 Patent following the first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Clam Language & 183 Patent Support \\
\hline 92. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal. & See Claims 27 and 28. \\
\hline
\end{tabular}

\section*{DDD. New Claim 93}

For ease of analysis, new dependent claim 93 is shown below with pseudo-amendments illustrating the differences between new claim 93 and claim 36 of the ' 183 Patent following the first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Clam Language & 183 Patent Support \\
\hline 93. The capacitive responsive electronic switching circuit as defined in claim 84, andfurther ineluding comprising an indicator for indicating when said the detector circuit determines has determined that the operator is proximal or touches said second touch terminal. & \begin{tabular}{l}
See Claims 32 and 36. \\
The `183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a
\end{tabular} \\
\hline
\end{tabular}

Page 123 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
given required sequence or combination of touches." Col. 6:31-42. \\
The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. \\
The `183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310." Col. 23:28-30.
\end{tabular} \\
\hline
\end{tabular}

\section*{EEE. New Claim 94}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline 94. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal. & \begin{tabular}{l}
See Figures 19, 20A-C; and Claims 28 and 35. \\
The `183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201, a second palm button 2202, and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\
The ` 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310 . The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36. \\
\hline
\end{tabular}

\section*{FFF. New Claim 95}

For ease of analysis, new independent claim 95 is shown below with pseudo-amendments illustrating the differences between new claim 95 and claim 27 of the ` 183 Patent following the
first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 95. A capacitive responsive electronic switching circuit for a controlled keypad device comprising: & See Claim 27. \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & See Claim 27. \\
\hline a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced & \begin{tabular}{l}
See Figures 4, 5, 11; and Claims 8, 12, 16, 27 and 37. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably
\end{tabular} \\
\hline
\end{tabular}

Page 125 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim I Anguage & 183 Patent Support \\
\hline array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage; & \begin{tabular}{l}
at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\
The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The ` 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. \\
Voltage regulator also supplies oscillator 200
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. \\
Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6. \\
Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. \\
Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. \\
Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 11:60-12:33. \\
The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is
\end{tabular} \\
\hline
\end{tabular}

\(\left.\begin{array}{|c|l|}\hline \text { 183 Patent Claim language } & \begin{array}{l}\text { circuit 400 shown in FIGS. 4 and 8 and the input } \\ \text { touch terminal pad 451 (FIG. 4). } \\ \text { Microcontroller 500 selects each row of the } \\ \text { touch circuits 900 to 900 } \\ \text { sigm by providing the } \\ \text { touch circuits. In this manner, microcons of } \\ 500 \text { can sequentially activate the touch circuit } \\ \text { rows and associate the received inputs from the } \\ \text { columns of the array with the activated touch } \\ \text { circuit(s). To keep the path length 451 between } \\ \text { the touch pad 450 and the base to the detection } \\ \text { transistor 410 to a minimum, the detection } \\ \text { circuits 900 are physically located directly } \\ \text { beneath the touch pads. To simplify assembly, a } \\ \text { flexible circuit board such as vended by }\end{array} \\ \text { Sheldahl, Inc. or Circuit Etching Technics, Inc. } \\ \text { can be used for this purpose. Ideally, the printed } \\ \text { circuit will be fixed directly against the surface } \\ \text { (typically glass) bearing the conductive touch } \\ \text { pads to eliminate air gaps and the need for } \\ \text { conductive foam pads and spring contacts which } \\ \text { were used to fill air gaps." Col. 18:34-59. }\end{array}\right\}\)


GGG. New Claim 96
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 96. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value. & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The '183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{HHH. New Claim 97}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 97. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a
\end{tabular} \\
\hline
\end{tabular}

Page 131 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline from a plurality of Hertz values. & \begin{tabular}{l}
[sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{III. New Claim 98}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline 98. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . & \begin{tabular}{l}
See Figure 11. \\
The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads
\end{tabular} \\
\hline
\end{tabular}

Page 133 of 142
\begin{tabular}{|c|c|}
\hline \(` 183\) Patent Claim Language & 183 Patent Support \\
\hline & \begin{tabular}{l}
by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

\section*{JJJ. New Claim 99}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 99. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz . & \begin{tabular}{l}
See Figure 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of
\end{tabular} \\
\hline
\end{tabular}

Page 135 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline & \begin{tabular}{l}
operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. \\
The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.
\end{tabular} \\
\hline
\end{tabular}

KKK. New Claim 100
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 100. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz . & \begin{tabular}{l}
See Fig. 11. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\
The ` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language & . \\
\hline & touch pad. Col. 11:1-27. \\
& \begin{tabular}{l} 
The `183 Patent discloses "As will be apparent \\
to those skilled in the art, the values of the \\
resistors and capacitors utilized in oscillator 200 \\
may be varied from those disclosed above to \\
provide for different oscillator output \\
frequencies. As discussed above, however, \\
oscillator 200 is preferably constructed so as to \\
output a square wave having a frequency of 50 \\
kHz or greater, and more preferably, of 800 kHz \\
or greater. Col. 14:22-28.
\end{tabular} \\
The `183 Patent disclosed "The combination of \\
oscillator voltage, frequency and transistor gain \\
bandwidth product that is used will necessarily \\
vary with the cost, safety and reliability \\
requirements of a given application." Col. 14:65 \\
- Col. 15:1.
\end{tabular}

\section*{LLL. New Claim 101}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 101. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein the supply voltage is a battery supply voltage. & The `183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31. \\
\hline
\end{tabular}

\section*{MMM. New Claim 102}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 102. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein the supply voltage is a & \begin{tabular}{l}
Figures 4, 5, 11, and 12. \\
The `183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline .183 Patent Claim Language & . 183 Patent Support \\
\hline voltage regulator supply voltage. & \begin{tabular}{l} 
receiving a 24 V AC line voltage and a line 103 \\
for grounding the circuit. Voltage regulator 100 \\
converts the received AC voltage to a DC \\
voltage and supplies a regulated 5 V DC power \\
to an oscillator 200 via lines 104 and 105. \\
Voltage regulator also supplies oscillator 200 \\
with 26 V DC power via line 106. The details of \\
voltage regulator 100 are discussed below with \\
\\
\\
reference to FIG. 5." Col. 11:64 - Col. 12:5; see \\
also Col. 12:50 - Col. 13:31. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{NNN. New Claim 103}

For ease of analysis, new dependent claim 103 is shown below with pseudo-amendments illustrating the differences between new claim 103 and claim 28 of the ` 183 Patent following the first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patent Support \\
\hline 103. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein said detector circuit generates is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal. & See Claims 27 and 28. \\
\hline
\end{tabular}

\section*{OOO. New Claim 104}

For ease of analysis, new dependent claim 104 is shown below with pseudo-amendments illustrating the differences between new claim 104 and claim 36 of the ` 183 Patent following the first reexamination proceeding.
\begin{tabular}{|c|c|}
\hline 183 Patent Clam Language & 183 Patent Support \\
\hline 104. The capacitive responsive electronic switching circuit as defined in claim 95, and-further ineluding & \begin{tabular}{l}
See Claims 32 and 36. \\
The `183 Patent discloses "The microprocessor
\end{tabular} \\
\hline
\end{tabular}

Page 139 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & \#183 Patent Support \\
\hline comprising an indicator for indicating the detector circuit determines has determined that the operator is proximal or touches said second touch terminal. & \begin{tabular}{l}
also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. \\
The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. \\
The ` 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310." Col. 23:28-30.
\end{tabular} \\
\hline
\end{tabular}

\section*{PPP. New Claim 105}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline 105. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein the detector circuit is & \begin{tabular}{l}
See Figures 19, 20A-C; and Claims 28 and 35. \\
The `183 Patent discloses "In another
\end{tabular} \\
\hline
\end{tabular}

Page 140 of 142
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal. & \begin{tabular}{l}
embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201 , a second palm button 2202, and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\
The ` 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310 . The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.
\end{tabular} \\
\hline
\end{tabular}

\section*{V. CONCLUSION}

In view of the above, the Patent Owner submits that the claims are in condition for allowance. The present amendment neither enlarges the scope of the claims of the patent nor introduces new matter. If the Examiner should have any questions, please contact the Patent Owner's Attorney, Brian A. Carlson, at 972-732-1001. The Commissioner is hereby authorized to charge any fees due in connection with this filing, or credit any overpayment, to Deposit Account No. 50-1065.

Respectfully submitted,

December 24, 2013
Date
/Brian A. Carlson/
Brian A. Carlson
Reg. No. 37,793

Slater \& Matsil, L.L.P. 17950 Preston Rd.
Suite 1000
Dallas, TX 75252
972-732-1001
972-732-9218 (fax)

\section*{[54] CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT}
[75] Inventor: Byron Hourmand. Hersey, Mich.
Assignee: Nartron Corporation. Reed City, Mich.
[21] Appl. No.: 601,268
[22] Filed: Jan. 31, 1996
[51] Int. Cl. \({ }^{6}\) \(\qquad\) H01H 35/00
[52] U.S. Cl. ......................... 307/116; 361/181; 307/125; 307/139
[58] Field of Search \(\qquad\) 307/112, 113
307/116. 125. 139. 140. 157; 361/181

\section*{References Cited}
U.S. PATENT DOCUMENTS
\begin{tabular}{lrl}
\(3,549,909\) & \(12 / 1970\) & Adelson et al. . \\
\(3,641,410\) & \(2 / 1972\) & Vogelsberg . \\
\(3,651,391\) & \(3 / 1972\) & Vogelsberg . \\
\(3,666,988\) & \(5 / 1972\) & Bellis. \\
\(3,798,370\) & \(3 / 1974\) & Hurst. \\
\(3,879,618\) & \(4 / 1975\) & Larson ................................. \(307 / 116\) \\
\(3,899,713\) & \(8 / 1975\) & Barkan et al. . \\
\(3,911,215\) & \(10 / 1975\) & Hurst et al. . \\
\(3,919,596\) & \(11 / 1975\) & Bellis. \\
\(3,965,465\) & \(6 / 1976\) & Alexander . \\
\(3,984,757\) & \(10 / 1976\) & Gott et al. . \\
\(4,016,453\) & \(4 / 1977\) & Moennig . \\
\(4,031,408\) & \(6 / 1977\) & Holz . \\
\(4,071,689\) & \(1 / 1978\) & Talmage et al. . \\
\(4,101,805\) & \(7 / 1978\) & Stone. \\
\(4,119,864\) & \(10 / 1978\) & Petrizio . \\
\(4,152,629\) & \(5 / 1979\) & Raupp . \\
\(4,159,473\) & \(6 / 1979\) & Senk. \\
\(4,210,822\) & \(7 / 1980\) & Wern . \\
\(4,211,959\) & \(7 / 1980\) & Deavenport et al. . \\
\(4,213,061\) & \(7 / 1980\) & Conner. \\
\(4,220,815\) & \(9 / 1980\) & Gibson et al. . \\
\(4,237,421\) & \(12 / 1980\) & Waldron . \\
\(4,246,533\) & \(1 / 1981\) & Chiang . \\
\(4,257,117\) & \(3 / 1981\) & Besson . \\
\(4,264,831\) & \(4 / 1981\) & Wern . \\
\(4,289,972\) & \(9 / 1981\) & Wern. \\
\(4,289,980\) & \(9 / 1981\) & McLaughlin .
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4,308,443 & 12/1981 & Tucker et al \\
\hline 4.323,829 & 4/1982 & Witmey et al. \\
\hline 4,352,141 & 9/1982 & Kent ................................... 363/181 \\
\hline 4,360,737 & 11/1982 & Leopold \\
\hline 4,374.381 & 2/1983 & Ng et al. \\
\hline 4,476,463 & 10/1984 & Ng et al. \\
\hline 4,503,294 & 3/1985 & Matsumaru .......................... 200/5 A \\
\hline 4.731 .548 & 3/1988 & lngraham \\
\hline 4.758,735 & 7/1988 & lngraham \\
\hline 4,831,279 & 5/1989 & lngraham \\
\hline 4,910,504 & 3/1990 & Eriksson \\
\hline 4,939,382 & 7/1990 & Gruodis \\
\hline 4,942,631 & \(7 / 1990\) & Rosa ....................................... 4/623 \\
\hline 5,012,124 & \(4 / 1991\) & Hollaway \\
\hline 5,066,898 & 11/1991 & Miller et al. . \\
\hline 5,087,825 & 2/1992 & Ingraham \\
\hline 5,208,516 & 5/1993 & Saidian \\
\hline 5,233,231 & 8/1993 & Wieth et al. . \\
\hline 5,235,217 & 8/1993 & Kirton ................................ 307/326 \\
\hline 5,386,219 & 1/1995 & Greanias et al. \\
\hline 5,453,644 & 9/1995 & Yap et al. \\
\hline 5,572,205 & 11/1996 & Caldwell et al. ....................... 341/33 \\
\hline
\end{tabular}

Primary Examiner-William M. Shoop, Jr.
Assistant Examiner-Jonathan Kaplan
Attomey, Agent, or Firm-Price, Heneveld, Cooper, DeWitt \& Litton

\begin{abstract}
[57]
ABSTRACT
A capacitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal having a frequency of 50 kHz or greater, an input touch terminal defining an area for an operator provide an input by proximity and touch. and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. Preferably, the oscillator provides a periodic output signal having a frequency of 800 kHz or greater. An array of touch terminals may be provided in close proximity due to the reduction in crosstalk that may result from contaminants by utilizing an oscillator outputting a signal having a frequency of 50 kHz or greater.
\end{abstract}

32 Claims, 13 Drawing Sheets

U.S. Patent

Aug. 18, 1998
Sheet 1 of \(\mathbf{1 3}\)
5,796,183


Fig. 2


Fig. 8


Fig. 3A




Fig. 9

S/N VS. BODY CAPACITANCE TEMPERATURE \(=2 \mathbf{5 月}^{\circ} \mathrm{C}\)


Fig. 10



Fig. 12




Fig. 15C


Fig. 15B


Fig. 16


\section*{U.S. Patent \\ Aug. 18, 1998 Sheet 13 of 13 \\ 5,796,183}


Fig. 20B 2304


\section*{CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT}

\section*{BACKGROUND OF THE INVENTION}

The present invention relates to an electrical circuit and particularly a capacitive responsive electronic switching circuit used to make possible a "zero force" manual electronic switch.
Manual switches are well known in the art existing in the familiar forms of the common toggle light switch. pull cord switches, push button switches, and keyboard switches among others. The majority of such switches employ a mechanical contact that "makes" and "breaks" the circuit to be switched as the switch is moved to a closed or an open condition.
Switches that operate by a mechanical contact have a number of well known problems. First, mechanical movements of components within any mechanism make those components susceptible to wear, fatigue, and loosening. This is a progressive problem that occurs with use and leads to eventual failure when a sufficient amount of movement has occurred.
Second, a sudden "make" or "break" between conductive contacts typically produces an electrical arc as the contacts come into close proximity. This arcing action generates both radio frequency emissions and high frequency noise on the line that is switched.
Third, the separation between contacts that occurs on each break, exposes the contact surfaces to corrosion and contamination. A particular problem occurs when the are associated with a "make" or "break" occurs in an oxidizing atmosphere. The heat of the arc in the presence of oxygen facilitates the formation of oxides on the contact surfaces. Once exposed, the contact surfaces of mechanical switches are also vulnerable to contaminants. Water borne contaminants such as oils and salts can be a particular problem on the contact surfaces of switches. A related problem occurs in that the repeated arcing of mechanical contact can result in a migration of contact materials away from the area of the mechanical contact. Corrosion, contamination, and migration operating independently or in combination often lead to eventual switch failure where the switch seizes in a closed or opened condition.

An additional problem results from the mechanical force required in operating a mechanical switch. This problem occurs in systems where a human operator is required to repetitively operate a given switch or a number of switches. Such repetitive motions commonly occur in the operation of electronic keyboards such as those used with computers and in industrial switches such as used in forming and assembly equipment among other applications. A common type of industrial switch is the palm button seen in pressing and insertion equipment. For safety purposes, the operator must press the switch before an insertion or pressing can occur. This ensures that the operators hand(s) is(are) on the button ( \(s\) ) and not in the field of motion of the associated machinery. It also ensures that the mechanical motion occurs at a desired and controllable point in time. The difficulty arises from the motion and force required of the operator. In recent years, it has been noted that repeated human motions can result in debilitating and painful wear on joints and soft tissues yielding arthritis like symptoms. Such repetitive motion may result in swelling and cramping in muscle tissues associated with conditions such as Carpal Tunnel Syndrome. Equipment designers combat these Repetitive Motion or Cumu-
lative Trauma Disorders by adopting ergonomic designs that more favorably control the range. angle, number, and force of motions required of an operator as well as the number of the operator's muscle groups involved in the required 5 motions. Prosthetics and tests are used as well to provide strain relief for the operator's muscles, joints, and tendons.

In mechanical switches, the force required to actuate the switch may be minimized by reducing spring forces and frictional forces between moving parts. However, reducing such forces makes such switches more vulnerable to failure. For instance. weaker springs typically lower the pressure between contacts in a "make" condition. This lower contact pressure increases the resistance in the switch which can lead to fatal heating in the switch and/or loss of voltage applied to the switched load. Reducing frictional forces in the switch by increasing the use of lubricants is undesirable because the lubricants can migrate and contaminate the contact surfaces. A switch designer may also reduce friction by providing looser fits between moving parts. However, switch failure. A designer can also reduce friction by using higher quality, higher cost. surface finishes on the parts. Thus, as apparent from the foregoing description. measures taken to reduce actuator force in mechanical switch parts generally reduce the reliability and performance of the switch and/or increase the cost of the switch.

In applications such as computer keyboards or appliance controls, the electric load switched by a given switch can be quite low in terms of current and/or voltage. In such cases it is possible to use low force membrane switches such as described in U.S. Pat. No. 4.503.294. Such switches can relieve operator strain and are not as susceptible to arcing problems because they switch small loads. However, the flexible membrane remains susceptible to wear, corrosion. and contamination. Although such switches require very low actuation force, they are still mechanically based and thus suffer from the same problems as any other mechanical switch.

A more recent innovation is the development of "zero force" touch switches. These switches have no moving parts and no contact surfaces that directly switch loads. Rather, these switches operate by detecting the operator's touch and then use solid state electronics to switch the loads or activate mechanical relays or triacs to switch even larger loads. Approaches include optical proximity or motion detectors to detect the presence or motion of a body part such as in the automatic controls used in urinals in some public rest rooms or as disclosed in U.S. Pat. No. 4.942.631. Although these non-contact switches are by their very nature truly zero force, they are not practical where a multiplicity of switches are required in a small area such as a keyboard. Among other problems, these non-contact switches suffer from the comparatively high cost of electro-optics and from false detections when the operator's hand or other body part unintentionally comes close to the switch's area of detection. Some optical touch keyboards have been proposed, but none have enjoyed commercial success due to performance and/or cost considerations.

A further solution has been to detect the operator's touch via the electrical conductivity of the operator's skin. Such a system is described in U.S. Pat. No. 3.879.618. Problems with this system result from variations in the electrical conductivity of different operators due to variations in sweat. skin oils. or dryness, and from variable ambient conditions such as humidity. A further problem arises in that the touch surface of the switch that the operator touches must remain clean enough to provide an electrical conductivity path to
the operator. Such surfaces can be susceptible to contamination. corrosion, and/or a wearing away of the conductive material. Also, these switches do not work if the operator is wearing a glove. Safety considerations also arise by virtue of the operators placing their body in electrical contact with the switch electronics. A further problem arises in that such systems are vulnerable to contact with materials that are equally or more conductive than human skin. For instance, water condensation can provide a conductive path as good as that of an operator's skin. resulting in a false activation.

A common solution used to achieve a zero force touch switch has been to make use of the capacitance of the human operator. Such switches. which are hereinafter referred to as capacitive touch switches. utilize one of at least three different methodologies. The first method involves detecting RF or other high frequency noise that a human operator can capacitively couple to a touch terminal when the operator makes contact such as is disclosed in U.S. Pat. No. 5.066. 898. One common source of noise is 60 Hz noise radiated from commercial power lines. A drawback of this approach is that radiated electrical noise can vary in intensity from locale to locale and thereby cause variations in switch sensitivity. In some cases, devices implemented using this first method, rely on conductive contact between the operator and the touch terminal of the switch. As stated, such surfaces are subject to contamination. corrosion. and wear and will not work with gloved hands. An additional problem can arise in the presence of moisture when multiple switches are employed in a dense array such as a keyboard. In such instances, the operator may touch one touch terminal, but end up inadvertently activating others through the path of conduction caused by the moisture contamination.

A second method for implementing capacitive touch switches is to couple the capacitance of the operator into a variable oscillator circuit that outputs a signal having a frequency that varies with the capacitance seen at a touch terminal. An example of such a system is described in U.S. Pat. No. 5.235.217. Problems with such a system can arise where conductive contact with the operator is required and where the frequency change caused by a touch is close to the frequency changes that would result from unintentionally coming into contact with the touch terminal.

Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. 4.758.735 and U.S. Pat. No. 5.087.825. With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal. A major advantage of this methodology is that the operator need not come in conductive contact with the touch terminal but rather only in close proximity to it. A further advantage arises in that the system does not rely upon radiated emissions picked up by the operator's body which can vary with locale, but relies instead upon the human body's capacitance, which can vary over an acceptable range of 20 pF to 300 pF .

An additional consideration in using zero force switches resides in the difficulties that arise in trying to employ dense arrays of such switches. Touch switches that do not require physical contact with the operator but rather rely on the
operator's close proximity can result in unintended actuations as an operator's hand or other body part passes in close proximity to the touch terminals. Above-mentioned U.S. Pat. No. \(5.087,825\) employs conductive guard rings around the conductive pad of each touch terminal in an effort to decouple adjacent touch pads and prevent multiple actuations where only a single one is desired. In conjunction with the guard rings, it is also possible to adjust the detection sensitivity by adjusting the threshold voltage to which the sensed voltage is compared. The sensitivity may be adjusted in this manner to a point where the operator's body part. for instance, a finger. has to entirely overlap a touch terminal and come into contact with its dielectric facing plate before actuation occurs. Although these methods (guard rings and sensitivity adjustment) have gone a considerable way in allowing touch switches to be spaced in comparatively close proximity, a susceptibility to surface contamination remains as a problem. Skin oils, water, and other contaminants can form conductive films that overlay and capacitively couple adjacent or multiple touch pads. An operator making contact with the film can then couple multiple touch pads to his or her body capacitance and it's capacitive coupling to ground. This can result in multiple actuations where only one is desired. Small touch terminals placed in close proximity by necessity require sensitive detection circuits that in some cases are preferably isolated from interference with the associated load switching circuits that they activate.

As mentioned, in industrial controls, switches can be used to control actuation time and to ensure that the operator's hand(s) or other body part(s) are out of the field of motion of associated machinery. A common type of switch used in this application is the palm button. The button is large enough so that the operator can rapidly bring his or her hand into contact with the button without having to lose the time that would be taken in acquiring and lining up a finger with a smaller switch. Zero force touch switches are also desirable in this application as Repetitive Motion or Cumulative Trauma Disorders have been a problem with operator's utilizing palm buttons-especially those palm buttons that must be actuated against a spring resistance. In this area capacitive touch switches have also been employed. U.S. Pat. No. 5,233,231 is an example of such an implementation. Due to the proximity of machinery with the potential to cause injury, false actuations are a particular liability in such applications. Capacitive touch switches that exhibit vulnerability to radiated electromagnetic noise or that operate off operator proximity have the potential to actuate when the operator's hand(s) is not at the desired location on the palm button(s). In general. this is addressed by the use of redundancies. In U.S. Pat. No. 5.233.231, a separate detector is used to measure RF noise and disable the system to a safe state if excessive RF noise is present. Other systems such as UltraTouch vended by Pinnacle Systems. Inc. use redundant sensing methodologies. In UltraTouch, both optical and capacitive sensors are used and actuation occurs only when both sensor types detect the operator's hand at the desired location. These implementations have a number of disadvantages. In the case of the RF noise detection system. the system is unusable in the presence of RF noise. This forces the user to employ a backup mechanical switch system or accept the loss of function when RF noise is present. The second system is less reliable and more expensive because it requires two sensor systems to accomplish the same task. i.e.. detect the operator. Such system may also suffer from problems inherent in any optical system. namely. susceptibility to blockages in the optical path and the need to achieve and maintain specific optical alignments. A further problem
is that this system considerably constrains the angle and direction of motion that the operator must use in activating the switch.

Currently, there are several zero force palm buttons in the market. These products utilize optical and/or capacitive coupling to activate a normally closed (NC) or a normally open (NO) relay, and thereby switching 110 V AC, 220 V AC. or 24 V DC to machine controllers. The UltraTouch by Pinnacle Systems Inc. uses two sensors (infrared \& capacitive) with isolated circuits to activate a relay when a machine operator inserts his hand into a U-shaped sensor actuation tunnel. The company claims that by permitting the machine operator to activate the machine with no force or pressure and with the operator's hand and wrist in the ergonomic neutral position (i.e. \(0^{\circ}\) wrist joint angle and \(100 \%\) hand power positions as shown in FIG. 1.0-1), hand. wrist. and arm stresses are minimized and contributing elements to Carpal Tunnel Syndrome are negated. After a machine cycle is initiated, the operator must maintain an initial posture until the cycle is completed. A typical cycle time lasts approximately one to two seconds and is repeated about 3000 times daily. This adds up to about one hour to one hour and a half per day while the operator is in the posture. While this module reduces stress on wrist and hand, it strains the muscles in the forearm. Also, because of limited space permitted for the operator to insert his hand, it stresses the operator mentally and reduces productivity by causing fatigue. Furthermore, the infrared emitters and detectors rely on a clean path between the transmitter and receiver and will not operate properly if contaminants block the beam of light.

\section*{SUMMARY OF THE INVENTION}

The present invention overcomes the above problems by using the method of sensing body capacitance to ground in conjunction with redundant detection circuits. Additional improvements are offered in the construction of the touch terminal (palm button) itself and in the regime of body capacitance to ground detection which minimizes sensitivity to skin oils and other contaminants. The invention also allows the operator to utilize the system with or without gloves which is a particular advantage in the industrial setting.

The specific touch detection method of the present invention has similarities to the devices of U.S. Pat. No. 4,758,735 and U.S. Pat. No. 5,087,825. However, significant improvements are offered in the means of detection and in the development of an overall system to employ the touch switches in a dense array and in an improved zero force palm button. The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard. The circuitry of the present invention minimizes the force required in human operator motions and eliminates awkward angles and other constraints required in those motions. The outer surface of the touch switch typically consists of a continuous dielectric layer such as glass or polycarbonate with no mechanical or electrical feed-throughs. The surface can be shaped to have no recesses that would trap or hold organic material. As a result it is easily cleaned and kept clean and so is ideal for hygienic applications such as medical or food processing equipment. by touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and
coupled to the input touch terminal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when touched by an operator to provide a control output signal. Preferably, the oscillator provides a periodic output signal having a frequency of 800

\section*{kHz or greater.}

These and other features. objects, and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the written description and claims hereof, as well as by the appended drawings.

\section*{BRIEF DESCRIPTION OF THE DRAWINGS}

FIG. 1 is an electrical schematic of a testing circuit used to measure the impedance of the human body;

FIG. 2 is an electrical schematic of a testing circuit used to measure the impedance of water;

FIG. 3 is an electrical schematic of an equivalent circuit model for analyzing a human body in contact with glass covered with water;

FIG. 4 is a block diagram of a capacitive responsive electronic switching circuit constructed in accordance with a first embodiment of the present invention;

FIG. 5 is an electrical schematic of a preferred voltage regulator circuit for use in the capacitive responsive electronic switching circuit shown in FIG. 4;

FIG. 6 is an electrical schematic of a preferred oscillator circuit for use in the capacitive responsive electronic switching circuit shown in FIG. 4;

FIG. 7 is an electrical schematic of a preferred floating common generator circuit for use in the capacitive responsive electronic switching circuit shown in FIG. 4;

FIG. 8 is an electrical schematic of a preferred touch circuit for use in the capacitive responsive electronic switching circuit shown in FIG. 4;

FIG. 9 is a three dimensional bar graph illustrating signal-to-noise ratio vs. body capacitance at \(\mathrm{T}=105^{\circ} \mathrm{C}\).;

FIG. 10 is a three dimensional bar graph illustrating signal-to-noise ratio vs. body capacitance at \(\mathrm{T}=22^{\circ} \mathrm{C}\).;

FIG. 11 is a block diagram of a capacitive responsive electronic switching circuit constructed in accordance with a second embodiment of the present invention;

FIG. 12 is a block diagram of a capacitive responsive electronic switching circuit constructed in accordance with a third embodiment of the present invention;

FIG. 13 is an electrical schematic of a preferred voltage regulator, oscillator, and touch circuits for use in the capacitive responsive electronic switching circuit shown in FIG. 12;
FIG. 14 is an electrical schematic of preferred driver circuits for use in the capacitive responsive electronic switching circuit shown in FIG. 12;

FIGS. 15A-C are top, side, and front views, respectively. of an example of a flat palm button constructed in accordance with the present invention;
FIG. 16 is a cross-sectional view of an example of a dome-shaped palm button constructed in accordance with the present invention;

FIG. 17 is an electrical schematic of a touch circuit of the present invention implemented in a custom integrated circuit;

FIG. 18 is an electrical schematic of an oscillator having a sleeper circuit for use in the capacitive responsive electronic switching circuits of the present invention; touch sensing circuits. A move to high frequency operation ( \(>50\) to 800 kHz ) is not a benign choice relative to the lower frequency ( 60 to 1000 Hz ) operation seen in existing art such as U.S. Pat. No. 4,758,735 and U.S. Pat. No. 5.087.825. Higher frequencies require generally more costly, higher speed parts, and often results in the added cost of special design measures to minimize electronic emissions and the introduction of high frequency noise on power supply lines. The preference for using such higher frequencies is based on a study performed to determine if high frequency operation would allow a touch of an operator and conduction via surface contamination films. such as moisture. providing a conductive path from a non-touched area to the touched area. The study also determined whether a high frequency touch circuit could operate over a sufficiently wide temperature range, an assortment of overlying dielectric layer thicknesses and materials, and in the presence of likely power supply fluctuations. The following calculations and measurements are the results of this study. The results summarize the investigation conducted to reduce crosstalk due to condensation of water on the dielectric member (glass). By increasing the frequency of operation, the impedance of the body-glass combination is reduced as compared to the impedance of water between the touch pads.
The equivalent circuit of body impedance was measured using the testing circuit 10 shown in FIG. 1. Testing circuit 10 includes an oscillator 20 coupled between ground plate and a \(100 \mathrm{k} \Omega\) series resistor 22 and in parallel with a \(10 \mathrm{M} \Omega\) resistor 24 , a 20 pF capacitor 26 , and contacts for connecting 40 to a human body identified in the figure as an impedance load 15 having an impedance \(\mathrm{Z}_{B}\) representing the body's impedance.

Two types of measurements were taken: one with the person under test standing on a large ground plane i.e.. concrete slab; and another while standing on a subfloor. The subfloor was used to simulate a typical northern home, i.e.. wood joists with plywood sheeting. Carpeting was used as an added insulation layer. Table 1 below shows the measured body resistance and capacitance for five individuals.

TABLE 1
\begin{tabular}{cccc}
\hline CONCRETE SLAB & CONCRETE SLAB & SUBFLOOR & SUBFLOOR \\
\hline \(1.4 \mathrm{k} \Omega\) & 100 pF & \(1.7 \mathrm{k} \Omega\) & 73 pF \\
\(1.4 \mathrm{k} \Omega\) & 217 pF & \(1.9 \mathrm{k} \Omega\) & 78 pF \\
\(1.3 \mathrm{k} \Omega\) & 17 pF & \(1.9 \mathrm{k} \Omega\) & 93 pF \\
\(1.2 \mathrm{k} \Omega\) & 160 pF & \(1.6 \mathrm{k} \Omega\) & 85 pF \\
\(1.0 \mathrm{k} \Omega\) & 107 pF & \(1.4 \mathrm{k} \Omega\) & 75 pF \\
\hline
\end{tabular}

60 As apparent from Table 1 above and the discussion to follow, a human body's impedance may be represented by the series combination of a \(20-300 \mathrm{pF}\) capacitor and a \(1 \mathrm{k}-2 \mathrm{k} \Omega\) resistor.
The impedance of water, which is mainly resistive. was 65 measured using the testing circuit 30 shown in FIG. 2. Testing circuit \(\mathbf{3 0}\) includes an oscillator \(\mathbf{4 0}\) coupled in series with a \(1 \mathrm{M} \Omega\) resistor \(\mathbf{4 2}\) and contacts across which water is
applied to define an impedance load 35 having an impedance \(\mathrm{Z}_{w}\), representing the impedance of water. A true RMS voltage meter \(\mathbf{4 5}\) is connected across the contacts of the impedance load 35.

The resistance of tap water over a \(1 \times 1\) inch area and \(1 / 32\) inch deep. was measured to be around \(160 \mathrm{k} \Omega\).

The following calculation is for resistance of rain water where c is the conductivity for rain:
\[
R=\left(\frac{1}{c i n}\right) \times\left(\frac{L}{A}\right)
\]
where.
\[
\begin{aligned}
& c=128 \times 10^{-6}(\Omega-\mathrm{cm})^{-1} \\
& \text { cin }=c\left(\frac{100 \mathrm{~cm}}{\mathrm{~m}}\right)\left(\frac{.0254 \mathrm{~m}}{\mathrm{in}}\right) \\
& L=1.0 \mathrm{in} \\
& A=(1.0) \times\left(\frac{1}{32}\right)=\frac{1}{32} \mathrm{in}^{2}
\end{aligned}
\]
therefore,
\[
R=\left(\frac{1}{325.12 \times 10^{-6}}\right) \times\left(\frac{1.0 \mathrm{in}}{\frac{1}{32} \mathrm{in}^{2}}\right)=98.43 \mathrm{k} \Omega
\]

However, the thickness of a layer of water condensed on the surface of glass is much less than \(1 / 32\) inch and it's resistance is higher than that of tap water. For design purposes, a resistance value of \(1 \mathrm{M} \Omega\) was used to simulate water.

The capacitance of a piece of glass measuring \(1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times\) \(1 / 4^{\prime \prime}\), is approximately 2 pF .
where,
\[
\begin{aligned}
& C=K_{\text {dhass }} K_{a} \frac{A\left(\mathrm{~cm}^{2}\right)}{L(\mathrm{~cm})}(\mu F) \\
& K_{a}=0.08842 \times 10^{-6} \text { for vacuum } \\
& 6.0<K_{g h_{s s}<}<10 \\
& A=0.25 \mathrm{in}^{2} \\
& L=0.25 \text { in }
\end{aligned}
\]
therefore,
\[
\begin{aligned}
& \mathrm{C}_{\max }=10 \times 0.08842 \times 10^{-6} \times 2.54 \times 10^{-6}=2.25 \mathrm{pF} \\
& \mathrm{C}_{\operatorname{man}}=6 \times 0.08842 \times 10^{-6} \times 2.54 \times 10^{-6}=1.35 \mathrm{pF}
\end{aligned}
\]

Table 2 below shows the dielectric constant for several 50 types of glass:

TABLE 2
\begin{tabular}{cc}
\hline TYPE OF GLASS & \begin{tabular}{c} 
Dielectric Constant \\
(K)
\end{tabular} \\
\hline Corning 0010 & 6.32 \\
Corning 0080 & 6.75 \\
Corning 0120 & 6.65 \\
Corning 8870 & 9.5 \\
\hline
\end{tabular}

The equivalent circuit 50 of body touching the glass with the presence of water is shown in FIG. 3. As shown, the equivalent circuit 50 includes a polycarbon (PCB) plate 55 having at least two pads 57 and 59 formed thereon, a glass plate 60 adjacent to PCB plate 55, water 65 on glass plate 60 spanning at least two touch pad areas, and a body 70 in
body is represented by a \(20-300 \mathrm{pF}\) capacitor 72 coupled at one end to water resistor 68 and glass plate capacitor 62 , and by a \(1-2 \mathrm{k} \Omega\) resistor 74 coupled between the other end of capacitor 72 and ground.
Referring to FIG. 3, it can be seen that a human touch opposite pad 57 will couple pad 57 to ground through the capacitance of glass 62 and the series contact with the human body impedance provided by the \(20-300 \mathrm{pF}\) capacitance and the \(1 \mathrm{k}-2 \mathrm{k} \Omega\) resistance of a typical human body.
15 This will have the effect of pulling any voltage on the pad towards ground. Pad 59 will be similarly effected, however it's coupling to ground will not only be through capacitance 64, and the series capacitance and resistance of the human body, but will also be through the ohmic resistance of water 20 on the glass cover between the proximate location of pad 59 and the touched pad 57. Because the human capacitance is considerably greater than the 2 pF capacitance of the glass. the impedance of the path to ground for pads 57 and 59 will be dominated by the glass and water impedances. If the 5 impedance of the water path is significant compared to that of the glass. then the effect of a touch will be more significant at pad 57 than at pad 59. To overcome the effect of condensation or possible water spills. the impedance of the glass is preferably made as small as is practical compared to the impedance of the water. This allows discrimination between touched and adjacent pads. As the water impedance is primarily resistive and the glass impedance is primarily capacitive, the impedance of the glass will drop with frequency. ance as a function of frequency. The maximum and minimum glass impedances shown were computed as follows:
\[
\begin{aligned}
& e_{o}=8.854 \times 10^{-12} C^{2} /\left(\mathrm{nm}^{2}\right) \\
& K_{\text {smin }}=6 \\
& K_{\text {smax }}=10 \\
& A=0.25 \mathrm{in}^{2} \\
& L=0.25 \text { in } \\
& C_{\text {max }}=K_{8 \text { max }} e_{0} A / L C_{\text {max }}=2.249 \mathrm{pF} \\
& C_{\text {min }}=K_{\text {grunin }} \varepsilon_{0} A \mathcal{L} C_{\text {matr }}=1.349 \mathrm{pF} \\
& Z_{z \text { min }}^{\text {frequency }}=1 /\left(2 \pi C_{\text {max }} \text { frequency }\right) \\
& Z_{g \text { max fraguency }}=1 /\left(2 \pi C_{\text {madin }} \text { frequency }\right)
\end{aligned}
\]

As can be seen. at 1 kHz . the capacitive impedance of the 55 glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge between the pads. As a result, at 1 kHz . there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely. at 100 kHz . the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57 . For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a
single pad. At 800 kHz . the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact. the impedance ratio may exceed 10 to 1 . as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier. higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low. operation at or near 100 kHz may be possible. However, at 10 kHz and below. the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz . and more preferably at or above 800 kHz . it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. However, in cases where there is little or no surface contamination, the frequency of operation can go well below 50 kHz . Ultimately, the frequency chosen will be a tradeoff between the likelihood of surface contamination and the cost of going to higher frequencies to prevent cross talk due to such contamination. The following analysis illustrates one example of how a frequency may be calculated based on the typical parameters used to construct a touch switch and the typical impedance of a contaminant, such as rain water. In the analysis below a 10 to 1 ratio of water to glass impedance is sought.

To eliminate crosstalk due to condensation of water on the glass. the impedance of body \(\left(Z_{B}\right)\) and glass \(\left(Z_{g}\right)\) combination must be much lower than impedance of water ( \(\mathrm{Z}_{W}\) ). Since the impedance of glass is much higher than body impedance, \(Z_{g}\) will be considered only. Therefore,
\[
10\left|Z_{g}\right|<\left|Z_{w}\right|
\]
where,
\[
\begin{align*}
& \mathrm{C}_{\text {glas }}=2 \mathrm{pF} \mathrm{Z}_{W}=1 \mathrm{M} \Omega \\
& \mathrm{Z}_{\mathrm{g}}=\frac{1}{2 \pi f C_{g}}=\frac{7.96 \times 10^{10}}{f}  \tag{Eq. 4}\\
& 10 \times\left(\frac{7.96 \times 10^{10}}{f}\right)<1 \mathrm{M} \Omega
\end{align*}
\]

Therefore,
\[
f>796 \mathrm{kHz}
\]

Having provided a basis for the use of higher frequencies. the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a

DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105 . Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5.

Upon being powered by voltage regulator 100, oscillator 200 generates a square wave with a frequency of 50 kHz . and preferably greater than 800 kHz . and having an amplitude of 26 V peak. The square wave generated by oscillator \(\mathbf{2 0 0}\) is supplied via line 201 to a floating common generator 300. a touch pad shield plate 460. a touch circuit 400. and a microcontroller \(\mathbf{5 0 0}\). Oscillator 200 is described below with reference to FIG. 6.

Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated 5 floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator \(\mathbf{3 0 0}\) provide power to touch circuit 400 and microcontroller 500. Details of floating common generator \(\mathbf{3 0 0}\) are discussed below with reference to FIG. 7.
Touch circuit 400 senses capacitance from a touch pad 540 via line \(\mathbf{4 5 1}\) and outputs a signal to microcontroller \(\mathbf{5 0 0}\) via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8.

Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450, microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus. Microcontroller 600 then responds in a predetermined manner to 5 control a load 700. Having generally described the basic construction of the first embodiment, the preferred detailed construction of the depicted components will now be described with FIGS. 5-8. In cases where the number of lines to be switched is low, microcontroller 600 can be replaced by additional optical coupling lines. The number of lines to be switched will dictate whether it is more cost effective to multiplex over a two line optical bus such as line 501 and use a microcontroller to demultiplex, or to use a multiplicity of optical coupling lines. Other considerations such as reliability and power consumption may also affect this choice. In this preferred embodiment. the use of a single pair of optical coupling paths (line 501) and a microcontroller 600, is shown to emphasize the capability to switch a large number of lines.

100 is 5 . 5 . 100 Reng 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an ACDC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC 5 regulator 130. AC/DC convertor 110 includes diodes 112 , 114, 116. and 118, which rectify the supplied 24 V AC power provided on power lines 101 and 102. The anode of the first diode 112 is coupled to power line 101 and to the cathode of the second diode 114. The cathode of the first diode 112 is 60 coupled to output line 119. The anode of the second diode 114 is coupled to ground via line 103 and to the anode of the fourth diode 118. The anode of the third diode 116 is coupled to the cathode of the fourth diode 118 and to power line 102. The cathode of the third diode 116 is coupled to line 119 and 5 to the cathode of the first diode 112. The anode of the fourth diode 118 is coupled to ground via line 103. Diodes 112. 114, 116. and 118 are preferably diodes having part no. 1N4002
available from LITEON. AC/DC convertor 110 also preferably includes a capacitor \(\mathbf{1 1 5}\) for filtering the rectified output of the diodes. Capacitor 115 is preferably a \(1000 \mu \mathrm{~F}\) capacitor coupled between output line 119 and ground via line 103.
The 5 V regulator 120 preferably includes a \(500 \Omega\) resistor 122 coupled between line 119 and 5 V output line 104. and a zener diode 124. a first capacitor 126, and second capacitor 128 all connected and parallel between output power lines 104 and 105. Preferably. zener diode 124 is a 5.1 V zener diode having part no. 1N4733A available from LITEON. first capacitor 126 has a capacitance of \(10 \mu \mathrm{~F}\), and second capacitor 128 has a capacitance of \(0.1 \mu \mathrm{~F}\).
The 26 V regulator 130 preferably includes a transistor 134 having a collector connected to line 119 via a first resistor 132, a base connected to line 119 via a second resistor 136, and an emitter coupled to the regulated 26 V output power line \(\mathbf{1 0 6}\). The 26 V regulator \(\mathbf{1 3 0}\) also preferably includes a capacitor 137 and zener diode 138 connected in parallel between the base of transistor 134 and ground line 103. Preferably, first resistor 132 is a \(20 \Omega .0 .5 \mathrm{~W}\) resistor, second resistor 136 is a \(1 \mathrm{k} \Omega\). 0.5 W resistor, capacitor 137 is a \(0.1 \mu \mathrm{~F}\) capacitor, and zener diode 138 is a 27 V .0 .5 W diode having part no. 1N5254B available from LITEON. It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 110 V AC power to 24 V AC . Alternatively, if a DC battery is used, the AC/DC convertor among other components may be eliminated.

A preferred example of an 800 kHz oscillator is shown in FIG. 6. Oscillator 200 preferably includes a square wave generator 210, which is powered by 5 V regulator 120 via lines 104 and 105. for generating a 5 V peak square wave having the desired frequency, and a buffer circuit 230 powered by 26 V regulator 130 via line 106 for buffering the output of square wave generator 210 and boosting its peak from 5 V to 26 V while maintaining the preferred frequency. Square wave generator 210 is preferably an astable multivibrator constructed with at least two serially connected invertor gates 212 and 214, and optionally, a third serially connected invertor gate 216. Invertor gates 212. 214 and 216 are preferably provided in a single integrated circuit designated as part 74 HC 04 available from National Semiconductor. The output of the first invertor gate 212 is coupled to it's input via resistors 218 and 222 and is coupled to the output of the second invertor gate 214 via a capacitor 224 . The input of the second invertor gate 214 is directly connected to the output of the first invertor gate 212 and the output of the second invertor gate 214 is directly connected to the input of the optional third invertor gate 216. To provide an 800 kHz output, resistor 218 preferably has a \(10.0 \mathrm{k} \Omega\) value, resistor 222 preferably has a \(1.78 \mathrm{k} \Omega\) value, and capacitor 224 is preferably a 220 pF capacitor.

The 5 V peak square wave generated by square wave generator 210 is supplied from either the output of invertor gate 214 or the output of optional invertor gate 216 to the base of a first transistor \(\mathbf{2 3 8}\) via a first resistor \(\mathbf{2 3 2}\) connected and parallel a capacitor 234. The base of first transistor 238 is connected to the 26 V regulated DC power line 106 via a second resistor 236. The collector of first transistor 238 is connected to 26 V power line 106 via a third resistor 240 and to the base of a second transistor \(\mathbf{2 4 4}\). The emitter of first transistor 238 is coupled to ground and to it's own collector and the base of second transistor 244 via a fourth resistor 242. The collector of the second transistor 244 is connected oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost,
safety and reliability requirements of a given application. The present combination was chosen to keep the oscillator voltage down and allow operation at 800 kHz to minimize cross talk. At higher frequencies a higher gain bandwidth product transistor would be required in both the oscillator 200 and detection 400 circuits. Touch circuit 400 also preferably includes resistor 412 and a diode 414 having an anode connected to the base of transistor 410 and to resistor 413. and a cathode connected to the emitter of transistor 410 and to a resistor 412 connected in parallel with diode 414 between the base and emitter of transistor 410 . The pulse stretcher circuit 417 is identified as such because the sensitivity of the touch circuit may be increased or decreased by varying the resistance of resistor 416. The base of transistor 410 is connected via resistor 413 to line 451 connected to touch pad 450.
Additionally, touch circuit 400 may include at least one Schmitt triggered gate \(\mathbf{4 2 0}\) powered by the voltage difference existing between oscillator line 201 and 301 , and having an input terminal coupled to the collector of transistor 410 and an output coupled to microcontroller 500 via output line 401. Schmitt triggered invertor gate \(\mathbf{4 2 0}\) is optionally provided to improve the rise time of the touch switch output and to buffer the output. Preferably, transistor 410 is part no. BC858CL available from Motorola, resistor 412 is a \(12 \mathrm{M} \Omega\) resistor. diode 414 is part no. 1 N 914 B available from Diodes. Inc., resistor 416 is a \(470 \mathrm{k} \Omega\) resistor, capacitor 418 is a \(0.001 \mu \mathrm{~F}\) capacitor, and resistor 413 is a \(10 \mathrm{k} \Omega\) resistor.
As stated above, the operator's body includes a capacitance to ground. which may range in a typical person from between 20 to 300 pF . The base terminal of transistor 410 is coupled to it's emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450. transistor \(\mathbf{4 1 0}\) will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and actoss pulse stretcher circuit 417 will be zero volts. When. however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413, thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor \(\mathbf{4 1 0}\) to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time.
Touch pad 450 includes a substrate on which a plurality of electrically conductive plate members are mounted on one surface thereof. The substrate is an insulator and the plates are spaced apart in order to insulate the plates from one another and from ground. Also, positioned on the substrate is a guard band. generally shown as \(\mathbf{4 6 0}\). Guard band 460 is a grid of conductor segments extending between adjacent pairs of plate members. All conductor segments are physically interconnected to define a plurality of spaces with one plate member positioned centrally within each space. Components of the touch circuit may be positioned on the side of substrate opposite plate members and guard band 460.

A planar dielectric member is spaced from the substrate facing plate members. The dielectric member is made from a non-porous insulating material such as polycarbonate or glass. A plurality of electrically conductive spring contacts are sandwiched between the inner surface of the dielectric member and the substrate. An indicia layer may be adhered to the inner surface of the dielectric member to provide an indication of the function of each input portion.


In order to determine the effect of body capacitance on circuit operation, the circuit of FIG. 3 was used to simulate glass. water resistance, and body capacitance. The following two conditions were simulated and tested:

\section*{17}

1-The maximum body capacitance that does not cause crosswalk when
Temperature \(=105^{\circ} \mathrm{C}\).
Supply Voltage \(=36 \mathrm{VDC}\)
Glass Capacitance \(=2 \mathrm{pF}\)
Water Resistance \(=330 \mathrm{k}\) to \(1 \mathrm{M} \Omega\)
2 -The minimum capacitance to turn on a switch when: Temperature \(=0^{\circ} \mathrm{C}\).
Supply Voltage \(=29 \mathrm{VDC}\)
Glass Capacitance \(=2 \mathrm{pF}\)
3-Operation at room temperature.
Table 4 below shows the signal and noise voltages at the switch output for different values of body capacitance and contamination resistance.

TABLE 4
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { CONTAM- } \\
& \text { INATION } \\
& \text { RE- }
\end{aligned}
\] & \multicolumn{5}{|c|}{BODY CAPACTIANCE} \\
\hline SISTANCE & 20 pF & 220 pF & 330 pF & 550 pF & 1230 pF \\
\hline \multirow[t]{2}{*}{\(330 \mathrm{k} \Omega\)} & S: 5.1 V \\
\hline & \(\mathrm{N}: 2.0 \mathrm{~V}\) & N: 4.0 V & N: 4.5 V & N: 4.9 V & N: 5.0 V \\
\hline \multirow[t]{2}{*}{\(500 \mathrm{k} \Omega\)} & S: 5.1 V \\
\hline & \(\mathrm{N}: 0.2 \mathrm{~V}\) & N: 0.6 V & \(\mathrm{N}: 0.7 \mathrm{~V}\) & N: 0.8 V & N: 0.8 V \\
\hline \(1 \mathrm{M} \Omega\) & S: 5.1 V \\
\hline (Condensed & \(\mathrm{N}: 0.1 \mathrm{~V}\) & \(\mathrm{N}: 0.1 \mathrm{~V}\) & \(\mathrm{N}: 0.1 \mathrm{~V}\) & N: 0.1 V & N: 0.1 V \\
\hline \multirow[t]{3}{*}{NONE} & & & & & \\
\hline & S: 5.1 V \\
\hline & \(\mathrm{N}: 10 \mathrm{mV}\) \\
\hline
\end{tabular}
\(\mathrm{S}=\mathrm{Signal}\) (TOUCH)
\(\mathrm{N}=\) Noise (NO TOUCH)
supply voltage \(=36\) VDC
temperature \(=105^{\circ} \mathrm{C}\).
With contamination resistance of \(1 \mathrm{M} \Omega\) or more, the circuit is insensitive to body capacitance variations and has a minimum signal-to-noise ratio of -34 dB . With no contamination, signal-to-noise ratio is approximately -54 dB. The graph in FIG. 9 shows the signal-to-noise ratio versus body capacitance, for different values of contamination resistance at \(105^{\circ} \mathrm{C}\). The minimum body capacitance to turn on a switch is 20 pF .

At room temperature, crosstalk decreases because of gain drop of transistor 410 . Table 5 below shows that at room temperature, the circuit rejects \(250 \mathrm{k} \Omega\) of contamination. independent of body capacitance. Below \(250 \mathrm{k} \Omega\), body capacitance will affect crosstalk.

TABLE 5
\begin{tabular}{|c|c|c|c|c|c|}
\hline CONTAMINATION RE- & \multicolumn{5}{|c|}{BODY CAPACITANCE} \\
\hline SISTANCE & 20 pF & 220 pF & 330 pF & 550 pF & 1230 pF \\
\hline \(200 \mathrm{k} \Omega\) & \[
\begin{aligned}
& \text { S: } 5.1 \mathrm{~V} \\
& \mathrm{~N}: 0.2 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S}: 5.1 \mathrm{~V} \\
& \mathrm{~N}: 1.0 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S}: 5.1 \mathrm{~V} \\
& \mathrm{~N}: 1.2 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S}: 5.1 \mathrm{~V} \\
& \mathrm{~N}: 1.8 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S}: 5.1 \mathrm{~V} \\
& \mathrm{~N}: 2.2 \mathrm{~V}
\end{aligned}
\] \\
\hline \(250 \mathrm{k} \Omega\) & S: 5.1 V \\
\hline & N: 0.1 V & N: 0.1 V & \(\mathrm{N}: 0.5 \mathrm{~V}\) & N: 0.5 V & N: 0.5 V \\
\hline \(330 \mathrm{k} \Omega\) & S: 5.1 V & S: 5.1 V & \(\mathrm{S}: 5.1 \mathrm{~V}\) & S: 5.1 V & S: 5.1 V \\
\hline & N: 0.1 V \\
\hline \(1 \mathrm{M} \Omega\) & S: 5.1 V \\
\hline (Condensed Water) & \[
\mathrm{N}: 0.1 \mathrm{~V}
\] & N: 0.1 V & N: 0.1 V & N: 0.1 V & N: 0.1 V \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{S}=\text { Signal (TOUCH) } \\
& \mathrm{N}=\text { Noise (NO TOUCH) } \\
& \text { supply voltage }=36 \mathrm{VDC} \\
& \text { temperature }=25^{\circ} \mathrm{C} .
\end{aligned}
\]}} \\
\hline & & & & & \\
\hline
\end{tabular}

The graph of FIG. 10 shows the measured signal-to-noise ratio versus body capacitance, for different contamination resistance values at room temperature.

The particular advantages of the preceding circuit over that of existing touch detection circuits such as that disclosed in U.S. Pat. No. 4.758.735, are the use of diode 414 (selected for high speed) to minimize forward recovery time 5 rather than merely provide reverse polarity protection (as with the slower type of diode used in the existing circuits) and the omission of a capacitor coupled across the base to emitter junction of the detection transistor 410 to make the circuit more sensitive and operable with a lower oscillator 10 amplitude and higher oscillator frequency. These features along with appropriate choices in component values make possible operation at significantly higher frequencies ( \(>50\) to 800 kHz ) than are seen in existing art ( 60 to 1000 Hz ). At frequencies at or near 800 kHz . the \(20-300 \mathrm{pF}\) of capaci5 tance to ground offered by the human body presents a considerably lower impedance than the primarily resistive impedance of skin oil or water films that may appear on the dielectric layer overlying the conductive touch pads. This allows the peak voltage of a pad that is touched to come considerably closer to ground than adjacent pads which will have a voltage drop across any contaminating film layer that is providing a conductive path to the area that is touched. The enhanced sensitivity offered by the omission of any capacitor between the base and emitter of the detection 5 transistor 410. allows the threshold of detection to be set much closer to ground than would be the case otherwise. This allows discrimination between the pad that is touched and adjacent pads that might be pulled towards ground via the conductive path to the touch formed by a contaminating 30 film. This high frequency regime of operation offers a considerable advantage relative to the existing art in terms of immunity to surface contaminants such as skin oil and moisture.

A multiple touch pad circuit constructed in accordance 5 with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as \(\mathbf{9 0 0}\), through \(\mathbf{9 0 0} \mathbf{m m}^{\text {, }}\), which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to \(900_{n m}\) by providing the signal from oscillator \(\mathbf{2 0 0}\) to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 0 between the touch pad \(\mathbf{4 5 0}\) and the base to the detection transistor \(\mathbf{4 1 0}\) to a minimum. the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl. Inc. or Circuit Etching Technics, Inc. can be used 5 for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps.

For this second embodiment, the oscillator 200 of the first embodiment may be slightly modified from that shown in FIG. 6 to include a transistor (not shown) coupled between the oscillator output and ground with it's base connected to microcontroller 600 such that microcontroller 600 may selectively disable the output of oscillator 200.

The use of a high frequency in accordance with the present invention provides distinct advantages for circuits
such as the multiple touch pad circuit of the present invention due to the manner in which crosstalk is substantially reduced without requiring any physical structure to isolate the touch terminals. Further, the reduction in crosstalk afforded by the present invention, allows the touch terminals in the array to be more closely spaced together.

A third embodiment of the present invention, which provides touch circuit redundancy, is described below with reference to FIGS. 12-14. As shown in FIG. 12, the switching circuit according to the third embodiment includes a voltage regulator 1100 for regulating power supplied by 24 V DC power lines 1101 and 1102 with ground connection 1103. for supplying the regulated power to an oscillator 1200 via lines 1104 and 1107.

Oscillator 1200 supplies a continuous and periodic signal to touch circuits \(1400 a\) and \(1400 b\) via line 1201. Preferably, the frequency of the oscillator output signal is at least 100 kHz , and more preferably, at least 800 kHz . The two touch circuits \(1400 a\) and \(1400 b\) are identical in construction and both receive the output of touch terminal 1450 via line 1451. A detailed description of the preferred voltage regulator circuit 1100. oscillator 1200, and touch circuits \(1400 a\) and \(1400 b\) is provided below with reference to FIG. 13 following the description of the remaining portion of the third embodiment.

The output of the first touch circuit \(1400 a\) is supplied to a first driver circuit 1500 via line \(1401 a\) while the output of the second touch circuit \(1490 b\) is supplied to a second driver circuit 1600 via line \(1401 b\). The two driver circuits 1500 and 1600 are provided to drive first and second serially connected switching transistors 1700 and 1710. The switching transistors 1700 and 1710 must both be conducting to supply power to a relay switch 1800 . Thus, if one of touch circuits \(1400 a\) and \(1400 b\) does not detect a touch of touch terminal 1450, one of switching transistors 1700 and 1710 will not conduct and power will not be supplied to relay switch 1800. The preferred construction of driver circuits 1500 and 1600 and relay switch 1800 are described below with reference to FIG. 14.

As shown in FIG. 13. voltage regulator 1100 may be constructed by providing a first capacitor 1110 and a varistor 1112 connected in parallel across input power terminals 1101 and 1102. Preferably, return power terminal 1102 is connected via line 1103 to ground. Varistor 1112 is used to protect the circuit for over-voltage conditions. Also connected in parallel with first capacitor 1110 and varistor 1112, are the serially connected combination of a fuse 1114, a diode 1116, a resistor 1118 and two parallel connected capacitors 1120 and 1122. The voltage regulator 1100 is reverse polarity protected by diode 1116 and current limited by resistor 1118. Capacitors \(\mathbf{1 1 2 0}\) and \(\mathbf{1 1 2 2}\) provide filtering.

Voltage regulator 1100 further includes a zener diode 1128 having it's cathode connected to a node between resistor 1118 and capacitors 1120 and 1122 and to output power line 1104. The anode of zener diode 1128 is coupled to output power common line 1107 and to ground line 1103 via two serially connected resistors 1124 and 1126. Zener diode 1128 and resistors 1124 and 1126 generate regulated 15 V DC. Two capacitors \(\mathbf{1 1 3 0}\) and \(\mathbf{1 1 3 2}\) are connected in parallel with zener diode 1128 between power lines 1104 and 1107. Capacitors 1130 and 1132 provide filtering and decoupling. respectively. Preferably, capacitor 1110 has a capacitance of \(1000 \mathrm{pF}, 1000 \mathrm{~V}\), varistor 1112 is part no. S14K25 available from Siemens, fuse 1114 is a \(1 / 4 \mathrm{~A}\) fuse, diode 1116 is part no. 1N4002 available from LITEON, resistor 1118 has a resistance of \(10 \Omega, 1 / 2 \mathrm{~W}\), capacitor 1120 has a capacitance of \(22 \mu \mathrm{~F}, 35 \mathrm{~V}\). capacitor 1122 has a terminal of operational amplifier 1514 is connected to line 1502. which runs between first and second driver circuits

1500 and 1600 and is connected to power line 1104 via a resistor 1626 . The output of op amp 1514 is connected to power line 1104 via a resistor 1518 and to the input of a Schmitt trigger invertor gate 1516. The output of Schmitt trigger invertor gate 1516 is connected to the input of a second Schmitt trigger invertor gate 1526 via a resistor 1520. A diode 1522 is connected in parallel with resistor 1520 with it's cathode connected to the output of invertor gate 1516 and it's anode connected to the input of invertor gate 1526 and to power common line 1107 via capacitor 1524. The output of invertor gate 1526 is connected to the base of bipolar PNP switching transistor 1700 via a resistor 1528. The base of transistor 1700 is also connected to power common line 1107 via a capacitor 1532 and to power line 1104 and it's emitter via a resistor 1530.

Preferably, resistor 1510 has a resistance of \(10 \mathrm{M} \Omega\). capacitor 1512 has a capacitance of \(0.01 \mu \mathrm{~F}\), op amp comparator 1514 is part no. LM393 available from National Semiconductor, invertor gate 1516 is part no. CD40106B available from Harris, resistor 1518 has a resistance of 10 \(\mathrm{k} \Omega\). resistor 1520 has a resistance of \(1 \mathrm{M} \Omega\). diode 1522 is part no. RLS4448 available from LITEON, capacitor 1524 has a capacitance of \(0.22 \mu \mathrm{~F}\). invertor gate 1526 is part no. CD40106 available from Harris, resistor 1528 has a resistance of \(12 \mathrm{k} \Omega\), resistor 1530 has a resistance of \(100 \mathrm{k} \Omega\). capacitor 1532 has a capacitance of \(0.01 \mu \mathrm{~F}\), and transistor 1700 is part no. MMBTA56L available from Motorola.

In second driver circuit 1600, the output line \(1401 b\) of second touch circuit \(1400 b\) is connected to power common line 1107 via a resistor 1610 and also via a capacitor 1612 connected in parallel therewith. The output line \(1401 b\) is also connected to the inverting input terminal of an operational amplifier 1614. The non-inverting input terminal of operational amplifier 1614 is connected to line 1502 , which is connected to power line 1104 via resistor 1626. The non-inverting input terminal of op amp 1614 is also connected to power common line 1107 via a capacitor 1616 and a resistor 1618, which are connected in parallel. The output of op amp 1614 is connected to power line 1104 via a resistor 1630 and to the coupled inputs of a Schmitt trigger invertor gate 1628. The output of op amp 1614 is also connected to it's non-inverting input terminal via a resistor 1624 . The output of Schmitt trigger invertor NAND gate 1628 is connected to the input of a second Schmitt trigger invertor gate 1638 via a resistor 1632. A diode 1634 is connected in parallel with resistor 1632 with it's cathode connected to the output of invertor NAND gate 1628 and it's anode connected to the input of invertor NAND gate 1638 and to power common line 1107 via a capacitor 1636. The output of invertor gate 1638 is connected to the base of switching bipolar PNP transistor 1710 via a resistor \(\mathbf{1 6 4 0}\). The base of transistor 1710 is also connected to power common line 1107 via a capacitor 1642 and to power line 1104 via a resistor 1644. Second driver circuit 1600 also preferably includes capacitors 1620 and 1622 connected in parallel 55 between it's connections to power lines 1104 and 1107.

Preferably, resistor 1610 has a resistance of \(10 \mathrm{M} \Omega\). capacitor 1612 has a capacitance of \(0.01 \mu \mathrm{~F}\). op amp comparator 1614 is part no. LM393 available from National Semiconductor, capacitor 1616 has a capacitance of \(0.01 \mu \mathrm{~F}\). resistor 1618 has a resistance of \(20 \mathrm{k} \Omega\). capacitor 1620 has a capacitance of \(0.1 \mu \mathrm{~F}\), capacitor 1622 has a capacitance of \(0.1 \mu \mathrm{~F}\). resistor 1624 has a resistance of \(100 \mathrm{k} \Omega\). resistor 1626 has a resistance of \(10 \mathrm{k} \Omega\), invertor NAND gate 1628 is part no. CD4093B available from Harris, resistor \(\mathbf{1 6 3 0}\) has a resistance of \(10 \mathrm{k} \Omega\). resistor 1632 has a resistance of 1 \(\mathrm{M} \Omega\). diode 1634 is part no. RLS4448 available from against inadvertent actuations and forces the operator to have both hands in a desired safe location once a desired
actuation occurs. A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator. In industrial or other challenging settings, the housing is made of high strength polycarbonate (or other high strength non-metallic material) to meet high impact and vibration requirements, preferably NEMA 4. A further option is to provide lighting for the switches to allow operation in the dark.

In a variation of the multi-step process. two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310, is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310 . The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated. In this proposed embodiment, the second step provides an added stimulus and reduces operator errors due to mental and physical fatigue. The top cover prevents actuation of two devices by the use of one hand and elbow of the same arm. as required by ANSI Standard B11.19-1990. The enclosure must be a high strength polycarbonate module to meet the high impact and vibration requirements of the industry, preferably NEMA 4. In both embodiments, high frequency switching is used to desensitize the unit against moisture and contaminants that could generate a path between the button and grounded chassis. The palm button may be formed as the flat palm button shown in FIGS. 15A-C or as a dome-shaped palm button shown in FIG. 16. The button is made of a brass plate 1910 (1930) and can be covered with a plastic or glass 1925 (1933) cover or membrane to desensitize the unit even more against contaminants and other inadvertent actuation. The plastic cover 1925 (1933) acts as a dielectric and capacitance is varied as a function of the area of the plastic being touched. Therefore, if button is touched by finger. a much smaller series capacitance is generated as opposed to button being touched by the palm of a hand. This capacitance is placed in series with the capacitance of the body to ground when the button is touched. Since the capacitance of the body to ground is much larger than the capacitance generated by the button, the functionality of the unit is independent of the variations in body capacitance to ground from person to person. The other factor that needs to be considered here is body resistance. If the button is not covered with an insulator such as plastic. the unit would become sensitive to body resistance. Body resistance to ground. changes as a function of moisture in the work area.
skin dryness. floor structure, and shoes. By using a plastic cover, the unit is made insensitive to variations of body resistance and capacitance. The shape of the button is also a factor in sensitivity. If the button is flat. less of the button area would be covered by the palm of the hand as opposed to a dome shape button that matches the contour of the palm. Therefore. if the button is dome-shaped. the unit can be even more desensitized against inadvertent operation.

By providing a large space for hand insertion and switch activation and a flat or dome shape button where the palm of the hand rests while machine cycle is in process. stress on the forearms is ergonomically reduced. The palm button of the present invention can be activated with or without gloves. The zero force palm button of the present invention may be used to activate electric. pneumatic, air clutch, and hydraulic equipment such as punch presses, molding machines, etc.

As shown in FIGS. 15A-C. the flat palm button may include a plastic housing 1917 having an optional metallic enclosure 1922 for surface mounting. The button also may include a flush mount surface 1915 and optional guarding 1920.

The circuit board 1935 used with the palm button of the present invention may be packaged on two printed circuit boards. One board for power and relay and the other for touch switches and relay drivers. The touch circuit on the touch switch board is interfaced to the button through a screw that also holds the button in place. The power/relay board is interfaced to the touch switch board through a three pin right angle connector. Wiring to the unit is done through a seven position terminal block on the power/relay board. The power/relay board is designed for 24 V DC input power and provides two double-throw relay contacts. However, it can be modified to accommodate different power inputs and switch outputs. For example, a transformer may be added to the power board so that the unit is powered \(110 \mathrm{VAC} /\) 220 VAC instead of 24 V DC . Also. the relays may be replaced with other outputs such as digital or \(4-20 \mathrm{~mA}\) outputs.
The touch circuit components can be integrated in a custom IC 2000, as shown in FIG. 17, to facilitate manufacturing and to reduce cost. Components \(413,412,414\), 410,418 , and 420 are similar to those of circuit 400 shown in FIG. 8. Preferably, resistor 2004 has a resistance of 470 \(\mathbf{k} \Omega\) and diode 2002 has characteristics similar to part no. 1N4148 available from LITEON. Resistors 2008 and 2006 are used to adjust the sensitivity. Diode 2002 at the output of 420. allows the IC to be used in applications where several touch circuit IC's are multiplexed.

As shown in FIG. 18, a sleep circuit 2100 may be added to the oscillator circuit 200 (FIG. 6) to allow microcontroller 600 to turn off the oscillator circuit 200. The disabling of oscillator circuit 200 is done to reduce drainage of capacitor 126 in the regulator circuit 120 during brown outs. The circuit diagram shown in FIG. 18 is a modified version of circuit 200 in FIG. 6. During normal operation microcontroller 600 pulls the input of gate 2116 to ground and causes the output of gate 2116 to go high (power line 104). Therefore, transistor 2110 is biased on and oscillator 200 is functional. When in a sleep mode. microcontroller 600 sources the input to gate 2116 high and causes the output of gate 2116 to go low which turns off transistor 2110 and pulls the input of gate 212 low. Therefore, the oscillator will stop oscillating and drainage on capacitor \(\mathbf{1 2 6}\) decreases considerably.
The above described embodiments were chosen for purposes of describing but one application of the present
invention. It will be understood by those who practice the invention and by those skilled in the art, that various modifications and improvements may be made to the invention without departing from the spirit or scope of the invention as defined by the appended claims.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a frequency of 50 kHz or greater;
an input touch terminal having a dielectric cover defining an area for an operator to provide an input by proximity and touch, an operator's body capacitance to ground as sensed through said input touch terminal varying as a function of the area of said input touch terminal that is proximate the operator's body; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal. wherein said detector circuit includes means for generating said control signal when the sensed body capacitance to ground exceeds a threshold level in order to prevent unintended activation based upon an operator's inadvertent proximity and touch with said input touch terminal.
2. The switching circuit as defined in claim 1, wherein said oscillator provides a periodic output signal having a frequency of 800 kHz or greater.
3. The switching circuit as defined in claim 1 and further including a DC power supply for supplying power to said oscillator and a ground.
4. The switching circuit as defined in claim 1, wherein said periodic output signal provided by said oscillator is a square wave output signal, said oscillator includes a square wave generator for generating a square wave, and a plurality of active elements coupled to an output of said square wave generator to buffer and improve the shape of the square wave output therefrom.
5. The switching circuit as defined in claim 1, wherein said detector circuit includes a microcontroller and a charge pump circuit coupled between said input touch terminal and said microcontroller.
6. The switching circuit as defined in claim 1. wherein said detector circuit includes a microcontroller and a touch circuit coupled between said input touch terminal and said microcontroller.
7. The switching circuit as defined in claim 6 and further including a plurality of said input touch terminals and a plurality of said touch circuits respectively associated with said input touch terminals.
8. The switching circuit as defined in claim 7, wherein said microcontroller selectively applies said periodic output signals received from said oscillator to each of said touch circuits to separately activate each touch circuit.
9. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a frequency of 50 kHz or greater;
an input touch terminal defining an area for an operator to provide an input by proximity and touch;
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and
coupled to said input touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal; and
a floating common generator coupled to said oscillator for receiving said square wave output signal, said floating common generator generating a floating common reference for said detector circuit that is set at a fixed voltage below and tracks the square wave output signal.
10. The switching circuit as defined in claim 9. wherein said detector circuit is powered by said square wave output signal provided by said oscillator and by said floating common reference provided by said floating common generator thereby increasing the sensitivity of said detector circuit to proximity and touching of said touch terminal by an operator's body.
11. The switching circuit as defined in claim 10. wherein said detector circuit includes a microcontroller and a charge pump circuit coupled between said input touch terminal and said microcontroller. by an operator's body. wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed body capacitance at said touch terminal for higher frequencies.
12. A proximity and touch controlled switching circuit comprising:
an oscillator providing a square wave output signal having a frequency of 50 kHz or greater;
a touch terminal having a dielectric cover defining an input terminal for coupling to an operator's body capacitance to ground; and
a charge pump circuit coupled to said oscillator for receiving said square wave output signal, and coupled to said touch terminal, said charge pump circuit having an output terminal that supplies an output signal having a voltage that varies when said touch terminal is proximal or touched by an operator's body, the voltage of said output signal varies as a function of the area of said touch terminal that is proximal or touched by an operator.
wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed body capacitance to ground at said touch terminal for higher frequencies.
13. The proximity and touch controlled circuit as defined in claim 12 and further including a DC power supply for supplying power to said oscillator and a ground.
14. The proximity and touch controlled circuit as defined in claim 12, wherein said oscillator includes a square wave generator for generating a square wave, and a plurality of active elements coupled to an output of said square wave generator to buffer and improve the shape of the square wave output therefrom.
15. The proximity and touch controlled circuit as defined in claim 12, wherein said oscillator provides a periodic output signal having a frequency of 800 kHz or greater.
16. A proximity and touch controlled switching circuit comprising:
an oscillator providing a square wave output signal having a frequency of 50 kHz or greater;
a touch terminal defining an input terminal for coupling to an operator's body capacitance to ground;
a charge pump circuit coupled to said oscillator for receiving said square wave output signal. and coupled to said touch terminal, said charge pump circuit having an output terminal that supplies an output signal having a voltage that varies when said touch terminal is proximal or touched by an operator's body; and
a floating common generator coupled to said oscillator for receiving said square wave output signal, said floating common generator generating a floating common reference for said charge pump circuit that is set at a fixed voltage below and tracks said square wave output signal.
wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed body capacitance to ground at said touch terminal for higher frequencies.
17. The proximity and touch controlled circuit as defined in claim 16. wherein said charge pump circuit is powered by said square wave output signal provided by said oscillator and by said floating common reference provided by said floating common generator thereby increasing the sensitivity of said charge pump circuit to proximity and touching of said touch terminal by an operator's body.
18. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a plurality of input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or touched by an operator to provide a control output signal,
wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electrical on said dielectric substrate path between said adjacent areas, and wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
19. The switching circuit as defined in claim 18, wherein said oscillator provides a periodic output signal having a frequency of 800 kHz or greater.
20. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a dome-shaped touch terminal defining an area for an operator to provide an input by proximity and touch. wherein the dome shape of the touch terminal is constructed to ergonomically fit the palm of a human hand; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground
coupled to said touch terminal when proximal or touched by an operator to provide a control output signal. said detector circuit including means for discriminating between a proximity and touch of said dome-shaped touch terminal by the palm of a human hand and a proximity and touch by a human finger.
21. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a touch terminal defining an area for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal, said detector circuit including discriminating means for discriminating between a proximity and touch of said touch terminal covering substantially all of said area of said touch terminal and a proximity and touch covering less than substantially all of said area of said touch terminal.
22. The switching circuit as defined in claim 21, wherein said touch terminal includes a dome-shaped dielectric cover.
23. The switching circuit as defined in claim 21. wherein said touch terminal includes a palm-sized dielectric cover.
24. The switching circuit as defined in claim 23. wherein said discriminating means determines that a proximity and touch of said touch terminal covers substantially all of said area of said touch terminal when said dielectric cover is proximal or touched with the palm of an operator's hand and determines that a proximity or touch covers less than substantially all of said area of said touch terminal when said dielectric cover is proximal or touched with one of an operator's fingers.
25. The switching circuit as defined in claim 21, wherein said discriminating means discriminates between a proximity and touch of said touch terminal covering substantially all of said area of said touch terminal and a proximity and touch covering less than substantially all of said area of said touch terminal based upon a sensed level of body capacitance to ground proximate said touch terminal.
26. The switching circuit as defined in claim 21, wherein said coupling of capacitance to ground occurs when an operator's body is proximate, but not touching, said touch terminal.
27. A capacitive responsive electronic switching circuit for a controlled device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by an operator to provide a control output signal for actuation of the controlled device. said detector circuit being con-
figured to generate said control output signal when said an operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
28. The capacitive responsive electronic switching circuit as defined in claim 27, wherein said detector circuit generates said control signal only when an operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
29. The capacitive responsive electronic switching circuit as defined in claim 27, wherein said first and second touch terminals are adapted to be mounted on different surfaces of the controlled device.

\section*{30}
30. The capacitive responsive electronic switching circuit as defined in claim 27, wherein said first and second touch terminals are adapted to be mounted on non-parallel planar surfaces of the controlled device.
31. The capacitive responsive electronic switching circuit as defined in claim 27. wherein said first and second touch terminals are adapted to be mounted on perpendicular planar surfaces of the controlled device.
32. The capacitive responsive electronic switching circuit 10 as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that an operator is proximal or touches said first touch terminal.

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

PATENT NO. : 5,796,183
Page 1 of 3
DATED : August 18, 1998
INVENTOR(S) : Byron Hourmand
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 5, line 52, "such a" should be --such as--.
Column 9, line 31, before "water" insert --condensed--.
Column 14, line 35 , "is" should be --as--.
Column 13, line 65 , "it's" should be --its--.
Column 18, line 38, "references" should be --reference--.
Column 20, line 7, "it's" should be --its- (both occurrences).
Column 20, line 9, "it's" should be --its--.
Column 20, line 10, "it's" should be --its-- (both occurrences).
Column 20, line 13, "it's" should be --its-".
Column 20, line 20, "it's" should be --its--.
Column 20, line 39, "it's" should be --its--.
Column 20, line 40, "it's" should be --its--.

Column 20, line 46, "it's" should be --its--.
Column 20, line 47, "it's" should be --its--.

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

PATENT NO. : 5,796,183
DATED : August 18, 1998
INVENTOR(S) : Byron Hourmand

Page 2 of 3

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 21, line 8, "it's" should be --its--.
Column 21, line 9, "it's" should be --its--
Column 21, line 15, "it's" should be --its--
Column 21, line 42, "it's" should be -its--.
Column 21, line 46, "it's" should be -its--.
Column 21, line 47, "it's" should be --its--.
Column 21, line 56, "it's" should be -its--.
Column 22, line 8, "it's" should be --its--.
Column 22, line 13, "schmitt" should be --Schmitt--.
Column 26, lines 22-27, after "microcontroller." delete "by an operator's body . . . higher frequencies."

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

\author{
PATENT NO. : 5,796,183 \\ Page 3 of 3 \\ DATED : August 18, 1998 \\ INVENTOR(S) : Byron Hourmand
}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 27, line 44, after "electrical" insert --path--.
Column 27, line 45, delete "path".
Column 29, line 1, after "when" delete "said".

\section*{Signed and Sealed this}

Eleventh Day of May, 1999

\section*{Attest:}

Q. TODD DICKINSON

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE}

\section*{CERTIFICATE OF CORRECTION}

\author{
PATENT NO. : 5,796,183 \\ APPLICATION NO. : 08/601268 \\ DATED : August 18, 1998 \\ INVENTOR(S) : Byron Hourmand et al. \\ It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
}

Title Page, Item (75) Inventor, should read --(75) Inventors: Byron Hourmand, Hersey, MI (US); John M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US)--.

Signed and Sealed this
Eleventh Day of October, 2011


\title{
(12) EX PARTE REEXAMINATION CERTIFICATE (9614th) United States Patent \\ (10) Number: US 5,796,183 C1 \\ Hourmand et al. \\ (45) Certificate Issued: Apr. 29, 2013
}
(54) CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT
(75) Inventors:

Byron Hourmand, Hersey, MI (US); John M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US)

Assignee: Nartron Corporation, Reed City, MI (US)

Reexamination Request:
No. 90/012,439, Aug. 17, 2012

\section*{Reexamination Certificate for:}
\begin{tabular}{ll} 
Patent No.: & \(\mathbf{5 , 7 9 6 , 1 8 3}\) \\
Issued: & Aug. 18, 1998 \\
Appl. No.: & \(\mathbf{0 8 / 6 0 1 , 2 6 8}\) \\
Filed: & Jan. 31, 1996
\end{tabular}

Certificate of Correction issued May 11, 1999
Certificate of Correction issued Oct. 11, 2011
(51) Int. Cl.

H03K 17/96
(2006.01)

H03K 17/94
(2006.01)
(52) U.S. Cl.

USPC
307/116; 307/125; 307/139; 361/181
(58) Field of Classification Search

None
See application file for complete search history.

\section*{References Cited}

To view the complete listing of prior art documents cited during the proceeding for Reexamination Control Number 90/012,439, please refer to the USPTO's public Patent Application Information Retrieval (PAIR) system under the Display References tab.
Primary Examiner - Linh M. Nguyen

\section*{ABSTRACT}

A capacitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal having a frequency of 50 kHz or greater, an input touch terminal defining an area for an operator provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. Preferably, the oscillator provides a periodic output signal having a frequency of 800 kHz or greater. An array of touch terminals may be provided in close proximity due to the reduction in crosstalk that may result from contaminants by utilizing an oscillator outputting a signal having a frequency of 50 kHz or greater.


EX PARTE
REEXAMINATION CERTIFICATE ISSUED UNDER 35 U.S.C. 307

\author{
THE PATENT IS HEREBY AMENDED AS INDICATED BELOW.
}

Matter enclosed in heavy brackets [] appeared in the patent, but has been deleted and is no longer a part of the patent; matter printed in italics indicates additions made to the patent.

\section*{AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMINED THAT:}

Claims 18, 27, 28 and \(\mathbf{3 2}\) are determined to be patentable as amended.

New claims 33-39 are added and determined to be patentable.

Claims 1-17, 19-26 and 29-31 were not reexamined.
18. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad;
[a] the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by [an] the operator to provide a control output signal,
wherein said predefined frequency of said oscillator [is] and said signal output frequencies are selected to decrease [the] a first impedance of said dielectric substrate relative to [the] a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares [the] \(a\) sensed body capacitance change to ground proximate an input 50 touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
27. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a 55 predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals 60 comprising first and second input touch terminals;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving 65 said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said
pro


\author{
55
}
a detector detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
38. The capacitive responsive electronic switching circuit as defined in claim 37, wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.
39. The capacitive responsive electronic switching circuit 5 as defined in claim 37,
wherein said detector circuit compares a sensed body capacitance change caused by the body capacitance decreasing a second touch terminal signal on the detector to ground when proximate to the second touch ter- 10 minal to a threshold level to generate the control output signal, and
wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.


Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
3. \(\square\) The assignee of an undivided interest in the entirety (a complete assignment from one of the joint inventors was made). The other parties, including inventors, who together own the entire right, title, and interest are:


Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
4. \(\square\) The recipient, via a court proceeding or the like (e.g., bankruptcy, probate), of an undivided interest in the entirety (a complete transfer of ownership interest was made). The certified document(s) showing the transfer is attached.

The interest identified in option 1, 2 or 3 above (not option 4) is evidenced by either (choose one of options \(A\) or \(B\) below):
A. \(\square\) An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel \(\qquad\) Frame \(\qquad\) , or for which a copy thereof is attached.
B. \(\checkmark\) A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows:
1. From:

Byron Hourmand
To: Nartron Corporation
The document was recorded in the United States Patent and Trademark Office at
Reel 008254 , Frame 0496 , or for which a copy thereof is attached.
2. From:

Byron Hourmand
The document was recorded in the United States Patent and Trademark Office at Reel 008443 , Frame 0749 , or for which a copy thereof is attached.
\[
\text { [Page } 1 \text { of 2] }
\]

This collection of information is required by 37 CFR3.73(b). The information is required toobtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentialityis governed by35 U.S.C. 122 and 37 CFR1.11 and1.14. Thiscollection is estimated to take 12 minutes to complete, including gathering, preparing, and submittingthe completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent tothe Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

\section*{STATEMENT UNDER 37 CFR 3.73(c)}


The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.
/Brian A. Carlson/
Signature
Brian A. Carlson
Printed or Typed Name

December 24, 2013
Date
37,793
Title or Registration Number

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that yoube given certain informationin connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, pleasebe advised that: (1) the general authority forthe collection of thisinformation is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and(3) the principal purpose forwhich the information isused by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent applicationor patent. If you do not furnish the requested information,the U.S. Patent and Trademark Office may not be able to process and/or examineyour submission, which may result in termination of proceedings or abandonment of the applicationor expiration of the patent.

The informationprovided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the informationin order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. \(552 \mathrm{a}(\mathrm{m})\).
5. A record related to an InternationalApplication filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, arecord may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from thissystem of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

\section*{POWER OF ATTORNEY TO PROSECUTE APPLICATIONS BEFORE THE USPTO}

I hereby revoke all previous powers of attorney given in the application identified in the attached statement under 37 CFR \(3.73(\mathrm{~b})\).
I hereby appoint:
\(\checkmark\)
Practitioners associated with the Customer Number:
 ORPractitioner(s) named below (if more than ten patent practitioners are to be named, then a customer number must be used):

as attorney(s) or agent(s) to represent the undersigned before the United States Patent and Trademark Office (USPTO) in connection with any and all patenl applications assigned only to the undersigned according to the USPTO assignment records or assignment documents attached to this form in accordance with 37 CFR 3.73(b).


Assignee Name and Address:
UUSI, LLC
5000 North US Highway 131, Twenty-Second Floor
Reed City, Michigan 49677
A copy of this form, together with a statement under 37 CFR 3.73 (b) (Form PTOISB/96 or equivalent) is required to be filed In each application in which this form is used. The statement under 37 CFR \(3.73(\mathrm{~b})\) may be completed by one of the practitioners appointed in this form if the appointed practitioner is authorized to act on behalf of the assignee, and must identify the application in which this Power of Attorney is to be filed.


This collection of information is required by 37 CFR \(1,31,1,32\) and 1.33 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiatity is govemed by \(35 \mathrm{U}, \mathrm{S.C}\).122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes o complete, including gathering, prepating, and subnifting the compteted application form to the USPTO, Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burten, should be sent to the Chief information Officer, US. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexantria, VA 223131450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Aloxandria, VA 22313-1450.

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
\begin{tabular}{lllll} 
U.S. Patent No.: & \(5,796,183 \mathrm{~B} 1\) & \(\S\) & Docket No.: & 5796183 RX 2 \\
Issued: & August 18,1998 & \(\S\) & Inventors: & Hourmand et al. \\
Filed: & January 31, 1996 & \(\S\) & Patent Owner: & UUSI, LLC \\
Control No. & TBD & \(\S\) & Examiner: & TBD
\end{tabular}

For: Capacitive Responsive Electronic Switching Circuit
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{INFORMATION DISCLOSURE STATEMENT}

Dear Sir:
Patent Owner wishes to bring to the attention of the U.S. Patent and Trademark Office the information noted on the enclosed form, which may be considered material to the reexamination of the above-identified patent. Patent Owner makes no assertion that a prior art search has been made or that any of the cited references are prior art under 35 U.S.C. § 102. In some instances, publications that are not prior art under 35 U.S.C. § 102 have been cited as they may discuss prior art systems and may provide insight into the state of the art at the time of the invention.

Respectfully submitted,

December 24, 2013
Date

SLATER \& MATSIL, L.L.P. 17950 Preston Rd., Ste. 1000
Dallas, Texas 75252
Tel.: 972-732-1001
docketing@slater-matsil.com
\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
( Not for submission under 37 CFR 1.99)
\end{tabular}} & \multicolumn{2}{|l|}{Application Number} \\
\hline & \multicolumn{2}{|l|}{Filing Date} \\
\hline & First Named Inventor & Byron Hourmand \\
\hline & \multicolumn{2}{|l|}{Art Unit} \\
\hline & \multicolumn{2}{|l|}{Examiner Name} \\
\hline & Attorney Docket Number & 5796183RX \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{U.S.PATENTS} & Remove \\
\hline Examiner Initial* & \begin{tabular}{l}
Cite \\
No
\end{tabular} & Patent Number & Kind Code \({ }^{1}\) & Issue Date & Name of Patentee or Applicant of cited Document & Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear \\
\hline & 1 & 4766368 & & 1988-08-23 & Cox & \\
\hline & 2 & 4825385 & & 1989-04-25 & Dolph, et al. & \\
\hline & 3 & 5305017 & & 1994-04-19 & Gerpheide & \\
\hline & 4 & 5337353 & & 1994-08-09 & Boie, et al. & \\
\hline & 5 & 5463388 & & 1995-10-31 & Boie, et al. & \\
\hline & 6 & 5565658 & & 1996-10-15 & Gerpheide, et al. & \\
\hline \multicolumn{7}{|l|}{If you wish to add additional U.S. Patent citation information please click the Add button. Add} \\
\hline \multicolumn{7}{|r|}{U.S.PATENT APPLICATION PUBLICATIONS Remove} \\
\hline Examiner Initial* & Cite No & Publication Number & Kind Code \({ }^{1}\) & Publication Date & Name of Patentee or Applicant of cited Document & Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
( Not for submission under 37 CFR 1.99)
\end{tabular}} & \multicolumn{2}{|l|}{Application Number} \\
\hline & \multicolumn{2}{|l|}{Filing Date} \\
\hline & First Named Inventor \({ }^{\text {B }}\) & Byron Hourmand \\
\hline & \multicolumn{2}{|l|}{Art Unit} \\
\hline & \multicolumn{2}{|l|}{Examiner Name} \\
\hline & Attorney Docket Number & 5796183RX \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
( Not for submission under 37 CFR 1.99)
\end{tabular}} & \multicolumn{2}{|l|}{Application Number} \\
\hline & \multicolumn{2}{|l|}{Filing Date} \\
\hline & First Named Inventor \(\quad\) B & Byron Hourmand \\
\hline & \multicolumn{2}{|l|}{Art Unit} \\
\hline & \multicolumn{2}{|l|}{Examiner Name} \\
\hline & Attorney Docket Number & 5796183RX \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 6 & HLADY, A.M., "A touch sensitive X-Y position encoder for computer input," Proceedings of the Fall Joint Computer Conference, November 18-20, 1969, pp. 545-551. & \(\square\) \\
\hline 7 & SASAKI, L., et al., "A Touch-Sensitive Input Device," International Computer Music Conference Proceedings, November 1981, pp. 293-296. & \(\square\) \\
\hline 8 & CALLAHAN, J., et al., "An Empirical Comparison of Pie vs. Linear Menus," Human Factors in Computing Systems: Chicago '88 Conference Proceedings: May 15-19, 1988, Washington DC: Special Issue of the SIGCHI Bulletin, New York, Association for Computing Machinery, pp. 95-100. & \(\square\) \\
\hline 9 & CASIO, AT-550 Advertisement, published in Popular Science by On The Run, February 1984, p.-129. & \(\square\) \\
\hline 10 & CASIO, "Module No. 320," AT-550 Owner's Manual, at least as early as December 1984, 14 pages. & \(\square\) \\
\hline 11 & SMITH, S.D., et al., "Bit-slice microprocessors in h.f. digital communications," The Radio and Electronic Engineer, Vol. 51, No. 6, June 1981, pp. 299-301. & \(\square\) \\
\hline 12 & BOIE, R.A., "Capacitive Impedance Readout Tactile Image Sensor," Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 1, March 1984, pp. 370-372. & \(\square\) \\
\hline 13 & THOMPSON, C., "Clive Thompson on The Breakthrough Myth," Wired Magazine, http://www.wired.com/ magazine/2011/07/st_thompson_breakthrough, August 2011, 3 pages. & \(\square\) \\
\hline 14 & "Innovation in Information Technology," National Research Council of the National Academies, Computer Science and Telecommunications Board, Division on Engineering and Physical Sciences, http://www.nap.edu/catalog/10795.html, 2003, 85 pages. & \(\square\) \\
\hline 15 & BUXTON, W., et al., "Issues and Techniques in Touch-Sensitive Tablet Input," Proceedings of SIGGRAPH '85, Vol. 19 No. 3, July 22-26, 1985, pp. 215-223. & \(\square\) \\
\hline 16 & BUXTON, W., et al., "Large Displays in Automotive Design," IEEE Computer Graphics and Applications, July/August 2000, pp. 68-75. & \(\square\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
( Not for submission under 37 CFR 1.99)
\end{tabular}} & \multicolumn{2}{|l|}{Application Number} \\
\hline & \multicolumn{2}{|l|}{Filing Date} \\
\hline & First Named Inventor \({ }^{\text {B }}\) & Byron Hourmand \\
\hline & \multicolumn{2}{|l|}{Art Unit} \\
\hline & \multicolumn{2}{|l|}{Examiner Name} \\
\hline & Attorney Docket Number & 5796183RX \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 17 & BUXTON, W., "Lexical and Pragmatic Considerations of Input Structures," ACM SIGGRAPH Computer Graphics, Vol. 17, No. 1, January 1983, pp. 31-37. & \(\square\) \\
\hline 18 & BETTS, P., et al., "Light Beam Matrix Input Terminal," IBM Technical Disclosure Bulletin, October 1966, pp. 493-494. & \(\square\) \\
\hline 19 & BUXTON, B., "Multi-Touch Systems that I Have Known and Loved," downloaded from http://www.billbuxton.com/ multitouchOverview.html, January 12, 2007, 22 pages. & \(\square\) \\
\hline 20 & HEROT, C.F., et al., "One-Point Touch Input of Vector Information for Computer Displays," Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, August 23-25, 1978, pp. 210-216. & \(\square\) \\
\hline 21 & WOLFELD, J.A., "Real Time Control of a Robot Tacticle Sensor," University of Pennslyvania, Department of Computer \& Information Science, Technical Reports (CIS), Master Thesis, http://repository.upenn.edu/cis reports/678, August 1981, 68 pages. & \(\square\) \\
\hline 22 & LEWIS, J.R., "Reaping the Benefits of Modern Usability Evaluation: The Simon Story," Advances in Applied Ergonomics: Proceedings of the 1st International Conference on Applied Ergonomics, ICAE May 21-24, 1996, pp. 752-755. & \(\square\) \\
\hline 23 & NAKATANI, L.H., et al., "Soft Machines: A Philosophy of User-Computer Interface Design," Proceedings of the SIGCH Conference on Human Factors in Computing Systems, December 1983, Chicago, pp. 19-23. & \\
\hline 24 & RUBINE, D.H., "The Automatic Recognition of Gestures," Carnegie Mellon University, Master Thesis, CMU-CS-91-202, December, 1991, 285 pages. & \(\square\) \\
\hline 25 & KURTENBACH, G.P., "The Design and Evaluation of Marking Menus," University of Toronto, Graduate Department of Computer Science, Master Thesis, May 1993, 201 pages. & \(\square\) \\
\hline 26 & HOPKINS, D., "The Design and Implementation of Pie Menus," originally published in Dr. Dobb's Journal, December 1991, lead cover story, user interface issue, reproduced at www.DonHopkins.com, 8 pages. & \\
\hline 27 & BUXTON, B., "The Long Nose of Innovation," Bloomberg Businessweek, Innovation \& Design, January 2, 2008, 3 pages, downloaded from: http://www.businessweek.com/stories/2008-01-02/the-long-nose-of-innovationbusinessweek business-news-stock-market-and-financialadvice. & \(\square\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
( Not for submission under 37 CFR 1.99)
\end{tabular}} & \multicolumn{2}{|l|}{Application Number} \\
\hline & \multicolumn{2}{|l|}{Filing Date} \\
\hline & First Named Inventor \({ }^{\text {B }}\) & Byron Hourmand \\
\hline & \multicolumn{2}{|l|}{Art Unit} \\
\hline & \multicolumn{2}{|l|}{Examiner Name} \\
\hline & Attorney Docket Number & 5796183RX \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
( Not for submission under 37 CFR 1.99)
\end{tabular}} & \multicolumn{2}{|l|}{Application Number} \\
\hline & \multicolumn{2}{|l|}{Filing Date} \\
\hline & First Named Inventor \({ }^{\text {B }}\) & Byron Hourmand \\
\hline & \multicolumn{2}{|l|}{Art Unit} \\
\hline & \multicolumn{2}{|l|}{Examiner Name} \\
\hline & Attorney Docket Number & 5796183RX \\
\hline
\end{tabular}

\section*{CERTIFICATION STATEMENT}

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
\(\square\) The fee set forth in 37 CFR 1.17 ( p ) has been submitted herewith.
\(\triangle\) A certification statement is not submitted herewith.

\section*{SIGNATURE}

A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4(d) for the form of the signature.
\begin{tabular}{|l|l|l|l|}
\hline Signature & /Brian A. CarIson/ & Date (YYYY-MM-DD) & 2013-12-24 \\
\hline Name/Print & Brian A. Carlson & Registration Number & 37,793 \\
\hline
\end{tabular}

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

\title{
31.1: Invited Paper: A Touching Story: A Personal Perspective on the History of Touch mitertaces Past and Future \\ Bill Buxton \\ Wicrosoft Research, One Microsoft Way, Redmond, WA, USA
}

\begin{abstract}
Tonch screens have a \(40+\) year history: Multi-touch and some of the gesthes associated wibh it, are over 25 years old. This paper aspires to provide some perspectuve on the roots of these technologies, and share some future-relevant insights from those experiences. Since the scope of the article does not pernit a comprehnaine surve, onmpasis has been given to projects and invights that are relownt, but less-well hown.
\end{abstract}

\section*{1. Introduction}

The announcement of two new products in 2007, the Apple iPhone and Microsoft Surface, gave a serious boost to interest in touch motetaces -- especally those that incorporate multh-touth. Since then, touch, multi-touch, and the gesture-based interfaces that they froquently enploy, have become close to "must-have" features in several matket segments, includiag mobile devices, deshop computers, laptops, and large format displays
What is sypically missed anongst this newfound interest - bus also typical of virually all "new" technologies - is how far back these techniques and techmologies go [1][2]. For example, the use of touch input as a mems to interact with compters began, at least, in the mid1960s, with early work being done by IBM [3] in Ottawa Canada[4], and the University of Mlinois [5]. By the early 1970 s , a number of different techmologies had been disclosed


Figure 1: FLATO IV Terminal with touch screen and plasma panel display. (Comesy of Archives of the University of miaois, Utban Cbampaign. Foud in RS: \(39 / 2 / 20\), Box COL 13, Folder COL 1313 Computer Ed. Reseaten Lab / PLATO 1952-74)

By 1972, ronch screens had left the labs and computer centers and entered selected grade-school classrooms as part of the PLATO IV system, illostrated in Pigure ]. This was all the more remarkable when one considers that PLATO IV not only preceded the appearance of the personal computer and local area networks, its relatively wide deployment happened when Kerox PARC was just starting wode on the Alto computer!
Through the \(1970 \mathrm{~s}-80 \mathrm{~s}\) a number of different technologies were
developed to support touch (such as capactive, resistive, bight interruption, and surface acoustic wave), and a number of different companies were founded to commercialize these technologies. Examples inclode, Elographics, Carrol Tonch, and MicroTouch Systems.
As the options for the interface designer grew, so did the granularity of our understanding of the affordances of the available techoologies and techniques. Nakatani and Rohrlich 16, for example, gave voice to the notion of "goft machines", what they defined as:
-... using the spargiatic combination of reat-time computer graphics to display "soft controls," and a touch screen to make soft controls operable like conventional hard ontrols.

However, as Gustave Flaubert said, "God is in the details," and getting the details wrong could make a good techology look really bad - as was the case with how cursor control was implemented on the early Apollo workstations, using an Elogtaphics twachpad.

\section*{2. Lust Along the Way}

From the time of PLATO TV to close to 2000, the use of touchsensing screens and tablets settled into a number or more-or-less niche markets. Tonchpads/tablets (touch sensers not mounted directly over a display) becane most visible on laptops, where they were (and are) the dominant technology used for cursor control. Touch screens were largely split into three main segments, kiosks (including ATM machines), point-of-sale devices (restaurants and retail, for example), and mobile devices (startigg with PDAs, hat as carly as 1993 -- as we shall discuss -mobile phones).
Many of these markets were not very demanding in terms of the richess of the interaction techniques employed. Kiosks, for example, adopted mainly simple towh-to-select operations. At the same time, however, there was remarkable work which is not well-known, and herce worth highlighting.


Figure 2: The FF-8900 Data Bank (1984). Characters can be entered by printing them on the touchpad with a finger.

Take, for example, the Casio PF-8000, shown in Figure 2. This was a PDA that incorporated an address book and a calculator. It was released in 1984, which is when I got mine. As can be seen in the photo, the right side of the unit consists of a touchpad.

One of the ways that you could enter numbers was to tap them out on a virtual keyboard - defined by the white grid on the touchpad. More interesting, however, was the ability to enter alphanumeric information by tracing it out on the touchpad with your finger. You wrote each character on top of the previous one (segmentation was determined by the time interval between characters), so the whole touchpad surface was used for each character.
Lest one discount the relevance of this device because it used a touchpad, rather than touchscreen, in the same year, Casio released a calculator watch, the AT-550. The watch's crystal was a touch screen. Numbers and operators are "written" on the crystal, in the same manner as the PF-8000.


Figure 3: The Simon (1993). The phone's screen shows the display for setting the clock to world time. Interaction was via the touch screen, using either finger or stylus. L-R, the lower 3 images show (a) the desktop icons for accessing applications; (b) the phone dial pad; (c) the manual section for handling sketches and faxes. To place in context, there was no web browser: the World Wide Web had not yet happened yet!

Now flash forward and consider these devices in light of today's
world of texting and TWITTER. A few minutes of experience with the PF- 8000 or the AT-550 make it clear that one can easily enter alphanumeric text without looking at the device. That is, the character recognition offers essentially the same eyes-free attribute that one has with touch typing on a QWERTY keyboard - something that I call "touch writing". Despite its relevance, this is something that is pretty much unavailable on any of today's mobile touch-entry devices. It is somewhat sobering to realize that Casio was able to do this in products commercially available 25 years ago - the same year that the very first Apple Macintosh computer was released!
Another important example is what I believe to be the world's first smartphone: the Simon [7], shown in Figure 3. This was developed jointly by IBM and Bell South, and first shown in 1993. How much this first smartphone anticipated the phones of today is only matched by how little it is known.

The Simon had only two physical controls: the on/off switch and the volume control. Everything else was controlled by the fullscreen touch display - which like the Palm Pilot (which appeared in 1996) - supported both finger and stylus control.
In addition to products, early innovative work was being undertaken in various research labs. Some of the most creative work is, likewise, little known. It was done by Chris Herot and Guy Weinzapfel at the Architecture Machine Group at MIT- the predecessor to MIT's Media Lab [8].
Their work is one of the first attempts to extend the range of touch sensing beyond just horizontal and vertical position. By mounting the touch-screen overlay on strain gauges, they were also able to sense vector information in six different dimensions, as illustrated in Figure 4: force in \(\mathrm{x}, \mathrm{y}\), and z , as well as torque about the \(\mathrm{x}, \mathrm{y}\), and z axes.


Figure 4: Multidimensional Touchscreen (1978): In addition to sensing position, this touchscreen [8] was capable of sensing 6 degrees of force vector information, including \(x, y, z, x-\) torque, \(y\)-torque, and z-torque.

Of these additional dimensions, sensing force in z (pressure) is the only one that has gained any prominence, and even that is rare. But that speaks to the nature of the beast: the challenge is, the harder one pushes, the more friction there is in sliding the finger along the surface. Hence, there is an inherent conflict between forcevs. gesture articulation with touch interfaces.

This is one area where sensing technology can make a difference. Capacitive sensing has a useful attribute in this regard, as was demonstrated by Buxton, Hill and Rowley [9], among others. It goes like this: if you push hard against a surface with your finger, the force tends to cause the fingertip to spread across the surface. Hence, there is a strong correlation between pressure and surface area. Furthermore, while capacitive technologies cannot sense pressure, per se, capacitance does vary with the area of contact Hence, the technology can sense an approximation of pressure what I call "degree of touch". Knowing this means that the user can control the degree of touch by pressing lightly and varying the contact area. Thus, the user can assert degree of touch while avoiding the friction normally associated with pressure. Yet, just like pressure, this attribute is seldom exploited by interaction designers.


Figure 5: Sensor Frame: A prototype optical touch sensor that detects not only location, but also angle of approach[11].
In terms of exploring less commonly considered dimensions of touch sensing, I want to mention a novel approach to optical sensing of touch begun at Carnegie Mellon University by McAvinney [10], and developed further by Sensor Frame [11]. What they developed by 1988 was a device that used imaging across the display surface to sense touch location. However, unlike the light interruption techniques used with PLATO IV, this system - the Sensor Cube - used what were essentially cameras to detect the finger(s) in the volume above the display, rather than just at the display surface. Hence, as is illustrated in Figure 5, the angle of approach as well of the location of the finger could be determined.

\section*{3. Multi-Touch}

The Sensor Cube had one other attribute that is sufficiently important to be worth a section on its own: the ability to sense simultaneously the location of multiple points of contact - multitouch. This also has a history.

In 1984 our group at the University of Toronto developed a capacitive multi-touch tablet capable of sensing degree of touch independently for multiple points of contact [12]. Our initial goal in this work was to make a digital hand drum - a musical percussion instrument. Since this was, I believe, the first multi-touch device reported in the peer-reviewed literature, it is often given credit for being the first multi-touch device. Such is not the case.
The roots of multi-touch lie partially in attempts to construct tactile sensors in robotics. Examples include Wolfeld [13] and Boie [14]. However, to the best of my research, the first use of multi-touch technology for manual control of a digital system was performed by Nimish Metha as part of his MSc thesis at the

University of Toronto [15]. This system has additional interest since it is the first use that I have found of capturing touch by using a video camera to optically capture shadows from the underside of a translucent surface - anticipating many current multi-touch systems, including Microsoft Surface. Just to emphasize this point, Metha's system was not only used to capture the shadows of fingers, but to capture and recognize shapes of objects as well!

However, to the best of my research, the first multi-touch display - the first sensor capable of simultaneously capturing multiple touch-points on a display - grew out of the aforementioned work on tactile sensors for robotics by Bob Boie.

After presenting our multi-touch tablet at SIGCHI in 1985, I was approached by Lloyd Nakatani of Bell Labs, Murray Hill, N.J. He invited me to visit the lab to see what they were doing. What I saw when I did so was a capacitive multi-touch screen that Boie had developed. Besides being transparent (ours was an opaque tablet), the performance of this device - in terms of response time - was far beyond what we had accomplished. Seeing the superiority of their system prompted me to stop working on the hardware part of the problem, and focus on the software. My assumption, hope, and expectation was that we would soon be able to get access to the Bell Labs technology. This turned out not to be the case, which was too bad, and the Bell Labs contribution went largely unknown in the larger community although it was openly shown to me, as well as others [16].

\section*{4. A Sponge Without Water ...}

Thus far, the common factor in virtually all of the work discussed is a desire to extend the range of human capability that can be captured by touch technologies. The reality is that the simple poke-to-select techniques and soft keypads seen in early systems while useful - only scratched the surface of both the possible and the desirable.
One of the pioneers at really pushing the boundaries of capturing human gesture, and thereby laying the foundation for a great deal of current work, is Myron Krueger [17][18].


Figure 6: Myron Krueger's Pioneering VIDEODESK, early work using rich gestures. A two-handed pinch gesture is used to govern the shape of the closed object.
Myron's work was all about capturing human gesture, and demonstrating how it can be effectively used. He used a video camera to sense the current pose/action of the user, and then employed digital processing to isolate the human silhouette from the background. The silhouette was then analyzed and gestures extracted. These were then interpreted appropriately to bring
about the intended response in the system. One such silhouette is illustrated in Figure 6. Here, two hands are used to control the shape of a closed object. The tips of all four extended fingers affect the shape - two from each hand in this case.

What is important to recognize in approaching Krueger's work is that the technology he used was secondary. It was a means to an end, not the end itself. The underlying point was all about the gesture, not the specifics of how it was captured. Hence, while his work did not sense touch, per se, it is relevant nevertheless.

The primary thing that does differentiate Krueger's work from touch systems is that contact with the physical device was not sensed. Hence, proximity, gesture, and/or dwell time - rather than physical contact - was required to initiate or terminate events. However major or minor one views the consequences of such differences, the fact remains that anyone practiced in the art of touch systems, and familiar with Krueger's work, was able to immediately adapt his work to this technology - and he explicitly wrote about its applicability to touch systems [18].
There is yet another class of gesture that has early roots, and which is also having significant impact on touch-based systems It is that class of gestures where the resulting action is a function of both where one touches, and what direction(s) one strokes/moves, once having made contact. A common example of this found in many of today's mobile phones is the ability to move forward or backward from one image to another by touching the image and quickly sliding the finger left or right on the screen

An early (1999) example of this technique was in a product called PortfolioWall [19], shown in Figure 7. What is important is that this gesture is a specific instance of a broader class of interaction techniques known generically as radial menus. Simply stated, radial menus characterize a class of interaction where the response to an action is a function of both where you touched, and the direction that you move in the gesture after that touch. The options used in viewing images using the PortfolioWall are shown in Figure 8


Figure 7: The PortfolioWall (1999). A sliding gesture to the left or right on top of the image moved to the next or previous image, respectively.

In addition to the left and right strokes, the radial menu shown supported the following gestures. A stroke up to the right enabled annotation, while a stroke down to the right enabled one to scale or crop the image. A stroke down closed the image and brought one back to the thumbnail view, while down to the left toggled between Play and Pause as a slideshow viewer. The menu was only displayed if one touched and held, without
moving. Since the actions were easily learned, they were normally articulated without any graphical feedback - thereby illustrating the tight relationship between radial menus and their (in this case), associated eyes-free gestures.


Figure 8: Radial Menu in PortfolioWall. The options when viewing a full sized image are shown by the menu.
Radial menus have a long history, beginning with the PIXIE system of Wiseman, Lemke and Hiles [20]. After a period of neglect, they were brought back into practice by Callahan, Hopkins, Weiser and Shneiderman [21], Hopkins [22], and Kurtenbach [23], for example. The key attribute that distinguishes them from conventional linear menus is that selection of action is determined by direction not distance. As human beings, we are not "wired" to make fine judgments of linear distance without looking. Yet, we are wired to be able to easily articulate gestures, eyes free, in any one of the eight primary and secondary directions of the compass. Therein lays the key to understanding that one should not think about radial menus as "just" menus. They also define a class of direction-based gestural interaction. And to emphasize this point, the work of Hopkins and Kurtenbach, cited above, and the PortfolioWall, makes clear that they work even if there is no menu displayed during their use.

The use of stroke direction to control the direction and type of scrolling on some current mobile devices (such as scrolling vertically, horizontally, or bi-dimensional dragging, depending on the direction of the stroke), is a good example of this, and demonstrates the relevance of radial menus to systems today.

\section*{5. Moving Forward: Touch is a Means, Not an End}

Touch technologies are going to continue to evolve in terms of what they can sense and how they are used. Among other things, we are going to see ever more integration of the sensing technology with the display [24]. But while the technologies will continue to evolve, what must not get lost along the way is that it is just that, a technology, a means to an end. As I have discussed elsewhere [25], the conceptual model of the user interface is more important than the technology, and by that measure, two interfaces using different technologies (only one of which is touch) may have more in common than two where both \(d o\) use touch

Furthermore, while touch sensing can bring great value to an interface, even greater value can often be gained when it is used in combination, even simultaneously, with other technologies such as a stylus [26]. Again: everything is best for something and worst for something else.

\section*{6. Conclusions}

From beginnings such as these have emerged the touch technologies which are having such strong impact today these and a lot of outstanding work from a number of other researchers, designers and engineers whose work I had to neglect in this brief summary. Withn this history lie important lessons and contributions that have the potential to inform our current decisions and thinking about these technologies, and their effective use going forward.

Finally, there is something in this history that can help shed light in our woderstaning of the nature of imovation. The length of time that it has taken for these techmologies to reach "prime time" is the norm, not the exception. Innovation in our industry is almost aiways characterized by such a "long nose" - with \(20+\) years being the norm [1][2]. Hence, this paper serves a second function as a reminder that the fomdation of the sext ten years of innovation were almost certainly planted over the past ten years, and are just waiting there to be cultivated.

\section*{7. References}
[1] Computer Science and Telecommunications Board of the National Research Comoi, bnoverion in bobmotion Technotog. (The National Academies Press, Washington [C, 2003)
[2] B. Buxton, "The Long Nose of lmovation." Business Week com (Jannary 2nd, 2008)
htro/i/www.businessweek.com/monovate/content/an2008/id2 008012297369 hm
[3] P. Betts, C.I. Brown, J]. Lynot, E.F. Martin, "Light Beam Matrix Guput Terminal," IBM Technical Disclosure Jounal, 9(5), 493-494, (1965).
[4] A.M. Hady, "A Touch Sensitive X-Y Position Enooder for Computer lnput," Proceedings of the APIPS Fall Joint Computer Conference, Vol. 35, 545, (1969).
[5] F.A. Eheling, E.S., Goldhor, R.L. Johnson, "A Scamed Infrared Light Beam Touch Entry System." Proceedings of Society of Intormation Displays," 134-135, (1972)
[6] L.M. Nakatani, S.A. Rohrich, "Son Machues: A Philosophy of User-Computer Interface Design," Proceedings of the ACM Conference on Human Factors in Compuing Systems (CHI'83), 12-15, (1983).
[7] S.R. Lewis, "Reaping the benefits of modern usability evaluation: The Sinon story," Advances in Applied Ergonomics: Proceedings of the 1st Intemational Conference on Applied Ergonomics -- ICAE '96, 752-757, (1996).
[8] C. Herot, G. Wenzapfel, "One-Point Tonch Input of Vector Enformation from Computer Displays," Computer Graphios, \(12(3), 210-216,(1978)\).
[9] W. Buxton, R. Mill, P. Rowley, "Gssues Rna Tecbugnes is Touch Sensitive Tablet Zoput," Computer Graphics, 19(3), 215-224, (1985).
[10] F. McAvinney, The Sensor Frame - A Gestare-Based Device for the Manipulation of Graphic Objects," CamegieMellon University, (1986).
[11] Sensor Frame, "The Sensor Frame Graphic Manipulator Final Report," NASA-CE-194243,
(992) huth/ntrs nasa.gov/archive/nasa/casintrs nasagov/9 9400032611994003261 pdf
[12] S.K. Lee, W. Buxton, K.C. Smith, "A mebitowethee Gmensional touch-sensive toble," Procedings of the ACM Conference on Human Factors in Computing Systems (CHO85), 21-27, (1985).
[13] J. A. Wolfeld, "Real Time Control of a Robot Tachle Sensor," MSc Thesis. Philadelphia: Moore School of Electrical Engineering. (1981).
[14] R.A. Boie, "Capacitive Impedance Readon Tactile Jmage Sensor," Proceedings of the IEEE Interational Conference on Robotics, \(370-378\), (1984).
[15] N. Metha, "A Flexible Machine Enterface," MSc. Thesis, Department of Electrical Engineering, University of Toronto, (1982).

161 D.H. Rubine, "The Automatic Recognition of Gestures," MSc Thesis, Cannegie Mellon University, (1991).
[17] M.W. Krueger, Artificial Reality, (Addison-Wesley, Reading, MA, 1983).
[18] M.W. Krueger, T. Gionfriddo, K. Hinrichsen, "VIDEOPLACE - An Artificial Reality," Proceedings of the ACM Conference on Gunan Factors in Computing Systems (CHP85), \(35-40\) (1985)
[19] W. Buxton, G. Fitzmaurice, R. Balakrishan, G. Kurtenbach, "Large Bigplays in Amomotive Design" " LEEE Computer Graphics and Applications, 20(4), \(68-75\), (2000).
[20] N.E. Wiseman, H.U. Lemke, JO. Hiles, "PIXIE: A New Approach to Graphical Man-Machine Communication," Proceedings of 1969 CAD Conference Southampton, IEEE Conference Puhlication 51, 463--471, (1969).
[21] J. Callaban, D. Eopkins, M. Weiser, B. Sbneiderman, "An empirical comparison of pie vs. linear mems," Proceedings of the ACM Conference on Human Factors in Computing Systems (CHH'88), 95-100, (1988).
22] D. Hopkins, "The Design and Implementation of Fie Menus," Dr Dobb's Joumal, 16-26, (December 1991).
[23] G. Kurtenbach, "The Desige and Evaluaton of Making. Moms," Ph.D. Thesis, Department of Computer Science, University of Toronto, (1993).
[24] S Lzadi, S. Hodges, A Butler, D. West, A. Rrustemi, W Buxton, "Thistigh A The Fomb Facor Jewactue Broce Tecbnologe." Commurications of the ACM, 52(12), \(90-98\), (2009).
[25] B. Buxton, "The Mad Den Townde Touch Techoblog" Busines; Week, oom, October 21, 2009. htip://www.businessweek.com/imovate/content/oct2009/id2 0091021629186 htm ? chan innovation imovation \(+02 \mathrm{~B}+\mathrm{d}\) esign ton+stories
[26] K. Hinclley, M. Pahud, B. Buxton, "Deect Diselay
 Society for Grfomation Desplay (SID) Symposium Digest of Technical Papers, May 2010, Volume 41 (1), Session 38, 537-540, (2010).

\title{
38.2: Direct Display Interaction via Simultaneous Pen + Multi-touch Input
}

\author{
Ken Hinckley, Michel Pahud, and Bill Buxton \\ Microsoft Research, Redmond, WA 98052
}

\begin{abstract}
Current developments hint at a rapidly approaching future where simultaneous pen + multi-touch input becomes the gold standard for direct interaction on displays. We are motivated by a desire to extend pen and multi-touch input modalities, including their use in concert, to enable users to take better advantage of each.
\end{abstract}

\section*{1. Introduction}

We are witnessing a shift towards displays that unify input and output on surfaces that sense as well as emit. In such systems the user interacts through direct manual input, that is, directly on the display with his hands. By contrast, traditional graphical interfaces employ indirect manual input [5] using a relative pointing device (mouse) and a cursor. This shift has led to renewed interest in both touch and pen input. When integrated with a display, both pen and touch are direct input modalities, albeit through a physical intermediary in the case of the pen. In what shall become a theme here, this is both a strength and a weakness for the pen- as is the lack of an intermediary for touch Having two opposing sides makes a coin no less valuable.

Despite rapture with the iPhone (and now iPad), multi-touch is not the whole story. Every modality, including touch, is best for something and worst for something else. The tasks demanded of knowledge workers are rich and highly varied \([1,13]\). As such one device cannot suit all tasks equally well. Your finger is no more suited for signing a contract, or drawing a sketch on a napkin, than is a pen for turning the page in a book, or holding your place in a manuscript. With the impetus to do everything with touch, we must underscore this point. The pen has a role to play as well.

But why the pen? Can't one type faster than one can handwrite? Yes, but only if our metric for creative output is in the cold calculus of words-per-minute. What is it that you wish to write? Are you making high-level comments on a manuscript? If so, composing your thoughts is likely to devolve into minutiae with a keyboard, whereas with a pen, brief annotations in context implicitly emphasize the important points. Likewise, if a pen is a poor choice to compose a business memo, then a keyboard is an equally poor choice to generate a breadth of design sketches [4,16]. That one form of work output is often valued more than the other in professional life is a deeper reflection on our society than it is on the effectiveness of the pen as an input device

The transition to direct input is manifest in form factors ranging from hand-helds, slates, desktops, table-tops, and wall-mounted devices. The iPhone, Tablet PC, Wacom Cintiq, Microsoft Surface, and Smartboard are, respectively, examples of each These examples include both pen and touch devices, but seldom does the same system support both. Even more seldom can one use both together [2,18,19], as with a stylus in the preferred hand and touch with the nonpreferred hand (Fig. 1). Here, we pursue pen and touch as complementary rather than competitive inputs.

Our research is based on the premise that pen+touch systems present new challenges and opportunities for the designer. Our hypothesis is that the combination of pen and touch yields a richer design space of natural gestures than multi-touch input alone When a system does not have to provide coverage of all possible
functions with a single input modality, implicitly this leads one to ask where each modality should be used to best advantage, where a particular modality should not be used, and in what cases modalities should perhaps be treated interchangeably. To explore these issues, we prototyped a digital drafting table on the Microsoft Surface, using multi-touch and an IR-emitting pen. We developed an application for note-taking and mark-up that supports the key functions of writing, annotation, selection, copying, arrangement, and aggregation of objects \([9,12,18]\).


Figure 1. The roles of pen, touch, and multimodal pen+touch. An earlier generation of devices, such as the Palm Pilot (1996), supported both pen and touch. Users could punch the on-screen calculator with their fingers, or enter Graffiti script with the stylus. Clear lessons were that the best input modality depended on the task, and that this made a significant difference to the user. However, these devices were not pen AND touch, but rather pen exclusive-or (XOR) touch. They sensed only a single point of contact, and could not distinguish touch from pen inputs. Hence we lost an opportunity for meaningful exploration of multimodal interface approaches that combine pen and touch. But a new generation of digitizers is now emerging [7] that can sense multitouch inputs while simultaneously distinguishing pen from touch.
Why is any of this important and not just a technological quibble? The answer lies not in technology, but in the human mechanism itself, how we are wired, and how our motor, sensory, and cognitive skills have evolved. These are the underpinnings of a natural user experience, not any particular technology or device.
We have multiple fingers for a reason. We do not just point, but we also grasp and manipulate. Furthermore, our nonpreferred hand is not a poor approximation of our preferred hand; rather, it is as skilled at the specialized role that it performs as the preferred hand is at its own role [8]. For a wide class of everyday actions, our hands have evolved to complement one another. People are also predisposed to manipulate physical objects and employ manual tools. Once again, handedness plays an important role. As a simple example, when writing, we hold the pencil in our preferred hand and manipulate the paper with our nonpreferred hand. If we translate this example to a computer screen, we might write on a tablet, electronic whiteboard, or desk with a stylus, and directly manipulate the underlying virtual document, map, or photo with our nonpreferred hand using touch input.
The leap of faith we ask, and believe is justified, is to assume that the richness of such examples that exist in the physical world is matched by analogous transactions in the digital domain. By building on human behaviors and perceptual mechanisms, a
foundation of physically-grounded interactions enables natural, engaging, and novel non-physical interactions to be designed. It is the implications of this leap that motivate our research, and the purpose of this paper is to share the insights that we have gained.

\section*{2. Asymmetric Division of Labor}

Let's proceed by pushing a bit harder on our pencil and paper example, by asking you to consider the following question: Which hand do you write with, your right or your left? Now, whether you answer "right" or "left," you are wrong. The answer is "Yes!" This is not a trick question. Rather the question is ill-posed. People write with both hands, as demonstrated by Guiard:


Figure 2. Guiard - transfer paper experiment [8]
What the above figure shows is the result of taking dictation on a sheet of paper. But on the right, we see the impressions left by the pen on a sheet of transfer paper surreptitiously left underneath. That is, it records the movements of the pen relative to the desk. This reveals that the nonpreferred hand sets the frame of reference for the action of the preferred hand; the nonpreferred hand repeatedly repositions and reorients the page so as to optimize the working space of the preferred hand [8]. This further implies that the nonpreferred hand precedes the preferred hand in its action.
Guiard's key insight was to turn the classic question asked in the study of handedness upside-down. Rather than asking which hand was best for a task- right or left- Guiard observed that most, if not all, manual interactions fundamentally involve both hands, with a differentiation of the roles between the hands. The correct question to ask then becomes: "What is the logic of the division of labor between the preferred and nonpreferred hands?"

Likewise, if in interface design we find ourselves asking which is best- touch or pen- then once again we must recognize an illposed question. The question is not which is best, but rather, What should be the division of labor between pen and touch in interface design? To begin to answer this question, we must consider the design properties of pen and touch as input modalities.

\section*{3. Properties Shared by Pen and Touch}

We stated above that every input modality is best for something and worst for something else. Ultimately it is the designer's job to know what to use when, for whom, for what, and why. From a technology standpoint much of this turns on a nuanced understanding of the properties of an input modality. To offer insight into the main issues, the following tableau summarizes interaction properties shared by pen and touch. We do not characterize these properties as "pros" and "cons," as has been attempted elsewhere [2], to accentuate our belief that almost any property of a device can be advantageous in interaction design.
This limited survey shows that pen and touch, while sharing common ground as direct input modalities, also exhibit many important differences, and these again differ substantially from
the properties of indirect pointing devices such as the mouse. Indeed, this calls into serious question the commonplace strategy of operating systems to treat all pointing devices as "mice"- that is, interchangeable "virtual devices" [5]. Consider yourself, armed with this tableau, as licensed to fire on the spot anyone in your organization who refers to pen and touch inputs as "the mouse"or at least to deliver a well-deserved tongue-lashing.
\begin{tabular}{|c|c|c|}
\hline PROPERTY & PEN & TOUCH \\
\hline Contacts & \begin{tabular}{l}
1 point \\
A single well define d point.
\end{tabular} & \(1-10+\) ontact regions with shape information 167 \\
\hline Occlusion & \begin{tabular}{l}
small (pentip) \\
But hand stlloccludes screen.
\end{tabular} & Moderate (\%oy, rier) IHII Large ipinch, palm, wholehond) \\
\hline Precision & \begin{tabular}{l}
High \\
Tripod grip / lever arm affords precision, writing, sketching.
\end{tabular} & \begin{tabular}{l}
Moderate \\
Nominal target width for rapid pointing is \(\sim 15 \mathrm{~mm}\) [17]).
\end{tabular} \\
\hline Hand & Preferred hand & Either hand / Both hands \\
\hline Elementary Inputs & Tap, Drag, Draw Path & Tap, Hold, Drag Finger, Pinch \\
\hline Inter: mediary & Mechanlal Intermediary Tokes time to unsheathe the pen. Pen ton be forgotten. & None Bare-Handed Input Nothing to unsheothe, nothing to lose No lever arm \\
\hline Acquistion Time & High Grious umshotheper Moderate on subsequent uses: pen tucked between fingers. & \begin{tabular}{l}
Low \\
No mechonical Shtemedior to acquire
\end{tabular} \\
\hline Butons & Arrul Buron ( & None \\
\hline Activation Forse & \begin{tabular}{l}
Non-Zero \\
Tip switch/minimum pressure.
\end{tabular} & Zero (capacitive touch) Resistive touch requires force. \\
\hline False Positive Inputs & Palm Rejection (while writing) Palm triggers accidental inputs, fingers drag on screen, etc. & "Midas Touch Problem" Fingers brush screen, finger on screen while holding device, etc. \\
\hline
\end{tabular}

Figure 3. Tableau of design properties for pen and touch.

\section*{4. Graceful Degradation}

We now consider stationary versus mobile usage contexts. Desktop, table, and wall displays are necessarily stationary, but form-factors such as slates transition between mobile and stationary use. To design a consistent user experience spanning all of these form factors, we seek a conceptual model that supports graceful degradation between stationary and mobile usage. For the latter the nonpreferred hand is largely occupied by holding the device itself, whereas for the former we wish to support efficient bimanual interactions that leverage the full potential of human hands, as well as simultaneous pen + touch input.
For example, with physical notebooks we have observed that people deftly tuck the pen between the fingers of the preferred hand while flipping pages or grasping scraps of paper [11]. Hence, users can effectively perform multi-touch gestures, such as pinching, while holding the pen tucked between the fingers, and thereby derive significant value even from unimanual interactions that interleave pen and touch inputs as needed. It is important to observe here that a mobile usage model, which assigns core operations to unimanual touch with the preferred hand, also serves a stationary usage model that instead assigns these tasks to touch with the nonpreferred hand. Bimanual pen + touch gestures can then be articulated in cooperation with the preferred hand to support more efficient interaction as well as advanced gestures.

\section*{5. Recognition and Modes}

The next distinction we draw is that of ink vs. command input. The specter of recognition arises as soon as one contemplates marking a virtual sheet of paper. Does drawing a mark leave an
ink stroke, is it immediately converted to text, or is it perhaps recognized as a command, such as a gesture to make copies, move objects, or turn the page? Ascribing intent to the motions of an input device is a fundamental problem. People often seem to assume that recognition can overcome this problem. In our view, it does not and will not. But let's back up a moment. Who is it that must do the recognition, and why? Rarely does a user say "I wish this sheet of paper could understand what is written on it." Notes in a notebook are for oneself. Annotations on a document are offered as feedback to another person. Significant value arises from experiences where it is a human who recognizes the marks
Let's say that we do wish to recognize some strokes as gestures Implicit in this statement is the need to distinguish a command mode for gestures as distinct from ink mode for leaving marks on the digital paper. Holding a button on the pen, or tapping on a lasso-selection icon, for example, are classic ways of mode switching between ink and commands in pen interfaces [15]. One often hears that "modes are bad," but modes are necessary to provide rich interfaces [10] that don't depend on the success of brittle recognition techniques. The key is to rapidly switch modes in a manner that is minimally demanding of the user's cognitive resources. Here, pen + touch has much to offer.
If we assign pen to ink mode and touch to command mode, the design then puts the mode switch in the user's hands. For example, in our prototype the user can jot notes with the pen, but then pinch with two fingers to zoom, swipe across the margin to flip pages, or use a single finger to drag objects such as photos. That is, when considered as unimodal inputs, the logic of the division of labor between pen and touch is that the pen writes, and touch manipulates. The mode switch occurs implicitly depending on whether the user interacts with pen or touch. As a desirable side-benefit, this strategy also can dispense with many ancillary interface widgets, such as toolbars stuffed with icons. This leaves more display space for the user's work, while reducing the distraction of secondary controls.

Drawing on all that has preceded, we now see how our approach falls into place along the dimensions that we have identified:
- Pen vs. touch modalities have differentiated effects in the interface. Ink mode is assigned to the pen, while multi-touch articulates commands: the pen writes, and touch manipulates.
- The user can efficiently interleave pen and touch inputs with the preferred hand for mobile, unimanual usage scenarios;
- Designing core tasks for unimanual touch serves mobility while also enabling stationary bimanual interaction that instead assigns these tasks to the nonpreferred hand;
- These benefits are derived while leaving open the possibility of bimanual manipulations with simultaneous pen and touch.
It is in the consideration of this final point, where some of the most novel possibilities may lie, that we now turn our discussion.

\section*{6. From Elementary Inputs to Phrases}

The preceding interactions that interleave pen and touch may suffice to justify further investment in pen+touch displays. However, we now consider creative ways for interaction designs to leverage simultaneous pen and multi-touch interactions to support new capabilities for multimodal bimanual interaction. Let's consider a typical direct-manipulation pen interface for copying an object such as a photo on a digital notebook page [12]. To copy the photo and place it at a desired position, the user must:
1. Switch the pen from ink mode to command mode;
2. Select a photo by tapping or lassoing it with the pen;
3. Invoke Copy by selecting a command from a context menu associated with the selected photo;
4. Invoke the Paste command to place the copy onto the page;
5. Drag the copy to the desired location on the page;
6. Return the pen to ink mode.

Now, let's contrast this with how our system implements a simultaneous pen + touch gesture for copying a photo. All the steps required by the canonical direct-manipulation approach can be phrased into a single pen + touch bimanual gesture as follows:
1. Hold photo and drag off a copy with the pen (Fig. 1, right).

Is this really just one step? Our observations of users suggest that this dedicated pen + touch gesture corresponds closely to the user's mental model of the common use case where one wants to create and place a copy of an object [14]. Hence, the gesture feels like a unitary action to the user, despite invocation of multiple input events on the devices. Consistent with Guiard [8], holding touch precedes the action of the pen, and frames the context of subsequent actions of the pen held in the preferred hand.
Not only does this approach have fewer steps, but by its very nature it encapsulates all the steps into a single gestural phrase. It is syntactically simpler and precludes many types of errors, including mode errors, that can occur with a traditional approach.
Where does the syntactical simplification come from? First, note that holding a finger on the photo integrates object selection with the transition to gesture mode. This combines two steps. Once the photo is held with a finger, dragging off a copy with the pen embeds three different pieces of information: the Copy command (verb), what is to be copied (direct object), and where it is to be copied to (indirect object) [14]. Finally, closure is inherent in the means used to introduce the phrase: simply releasing the nonpreferred hand from the screen returns the system to its default state (ink mode), where the pen once again writes. The muscular tension from maintaining touch on the photo is the glue that holds all of these steps together. The muscular tension also has the virtue that it provides continuous proprioceptive feedback to the user that the system is in a temporary state, or mode, where the action of the pen will be interpreted differently.

We focus on the copy gesture above, but our system implements many pen+touch gestures. For example, users can employ the pen to slice photos by holding a photo with a finger, and then crossing the photo with the pen to define a freeform cut path. Or one may draw a straightedge by holding a photo and stroking the pen along its edge. One may even combine these actions into compound phrases, such as by holding an object and then slicing along the straightedge thus defined (Fig. 4). This illustrates the richness of the vocabulary that users may articulate with our approach.


Figure 4. A pen+touch phrase: slice photo along a straightedge.
Earlier in the discussion above we stated a principle: the division of labor between pen and touch for unimodal inputs is that the pen writes, and touch manipulates. Now, we can articulate how our
system interprets multimodai pen + touch inputs: the combination of pen + touch yields new tools, such as the aforementioned copy, shice, and straightedge bols. If pen tonch yieks new tools, implicitly this means that in some contexts we must violate the original principle: the pen does not always write, nor does touch always manpulate. Our explorations convince us that if a system strictly limits itself so that the pen ONLY writes, and touch ONEY manmuates, this leads to a simple and consistent but arificialy orppled system.
By teating multimodal pen + touch inputs differently, our system opens up a design space of new gestures that also bave the virtue of leveraging how people naturally use their preferred and nompreferred hands logether. We emphasize the strengths of pen and tonch as mpon modalties, while thet use in conjunction allows us to simultaneously sidestep many of their weaknesses.

\section*{7. Incidental Contact (Palm Rejection)}

Despite the advantages emumerated above, simultaneous pen and touch suffers a serious limitation in that if one rests the palre of the hand on the screen while writing, this represents a "touch" to the computer. The result may be false inputs such as accidentally panoing or zooming the page. Our work partially addresses this problem, but to be clear, we do not claim to have solved it.
A sinple form of palm rejection goes a long way: one just discards touches with a large contact area. However, large touches start small as the hand moves into contact with the display. Furtermore, the knuckles or side of the hand may precede the pen as it comes into contact with the display. Hence, deciding whether a touch is a true intentional manipulation is not an instantaneous binary decision, but rather is a real-time assessment that varies as the articulation of a combined pen and touch movement plays out over time.
Likewise, in reference to the tablean of Fig. 3, we mast recognize that since many touch technologies require zero contact force to trigger an input, false positive inputs will remain an inherent propery of molti-touch interaction, including its combination with pen imput. As such, clever interaction technique designs that take advantage of this frot [3], as well as more sophisticated "acoidental touch" fitering algorithms, will be integral to a rewarding pentouch user experience. These are fundamental issues that urgenty need further research.

\section*{8. Conclusion}

People have multiple fingers, two bands, and bighly developed skills for handling physical objects: we have shown how all of these are defining characteristics of natural pen and touch interaction. Kikewise we have shown how our design carently considers mobile vs. stationary use, ink vs. command input, and the phrasing of elementary actions into higher-level constructs that suit the user's mental model. The map of issues that we have laid out in this manuscript should help the reader to navigate through this thicket of interrelated issues and considerations.

We have advocated a division of labor between pen and touch where the pen writes, touch manipulates, and the combination of pen+touch yields new tools. This articulates how our system interprets unimodal pen, unimodai touch, and multimodal pen + touch inputs, respectively. We have contributed novel pen + touch gestures, while also raising, by way of examples, design issues and questions for the reader to ponder. How should the roles of pen and touch be differentiated (or not) in your own user interface
designs? The answers may differ for users of your system, but the design issues we have identified here will arise again and again.
Widespread enthusiasm for moli-touch interaces belies an oftoverlooked truth: without careful design and a deep understanding of the strengthe and weaknesses of tonch as an interaction modaity, a natural interface a touch-screen does not make. It has to be kept in mind that there is a difference between an inout technology and either an interaction technigue or a concepinat model-- inuch less a natural user experience. Hence, tonch and pen input technologies only lead to a natural experience when lots of hard work meets a thorough and nuanced understanding of these modalities, their strengths and weaknesses, when to use them, and when not to use then. Our goal here has been to impart a sense of these issues, as well as to provide example techaiques that illuminate the design space. Our hope is that this can help to spur the further excitement and investment necessary for the emerging area or pen touch mont to flourish as the future of displays.

\section*{9. References}
[1] Adler, A, Guiar, A., Harrison, B. L., OHara, K., Sellen, A. A dary stuay of work velated reading design implications for digital reading devices. CHy98.
[2] Bratd, Pn, Forines, C., Wigdot, D., Haller, M, and Shen, C. Combinhe and measuing the benehts of bimanual pen and direct-tonch interaction on horizontal interfaces. AVI 08 Comf on Advanced Visnal Interfaces. p. 1.54-61.
 Occlusion-aware menu design for digital tablotops. CHI 2009 Extended Abstracts.
[4] Buxton, B, Skowhing User Experiences: Getung he Destgw Right and the Right Design. 2007, San Francisco: Morgan Kaufman.
[5] Buxton, W, Towh Gesme omd Mobiag in Readings in HumanComputer Intercction: Toword the Year 2000, R Backer, et al., Ediots. 1995, Morgan Kaufmam Pubishers. p. 469-82.
[6] Cab, X., Wilson, A.D., Balakushnan, R., Hiackley, K. and Audsoa, SE. ShapeTouch Leveraging comtort shope on interactive surfoces. IEEE TABLETOP 2008 Intemational Wrokshop on Horiontal heractive Human Computer Systems p. 129-36.
[7] Engethat, L. Native Dual Mode Digilizers: Supporting Pen, Touch and Muhtionch Lupus in One Device on any LCD. Scricty for friomation Display SD 08 Digest. p. \(1306-49\).

 Behavior, 1987. 19(4).p. 486-517.
[9] Binckley, K., Dixom, M., Satin, R., Guimbretiere, F and Balakrishnan, R. Codex: ac chal soreen tabiet compuer. CHI 09. p. 1933-42.
[10] Binckey, K, Guimbretere, F., Bawheh, P. Sarin, R., Agrawaia, M,
 Comol. CHI 06.
(11) Binckley, K., Yatani, K., Pabud, M., Coddington, N., Rodemouse, I, Wilson, A., Berico, H. and Buton, B. Womebhesthero An
 2010 Extended Abstacts (non-archival pubication). [vidoo]
[12] Minckley, K, Zhao, S, Sariu, R., Baudiseh, P., Cutell, E., Shimm, M,

[13] Kidd, A. The marks are on the knowledge worker CH1 \(94 . \mathrm{p}\). 186-91.
 Momesmontecmbiaus. UST 91. p. 13744.
[15] Li, Y., Hinckey, K., Guan, Z, Landay, J. Emomonul Ancussothede

[16] Oviat, B., Cohen, A.O., Manti, A.I., Devigning Interfaces that Stmulate Jeational Super-flueney in Science, Commurications of the ACM
[17] Vogel, D. and Bawhsch, P. Shin: A Technique for Operating Pen-Based Interface Using Tow Ch. CHI 2007.
[18] Wu, M., Shen, C., Ryall, K., Forlines, C. and Balaksishnan, R., Gesture Registration, Relaxation, ard Reuse for Multi-Point Divect-Touch Suifaces, in IEEE mernationa Workshon on Horizonial Ineractive Human-Computer Systems. 2006. p. 185-92.
[19] Yee, K.-P. Two-Handed Interaction on a Tablet Display. CHI 2004.

\title{
 ABCHMEE \\ 
}

\begin{abstract}
 not for somatuchions.



\end{abstract}
A BuSY: MBLTEPSE-TOUCS-SENGETTVE RNEDP DEVICE
University of coronto
486 t aet ooxyuoes o
Touch sensitive input devices in varioua forma have
apeaxed in increasing numbers in the maket phace. Avaju.. able devices, however, are deficient in the number of paramo etses that can be obtajnea from a human gesture. Most prow vide only the location of a single finger tip. But there are moze paxameters of interest, the gressure ox a singje touch or the existenoe of maltiple touches for example.
This thesis describes the deaign and implementation of a tastwsomming mutiplemtonch-mensttive ingut device rais devioe utilizes a capacitance sensing teonngue in conjuncm Eion with a binaxy somaniag algocithan xor botr fiexiojijty and speed.
The resolution of the sensor matixix peoviacd ds varim abla to allow a tradeofl between resolution and gheed. Even though the apparent maximum hardware resolution is tixed to be 64 by 32 , the resohution oan be furthex inoxoaned thiough the appliontion of various incexpolation sohemesis.

\[
\begin{aligned}
& \text { ACKNOHLICEDGERENT } \\
& \text { I would like to express my sincere gratitude to prozes - } \\
& \text { sor K. C. Smith for tio extent of his surport and encourage- } \\
& \text { deas on the project } \\
& \text { I ove special thanks to my brother Seonjo wee who } \\
& \text { helped me in building the touch rablet and to my wife } \\
& \text { Cheehyun Lee who has encouraged me through the last two } \\
& \text { years. } \\
& \text { Grateful acknowergement iss given to the Wational } \\
& \text { Engineering and science Research Council fox scholarship } \\
& \text { suppore outhe the course of my study and for the operating } \\
& \text { Grant support of hy adyienrs, proteseor william bunton and } \\
& \text { K, Cosmith. }
\end{aligned}
\]
TABRE OF CONTERTSS
1. TMPROOUCTO
\[
1.3 \text { INPRODUCLION } 2-\mathrm{j}
\]
2. DRSLCM PROCESS
2.1 Ineronucsion 2 m
2.2 Exscming wouch sensirave rapur bevaces \(2-2\) 2.3 shormcomrligs of exisming devices \(2-7\) 2.4 APPRORCEES TO THE FROBLBMS 2-9 2.5 Coxchustod \(2-15\)

3.1 1.NPRoonerron \(3-1\)
3.2 2HE GENSOR materx \(3-2\)
3.3 INTERFACE CIRCUTT DESIGN AND IMPLBMEWPMYON 3-1.0 3.4 HARDMARE SCAMHERG SRQUENCE \(3-14\)
3.5 CONCLUSION 3-1.5
4 PLGOEXTHRS AND SORMWARE STRADEGES 4.3 BIT PATTERNS IR SELECTION REGISTRES Am ADORESS Mapprag \(4 \sim 4\)
A. 4 WOLSE REDJCTION 4-5
4.5 SCANMING ALGORIMEMS 4-3
4.6 COMPRNSATION FOR LOW RESOLURTON MAROMARE 4-10
4.7 SROURNE OF OPERATIOR \(4-12\)
\[
4.8 \text { conchuston } 4-25
\]
\[
5 \text { PERFORMANCE TESTING }
\]
\[
\begin{aligned}
& \text { 5.1 IMTRODUCMTOA } 5-1 \\
& 5.2 \text { SENGOR HATRIK EVALUATJON } 5-2
\end{aligned}
\]
\[
5.4 \text { gPATMA5 RESOLUTTON } 5-7
\]
Z~S Senmirtarssod miananneme z's
\[
\text { OT- S SNOLWOTTICE TKOTAXL } 9^{\circ} \mathrm{S}
\]
T-E NOLGNOOOAZKI E"G
\[
5.7 \text { CONCLUSiON } 5-12
\]
G COMCLOSION
6.2 INTRODUCTION 6-1 6.3 SENSOR MAMRLX BNEANCEMENT \(6-4\) 6.4 Fumure researci E-6
RERERENCES
Appendi: A
Appendis B
Apperdix C

\section*{cadrater 3 \\ anmeoncrion}
1.1 introduction

The raphe advancement at compatex tecnnobogy today has opened a variety of computer apolications such as musio. Graphics, medical diagnosiä, education, and teat processing. Correspondingly, input devices to computer systems have grom quite numerous. A piano keyboard transducer, for example, is one such input device for music appications. poationing devicea are seen to be essential to graphics appications; image transuacers are seguised for patitern recognition in medical diagnosis; touch screens are appropriate for the education of young onilaren; while the Qwerty leyboard remains the usual standard for text processing. Since no single one of these specialised joptut devices fully utilizes the computer in some particulat application, a combination of several different derices is seen to be useful and necessary.

A particular hape mechanism of intersat is finger motion. Thput devices uthiaing finger gestures are atill numerous; to natie a few, there are the Qwerty keyboaxd, we


Fiano repoord, vanous positioning devices such as the joystick, the light pen, the touch screen, and the graphics tablet. Gowerer, each of these cevices is more on less specialized to a particular application as indicatea above. It woula be destrable to have one or two devices serve ai. functions. However, a danger zemains that such a device would not really suit all applications: there is the possibility that wille it serves ani, it pheases hone. [ref I.l] The solution of this difficuity seems to tie in a combinam tion of the adaptability and flexibility of the device. Here adaptability refers to the reconfigurability of the device to a particuiar appiontion, whereas thexibinity denotes the ease with which a new application way be adaptsd.
In an effort to find a generaimpurpose input device that is well suited for a wide :ange of tasks, many input devjces and theik transduces have been examined in this work. The result has been the development of a fast-scanning mutiple-touch-sensitive input device. whis device generates \(x, y\) and \(z\) coordinates for a particular touched posim Eion of a tablet surface uthising a capacitance measurement technique. Unlike the previously developed capasitance touch tablet by L. Sasaki and G, Fedoriow at the University of moronto[refl.2], it can detect simultaneous maltiple Finger touches without ambiguity,

The introdiction of "multiole sense" opens up many new mossibilities for appliodion ot the device for example d
mbthememouchmensjbjve devioe can simply endiate a piano keyooard using an appronriate template on its town subface. Guch enulation \(2 s\) not possible usiag ony singie-touchm serisiag transducers. As weli, the touch resolution of such a tablet may be endenced by an incexpolacion of many adjacent points simultaneously touched. In this way, ic is possible


 a I Ine representation drawn througi the centex of the point distribution together with a measure of a spread of the distribution。 1

As well of course in a general sense, the availability
 capability of this device in comparison to a simple posj.tioning device.

\section*{1.2 thesss orgamzation}

sensitive inpuc device(FMTSJD). Section 2. 2 presents five existing touch-sensitive devices with emptasis ors their senning mecharisma section 2.3 disoussem the shortcomings of the existing tabiets; section
 to achleve FNTSTD; and finally, section 2.5 concludes this chagder.
2.2 EXISQTNG TOUCH-SENSTTTWR TNPWT DEVICES
This section outhines existing rouch taniet or sereen semsing mechanisms emphasizing those usisg resistive,
intrared, uttrasound, capacibive, and video techndques.
Kesistive:
Thene are zeveral aphrozches to the ust of resigtive gensors for pointing location on a tablet. Tyo specjutu and aistunctive approaches are esamined, namely tbose of the Elographies data tablet: and a high xesobution imaging touch semsor developed at dox. \(x\).
 resistive substrate with resistors attached to the edges in crder to compensate non uniformity of the mapping betiveen resistance and posiefon. When the tablet is touched, pres.
sure fror the tinger tic causes a detormable covershet with




Here \(y\) is the apgied voltage, \(I[n]\) and \(x[m\) the meas. ured currents, \(a[n]\) the imput impedance, \(G[n]\) the voltage cransfer ratio of the retwork to the lett of \(R[n]\), and \(R i\) is the Iinear reaistance of the unigirectional uniform resistive ruboer sheat.

Fron these equations, the value of \(R[r]\) is obtained only when \(\mathrm{E}[\mathrm{sa}-\mathrm{L}]\) is knowa.

\section*{Infrared:}

Infrared(IR) is ons of the oldest techmicius used in curatent senaing aystems. A representative exanple in curnemt use is that in the \(E F\) personal computer systemo[ref 2.3] e number of the JR dereotors and equal numer of ip enitting diodes are mounted opgosite to each other in horjzontal and vertical directions such that the presence of a finger tip car be detected by the absence of the IR light at the horm izontal ard the vertical detectors.
Entrasounct
The uitrasound sensor technigue was been used in vari- ous areas. one of the applications in a ronch sensitive ingut aevice employs biezo ejectric cranmacers mounted on horizoncal and vertical edges of transgarent ghass screen. Hexes the acoustio wave (Rayzelgh wave) generated by the transducer travels along the tree boundary of the glass, mach like the sitpple or a pond. A retiected wave ar echo is
intitiated by a touch on the surface. The time intervais between the arrival of the echo and the beginning of the transmission of the source signat, measured in two direc... tions as shown pig. 2.3 give the information on the position of the object. The touch sensor ahown Fig. 2.3, developed by T.S.D Limited [ref 2.4], actuajiz provides outputs of \(x+y\) and \(2 y\) enabiing the derivation of \(x\) and \(y\) where \(x\) and \(y\) are the distance horizontaliy from a vertical edge and vertically from a horizontah eage respectively.

\section*{Video rechaique:}

The video approach to the touch input device uses a T.V canesa to soan a translucent plate or winden tre finger tip is placed. The sjognal from the TV camera is then prowessed to obtani one bite of inxomation per pined. using a prow gramable threshola voltage, one bit pex gixel is obtained to detamine the anape of a \(2-\mathrm{j}\) projection on an objact on the pate. The data resulting Fron this process are atored in a menory do which acoess by a dedioated procespor is allowed. This promessor implements further processes such as detsmining nommero Locations is the memory that is, the position of the object) and identifying shapes (grouping the pixels for an object). Nimish Metha presented such a syetem [ret 2.5] whose basje conjiguration is shown in fig. 2.4.

Cagacitive:

Fis. 2.3 Block Diagram of mouch Screen pigitizer

Capacitive sensoxs are used ire various appiodions such as single touch switudes and touch tablets. rwo indas of touch tablet using capacitive aensors will be examined here. The one developed by 2ASA \(\{r e t 2.5\}\) shown in Eig 2.5 measures the capacitance between the plate and the area covered by the touch. This measured datum is then compared with a previous readjag stored in a shift register. fro order to reduce the sjze of the shift registev, a tabjet is divided into many subwregions in which the position of the touch is unicuely 2acated. one such sub-region ie much 1axger chan the maximum size of a single touch so as to avoid an overflow. TAsA utinizes the sensor to detect relative movements of a Eingex xather than its absolute posim tion.
Another capacitance tablet developed by Sasaki, pedorw
 sensous for the rows and colums which are interleaved as shown in Fig 2.6. x (t uses analog multiglexors to select a Low or a colum sensoz, In order to find the sapacitance of: a row or a column, it counts the time to aharge up the capacitive sensor, Because the capacitance of the sencors on the tablet without a touch is not constant, and the capacitance change prodaced by a touch is relatively small comm pared to the capacjpance of the surroundings, the system uses a measure of the initial. apacitances of the sensors ( without touck , whose values are stored in the mernory zos



Fig. 2.0 Block and Time Diagram of ThisA Touch Tablet



Fite 2.6 Capacitive Sensor Configuration
of the 0 of mouch Tabot
cleariy distinguishes at least two pointa as shown (e) and祘 \(\operatorname{sex}\) to distinguish wo points without ambiguity it an upper limit to the number of touches is not assumed. Cases in which the number of towches is moxe than two axe shown in (c) to \(\langle G\rangle\) in Fig. 2.7. gut 3 s soon as the rumber ot axes Ls jncreased, the attraction of any soheme of a m projection diminishes because the cost of implementation rises greatiy. For example the capacitive tablet may regudre an unimplementabe number of wire layers whereas introguction of senm sors and sources Eoz TR and DItrasound sonemes stay be extremely difficult. Moreover as whe number of the touch points incxease, adintanal axes do not heap irn resoiving a basio shoxtcoming of the sensor Erom which orby on and off Infomation in avajaboe This is the existence of a region for which identification of points inside is not possible as shown Figu 2.8.

The vidao technigue seems to solve did the problems embecided in all of the "projective sensor" aystems indiuding pressure if "area ote touch" by a compressible fjager cortesponds to the peessure. but a video syeten is quite bulby dae to the optioal enclosure and it jus slow becubse it has to access the data stored in memory by the camera prom cessjag umt., time maximbin speed is limbted by the saan rate of the camera( 30 pex second) even though this mazimum can be achaved only by pipeliotng alh the procesoes recuired.

c


 i\&. a.? innlied by two geneors on bott row tha woldma

\section*{}

\[
01
\]
Select the couched reghon, region fecd ju this case, and
 Jine GH, Gelecting the toubized region. continue thas prom cess until no further division is possible, that is, until a unit sensox, designatued as the xegton mko in Fig, 2, 9, de reacined. Whe Eigure also shows tie sequence ox subdivision In the binary scaning operation. dore detaijs of thas ajgom rithm are given in chapter 4 。
 tablet having a resolucion 64 by 32 , reguixes twenty two scanning times:
\(2 * 2 \operatorname{cg} 2(64 * 32)=22\)
F. there is no overhead in oinary soanning and soaming begins at the "top of the tree" (that is, with a region in which ald pixels are grouped togetinex ; then using banary scanning, the number of touched points that an be identiEied in the time that it wonld taks to detect one bouch jai ali pixels axe scaned one by one linearix is

\section*{\(=\frac{64 \times 32}{22}=286\).} Whis slow immediately that the binary soaning method is nuch superior to linear scanning if the number of points to be scanned is fewer than 286.


For axample the speed gain over linear scanning whan the namber of pojatis is ten is
That is, for 10 points binary scanning \(1 s\) about 9.3 times Gaster than linear scanding. Now compare such a 64*32 binary scanaing tablet with a
 Computer Input sereen, of with the capacitive single couch tablet with 64 by 32 resolution. In ach asse the speed ginn for detection of a single couch is
or about 4.3. That is, the binary scanning tablet is potentauly 4.3 times z̈aster than one for which only sequeritiad scan is possible.
Even if the binary scanming algorithm is applied to the projective tablet, the speed for the projective rablet wiun not exceed the speed of the 2 -d inage tablet. the soaning time for a projective tablet beving the same resolution is found as \(\because 0110 \mathrm{ws}\); since there are 64 +32 senscrs only, and the bincxy scaming ajgoxithm ins appled to the row and the colum sersors separately, the scarning time is
\(2 * \log _{2}(54)+2 * \log _{2}(32)=22\)
Whus the binary scoming algorthan aeems to be a very
attractive one for application to the EMSEID．nowever it
…－1．Unike the projective sensor syatem which allows to adaress only a group of positions in a coluan or a row， all．indivicual positions of m by a tablec shoula be adaressable。
－2．It should be able to groun a number of adacent sensors as one dargex sensox region．
The first requitement is to permit sensing of multiple touches，the second allows for the binary seaninag algo－ rithre，In addition to these neesasaty features，a measure of the intensity of touch should be considered as a tinird recuirenent to increase the capability or the rursco． The sensors that can possibly accomodate these
requirements are many．However the degree of difticulty in implementation varies one to another．In the following， various sensor types axe examned in view os the reguire－ merts identified above．
A resistive inage sensor can be used with a slight noditicacion of the multiblesor as ahom th the fig．2．I．

honever farl too much time is required to evaiuate the resistance using two port: parameter calculations. Besides, the baste apyroacti zeguizes that she the row resistances have to be evaluated once using linear scannings that is, binary scaming is not aphicable to rownise scaming.
For the video sybtem, the row and the colum scanning registers are not accessible and with the viaco data stored in menory, it is not possibie to satisty the second recuirement. However the thira requirement may be met by the addition of a littis more hardware, In generat, therefore, it is not a good choice.
Fone of the other devices preached in the previous section satisily the requirements. Thus it is necessary to identify further sensor types.
A resistive polymer (J.s.R) was examined irez 2.7). The poiymer changes resistivity with appliad pressure. One of the applications show by X.S.R has two closely-placed, but separated, netal coated plates on the FC board on which the rubber shese lies such that it the rubber is pressed down,
 lot of matiplewors to seiect one of ail sensors on the board. however a problem with this sensor is that it tases a very loag time for the makerial to recover electrioaliy to the original state after the finger is released (about 100 matc).
piezoelectrio material was aleo mamined. One possibles approach is to apply the same hardware technicue ased in keyboatd applications. Hovever this approach does not eliminate the multiplexing problem. Uniortunately during the cime recuirea for multipiextng, the charge developed by the impact of the touch can be losi.
Finally, it semed that the capactive sensor offered the greatest potential of all available approaches for the
following reasons:
- 1. Capacitive sensors do not need adational. equipment, that is, the basic insuiating sheet and touch plate are sufficient.
-... 2. Multipiexors for individual sensore can be avotad or are degenerately simple using yow and columat acaressing methoas described in chapter 3
- 3. Capacitive sensors can accomadate all three
3. Capacitive sensors can accomodate all three
featores identified above. In pariculas, a neasure of intensity is availabie since the area of einger contact anc corresponding capactinoe increases with Einger pressure.

\footnotetext{
- 4. Capacitive sensors are very durable since no addín
tional ejements are meeded and there is no recowery
}
bT \(\sim\) ?

reguirements of flowibizity and adaptability, but rather
that a fast mutiple touch sensitive input device (mmpm)

\footnotetext{
In ordey to reach this goal, capacitive sensor based
hardware with a binary scaning algorithan was chosen for development.
}

CRAPTER 3

This chagter gescuibes the detaths or the hardmare inplementation of a fiast multiple-rouch-sensitive input avice (EMTSD ) . The design of the hardware is based on the hardware requirements identified in the previous chapicer and on tradeoks between software and hardwase. the hardware basically consiste of a sensor matrix boarde row and colma selection registers, A/D conveiting cirouits and a dedicated cpu.
 migne of capacitance mesantement between a finger tip and a metal. plate. Row selection registers select one or nore rows by getting the oorresponding bits to a high state in order to charge up the sensors while the colmun selection regtsters select one or more columas by turning on corresponding analog switches to discharge the sensors Enrough timing resjswors. The intersecting region of the selected rows and the salected columa represents bhe selected sensors as a unit. A/D converthag circuites
neasure the discharging the incerval of the selected aen-
sore, A tniversity of Toconto 6803 board was used as aedi-
sated ced.
 section 3.2 , with the rest of the hardware deacribec in semeion 3.3. Section 3.4 aeseribes the scanning sequence used in conjunction with the hatoware development process white aection 3 . 5 corcludes with a description of the hataware dmplementation.
3.2. THE SENSOR MATMUX
 Ls atratgheforward. The bouch awrece of the sensor board consists of number of small metal-coated rectangular-shaped areas serving as sensor plate capacitors. The deaign of the metal plate area of a unit sensor depends on the measurable capacitance charge that results when the area is covered by a Einger tip, and on the resobution that can be implemented.
 by 64 was chosern, resulting in 7 ma by \& whea tox each sensor. The estimated capacitance between the sensor plate and a touching finger sepatated by 3 mil ( 0.075 mm ) wyar insulating coversheet is

oovershest, \(A\) is the area of the unte sensor and d the thickness of the ingulating sheet.
The charge ascociated mith the touch capacitamee is stoved between the sensox plate and the touching finger act-ing as ground. For thin purpose buman beings dan be oon* sidered to be a large charge reservoir. gor the statio ciarge caser a sutrable nodel ot a human bejng is an approximate 100 pF capacitor with one plate connected to ground.
 feterence for measurement of relatively sadly capacitances.
 smaju buk measurable, Fox a timing resistor ai \(100 k\) the time change due to the sensor capacitance change is about 1 miono-seoond. She tradeoft between the time taken fox the measurement of the capacitane and the fase of measurement. acens to be obviounc If the apacitance is nighr it is "easy" to measure but it takes longex, slowing down the जcaning proceaucen the olock cyole usec to oount tibe discharging time is ajso Jimiter by noise in the analog oirm cuits as well as by timing limitations of the men ojucuits used. With these limitutions in mind. the petiod aik the counter glock was chosen to be 100 nano-seconas.
In order to belect a sensor' by roim and columb access, two diodes were used for each sensor. One dioke, combectod to the row line, is uged to charge up the sensors in the row. It is referred to as the Charging Diode (CD) as shown in Fig. 3.2. The \(C D\) also serves to block the charge flou. ing back to the row line when the row line voltage is droped to zero. The other diode called the Discharging Diode(DD), connected to the columin line, enables discharging of the aclected row sensors to a virtual ground. Also the DD blocks charge flow from the sensors in the selected row to the seators in the unselectea row durtug the discharging period. The selection of rows, by the row selection prow cealure, causes the sensors to be charger. The sensors in the colum are then aischarged through associated timing resistors connected to the colwn selection switcies.
 selected sensor. There ate two related time periods: one for che selection of rows (that in, the oharging perioc , and the other for the selection of columas (that is, the dischatgius period). The capatitance is measured while the sensor discharges. The signal output during discharging is shown in Eig. 3.1 (b).
Analytic equations can be derived for the mocel assuming that the reverse dioae resistance is nuch higher than the discharge resistox \(R\) and the foxward resistance is much


Figo 3. 2 a sabil section of sensor radtrix*
smajler than the discharge yeststor \(R\). The derivation is as follows.
Whe aisoherging voltage (v; is given by
where \(V i\) is the instantaneous initial voitage of the diecharging pa
T ing given by bias opacitance of the aiode.
The voltage vi can be Eound from
where Qs and Qi are respectively the charges stoxed Lri the sensor and the forward biased diode just before the
discharging period begins, and voo and vo are respectively sensor and the forwatd biased diode just before the
discharging period begins, and voc and vo are respectively the high state voltage fox chos and the diode voltage drop. In the equation for vi, the Eirst factor is assocjated with charging up a reverse biased diode while the second ractor results flom the charge in the forward biased diode stored \(V i=\left(\frac{C s}{C \cos }\right)\left(\frac{Q a-Q f}{Q s}\right)(V \operatorname{Co}-V d)\)
\[
(0 A-\infty A)\left(\frac{50}{50-00}\right)\left(\frac{x+90}{50}\right)=T A
\] \(V i=\left(\frac{C s}{C \cos }\right)\left(\frac{Q a-Q f}{Q s}\right)(V \operatorname{Co}-V d)\)
giva by \(T=R(\mathrm{Cb}+\mathrm{Cr})\)
Where Cs is the sensor capacttance and or is the reverse bias opacitance of the Biode.
The voltage V t can be Eound from
- \(\quad .0\)
during the charging period.
The absharge time jomeasured by the comparison with a
theshoid voltage (vt) and it is given by Fron these analytic equetions, the rollowing conclu-
gions relating to the seiection of appropriate voltage levels and the diode type can be nade.
- I. The higher the Voc, the less sensitive is the measurement to the thmeshold voltage at \(V=\) ve were the \(V t\) \(=\) avec asd the sensitivity, that is the derivative of \(y\) with respect to t, is -avco/r.
- 2. The smalier the teverse bias diode capaciance, tise higher the resulting \(V i\) and the less time it takes to meacure the aane sentor gapacibance.

 interface the senaor matrix using high Logic voltages with vec equal to 15 volts. To use cuos logic directiy connected to the sensor boare which is prone to high stutic voltage from touch, the aiscuitry nust be protected. Bigh negative

\footnotetext{
voltage bypass diodes are connected to each row
}
\(2-8\)

line(charging souree) Eox this reason.
The second implication is the use of diodes with small reverae capachtancen the diode \(1 \mathrm{~N} 414 \beta\) was chosen ior now oapacitance, Jow costr, and availabiljty. The reverse bias
capacitance of rbis dioge is specifiled as \& pto
The third Emplication mejatea directly to the forward curcent ot the diode since of \(s\) ce * Va \(=\mathrm{x} * \mathrm{Xa} * \mathrm{Va}\), where Ge is the Z̈orward capacicance, va is the diode voltage dropy Id is the diode forward current and is is some constant.
 then interrelatod with the timing resistos chosen.
Euthnex analysis of the semsor matraz is of inceresti: there are 2048 such unit sensoxs implementer on the \(P\) a boarce Accordingly tho analysis is rather complioated becabse the rows and columas are whetrically rot comgetely separated. A sinal section of the sensor matrix configuram tion is ghown in fig, 3. 2 for iliustration, The meverse bias capaoztance couries the sensors in a column. Moreover there exjst capacitances between oolumns mue to the physioal configurathon ot the sensor plates and wires and due to the patasitio capacitareen jn the citcuit, ara these coupde the sensors in a row. The first of these coupling is seen to be unavoidabie while effoxt was taken co reduce the second
ghown in appendix A. only the reauths will be diecussed
here. The analysis is based on an effort to obtain vi, the instant initial vozege in the discharge period, r, the ratio of the sensor capacitance over the surrounding bapacitance, and me the separation parameter in the rous.
The instantaneous discharging voltage vi for a case when a seleoted sensor is touched, is givest by


The ratio of the sensor capacitance to the intrinsio apaci-
tance of the surtoundings, fy is
The separation parameter in is the number of non-selected seraors which must be touched, to cause a non-Eouchen, but selected, sensor to roport as "touched". Appendix A shows equations for dexivation of this garameter and its evalua. tion by computer: jteration ta tems of variaides suck as the ratio of \(\mathrm{Cs} / \mathrm{Cr}\) and \(\mathrm{Cf} / \mathrm{Cx}\). Winen \(\mathrm{Cs} / \mathrm{Cr}=2.5\) and \(\mathrm{Ct} / \mathrm{Cr}=\) 12.5, the separation paraneber mis about \(B\), and when Ca/Clu
\(=5.0\) and \(\mathrm{CE} / \mathrm{Cr}=12.5\) the m as about 25 . The Eirst resum
 in the colum have been touched. The seoond realit implies that if nowe than 25 senars are towhed in a cozum, the result will be a report that all the sensors in the columa awe been touched. beyertheless, all of the anaysis for the single selected anersor model is still valid with sone complication.
The analysis becomes more congicated wen the parame ters for rows and colum are included in the equations. Since the operational amplifier adas currenta from selected colums and consequently the discharging time increases by \(1+\ln (2) / a\), where \(a=\ln (v i / v i)\), when the nuaber of colums incieases by factor of two, the reference values ate expected to be increased by the factor of 1.57 fox a \(=\) Ln(10/3) \(=1.2\) correspondingiy. However, an Lincrease in the number of rowis in a group is mot expected to increase the reference values because the charge atorea in the nonselocted reverse biais alodes becones smazher whereas the charge stored in the selected forward bias diodes remain constane guring charging period and conseguently vi becones smaller.
but
their effects are consjdered to be ininimal.
3. 5 ENEREACE CURCUIT DESIGR ANO TMEGEMELTSATON

Jnterficing between the sensor natrix and whe dediedted Cpu requires three main circuit blooks: row seleotion registers, colum switch selection registers ana \(A / D\) converting circuits. Nhe CPU selects the row or rows of a zensor group. initiating oharging of ail the associated sensors. After a charging interval, the cpu disoharges the selected colwarn or oobums corresponding to a sensor group by oomecting a group of discharge wesistors whose curfent is sumed via a high slesw rate operational ampificu.

There is tradeoff between the sohane using a singla bit wor ench row and one using decoding chrcuits to implement binary addressing suited to the binary scaming aigoritma. The bit per row scheme reguires 32 bits of registex whila binary coding needs 5 bjts of register since ondy 32 * 2 m . patterns of gensor grouping exit according to the binaxy scanning algorithm. Eivever, the firet scheme was choeen because it is ultimately flexiole, that is, it allons one to implement "all" scanning modes by means of software. Thus changes can be casily made in the case of difticulty with iaplenentation of a particular sottwace algorithm. The
Lmplemented prototyoe uses fouk o bzt registexs with a conmon reset signal for row selection
For the same reasons sutificienc colum switch beloction regjstext ate provided so that one carn generate ang group pattern through soztware. However, to reduce the number ot ohips on the board, fout switches are controlued by each bit cesulting jn four sjmatianeous analog signals and neceasiGating foux counters. However as a resuit only 2 b-bit Latches are needed to contwol 64 swirches. The foum sets of data are movidea to the Cpy atter ach scan. These data are manpulated by sottware in correspondence with the sobected resolution mode. Thin imolies che hardware itselt aces as an axtay of 32 by 15 bits while the soteware emalates 32 by 64 oits or soanning resolution. The scanning ajgurithm jus expiained in chapter 4 *
The charges geored in blue seleoted row (a) Elon dowr through the aslected switches to the virewal ground of the East operational amplititer. All the disctarging ourients ane correspondingly addea to produce a signal from whion the discharging time of all the selected sensors can be round by comparison with a threshold voltage. the output of the nega. rive voltage comparator is fed to the auble signal on the comiter and to the datia bus as a stotus bit iox the councex readiness. Kly the counters are reset when the row selsetion registers are desejeated in order to initiate whe comntang
Geater nunder of bits is fownc to be necessary. The 8 bit counter shabjes the measurement ox a 7 bjb uapaditance ohange regaidyeas ot whe degree ot overtiow in bat comhime. This means that if the diffenence, touched to non-tourned, does not exceed 127. Ghe aifference can be obtained without anbiguity. For exampler a courker value 4 ic larger than se
 words, an unsigned e bit compexison would not be appropriate, mherebore the counbex toes not need to acommodace tab entire discharging Eine inchading the time due to the ourrounding capaotianoe, which may recguremore than 8 bita. Some manipuation is done in sottware to utijize the facte above. A complete anabysis is given in appendiz \(B\).
Whe remaining oiromits are for shithing mos levels to rer level and for decoding adaresses. Eight adaresses are lecoded with a phy signal. One wijte adereas is used dou a single register whose output controis the discharge ox ad che semsor mawrit at onee, the grounding ot the ground strip on the boaxa for template recognition applications as
described bedow, and as weld as controls thaee tatomapucs. A metal atrip is located on one sido ox che tobch aur Eace of the board. rhie strip js a programaile ground atrip which can be gromnded to allow a setal moghed patern on the back side of the tenplate shown in pig.3.3 to be scaneed. xtean be magrounded for nomal binary scanhing ao

Enat Ghe "touch" by tie pattexn can be ignoced, obnerwise it increases the time to scun all the points on the tounh sux-
 the binaty scanning time is directly proportional to the Bumber of pojnts on the tablet.
3.4 TME RAROWARE: SCAMNTMG SEQUENCE
 Erom the eensor matrix brard. A block diagram of the hardware cixcuit is shown in Fig. 3.4 to asaist the roader. The seguenge is as roliove.
.-... J. Reset the row sedection registers dhat is, ground
trie inputs co the sensor mation.
- 2. Discharge all the semsors aiseccly to groum fout
not through R) Eor about 2 microseconds.
-.- 3. Selact the row sejection meqigters with an aporopti--
ate bit paticern.
- 4. Select colum switches by torning on the appropriate
bit pathern in the colum whitch welecton regtatere
abour 4 micomgeconds co stabiyize the sensox charge.

countere bogether bo jnibiate counting of the discharg

7T-8


campark 4
algortmbes ano sommane smategme
4.1 intronection
an this chapter, the sofuware taske to be periomed and
ins of the algorithos developed are described.
The zirst task is that of grouping sensors such that a variety of scaning algocithme are allowed wo that the riex1bility of the harduare is not lost. Defintions of various resolution modes and senso: grouplng structures abe described in section 4.2. In section 4.3 the addess mapping betwoen the physfoal location and its reference nerory wot7ostos uantos pure mox sul fo suramed fita pue ssoxppe xegisters ror all possibie groupings of senscze, are definea.
The second task is to reduce the digitization noise of the discharging time, and to identity a touch on the sensor matrix using the thereshold method. These processes are described in section 4.4. Section 4.5 details the acaming algorithns. In section 4.6, ä tew interpolution schemes are describsa whose purpose is to compersate for the low resolum
tion of the hardware.
Employing these algorithrs and tasks, section 4.7 indicates the prograns for the host computer and the deduated ced are organized. pinaby this chapter is sumarized in section 4. 8.
4.2 SERSOR GKOUPTRG STRUDMRS
Ta this section, various sroupings of seneors in both colwhand row dixections are defined ta such a way that bine jmphementation of most aigorithrs ard sotitare strategtes is permitced. Conresponding bit patterns in the colunn and row selection registers are established for a number of groupings of gencors and theit phystal locations. prom the hardware standpoint, there are many possible grouping of sensors that are appropriate. However, there is Limitation to imphementiag all possibilities beoause of the corresponding seterence value storage requirement.
 chat permits eass implementation of alj. the algorithas in the decicated cro, is a rowise or colummise binary troe stuactured grouping. mhis grouping allows groups ot J, 2 , 4. 8, etc in row or in columi. Fig. 4.l shows the grousing schene in abdary tree structured way ror sensors in an 8
fecerence value dara strwebres in a later sections a notation that represents a unicue group of sensors on a tablet is necessary. In support of this notabion the cooratiates of colum level and address, row level and adaress are incroduced as shown in fig. 4.2.
Level implies that all sensons are grouped into one row or columa, bevel i represents grobing all sensots in a row or colum into two equal parts, Level 2 implies group ing all sensors in a row or colum into four ogual parts. The postition of a gronp of the eensors in the same level, is described by a corresponding row or oolunn adaress. the relationshio between row/colum adoress and level is shown in Fig. 4.1. Fot exampies row level \(=2\), row asaress \(=1\), column level \(=3\), and conum address \(=3\) describes the grotip or sensors in the shaded region (A) in Fig. 4.l. The gromp of sersors in the region (B) is given by the coorainates (colum Level, colum address, row level, cow address ) = \((2,3,2,3)\).
-TqXe motre you saoe denemot 'exmzonazs butanois stul trary iocation of a groug oi sensors on the tablewt even tholigh the number of sensoxs an be grouped by 2,2 , 4 , ete, groups camot overlap each other in a xow level and coluan level other than their onn. otherwiae the grouping strueture proviées many aserul foaturcen por example the

Fig. 4.3 Grouping the senzors in two binarymetructured ways


groupinge needed for the binary scaming algordem are shom in Fig 4.2 in order to display the relationships between the
 on the tablet. This arrangenent utilizes a part or the grouping sericture impiamented.
4.3 bit patterms in whe selection aegibteas ano address
 ters are directiy related to the groupings of the sensors. A group of sensors corresponding to (colunn levelf(ch), colum adidress(ca), row level. (ri), row adaress(ra)) have a unicias bit pateern in the row and colum selection registers. It is given by
\(b p=a(0) a(1) a(2) a(3) a(4) \ldots a(i) \cdot a(n-1)\)
whexe \(a(i)=1\)



and \(n\) is the maber of sensors in a row or colum. the total number of grouping levels of a tablet with resolution \(i r\) by c; is given by ir by ci is given by
In partioular, for the prototype, the number of grouping Levels is 42, that is
\(F\left(1+1 \log _{2}(64)\right)^{\left.7+12+1 \log _{2}(32)\right)^{7}=42}\)
In oher words, there are 42 different senson grouptags
Since the tolal number of nodes in a "perfectiy bal-
anced" binary tree with boton devel numer in, is given by
the total number of combinations of nodes in the row and conuma, having botton levens mind \(n\), is given by
\(\left(2^{* 2}-1\right) *\left\{2 * 2^{n-1}-1\right) * 4^{* 2}(n+* a)-\left(2^{n i}+2^{2 n}\right)+1\)
Thus since each conbination of xow and column nodes reguires a reference vaiue, the storage required for the total grouping scructure is amost four times as greas as the number of sensors on the tablet. This results in a storage tor refer. enoe values in the prototype of about 8 b bytes.

4.2. The recerence adreas is dobined fiom che bow and

bap mox qaog ut stanat butcinoze tTe xoy syemu aut colum addressing, as shown in Fig. 4.3, use bit stufting in front of the row and colum addresses to Ldentify a group of sensors undudely at all lepels. Eince ondy one more bit is needed to represent the addresses of any node as well as any leat in a tree. the rumber of adress bits meguined oy the reforence adaresa generation scheme shown in itig. 4.3 for tablet of resolution \(m\) by \(a_{\text {, }}\) dan be seen to be

\section*{\(\log _{2}(n)+\log _{2}(m)+2\)}
For the prototype whose resolution is 64 by 32 , the requirem mont ia 13 . Theremoze, the address mapping sobene uses a tul ak spaces whereas the requirement as provided above is for a litthe bess than of bytes. Mevertheless, it as very close to the maximum usage and the scheme is very effatent.
4.4 MOISE REDUCTXON
 well as with grouping level. In order lo renove the variation on capacitance discrepary over the spatiad arrange-

nent, wetaxsace valuss ans obtaimed for the untonched tablet and stored during the initialization perjod. Alcex inicializabjon the data are then obtained by subtraction ox the reference value from the curxont value. rhis process elinEnabes the sparan noise embedded in the sensor ojuedits. The value obtained from a group ot Bensore stili con* taina various cine dependent motse signals originated irs the analog cixchits as weat as the noise corxespondtng to vaxian tions in tonom. Theretore it cannot be uned dijectiy. To reduce the effectes of thae varying roise, the upu reads tho same group of sensorm many limes and a average is used. Whe process of averaging srvolves the overilum of an e-bit register as described in appendix B. The averagad datum is then oompared with a threshoid fot its row and volurn levels to datect touchedness. The expected level of noise varies wity the gxompira heven. Theserore aach combination an now and colum levela bas a threshold. The threshohds are obtained eithet througis oirect input fion fite usex ox by a process of automatic threshold setting which is pexiormed durjng the initiajization period. Anothes appxoach to xaduchng the notne ja a soheme relying on spatial arrangement mhis methou is appied ondy for the interpolation ot a number of tobched sensor values. The basic idea is that pixels remote frof the couchod aensor oan be weighted to reduce the roise to sighal xatio.

 and binaxy scanning. Wtth the linear scanming al.gonithth, bike CFU scans the tablet one physicai sensor at a time The moditied Iines scaning algoritha is based on the fact that the tablet can be configured as to emalate a projective Een sor. First the cey searobes for a touched row and ther ondy the touched row is divided into many oolums tor detactung indivizual sensor lorations. "ine binaty acannjag algorithat has been introiuced in the cnapter 2 . miae aetails of the scanning processes in \(C\) language desoxiption tolion.

\section*{}
current \(=\) readdata() ;
*dityerenge s ourunt - reterence
cetso (trua) i
Iinear soanning
Ie(levelr, levelo)
inc levelx, levelo; \(/ *\) input to define the resolution */
nc levelr, Levelo; /* input to define the resolution */ \(/\) *evelr/c \(=\) rov/colum level nt limitcolaci, Limitrowedr, colajr, rowadr:

\footnotetext{
imjorowade \(=2<2<0\) and.

}
cownitpatterin = gethitpattern(iewedr, rowadr) ;

(xprotor'rpemoz'oteadt't tanat)
\(\infty\)
1
1
\((\) toncond \((\sin ))\)
report (towad \(x, \operatorname{cotad} r, 2):\)
3

\[
\text { Liaitrowadr = } 2 \lll \text { ovelr }
\]


oobitgattern \(=g e t p a t t e r n(0,0) ;\)
cowbitpatern \(=\) getpatern (develr


rowbitpattecn \(=\) getpatienn(isevelo, colacir) ;
reference \(\quad\) getreterence (ievejn, ievejc,
reference
rowedr, coladr);
it (towched \((\& 2))\)
\(\quad\) report (wowadi, coladx, z):
binary scanning
bs (coladr, cowadr, levelr, levelc)
int rowadr, coladr, levelr, levelog
Kownitpatcern \(=\) getbitpattern (levelr, rowadr);
colbitpatien \(=\) getbitpatcern (levelc, coladr);
reterencergetrerer
if (tourace(fa))



for \((i=0,1<3 ; i+i)\)
awteh (i) (
Gace 0: bs (coladrit, rowadr, levelr, levelc); case a: bseaf; \(\quad\) bedr, rowarth, levelr, levelol; case 2: bs(coladrt, rowarti, hevelr.levelc): detanterabreak; The binary scaming algoritha is actually implemented in assembler fa a nomrecussive way; however the structure and the algorttha have not been changed trom the representa tion above. This algoritha and the modified linear scaning
 for each level. Thus eatecting very madi contact aress over TrEurproosy *7norfitp tayzex sy Eare dnoxt xosuas oster e
 inconsity of coub may not be actectod; whereas if it is 10s, then the search may not be successarit. Conseguentiy chis would slow down the scaning procedure since a harge number of unsuccessiul trys at the bottom level ( cansed by low theahola in the higher levels) datays the scan of the actual touch points.
4.6 COMPENSARTON FOR LON RESOLUTIOR HARDWME
xt may sem that che resclution of the hardware is too for use in grapincs appications. However couch
10\%

 resojution. This ig possibie because the center of a touch an be most acourately estimated by an jntexpolation utiaizing the values of the adjacent sensor inkensities. Fox a gimple wanape, onsider the estimation or the onter of the touch by an interpolatjon method as tiollows; sippose the tounhed pojnt is (inj) and its jntensity vanue i.s zin,j) Let whe dx aud dy be bhe rojative powition ot the interpolation to the inceger position (irj). Tisen the dzy and dy can be ontained iron the values oi the adjacent intensities as koliows. \(d=\frac{5}{k}(-1,+i)(z(i+k, j+1) \cdots(i+i, j-1)\)
\(\sum_{k}(-1 s+k) \sum_{k}(-1,+2)(2(i+k, j+k))\)
\(\sum_{k}(-1, i+1)(2(i+1, j+k)-z(i-1, j+k))\)
\(d y=\sum_{a_{c}}(-1,+j) \sum_{i}(-1,+1)(z(j+k, j+8))\)
Thus the sistmatsd oenter ox touch is (itax, jidy).
A simple aase is shown in fig an where posizibie interpobition points ake shown when 4,2 , 3 , 4 , or 5 bits ot intensity are provided from two adjacent semsors. The pictume shows that interpolition points ate now evenjr popuLated and that the soneme does not give wood resolution even if a mearly high number of intenzity wits ace provided. Therefore it may be good sada wo map each interpolacion point to another domajn whish gives eveniy pogulated posites

for possible combinations of the intenncibes trom bu ajacent sensors. However such an interpolation mapping scheme has not been inplemented due to complications Lrvolved for more than two sensora.
Howeve: the interpoiation shouid be pertormed in terne
of Ehe pixsicaj conter of the tobch shape, Since the intensiey given by the capactbance measurenent is dependent of the area of touci on the coven of sensor piate, the acourate center of a touch is inore dependent of the size of the couch redative to the stae of the sensor area as wedi as the shape of sensor plate.
Foi the implementation, however, it uses direct inter-
 polating 3 by 3 sensors with a touched point in the center and the other is Enterpolation ot ala poirts on the tablet.

pay embates a shage couch bablet with a high resolution.
 cation with the host computer to accommodate the interpolation scheme in the host computer.
4.7 sequence or opmeamons
The progrant in the dedoated processor ate wecuenced
\(4-12\)

as shown befow. Fixser tho bablet is natiajaed ara a zed
LED on the tablet is turned on to indicate "DO NOT HOUCA".
During this period, the reference values for all groups sensors and the thresholds for each level are ioun Autamatic threshold settings, howaver. do not satistit tis Level oi couch. Therefore the threshold may be changed by the comand from either che host computor of the tominal ingut. After the initialication, the cpo wates for further Lnscructions trom the ingut device. Whonevar it is teady, the input device sets the operation modes through a seguence or instruckion(a). The operations of each modes and conmands are listed in appendix \(C\).

\section*{Initialize}
read rexerence values
obtairn thyesiolds
Sene ready aignaj
- set resolution (for only linear soaming
mode
.--.. Scarn and Roport
In general, tho program in the host computer would be appidm cation software that utijiges we FuTsid. The soguence presenced below would geatix vaty with each apgication. However for each setting up the tabiet iox bect performance acoording to the apqication is escential, The contigura-
tion of tho syetem in the sottware is bhown in fig. 4.4.
 operations in the deditated cpo, as well as the comunica-
tion protocols with the host computer, are detailed.
In ordec to run a progean in the host computex, the Local terminal Lnpuss are directiy transferred to the host: computer which makes it possible to commancate betheca the usex and the nost computer.

\footnotetext{
07
\[
\begin{aligned}
& \text { Signal to the local terminal that it is ready } \\
& \text { recedve data fron the dediaced cpo. }
\end{aligned}
\]
}
- Wait ror an acknowledgenent.
--... Sctup output device.
- Setup tho tablet accoraing to the needs
Frocess the data iron the tabist.


.-.. Ontput to the designated device
4.8 CONCLOSTOM
In this chapter, software sticateqies and algorithms have been debcribed. All gcanning algorithma and comanass have been implemented and tested. All soxtware is tairly wat Gocmented tor be user whe wans to implemank wor Leatures for his own application purposes. Testing resuits and some demonstration programs tor a particular aputuation are provided in the next chapter.

5.1. Intronuctrok This whapter presents ehe use of the muxsoj prototype as an integrated system, the characterization ot the sencom matrix and various aspects of perxommaneo seeting.
Tn section 5, 2, the aensor matrix is evaluatea in tsmas of its threshold values whion are directuy related to noise levejs present. The times recuized to measure apecifio grougs of sensors axe identified by the reberence valuas ror each gtowp. In section 5.3, the use of the prototype having an I/O temminal and a unjx port ommeoted to the dedicated CeU is presented. Seotion 5, 4 Eocuses on the spatiai resolu* tion and locatability of a Eine resolition pojnit obeained Erom interpoiation ox rulti-finger touches. Section 5.5 deade with the teet of responet time dalay maer wardoun conditions, frn section 5.E, typigal applications ot tae prototype axe giscussed and sinajly, seotion 5.7 summanizea verious periommane rests.
5.2 SERSOR MARELX EVRLUATIGN
An ideal sensor matriz for pumsud wound be one that has unikorn and mall reference values over a grouping level, a 3atge vaxiation or intuensity due to a touch and fabt measw wement time. The sumsor matrix of the prototpoe, however, haz a relatiyely wide range of reference valuse as shown in table 5.1. However these values, obtained in the nomal laboratory enviroments do not change vexy much over extended periods of time. The results show that a decrease of one columargrouphes leve increases the reterence value by a Eactor of about 1.4. This cortesponds well to the estimates made pieviously in chapter 3. As well the results show that a decrease of one row-grouping level, in contrast, does not increase the reserence value in generai, sven it the number of the sensors is doubled in a group. raese phenomena have been discussed in the previous chaptes.
 capacttance discharge time can be derived dieectly: 1 count xepresentes a 300 mano second incerval.
 ity, over time, for a apecific grouping Laval. Usirg thesa cheeshold values, the upu does not report untouched ponts Wrongiy over interyals of at least 3 hours in both jinear and binexy scanning nodes. The binary somming mode uses ahtarent chresholds, consequently it is very unljkady bo
ceport a wrong pojnt whereas the lineat sobming mode uses ondy a single thxeshold. regardess of chis, however, the tablet in hinear somaning mode has remained fox at aesse 3 hours betore zeporting a touch when in tact it has been beit
abone.

 (5, 6) varies over the tablet but usually ranges from the Gireshoid value to 15 . For the grodgirg devej (0.0), it varies ircom person to pexamn but it ranges fron the thxes. nold to 224 , phis maximum is obeabned vhen a paln rather than a finger touches the tablet. Anobhex interesting aspect of the grouping level (0,0) is that ixe scanning le vexy fast and as well ajnows deteotion of hands mexely in the vicinicy of the tablet.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Suve. & & **0 & 1 & *2 & 3 & 4 & 5 & 6 \\
\hline cow & (a) & 77 & 206 & 31 & 24 & 20 & 9 & 4 \\
\hline weve? & (b) & 77.0 & 209.3 & 34.0 & 24.5 & 21.0 & 10.5 & 5.3 \\
\hline - 0 & (c) & 77 & 213 & 36 & 25 & 23 & 12 & 6 \\
\hline 3 & (a) & 16 & 120 & 5 & 133 & 22 & 10 & 4 \\
\hline \[
x^{4}
\] & (b) & 16.0 & 230.8 & 1.7. 8 & 142.8 & 23.8 & 11.9 & 6.0 \\
\hline 4, . 1 & (c) & 16 & 144 & 29 & 163 & 26 & 14 & '7 \\
\hline \[
1
\] & (a) & 69 & 171 & 53 & 205 & 49 & 2.2 & 6 \\
\hline & (o) & 75.5 & 184.1 & 60.6 & 208.0 & 54.3 & 27.1 & 3.3.6 \\
\hline 2 & (c) & 81. & 199 & 75 & 214 & 59 & 42 & 25 \\
\hline & (a) & 108 & 190 & 75 & 228 & 123 & 60 & 29 \\
\hline & (c) & 114.9 & 214.4 & 67.4 & 236.6 & 1.28 .7 & 64.3 & 32.2 \\
\hline +3 & (c) & 124 & 230 & 104 & 247 & 137 & 70 & 36 \\
\hline & (a) & 113 & 208 & 88 & 242 & 142 & 71 & 34 \\
\hline & (b) & 123.8 & 224.8 & 97.5 & 247.0 & 1.47.3 & 73.7 & 36.8 \\
\hline 4 4 & (c) & 132 & 241 & 113 & 254 & 154 & 77 & 40 \\
\hline & (a) & 11.6 & 20.9 & \(9]\). & 245 & 149 & 74 & 36 \\
\hline , & (b) & 126.5 & 226.2 & 100.4 & 250.5 & 152.8 & 75.4 & 33.2 \\
\hline 5 & (c) & 137 & 241 & 128 & 250 & 159 & 80 & 41 \\
\hline
\end{tabular}

\footnotetext{

}
in chaper 3, a long and narrow metal plate was uned to
cover a rumber of sensors in a colump. Using this tese, the number of sensora covered by the metal plate that report touched sensors inaccurately (the separation parameten) varies Erom column to coluan, ranging from li eo 2B. The range of estimated separation paraneter with various values of parameters was 6 to 25 , discussed in chapter 3; a value
neanomably withm the acena measured range of variation.
The final test performed in characterizing the sensor
was radio \#̈requency intererence sensitivity. bue co a ack of appropriate test equipment, a small tramsjstor Ak/Fh cadio was used. The radio had 9 volt buttery and vas bet bo medurn volume with the anterna extended fully (about \(18{ }^{\circ}\) ). Woise trom the radio resulted for aimost all trequencies in the Eange 540 to 2600 Khz . It was observed that the radio nakes a low conctait noise when the tanjet is scanning without touch and that a modulated sound resulte whenever. Whe tablet is bounted However in comparison to the R.ip notise proawed when a key is antered on an \(x / 0\) eominat (Lanparocope Xt-r00), the noise trom the tablet whon the tablet is touchac, appears to be about 2 tines greater. For this comparison, the aistance betwen the awoice and the radio at which the noise disappearis, was used.
5.3 uSE OF mas reovonx

the 6B0g have been considared, as shown in pig 5,0. state A represents commacathor between the 6809 and a terminad. In this state most debugging commands are accessible ma the Chy suans and reporte che towoned points to the ternind for all three scanning algorithms: llneak somnjng, moditied lingan scaming, and binary gammiag. State b jovonves conmunication between the 6809 and the bost compoter. In this state binazy sobmang (with and whthout the jnicerpelation mode ( is availdble making it possible fot the nost computed: co interpelate 3 by 3 swbarrays axourd a couched poine, as well as to interpolate all points for one bomplete scaming.
 inputs from the keyboerd directay to the host congutex so chat the programs in the host omputer ean be executed sinultanoously with the soaning program in the s809 in state B.
Comands for each of the stateas and the data foxmats For comundeating with the nost computer are listed in appendix \(C\).

5. \(\frac{4}{*}\) SPATTAL RESOLUTTON
One of the benetits that may be obtaned crom a vomiation of the multiple sensing ard irtencicy sensing charactexistios is interpolation. Many interpobation schemes wore considexed and the results are discussed in this section.
 incempolace a "Eouched" point with all adjacent vaiues which may not be large enough to be reported as touchea. A local array of 3 by points is used for this intergolation. Sont examples drawn on a laser printex ushog iboating point


 to select points where data are sparse in comparison with che invended tighre but Eather bakes direct iapat eron the Location of the Eigure drawn on the input device. The fires piccure (a) is dxam by moving a tingex an a straighe ine ( gujded by a ruler, for various angles and the second one
 drawn on a template. The third one (o) is picture drawn by





Lhe othex band whide mbe opu soand the eabjet, However, they woudd not be shown for sozt toboh by a pain.
Since tise spatial resolution of the tirst scogne id himited by the number of bits available fron the intensitian of ars ariay ox 3 by 3 sensors, mother scineme wes corsidered. In tids scisener ail the poirtis erom a complete scan of a tablet are incerpolated allowing the potential resolution to be almost insinite. Howevex this proces simply emulates a projective device and apoordingiy reporis ondy single poine, which is interpolated som all the pobrta on the tablet. Elowever wich this BChenc, there conde be many ways of pojntiag to a specjubc Jocation on a afsplay soxeen, To demonstrate this, the ljues dxawn by black dote on Fig 5. \(2(a)\) are cotained by moving a jingen mijie a secona finger is inkea at varions pointis. The eircie fig \(5.2(0)\) is
 points. Note, nowever, that it ahowa many poincs outside of
 so be much mose accurate to the intended jubture on biat cablet. Eut ix does not show on the pictures. This is because the operator could not see the output terminat. The locatability of a point on the bablet seen to be good honever it should be measumed in front of a display maminad fox more acourate estimation.





Fig. 5.1(c) A paim drawn by the tsblet using 3 by 3 sensor




\(\square\)
5.5 RESPONGE TMME DELAX

Process I - Generation of bit patterns for row and colum registers and reserence addreas caictilations from row and colum addresbes.
process If - Capacjence measurement from resulting oit parterms.
Note that some of these processea are incexmixed with oth-
 capacitance meanarement as wejt as bit pactern genexation. Hownver the tine implied above for the birady soannisg prom cess is jusc the overbead assuming instant gencracion of the bit patierns and instant capacitance measurement. Ia practice each of the processes aboye can be distinguished
olearly and the reswonse delay the for a single poine can be derived tron the time reguired for each. Various cases are considered and tabulaced in table 5.3. Actad response times were measured several times and averaged. These are compared with the reoultis obtained by crabuating execution tian of sotware robthes and using tiae specifications tor the comunication speed of the terminal. They are cabulated in table 5.4. The resuite bhow chat the caloulations and the actual response time delays lie within a reasonabie range, with tine overneat due to the comand and oher uncounted processes ignozed in the calculations. Pig. wes ate given to show the proportion of the time taken by each processing phase.
5.6 TYPICAT APPLICATIONS
The cablet can be appiled to emulates vistoaliy any kind of device that didizes position input as well as intensity in zone Eom. Por example, with appropuate temphates, it is posibible to emulate a Qwerty keyboaxd, a piano heyboard, a percussive device (wien low recolueion io a cursor pozithoring deviae such as a joystick or a monse, a graphics tablet, ot a firger painting input device \{ret 5.1]. Above ah. ht is posstble tor the FHTED to Rom a ooldection of virtusl devices fiom which input is availabie \(5-10\)
TABEE 5.3 APPROXYATE TYMES REQUSRED ROR
PROCESSLNG MEE SORTNARE \(\mid\) process | Besq Case
\begin{tabular}{|c|c|c|c|c|c|}
\hline | process & \multicolumn{2}{|l|}{3EST CASE} & \multicolumn{2}{|l|}{WORGT CASE} & 1 \\
\hline J. & 2.3 & masec & 7.0 & lasec & I \\
\hline IT. & 8.9 & ansec & 28.9 & misec & , \\
\hline xIJ & 1.0 & msec & 3.4 & misec & , \\
\hline IV & 9.3 & msec & 10,5 & msec & 1 \\
\hline 1 moras & 21.4 & msec & 49.8 & msec & + \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{8}{*}{} \\
\hline \\
\hline
\end{tabular}
\(\frac{\text { TRELE } 5.4 \text { ACTVAL RSSEONSE TTKES }}{=}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 Case & bests & , & typi & yorst & 1 \\
\hline (a) pts/sec & 17.5 & & 15.2 & 12.8 & , \\
\hline 1 maeo/pt & 55.3 & & 65.8 & 78.1 & 1 \\
\hline ( (b) \(\mathrm{pem} / \mathrm{sec}\) & 19.2 & & 17.2 & 16.0 & \\
\hline \(1 \mathrm{msec} / \mathrm{pt}\) & 52.1 & 1 & 58.1 & 62.5 & 1 \\
\hline ( (c) kesisec & 24.0 & , & 22.0 & 13.6 & 1 \\
\hline 1 insec/pt & 41.6 & ! & 45.5 & 53.2 & 1 \\
\hline
\end{tabular}

\footnotetext{
(a) neasured by one sensor tobched continuousiy
(b) measured by two gensors touched at the gane time (c) measuruously by sons senars tounhed at the same time Note ajl values obtained were based on communication
between the 6809 and Lanararocoge xT--1.00 terminal using the jump scroll mode.
pts/sen \(=\) points per second
msec/pt \(=\) miliseconds per point response
}
5.7 CONCLOSTOM This chapter has irchuded the results of most tests that could be done in a nommal laboratory enviroment. Tmportancly it has emphasiaed testing tor the "new" sensor with a binaty scanning algorithm, \(x\) seems, ingeneral, that the new sensor performs better than experted from caladstions and shmulators. This is because of tat unaon counted Eact of colum capacitance coupling. Bowever some unexpected resulte were found suma as the inakinity to sense touchedness for three grouping levels \((3,0),(4,0)\) and (4, ) Also noted were strange vaxiacions of the ketemence values in the row grouping levens 0 , and 1 . whese effects Lhely result trom unmatehed aiodes and other componente, Kore detailed analysis is left for those who are to develop


\section*{3jnuttaneousiy.}
G.I TWTRODUCTIOX
A prototype of a rast-iscanhing multipie-touchosensitive input cabjet having both the adaptability and tieability For diverse agpJications has been designed and impiemented. Capacitance meadurenent of individaal sensor(s) Which oan be uniguely addressea using two diodes per sensor, nakes it possible to sense both the positions and intenaities of one ox more simultaneous toliches without anbiguity. The sensor: matrix ia controlied by University of roronto 0803 board
 host computer. Software that whilizea binary scanning foz rast scaming an artay of 64 by 32 sensors on the tabiet.
 implenented and rasted.
 is many areas. Bection 6.2 focuses on the possibitities for hardwame and software enamoment. In section 6.3, the probleas of the sensor matria are disoussed and, tinaluy, section 6.4, conciudes with directions tow tuture research

on the mysim.

\subsection*{6.2 ENHANCEMENT POSSIBILITIES}
 scamang algorithm with suitable hataware solves the poin of speca linitation inherent in measurement of sensor capa chtances with linear seaning, some musbeal irput appications, such as to percussive inatruments tox emample, neguxe greater speed with nore parameters. At proatht the tablet operating at the zero grouping level is guite fact, howeyex ony a a value is available.
 emancements indicated to reduce two major time delays ja the response time neasurement, meose are in the sotwate for the binazy scanting process and in commancation between the hosi computer and the device.
A possible enhancenent or the software may be derived From the fact that sone instrunents can be omutated with a patticulax speed requtrement as well as with a particulat serasor grouping contiguration. In such a case, data strubtures for reference and oit paterns in the row and colunn regtsters could be mage specinic to the particuar applicaEion. Thus blocks of sensors can be predofined by softhare bevore the application, thexby graatly teducing the 2-9
sosmaing possibilities. gocordingiy the author believes that a dynamie data structure with scanning zones on the thabet, which are variable accoraing to the emalation of particulax device(s), may increase the response speed con-
siderably.
Harcupare entiacenents, on the other hand, that increase tise speed of the scaming process, should incorporate both parailel comanication and posstbly a bit slice programanae processor for the acanning process itsalf. The atimate response time delay redaction may be obeained not ondy by reducing the amount of data chat comuricates between the host and local processons by anlowing mote processimg at the dedicated processor, but also by parailel commaication with
 the capacitance measurcone time whose mamimam is about 70 microsecondas the bit pactern generation and rererence addcossing, into a pipeline. Dikis could reduce the time for

 ing that longegt delay path in the pigeiline is the time reguired to discharge the sensor capacibance. However each oi these changes should be considexed with a ppecific application in mind.
6.3 Sgasok hatrix enhancemems
Where are many problema in the constructed sensor matriz: compared to an "ideal senout". Some are compencated by the software but the others remaned unresolved. As dis. cussed in section 2.2 and in section 3.2 , the following problens with the sensor matrix xemain.
-... 1. Each sensor is not persecty matched dne to家 coham and row, Iocation jifterancee over tho tablet
and size vatiatios in the unit sensor plate.
- 2. The thresbold zor detection of tonchedness is domn trated by a maed for notse elimanabion rathet than "thresholaing" a degree of touchedness. This noise originates in the offset vohtage of the comparbitor as
well. as in instability in aischarging ourcents.
3. whece are simply too many components to assemble in construating the sensor matrixiby conventional means; For example there are about 4 thousand diodes to connect (64*32*2).
- 4. Whe hardmare resoiution is only 64 by 32 for a \(1.2^{*}\) by \(16^{n}\) tablet:
Since the diode erray on the cablect is undibem, it seens chat for large guantity production, a wave solatring technique with automatic insertion ecidpmertitces 6.1] and manl sustonized diode network chape may be foamible, Some aspects of the first problem and the thina problern may be solved by this techntque. The second problem anay be reduced by a more careful and closer examination of tho sensor marrix. The haxaware resplution nay de increased by a choice of higher dielectric constant sefatators with smaller sensor area and by increaning the counting dock frecuency and using a more stable discharging current.
Current researon on ilat rv gystems in some comnties squenoctuod antaoe zo KTquesse rox sanfruypen Kuen seattrar on a large area, as large as a qu screentrex foll. Tt shows some interebting results related to the same problem of mounting active components on a large surface area. wh Ghe
 matrix, jit seens possible that the majority of the probiems above could be solved. Thus it is likely that the ultimate FMTSID will utilize cechniques to be corvopod by wh the Jarge fiat soreen \(T V\) spoten dovelogment in the neax future.
6. 4 Fumpra ragratcea
F'uthe research obobld be dixected in accondanco with the previous discussion on future enhancements. the abinos beliaves that the "final rorm" of Prabyb should be as a stanablone device using a transparent touch plate wuoh as inditu tin oxide fref 6.2\}. Such a panel could be put on the top ot the display system as is done with chreent touch serecn devices. By this mears feeaback cound be obtained directily under the finger tip. As well of course, tablet templates coula be dineotly are dynamically sinown so the
 screen display systems.
\begin{tabular}{|c|c|}
\hline  & 108908 \\
\hline  & \\
\hline  & \\
\hline  & \\
\hline  & \\
\hline '0L6T'gt yoxen olesbll'e quoned magas peqtun & [rataz \\
\hline  & \\
\hline  & [0.23ex] \\
\hline -T86t saquancin sexaj choz & \\
\hline  & \\
\hline  & \\
\hline  & [80¢fax \\
\hline 8857 & \\
\hline  & \\
\hline  & \\
\hline  & [ 1 ¢Tax] \\
\hline
\end{tabular}
Pressure-sensitive Conductive Rubber Data Sheet

A. circuit: diagram drawn by Fedockow in March, 2982, Universivy of Toronto
"Curing Static Electricjey" by Elliott
S. Kanter, Radio kleatronics, Sept., 1984
hanipurating simulated objects with Real-wond Gestures using a force and position sensitive screen by Margater paninsky, Compter craphios Volume 18, Number 3 Ju1\% 1984

\{rest.4\}
(renz.5)
[10ex2.6]
(res2.7)
(recze8)
[reá3.1]
( r © E 5 Cl )
(rear. 1 )
Fouch Sozeen Digitizer Data Saet fron misd
\[
\text { Display product Inc., } 1982
\]
Thesis, Guvensity of Toronto, l982 by Mimish
nectia
\[
\text { TaSA Moded: } z-y 3600 \text { and } z-y \text { controller, Modei: }
\]
\[
\text { PR-105 Data Shaet } 1980
\]

Colourful
Technology
密
Gright,
"Liquid Crystale Eig.
Displays" by Gordon
may/1934 p55 - 668
[res5.2]

\footnotetext{
6.
}

v ximeadev
ur pezturue axe umntos awo ur sxosues exteredde stif ur terms of the instantaneous voltage during the discharge pexiod, the ratio of sensor capacitance to the sutrounding capacitance, and separation parameters. All. these parameters are derived from the characteristics of the discharging vestage on the colum lias.
ANATYGIS ON SENSORS IN ORE COLUMN

?
fowvard bsased ajode
revonse binsed diode
Whis nodel is used for all derivations. As well, the follow
ing asemptions are made:
1. All diocies are matched.
2. Al sensor plate capacitances (Cs) ake identical and
have a value of zero when the plate is not touched.
-sxayzo tre mory pozaxedos Krteorazooro st umnton yoeg er

 ous voltage abring the discharge period and the discharge time constant are obtained sor both cases. Ns wedi, from this anarysis separation paranetexs are obtained fok various
parameter changes.
Case \(A\) a \(A\) alected sensor is touched, while the remaining semsors in the colum are not tonched,
Chaxging period: The selected row line in conneoted to

Vcos.
Co, Do are the charging and discharging afodes respec-
tively. Crt is the total capacitance of the reverse biased cre is the total capacitance of the reverse
diodes the the colum connected to untouched sensors. ct is the capacitance associated with the touching finger, and considered here to be 100ph.

- i. CD 18 sischarged by Qt and charged by \(\mathrm{Or}=\mathrm{Cr} *\) Vla. The charges of and or conie from Cs, and from crt through bo. consequently do is reverse biased, releasing of in Do and accumatating a charge \(\mathrm{cx} *(\mathrm{v} 2 \mathrm{a}-\mathrm{v} \mathrm{a}\) ) .
- 2. For some time laber, od is forward biased. However, if the time interval is very small, not mach charge as lost through the thring resistor a and conseguently vaa can bo easily estimatea. This assumption is verified by an experment using \(\mathrm{Crt}=68 \mathrm{pF}, \mathrm{R}=1.00 \mathrm{n}, \mathrm{Cs}=9.4 \mathrm{pF}\) and two diodes. The measured tine was less than 100 nano-seconde.
Whe irstantaneous voltage vaa for case a can be found as foliows.

\(=\frac{C s \| C t *(V C c-V d) * 0.5 *(n-1) * C E *(V-2 * V d)-C E * V a-C r * V 2 a}{}\)

 Whe time constant for case \(A, T a\) is:

\footnotetext{
\(\mathrm{Ta}=\left(\mathrm{Cs}+\mathrm{CL}_{\mathrm{L}}+0.5 *(\mathrm{n}-1) * \mathrm{Cr}\right) * \mathrm{R}\)
}
\[
\begin{aligned}
& \text { Case b: several } \mathrm{n} \text {, non-selected sensons are touched simul- } \\
& \text { taneoushy. } \\
& \text { Charging periods A selected row ane is conected to } \\
& \text { voc. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Gn is the total capacitance of m couched sensor plates } \\
& \text { with diodes as shown above. } \\
& \text { Crt is the total capacitance of reverse biased non- } \\
& \text { selected, and non-iouched ajodes. } \\
& \text { function: }
\end{aligned}
\]


The Lnstantaneous voltage vab for this cäse is:


\section*{}
\[
\mathrm{T}_{\mathrm{p}}=(\mathrm{Cm}+\mathrm{Crt}+0.5 * \mathrm{Cr}) * \mathrm{R}
\]

The discharging voltage for case \(\mathrm{B}_{\mathrm{y}}\) tho is: \(\left.\mathrm{Vb}=\mathrm{V} 2 \mathrm{~b} * \mathrm{exp}_{\mathrm{mb}}^{\frac{\mathrm{E}}{\mathrm{t}}}\right)\).......... equation (2)
Calculation of the separation parameter
Prom equation i, the time(lith) taken for Vz to reach the thresbold voltage ve is given by
\[
T \operatorname{th}=\operatorname{Ta*} \ln \left(\frac{V 2 a}{V t}\right)
\]
and Erom the equation 2 , the time talken for vo to reach the threshold voltage vit is given by
> \(\operatorname{cth} \operatorname{Tos} x \ln \left(\frac{V 20}{V t}\right)\)

\(T \mathrm{c} * \mathrm{Jn}\left(\frac{\mathrm{V} 2 \mathrm{a}}{\mathrm{Vt}}\right)=\mathrm{Tb} \times \ln \left(\frac{\mathrm{V} 2 \mathrm{~b}}{\mathrm{~V} t}\right)\)
Equating the

\footnotetext{
Using this equation, m can be estimated for various parame-
V
ve vit
}

tex changes. The resulte are insted below.


case 1: the value of \(n\) for \(f=12.5\) and \(t=20.0\)
case 2: the value of \(n\) for \(f=12.5\) and \(t=25.0\)
case 3: the value of \(m\) for \(f=12.5\) and \(E=30.0\)
Arpendix B
 tracion of brbit data mich axe resiaues of modulus 256 . The phepose of this analysis is to demonstrate that when the aftrerence of two data moxds whose naber of bity may be larger than 8 , is rot greater than 1.27, it may not be necessaxy co constaer all the bits in the dato worde. Accordingly in the compaxison of the two data residues, ony che zeatt significant 8 --bits in a word are used and all the other bits

\section*{are ignored.}
Consider the operation A - B. There are 8 cases to constder. Our interest is to find the condition bit settings for an operation on the lease significant 8 bits, and compaxe ti with a fuld woxd operation. the case for whicis A<B unirg fuld word comparison

\footnotetext{
case (exampie) condition oits
\(A+(\$ 126) \mathrm{B} \div(\$ 128)\)

s-sign bit is att
}

The results show that \(A>3\) if the aign jos not sot, and that i \(s=B\) if the sign and zero condition bits are sett xegardleas the condition of the overfiow condition bit. This implies that the branch instruction BLE, BGE, BLT, of BGT annot be used since they all use the ovexflow condition
In this appendix, major subroutines implemented in the dedicated Cob, comands in botis local and host modes, aiki protocols for the commanication between the 5309 and the bost computer are briefly described.
SUBPOUTYNES, COMMMMDS, AND DATM FOMATS
Fukcrion: Main routine - indtializes the tablet and puts it into local noaxe.
swbroutines:
BNRKMERER: AONE
Calle by: the 6809 monitor progam.
NBME:- Wix
FUNCTICR: To transfer terminal input data directly to the host eomputer.
CALJED BY: main, hostit the command in main is w and che comm \(\overrightarrow{0}\)
MAME: host
FUNCRION: Commicates with the bost computer, All comands
FUNCPION: Comunicates with the bost computer, All comands
are received from the bost computer.
PARAMETER: none
CALLED EY: Wire mode by a comand from the texminal inpat
ESC 6.
NAME: bs - binary scan
FUNCTOR: Scans the tablet jsing the binary scaming algo.
rithora.
PARAMETER; OUEput routine location; rowadaress, columaddress, pressure are set betore issuing jse to the output routine.
CACLED EX: Rain, host
Name: \(1 s\) - linear scaming
FUNCTON: Scans the tablet seguentially (linearly).
PARAMETER: Output rotitine location; rowadress, oolumad. dress, pressure axe set before issuing fst to the output rousine.
CALEED BX: majn
wam: ma - modicied hisear acaning
Foworons Seass the tablet using moditied fineax algoritha (
NAME: strean
scans row first and then columns if the row is
toushed ;
PARAMETER: Oubput routine location: rowadaress, columad-
dress, and pressure are set wer̂ore issuing jst to
the output routine.
CALIED BY: main
FUNCTIOR: Sends data in strean moge (senas data as long as the tablet is touched)
PARAMETER: none
CALLED BY: host
PUNCMOM: Geta the codes on a template jot there is a tern plate on the top of tablet.


\section*{WASE: indt - initialization} Foncron: Initializes the tablets sets up the reference values and threshold values
mRAMESER none
CDLLED BE: Majrit, hosis
NME: average Euncraon: Avexages 4 pressure valides. PARAMEMER: ctrout(countox output)
PARANEMER: otrout(countox output)
CALLED EY: bs, \(1 \mathrm{~s}, \mathrm{~ms}\)
CALLED EY: bs, lis, ms
NAME: reain
EUNCTRON: Rea
PARAMETGR rowvechne row vector that is, the bit pattern

\(\underset{i}{3}\)
i. Indtiaization; output to the 6809
-initialize the tablet; gets new thresholas and
aterence values
n - set new thresholds; outpue to 680
w \(\sim\) send the threshojds for all levels
\(r\) - send the reference values to the host
a-- dejta node (send data ondy if there is a delta
senc a pixel only if there ins a change
(not implemented)
\(s\) - send the datá in strean mode
t- aend the partem on the template lying on the top of the cabjer
\(\mathrm{x}-\mathrm{go}\) back to wise moae so that torminal can talk
 C-6


\author{
W. Daniel Hillis \\ Artifecial Intelligence Laboratory \\ Massachusetts Institute of Technology \\ Cambridge, MA 02139
}

\begin{abstract}
A dexterous robot maniphlator must be able to fect what it is doisg. The mechanical hand of the furure will be able to roll a screw between its fingers and sense, by touch, which end is which. This paper describes a step toward surch a maniphitar, an imaghg tachle sensor with hundreds of pressure sensors in a space the size of a fingertip. The sensor was designed as part of a tendon-actuated mechanieal finger, similar in size and range of motion to a humant index finger (Hillis 1981). As a demonstration, the device was programmed io distingmsh among several commonly used fastening devices-hurs, bolts, flat washers, lock washers, dowel pins, cotter pins, and set screws - .- by touching them with the finger and anatyang the factile image.

This paper describes how the tactile sensor array was constructed and how it works. The simple patternrecognition techniques wed in the demonstration program are also outhed. The final section notes some promising directions for future research.
\end{abstract}

\section*{The §erisor}

The touch sensor is a monolithic array of 256 tactile sensors that fits (appropriately) on the tip of a finger. This resolution is comparable to that of the human forefinger. Each sensor has an area of \(<0.01 \mathrm{~cm}^{2}\) and gives an independent analog indication of the

This report describes research done at the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. The research was supported in pant by IBM, under an agreement with the Massachusetts Institute of Technology Laboratory for Computer Science. Support for the Artificial Intelligence Laboratory"s artifinal incelfence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under contract with the Office of Naval Rescarch, contract N00014-80-C-0505. The author is supported by a fellowship grovided by the Fannie and John Hertz Foundation.

The International Joumal of Robotics
Research, Vol. 1, No. 2, Summer 1982,
0278-3649/82/020033-12 \(305.00 / 00\)
(C) 1982 Massachusetts nstiture of Technology.

\title{
A High-Resolution Imaging Touch Sensor
}
force over its surface over a range of \(1-100 \mathrm{~g}\). The array is scanned one column at a time to minimize the number of connecting wires. The sensor is rugyed, flexible, and has a skinlike texture.

The touch array has two conductive components: a fexible, printed circut board and a sheet of anisotropically conductive silicone rubber (ACS). The ACS has the peculiar property of being electrically conductive along only one axis in the plane of the sheet. The printed circuit board is eiched into fine paralle lines, so it too conducts in only one dimension. The two components are placed into contact with the lines on the printed circuit board perpendicular to the ACS axis of conduction. The contact points at each intersection of the perpendicular conductors form the pressure sensors.

The device also includes a separator to pull the conducting layers apart when pressure is released. The sensitivity and range of the sensor depend largely on the construction of this intervening layer. There is a trade-off between sensitivity and range, For a large pressure range, the best separator tested was the woven mesh of a nylon stocking. For high sensitivity, a separator may be deposited directy onto ACS by spraying it with a fine mist of nonconductive paint. The conductive rubber presses through the separator so that the area of contact, and hence the contact resistance, varies with the applied pressure.

The pressure/resistance relationship is nonlinear, as shown in Fig. 5. We do not have a model of the contact mechanism that quantitatively explains the change in resistance with applied pressure; however, Fig. I illustrates a plausible qualitative model. Pressure on the elastomeric ACS deforms the material around the separator, allowing it to contact the metal below. Larger pressures result in more deformation and larger contact areas. If the resistance of the contact is proportional to the contact area, the contact resistance will be inversely related to the applied pressure. For the object-recognition application, the nonlinear response of the sensor was not a significant drawback.

Fig. I. Contact resishance changes with changing area.


Fis. 2. Mechanical drawing of touch sensor. \(A C S=\) att isotropically condactive silicone rubher: \(P C=\) printed circuit board.

The ACS itself is constructed of layers of slicone rubber impregnated with either graphite or silver, alternating with similar nonconductive layers. Each layer is approximately \(250 \mu\) thick. The layers are oriented at right angles to the plane of the sheet. The linear resistivity, it the conducting direction, is on the order of kilohms per centimeter for graphiteimpregnated ACS. This is inconveniently high for building large sensors, and we were able to lower it to approximately 100 a per centimeter by electroplating the sheet with gold. It is possible to plate only over the conductive silicone, so that the crossresistance remains essentally infinte. Silverimpregnated silicone rubber has a substantially lower bulk resistance, but we were unable to obtain the material in the proper form. The minimum resolution of commercially available ACS is about 50 lines per centimeter.
Wires are soldered to the edges of the printed circuit board. The ACS is mounted so that its edges fold around the printed circuit, where they are pressed against contact fingers on the other side (see Fig. 2). A compound sensor with high range and good sensitivity may be constructed by placing a high-range (rylon mesh) sensor behind a sensitive one. In this case, the flexible circuit board in the front layer was eliminated, so that the center layer of ACS was shared between the two arrays.

\section*{Scanning the Array}

Attaching wires onky at the edges of the array reduces the number of necessary connections. This is important given the limited space of a mechanical finger. (The 256 -cell sensor used 32 wires, \#42, stranded. The resulting cable is \(<3 \mathrm{~mm}\) in diameter.) The amay is scanned by applying a voltage to one column at a time and measuring the current fowing in each row. A potential problem with this method is the introduction of "phantom" tactile images. When multiple points are activated simultancously, it may appear that untouched points are also conducting. This is the analog version of the crosspoint problem in \(x y\)-scanned keyboards: if three out of four switches on a rectangle are closed, the fourth appears to be also. This happens because the path


PCl flexbility.



PC2
through the other three connections is electrically in parallel with the phantom connection. In keyboards, it is usually avoided by putting a dode at each point of intersection. This could be done for touch array also, but it would add considerably to the complexity of the device and it might also introduce undesirable mechanical stiffness. With resistive contacts, it is theoretically possible to compute the actual resistances from the measured resistances by solving \(N\) equations in \(N\) unknowns (Larcombe 1976), but the technique tends to amplify errors due to inaccuracy of measurement, noise, and resistance along the conductive axis. Other researchers (Stojibjkovic and Clot 1977; Broit 1979, Harmon 1982) have avoided the problem by attaching a separate wire to each sense point. This is impractical for highresolution arrays and, again, it limits mechanical

Instead, we used the scheme illustrated in Fig. 3. It is similar to the voltage-mirror approach suggested by Purbrick (1981). A fixed voltage is placed on the column of interest, while all other columns are held at ground potential to ground out any altemate paths. The rows are all held to ground potential also, by injecting whatever current is necessary to cancel the current injected by the active column. The value of the resistance of a crosspoint is inversely propor-

Fig. 3. Scaming the array.

tional to the current that is necessary to pull the corresponding row to ground potential. By this method, extraneous columns are at the same potential as the rows (ground), so no current will fow through the unmeasured crosspoints. The holding currents depend only on the column drive voltages and the resistances in question. The entire array is seanned by measuring one column at a time, as described above.

The method described is valid only if the crosspoint resistances are high compared to the hnear resistances of the row and column lines. Otherwise, it is not possible to hold an entire row or column at a fixed potential. This effect may be understood by referring to the electrical model of a single row llustrated in Fig. 4. The appled voltage (V) and the Inear resistance ( \(R_{L}\) ) are known, but the unknown resistance \(\left(R_{C n}\right)\) cannot be determined unless the potential at node \(N_{n}\) is known. This potential may be computed, in time proportional to the number of

3
nodes, by first measuring the unknown reistances near the edge. The resistance of all the the unknown contacts may be determined by computing the successive two-port parameters of the subnetworks toward the edge of the unknown node.
\[
\begin{aligned}
& Z_{n}=0 \\
& G_{0}=1 \\
& R_{n}=\frac{V-I_{m n} G_{n-1}\left(Z_{n-1}+R_{L}\right)}{I_{n}} \\
& Z_{n}=\frac{R_{n}\left(Z_{n-1}+R_{L}\right)}{Z_{n-1}+R_{n}+R_{L}},
\end{aligned}
\]
where \(V\) is the applied voltage, \(I_{n}\) and \(Y_{m n}\) the measured currents, \(Z_{n}\) the input impedance, and \(G_{n}\) the voltage transfer ratio of the network to the left of \(R_{n}\).

For large amays it may actually be necessary to compute the resistances as shown, but as long as the linear resistance is low compared with the contact

Fig. A. Electrical model of
ore row.

resistance, this is not necessary. If the measured values are used directly, then the worst-case error for a row of \(N\) elements is
\[
\frac{R_{\text {measared }}}{R_{\text {acmal }}}=\frac{R_{n}+N R_{L}}{R_{n}} .
\]

This is easy to determine because the worst-iase occurs when all contacts, except for the one being measured, are open. Other contact closures will only lower the potential of node \(N_{n}\), increasing the accuracy of the measurement. The error may also be reduced by a factor of two by maxing contact at both ends of the row.

\section*{Performance}

Several sensory arrays were contructed with varying range and resolution. Figure 5 shows pressureresistance curves for two representative devices. Device 1 has a sprayed separator approximately \(10^{4}\) dots per square centimeter). The separator of device 2 is nylon mesh (leggs, Extra Sheer). The ACS used in device 1 was plated with gold on the contact side. All devices showed good mechanical durability and, after an initial settling period, stable electrical characteristics. (The first prototype, almost a year old, shows no noticeable change in contact resistance.) The highest-resolution device (1) was a 16 -by-16 array, 1 cm in area. This is the sensor used with the finger. Sample images of the top of a screw, an elec-
tronic comector, a \(1 / 8-i n\) ring, and a cotter pin are shown in Fig. 6.

\section*{Nethod of Use}

The touch sensor was mounted on a tendoncontrolled finger that has approximately the same shape, size, and range of motion as the human forefinger. Like the human finger, it has three joints: a pivot with two degrees of frcedom at the base and two hinge joints with one degree of freedom. These joints are controlled by four pairs of tendons, which are driven from four electric motors mounted behind the base of the finger. Torque and position are measured only at the motors, so that joint torques and angles were computed as described below. The finger and associated motors are mounted on a fixed base, with a small platform, extending just below the finger, on which objecis may be placed for testing,

The tendons of the finger are arranged in opposing pars - one bends the joint, the other straightens it. A system of pulfeys keeps the total iength of each pair constant. This allows both ends of a tendon pair to be driven from a single motor. The lever arm of the tendon pulling against the joint is kept constant over all angles by winding the tendon over a pulley fixed to the joim. The tendons in the mechanical finger are arranged to give independent control of the torque and angle of each joint. The finger and its control are described in more detail elsewhere (Billis 1981).

Fig. 5. Performance curves
of tro senselrs.


The tendon finger and the touch sensor were used together in the discrimination program. The program used the finger to press and probe the object placed in front of it. Based on bow the object felt, the program guessed the shape and orientation of the object. The device was programmed to recognize commonly used fastening devices such as nuts, bolts, fat washers, lock washers, dowel pins, cotter pins, and set screws. The program was written in Lisp and ran on a specialy augmented Lisp Machine (Weimeb and Moon 1979), with independent microprocessors to control low-level input/output functions.

The program worked, as will be described, but it never worked well. Its most impressive weakness was that it would confidently identify any object placed in front of it as one of the six test objects. It is, however, a starting point. Many of the techniques used in the discrimination task should be applicable in more sophisticated programs of the future.

\section*{Why Truch Is Easier than Vision}

In writing the discrimination program, we shamelessly retraced the steps of early researchers in machine vision. There is good reason to believe that these simple techmiques have a better chance of

Working in the tactile domain than they did in the visual. For one thing, there are far fewer data to be analyzed than in a visual image. This means that even with a high-resolwtion tactile amay, comples processing may be performed in real time. Another factor is that collection is more readily controlled. Since placement and pressure of the fingertip are controlled by the program, analyzing a tactile inage is like analyzing a visual image with controlled background, illumination, and point of view.

There is also a third factor responsible for making tactile recogntion the easier task: the properties that we actually measure are very close, in kind, to the properties that we wish to infer. In vision, it is only possible to discover mechanical properties (shape, orientation, absolute position) by deducing them from optical properties (shading, projection, reflecfivity). In touch, we measure mechanical properties directly,

\section*{Active Sensing}

There are two possible approaches to any kind of sensory recognition. The first is the analytic approach. In the analytic approach, we start with an image of some sort, extract features of the image, and then, from the features, abstract some kind of a

Fig. 6. Sumple tactile
inages from the sensor.
Approxinate actmal sizes of objects shown below
images.


Fis. 7. Two approathes io
recognition.
model of what is shown in the image. The analytic approach is bottom-up, or data-driven. The second approach, the active approach, is top-down, or knowledge-driven. When taking the active approach, we begin with a hypothesis of what is in the image. Based on that hypothesis, we make measurements or perform experiments to test the validity of the hypothesis. The results of the theory are then analyzed using the same techniques as the analytic approach, and, based on the result of the analysis, the hypothesis may be modified or confirmed. If it is modified, we try experiments to test the new hypothesis, and so on, until we arrive at a conclusion that agrees with the data. The two approaches are represented schematically in Fig. 7 .

We believe that the active approach is more appropriate in the tactile domain. For one thing, the information in a single image is often insufficient for recognition of the object. Moving the finger to make different measurements is the best way of collecting enough data, and in order to decide how to move the finger, the program must have some expectation of what object it is feeling. The program should operate at all times with a hypothesis of what it is feeling. It recognizes the object by actively probing it with the finger, modifying its internal "hallucination" of the object to conform with the measured reality.

\section*{}

For the purpose of testing the sensor, the finger, and the recognition techmiques, we chose a restricted range of test objects that the jrogram would be expected to recognize. Specifically, we chose a set of commonly used mechanical fastening devices that are momortant for potential industrial applications of robotics. Recognition of fasteners and detemmation of their position and orientation when they are grasped by a manipulator is an important industrias problem. It is also a problem that is unlikely to be solved by machine vision because the band obscures the object and because forces cannot be seen. In this domain, tactile and visuak sensing would complement each other well: vision for locating objects and measuring their absolute position, touch for sensing local shape, orientation, and forces once they are grasped.


Analytic approach


Active approach

The particular objects, chosen because they have simple shapes that are easy to represent and easy to distinguish, were machine screws, set screws, flat washers, lock washers, dowel pins, and cotter pins, Restricting the range of possible objects to such a small and easily distinguishable subset makes the recognition task less diffcult, but it also introduces the possiblity that the recognition methods used are not really generally applicabie. This may be the case here. Recognizing a larger range of objects would certainly require identifying a richer set of tactile features.

The objects were all small (not more than \(1 / 2 \mathrm{in}\). in any dimension). In general, the smallest commonly used size in a given category was used for testing. For example, the machine screw was \(\# 0.80\) by \(3 / 6\) in. and the cotter pin was \(1 / 2 \mathrm{in}\). long by \(1 / 16 \mathrm{in}\), in diameter. Using such small objects allowed the entire image to be read in one impression of the sensor. This avoided the problem of coordinating multiple sensor impressions into a single tactile image.

\section*{Exepresemtation: Describkng Feels}

Based on features of the test object that make it identifiable by human touch, a simple language was developed for describing the object's tactile properties. Three categories of features, or parameters, were chosen to represent the feel of an object.

Fig. 8. Table of objects.
\(+=\) bump: \(0=\) depression.
1. Shape. For the fastener micro-world there are only two possible shapes: round and long. The shape may therefore be determined directly from the height/width ratio of the image.
2. Burngs. The locations of local pressure anomalies are expressed in object-relative coordinates, for example, in coordinates relative to the major and minor axes of the image. Bumps may be positive (convex) or negative (concave). (In the implemented program, only the sign and position of a bump are considered significant for matching purposes. There is no intensity information.)
3. Stability. This property indicates how easy it is to roll the object in various directions. (In the program, two Boolean values represent the stability of an object. These indicate whether or not the object rolls freely along each of the primary axes.)
These three parameters were sufficient for distinguishing anong any of the objects in the test set. Figure 8 shows which properties were exhibited by each object.

\section*{Inmpementaticn}

The control tasks are divided among a Lisp Machine and Gve Z-80 microprocessors. Most of the code is written in Lisp and ran on the Lisp Machine. Each microprocessor is dedicated to a simple task with real-time constraints. One scans the tactile image array, while others take specifications for joint motions and execute them in real time. The memories of the microprocessors are directly accessible by the Lisp Machine. This shared memory provides a convenient interface between the two levels of processing. The output of the tactile array, for example, is available as a Lisp array object.

The top-level loop program is just a translation of the active approach diagrammed in Fig. 7. The program begins by assuming that the object is whatever best matches the information that it has so far. This is the "hypothesize" step. It then tests assumptions that it has made about the object and, unless they
\begin{tabular}{|c|c|c|c|c|}
\hline & & Shape & Bumps & Stability \\
\hline \[
\approx
\] & Machine screw & Long & \(+\) & Yes \\
\hline \(\infty\) & Dowel pin & Long & 0 & Yes \\
\hline \[
\phi
\] & Cotter pin & Long & 0 & No \\
\hline \% & Set screw & Round & 0 & Yes \\
\hline \[
8
\] & Lock washer & Round & \(+\) & No \\
\hline (0) & Flat washer & Round & 0 & No \\
\hline
\end{tabular}
are all correct, repeats the process from the beginning. Testing the assumption may involve moving the finger to roll or probe the object, or may just involve making a computation from already collected data.

Flow of control in this process depends on what information is needed. When a property queried is not already known, it is computed or measured. In the process of computing the value, the program may make queries about propenties that, in tum, may need to be computed. For example, if we ask an object's shape and it is not known, then it must be computed from the object's dimensions along the primary axes. If these axes are not known, they must be computed from the image of the object. ys no image has been read in, the finger must be pressed against the object, and so on. This is "call by need" control flow. It prevents information from being measured or computed unless it is actually needed in the recognition process.

After an image is read in, it must be processed to determine the object's location, the primary axes, and the location of any bumps. The first step in processing the tactile image is the elimination of unwanted detail. This is accomplished by averaging the value of each pixel with those of its immediate neighbors. The image is then contrast-enbanced to two bits per pixel by comparing it to fixed threshold values. If the offset pressure has been chosen properly (see below) the four possible pressure values correspond to background, depressions, primary figwre, and bumps.

Next, the aspect ratio and major and minor axes of object are determined. Computation of the aspect
ratio begins with the location of the center of the abtivated area. For this purpose, all nonzero pixels are taken to be part of the object. The conter and the point farthest away from the center determine the major axis of the object. The minor axis is taken to be perpendicular to this. These axes provide an object-relative coordinate system in which it is possible to specify, roughly, the location of bumps and depressions in the image. The bounding rectangle of the object is taken to be the smallest rectangle, with edges parallel to the axes, that contans the image. The aspect ratio of the object is taken to be the aspect ratio of its bounding rectangle.

\section*{Moying the Finger}

If the image read in is not satisfactory, as is usually the case at first, it is possible to move the finger and read another. An important part of the image analysis invoives moving the finger so that an optimal image is sensed. The offset pressure, for example, is adjusted in this manner. Optimally, most of the touched area activates the mid-range of the sensor, allowing bumps and depressions to be detected easily. This is accomplished by reading in an image, computing the median pressure of all points above the noise threshold, and readjusting the finger pressure appropriately. This is repeated several times until an acceptable offset pressure is achieved.

The finger is also moved to measure the stability (resistance to roll) of an object. To measure the object's stabibity in a given direction, the object is pressed between the finger and the supporting surface by applying a fixed fore on the object nomal to the plane of the surface. The finger is then moved laterally in the desired direction. The supporting surface was a thin layer of soft rubber, to prevent sliding.) The stability of the object is indicated by the amount of force necessary to move the finger.

\section*{The Matcher}

During the kypothesize step, the program must determine which of the objects it knows best matches the known data. For a small set of possible objects,
such as the fasteners, it is not really important that this be done well. For a large set of possible objects, the quakity of the matcher may be a determining factor in the speed of recognition. When the hypothesis is chosen by selection of the possibility that best matches the information given, usually the choice that has the largest number of features in common with the known facts is the best choice. In a system with a large number of parameters, other factors may also be taken into consideration. For one thing, some features may be more important than others, either in general or for that particular possibility. Also, the features themselves may not exactly match - a bump may be too large, a shape distorted. In cases such as this, we wish to give the possibility only partial credif for a feature match.

The most obvious way to implement such a matcher would be to use a numerical scoring system, with the weighting of factors for feature importance and partial matches. This approach was avoided for the following two reasons. First, there would have to be a degree of arbitrariness in assigning the numbers: Is a circle a \(50 \%\) match to a bexagon? Is shape 2.5 times as important as texture, or only twice as important? It is unwise to trust the sums and products of numbers if the numbers themselves are chosen arbitrarily. The second objection is more of a philosophical one -... converting a complex set of symbolic structures into a single number causes us to throw away too much information too quickly. Of course, this information must eventually be losithe matcher must terminate by selecting a single item, But the pruning can be, and is, controlled in a more reasoned manner.

The implemented matcher takes two possibilities at a time and compares them on a feature-by-fcature basis. If, for a particular feature, both items match the image to about the same degree, the information is ignored. If one of the items is clearly a better match, the feature is counted in favor of the appropriate item. This procedure is repeated for each feaure and then the features themselves are compared in a simibar manner. A feature counted toward one item will be cancelled by a feature counted toward another, if they are of approximate importance.
In a large artificial intelligence system, the best match could be computed in parallel. Parallel
marker-propagation schemes, such as the one proposed by Fahman (1979), would do such a task well. One important assumption, even for the parallel case, is that the binary companison operator is transitive. Without this constraint, it would be necessary to compare each possible pair of items, a task that grows as the square of the number of items.

The transitivity of the predicate described above can be easily demonstrated, given the transitivity of individual feature comparisons. Assume that there exist three items, A, B, and C, such that A \(>B\) and \(\mathrm{B}>\mathrm{C}\). Let \(f(x, y)\) be the set of features counted in favor of \(x\) when compared with \(y\). Since the individual feature comparisons are transitive,
\[
f(A, C)=(f(A, B) \cup f(B, C)
\]
and
\[
f(\mathrm{C}, \mathrm{~A})=(f(\mathrm{C}, \mathrm{~B}) \cup f(\mathrm{~B}, \mathrm{~A}))
\]

If \(\geqslant\) is the feature set comparison predicate (the second stage of the algorithm above), then \(A>B\) implies \(f(A, B) \geqslant f(B, A)\). Also, for any sets \(a, b, c\) and \(d\) such that \(a \geqslant b\) and \(c \geqslant d\), it must be that \((a \cup c) \geqslant(b \cup d)\), because features that cancel in the individual sets will also cancel in the union. The assumptions \(A>B\) and \(\xi>C\) imply \(f(A, B) \Rightarrow\) \(f(B, A)\) and \(f(B, C) \Rightarrow f(C, B)\) and, by the union rule, \((f(A, B) \cup f(B, C))>(f(C, B) \cup f(B, A))\). This may be rewriten as \(f(A, C) \geqslant f(C, A)\), whick is the criterion for \(A>C\). Therefore, the matching predicate is transitive.
This matcher is really overkill for a possibility set of six objects with three parameters each, but it may be necessary if the program is to be extended to a large range of objects.

\section*{Frgeosed efforts}

A program that distinguishes among six objects on the basis of three parameters is not too impressive. Even if it only got one bit from each parameter, it should have correctly recognized eight objects. In the future, tactile secognition programs will have much more complex and more precise represen-
tations of tactile images. Three improvenemts cam help bring this about.

The first is texture recognition. The resolution of the tactile array sensor, while high, is not not nearly sufficient for measuring textural differences between, say, paper and glass. Texture sensing requires measuring bulk effects of many tiny surface features. It is most easily accomplished if something is slid over the surface and a pattern of vibrations is detected. This can be likened to sliding a phonograph needle over a record. Sensors of the future may use embedded piezoelectric devices, or it may be possible to use the ACS directly as sort of a carbon microphone. However the information is derived, it must be processed into a useful characterization of the texure of the surface. Of interest is the intensity and periodicity of the signal. These features may be seen directly in the frequency domain. Texture processing may bear more similarity to the anakysis of sounds than to the analysis of visual images.
Another improvement might involve thermal recognition: the difference between paper and glass is that glass feels cold. This is not actually because glass is lower in temperature, but because it is a better conductor of beat and so it is more cquickly able to carry away the heat generated by the body. We have constructed a small thermal conductivity sensor that works on this primple fo the sensor, a resistive heating element is sandwiched between two temperature-sensitive current sources. Any difference in the temperature of the two sensors is indicated by an easy-to-measure difference in the currents. The sensor is designed to be mounted on the finger in such a way that one temperature sensor may contact the device being tested. As the heat is drawn from the object into the sensor, a difference in temperatures will develop. The primary disadvantage of this first prototype is that it is large ( \(0.1 \times 0.3 \times 0.2 \mathrm{in}\).), resulting in a relatively high thermal mass. This limits both the response time and the minimum size of the object that may be usefully tested.

The third area that shows immediate potential for further research is the coordination of mutiple tactile images into a global picture. This is probably the most useful next step in tactile processing. This problem was deliberately avoided in the program
described through the choice of small objects that could be read in a single impression. Such size limitations are probably uncealistic outside the laboratory enviromment. The first real-world applications of tactile sensing will not be in recognizing objects that fit on the tip of the finger, but rather in orienting known objects grasped with an entire hand. This will require coordinating images from multiple sensors.

We are enthusiastic about the future prospects of automated tactile sensing. What has been described bere-- the sensor, the finger, and the progan---is only an initial approach.

\section*{Acknowledgnents}

I would like to thank the following people for their help, ideas, and enthusiasm: Mike Brady, Ton Callahan, Fred Drenckhahn, Richard Greenblatt, John Purbrick, Gerald Sussman, John Hollerbach, Michael Dertouzos, Margaret Minsky, Laurel Simmons, Patrick Winston, and, most of all, Marvin Minsky.

\section*{References}

Broit, M. 1979 (March). The utilization of an "artificial skin" sensor for the identification of solid objects. Proc. Oth Int. Symp. Indiustral Robotics.

Harmon, L. D. 1982. Automated tactile sensing, Int. \(J\). Robotics Res. 12):00-00.
Hhlis, W. D. 19B1 (April) Active touch sensing. A. I. Memo 629, Massachasetts Institute of Technology Artificial Intelligence Laboratory.
Fablman, S. 1979 . NETL: A system for representing and wing real-word hnowledge. Cambridge, Mass.: Mar Press.
Larcombe. M. H. E. 1976 (March). Tactile sensots sonar and parallax sensors for robot applications. Paper delivered at 3rd Conf. Industral Robot Tech.
Okada, T. 1979. Object handing system for manual industry. IEEE Trans. Syst., Man, Cybern. 9(2).
Okada, \(\Gamma\), and Tsuchiya, 5.1977 (Oct.). On a versatile fager system. Proc. Thh Int. Svmp. Industrial Robots.
Purbrick, 3. A. (1981). A force transducer employing conductive silicone rubber. Paper delivered at Ist Robot Vision and Sensors Corf.
Stopiljkovic, 2 ., and Chot, J., 1977. Integrated behavior of artificial skin. JEEE Trans. Biomed. Engineemig 24(4):396-399.
Storace, A., and Wolf, B. 1979. Functional analysis of the role of foger tendons. \(J\). Biomechanics 12.
Weinreb, D.. and Moon, D. 1979. Lisp Machine manual. Cambridge. Mass.: Massachusetts Institute of Technology Artificial Inteligence Laboratory.

\title{

}

\author{
(x, Los, w. Guston, K.C. Smbh \\ Computar Systerns Pesearch mstite \\ Universty of Toronto \\ Toronto, Ontarlo \\ Cashada, R8SS TA4
}
(64) 978 -8320

\begin{abstract}
-
A prototype toudt-sensthe tabiet is presented. The sabiats main innovation is that in is capasion of sensing more than one polm of contact at a time. In addition to being abls to provilds pexstion coordinates, the tablet also gives masurg of degrea of contace,

 points. The points are scanned using y veusive area sublwision algovimm. in ordar to minimizs the rearaition kast due to the
 dsyeloped. Finally, the pascer briefly disctases how muthtiouch sensing, interpolation. and detgree of cambet sonsing cas bombinerd to sxpand our yocabueay in huran-compler freraction.
\end{abstract}

\section*{}

Fapid adyancement of computer technolocy has opsenad a varisty of ceve applizetions. Hew applications and users moan domamale for new moxess of lnteraction. One consequenco of this is a growing appreciation of the importance of using apprapilate input technotogies (Buxtor, PB82). Foshtoning dbvicss are wen to be sssential to grachics applicationa, image transdusers are requires for pattem reccughtion in medical diagrosis, touen scroens are usefud for the edtcation of young children, and the OWERTY keyboard ramains the ustal standars for text processing. Fhowever, the rangs of nout dovices avaitable is stlll quita limited, as is our understanding of how to uss them in the most bifective mannes.

The intent of the researci presembal in this puysy is to incresass thes veebudary that can be ulilized in human-computer inderection. Эus spproach has bean to develop a new inpu inctinology that eniarges the domain of human physceal gestures that cam mas caturess for comrol purcosss. In what foriows, we will sescribe the lechnolxgy, what it suoved from, and some aspects of how 14 can be usob.

\section*{2. DY\&Ryisi}

The transobseer that we have developed is a bouch-senathe lablet: that is, z fist burface that can sense where th is being touchod by the oparmor's finger. This in lisent is not new. Siberas such cowcess are commercally avaliabi from number of manuacturars


Yermission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright mokice and tha title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
bines two additional featuras. First, it can sensse the degree of cor tact in a coninuous manner. Second, it can senss the ameunt and becation of a number of simitaneous polms of comact. These two
 respect to the sypes of ineraction that wo can gupport. Soms of these sye dscussed besow, but see Buaton, Hin, and Fowiey (9985)
 which we present is a continuation of work done in our lab we Sasaki al (rask) and fetha ( 19 x ) ).
In the presemaztion which folkw, we focus mainly on Essuss refating to the transducerts implomentation. Two important centributionse discussed ars ous mothoo of scaning the tablem surface, and ois method of makniaining high resolution tesphe the surtace lwing partitioned into a discreste grid. Additonad technical detalis can bees found in Lee (1984).

\section*{3. WケY max}

Tousen senting has a number of impormant characteristics. There is no physical stytus or puck to geat lost, brokem, or wiorate axt of posst ton. Touch lebleis can be molded go as to mak them sasy to clean (therefore making them useiti in cian environments life hos
 mechankeal intermediary vetween hand and tabiet, thers is nothing to prevent muhtouch sensing. Tomplates can placed over the
 directy, these regions can los manually sensed, thereby sumbing the tralned user so effectively "touch type on the tablet.
 quite limherd. One can meve a tracking symboh arownd the screen. for example, but when the finger is over a high bution, thare is nothing ecumalem to the butom on a mouss bo push in ordar io make a seetection. Yess, we coubs withe firger ofll the lablest, but that wouk be more like pulling (rather than pushtng) the button. And what it we wamed to drag an hem baing pointer ai, of to indicate that we
 the tablet, just when wo want it in comtact with it the most. There are ways around this probigm, but they are indipen. Bi, however. the kablat has pressure sensing, wo can push a virual bution by giving an extra th of pressure to signal a change in stata.
Pressis has other actrantages. Ons exampis is to control the theknsss in a paint program. Bis why as wew wan mutipie pomk sensing? A bimple bxample wous ous it we had a tamplate placed over the tablet which dellmited thres yegions of 9 cm ty 2 cm
 ier assochated with each region. If we wanters so girvuianeousty adjust all thre parameters, then we would have to able to sense sill thes regrons. An even casias oxamotis using the tablat to emusats a plame keybuard that can play poyphonic music.

\section*{}

A brief description of the harsware of the fast mentipie-touch mansitive imput device (Fhts the hardwars is based on the requrements of the last scaming aborithm and on tradaotis besweon softwars and hardware. shany sensors have been exammed for our particular applieation, howevor

 reguramems of a FMTSHD. The harchare oaslcally conslats of a sensor matix board, row and wobun selection ragisters. ADD somverting croust and a comirollig Cpy.

The design of the sensor matrix bis ossed on the technique of capachance maxuremem between s finger the and a matal piase. To
 selection. Pow selection reglistars solsct ons or more rows by setting the courrespending bits to a high state in order to chargs up the sensors whis the colum selection registers select arm or more colunns by turning on corresponding analag swhehes to dischargs the sinsors through timing resistors. The intarsecting region of the selected rows and the wiseted conumn fepresents the selactert sensors as group. AD comvering circults measis the discharging time imerval ot the selected sensors. Antversty of
 face of the senscy board consists of mumber of bman metab-cosied reciangutar-shaperd areas serving as annsor plate capactiors. The besign of the metal plate area of a unt sansor wands on the
 coyered by a fliges tlp, wnd on the resolution that can be implemented.


Fig. 1 A model of a selected sensor in the samsor matrix.
in ordar to select sensor by pow and column acoss, two diades are used with each sensor. One diode, connected to the row line, lo used to charge up the sensors in the row. it is rataread to as the Charging Oloda (CD) as shown in Figure 1. The CD also semys to block the charge foswing back to the row line when the row line yottang is dropped to zero. Thas ofhar diode calleas the Bischarging
 seliscted ross sensars io a virtual ground. Alsas the 00 wkreks charge flow from the sensors in the selected ross to the sensors in the unselectes rows duing the discherging pericd. Yho solection of rows, by the row selection procentire, causess the sensors to two charged. The sensors in the column are than discharged through
 switchas.

The sharges atored in the seleced row(s) fow down threngh the salecter wwithss io the virtuas grouns of fass opera3ionat amplifisr. All the cischarging currems are correspondingly sdosas to produce a signal from which the diseharging time of all the sastareted agnsors is found by comparison wht a threshord votage.
Pressure sensittvity is incorgorater by two measures: First there is the affect, hers minor, of comprassion of the ovartayng inskator. Second there is the effect of intrinste spresding of the cormpessibte mager the as presswe is incrasex.

The software in the controlling CPU unhzes communication with the host computer to acmmodats the intersozation sweme. The
 sensor capachanes change dus to a toukh. But, of coures, the capactanee of all the circultry athached to the coitum lims during the zisctarging period is mush karger than the sensor saycilarxe. Thus befors scaming the tablsi for a touch, it is scanned com pleibly in all possibis sosolution modes whon noi touscred. The
 identhied by the differences betwean the referenes vailuse and the values measured during use.
The sapaeliance change corresponding to the teuch by more than one finger (or toy the whole hand) is very large. Thus the number of
 capachince. Hewever it is annecossayy wither to have swifiom bits to measurs the ontire capactanco inchooing the surroundimg capackances, of to store the corresponding "complate" countr"
 than the number of bits requred to coumt the value of change in the capacilancs rather then the complote value in order to measure the differsnces of capschanows dus to souch. Thus only an sit
 7 bit capachtance change regardiess of the degro of ovarilow in the counter.

A facility is aise provised for kenthying temprates applied to the suriace of the tablet.

\section*{}

One idea of some significance thal can be Introduced is to avold scanning of all the pheals in the tablat which comtan no intomation. For example, seanning all 2048 points of a tablet having a pescilu tion eat by 32 for fower than 0 points is really gutte a ridiculous ddea. In fact, it the number of points to to searched is comparably smath, then an mprovad aigorithm, hara cadim recurshe axak sulivision, can used. A particular implementation example is cescribsed as lollow 3.
Consider a tabier with rosolution 8 by \& so searenex los a touch polnt as shown in Figure 2. Firsi, chack the iskiet for touch as a whoie region ax shown by the area ABCO in the figure. It torch is
 EF and check each of the two regions ABEF and EFCD ios touchernisss. Select the lounhed region, region sFCD in this exses.
 GH. Continus ind process on the toushed pegion untl no futher dwision is possible, that is, isill a unt ensor, destinated as the ragion PKMO in Figise i, is resched. The figurs also shows the sequarce of subtivision in the rearsive sutrilyighon scheme.

( \(n\) )-Seguence of subuiviaion in blaary operations


Using this algorithm, a search for one poim on a tablet having a esolution 84 by 38, Pequres 22 scanning tmass, that 3
\[
2^{*}\{\log \operatorname{sub} 2\}(64 * 32)=23
\]
 scanning begins at the "top of the tree" fhat is, whe a regton in

 woud take to detect ons touch directy finst is, 7 anf pixels are scanned one by one sequenlally) is
\[
N=\{\{\theta A+32\} \text { over } 22\}=\{86
\]

This shows immediatefy that the recreste autilyision geteme is mxeh sugerior to sequential scanning if the mumber of points to be scanned is fersar than tas.

\section*{\%. सु}

It may seem that the resolution of the hardware is too how for use in graphics applications. Plowayer touch 3ndensity and mbli-lowety sent sitivity ean tob used to enhance resolution. Thisg passible beciauss the cemer of a teveh can be most accuratey ostimated by an intarpolation utilizing the valuss of tha zodiscom zinnsor hntenahies.
Direct interpoiation schomes for a sesw caseas has coen implemented. One of merest is to interpolate an array of 3 by 3 sensors using a tweches point in the conter. Another is io interpolate all pornis on the tabiet. The fater ones obvkwety provides the highest pesolution but as a resin it simpty emulates a singio tover tablet whin yery high resclulion.

\section*{7. MEAFORKABEE}

\section*{7.3}

An ideal sensor matrix for a FMTSle woxd be one that has untiorm and small reference valus over a grouping level, a large variation of intensty dus to a touch, and fas masurement time. Tha senscr matris of the prototype, however, has a relativety wides sangs of reference valuss. However these values do not change very much
 number of sensors in a grows in the costrme direction freressas the reference yalus by factor of abou 15. Trus corresponds weis to

 fon increas the referencs yblus in gemaral, sven it the number as the sensors is cousled in a group. The reimenes value sanges
 of 64 by 32 sensors consldered as a group).

 \& louch to be betected. The threathold used ranges from 2 to 7 counts dapending on grous sizs. Using thes threshold yalless the CPU coss not repont imtotches poimis wrongy aver hiervals of at
 The recestue sudulision schome uses a ditherant threshotda, con seousenty it is wsy usikely to repert a wrong poim whereas the thens scaming mode ushoy onty a singio threshoblis likely to bo more mexntlive.

The intensity of single towch for single sensor foup varkas over the labist but waxtiy ranges abxus the threshold value by as much sa 15. Foce angie 64 by 32 gensco group, the intensty varies from perscon to pespon bu it ranges from the threshotd to then. This maximen is obtainest when paim cather than a finger toxcitess the sablet. Arother imeresting fastusg is inat the response time terorns fastor as the number of sensors in a grows becomes
 sibu to denect of s hand marsiy placed in the vicinity of the tablet.

\section*{}

One possible and immodiate indorpolation schems is to mbergotiato a "toughed" point with ail adjacem values which may not large enough to reported as touched. A local array of 3 by 3 points can bou used tor the interpolstion. Some examplas drawn on a laser printer (eonsequemly having no imensity sasie) wo shown in Figure 3. These pletures aps producad without leedtack, that is, drasm without the opernior looking at the outpu screen. This dows rot allow the operator to compensate, thast is, is select points whers data ares sparse in comparison wht the imended feyse, but rather lakes direct hout from the heation of the figurs oram on the hmath dovito. The firs1 plotura (a) is drawn by moying simge in a gtraight line (gurued by a ruer) for varous ungiss and the second one (b) is drawn by moving a finger in a line gudde by a circis drawn on a lemplate. Thase testis show that frtarpolation actualy increases the spatial resolution as well as the lecratubilly of a flne poln on a screan.



Sives the spatial resolution in ing local intarpoiation schame is imp
 of 3 by 3 sensors, other schems was consikerred. fin the scheme, all the poinis from a complete scan of a tublet are iniorpolated
 process simply smulates projacive devies and accordimg reports onty single point, which is interpolated from an the points on the tablef. Howevar whit this schmme, there are a groat masmy weys of pointing to a spactice bocition on a display screon, a feature whth some intriguling application possibilitiss.
7.3 \%88\%

The rasponse time delay is the fims delay from the bevinuting of a touch to an output recelverd alther by bocit temmal of by an output deyice atseched to tho host comovier. For matich touches, this delay will harease with the number of ievehes. The profotype used whit a 5900 baud-rate torminal to masaure tims delays. Actual responss limes wera meassed geyoral timss min syerase for various cases and are tabuluad in Yase i.
\begin{tabular}{|c|c|c|c|}
\hline Case & best & typical & worst \\
\hline \begin{tabular}{c} 
(a) pts/sec \\
msec \(/ \mathrm{pt}\)
\end{tabular} & 17.6 & 15.8 & 12.6 \\
\hline (b) pts/sec & 19.2 & 17.2 & 16.0 \\
\(\mathrm{msec} / \mathrm{pt}\) & 52.1 & 59.1 & 62.5 \\
\hline (c) pts/sec & 24.0 & 22.0 & 10.6 \\
\(\mathrm{msec} / \mathrm{pt}\) & 41.6 & 45.5 & 53.2 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \text { ons sensor houched corthumusiy }
\end{aligned}
\]

\section*{8. ©}

A prototype of a fast-scanning mutiple-tocch-sensity inpus tablet having booh the adaprabllity and flaxibility for s broad range of applcations has twen designed and mplamontad. Capacilances mass wement of indyidual sensor(s) which can inviculy adgessed using two diodes par sensor, maxes if possiblo to sense both the positions and intensities of wns or mors simatansom koxches without amblguly. The sensor matity is controlled by Universkly of Foronto 8809 bacard whoss serlal pors is comseted to ons of the yo ports at a host computer. Sortware that wilizos the recustog subdivision ahorithm for tast bcannimg an arry of ca by 32 sensors on the tablet, and that communicates whithes host computar, has san Implamsned snd sestad.

\section*{}
 Natural Sciencos and Enginsering Bespark counch of Cansda. This suppors is graiefuly acknowledgend.

\section*{\% \%equx wese}
 a kieans of Achieving Virius! frou povicos. Camputir \$ys ioms Research Insthut, Unlveraty of Tronto.

Euxton, W. (t982), bexicak whis Pregmatic Consideratong of hout Sifuctures, Computer Graphics, \%7 (7), 31-37.
 Truch-Sensitive Trblet mput. Camgstim \$yshms Ressarch Insthuse, University of Toromo.



Hurst G. (6979). Electrographic Senss3 for Desarmining Manas
 Elographica, incorporatod.
 skeran Synthetic Rubber Co, Naw Product Desvelopment Departmem, JSR Bulding, \(2-71-24\) Thumli, Chtes-Ku, Tokyo K04,


Lee, S. (1984), A Fsst Rufiperi-Touch-Sensitive Input Sevice, M.A.Sc. Thesis, Dexarmem of Ehoctical Engharfig Univesslys of Toronto.
 Department of Electrcat Engineering. Univarsty of Toronto.

Sasaki, L. Fodurkow, G., Buxton, W., Retharath, 6., Smith, K.C.
 Fifth internations! Contrence on Compurtar Ahusie, North Texas Stats Univeraity, Demon, Texas, Novemtas, Msis.

TASA (980), Model: \(x-y\) 3c00 mind \(x-y\) mbrollat, \(\$\) Data Shemit Touch Acthated Swich Arrsys buc. 1270


TSD (Gge), Towch Scren Dightiza Data Sheat, TSD Disphay Produets ine;, "x Orilis Grtve, Elohemis, \&y 177 to.

\section*{}

Big Briar, Inc.
Lelcostar, NC
28748
 compuners

Chalk Board hes.
3772 M:ossambuis ful.
Atianta, GA 39340
 ing

Elographics, ine.
NGS Oak ndye Tumpiks
Oak Midee, Temesser
37830
 compuats

Koak Technologles
3300 Patrick \(\$\) kany Orlve
Santa Clara, Callornia
\$5050

Spiras System fistruments, he.
4853 Cordell Avenue, Suie A-w
Eethesis, Maryinnd
203 cm
\(C H\{\quad 85\) PROCEEDKNGS

TASA: A by 4 lnch tosch tabien (relatlya ransing onty)
Youch Activated Swith Arrays me.
1270 Lawrance Sin. Road, Side G
Gumyyales, Calfornis
98089

\title{
A tonch sensisive X. Y position eneoder for computer imput
}

\author{
MA MAMBX
}



\section*{MWKKOUOMON}

























 diseremee.















 sis bestawe:

\section*{}


 sese
 maxemok by bre mes.
2. The mest matese rabot to as dow so monble

 sybu, buchbow b buman buges.






thon of a subset from a seb of items shown on the diso play surface.

Assuming that the first two objectives are met, the third allows one to select items or positions on the sereen merely by pointing at them with a finger. Because pointing with a finger is man's most naturad method of indicating selection, \& touch activated devies ereates a minimum of distraction for the user. In fact, an ideal smplementation of the thre objeetives listed above would result in an input device that was apparent to the user in function rather then in substance.
Admittedly, the human finger is a rather coarse styhus but the resolution attanable is suffienent for many types of mamal information eatry. The words or phrases displayed for selection in an information retrieval system could be in a format suitable for this type of input techrique. If a conventional keyboard is used in comunction with the display terminal, a wouch activated display overlay reduces the time spent in going from leeyboard to display by eliminating the intermediate step of picking up a stylus. In addition, a portion of the display screen could be used as a touch sensitive keyboard with dynamio omputer conkol of the associated key functions. The apparent simplicity, both physically and functionally, of this type of input devise is a significant advantage if the user is a young child communicating with a computerassisted instruction systern.
For information entry requiring more resolution than one can obtain with a finger, a suitable passive stylus coukd resemble an ordinary peneli with its convenient size, light weight, and freedom of movement,

One touch sensitive device that has been developed for use with a CRT consists of a number of wires terminating at the tront surface of the display tube. Each wire forms the arm of an AC bridge which is unbalanced by body capacitance. A second device, developed by Control Data Corporation, has a series of oranslueent, towh-activated strips in front of a CRT display.
 maging lechmique with elastie surface wayex. Eohos


 gation delay of nitmanonic elastic waves has been used as the basis for graphic input deviees for a computer. Mowever, these devices do not employ echo ranging and consist basically of fixed sources or radiators with the sensor in a movable stylus. One of these, developed by Woo ab TBM, \({ }^{4}\) also uses suriace waves on a glass
phate. The lincoln Wand provides a three dinensions input capability by using ultrasonic waves propagating in air.





 rethets wome of the wase gasery kaki to the roure. The distane frome the smbintoy/wmers to be tareot
 sud the nesention of the eche puke.

\section*{Surface waw characteristics}

An elastic surface wave can be represented mather matically as a combination of inhonogeneous longitudinal and transyerse wayes. This is exemplified by the partiole displacements for a surface wave. The particles describe elliptical orbits with the major axis pergendicular to the surface and the minor axis parallel to the direction of propagation, corresponding to the transverse and longitudinal components respectively.
The particle displacements decrease exponentially with depth into the makerial, the depth decay factor being a function of the wavelength and the material. For glass, the wave energy at a depth of oue wavelength is only about three percent of its value at the surface. A practical imapliontion of this resuld is that, to a close approximation, a plate several wavelengths thick appears as the solid halfspace necessary for true surface wave propagainon.
Waves on the free surface of a solid half-space, which are also known as Raybigh waves, are not dispersive and their phase velocity depends only on the properties of the material on which they are propagating. For plate glass the velocity is \(10,400 \mathrm{ft} / \mathrm{sec}\).
The amplitude of all elastio waves decreases with distance from the source through three mechanisms-beam divergence, soattering, and absorption. Because a surface wave is essentially a two-dimensional phenomenon, the decrease in amplitude due to beam divergence is proportional to \(1 / \sqrt{ } \mathrm{r}\), compared to \(1 / \mathrm{r}\) for spatial waves, where \(r\) is the distance from the source. The attemation due to scattering axd absorption is related to that of spatial waves, with the attenuation factor being approximately proportional to frequenoy in the ultrasonic range. The attenuation coeffichent of plate glass measured at 8 MHz is 0.40 nepers/inch.

An interesting property of surface waves is their ability to propagate along curved suriaces. If the ram dius of curvature is large with respect to the wave-






\section*{}



































 8010.4xck.

\section*{}














A mactod fuphomentakow of the whem in Ryus





 Thex : w wises
\[
s_{3}=s=s
\]
 waxis;








excite spatal waves in the prism with an angle of propagation determined by the velocity ratio. When the same tiansducer is used for both sending and receiving. the energy that was internally reflected within the prism during the send interval appears as chatter or roise during the receive interval. Although this excess energy is gradually absorbed by the prism material, its effect can be reduced by modifying the prism shape and coating it with an absorbent material, For the transducers actually construoted, the first two inches of range could not be used bectuase of the clutter.

The piezoelectric transducers are made of a lead zirconate-lead titanate ceranie having a thickness mode electromeohanical coupling coefficient of 0.60 . This material is relatively good for energy transtormation in both directions. The bandwidth and mechanical output power of a piezoelentric transducer are related to the mechanical impedance of the materials to which it is coupled. Aiter some exporimentation with quarter wave impedance matching transformers and various backing riaterials, it was decided to sacrince band-


Figure 2-Paraflel impedance components for sexisw connected armby of four \(1 / 2 \times 1 / 4\) inch transducors
width for sensitivity by using air-backed transducers bonded directly to the prism. The result, was a radiator fractional bandwidth of 20 peroent. The parallel components of the clectricad input impedance for a small test array constructed in this way are shown in Figure 2.

For an 8 MHz pulse modulated signal with a 1,6 MEs bendwidth, the minimum resolvable stylus movernent should be about 0.04 inch. As will be explaned later, this resohution was attained but unasable in the first device constructed.

\section*{Array design}

The method of target location being used requires a line source of waves having wiform amplitude and phase across a ten inch width, To combine separate radiator elements into a linear array with the desired charncteristics, the radiation patern of individual elements must be known. An expression for the directivity characteristios of a prism type of radiator has been derived," and it yields resule similar to the sin \(x / x\) function for spatial radiators. Figure 3 compares values computed for an 8 , HH radiator using this expression with experimentaly measured yalues.

For practical plate dimensions and transducer sizes, the usable surface area lies in the far-feld region of the indiridual elements but in the near-fold region of the overail array. By computing the response for various linear array configurations, a radiator width of \(0.46 a\) inch, and a spacing of 0.365 imoh, were selected.

After the arrays were assembled and tested, the measured radiation pattern was more irrogular than the somputations indicated. This diserepaney was pttributed to the variation is spacing, orientation, and bond characteristics due to assembly tolerances and the variations in transducer sensitivity, The gaps in the pattern were sufficiently large and numerous that it was necessary to add a second set of arrays on the opposite sides of the plate. These are oftet with respert to the first so that the beams from opposite arrays are effectively interleaved. The brays are anergized sequentially to avoid mutnal interference.
The maximum twoway propagation time for a ten inch usable surface and a two inoh buffer zone is about \(200 \mu \mathrm{sec}\). Therefore, even with four separate arrays, the sampling rate can be greater than 1 KKz , which is more than adeguate to follow nommal stylus motion.

\section*{Electronic circwitry}




Figure 3- Birentivity pattern for a surface wave radiator at 8 Mms with \(0.2 \%\) irch widh


Figure A-- Position ewomler block sebematio


 mitexomoreted.
The radiator driver mind the arrays are matched to 50 ohms allowing them to be connected with standard coaxial cable. The diode switoh, with a four-pole double-throw action, permits the four arrays to be multhlexed into a single driver and receiver, and it also isolates the reveiver during the driver pulse. The echo receiver consists of an RF amplifier followed by a demodulador and a threntold detector, The receiver gain is electronically swept during each scan to compensate for the signal attenuation with range. A range gate rejects echoss originating outside of the designated area. Figure 5 shows the demodulator and thereshold detector ontputs for a single sean. The signal at the centeris the echo from a finger touching the glass.
Echo timing is performed by a free running counter. Both up and down comating are required to digutize scans originating at opposite sides of the input surface. The coordinate grid is considered to have \(X\) and \(Y\) axes coincident with the edges of the usable surface, the origin being in the lower left comer. Adjustments on the ronge gates and counting cirexitry allow the size and position of the coordinate grid to be varied slightly to permit registration with the grid of an bss socisted display device.
The contol circuitry allows two modes of operation: a cortinuous mode and a discrete mode. In the con tinnous moke, a Data Ready pulse signals the comput-


Figure 5-Echo receiver response
Vertical: Opper \(0.5 \mathrm{v} / \mathrm{div}\)., Lower \(5.0 \mathrm{v} / \mathrm{div}\). Horimontal: 25 нser/div.














\section*{Dows wormomes}

The omplde dexime is mown in Fexter 8 whe :


 cyabswoz.










 bwes.



























 provememis are nowded sad bow they showle be ime

 sembly whobl mprove the whathor phams nai-














\section*{REmwamyem}



2 K S 3 K. WKEK





\& \(P\) W W
स) \(\$\)











\section*{A Touch-Sensitive Input Device}
L. Sasaki, G. Eedorkow, W. Buxton, C. Retterath and \(K\). C. Smithl

Structured Sound Synthesis Project (SSSP)
Computer Systems Research Group
University of toronto Toronto, Ontario
canada
MSS LA1

\section*{INTRODUCTION}

In computer music systems there is a continuing problem of finding techniques which allow suitable physical gestures to be used to express musical ideas. This is especially true in performance. This situation exists due to a lack of appropiate ingut transducers. Conventional computer input devices (such as slidm ers, joysticks, tablets, and keyboards) are being used to increased advantage (for example, Buxton, Reeves, Fedorkow, Smith, and Baecker, 1980). However, additional research is reguired to design new devices which lend themselves to the articulate expression of musical gestures. The "sequential drum" of gathews (Mathews and Abbott, 1981) is one example of work in this area. The proximity sensors used in performance by Chadabe (1980) and the motion sensors used by Pinzarrone (1977) are two other examples. In the remainder of this paper we discuss yet another input device which has been developed as part of the research of the SSSP. The device is a touchmensitive tablet which is intended to be able to be used as a pointing device, for adjusting performance parameters, and as a percussion-like input device. While the device was designed with music applications in mind, it is far more general in application.

\section*{gUNCTEIONAL OVERVIEW}

The basis of the tablet is a flat surface measuring 30 by 42 com. The surface is capable of sensing the point of contact of a finger with a resolution of 64 (horizontal) by 32 (vertical) evenly spaced units. only one point of contact at a time can be dealt with. The device measures the capacitance at the point of contact and calculates a six-bit digit of proportional magnitude. Since capacitance is determined by the surface area covered at

\footnotetext{
1. Sasaxi is currently with Bell Northern Research. ottawa, Canada. Fedorkow is curcently with Acme widget, sonewhere in New England.
}
the point of contact, this six-bit digit can be thought of as analogous to pressure (based on the observation that the harder you push, the more surface area your finger covers). This \(Z\). value is then transmitted to the host computer, along with the \(x\) and \(Y\) values identifying the position of the point of contact.

\section*{IMPLEMENTATION OVERVIEW}

The overall architecture of the device is shown in figure 1. Here we see that the tablet is made up of four basic modules.


Figure 1. Tablet Block Diagram

The "Touch-Sensitive Matrix" is a printed circuit board etched with a matrix of vertical (64) and horizontal (32) conductive strips. At the edges of this array of strips are multiplexers and capacitance sensors, which are under the control of the microprocessor. Periodically, the microprocessor scans the entire tablet, reading the capacitance of each strip. The values obtained are compared to a set of reference values measured and stored upon start-up. Further processing takes note of strips which show capacitance increased beyond a threshold. Because a finger tip invariably covers several adjacent strips in both the \(X\) and \(Y\) directions, the controlling software then selects the point of highest capactance in the largest group of strips as the point of contact. A point of contact for \(X\) and \(Y\) is computed in this manner. The sum of excess capacitances for all contacted strips surrounding the contact point is scaled to a six bit number and used to indicate the pressure.

As the final step in each scan of the tablet, data is formatted and transmitted to the host, using a standard 9600 baud RS-232 serial link. Because of the amount of processing required, the tablet is scanned only about twenty times per second; this rate
is adequate for tracking hand movements, but it is too slow to be completely satisfactory as an ingut device for a percussive instrument.

The current version has been implemented using 49 integrated cirm custs. Included in this is a Motorola M6800 microprocessor which was used to implement the controllerminterface module this was realized using 1968 bytes of ROM.

\section*{EXAMPLES OF USE}

To date, the tablet has been used by two programs. The first is a test program to demonstrate its sensing potential. It simply maps the three coordinates transmitted by the tablet into paramem ters of an 5 m sound being generated by the sssp synthesizer (Bux tong Fogels, Fedorkow \& Sasaki Smich, 1978). pressure determ mines volume (no contact resules in silence), vertical position determines pitch, and horizontal position controls timbre (by detarmining the index of modulation of che EM instrument). The mapping is totally arbitrary. What is important is that the devm ice can reliably sense pressure and position of single points of contact, as well as track these parameters as the hand slides across the surtace. In this example se have used the tablet as a position sensing device, using the absolute values of the coordim nates for control purposes.
our second software effort was to integrate the tablet into the conduct program (Buxton et al, 1980), which is the main performance system of the sssp. Here the tablet can be used in two ways. First, it can be used as a triggering device. Thus, striking the tablet can be usad to initiate events, whether they be single notes or scores. As such, the beginnings of a percussion-like interface is provided. The second use of the touchotablet is as an alternative to sllaers or the mouse for adjusting performance parameters through the control of groups. In this case the tablet can be used as a motion sensitive device, where hand motion in the horizontal and vertical domains can be independently used to increment or decrement the parameters associated with a particular group. Alternatively, the magnitude of the change of parameter values can be made proportional to the magnitude of the distance of the point of contact from the centre of the tablet. Again, the control is two dimensional, working in both the hotizontal and vertical domains. Both methods of group control "delta modulate" the parameters associated with the groups in question. The two techniques have different characm teristics, however. The first emulates the function of a mouse* and a tracker-ball. The second lends itself well to combination with the triggering ability of the device. Used in combination, the tablet can be used to initiate an event, and have the properties of that event (such as duxation, loudness, pitchg spectral content, etc.) controlled by where the device was hit to cause the tigger, In so doing, the full potential of the device as a
percussion instrument is greatly augmented.

\section*{CONCLUSIONS}

The tablet described has clear limitations. First, the positional resolution is low, and would need to be increased for it to reach its potential as a general purpose device. It is not yet good enough, for example, to be used as a drawing device where pressure controls line thickness. Basing the design on capacitance sensing is one of the factors in this limited resolution. This also results in some variability in the pressure sensitivity. Clearly other technologies such as measuring conductance or optical techniques need to be investigated. Timing is another area where the resolution suffers. While percussion ike gestures can be used effectively to trigger events, a percussionist would be frustrated by the slight lag in response and the inter-event time resolution. Such devices in the future must be designed so that the scanning can be carried out with about 5 ms of resolution. Transmission from the transducer through to the synthesis device must be traversed in about 5 ms . Finally, the most severe limitation is the device's inability to sense and track more than one point of contact at a time. A "polyphonic" version of such a tablet, one that can independently sense position and pressure for several simultaneous points of contact, would definately be welcome. However, in spite of these limitations, the tablet functions well in its present application and bodes well for the future.

\section*{ACKNOWLEDGEMENTS}

The research of the SSSP has been funded by the Social Sciences and Humanities Research Council of Canada. Additional funding has also been forthcoming from the National Sciences and Engineering Research Council of Canada. This support, plus the continued physical support from the Computer Systems Research Group of the University of Toronto, is gratefully acknowledged.

\section*{REFERENCES}

Buxton, W., Fogels, E., Fedorkow, G., Sasaki, L. \& Smith, K. C. (1978). An Introduction to the SSSP Digital Synthesizer. Computer Music Journal 2.4: 28-38.

Buxton, W., Reeves, W., Fedorkow, G., Smith, K. C. \& Baecker, R. (1980). A Microcomputer-based Conducting System. Computer Music Journal 4.1: 8-2l.

Chadabe, J. (1980). "Solo": A Specific Example of Realtime Performance. In Battier, M. \& Truax, B. (1980). UNESCO

Computer Music keport. Ottawa Canadian Commission Eor Unesco, pp. \(87-94\).

Mathews, M. V. \& Abbott, C. (1980). The Sequential Drum. Comm gutar Music Jouxnal 4.4. 45 - 59.

Pinarrone, \(J\). (1977). Interactive Womanomachine Intaraction or bive Computer music performed by Darse. Cxeative computing 3.2: 66.

\title{
AN EMPIRICAL COMPARISON OF PIE vs. LINEAR MENUS
}

\author{
Jack Callahan, Don Hopkins, Mark Weiser \({ }^{\dagger}\) and Ben Shneiderman \\ Computer Science Department \\ University of Maryland \\ College Park, Maryland 20742
}

\begin{abstract}
Menus are largely formatted in a linear fashion listing items from the top to bottom of the screen or window. Pull down menus are a common example of this format. Bitmapped computer displays, however, allow greater freedom in the placement, font, and general presentation of menus. A pie menu is a format where the items are placed along the circumference of a circle at equal radial distances from the center. Pie menus gain over traditional linear menus by reducing target seek time, lowering error rates by fixing the distance factor and increasing the target size in Fitts's Law, minimizing the drift distance after target selection, and are, in general, subjectively equivalent to the linear style.
\end{abstract}

KEYWORDS: menus, user interface, empirical studies, directional selection

\section*{INTRODUCTION}

In presenting a list of choices to the user, most computer system designers have been limited, largely by the available hardware and software, to a linear format. The items are listed from top to bottom, sometimes with an index number for each to the item. Occasionally, the lists are multi-columned, have multiple items per line, or are even hierarchical (i.e. indented sub-choices), but for the most part lie in a strictly one dimensional structure. Many of these menus are static on the display screen or activated from mouse

Supported in part by the Xerox Corporation University Grants Program, NSF grant \#DCR-8219507, and Office of Naval Research grant \#N00014-87-K-0307.
\(\dagger\) Computer Science Laboratory, Xerox PARC, Palo Alto, Calif. 94303.

\footnotetext{
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
}


Figure 1: A typical linear menu


Figure 2: A crude pie menu
actions in two formats: pull-down (menu appears at a fixed label on screen when mouse directed) or pop-up (menu appears anywhere within a fixed area, occasionally the whole screen) [11]. Some systems have used the two dimensional nature of the computer display to the advantage of certain menu applications. Many flight simulation programs, for example, lay out directional headings in a typical compass format.

Item placement in menus has been an important research topic for many years. Menu organization is typically divided into three types [4]: alpha/numeric, categorical (functional), and random ordering. It is generally agreed that the performance of subjects (i.e. time to seek a target) with different placement styles converges with practice [2,10]. Further studies [9] revealed that a functional placement of items is supe-
rior when the task domain is unambiguous to the user whereas an alphabetic organization can be useful in uncertain task descriptions, All of these studies have concentrated on the linear display format.

Mas defaulting to a linear format (Figure 1) made some menus easier to use? Harder? By changing the menu format, can users find the item they seek faster? Is a particular menu format faster than oher formats even with practice? What type of formats should be tested?

These are important questions for the designers of many systems. Software hbraries of menu display routines are widely used as a default by programmers of many window systens and applications. Would it be worthwhile to present items in variable formats or perhaps in another fixed general format he the compass?

A pie menu [7] is a system facility for pop-up menus built into MIT's \(X\) windows [5] window management system, and Sun Microsystem's NeWS window system [ 6 ] and SunView window system. The pie menu interface supplies a standard library of functions that can be used by programmers to format and display menus in a circular format. The system is written in C and Forth and currently runs on a Sun Microsystems workstation. Items in the menu are placed at


Figure 3: Pie menu activation region
equal radial distances along the circumference of a cirde (Figure 2). The starting cursor position is at the center of the menu as opposed to being at the menu title or first item as in traditional pull-down menus. The cursor is under the control of a three button optical mouse on a fixed size moveable pad.

Imaginative menus formaks are an inevitable future with the latest advances in window management systems. Window irnaging systems using technology from laser printing protocol standards such as PostScript [1] and Interpress [12] will make it possible to display a large variety of non-rectangular shaped windows effectively on a bitmapped display. There are some obvious advantages to this organization for particular applica-
tions: compass directions, time, angular degrees, and diametrically opposed or orthogonal function names are some groupings of items that seem to fit well into the mold of the pre menu design. Alternatively, items with a sequeatial nature may not benefit and may in fact suffer from such a format. In addition, pie menus consume greater screen area and become polynomially larger than hnear menus is both height and width with increased item size and number of items.

Distance to and size of the target are important factors that give pie menus the advantage over traditional linear menus. Even with linear menu initial cursor phacement schemes where the cursor may initially be in the middle or at the last item selected, there remain target items at relatively great distances from the cursor location. Pie menus enjoy a two fold advantage because of their unique design: items are placed at equal radial distances from the center of the menu and the user need only move the cursor by a small amount in some direction for the system to recognize the intended selection. The advantages of decreased distance and increased target size can be seen as an effect on positioning time as parameters to Fitts's Law [3].

The distance to an item in any menu style can be defined as the minmum distance needed to highight the itern as selected. In both menu styles, this is defined by a region rather than a point. This region is typically of greater area than the actual target (Figure 3). Once the cursor has entered the region, the item is highlighted as feedback to the user.
\begin{tabular}{|l|l|l|}
\hline Pie & Linear & Onclassifhed \\
\hline North & First & Center \\
\hline NE & Second & Bold \\
\hline East & Third & Halic \\
\hline SE & Fourth & Font \\
\hline South & Fifth & Move \\
\hline SW & Sixth & Copy \\
\hline West & Seventh & Find \\
\hline NW & Eighth & Undo \\
\hline
\end{tabular}

Table 1: Task groupings

\section*{EXPERIMENT}

\section*{fntroduction and sypothesis}

This paper describes a controlled experiment to zest two hypotheses: that pie menus decrease the seek time and exror rates for menu items and that ple menus are especially useful in menu applications suited for a circular format, diametrically opposed item sets (e.g. open/close), directions (e.g. up/down) or even linear sets of items and conversely linear memus are usefulfor sets of linear items (e.g. one, two, three,etc.).

The experiment is a \(2 \times 3\) randomized block design. Each cell is an element of the cross product of menu and task type. A typical pie task would be the compass example because it seems best suited functionally for pie menus. List of elements, hke OPEN/CLOSE and UP/DOWN, whose meanings are antonyms are also classified as pie tasks. Lists, like numbers, letters and ordinals, are best suited for linear menus and are thus classified as linear tasks. Groups of menu items that have no relation to each other fall in the unclassified category. Table 1 shows an example of the groupings.

There are a total of 15 menus, a gromp of 5 for each task type. Subjects perfom the experiment for all cells in the experiment matrix in random oxder in accordance with a randomized block design [8]. The subjects see each of the 15 menus four times, a total of twice in each menu format. Each cell in the experment consists of 10 memus. Each subject therefore sees a total of 60 memus. Targets are miformly distributed over the eight possible items.

\section*{Pisot study results}

A pilot study of 16 subjects showed that users were approximately \(15 \%\) faster with the pie menus and that errors were less frequent with pie menus. Statistically signficant diferences were found for item seck time but not task type. Subjects were split on their subjective pelerence of pie and linear menus. Some commented that they were able to visually isolate an item easier with linear menus and that it was hard to controb the selection in pie menus because of the sensitivity of the pie memu selection meclianism. These subjects tended to be the most mouse naive of all whereas those who had heard of or seen a mouse/cursor controlled system but had not used one extensively tended to prefer pie menus. The most mouse naive users, while finding linear menus casicr, tended to be better at pie menus and commented that with practice, they would probably be superior and in fact prefer the pie menus because of their speed and minmization of hand movement with the mouse. Not surprisingly, therefore, most of those preferring lincar menus did not have a strong preference on the scaled subjective questionnaire.

\section*{Subjects}

Subjects were volunteers from the University of Maryland Psychology Departmeni Subject Pool. All 33 subjects were undergraduate students with lithe or no mouse experience. They were rewarded with 1 extra credit point for participating.

\section*{Materials}

As stated, pie menus run on a Sun Microsystems Workstation as part of an enhanced version of MIT's X win-
dows system. The screen is a 19 -inch bimapped high resolution black-and-white display. Cursor location is controhed by a three button optical mouse on a moveable mousepad made of a specially formatted reflective material.

\section*{Procedures anss problems}

Some changes were made from the pilot design of the experiment: a better distribution of mena targets and doubled number of mem trials, though the total number of menus remained constant.

The process of selecting items from a pop-up menu, regardless of fomat, can be characterized in three stages: invocation, browsing, and confirmation. To make a selection, the user invokes the menu by pressing a mouse button (invocation), contimues to hold the mouse button down and moves to an item which is then highlighted (browsing) and releases the mouse button conflrming the selection (confirmation).

The typical seçuence of events for a subject is as follows:
- The target is displayed to the user in a fixed text window at the top of the screen. The cursor associated with the mouse is marked by a small hash mark " \(x\) " on the display screen.
* The user invokes the menu by pressing and holding any one of three mouse buttons. The menu appears with the cursor location unchanged (except near screen boundaries where the cursor must "jump away" to accomodate the menn). The cursor is located in the center or mena title region of pie and hnear menus respectively.
- With the mouse button still depressed, the user moves the cursor with the nouse towards the textual target as indicated. Selections highlight as the cursor moves into distinct activation regions. As noted, the activations regions for pie menus are "pie" shaped sections that extend to the screen boundaries and are rectangular sections extending horizontally towards the screen boundaries for linear menus.
- Once selection is made, the user releases the mouse button to confirm the selection. The menu disappears from the display screen. The cursor remains at the screen position relative to the selection location. The selection is correct, the process begins again with a new target, and possibly a new memu style. Otherwise, if the selection is not the requested target, an audible "beep" tone is heard and the user attempts the task again.

Basically, the computer posts the target name at the
top of the screen, the user invokes the current menu, moves to the target item, and confirms the selechion by releasing the mouse button. This secuence, called a task, is repeated 60 times by each subject. Each subject saw 6 sequences of 10 menus each. In each ten menu sequence, the menu type was the same, either pie or linear, and since there are only 5 menus per task type, each meru appears twice in the sequence.
\begin{tabular}{|c|c|c|c||c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{3}{|c|}{ Task type } \\
\cline { 2 - 5 } & Pie & Linear & Unclass. & Meanmenu \\
\hline \begin{tabular}{c} 
Using pie \\
menus
\end{tabular} & 2.20 & 2.13 & 2.40 & 2.26 \\
\hline \begin{tabular}{c} 
Using linear \\
menns
\end{tabular} & 2.68 & 2.30 & 2.94 & 2.64 \\
\hline Meantask & 2.44 & 2.24 & 2.67 \\
\hline
\end{tabular}

Table 2: Target seek time (sec) means per cell, menu type, and task type
\begin{tabular}{|c|c|c|}
\cline { 2 - 3 } & \(F\) & \(P R>F\) \\
\hline Menu type & 16.23 & 0.0003 \\
\hline Tasks type & 6.93 & 0.0030 \\
\hline \begin{tabular}{c} 
Menu type \\
\(X\) \\
Task type
\end{tabular} & 2.82 & 0.0750 \\
\hline
\end{tabular}

Table 3: repeated measures analysis of variance results for target seek thime

The 10 menu sequences correspond to the cells in the experiment table design. Each subject performed asequence for all 6 cells in random order. 60 data points are collected per subject. A total of 33 subjects performed the experiment for a total of 1980 data points.

For each task, the time from the first mouse button down to the correct target selection is the seak time for the item. If the user selected the wrong item, the time is included in this interval. The number of errors made as well as the sub-interval times when exrors axe made is recorded during the experiment by the system. All subjects performed the test adequately and no person falled bo finish the assignment.

\section*{RESUETS AND DISCUSSION}

A repeated measures analysis of variance was performed on the data. Table 2 shows the means per cell, per row, and per column. Table 3 displays the repeated neasures ANOVA results. A Tukey analysis reveals that there is a statistical significant difference ( \(P<0.01\) ) between overall menu type performance and task type performance in target seek times. Pie tasks and linear tasks did not significantly differ from each other, but both organizations are an improvement over the unclassified menu tasks. Slight statistical significant difference ( \(P=0.075\) ) between cells in the experiment design is also observed. No other interaction was ob-


Figure 4: Target location (x) vs. seck ime (y) in seconds
served to be significant.
The statistically significant difference between menu type performance is the central result of this study. The task type diference reiterates earlier study results \([2,9]\) that showed that some organization is helpful. Furhermore, the shght interaction between menu types and task types tends to confirm the hypothesis that certain task groupings perform well with particular menu formats. The reason for a lack of strong correlation is evident in the lower mean for pie menus even on linearly grouped tasks.

Figure 4 displays the target location by item plotted against the mean seektime. The mean seektime across target location for pie menus is fairly constant. As expected for linear menus, the mean seek time moreases proportionally to the distance of the target from the initial cursor location. Analysis of seektime vs. number of menus seen shows that no strict convergence occurs between the two menu styles, though mean seektimes did decrease for both pie and linear merus with practice.

With error times removed from the results (measuring time from menu invocation to first correct choice), the menu styles compared relatively the same as the comparison which includes error times because of the error rates.```


[^0]:    * 55 TOUCH LAMP, LATCHING AC SOLID STATE TOUCH SWITCH USABLE WITH SUCH LAMP, AND CIRCUITS FOR THE SAME, US PAT 3899713Assignee: HALL?BARKAN INSTRUMENTS, INC., (U.S. PTO Utility 1975)
    * 56 TOUCH OVERLAY FOR IMPROVED TOUCH SENSITIVITY, US PAT 5386219Assignee: International Business Machines Corp., (U.S. PTO Utility 1995)
    * $\quad 57$ TOUCH RESPONSIVE POWER CONTROL SYSTEM, US PAT 4939382 (U.S. PTO Utility 1990)
    * 58 TOUCH-RESPONSIVE SOCKET, US PAT 4101805Assignee: Destron, Inc., (U.S. PTO Utility 1978)

    59 TOUCH SENSITIVE CONTROL PANEL, US PAT 5012124 (U.S. PTO Utility 1991)
    60 TOUCH SENSITIVE ELECTRIC SWITCH, US PAT 4289980 (U.S. PTO Utility 1981)
    61 TOUCH SENSITIVE ELECTRONIC SWITCH, US PAT 3879618Assignee: MAGIC DOT, INC., (U.S. PTO Utility 1975)
    62 TOUCH SENSITIVE POWER CONTROL CIRCUIT, US PAT 3666988Assignee: ROBERT E BELLIS, (U.S. PTO Utility 1972)
    \& 63 TOUCH SENSITIVE POWER CONTROL SYSTEM, US PAT 3919596Assignee: BELLIS ROBERT ELLIOTT, (U.S. PTO Utility 1975)

    * 64 TOUCH SENSITIVE SWITCH, US PAT 4360737Assignee: Leviton Manufacturing Co., Inc., (U.S. PTO Utility 1982)
    * 65 TOUCH SWITCH CIRCUITS, US PAT 4119864Assignee: RCA Corporation, (U.S. PTO Utility 1978)
    * 66 TOUCH SWITCH DEVICE, US PAT 4352141Assignee: Starcote Limited, (U.S. PTO Utility 1982)
    * 67 TOUCH TERMINAL WITH RELIABLE PAD SELECTION, US PAT 4374381Assignee: Interaction Systems, Inc., (U.S. PTO Utility 1983)

[^1]:    Copyright © 2014 LexisNexis CourtLink, Inc. All rights reserved *** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

[^2]:    Copyright © 2014 LexisNexis CourtLink, Inc. All rights reserved. *** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

