
On the Measurement of Cholecystokinin

A hormone is a chemical transmitter that is secreted from
one part of the body and circulates in the bloodstream to
reach a distant target in another part of the body where it
exerts its biologic effect. At its inception, this was a
revolutionary concept that gave birth to an entire physi-
ological and, later, medical discipline. Early on, hormones
were discovered by their biologic actions. However, the
physiology of hormones could not be assessed without
quantification. Fundamental to the study of hormones
was the ability to measure concentrations in the blood.
Although biological assays have been the cornerstone of
endocrinologic measurements, the development of the
radioimmunoassay (RIA) completely changed the field of
endocrinology (1). The attractive features of RIA include
(a) applicability to most hormones, (b) ease of perfor-
mance, and (c) relatively low cost, as well as high degrees
of (d) accuracy, (e) sensitivity, and (f) specificity.

Cholecystokinin (CCK) was discovered in 1928 on the
basis of the ability of intestinal extracts to stimulate
gallbladder contraction in dogs (2). Later it was recog-
nized that CCK was a potent stimulant of pancreatic
enzyme secretion (3). However, it was not until 1966,
when CCK was purified, that the primary sequence was
determined (4, 5). Early estimates of CCK-like activity in
blood were based on biological assays such as pancreatic
secretion or gallbladder contraction. However, these esti-
mates were fraught with confounding problems that
existed in whole animals, such as the effects of other
hormones or neural influences. To circumvent these prob-
lems, a sensitive and specific in vitro bioassay was devel-
oped (6), but this method is labor-intensive and cumber-
some and is not readily available to clinical laboratories.
Attempts to develop an RIA for CCK had to overcome a
number of unique challenges. Among these were (a) the
multiple molecular forms of CCK, (b) amino acid se-
quence similarity between CCK and gastrin, (c) low blood
concentrations of CCK, (d) limited peptide availability,
and difficulties with (e) isotope labeling and (f) peptide
synthesis. It should not be surprising then, that solutions
to these many problems were slow in coming.

CCK was originally identified as a 33-amino acid pep-
tide (CCK-33); however, since its discovery, multiple
molecular forms have been described. In several species,
biologically active forms ranging in size from CCK-83 to
CCK-8 have been found to exist in intestine, brain, and
blood (7, 8). All forms are derived from a single CCK gene
by posttranslational or extracellular processing (9). The
biologically active portion of the molecule is its amidated
carboxyl terminus. All forms of CCK larger than CCK-8
are biologically active. Therefore, to measure physiologi-
cally relevant CCKs, assays must detect the carboxyl
terminus of all molecular forms. A major difficulty in
developing CCK assays has been its structural similarity
to gastrin. CCK and gastrin comprise a family of gastro-
intestinal peptides that share an identical carboxyl-termi-
nal pentapeptide sequence. To develop a specific CCK

RIA that does not cross-react with gastrin, the antisera
should recognize the tripeptide sequence at the amino
terminus of CCK-8, which is common to all forms of CCK
but is dissimilar to gastrin.

Over the last 20 years, a number of RIAs and a bioassay
for CCK have been developed (6, 10–24). Although most
have not undergone the extensive validation described in
the current study by Rehfeld (25) in this issue, there is
general agreement that CCK concentrations in the circu-
lation are relatively low (in the picomolar range). In
contrast, plasma concentrations of gastrin are 20–100
times higher. Thus, even slight antibody cross-reactivity
with gastrin poses a substantial problem for accurately
measuring blood concentrations of CCK. Accordingly, the
sensitivity and specificity of an accurate CCK assay must
be extremely high.

Even after the discovery of CCK-33, only limited
amounts of material were available for raising antibodies.
The largest bioactive form of CCK that has been described
is CCK-83 (26). Abundant forms of CCK in tissue and
blood include CCK-58, CCK-33, CCK-22, and CCK-8.
Unfortunately, large forms of CCK are difficult to purify
and still are not readily available. As such, CCK-83 and
CCK-58 have not been used as standards for most assays,
and the cross-reactivity with many antibodies is un-
known. It has even been suggested that larger forms of
CCK are less immunoreactive than smaller forms, per-
haps because of tertiary structure (27).

Sulfation of the tyrosine residue at position seven from
the carboxyl terminus of CCK is critical for biological
activity. Because of this, synthesis of moderately large
forms of CCK had not been possible until recently, and
these peptides are still not commercially available.

The final problem in the development of a CCK RIA has
been difficulty with isotopic labeling of the peptide.
Oxidative methods to label CCK tended to destroy bio-
logical activity of the molecule through oxidation of the
methionine residue in position three from the carboxyl
terminus. Oxidation of CCK reduces its biological activity
100- to 1000-fold.

Identifying the problems in developing a CCK assay is
one thing, successfully overcoming those problems is
another. In the current issue of Clinical Chemistry, Rehfield
has undertaken the ambitious task of developing an
accurate RIA for measuring blood concentrations of CCK.
He has tackled each of the problems listed above. Selec-
tion of a proper antigen for raising specific CCK antisera
was a critical initial step. A variety of antigens, including
natural porcine CCK-33 and synthetic nonsulfated
CCK-33 and -29, as well as synthetic sulfated CCK-4, -12,
and -13, were all used as immunogens. Two types of
tracers were used, including CCK-33 labeled by nonoxi-
dative conjugation and Bolton-Hunter-labeled CCK-8.
Characteristics of the antisera that were critically evalu-
ated included the titer, affinity, specificity, and homoge-
neity of binding kinetics. Seventy-eight rabbits, 29 guinea
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pigs, and 8 mice were immunized. The most successful
immunization strategy used an immunogen consisting of
a CCK-12 analog corresponding to O-sulfated CCK-10
extended at the N-terminus with a diglycine bridge for
carrier coupling. The resulting rabbit antiserum (Ab.
92128) was of high titer (.500 000) and bound sulfated
CCK-8, CCK-22, CCK-33, and CCK-58 with nearly
equimolar potency and with essentially no cross-reactiv-
ity with gastrin. This latter point was demonstrated in
three ways. First, Ab. 92128 did not detect gastrin in
chromatographically purified plasma extracts. Second,
there was no correlation between CCK and gastrin plasma
concentrations in humans. And third, infusion of gas-
trin-17 into human subjects did not increase plasma CCK
immunoreactivity. With this RIA, plasma CCK concentra-
tions averaged ;1 pmol/L under basal conditions and
increased to ;5 pmol/L after ingestion of a meal. These
estimates are in the range of other accepted assays.

The discovery of CCK-58 in tissue and the circulation
required special treatment to preserve forms larger than
CCK-33 (28). It was suggested that immediate acidifica-
tion of plasma was necessary to prevent the in vitro
degradation of CCK. The current study confirmed that
larger forms of CCK were detectable only after plasma
was acidified and that only CCK-22 and smaller forms
were present in neutral extracts, thus confirming that
CCK-58 is a major component of CCK-like immunoreac-
tivity in plasma. Unfortunately, large forms of CCK are
not available as standards for RIAs, and it still remains to
be determined whether the immunoreactivity and biolog-
ical activity of CCK-58 are equivalent to other molecular
forms. In future studies, these determinations and the
ability to compare CCK values by various RIAs will
depend on the manner in which plasma is collected and
extracted, the antibody that is used, and the epitope to
which it is directed. These challenges and the lack of CCK
RIAs for general use are hurdles that remain to be
overcome. Nevertheless, this report by Rehfeld represents
an exhaustive and careful attempt to develop the best
characterized CCK RIA to date.
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