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UNITED STATES DISTRICT COURT .

FOR THE DISTRICT OF MASSACHUSETTS

CANON, INC., CANON USA, INC.

AND AXIS COMM. AB,

Plaintiffs,

V. Civil Action No. l :19-MC-91401-NMG-

JCB

AVIGILON FORTRESS

CORPORATION,

Defendant.

 
DECLARATION OF KATHERINE ZIMMERMAN

1, Katherine Zimmerman, state and declare as follows:

1. I am a Scholarly Communications and Licensing Librarian at the Massachusetts

Institute of Technology (“MIT”) Libraries, 105 Broadway, Building NE36, Suite

6101, Cambridge, Massachusetts 02142.

2. I am over 18 years of age and am competent to make this Declaration. I make this

Declaration based on my own personal knowledge, based on my knowledge and

review of the business records and practices of the MIT Libraries, based on

conversations with other library staff, and based on the notes and records ofMarilyn

McSweeney who prepared Declarations until her retirement in 2016.

3. I have been employed at MIT since 2016.

4. Through the actions described in paragraph 2, I have become knowledgeable about

the MIT Libraries’ normal business practices with respect to how MIT receives,

catalogs, indexes, shelves, and makes available to the public journals and

publications.
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5. Attached as Exhibit A to this Declaration is a true and accurate copy of the catalog

record from the MIT Libraries’ online catalog system (known as the Barton

Catalog) for the publication series entitled ACM Transactions on Information

Systems: a publication of the Association for Computing Machinery vols. 7 (1989)

- 26 (2008) (“ACM Transactions on Information Systems”). This is a record that

MIT maintains in the ordinary course of its regular activities. -

6. Attached as Exhibit B to this Declaration is a true and accurate copy of the issue

cover, first page, back cover, and full article text, for the article titled “Motion

Recovery for Video Content Classification” by Nevenka Dimitrova and Forouzan

Golshani published on pages 408-439 of Volume 13, No. 4 of the . ACM

Transactions on Information Systems, which was published in October 1995 (the

“October 1995 Issue”). The ACM Transactions on Information Systems is

available in print format in vols. 7 (1989) - 26 (2008) from the MIT Libraries, and

is a record that MIT maintains in the ordinary course of its regular activities.

7. The October 1995 Issue has an MIT Libraries date stamp of “NOV 13 1995,”

indicating that the MIT Libraries received the issue on November 13, 1995.

8. After a serials issue receives a date stamp, it undergoes a process ofbeing labeled

and moved to a shelf of the MIT Libraries. Based on current MIT Libraries

practice, this process typically takes one to two weeks. According to the MIT

Libraries’ current normal business practice, the October 1995 Issue would have

been displayed on a shelf of the MIT Libraries no later than November 27, 1995.
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9. Once a publication is on a shelf of theMIT Libraries it is available to be Viewed

within the MIT Libraries by any member of the public or requested Via Interlibrary

Loan.

10. To the best of my knowledge and that of current MIT' employees, unless stated

otherwise, the above statements are descriptions ofnormal business practices at the

MIT Libraries from at least the beginning of 1995 and through the present.

I declare under penalty of perjury that the foregoing is true and correct. Executed on

October 23, 2019, at Cambridge, Massachusetts.

\

I? THEIZEW 
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Motion Recovery for Video Content
Classification

NEVENKA DIMITROVA and FOROUZAN GOLSHANI

Arizona State University. Tempe

Like other types of digital information. video hl‘tlLll'lll'l‘F must he t'lilfifilllt'tl hosed on the.
semantics oftl’ieir contents, A rnoreepret'ise anti compleli-i' ext rut-lion [ll semantic ml'nrmuiiOn Will
result in a more-effective Classtiicatiriii. The mostetiirtcern:hle (hill-retire lii-lui-i'ii slill images and
moving pictures stems from movements arid variations Thus. to go From the realm otstill-imoge
repositories to video databases. we must he iilile to deiil \vitli motion l’ttrtieuliirlv. we need the.
ability to classify objects appearing in ii. video sequence hosed on their characteristics and
features such a. shape 01‘ color. :13. well as their movements B." tiesi'rihinpr the movements that
we derive from the process of motion analysis. We introduci- :1 dual lill'T'fH'l‘ll) consisting ol‘ spiitinl
and temporal parts for video sequence representation This gives its the llei-tihilitv to examine
arbitrary sequences of Frames at various levels of obstruction and to retrieve the associated
temporal Information may. Object tr‘ajECLUFlQ’Sl in addition to the spotml representation Our
algorithm for motion detection uses the motion compensation component of the Ml’li‘t'} video-en-
coding scheme and then computes trajectories for iiliii-i‘is ol' interest The specification of" :1
language {01' retrieval of'vtdeo hosed on the -p:ili:il zis Well .is motion i-liiiiuii-ii-ristics is presented.

Categories and Subject Descriptors H ."i 3 [Information Storage and Retrievall' Information
Search and Retrieval; Hi: 1 [Information Interfaces and Presentation] Multimedia Infor-
mation Systems. 12 10 [Artificial Intelligence] Vision and Hut-nt- i'iiilei'sluniling mono”

General Terms Algorithms. Design

Additional Key Words and Phrases: L'ontent-hzisetl ri-trii-viil ol video. motion recovery. MPEG
compreSsed video analysis. video (minimises, t'tdt-ii retrieval
 

1 INTRODUCTION

Applications such as video on demand. automated surveillance systems. video
databases. industrial monitoring. video editing. road traffic monitoring. etc.
involve storage and processing of video data. Many of these applications 'on
benefit From retrieval of the video data based on their content. The problem is
that. generally. any content retrieval model must have. the capability of

 

This article is a revised version with major extensions ol'an earlier paper which was presented at
the ACM Multimedia '94 Conference.

Authors' addresses: N. Dimitrova. Philips Lahortmiries. IMF) Scarborough Mood. Br'iiirelilT Manor.
NY t0562; email: nvdi’u philubsphilipscom; I". (Jolshom, Department of Computer Science and
Engineering, Arizona State University. Tempe, AZ 85287-54l16:emiii|1 golshaniiu asuiidw
Permission to make digital/hard copy of part or all ol' this work for personal or classroom use is
granted without fee provided that copies are not made or distrihuted for prolit or commchifl1
advantage. the copyright notice, the title ol‘ the publication, and its date appear. and milk?“- i5
giwzn that copying is by permission of ACM, Inc. To copy otherwise, to republish. L0 POP-l 0“
servers. or to redistribute to lists, requires prior specific permission and/or a fee.
(9' 1995 ACM 10468188/95/i000-0408 $03.50
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Video Content Classification - 409

dealing with ninssiv ' amounts of data. As such, classifi
step For ensuring the ci'li'cliveness of'these systems,

Motion is on essential thaturc of video sequences. By analyzing motion of
Objects we ‘élll extract. information that is unique to the video sequences. In
human and computer t'lHltll] research there are theories about extracting
motion inlornmiioo _independently of recognizing objects. This gives us sup-
port [or the idea ol classifying sequences based on the motion information
ext. acted from video sequences regardless of the level of recognition of the
objects. lior example. using the motion information we can not only submit
queries like "retrievq all the Video sequences in which there is a moving
pedestrian and .‘l cur lint also queries that involve the exact position and
trajectories ol' the car and the pedestrian.

Previous Work in dy na mic computer vision can be classified into two major
categories based on the type of information recovered from an image se-
quence: recogiiit ion through recovering structure from motion and recognition
through motion directly. The first approach may be Characterized as attempt-
ing to recover either low-level structures or high-level structures. The low-level

structure category is primarily concerned with recovering the structure of

rigid objects. when-us the high-level structure category is concerned primar-
ily with recovering nonrigid objects from motion. Recovering objects from

motion is divided into two subcategories: low—level motion recognition and
high—level motion recognition, Low-level motion recognition is concerned with
making the changes between consecutive video frames explicit (this is called
optical {low [Horn and Schunck 1981i). High—level motion recognition is
concerned with recovering coordinated sequences of events from the lower-

levol motion descriptions

Compression is an inevitable process when dealing with large multimedia
objects. Digital video is compressed by exploiting the inherent redundancies

that are common in motion pictures. Compared to encoding of still images,
video compression can result in huge reductions in size. In the compression of
still images. we take advantage of spatial redundancies caused by the simi-
larity of adjacent pixels. To reduce this type of redundancy. some form of
transform-hosed coding (cg. Discrete Cosine Transform. known as DCT) is
used. The objective is to transform the signal from one domain (in this case,
spatial) to the frequency domain. DCT operates On 8 X 8 b10Ck5 Chum-‘15. and
Produces another block of 8 x 8 in the frequency domain whose coeffiCIents
are subsequently quantized and coded. The imPOl'taut [30th ‘5 that mOSt Of
the coefficients are near zero and after quantization ‘anle rounded Off to
zero. Run-length coding. which is an algorithm for recm-ding the number of
consecutive symbols with the same value, can efficiently compress SUCh an
object. The next step is coding. By using variable-length @des (an example ls
Huf'l'man tables). smaller code words are assigned to objects occurring more
frequently. thus further minimizing the size.

Our aim in the coding of video signals is to reduce the temporal redtundan-
cies. This is based on the fact that. within a sequimce 0f “slat? Tliiimetsd
except for the moving objects. the background remains ‘unchange . and: is
reduce temporal redundancy a process known as motion compens' ‘ ‘ " O'tober 1995.

{\(TM 'l‘mnsuciions on Information bystems, Vol. 13. No. 4. t

cation is an essential
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410 . N. Dimitrova and F. Golshani

used. Motion compensation is based on both predictive and interpolative
coding.

MPEG (Moving Pictures Expert Group) is the most general of the. numer-

ous techniques for video compression IFurlit 1994; Letiall 1991: Mattison

1994]. In fact. the phrase “video in a rainbow" is used for MI’EG, implying
that by adjusting the parameters. one can get a close approximation of any
other proposal for video encoding. Motion compensation in MPEG consists of

predicting the position of each 16 X 16 block of pixels (called a macroblock)
through a sequence of predicted and interpolated frames. Thus we work with

three types of frames—namely, those that are fully coded independently of
others (called reference frames or I-frames). those that are constructed by
prediction (called predicted frames or P-frames). and those that are con-

structed by bidirectional interpolation (known as B-frames). It begins by
selecting a frame pattern which dictates the frequency of I-frames and the
intermixing of other frames For example. the frame pattern IBBPBBI indi~
cares {1] that every seventh frame is an I—frame. (2) that there is one

predicted frame in the sequence. and [3} that there are two B-frames between

each pair of reference and,--"or predicted frames. Figure 1 illustrates this
pattern.

Our approach to extracting object motion is based on the. idea that during
video encoding by the MPEG method. a great deal of information is extracted

from the motion vectors. Part of the low-level motion analysis is already
performed by the video encoder. The encoder extracts the motion vectors for

the encoding of the blocks in the predicted and bidirectional frames. A

macroblock can be viewed as a coarse-grained representation of the optical
flow. The difference is that the optical flow represents the displacement of
individual pixels while the macroblock flow represents the displacement of
macroblocks between two frames. At the next. intermediate level, we extract

macroblock trajectories which are spatiotemporal representations of mac"
roblock motion. These macroblock trajectories are further used for object
motion recovery. At the highest level. We associate the event descriptions to
object/ motion representations.

Macroblocl-t displacement in each individual frame is described by the
motion vectors which form a coarse optical-flow field. We assume that our
tracing algorithm is fixed on a moving set of macroblocks and that the
correspondence problem is elevated to the level of macroblocks instead of

individual points. The advantage of this elevation is that even if we lose
individual points (due to turning, occlusion. etc.) we are still able to trace the

object through the displacement of a macroblock. In other words, the corre-
spondence problem is much easier to solve and less ambiguous. Occlusion and
tracing of objects which are continuously changing are the subject of our
current investigations.

In Section 2 of this article we survey some of the research projects related
to our work. In Section 3 we present the object motion analysis starting from
the low-level analysis through the high-level analysis. We discuss the impor-
tance of motion analysis and its relevance to our model Which is presented in
Section 3.4. Section 4 introduces the basic OMV structures (object, motion,
ACM Transactions on information Systems. Vol. 13. No. 4. October 1995.
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Video Content Classification . 411

Forward prediction

1 //Bf—B\P
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Bidirectional prediction

l’ig i I’Hruard and Iiidtrcctional prediction in MPEG.

video—sequence]. as the basis for the video information model. The basic

retrieval operators. the UM\«"-lnnguage specification, and some examples are
given. Empirical results are outlined in Section 5, and Section 6 presents
some concluding remarks.

2. RELATED WORK

The research presented in this article builds on the existing results in two
areas: dynamic computer vision and digital video modeling.

A current trend in computational vision is influenced by the idea that

motion analysis does not depend on complex-object descriptions. Our work
follows this trend and is based on the recent publications that are in

agreement with this idea in computational vision. The idea of object/event
recognition regardless of the existence of object representations can be traced

back to the early 70‘s when Johansson [1976] introduced his experiments
with moring-Iig/it displays. The idea was to attach lights to the joints of a
human subject dressed in dark-colored clothing and observe the motion of
lights against a dark background. The audience not only could recognize the
object (human being) but could also describe the motion and the events
taking place. Goddard [1992] investigated the high-level representations and
computational processes required for the recognition of human motion based
on moving-light. displays, The idea is that recognition of any motion involves
indBXing into stored models of the movement. These stored Wadels‘ called
scenarios. are represented based on coordinated sequences of discrete motion
events. The structures and the algorithms are articulated in the language of
structured connectionist models. Alimen [1991] introduced a computational
rI‘amework l'or intermediate-level and high-level motion analySIs based or;
SPatiotempora] surface flow and spatiotempoml flow curves. Spatlotemdpfile‘it
surfaces are projections of" contours over time. Thus. these surfaces are ‘1
representations of' object motion. ‘ 1995.

ACM 'l‘ronsactiuns on Information Systems. Vol. 1.1. No. 4, October
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412 - N. Dimitrova and F. Golshani

In the dynamic computer vision literature there are general models For

object motion estimation and representation. as well as domaiii-restricted

models. A general architecture for the analysis of moving objects is proposEd
by Kubota et al. [1993]. The process of motion analysis is divided into three
stages: moving—object candidate detection. uluet't tracking. and final motion

analysis. The experiments are conducted using human motion. Another ap-
proach to interpretation of' the movements of articulated i'mdies in image
sequences. is presented by Rohr [1994]. The human body is represented by a
three-dimensional model consisting of cylinders. This approach uses the

modeling of the movement from medical motion studies. Koller et at [[993]
discuss an approach to tracking vehicles in road traffic scenes. The motion of

the vehicle contour is described using an ailine motion model with a transla-

tion and a change in scale. A vehicle contour is represented by closed cubic
splines. We make use of the rest-=arch results in all these donmin-specific
motion analysis projects. Our model combines the general area oi" motion
analysis with individual frame timagel analysis.

In case of video modeling. the video footage usually is first segmented into
shots. Segmentation is an important step for detection of’ cut points which can
be used for further analvsis. Each video shot can he represented by one or
more key frames. Features such as color. shape. and texture could be ex-

tracted from the key frames. An approach ['or automatic video indexing and
full video search is introduced by Nagasaki: anti Tamika [1992]. This video-
indexing method relies on automatic cut detection and selection of first

frames within a shot for content representation. ()tsu_ji and Tonomura [1993]
propose a video cut detection method. Their projection detection filter is
based on finding the biggest difference in CHIN-“(TUtin'thtlTH‘ histogram differ-
ences over a period of'time. A model~driven approach to digital video segmen-

 
t tation is proposed by Hampapur et a]. [1994]. The paper deals with extracting
i features that correspond to cuts. spatial edits. and chromatic edits. The

authors present an extensive formal treatment of' shot boundary identifica-
tion based on models of' video edit et'f'ects. in our work. Wt‘ rely on these
methods for the initial stages of‘ video processing. since we need to identity
shot boundaries to be able to extract meaningful information within a shot.

One representation scheme of segmented video footage uses key Frames
[Arman et a]. 1994i. The video segments can also be processed [or extraction
of synthetic images, or layered representational images. to represent closely
the meaning of the segments. A methodology for extracting a representative
image, salient video stilts, from a sequence of' images is introduced by

; Teodosio and Bender [1993]. The method involves determining the optical
flOW between successive frames. applying af'fine transformations calculated
from the flow-warping transforms. such as rotation. translation, etc.. and
applying a weighted median filter to the high—resolution image data resulting

j in the final image. A similar method for synthesizing panoramic overviews
- from a sequence of Frames is implemented by Teodosio and Mills [1993].

Swanberg et al. [1993] introduced a method for identifying desired objectS,
1 shots, and episodes prior to insertion in video databases. During the insertion

process, the data are first analyzed with image-processing routines to identify
ACM Transactions on Information Systems. Vol. 13. No. 4. October [995.
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t:.:e:.i:;.‘.‘.:::::5:1..‘;i"...:i:::“...‘:.tutti-sires
W | n .‘ ~ y WEI] dEfined structure can

be represtnted. lb:l .IandEI exploits the spatial structure of the video data
without anti 31.1 ng o )Jl‘tt motion. Zhang et al. [1994] presented an evaluation
and a study oi. knowledge-guidedparsmg algorithms. The method has been
iiiiplc"1(“ll"“I for parsing oi television neWS, since video content parsing is
possdile when one has an a priori model of a video’s structure,

Another systvnr implemented by Little et a1. {1993], supports content-based
retrieval and playback. l‘liey define a specific schema composed of movie,
scene. and actor relations With a fixed set of'attributes. Their system requires
manual feature extraction. It then fits these features into the schema.
Querying involves the attributes of movie. scene. and actor. Once a movie is
selected. a user can browse From scene to scene beginning with the initial
selection. Weiss HHS-ll presented an algebraic approach to content-based

access to video. Video presentations are composed of video segments using a
video algebra. The algebra contains methods for temporally and spatially
combining video segments, as Well as methods for navigation and querying.
Media Streams is. a visual language that enables users to create multilayered
iconic annotations of video content [Davis 1993]. The objects denoted by icons
are organized into hierarchies. The icons are used to annotate the video
streams in a Media Time Line. The Media Time Line is the core browser and

viewer of Media Streams. It enables users to visualize video at multiple time
scales simultaneously. in order to read and write multilayered, iconic annota—

tions, and it. provides one consistent interface for annotation, browsing,
query. and editing of video and audio data.

The work presented here follows from a number of efforts listed above.

Specifically. we use Iow— and intermediate~level motion analysis methods

similar to those offered by Alimen [1991] and others. Our object recognition
ideas have been influenced by the work ofJain and his students [Gupta et al.
1991a; 1991b]. Grosky [Grosky and Mehrotra 1989], and the research in
image databases. Several lines of research such as those in Little et al.
[1993]. Swanberg et a]. [1993]. Zhang et al. [1994], and WejSS [1994] PTOVEdEd
many useful ideas for the modeling aspects of our investigations. An early
report of our work was presented in Dimitrova and Golshani [1994]-

3. MOTION RECOVERY IN DIGITAL VIDEO

In this section we describe in detail each level of the motion analys'is pipeline.
At the low-level motion analysis we start with a domain of motion vectors.
During intermediate-level motion anal)’Sis we “(trad motion trajectories that
are made of motion vectors. Each trajecwry can be thought 0f as ann-tuple 0t:
motion vectors. This trajectory representation is a baSisfor various :tl‘lEI
trajectory representations. At the high-level motion analySIS we assoclil B an
activity to a set of trajectories of an Object using domain knowledge iu es.

3.1 Low-Level Motion Extraction: Single Macroblock Tracing

In MPEG, to encode a macroblock in a predicted or a bidirectional frame. we. h
first need to find the. best matching macroblock 1n the reference frames, t en- bi 1995.

AFM Transactions on Information Systems. Vol. 13. No. 4, Otto tr
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414 - N. Dimitrova and F. Golshani

find the amount of .r and ‘\‘ translation li.e.. the inolion vector}. and finally
calculate the error component IPatel ct all 1993]. The motion vector is
obtained by minimizing a cost function that measures the mismatch between
a block and each predictor candidate. Each liidirectioiial and predicted frame
is an abundant source oi" motion inlormaiion. in fact. each of' these frames

might be considered a crude interpolation ol' the optical flow. Thus, the
extraction of‘the motion rectors of a single macrohlock through a sequence of
frames is similar to low-level motion analysis.

Tracing a macrolilock can continue until the end oi'thc \'l(l(.‘0 sequence if we
do not impose a stopping criterion. We have a choice: to stop after a certain
number of frames. stop after the object (inacrohlocltl has come to rest. stop if
the block comes to a certain position in the frame. Stop it the niacrohlock gets
out of'the scene. or stop if‘ the n'iacrohiock is occluded.

The algorithm for tracing.r the motion oi a single macrohlock through one
frame pattern [or MPEG encoding,r is given in Figure 2. ln lliniitrova l liiiifil.
we describe object motion tracing: for Vlt'lt‘i) databases in more detail. The
algorithm takes the forward and backward motion vectors that belong to a
particular macroblock and computes the mm'rohlock‘s trajectory. The algo-
rithm computes the macrohlock's position In a B~lrame hy averaging the
positions obtained l'rom: ill the previous hioek coordinates and forward
motion vectors and (21 next ipi‘t-‘(ilt’tt'tll hlock coordinates and the backward

motion vector. The position of a macrohlock in a P—l'rnme is computed using
only block coordinates and forward motion vectors. if during the tracingr
procedure the initial macrohlock moves completes out of its position. then we
have to extract motion vectors for the new macrobiock position. which implies
that we are continuing by tracintr the macrohlock whose position coincides
with the t .r. .‘~'l coordinates of'the initial macroblock. in the rest of this article
we wili use 7 to indicate the set of all possihie motion vectors.

3.1.1 Trajectory Description. Various motion retrieval procedures have
specific requirements for retrieving desired objects. These requirements de-
pend on the characteristics of the retrim’al which may he flexible to strict
The choice of trajectory representation may dictate the manner in which
retrieval is conducted. Given a set of' motion vectors For a macrohlock. a
number of mechanisms exist for trajectory representation. Below we present
a sample list:

(1} Pomi Representation: A trajectory in this case is a set of‘ points repre—
sented by the absolute or relative frame coordinates of the position of the
object, say

[ix].y,),(x2,y.j),...,(xfl,_y”)}

where (x,, y,) is derived by projecting (x, y, ,1) onto the image plane.
(x, y, i) denotes the position of an object, Le, (x, y), at time instant ii,

(2) Curve Representation: A parametric B-spline curve P(u) can be computed
that passes through each of the trajectory points (x,, y: ) (gee Farin [1990]
for a detailed discussion). The first step involves generating a parameteri-

ACM Transactions on information Systems. Vol. 13. No. 4. October 1995.
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Given: frames F 3 F1". 3'. = 0.....n;

motion vectors V = (1511(1)-fmll'(i)}.(bu(i).hny(i)) i= 1:11
inltinl block coordinates bx, by
Initialize R : ii,
for i:l..... n

if F(i) i I then
if F(i) :: P then

if previousType ::
ex = bx ~ fmx[i)/2;
cy = by - Erwin/2;
nextblockx = cx; nextblocky 2 cy;

if previouaType z:
givenx : futurex;
giveny = futurey;
futurex = futurex — fmx(i)/2;
futurey : futurey — fmy(i)/2;

if F0) 2: B then
cx:((givenx-fmx(i)/2)+(futurex-bmx(i)/2))f2;
cy:((giveny-fmy(i)[2)+(futurey-bmy(i)/2))/2;

if block(bx‘by) fl block(cx.cy) == 3 then
extract(mx(i),my(i)) for (cx,cy)

R = R - {(mxmmum
if F(i) is the last in a group of B frames before a P frame

ox = futurex:

cy : futurey:

if block(bx.by) “ block(cx,cy) == 3 then
extract(mx(i),my(i)) for (cx,cy)

R = R U {(tnx(i).my(i))}
ifF(i :2 I then

(bx.by) H bestMatch(bx.by) in I
if stopping criteria := true. then

return R;
endfor

I'll—i " :\|§.ftll‘lll‘il'l| for [raring lhv motion Ufa macroblnck

Zillitil} m- lcmn' sr'qm'm'v u, i; u_. s i u”. A commonly used approach
employs i-umulntivv chord lengths defined by the points (.13, y, l. The next
Step in Volvvs Hl’lllng up and solving a tl‘idiagonal linear system of eoua—
Lions whose unknnwns arc the control points (if of the B-splinos hilt“).
Th0 linear system depends on the .r,. 3.3. and n; values. This linear
Hystvm man he efficiently solved in Win) time using standard techmques
l'm‘ tritliugnnnl matrices. The B-spline curve has the form:

Pm) = 2 ohm")-

and i1. Si-Itii-ilivs the following:

(a) P(u,) (.r,‘ )3);
.-\(‘-M 'i‘runsnchuns
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415 . N. Dimitrova and F. Golshanl

(b) Pta) is a piecewise cubic polynomial. i.e., For H! s u s H,‘ ]. Fla) is a
polynomial ordegree less or equal to three; and

(c) the first and the second derivatives of I’tii) are continuous.

 
(3) Chain Code Representation: We develop a piecewise linear approximation

to the trajectory using a set of orientation primitives. Given a set of

discrete trajectory orientation primitives. we. use a zigzag line represen-
tation of the trajectory to generate the code. Another way of viewing this
approach is derived from a neighborhood matrix with each neighbor coded
to correspond to the primitives in the figure [Schalkol‘l' 1989].

[4) Difi‘erential (Utah: Code Representation .' Each segment is coded relative to

the next line segment usingr the direction (left or rightl and the length.
For example. we can have a code for: right shorter 1. right. equal—2. right
longer-3. lef't shorter'4. lel‘t equalsii. left longersb' [Schalkof'l'198.9]. This
scheme is useful For approximate matching ol‘ object trajectories. It is a
rotation. scaling-. and translation-invariant scheme.

Figure 3 illustrates these methods used For the representation of an
arbitrary movement. Figure Sta) is an exact coordinate representation: 3th] is
a B-spline curve representation. Figure lite) represents the chain-coding
process. and 3(dl shows the differential chain code representation of the
trajectory.

Note that in the coordinate representation and B-sphne and chain code
representation schemes we have a way of representing zero motion. i.e., when
the motion vector is a null vector. If the macrohlock does not move over a
certain number of frames. the point will be repeated. In the Bvspline repre-
sentation. the knot lie. the control point) will have a multiplicity greater
than one. In the chain code representation, the zero motion is represented by
the code ”.0 So. in all these representations the trajectory is not only a
spatial representation of the object's motion lthe path} but also a temporal
characterization of the motion. By keeping track at the zero motion we are
able to describe stationary objects as well.

The diversity of the trajectory representations makes the querying process
if: I more. flexible. The actual method of" representation does not have a significant

I impact on the querying process as long as modeling. representation, and
? querying are all done in the same fashion.

3.1.2 Trajectory—Matching Functions. Applications such as automated
.I' surveillance may require retrieval of either video sequences or objects con-

. i tained in these sequences based on the object trajectories. For example.
queries of the type “retrieve objects that have a motion traie
of origination is the main gallery door and .
picture on the opposite wall” ma
damaged the picture.

Matching functions used for motion retrieval depend on the method em-
ployed for trajectory representation, as described below.
ACM Transactions on Information Systems. Vol. 13. No.

ctory whose point
terminate at the Juan Miro's

y help in the identification of the person who

4, October 1995.
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result: [812777212
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mo (d2)
tit-Lum- out" och: :Ixh: lctt ictt left

\‘DI‘ltlilitll‘. J \honcr cuss! iongci Shout-r equal longer
(‘ntit' i i 1‘ 4 5 6

result: 36343
  

Fig, .‘t .-\ll:'i‘I::ll]\l'.\ ir-r miner: motion representation (a) motion trajectory: (b) B-spline curve
rt‘pt'c‘st‘ntnllmt. tc l i {'liftlttrt'iiriltig scheme; It'll chain code representing the trajectory; (d1) differ-
ential ('ii:l!i|-t‘1>tl!tI_L[ <t'itt‘llit'. til'll resulting tiillrrentinl Chain code.

— Exact matchingr function that uses absolute frame coordinates (least-square

minimization problem). This matching function has two variations:

(1) exact start position and exact trajectory match

(2) any start position and exact trajectory match.

—- Exact matching Function that uses relative coordinates. This function is
used whcn the initial position of the object is not important.

7 Curve comparison hosed on the curve-fitting approach used for interpo-
lated trajectory representation.

— Approxnnatc matching that uses chain code:

(1) exact start. position and inexact trajectory match

(2) any start position and inexact trajectory match.

The chain cmlc matching translates the problem of trajectory matching
into a paLt(-rnnit-atrium,r problem.

*' Qualitative ma tching that uses differential chain code.

The result. in ouch case is a similarity factor between the input trajectory
and a target trajectory in the Set Of object t1‘aJ9Ct01'les-

3.2 IntermediateeLevel Motion Amati/Sis

A macroblock trajectory is. the spatiotempm'al representatlfln ff the micro;
block's motion. 'I‘hcsc trajectories are further 115?“,i for 'exttactin-ggl OBI-:2:
motion. This process is dill‘ercnt for rigid and nonrrgtd bodies. A 11g! 0 J
consists of one solid part to which motion trajectm'y 1

5 associated. If the object
" ' ' cts with inde—

Consists of SEVEI‘al parts which themselves represent llg‘ld Obje
M'M 'l‘ransactions on lnlormation Systems. V

0]. 13. No. 4, October 1995.
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pendent movements. then. such a nonrigid object is represented as a set of
rigid objects with their respective trajectories. At. the highest level of motion
analysis. we associate “activities" with the object trajectory representations.

Rigid-object motion is represented by a single trajectory The trajectory is.
one common representation of' the trajectories of all the component macro-
blocks. Finding the most-representative trajectory is not a simple task. In the
simplest case we can take the trajectory of‘ the object centroid as the l‘t‘lt‘i‘t‘nce
object trajectory. A more-coinplicated case occurs it We decide to create a
common trajectory by processingr all of the macrolilocli trajectories or by
examining only a subset. of all macroblock trajectories.

Mean averaging of all trajectories of" the iiii-icrol'ilocks ol' the ohject is an
alternative to choosing the object centroids trajectory. The i—iveraging of the
trajectories in the exact form is pointwise averaging of the trajectories ateach frame.

The following two assumptions nit-die the object motion recovery feasible:

[1) Integrity of Objects: We assume objects are rigid or consist. of rigid parts
connected to each other. We do not consider situations in which objects
disintegrate. This assumption is important. because we only use object
trajectory representation.

{2) .‘lloi‘i'oii Conformity: Each macroblock under consideration has continuous
motion. This assumption is important for the ti‘z‘ijectory representation.
since every trajectory segment represents continuation of the previous
trajectory segment.

 
, Averaging trajectories. is used For determining a representation of a non—

rigid body motion. For nonrigid objects. we must determine the number oi"
it, trajectory clusters and their locations. Each cluster corresponds to it single

coherent motion that represents a moving part ti.e.. a rigid object). We use a
hierarchical ClUStEI’HUI algorithm (due to Duda and Hart I 1973]) for determin-
ing the number of rigid object parts. Initially. the algorithm begins with

. clusters that contain only one trajectory each. At each suhseijuei‘it step. we
' attempt to merge those neighboring clusters that. have a similar trajectory.
:3 ‘j Individual trajectories. in this case. will be averaged to compute a trajectory
/ ; for the extended cluster.

.‘ An example of a traced object through 20 encoded frames usingr the
IBBPBBBP frame pattern is given in

middle, and last frames of a video sequence capturing a water skiing scene.
Figure 4(b) contains the motion trace for the moving yacht, The axes in

l - Figure 4th) correspond to the x and y axes of the video frames where the
(0. 0) coordinate is at the top left corner.

Figure 5 shows six out of the 60 frames of' the “W
used for our next experiment. The object being traced is a small toy whiCh

i .‘ performs very uneven motion. Figure 6(a) shows how the tracing ol’a macro-
- block progresses when every frame in the sequence is used: The lrtlmL‘

pattern IBBBPBBB is used for video encoding when macroblock trajectories
are extracted in Figure 6. This experiment shows that the macroblock tracing
ACM Transactions on Information Systems. Vol. l3. No. 4, (Jctolie

Figure 4. Figure 4(a) contains first.

al l'ky” video sequence 
r 1995.
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(a) 'I’racc 01" [he macmhlock (14.14) using all frames
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(b) Trace of the macroblock (14.14) using every other frame
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422 - N. Dimitrova and F. Golshani

each object trajectory is a sequence of motion vectors identil'yinpI macroblock

displacement for the components of" the object. As discussed previously‘ the

actual appearance of the members of T depends on the choice of the TEPI‘e-
sentation scheme.

3.3 High-Level Motion Analysis

At the highest level of motion analysis. we associate domain-dependent
“activities" with the. object trajectory representations. An activity can be
recognized by the system based on a predefined set of' procedures. or it can be
designated by the user. We realize that recognizing activities is one of the

most—difficult tasks in any vision system. Such undertakingr requires informa-tion on:

it) Relative positioning between rigid subparts

l2) Relative timing of the parts movements

l3l Actual and perceived interaction of object parts.

The two main problems in recovering high-level motion representation are
(lithe fact that multiple sequences are occurring simultaneously (for exam-
ple. arm movements and leg movements in human motion) and in a coordi-

nated fashion and {2) tempo changes are global (in the case of' the human

body. the changes apply to all Four limbs and occur slowlyl.
An activity involves both spatial and temporal representations of the

objects ofinterest. We must identify the object components (shape and other
features] and their respective trajectories (as We did in the previous section}
at the intermediate—level motion analysis and then assemble activities. The
temporal information is needed for discrimination of' activities of' the same

type. for example, strolling. walking. hurrying. etc. After assembling object
activities, based on additional knowledge. we can infer event information.

We use or to symbolize the set of activities. We assume the existence of'a

knowledge base ,3’ whose contents include all the necessary rules, con-
straints, and the procedures for derivingr activities from lower-level descrip-tions.

Each member a of .-.y is a “composition" of‘ (I. f.....,i'. where For every
1 < i' < n We have:

—lIETand

it! satisfies every constraint in r H. where ((r' 4 represents the con-
straints governing the activity a.

High-level event representation and manipulation call for the use of either
temporal Petri nets. an event-based approach to temporal objects. or other
event representation and manipulation schemes.

3.4 Spatiotemporal Hierarchical Representation

We use. a semantic multiresolution hierarchy for sp
tlon (Flg‘ure 7) because it helps video analysis at
Wlth coarser resolutions used for high—level event/

atiotemporal representa—
various resolution levels.

scenario descriptions. The

ACM Transactions on Information Systems. Vol. 13, N“. 4_ October 1995‘

Canon EX. 1055 Page 26 of 45



Canon Ex. 1055 Page 27 of 45

 

Semantic lcvct

Object semantics
aSSOClalIOD

Image features

Object descriptors

PhySical image

 
 

Spatial hierarchy Temponl hierarchy

[-‘ip '.' K'Iiiliirusuluilon hierarchy for spatial and temporal video representation

advantage of iiiultiresolution representation is that it offers a mechanism to

make the trade-off between the competing demands of fine spatial/temporal
resolution and low computational complexity. The idea of representational
hierarchy for still images has been utilized by several image data models

[Grosky and Mehrotra 1989; Gupta et al. 1991a: 1991b].
At successive time intervals. a frame is inserted at the base of the spatial

hierarchy. and the features are computed for the next levels. The motion

features are computed starting at the frame. and the temporal part of the
hierarchy is filled with the appropriate motion descriptions, Motion analysis
starts with the motion vector recovery (bottom of the temporal hierarchy.
Figure 7). At the next level, individual macroblock trajectories are traced. At
the intermediate level. rigid-body motion is recovered, followed by nonrigid-
motion recovery. Finally, at the highest. level of motion analysis. description
of activities is derived from previously computed motion features (top 0f the
temporal hierarchy. Figure 7). |

The temporal part of the. hierarchy can be used for various kinds of motion
retrieval ranging from full-object trajectory-based matching to Single-macro»
block trajectory matching. Since we provide exact and inexact trajectory
representation. our retrieval functions can take inputs in terms 0f PFEC‘Se
spatiai coordinates. orientation coordinates, and qualitative descriptions.

4. INFORMATION FILTERING AND DIGITAL VIDEO
ntroduced in previous sec—
trieval of video sequences.

1 (motion) part of the

The motion-tracing and representation scheme 1
tions serves as a basis for the classification and re

Video sequences may be retrieved usmg the temp”21
I. lnfbrinutioii Systems. Vol. 13. No. it. October 199.).AUM 'l‘i'tmsnctiuus oi
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hierarchy or the combination of spatial and the temporal representations.

The idea of this representation is that. We can compute the spatial and

temporal features independently of each other. We emphasize that temporal
features coupled with spatial features are important in discriminating and
classifying video sequences.

Like other knowledge representation cases. we do not attempt to have a
universal system that can recognize and distinguish all possible objects. Such
general-purpose (i.e... domain independent) representations bay e been shown

to be too complex for present technologies. Thus. we assume tliat the domain

ofinterest is known a priori and that the \‘ttlt‘il classification system will be
confined to working on only those objects. ('onsider a domain I). called the
“scope." containing all objects of interest. Ii'ormally. the elements of D are

defined as object—oriented structures with potentially complex internal com-

ponents. Similar to an}: object-oriented representation. the user can identify
the objects of D by their attributes. such as object ll). nnaee descriptions.
name. and shape (or convex bull}. or a combination of these. 'l‘hus. the user

may provide any available information on any of the attributes of desired

object (for example. object ID. or shape together with a partial description).
and the system will attempt to identify the intended object. Althouin we do
not make any assumptions on how the elements of l) and their attributes are

represented. we offer the following example as an indication of' a typicalstructure.

Exompfe 4.1. A walking human may be represented as a mnt'lng object
o1 :(01,n?].t‘])Wh0!'€

onl .— (coi‘cgoijt‘ ‘ hmnoii. eoni'erUnH : on sire/Non : o-‘-.

ports : lilo-(id : o_. . torso .‘ o a} l.

in: : (trajectory 32467332. (It‘i’l'f‘l'f_\' : n-m’l'une I. and

r1 : ti‘rif:234.firstFroine145.1’osi'Fi‘mm' HMS}.

Similarly. the head and torso also have their spatial and motion descrip-tions.

In a database containing only “still" images. a correspondence table of the
form (0. Il—where 0 stands for the t)l)_](‘(‘t. and 1 stands for the image will
suffice. In a video database. we have the added parameter of temporal

, _ changes Although the motion ofeach object can be modeled as an attribute of
i i the Object. say “dog. big. brown. running." it. is more appropriate to separate

objects and their motions as two different parameters. Note that if motion is
considered asjust another attribute ol'the object. then in case the same object

'i- appears more than once, each time with a (‘lif'ferent motion. we would need
1‘! multiple, different entries into the database. For example. there would he

‘ multiple entries for the big brown dog: runnini.r right, running left. running in
t -l- circles, and jumping.

‘ Video sequences are identified by objects present in the scene and their
respective motion. The goal of the motion analysis is to extract activity and
event representation. An index entry of an activity in a video sequence has
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the following l'orm:

{0‘ M‘ V) : ("bi-"CIRCAmotionRep,vid)

‘ Obli’f'r’h’f’l’i 41” ”hit‘t'l- r‘t‘iJl‘csentcd by its extracted features (. . CODV
object skeleton. centroid. texture ex hull,

. _ ‘ ‘ , set of macroblocks covering the object
etc.: see left side ol Figure 7]. An object representation might include a set
of ()h‘ivci represt-Intotioris of‘ the constituting parts (e.g., objects that re re-
sent a human Figuri- include head. torso, arms, and legs object represegta-tionsi.

' ”MN-””H‘V” ”” ”ll-"Tl l"'i‘.le°i°1‘)' SPecit'ied by objectRep, velocity. trajectory
curvature. torsion. and activity description (see right side of Figure 7)~

i Nd,- identity of the video subsequence to which an object belongs to: aid
consists of t f‘iSr’q‘l’rll, fi'rsi'mec. lastFrumc)

(1) i‘iSoqhi’ is a video sequence identity which is unique for a sequence
across the whole video database.

(2) firs-{Frames the first frame in which the specified object appears.
(3) icrsilt'ronic.‘ the lust frame in which the specified object appears.

4.1 Content-Filtering Operators

The OMV triplet is the basis for the query functions. There are many

possibilities for the selection of filters (in this context, query functions.) A
sample selection is presented below. These operators may be used in a
relational i'oi'm. mostly in a table. lookup mode, or may be embedded into a

more-claborate query language. as presented in Section 4.2. Recall that 330(A)

is used to denote the powerset of the set A, i,e.. the set of all subsets of A.

l"...Seq : 0 X M sen/i

This function takes any description that can be provided at any level of the
Spatial hierarchy. The input might be a characterization of the object in
terms of its bounding polygon. stick figure, a name, or concept. At this point
We need to emphasize that we use the properties of the object-oriented nature
of the representation of the objects. For example, the expression

V .81“in (-m‘egnri' = pet. I Actiirity = woi'kiiig,Trajector_v = tlll

translates into "retrieve all the video sequences in which a pet walks and
" The answer will include all the objects (animals) that

lled Wanda. etc. It is important to
in an informal way and

dew-based

makes a trajectory (I.

are classified as pets: cats, dogs, fish ca
note that here we discuss only the formal framework . .
that these functions are implemented within an interactive Win
graphic-d] query in terihce which we discuss in Section 3.1.

The function

Objec-Linotioii : O X V —->;/’(M.l
ular video sequence and returns ata g '- i .- ' da artic .

kes an}i object dtSLI‘lptlun an p t Object. In order to detect which
set of' motion descriptions related to tha ‘ ‘ 199’.

At‘M 'l‘ronsimLions on Information bystems. Vol. 13. No. 4. Octnhei .1
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objects performed a particular type of motion. i.e.. the agent of the action, we
use a function of the following family:

Agent's : M at V - MO).

The next Function is used to get a detailed description of all the objects and
their respective motions in a video sequence:

Describe Video : V > NO x M I.

If we just want information about the spatial characlcristies of objects in a
sequence. we use the function 

 
Objects : l." A fl (N.

This is equivalent to the “agents" function where the first. argument is
unimportant. Thus. given a c, E V. ()lifcctst r l - Apciilstorrv. a". l.

The above functions allow for incxactness. and by deiault. they return
results that are approximately similar to the precise answer. To make the

operator exact. we use a higher-order operator that converts the query
function in the desired manner. in this case. makes it exact. There are several
types of these operators. ea. exact. partial. and similar.

For making the retrieval exact. the symbol 7 is placed in front of the query
function. For example. "litigious“ returns only objects that have exactly the
same motion description as the one given in M. Similarly. "thjei-I riion'on"
returns only motion descriptions of objects \xhosc spatial characteristics (for
example. exact bounding polygon. texturel match the spatial characteristics
of a given object.

The # symbol placed in front of the query function is used for partial
retrieval. Partial retrieval means that any of the motion or temporal charac-
teristics of the given object should match. For example. "#Aggcrits" will return
all objects that match at least one of the motion descriptors.

4.2 The Query Language

The retrieval functions introduced in the previous section are embedded into
the framework of a multimedia functional query language called EVA. (lee

‘ scribed in Golshani and Dimitrova I 1994]. EVA is the interface to a multime-
. dia database system capable of storage. retrievaL management. analysis. and

- . delivery of objects of various media types. including text. audio. images. and
j- . moving pictures. The language deals with the temporal and spatial aspects of
H ' multimedia information retrieval and delivery. in addition to the usual

capabilities provided by the ordinary database languages. EVA has five
groups of operators. namely: operations for querying and updating (Lu.

.1: editing) the multimedia information, operations for screen management.
" temporal operators, operators for specifying,r rules and constraints. and aggre-

gation (computational) operators. EVA is an extension of a functional query
language whose notation is based on that of conventional set theory. Both the
origmal language and its extensions are formally defined in an algebraic
framework. EVA is object oriented and supports objects, object classes, at-
ACM Transactions on Information Systems. Vol. 13. No. 4 October 1995 
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tributes and methods of objects, and relationshi
been ported onto several different Platforms,

EVA provides a wide collection of operators that deal with text h'
scanned images. audio. and video. In addition, there are numerous}???- 1:125,
pendent operators such as set operators like union and set members/iii "2):-
ofthc gt‘lit'l‘éll ”I'Jf‘l‘illlmis is: the set construction Operator. Generally thlis ha:
1h? t'orm ill-1'] l'lxll. where. flxl denotes the desired output objects and
Pt .1') denotes the retrieval predicate which has to be true for those objects

ps between objects. It has

__ mi; “pm-”nun sviiilmfss isin. isSubsetOf, isTrueSubsetOf union intersec‘- . ‘ J 1 -
lion. (lllll'l't‘IH'U. l nioii. Intersection, noOf.

7 equality operators: is. isnot.

— tciiipurrri Hlt‘lil‘ili ionization (for all media types): sim, before, meets equals_ , '1 3 !
starts. at. finishes.

, spatial composition (applied only to graphics, images, and video): left.
right. bottom. up. showln, arrange. ' i

7 mecho-dependent operation symbols include

—!c.ri‘: appendl’ar. cuLPar. eani‘. keyword. isKeywordIn, parSim.

—gmp/iii-s; institch. pictureSuni. till. domain. colors getPatch, getColor,
restrict ion. scalc. translate. dot. lineSeg. box. coincident, contains, dis-

joint. visible. bounded.

impinges: sliil't. zoom. superimpose. overlay. imageSim.

mambo: intensity. extract. audiolns. audioLen. audioSim.

*i'i'u'i’o; videolien. pace. videoClip. videolns.

—iritegcr Hpt’f'ni'rrm symbols: +. -‘ < , > . < = , > = , min, max. ave,
sum. prod.

—si‘ring operation si'mbols: concat. strLen.

—iogicru' operation s_\-mhois: and. or. implies. not.

To demonstrate the capabilities of EVA and how queries are constructed.
we present a simplified example. The first part of the example will demon-
strate the language without the OMV extensions. The video content retrieval
extensions will be dismissed once the appropriate distinctions are made.

We prment the schema of a multimedia database system and then prov1de
a few sample queries. The schema is represented as a graph whose nodes are
Object. classes {in algebraic terms. sorts) and whose arcs are the relationships
beLWeen object classes (represented as functions). Readers familiar With the
algebraic Framework would recognize this as a many-sorted algebra. . .

illustrated in Figure H. the schema models a college basketball multiinled'i:
database. The basic types in this system are String, Integer, Alldm’. :xd
Video. while Player and School are uscr~defiiied data types. The highhg te
portion aPPeai'ingz, in dotted lines relates to the extenSion for Video content
retrieval described in Section 4.3.

The main dif'i'ercnce between th

former constitute the application-independent
Whereas the user-defined types depend on eac

ion Systt'

ese basic and user—defined types is that the
constituents of any schema,
h individual application. In

t ter 199:3

ARM Transactions on liiformnt ins. Vol. 13. No. 4. 0c 0:
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: II II "I '.
2M0 lon- - Vid '1

{Object} -" a“ " ’ lnleger. . -.-

lira-h; 1 '

 
DJ”: ":1 ”:51 p1 .-’1

Player ~. , SChOOI

 :ul'u‘. 1H ,1.‘
{bully-11'

4 ‘ h ..u.‘\4‘.‘n.‘.
'J 7 ~'.:1 A' 1
Audio __ "~, 1:11:11: ‘ . ‘ ._ 4 .'»_ 7- -‘-. i) - ’
"' Tex: _ 511mg __

i'u; “ “(film-Hm“ <(‘ll<‘:‘,.1

Figure h all ”hie-Ct. Lypesi lmtli liuslr and 1151-1' tlvlinml. appear 111 ovals. llw
aurihutc‘s ul'nlije-L'Is :mil Llwn' r19|11lmnshlps llml fiil‘é‘ cumurml 111' arrows arv
the fiillnmng l'unclnurv

nrmiv w" ' Pluwr . Hiring
pawn“): 111' ' Phn'wr - .5711}:le
.wz'aftzuf : [’fawr . Tr?!

111(111‘111411' . I’iru‘vr ~ Amin.
pfuymgHIg/i{lg/21's :lew‘ ' l'm'ru

heighLUf , Plrn‘e'r - 1111131311
ageiof : I’lqwr‘ » lulwgvr
plays-/'ur : Pirnr'r , Sr-Iauu!
lt-mnmumhvrn‘ inf. A Hrhmfl ' Ill 51421111.]!

H}1L’il)‘i’!f,rJ/I : {Sr/m”! - 571111;;
[emaiNmnv ,0," :Sw'mu/ v Hiring
mac/1,0," . b'r‘l'rrm/ r Sirmgg

Here are some queries on this rlamlmsv.

(1) List. all guards who are taller Lhun lSlllc-nr

{n(1rn.c_r)f'(P) ! pus-Him: raf'l PMs-“Guard" (1m! hr’ig/H all Pl 1 190]

This is a simple query on the nonmultimedin portion nl'the database. 1’ iii
a vanable of" Lype Plalvr’r. The result is a list of namns of players whu
satisfy the given conditions.

At'TM Transactions on lnlhrnmLiun Systems. \r'ul. H, No. 4. lh-lulxcr 199:3.
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(2) Play video clips of' all centers. and simultaneously display their statistics.

l( mnm- ”/1 1,), Stats—Of'lpllstm ptayingHighlights_of(P)l
position off P )is“Cen.ter"}

While variable t" ranges over the elements of type Player whenever th
condition on position is satisfied. the name, statistics, and the corres and?
jng video clip of the qualified player are displayed. “sim ” standinp for
“Simultam—wnmly." is one of the synchronization operators that eniure
proper semantics For presentations.

(3) Display the statistics of all Phoenix State University guards and show
their highlights before playing their interviews. l

{( nann’ oft I" 1. stats _of'l P llsimt ployingHighlights_of(P}

boi‘orcm tort-MM P l l‘ plays _for( P his“PhoenixStateUniversity”and

position of l P lis“Guord“l

The result of this query is that, for every guard of the appropriate school,
while their name and statistics are displayed, their video clip is presented
first. and then their respective interview is played. The term “before" is
another synchronization operator.

4.3 Querying Video Contents

Note that in the above queries we treated Video. Audio, and Text as basic

types in a similar manner to the type Integer, i.e., as objects whose contents
can be displayed or presented, but no further specific characteristics are
known about the contents. Our motion recovery algorithm and specifically the
OMV functions enable us to treat Video in a different way, as described
below.

Grosky's [1994] categorization makes a distinction between the physical
basic data typos and the conceptual data types. He adopts a generic model to
represent c-oniwii—indepmdent and content-based properties of multimedia
objects. (Tontt-nteinclepcndent properties are related to the physical data
object itself luninterpreted data) as well as synchronization and storage
information. (‘ontentubased properties refer to relationships between nonmul-
timedia real—world application entities and multimedia obJECtS- The content-
based properties associate semantics to the object at various levels. _

A binary object containing the video stream that corresponds to the playmg
highlights of a particular player is an instance 0f physwal data type. The
extracted spatial and motion characteristics are stored in the conceptual dafia
WPB. Tho queries on the. content of the video data are directed to t 9
conceptual video data type. . . . .

The concr’primt‘ video data type is molded from the spatiotemporfli‘lhhlslsfl‘}
chy presented in Figure 7 using the object-motion-video structuiels. te n lthe
retrieval functions augment EVA’s retrieval capabilities since t ey :recific
PhYSical object Video into a conceptual one, i.e., an ObJECL With its own p' ‘ ‘ 95

isoctions on Information Systems. Vol. 13. No. 4. ULl-(lbi‘l 19AUM Trot
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430 - N. Dimitrova and F. Golshani

set of properties that can be. incorporated into queries for mftt‘t‘~pl‘ecise
questions. The extension to the schema which enhances the video type to be a
conceptual type appears in the dotted line in Figure 8. Below is a list of
operators that augment the retrieval capabilities hosed on the ()MV retrievg]
functions:

—Furic.i‘i'on Composition: given Functions f: X ,, Y and g: : l' > Z. the com-

position is f girl — g(/'(.vl). For iti‘omph', Given an object (any charac-

teristic) in a video sequence. 1',. retrieve olijeeis in another video sequence
c2 which have similar motion.

AgeiifstObjct-Lmoti'oiit o L . i-E )_ 12,)

— Teiiipoml (‘ombiiirinmi Functions: fog where H e {lieforiu iiiei'fs, siiiiiit'm-

ncriust'y. starts finishes}. Although the same syntax is used. these should
not be mistaken for the syiicliiiinization operators In this case. no conl'ti-

sion is expected since the context would determine the designation of the

operator. An example of usage for this type of‘ operator is the query
"retrieve all the sequences in which a tall person is wavingr while the
president walks."

— Spatial (.‘onii'iiiirii‘i'oii Functions: fig where c i inert. Iii-Jinn], iiiFroiii‘. left,
right}.

Using the above cominnators and the OM\' structure. many new t_vpes of
queries that refer to the contents of video sequences can he specified. Specifi—
cally. we can express queries that refer to the contents of video sequences.
Examples include the following:

‘1) "Retrieve all the video sequences With the longest successful shots." This
query translates into “retrieve all the video sequences for which the
length oi'the trajectory of the hall is maxin'ium."

IZI "Spell out all the details of movements: of‘ the players whose height is
greater than 200cm." This query is good for analyzing,I the pattern in
which certain players move and achieve the scori-

(3) "Find the video sequences in which the player is Wt’tll'tng a blue shirt."
The “blue shirt" is: inferred using image analysis,

The target language is a visual one that allows I'or inclusion oI’ spatial
properties (sketches) and exact and inexact images. The notation presented in
this article is the basis for the visual query interface [Diniitrova 1.99:3:
Michael 1994].

5. AN ARCHITECTURE FOR VIDEO CLASSIFICATION AND RETRIEVAL

In the PFBVIOUS Sections we introduced a model for video classif‘i -zition which
explmts motion recovery and representation. In this section, we discuss a
general architecture for video database retrieval based on the. model. The
proposed architecture, as presented in Figure 9, consists of':
— Insertion module

ACM Transactions on Information Systems. Vol. II]. No. 4. ()clioher 1995.
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E-‘iu H An :arclulvclurt for Video classification and retrieval:1

* Derivation module

* lttLL‘t‘itCttYL' query module

7 Video storage server.

The insertion module is responsible For initial analysis of the incoming
video signal. It i-onsists of a suite of operators for image enhancement.-
operutors ("or the extraction of basic spatial PI'OPertles' and Operators for

motion detection and the extraction of'motion tritijedf’ries'.With respect to the
spatiotemporul hierarchy. this module is an implementation of the ooeratOFS
between the lowest level of the hiet‘aI'ChIt’ (raw physical datal-to the Int-Elm?-
diate reprosenLotion. Currently, the functionalities for spatial analysis;
supplied by the Khoros computer vision environment [Baeure 9t ill. 1. i
The extraction “1. image features. finding regions, and thlnnlng operators 3111':
Performed by calls to Khoros functions. Although features are autfmilxiecian
extracted, the process of feature selection is manual. Fonegampé a video
apply an operator for image Segmentation and find the l-egmnsdlril b the
Frame. Howevor, the selection of regions of importance ‘5 d9“ 6 y‘ ' - 1 tr 1995

N 'M 'l'rnnsuctions on Information Systems. Vol. 13. No. 4. Duo K
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application designer. The automation of this whole process is possible For

strictly limited application domains such as industrial monitoring. domain-
specific video editing. camera surveillance. and others. rl'he motion detection

and tracing operators are also part of' the insertion module. The implementa-
tion of the motion-tracing algorithm is given in Section 5.2.

The derivation module consists of operators for translation of the extracted

features into meaningful descriptions For retrieval. Each application typically
defines its own set of' meaningful entities and events and has its own

interpretation of the same. In our video model and language. the extracted
properties are represented by predicates. The. derivation module provides the

mapping between the visual properties extracted Form the video sequences
which are geometric by nature and the algebraic representation which is used
for querying.

The query module consists of a visual i'ronlsend for query composition, a
visual query parser. a schema designer. and a presentation manager. The
schema designer and the visual i'rontweiid are incorporated into the visual
query language VEVA [Dimitrova 1995]. The \‘EVA prototype serves as a
testbed for development of new algorithms for video .s’image segmentation,
video parsing. feature selection. and classification. The prototype has been
implemented in Tcerk [Osterhout 1994] with the added image. and video
widgets on top of' an existing MPEG encoder [Rowe and Smith 1992].

The video storage server is envisioned to he a disk array serving as a
repository of the video sequences. At this point we use a simple lile system for
storing a limited number of MPEG compressed video sequences.

 
-;. 5.1 The Visual Query Language VEVA

Spatial and motion characteristiCs otobjects. derived from images and video
sequences respectively. are inherently visual. In this section. we outline the

de51gn of a multimedia database language which has well~deliiied semantics
in both character-based and icon-based paradigms.

Defined within the algebraic framework described above. VEVA is a visual
query language that provides all the necessary constructs for retrieval and
management of multimedia information. The basis for the language is a
schema (algebraic signature) which contains entity types lhoth user-defined

1 and application-independent types) and the associated operators [Golshani
; : and Dimitrova 1994]. By using these operators. the user can visually specify H

p- query for the desired objects in a simple way. VEVA has a formal grammar
. lg . with which the set of acceptable expressions can be generated. The grammar

for the visual language VEVA is given using visual rules in the style of a
. l. picture description language which was developed within the syntactic ap-

proach to pattern recognition [Schalkoff 1989]. The grammar rules contain
nonterminal and terminal icons. The rules are given as graph~rewriting rules

i where the left-hand side is a nOnterminal icon, and the right-hand side is a
graph containing nonterminal and terminal icons connected with customizedlin s.
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Ultimate Video Enterprising Macfime

 
"imam

{"ng Hi Visual query involving a trajectory description.

Parsing: (ii visual expressions in VEVA is a process of determining the

structure 01' the workspace. Note that parsing is the first step of the VEVA
language processing. heeause lexical analysis is not necessary. All available
icon svnihols can he drawn from the given pallette and connected by a set of

parniissihle links. Thus. ever}-r expression that is drawn is lexically correct.
rI‘he execution proeess begins by parsing the contents of the VEVA workspace.
The algorithm limls the top-level set expressions which may contain other set
“Xpt‘essions. 'l‘ransloted into visual terms. this algorithm finds the enclosed
visual expressions or other ieonie elements within a given oval, The algorithm
calls the set evaluation procedure recursively for the sets that are contained
in it. until there are single. sets with simple function-predicate expreSSIons
left. The evaluated sets can he. connected with temporal links which prescribe
the order in which the resulting objects should be presented bvthe presenta
tion manager. It the evaiuated expression contains temporal links, then the
P‘drsed execution order is delivered to the presentation manéger‘ , .

An example query is given in Figure 10. As we stated earlier. VEVA allege
for visual queries in which we can specify the path ofa moving Objec‘t'ln t is
example the input. trajectory for the player is given as a smo‘JthEd tIEJeCtTg"
The visual query given in Figure 10 will select those vldeo sequences mm 8' ‘ ’ ' - .- 199?.

AFM 'l‘runsaetions on Information bystoms, \rnl. 13. No. 4. Octobu ,
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This window displays a set of movies
that you can choose from. If you click
on one of the movie icons, the
corresponding movie will be played in
the upper window.

 

  
lit-Hilli- lrrmi :iii- \Irliill riuiwr} l'mirliwx ui Nll.\ |C:m r: .zllll'il'lll

T‘L.’})U:~‘lL(JI‘_\' in which the player‘s Li'njm'lnr}: is siniil ill‘ to [he one (lrnwn Ii} lllf'
user and display Llie name 2'1er ll‘H' ]J(I5-;1‘Llun of" Llie player The resull ni‘ llie
query is shown in Figuri- 11. The user can browse and plan.- Llw Ht-lm‘tml vulvasegmean.

Various models have been proposed for Lempnrul synrlimninatiun. rmnpum-
Lion. and presentation in multimedia applications. for exuinpltu Hurlinnnn
and Zellwegerll995ll and Little et :11, [ IHHH‘ On the miller hand. a number or
models For content-based access ul'digitul video has lwen proposed [Arman el.
al. 1994: Bobiek 1993; Rowe eL nl. 1994: HWillll)EI'}_§ «L a]. 199:5; Zhamg et al.
1994]. Howeven a general formal model and 2.1 language
Lation, composition, and querying uf' (ligiml vide
the spatial properties of objects Found in the

lbr content. r'epi'esew
0 based on the temporal and

video sequences has HUI, been

ACM 'l‘ranhuctmns nn lnlnrnizmmi Syslems‘ \"nl, lil. Nu -1. (lt'lnlwr‘ 199:1
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he 12. Morrohlock motion extraction

offered yet. 0111' video model and language VEVA attempts to unify the
presentation aspects as well as content representation aspects of multimedia
objects.

5.2 implementation of Macroblock Tracing

The motionelrneing algorithm is a part of the derivation module in our video
classificz'ilion architecture. We have tested our ideas by implementing the

inotion-Lrncing and extraction algorithm under Solarés 2.3 using the MPEG
encoder produced by the Digital Video research team at the Univer31ty. of
Calilornio. Berkeley. A functional view of the MPEG-based motion extraction
is given in Figure 12. We have introduced functions for extraction of motion
vectors during the generation ol‘ P- and B-frames. We use the motion-tracmg
alliorithm to compute the mocroblock trajectories.

The perlormnnce results are shown in Figure 13. We have tested our
motion~trncing algorithm by ranging the number ofmacroblocks being traced
from zero to all mncrohlocks. The input video sequel“?ls the standard tablle
tennis sequence, which consists of 10 frames, each of size 352 by 2‘40 pdxe :-
ThiS Sequence is a good performance test case, because It has backg‘l 911“ 3:8
foreground motion. The encoding frame pattern is IBBBPBBBBP. Thisdmea is
that all the, input frames are. used for video encoding. If only engot'mi is
PEFfbrmed without any motion-tracing algorithm,_the total elapsethrlnm the
32.6 seconds (+ / — 0:05 seconds). With the motion-tracmg agon ,. tartin
lLime increase is evident with the increase of the number of leCkS S g' ‘ b r 1995.

.~\(‘.M 'l‘runsuctions on Information Systems. Vol. 13. Not 4. Gem e
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with one macrohlock. we get elapsed time of £32.76 seconds for encodingf and
tracing which is 0.16 seconds more than the previous case. As shown in
Figure 133. when the number of traced macrohlocks increases up to $50”. the
elapsed time goes up to 34.72 seconds. This shows that even it we keep track
or" the motion of all the macroblocks we have a time increase of ti“ :,

The gain in MPEG compression is mostly achieved by exploiting temporal
redundancy MPRG avoids coding the same block twice by slorliig,fisending
over the displacement vector from the previous image. Thus. the basic
assumption is that the frame pattern used for MPEG compression is going" to
contain P- and B-l'rames.

Our algorithm for motion tracing would have very limited application if' the
stream to be encoded is using only I-Frames, In that case. there the motion
algorithm can not find any motion Vectors to take advantage of'. If' high quality
of'encoded video is crucial to the application at hand. then the algoritl‘im has
to be rewritten. so that motion estimation is performed using some imaginary
frame pattern which would not have any impact on the encoded video stream.
Then the motion-tracing algorithm would he performed on the obtained
motion estimates. In this case, the motion information that is obtained from
the encoder is in the forward vectors of the. P-Frames only. From the ow‘rame
to the next I-f'rame we do not have any motion information. We have severalchoices:

(a) We can make a prediction for the motion vector between the P-l‘rame and
the next I-f'rame. This prediction is a guess that we can use the same
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motion vector as the vector for

introduci- additional m'l't'head Th
the assuiiiplion for the

the P-frame. This solution does not
e problem is that it relies not only on

. continuity of motion but also assumes that themotion Is constant.

(hi We can ilf‘l'itil’lTl the actual
‘ search and compute the motion vector for theblocks from the [’7 lo the n

ext Isfr-ame. This means that we will be adding
mot-h Ittiii't‘ compote cycles than it is necessary for the encoding process

WC also llt‘t'li llitlt‘i] more t‘tllrlpilClitGd motion models to recover the true
motion ol‘ the Hi)_]l‘t‘i‘~ in the case of' complicated camera motion. For example
when u e have the camera focus on a moving object. then the object appears tci
be stationary The motion of the object is implied by the macroblock vectors of
the liarltgronini. More-sopliisticated relative~motion detection algorithms are
ricedt-‘d- This uorlt is part of‘ our ongoing SunSet Multimedia Information
System protect Itiolshani and Dimitrova 1994; Michael 1994].

6. CONCLUSIONS

From the point ol new of' video retrieval, the video technology has not seen
much progress l'rom the days when film editors examined each and every
frame by hand in order to find the exact place ofeach cut. In fact, despite the
introduction of many video editingT systems such as VideoShop and Adobe’s
Premiere. much at retrieval is done by either time pointers (e.g.. the frame
counterl. visual prost. or various types of graphical or descriptive pointers.
What is clearly missing From the video technology is the ability to locate and
retrieve video clips that contain an object with specific characteristics, partic-
ularly With respect to movements. Video databases can be useful to many
application areas such as education, business, medicine. and more promi-
nently. entertainment. As such. the value of better and more-equipped video

systems are becoming,r clearer. While many aspects of video systems, such as
presentation {’(iltlltg tools. have seen significant improvement, our progress

on content—based retrieval has not been as forthcoming. .
We believe that our attempts to address the above needs must start With a

modeling mechanism that allows lbr the representation of semantic knowl-
edge from both spatial and temporal features of the objects in Video se-
quences. ('oniputing‘ high-level motion description can be done independently
of t'ocogtiiaiin,r objects [Alimen 1991}. We elaborate on this property by

showinpr that the recovery of object trajectories can be performed ivitgioplt
Prior knowleds‘e of objects undergoing motion. The goal '15 to have ot 1i
independent. retrieval along the temporal and the Spatial hierarchies as we.
as retrieval oi' combined features from the Spatial and the temporai hieral—‘ .- ' om ensation
cities. We treat. motion vectors extracted duiing the motion C p. ' - used for
phase of' video encoding as coarse-level optical flow that 15 furthel
intermediate- and Iiigh—levei motion description: Mom)“ Information :1“:th
tion is then carried out at low level by motion vector getectgclpétmg an
intermediate level by motion tracing, and the hlgh. level y ass
0biect and a set of trajectories with recognizable aCtlvmeS'‘ ‘ ' ' 'toher 1995
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In our objet‘l iiiolioii ri‘pi‘osonliilions. we provide various lovvls of precision
of trajectory representation. Retrieval him-lions hum-cl on thus:- representa-

tions offer a wide spectrum of :ipproxiiiiiilioii iii lhi-i prorvsx of‘ matching. We
need to relate the motion ill 21 higher love! ol'nlisli‘nrlioii ol' llll‘ oliji‘cl Lo the
detailed motion of parts ol'objocls. [Grunts rain lw I'L‘pl'l‘b'l'llll‘d iii :1 form that

is common iii the iiiizigerunderstaiiding and llllt‘l‘pl‘l'lillllln zirm: prvdicatos.
temporal notwm‘ks‘ Hr.

ACKNOWLEDGMENTS

The authors graLel'iilly LlClinOWlt'dgjt‘ ElH-élrélzlni‘t,‘ l‘roiii llii- LEHUHl C(llltH'H. We

would like to thank Tom Foley For clzii'i ‘ iiig our itlvos on lg‘fipllnl' I'L'pl‘l‘SEnLEi-
lion. We would like to thank Guru BLUHH'HI‘ for lht' numerous (.lixiriissions and
insightful coiiiiiiunis on the \‘isui-i] lil]]_&.{'Ll:l,‘.{l*. 'l‘hc llllllltil'ri would also like Lo

[hank K P. Luv f'or suggesiing 'l'L'l r[lliilrkllll'll'l'lplC'lIH‘lll£1110”plulllll'llllitll'lihi‘interface.

 

REFERENCES

.-\ll.‘»Si-'V. M If" n+9: Imam wqiii-iirr :liwii'iiiiioi: “xiii; ‘llilllllll‘liilhilill lluu i'iiruw. 'I'uu'ni'il
n‘:l|lll|l]rl)il‘~l‘(l l'i‘L‘Hngllliili Hi I] llll'filr l'im ni‘\\'i.~ruri~iii ,\l.i:li~nri. WW

,-\I:\"-_\'_ F lji-l"'\5\l||‘l(. H HM 7 :\. \\Ii l'lll' ‘ El -Y llllll l‘iiiila-Til-iiuflAd lii‘iinniii; iil' \'I(l(’(!
~L‘lllll'nL‘l'.‘ lE‘. [HT-Ufljl'lilfiiLl“ n: .-U'.'.l' .lhu‘li‘FHi'lniHl Ill-J lfinii i“l'.‘:l'l("l.\'('fll l‘iilil ' .-\('.'\‘l l’l‘i-ssi NewYork, HT Ilm'

B-iizli'h. A l" lflflii PI!‘FJl"t“'-'lllltiHill-1;ll‘ihlllt‘hIIl\llii'H.ilillllliliJUIl Iii I'iui'nilmgx H: HM' 2711'!Ari-mam, {Im’
 W'Hl' on .‘R‘H'rir'i'i'e .N'ian'mx uni." ('unipiih ".~ ll‘il'lli “unlllllll'l' fiot'ivly l’I‘l'Sh. 1435Alumni». l'nlii

l‘l"i !l\.‘~ 'iN. M l' Ni 25-”: : m i.!‘ i: l’ 'l' DISH Aiiioiiméiriilh L'f‘lll'l'dllllL’ LHTLnIh‘lt‘llE ht‘l'll'dlllI‘S
for ntuliiniwrim (loi'iiriu-nh .li'iii'limmi'iu Hui J 1" L3 lHi-p‘i |

l).\\i.— M IEEEH J-lmliiz r-lrmiiiir Aii iroiiat.‘ Vlrllill l:in_.-;ii.ii_'£i ioi' kull": illJllillillllHl [ll i’f'ilf'l‘t‘ll"
irixv ri,‘ H'i- Hz'h‘l'i 5'1.’?i“!}fl:~.‘illl.'l on l'i,~:.'..-.i‘ [,(ngui'JPL-q'x lHi-l‘gl‘n. xiii-“:3.“ ll‘. A NP“; York.1% 3oz

Dz.\!::'iinu_--.. .\' 15min

 

(Vino-iii rl:i.~<ilir:ition :mil i'i-iru-ml nl' (ligiliil \irii-ii hum-(l on motion
!'L-(‘I2\E'I‘\ I’h I) ilir-i». Arizona Hizm- l‘iiir . 'l‘i-miiv. :\l‘1/

ll!‘.liii-.U'..‘i N \_\:i Unisii-xm. l" lHH-l l{.\ for riviiianiii- Video [Jillilih‘ifil' i'i-ii-ii-rui lTl I'rur‘i'vrl-
:rigx u,‘ .r‘lL'M .ll'iu’iim.»ii‘m '31-! (Sim l"!'i£HCl‘-i(.'l). (‘nlif'i A('M l'ri-hs, Ni-u Yui‘lx. Li I?) 22H

Dl'lu. H (1‘ AM) l‘l'xii'l. l’ l‘i 19.2,, Purlr-rn ('i'ri.~'\i,'ii‘rilioii rim] h'i'i'mi .-lur:i'_'.~'r.~i Johii \‘l'ili‘y .‘lmlSons. NH» York.
From: (.i 19.9”

Now York

FE'iiiiT. B. 199-1. MiilLimi-riia 5}‘Hl(‘ll|>~ An nwrrivw [BEE .-'ln'ul!iinwlm I, l EHpi‘mgi. :1? 5‘.)
GUIJIJAHH. _\.'. 1992 'l'ht- ['wrci-piinii of' :ii'Liculau-d moiioii [lumgiiiliiig moving light lllHlJIllY-‘i-Phl) Ihmm. Univ of RUIZhUHLQI‘, Houhm-‘Li-r. .'\' Y

GUINHANI. F. ANN l)!.\ll'[iiu\'.-\, N 199*}. [{L-li'il-Val :ir'lfl flvlivvry ol' iiilbr-iimlizm iii iiiiill.li‘ilt'dl£l
databasr- systoms In]. Sufi“: Tr‘l't‘l. i's’b'. 4 (Main. 235 242

Gnosm‘, W .-\Nii Mi.iiiio'i'im. R
(Deal. 7-8‘

  

('m‘i‘r'x mirlI .‘iiu‘frir't'x [m- ('umpnlvr‘ .‘li‘rlllif! (u'r'umi'lri: J'Ji'xigii :‘l‘ilfli'l‘llltj l’l"(‘r£H.

1989. [magi- (IiiLnliaist- munogvmnnl, l'lvfl'lln' ('miipm‘ 22. 12

GiltJSKY. W. 1, 199-1. MUlL1n1L‘dIH information syHLPnis, [Iii-312' Mullinmi'm I, l (sz'ingl. 12 24Gi'l'm. A. Wici'i.ioi.i'i'i-i. T _ AM) Jinx. R. 1991a.
Dambrmn .‘a'ysirms Hi l3 Knuth and Li Wirgne
land], Amsterdam. ‘20] ill-‘3.

Gl’l’m- A.. WHYMUI'TH. To AN“ JAIN, It 1991b Ht-mnntic queries with pictorus: The VlMSY-‘i
Model. In the (fora/impure on Very Large Data Base-.52 VLDB Endowment, Sarnuign Culil‘.

ACM Transactions on Information Syslxgnis. Vol 13. No. -1, Untulnir 1995

Hi-niiinlir queries in iiiiiigo (lillzllNlHk—L In VIM-II“,
r, l‘lds Elfii'vlf'l' HL'iGnL'li Publishers (NUI'TJIAHUI'

Canon EX. 1055 Page 42 of 45



Canon Ex. 1055 Page 43 of 45

Video Content Classification 439

HAMPN'UH‘ A. \t’i-N'uwl'lli. 'I‘. twin .I.\i.\‘. It. mild, Digital
”If-{“3“ Mil/“innit” 'H-I (Hun Francisco. ('zililil. ACM Pres

l-loiiN. it, it .\.\'E1 Hu'iii‘xi‘ii. It t; 192%]. Dote
“is-zoo

.Iiii|:\.‘\'H-““N- [; IUTH Spin iorii-iiipurul differentiation and intoglion. I'm-rho] i'fw: ‘l-\‘. 1.37” ill“

iioitI-Ili- I] . .\‘\'| iii-L, .l . \\|1 MM Hi. .I. 19911 ltohusi multiple cor tracking with oclusion
rmsmmm [wii ”.1. (gal) {Hi—THU. I‘EEEI‘H Dept. Univ. oi'California, Berkeley Calif Nov

Ki'iiti'i \, ll, (ll\.\.\lwlw Y, Mi/tiin t‘ill. H” AND KING Y 1993 Vlfiio- - - . - . n mcesso
mi_n-iiiiz-nliii~i‘l .Illill_\'.‘-lr‘- .‘iIm-li l'ir App]. 'r", 1. .‘iT-43. p r System For

l.i:li.\ii.. ll Will Nll’l'ili .-‘\ Viilt'll t‘i)lllll|'(‘:‘~:~‘]llll slziiiil
Mimi .r‘if'l! TN. 1 l\{1l'l. ili SH

Hm i.. .|‘_ now» 1:. (i imm. It Hiiiiiox. .J. Rl-LHVH. F.. SCHELLENG. D.. AND VENi-miasn. D.
ltlflfii A :liuilzil on dormant! video Stir-Vice supporting content-based queries. In Proceedings of
,stL‘M Miilrimi-u‘m Hit tAiizilioim. (':i|ii.l ACM Press. New York, 4277433

Li‘l'l‘H-T. 'l‘ . (iiHIw in“. .>\ . (‘Iil-‘N. l',. ('H.-\.\'i:, (1” AND Bl-Illlm, p_ 1991- Multimedia synchroniza-tion. i'liii'ri ling; H. il. 311' :95

M-il‘i‘in'i [\i‘ 1' Id I‘J‘lt I’riirm-ul [Iii-rial Video with Progranmii'rig Examples in C. John Wileyand Hiiii-1 Ni-u ‘i'urli

.‘iiii'ii.-\i=i. N inn-i \‘I-Il-INA zi visual query language. MS. thesis. Arizona State Univ,'l‘onipi'. Ai'l'l.

Ni\lii\.‘%.\h'.\. _,\ .\.\l) 'l‘.\.\ \l\.\, Y 1992 Automatic video indexing and full-video search for object
:1p]](‘ill';lll(‘t‘< In 'n'isimi' i’himlirisi' -\I)'.‘-'IE'HIS H. E. Knuth and L. Wagner. Eds. Elsevier Science
Publisher-4 INni'tli-I lolliiiidl. Aiiistc-i'iliiin. 113-127.

OH‘i'iciiiiiii'r. .l |\' 199-1 ’l'i l om.l Hm Tli Toolkit. Addison-Wesley, Reading, Mass.
OTSI'JL K. .'\.\|l 'l‘uxuxii'iu. Y 19931 Projection detection filter for video out detection. In

Pmri-mi‘iiig.- of At ‘ili' .'l‘lliilillflil’(li(l '93 iAnziheim. Calif). ACM Press, New York, 2514257.
PATH. K. HMHH. H. <‘ . NI Home. L. A. 1993. Performance of a software MPEG video

dot-odor. In Prm-i-rri‘iiiu.- u; AFM iliiii'i'imcclio ‘93 (Anaheim. Calif). ACM Press. New York.
7.} H3.

RAHl'Iii-L. .l. Alitiilill. l}. SAM-ii. 'l‘. .\.\'I) \VIIJJAMS, C. 1990, Visual language and software
(lcwoliapiiioiil i-iivii'uninoni iiii' imagi- processing. Int. J. Imaging Syst. Tech. 2, 2. 183-199.

Ilium. K. IE-JEJ-t. 'i‘owiiriis mudol—linsed recognition of human movements in image sequences.
(‘Vfi'l'l’ .lmrigi‘ l'iiilx'rxrrmd'mg 5.9. 1 Mini). 94-115.

ltoii’ic. I. .-\ \\|i SMI'I'H. Ii (' 1992, A continuous media player. In the 3rd International
lt’oricsfmp on Network om! US Support for Digital Audio and Video. Springer-Verlag, Berlin.
33-1- 3-1-1

ltoii'iz. l. A. ltniii-ivm‘. .J S, .ixii Enos. C. A. 1994. Indexes for user accesa. to large video
databases In Prui'i'i'ri’lllgs of'Sl’lE 1'8 and Symposium on Storage and Retrieval for image and
Vltll‘ri “(iriii'iirvr'n' iHiiii Jose. ('illilll SlJlE. ..

si-“MKm-F. R .l 1935) “if-Jim! Image PrnL'r'NSng and Computer VisionJoiin Wiley and Sons,
Now York

SWANIHCHH. [3 . SIII '. l‘ -I".. .-\.\'ii.l.-\i.\:. Ii. 199:1. Knowledge guided parsing in video datobases. In
[”20ng mm; Hull.“ I’rru'vsriiig (j(,,,fi,,‘gm~p_- Symposium on Electronic imaging: Sczence arid
T‘I’t'llflllllig)‘. Vol. lE-JUH. lSS; 'l‘-Sl’lE. Iii-24.

'l‘ixiiiosm. L, :\,\'|! Bicxniaii. W 19533. Siillient video stills: Content and context preserved In

Prm‘eeo’iiig.~: ”fun 'M illlli'llHH’fl'l'H '93 (Anaheim. Calif]. ACM Prose. New York. I
'l‘EiiliiiHIU. 1‘. AM) Millh. M. 1993 Panoramic overviews for navtgating real-“’Urld Scenes- 11

Proceedings of'At’ll/i' ilifiiliinmn'm ‘93 (Anaheim. Calif): ACM Press. Neigq‘lork. h setts Inst. of
WI-ZINH. it. 199-1. (‘ontont-lmsod access to algebraic Video. Tech. Rep. 8533C u

'l‘ocliriology, (fiinilii'idgu. Moss.

anvo, lrl.. (tom. Y.. HMUIJAR. 8.. . - 6 iii:
l)f'lJ£'l'('fl'lle‘-.’i‘€ {lir‘l'jll’ l'iiri'rriiiliiuifll ('Ul’lll"""!"" on Mummfldm ompfl g
Mass). IEEE (fumiiuti-r Society Press. L05 Alnmitos. Calif. 4&54'

video segmentation. In Prov:
s, New York, 357-364.

i'mining optical flow. Arrifl lritell. 17 1k3

ceilings

ration in visual motion percep-

iii-(l for multimedia applications. Com-

‘ ‘ ' I "don. In
' . ' 1994, Automatic poismg of news \I

M“ T-W- S. Y. and Systems (Boston.

Received August. HIE-)4; revised Fcbrnnr)’ 1995: aCCEPt‘Jd July 1995
No. 4. October 1995.

AU!“ ’l'rmisnctions on Information Systems. Vol, 13.

Canon EX. 1055 Page 43 of 45

 



Canon Ex. 1055 Page 44 of 45

 

 



Canon Ex. 1055 Page 45 of 45

 

 


