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I, Katherine Zimmerman, state and declare as follows:

1. I am a Scholarly Communications and Licensing Librarian at the Massachusetts
Institute of Technology (“MIT”) Libraries, 105 BroadWay, Building NE36, Suite
6101, Cambridge, Massachusetts 02142.

2. Tam over 18 years of age and am competent to make this Declaration. I make this
Declaration based on my own personal knowledge, based on my knowledge and
review of the business records and practices of the MIT Libraries, based on
conversations with other library staff, and based on the notes and records of Marilyn
McSweeney who prepared Declarations until her retirement in 2016.

3. Thave been employed at MIT since 2016.

4. Through the actions described in paragraph 2, I have become knowledgeable about
the MIT Libraries’ normal business practices with respect to how MIT receives,
catalogs, indexes, shelves, and makes available to the public journals and
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5. Attached as Exhibit A to this Declaration is a true and accurate copy of the catalog
record from the MIT Libraries’ online catalog system (known as the Barton
Catalog) for the publication series entitled  ACM Transactions on Information
Systems: a publication of the Association for Computing Machinery vols. 7 (1989)
- 26 (2008) (“ACM Transactions on Information Systems”). This is a récord that
MIT maintains in the ordinary course of its regular activities. |

6. Attached as Exhibit B to this Declaration is a true and accurate copy of the issue
cover, first page, back cover, and full article text, for the article titled “Motion
Recovery for Video Content Classification” by Nevenka Dimitrova and Forouzan
Golshani published on pages 408-439 of Volume 13, No. 4 of the ACM
Transactions on Information Systems, which was published in October 1995 (the
“October 1995 Issue.”). The ACM Transactions 6n Information Systems is
available in print format in vols: 7 (1989) - 26 (2008) from the MIT Libraries, and
is a record that MIT maintains in the ordinary course of its regular activities.

7. The October 1995 Issue has an MIT Libraries date stamp of “NOV 13 1995,”
indicating that the MIT Libraries received the issue on November 13, 1995.

8. After a serials issue receives a date stamp, it undergoes a process of being labeled
and moved to a shelf of the MIT Libraries. Based on current MIT Libraries
practice, thi_s process typically takes one to two weeks. According to the MIT
Libraries’ current normal business practice, the October 1995 Issue would have

been displayed on a shelf of the MIT Libraries no later than November 27, 1995.
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9. Once a publication is on a shelf of the MIT Libraries it is available to be viewed
within the MIT Libraries by any member of the public or requested via Interlibrary
Loan.

10. To the best of my knowledge and that of current MIT employees, unless stated
otherwise, the above statements are descriptions of normal business practices at the

MIT Libraries from at least the beginning of 1995 and through the present.

I declare under penalty of perjury that the foregoing is true and correct. Executed on

October 23, 2019, at Cambridge, Massachusetts.
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Motion Recovery for Video Content
Classification

NEVENKA DIMITROVA and FOROUZAN GOLSHANI
Arizona State University, Tempe

Like other types of digital information, video sequences must be classified based on the
semantics of their contents. A more-precise and completer extraction of semantic information will
result in a more-effective classification. The most-discernible difference between still images and
moving pictures stems from movements and variations. Thus, to go from the realm of still-image
repositories to video databases, we must be able to deal with motion. Particularly, we need the
ability to classify objects appearing in a video sequence based on their characteristics and
features such as shape or color, as well as their movements. By describing the movements that
we derive from the process of motion analysis, we introduce a dual hierarchy consisting of spatial
and temporal parts for video sequence representation. This gives us the flexibility to examine
arbitrary sequences of frames at various levels of abstraction and to retrieve the associated
temporal information (say, object trajectories) in addition to the spatial representation. Our
algorithm for motion detection uses the motion compensation component of the MPEG video-en-
coding scheme and then computes trajectories for objects of interest. The specification of a
language for retrieval of video based on the spatial as well as motion characteristics is presented.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.5.1 [Information Interfaces and Presentation|: Multimedia Infor-
mation Systems; 1.2.10 [Artificial Intelligence]: Vision and Scene Understanding—motion

General Terms: Algorithms, Design

Additional Key Words and Phrases: Content-based retrieval of video, motion recovery, MPEG
compressed video analysis, video databases, video retrieval

1. INTRODUCTION

Applications such as video on demand, automated surveillance systems, video
databases, industrial monitoring, video editing, road traffic monitoring, etc.
involve storage and processing of video data. Many of these applications can
benefit from retrieval of the video data based on their content. The problem is
that, generally, any content retrieval model must have the capability of

This article is a revised version with major extensions of an earlier paper which was presented at
the ACM Multimedia '94 Conference.

Authors’ addresses: N. Dimitrova, Philips Laboratories, 345 rborough Road, Briarcliff Manor,
NY _10562; email: nvd@philabs.philips.com; F. Golshani, Department of Computer Science and
Englqeering, Arizona State University, Tempe, AZ 85287-5406: email: golshani@asu.edu.
Permission to make digital /hard copy of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
afivantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and /or a fee.

© 1995 ACM 1046-8188 /95 /1000-0408 $03.50
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Video Content Classification . 409

dealing with massive amounts of data. As such, classification is an essential
step for ensuring the effectiveness of these systems.

Mntmn 1s an t‘-*‘h'“ﬂlli}} fl(‘éll.Ll]'(.' of video sequences, By analyzing motion of
objects we can extract 11ﬂnrn‘mimn that is unique to the video sequences, In
human .an.d mm]mtf-r vision research there are theories about extracting
moliup mh)r'mulmn llllfil‘l)F’}l({l‘flllb' of recognizing objects. This gives us sup-
port for th.(- idea of classifying sequences based on the motion information
extracted from video sequences regardless of the level of recognition of the
objects. l‘jm' example, using the ‘motion information we can not only submit
qu(*!'i("“‘_ like ",-(-l;-u\\-(i. all the video sequences in which there is a moving
pedestrian and a car” but also queries that involve the exact position and
trajectories of the car and the pedestrian.

Previous work in dynamic computer vision can be classified into two major
categories based on the type of information recovered from an image se-
quence: recognition through recovering structure from motion and recognition
through motion directly. The first approach may be characterized as attempt-
ing to recover either low-level structures or high-level structures. The low-level
structure category is primarily concerned with recovering the structure of
rigid objects, whereas the high-level structure category is concerned primar-
ily with recovering nonrigid objects from motion. Recovering objects from
motion is divided into two subcategories: low-level motion recognition and
high-level motion recognition. Low-level motion recognition is concerned with
making the changes between consecutive video frames explicit (this is called
optical flow [Horn and Schunck 1981]). High-level motion recognition is
concerned with recovering coordinated sequences of events from the lower-
level motion desecriptions.

Compression is an inevitable process when dealing with large multimedia
objects. Digital video is compressed by exploiting the inherent redundancies
that are common in motion pictures. Compared to encoding of still images,
video compression can result in huge reductions in size. In the compression of
still images, we take advantage of spatial redundancies caused by the simi-
larity of adjacent pixels. To reduce this type of redundancy, some form gf
transform-based coding (e.g., Discrete Cosine Transform, known as DCT) is
used. The objective is to transform the signal from one domain (in t‘hlS case,
spatial) to the frequency domain. DCT operates on 8 X 8 blocks of P‘XEIS' and
produces another block of 8 x 8 in the frequency domain_thJSe cnefficients
are subsequently quantized and coded. The important point 1s that most of
the coefficients are near zero and after quantization wm,be Toundediof o
zero. Run-length coding, which is an algorithm for recording the number of
consecutive symbols with the same value, can efficiently compress such Al
object. The next step is coding. By using variable-length f:odes oo ex.ample 5
Huffman tables), smaller code words are assigned to objects occurring more
frequently, thus further minimizing the size.

Our aim in the coding of video signals is to re
cies. This is based on the fact that, within a sequence a relat%d 'If‘ﬁize:(;
except for the moving objects, the background remains .unchanger{sation 5
reduce temporal redundancy a process known as sl

ion S 3 2 October 1995.
ACM Transactions on Information Systems, Vol. 13, No. 4, Octo

duce the temporal redundan-
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410 . N. Dimitrova and F. Golshani

used. Motion compensation i1s based on both predictive and interpolative
coding.

MPEG (Moving Pictures Expert Group) is the most general of the numer-
ous techniques for video compression [Furht 1994; LeGall 1991; Mattison
1994]. In fact, the phrase “video in a rainbow™ is used for MPEG, implying
that by adjusting the parameters, one can get a close approximation of any
other proposal for video encoding. Motion compensation in MPEG consists of
predicting the position of each 16 x 16 block of pixels (called a macroblock)
through a sequence of predicted and interpolated frames. Thus we work with
three types of frames—namely, those that are fully coded independently of
others (called reference frames or I-frames), those that are constructed by
prediction (called predicted frames or P-frames), and those that are con-
structed by bidirectional interpolation (known as B-frames). It begins by
selecting a frame pattern which dictates the frequency of I-frames and the
intermixing of other frames. For example, the frame pattern IBBPBBI indi-
cates (1) that every seventh frame is an I-frame, (2) that there is one
predicted frame in the sequence, and (3) that there are two B-frames between
each pair of reference and/or predicted frames. Figure 1 illustrates this
pattern.

Our approach to extracting object motion is based on the idea that during
video encoding by the MPEG method, a great deal of information is extracted
from the motion vectors. Part of the low-level motion analysis is already
performed by the video encoder. The encoder extracts the motion vectors for
the encoding of the blocks in the predicted and bidirectional frames. A
macroblock can be viewed as a coarse-grained representation of the optical
flow. The difference is that the optical flow represents the displacement of
individual pixels while the macroblock flow represents the displacement of
macroblocks between two frames. At the next, intermediate level, we extract
macroblock trajectories which are spatiotemporal representations of mac-
roblock motion. These macroblock trajectories are further used for object
motion recovery. At the highest level, we associate the event descriptions to
object /motion representations.

Macroblock displacement in each individual frame is described by the
motion vectors which form a coarse optical-flow field. We assume that our
tracing algorithm is fixed on a moving set of macroblocks and that the
correspondence problem is elevated to the level of macroblocks instead of
individual points. The advantage of this elevation is that even if we lose
individual points (due to turning, occlusion, etc.) we are still able to trace the
object through the displacement of a macroblock. In other words, the corre-
spondence problem is much easier to solve and less ambiguous. Occlusion and
tracing of objects which are continuously changing are the subject of our
current investigations.

In Section 2 of this article we survey some of the research projects related
to our work. In Section 3 we present the object motion analysis starting from
the low-level analysis through the high-level analysis. We discuss the impor-
tancg of motion analysis and its relevance to our model which is presented in
Section 3.4. Section 4 introduces the basic OMV structures (object, motion,

ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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Video Content Classification . 411

Forward prediction

Bidirectional prediction

Fig. 1. Forward and bidirectional prediction in MPEG.

video-sequence), as the basis for the video information model. The basic
retrieval operators, the OMV-language specification, and some examples are
given. Empirical results are outlined in Section 5, and Section 6 presents
some concluding remarks.

2. RELATED WORK

The research presented in this article builds on the existing results in two
areas: dynamic computer vision and digital video modeling.

A current trend in computational vision is influenced by the idea that
motion analysis does not depend on complex-object descriptions. Our work
follows this trend and is based on the recent publications that are in
agreement with this idea in computational vision. The idea of object/event
recognition regardless of the existence of object representations can be traced
back to the early 70’s when Johansson [1976] introduced his experiments
with moving-light displays. The idea was to attach lights to the joints of a
human subject dressed in dark-colored clothing and observe the motion of
lights against a dark background. The audience not only could recognize the
object (human being) but could also describe the motion and thg events
taking place. Goddard [1992] investigated the high-level representations and
computational processes required for the recognition of human motion based
on moving-light displays. The idea is that recognition of any motion involves
indexing into stored models of the movement. These stored rpodels, cal?ed
scenarios, are represented based on coordinated sequences _of discrete motion
events. The structures and the algorithms are articulated in the language of
structured connectionist models. Allmen [1991] introduced a computatmnal
framework for intermediate-level and high-level motion analysis besd or;
spatiotemporal surface flow and spatiotemporal I Spatlotemdptfl‘it
surfaces are projections of contours over time. Thus, these surfaces are dire

representations of object motion.

i K ber 1995.
ACM Transactions on Information Systems, Vol. 13, No. 4, October
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412 . N. Dimitrova and F. Golshani

In the dynamic computer vision literature there are general models for
object motion estimation and representation, as well as domain-restricted
models. A general architecture for the analysis of moving objects is proposed
by Kubota et al. [1993]. The process of motion analysis is divided into three
stages: moving-object candidate detection, object tracking, and final motion
analysis. The experiments are conducted using human motion. Another ap-
proach to interpretation of the movements of articulated bodies in image
sequences is presented by Rohr [1994]. The human body is represented by a
three-dimensional model consisting of cylinders. This approach uses the
modeling of the movement from medical motion studies. Koller et al. [1993]
discuss an approach to tracking vehicles in road traffic scenes. The motion of
the vehicle contour is described using an affine motion model with a transla-
tion and a change in scale. A vehicle contour is represented by closed cubic
splines. We make use of the research results in all these domain-specific
motion analysis projects. Our model combines the general area of motion
analysis with individual frame (image) analysis.

In case of video modeling, the video footage usually is first segmented into
shots. Segmentation is an important step for detection of cut points which can
be used for further analysis. Each video shot can be represented by one or
more key frames. Features such as color, shape, and texture could be ex-
tracted from the key frames. An approach for automatic video indexing and
full video search is introduced by Nagasaka and Tanaka [1992]. This video-
indexing method relies on automatic cut detection and selection of first
frames within a shot for content representation. Otsuji and Tonomura [1993]
propose a video cut detection method. Their projection detection filter is
based on finding the biggest difference in consecutive-frame histogram differ-
ences over a period of time. A model-driven approach to digital video segmen-
tation is proposed by Hampapur et al. | 1994]. The paper deals with extracting
features that correspond to cuts, spatial edits, and chromatic edits. The
authors present an extensive formal treatment of shot boundary identifica-
tion based on models of video edit effects. In our work, we rely on these
methods for the initial stages of video processing, since we need to identify
shot boundaries to be able to extract meaningful information within a shot.

One representation scheme of segmented video footage uses key frames
[Arman et al. 1994]. The video segments can also be processed for extraction
of synthetic images, or layered representational images, to represent closely
the meaning of the segments. A methodology for extracting a representative
image, salient video stills, from a sequence of images is introduced by
Teodosio and Bender [1993]. The method involves determining the optical
flow between successive frames. applying affine transformations calculated
from the flow-warping transforms, such as rotation, translation, ete., and
applying a weighted median filter to the high-resolution image data resulting
in the final image. A similar method for synthesizing panoramic overviews
from a sequence of frames is implemented by Teodosio and Mills [1993].

Swanberg et al. [1993] introduced a method for identifying desired objects,
shots, and episodes prior to insertion in video databases. During the insertion
process, the data are first analyzed with image-processing routines to identify
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995
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Video Content Classification . 413

Enite automata. Only video clips with g bisodes e reresented wsing

G h y well defined structure can
be represented. The model exploits the spatial structure of the video data
without analyzing nlf.lt‘t‘t motion. Zhang et al. [1994] presented an evaluation
fflnd a study (Jf‘ kn()w1(‘dgv-g{u1ded‘p'arsmg algorithms. The method has been
implemented for parsing of television news, since video conte
possible when one has an a priori model of a video’s structure.

A_pnther system, imple:{nented b‘\;' Little et al. [1993], supports content-based
retrieval and pla_\'h:u_-k, Phlu‘_v define a specific schema composed of movie,
scene, un(‘i actor relations with a fixed set of attributes. Their system requires
manual feature extraction. It then fits these features into the schema.
Querying involves the attributes of movie, scene, and actor. Once a movie is
selected, a user can browse from scene to scene beginning with the initial
selection. Weiss [1994] presented an algebraic approach to content-based
access to video. Video presentations are composed of video segments using a
video algebra. The algebra contains methods for temporally and spatially
combining video segments, as well as methods for navigation and querying.
Media Streams is a visual language that enables users to create multilayered
iconic annotations of video content [Davis 1993]. The objects denoted by icons
are organized into hierarchies. The icons are used to annotate the video
streams in a Media Time Line. The Media Time Line is the core browser and
viewer of Media Streams. It enables users to visualize video at multiple time
scales simultaneously, in order to read and write multilayered, iconic annota-
tions, and it provides one consistent interface for annotation, browsing,
query, and editing of video and audio data.

The work presented here follows from a number of efforts listed above.
Specifically, we use low- and intermediate-level motion analysis methods
similar to those offered by Allmen [1991] and others. Our object recognition
ideas have been influenced by the work of Jain and his students [Gupta et al.
1991a; 1991b], Grosky [Grosky and Mehrotra 1989], and the research in
image databases. Several lines of research such as those in Little et al.
[1993], Swanberg et al. [1993], Zhang et al. [1994], and Weiss [1994] provided
many useful ideas for the modeling aspects of our investigations. An early
report of our work was presented in Dimitrova and Golshani [1994].

nt parsing is

3. MOTION RECOVERY IN DIGITAL VIDEO
In this section we describe in detail each level of the motion analysis pipeline.
At the low-level motion analysis we start with a domaiq of mgtmn }:ect_ol‘S-
During intermediate-level motion analysis we extract motion trajectories that
are made of motion vectors. Each trajectory can be thuugl}t of as an.n~tuplt;] Ot_‘
motion vectors. This trajectory representation i_s a basis for various other
trajectory representations. At the high-level r-notton an;
activity to a set of trajectories of an object using domati

alysis we associate an
n knowledge rules.

3.1 Low-Level Motion Extraction: Single Macroblock Tracing

In MPEG, to encode a macroblock in a predicted or a bidisectional frame, we

. hen
first need to find the best matching macroblock in the reference frames, the

ctober 1995.
ACM Transactions on Information Systems, Vol. 13, No. 4, October

Canon Ex. 1055 Page 17 of 45 |




414 . N. Dimitrova and F. Golshani

find the amount of x and y translation (i.e., the motion vector). and finally
calculate the error component [Patel et al. 1993]. The motion vector 18
obtained by minimizing a cost function that measures the mismatch between
a block and each predictor candidate. Each bidirectional and predicted frame
is an abundant source of motion information. In fact. each of these frames
might be considered a crude interpolation of the optical flow. Thus, the
extraction of the motion vectors of a single macroblock through a sequence of
frames is similar to low-level motion analysis.

Tracing a macroblock can continue until the end of the video sequence if we
do not impose a stopping criterion. We have a choice: to stop after a certain
number of frames, stop after the object (macroblock) has come to rest, stop if
the block comes to a certain position in the frame. stop if the macroblock gets
out of the scene. or stop if the macroblock is occluded.

The algorithm for tracing the motion of a single macroblock through one
frame pattern for MPEG encoding is given in Figure 2. In Dimitrova [1995],
we describe object motion tracing for video databases in more detail. The
algorithm takes the forward and backward motion vectors that belong to a
particular macroblock and computes the macroblock’s trajectory. The algo-
rithm computes the macroblock’s position in a B-frame by averaging the
positions obtained from: (1) the previous block coordinates and forward
motion vectors and (2) next (predicted) block coordinates and the backward
motion vector. The position of a macroblock in a P-frame is computed using
only block coordinates and forward motion vectors. If during the tracing
procedure the initial macroblock moves completes out of its position, then we
have to extract motion vectors for the new macroblock position, which implies
that we are continuing by tracing the macroblock whose position coincides
with the (x, y) coordinates of the initial macroblock. In the rest of this article,
we will use 7 to indicate the set of all possible motion vectors.

3.1.1 Trajectory Description. Various motion retrieval procedures have
specific requirements for retrieving desired objects. These requirements de-
pend on the characteristics of the retrieval which may be flexible to strict.
The choice of trajectory representation may dictate the manner in which
retrieval is conducted. Given a set of motion vectors for a macroblock, a
number of mechanisms exist for trajectory representation. Below we present
a sample list:

(1) Point Representation: A trajectory in this case is a set of points repre-

sented by the absolute or relative frame coordinates of the position of the
object, say

[(x].y,).(:x.z,yz),...,(x”__y”)}

where (x,, y,) is derived by projecting (x, y, i) onto the image plane.
(x, y, 1) denotes the position of an object, i.e., (x, y), at time instant i.
(2) Curve Representation: A parametric B-spline curve P(y) can be computed
that passes through each of the trajectory points (x;, ¥,) (see Farin [1990]
for a detailed discussion). The first step involves generating a parameteri-

ACM Transactions on Information Systems, Vol. 13, No, 4, October 1995,

Canon Ex. 1055 Page 18 of 45




Video Content Classification

415
Given: frames F = Fi i =0,..,,n;
motign vectors V = (.fmx(i),fmy(i)}.(bu(i) Jbmy(i)) i= 1,n
initial block coordinates bx, by
Initialize R = @,
for i=1,esy T
if F(i) # I then
if F(i) == P then
if previousType ==
cx = bx - fmx(i)/2;
cy = by - fmy(i)/2;
nextblockx = cx; nextblocky = cy;
if previousType == P
givenx = futurex;
giveny = futurey;
futurex = futurex - fmx(i)/2;
futurey = futurey - fmy(i)/2;
if F(i) == B then
ex={((givenx-fmx(i)/2)+(futurex-bmx(i)/2))/2;
cy={(giveny-fmy(i)/2)+(futurey-bmy(i)/2))/2;
if block(bx,by) N block(cx,cy) == @ then
extract(mx(i),my(i)) for (ex,cy)
R = R U {(mx(i),my(i))}
if F(i) is the last in a group of B frames before a P frame
cx = futurex;
cy = futurey;
if block(bx.,by) N block(ex,cy) == @ then
extract(mx(i),my(i)) for (cx,cy)
R = R U {(mx(i),my(i))}
i F (1) == T then
(bx,by) «— bestMatch(bx,by) in I
if stopping criteria == true, then
return R;
endfor
Fig. 2. Algorithm for tracing the motion of a macroblock.
zation or knot sequence u, < Uy < = S Up. A commonly used approach

employs cumulative chord lengths defined by the points (x;, ¥,)- The next
lving a tridiagonal linear system of equa-
tions whose unknowns are the control points d; of the B-splings -N,Uf]-
The linear system depends on the X, ¥, and u, values. This l}near
system can be efficiently solved in #(n) time using standard techniques
for tridiagonal matrices. The B-spline curve has the form:

step involves setting up and so

P(u) = ¥ d;N{u),

and it satisfies the following:

(a) Plu;) = (x;, ¥;);

ACM Transactior
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(b) P(u)is a piecewise cubic polynomial, i.e,, for u, < u < Uiy, P(u)isa
polynomial of degree less or equal to three; and
(c) the first and the second derivatives of P(u) are continuous.

(3) Chain Code Representation: We develop a piecewise linear approximation
to the trajectory using a set of orientation primitives. Given a set of
discrete trajectory orientation primitives, we use a zig-zag line represen-
tation of the trajectory to generate the code. Another way of viewing this
approach is derived from a neighborhood matrix with each neighbor coded
to correspond to the primitives in the figure [Schalkoff 1989,

(4) Differential Chain Code Representation: Each segment is coded relative to
the next line segment using the direction (left or right) and the length.
For example, we can have a code for: right shorter—1. right equal-2, right
longer-3, left shorter—4, left equal-5, left longer—6 [Schalkoff 1989]. This
scheme is useful for approximate matching of object trajectories. It is a
rotation-, scaling-, and translation-invariant scheme.

Figure 3 illustrates these methods used for the representation of an
arbitrary movement. Figure 3(a) is an exact coordinate representation; 3(b) is
a B-spline curve representation. Figure 3(c) represents the chain-coding
process, and 3(d) shows the differential chain code representation of the
trajectory.

Note that in the coordinate representation and B-spline and chain code
representation schemes we have a way of representing zero motion, i.e., when
the motion vector is a null vector. If the macroblock does not move over a
certain number of frames, the point will be repeated. In the B-spline repre-
sentation, the knot (i.e., the control point) will have a multiplicity greater
than one. In the chain code representation, the zero motion is represented by
the code “0.” So, in all these representations the trajectory is not only a
spatial representation of the object’s motion (the path) but also a temporal
characterization of the motion. By keeping track of the zero motion we are
able to describe stationary objects as well.

The diversity of the trajectory representations makes the querying process
more flexible. The actual method of representation does not have a significant
impact on the querying process as long as modeling, representation, and
querying are all done in the same fashion.

3.1.2 Trajectory-Matching Functions. Applications such as automated
surveillance may require retrieval of either video sequences or objects con-
tained in these sequences based on the object trajectories. For example,
queries of the type “retrieve objects that have a motion trajectory whose point
of origination is the main gallery door and terminate at the Juan Miro's
picture on the opposite wall” may help in the identification of the person who
damaged the picture.

Matching functions used for motion retrieval depend on the method em-
ployed for trajectory representation, as described below.
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e y PR I ¢
(a) e o P
G
(el)
Primitive e //" ? \\;/ ¢ \
Code —_—

(d1)

Relative right right right  left left  left
condition shorter equal longer shorter equal longer
—_

Code | |

3 4 5 6

result: 36343

Fig. 3. Alternatives for object motion representation: (a) motion trajectory; (b) B-spline curve
representation; (c1) chain-coding scheme; (c2) chain code representing the trajectory; (d1) differ-
ential chain-coding scheme; (d2) resulting differential chain code.

— Exact matching function that uses absolute frame coordinates (least-square
minimization problem). This matching function has two variations:

(1) exact start position and exact trajectory match
(2) any start position and exact trajectory match.
— Exact matching function that uses relative coordinates. This function is
used when the initial position of the object is not important.
— Curve comparison based on the curve-fitting approach used for interpo-
lated trajectory representation.
— Approximate matching that uses chain code:
(1) exact start position and inexact trajectory match
(2) any start position and inexact trajectory match.
The chain code matching translates the problem of trajectory matching
into a pattern-matching problem.
— Qualitative matching that uses differential chain code.
The result in each case is a similarity factor between the input trajectory
and a target trajectory in the set of object trajectories.

3.2 Intermediate-Level Motion Analysis

A macroblock trajectory is the spatiotempor - X
S . - extr object

block’s motion. These trajectories are further us?e(.i g;nd.emzcz;% ob;ect

motion. This process is different for rigid an,d nom‘llgTd‘ ; ‘le:.;,d If the object

consists of one solid part to which motion trajectory 1s a.bs.(:;li,' c.ts with inde-

consists of several parts which themselves represent rigid objects

jon S, 3 Qctober 1995.
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pendent movements, then, such a nonrigid object is represented as a set of
rigid objects with their respective trajectories. At the highest level of motion
analysis, we associate “activities” with the ohject trajectory representations.

Rigid-object motion is represented by a single trajectory. The trajectory is
one common representation of the trajectories of all the component macro-
blocks. Finding the most-representative trajectory is not a simple task. In the
simplest case we can take the trajectory of the object centroid as the reference
object trajectory. A more-complicated case occurs if we decide to create a
common trajectory by processing all of the macroblock trajectories or by
examining only a subset of all macroblock trajectories.

Mean averaging of all trajectories of the macroblocks of the object is an
alternative to choosing the object centroid’s trajectory. The averaging of the
trajectories in the exact form is pointwise averaging of the trajectories at
each frame.

The following two assumptions make the object motion recovery feasible:

(1) Integrity of Objects: We assume objects are rigid or consist of rigid parts
connected to each other. We do not consider situations in which objects
disintegrate. This assumption is important because we only use object
trajectory representation.

(2)

Motion Continuity: Each macroblock under consideration has continuous
motion. This assumption is important for the trajectory representation,
since every trajectory segment represents continuation of the previous
trajectory segment.

Averaging trajectories is used for determining a representation of a non-
rigid body motion. For nonrigid objects, we must determine the number of
trajectory clusters and their locations. Each cluster corresponds to a single
coherent motion that represents a moving part (i.e., a rigid object). We use a
hierarchical clustering algorithm (due to Duda and Hart [1973)) for determin-
ing the number of rigid object parts. Initially, the algorithm begins with
clusters that contain only one trajectory each. At each subsequent step, we
attempt to merge those neighboring clusters that have a similar trajectory.
Individual trajectories, in this case, will be averaged to compute a trajectory
for the extended cluster.

An example of a traced object through 20 encoded frames using the
IBBPBBBP frame pattern is given in Figure 4. Figure 4(a) contains first.
middle, and last frames of a video Sequence capturing a water skiing scene.
Figure 4(b) contains the motion trace for the moving yacht. The axes in
Figure 4(b) correspond to the x and Y axes of the video frames where the
(0, 0) coordinate is at the top left corner.

Figure 5 shows six out of the 60 frames of the “Walfky” video sequence
used for our next experiment. The object being traced is a small toy which
performs very uneven motion. Figure 6(a) shows how the tracing of a macro-
block progresses when every frame in the sequence is used. The frame
pattern IBBBPBBB is used for video encoding when macroblock trajectories
are extracted in Figure 6. This experiment shows that the macroblock tracing
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Fig. 4 I'racing a moving yacht. (a) first, middle, and las

trace of the yacht
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Frame 1 Frame 31

Frame 41

Frame 21 Frame 51

Fig. 5. Snapshots from a video sequence

is possible when the objects exhibit Jerky motion. As expected the trajectory is
not only curved but also has the properties of a zig-zag line. In this case the
macroblock with coordinates (14, 14) is traced. In terms of absolute frame
coordinates, these coordinates correspond to (112, 112).
tracing of the same video sequence in the case
used for encoding and tracing.

| We use the notation T to indicate the
‘ member of T is a sequence' whose r
iLe,Vt e T(t: 4> 1), where 4

Figure 6(b) shows
when every other frame is

set of object trajectories. Each
ange 1s the set of all motion vectors =
is the set of natural numbers. In other words

1 : 2
A sequence is simply a function whose domain is the natural numbers

ACM Transactions on Information Systems, Vol. 13, No. 4 October 1995

Canon Ex. 1055 Page 24 of 45




Video Content Classification . 421

(a) Trace of the macroblock (14,14) using all frames

nr-T__
| ‘plot.bxt' —
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|
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(b) Trace of the macroblock (14,14) using every other frame

“plottwo.txt” —

80+

100 110 120 130 140 10 L 12 e

- 3 ; every other
Fig. 6. Traced trajectories in the Walfky video sequence. (a) all frames; (b) only ever)

frame is used.
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each object trajectory is a sequence of motion vectors identifying macroblock
displacement for the components of the object. As discussed previously, the
actual appearance of the members of 7" depends on the choice of the repre-
sentation scheme.

3.3 High-Level Motion Analysis

At the highest level of motion analysis, we associate domain-dependent
“activities” with the object trajectory representations. An activity can be
recognized by the system based on a predefined set of procedures, or it can be
designated by the user. We realize that recognizing activities is one of the
most-difficult tasks in any vision system. Such undertaking requires informa-
tion on:

(1) Relative positioning between rigid subparts
(2) Relative timing of the parts movements
(3) Actual and perceived interaction of object parts.

The two main problems in recovering high-level motion representation are
(1) the fact that multiple sequences are occurring simultaneously (for exam-
ple, arm movements and leg movements in human motion) and in a coordi-
nated fashion and (2) tempo changes are global (in the case of the human
body, the changes apply to all four limbs and occur slowly).

An activity involves both spatial and temporal representations of the
objects of interest. We must identify the object components (shape and other
features) and their respective trajectories (as we did in the previous section)
at the intermediate-level motion analysis and then assemble activities. The
temporal information is needed for discrimination of activities of the same
type, for example, strolling, walking, hurrying, etc. After assembling object
activities, based on additional knowledge, we can infer event information.

We use . to symbolize the set of activities. We assume the existence of a
knowledge base .# whose contents include all the necessary rules, con-
straints, and the procedures for deriving activities from lower-level descrip-
tions.

Each member a of & is a “composition” of ty, ty,...,t,, where for every
1 <i <n we have:
=t ichleant
— t; satisfies every constraint in ¢,,» where ¥ .7 represents the con-

straints governing the activity a.

High-level event representation and manipulation call for the use of either
temporal Petri nets, an event-hased approach to temporal objects, or other
event representation and manipulation schemes,

3.4 Spatiotemporal Hierarchical Representation

We use a semantic multiresolution hierarchy for spatiotemporal representa-
tl?n (Figure 7) because it helps video analysis at various resolution levels,
with coarser resolutions used for high-level event /scenario descriptions. The
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Fig. 7. Multiresolution hierarchy for spatial and temporal video representation.

advantage of multiresolution representation is that it offers a mechanism to
make the trade-off between the competing demands of fine spatial /temporal
resolution and low computational complexity. The idea of representational
hierarchy for still images has been utilized by several image data models
[Grosky and Mehrotra 1989; Gupta et al. 1991a; 1991b].

At successive time intervals, a frame is inserted at the base of the spatial
hierarchy, and the features are computed for the next levels. The motion
features are computed starting at the frame, and the temporal part of the
hierarchy is filled with the appropriate motion descriptions. Motion analysis
starts with the motion vector recovery (bottom of the temporal hierarchy,
Figure 7). At the next level, individual macroblock trajectories are traced. At
the intermediate level, rigid-body motion is recovered, followed by nonrigid-
motion recovery. Finally, at the highest level of motion analysis, description
of activities is derived from previously computed motion features (top of the
temporal hierarchy, Figure 7). A )

The temporal part of the hierarchy can be used for various kmds. of motion
retrieval ranging from full-object trajectory-based matching to smgle-r_‘nacl'ﬂ-‘
block trajectory matching. Since we provide exact and. inexact traJect(?{'}-
representation, our retrieval functions can take inputs n terms Glr precise
spatial coordinates, orientation coordinates, and qualitative descriptions.

4. INFORMATION FILTERING AND DIGITAL VIDEO

heme introduced in previous sec-
d retrieval of video sequences.
motion) part of the

The motion-tracing and representation sc
tions serves as a basis for the classification an "
Video sequences may be retrieved using the tempora
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hierarchy or the combination of spatial and the temporal representations,
The idea of this representation is that we can compute the spatial and
temporal features independently of each other. We emphasize that temporal
features coupled with spatial features are important in discriminating and
classifying video sequences.

Like other knowledge representation cases, we do not attempt to have a
universal system that can recognize and distinguish all possible objects. Such
general-purpose (i.e., domain independent) representations have been shown
to be too complex for present technologies. Thus, we assume that the domain
of interest is known a priori and that the video classification system will be
confined to working on only those objects. Consider a domain D. called the
“scope,” containing all objects of interest. Formally, the elements of D are
defined as object-oriented structures with potentially complex internal com-
ponents. Similar to any object-oriented representation, the user can identify
the objects of D by their attributes, such as object ID, image descriptions,
name, and shape (or convex hull), or a combination of these. Thus. the user
may provide any available information on any of the attributes of desired
object (for example, object ID, or shape together with a partial deseription),
and the system will attempt to identify the intended object. Although we do
not make any assumptions on how the elements of D and their attributes are
represented, we offer the following example as an indication of a typical
structure.

Example 4.1. A walking human may be represented as a moving object
a, = (0,, m,, v,) where

0, = (category : human, convexHull : o, : skeleton : O,
parts : {head : 0, ,torso ;o } ks

my = (trajectory : 2467332, activity : walking), and

vy = (v# :234, firstFrame : 45, lastFrame - 485),

Similarly, the head and torso also have their spatial and motion descrip-
tions.

In a database containing only “still” images, a correspondence table of the
form (O, )—where O stands for the object, and I stands for the image—will
suffice. In a video database, we have the added parameter of temporal
changes. Although the motion of each object can be modeled as an attribute of
the object, say, “dog, big, brown. running,” it is more appropriate to separate
objects and their motions as two different parameters. Note that if motion is
considered as just another attribute of the object, then in case the same object
appears more than once, each time with a different motion. we would need
multiple, different entries into the database. For example, there would be
multiple entries for the big brown dog: running right, running left, running in
circles, and jumping. 7

Videg Sequences are identified by objects present in the scene and their
respective motion. The goal of the motion analysis is to extract activity and
event representation. An index entry of an activity in a video sequence has
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the following form:

(0. M. V) = (objectRep, motionRep, vid)

— objectRep: an object represented by its extracted features (convex hull
object skeleton, centroid, texture, set of macroblocks covering the ob'u t’
etc.; see left side of Figure 7). An object representation might include ;Zit’
of object representations of the constituting parts (e.g., objects that repre-
sent a human figure include head, torso, arms, and legs object representa-
tions).

motionfep: an object trajectory specified by objectRep, velocity, trajectory
curvature, torsion, and activity description (see right side of Figure 7).

— uvid: identity of the video subsequence to which an object belongs to: vid
consists of (viSeqld, firstFrame, lastFrame)

(1) viSeqld is a video sequence identity which is unique for a sequence
across the whole video database.

(2) firstFrame: the first frame in which the specified object appears.

(3) lastFrame: the last frame in which the specified object appears.

4.1 Content-Filtering Operators

The OMV triplet is the basis for the query functions. There are many
possibilities for the selection of filters (in this context, query functions.) A
sample selection is presented below. These operators may be used in a
relational form, mostly in a table lookup mode, or may be embedded into a
more-elaborate query language, as presented in Section 4.2. Recall that $(A)
is used to denote the powerset of the set A, i.e., the set of all subsets of A.

V_Seq:0 x M —»2(V)

This function takes any description that can be provided at any level of the
spatial hierarchy. The input might be a characterization of the object in
terms of its bounding polygon, stick figure, a name, or concept. At this point
we need to emphasize that we use the properties of the object-oriented nature
of the representation of the objects. For example, the expression

V_Seq(O_category = pet,(Activity = walking, Trajectory = t,))

translates into “retrieve all the video sequences in which a pet _wa]ks and
» The answer will include all the objects (animals) that
ats, dogs, fish called Wanda, ete. It is important to
{ k in an informal way and
dow-based

makes a trajectory ¢,.
are classified as pets: ¢
note that here we discuss only the formal framewor ] ,
that these functions are implemented within an ~irltE!_I"ElCt“’e win
graphical query interface which we discuss in Section e
The function
Object—motion: O X V->2(M)

ar video sequence and returns a

takes e e gt d a particul ;
akes any object description an p obi ek Tk rdedts Jotect wlich

set of motion descriptions related to that
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objects performed a particular type of motion, i.e., the agent of the action, we
use a function of the following family:

Agents: M X V - .22(0).

The next function is used to get a detailed description of all the objects and
their respective motions in a video sequence:

Describe_Video : V — 22(0 x M).

If we just want information about the spatial characteristics of objects in a
sequence, we use the function

Objects : V = #2(0).

This is equivalent to the “agents” function where the first argument is
unimportant. Thus, given a v, € V, Objects(v,) = Agents(any, v,).

The above functions allow for inexactness, and by default, they return
results that are approximately similar to the precise answer. To make the
operator exact, we use a higher-order operator that converts the query
function in the desired manner, in this case, makes it exact. There are several
types of these operators, e.g., exact, partial, and similar.

For making the retrieval exact, the symbol ! is placed in front of the query
function. For example, “! Agents” returns only objects that have exactly the
same motion description as the one given in M. Similarly, “!Object_motion”
returns only motion descriptions of objects whose spatial characteristics (for
example, exact bounding polygon, texture) match the spatial characteristics
of a given object.

The # symbol placed in front of the query function is used for partial
retrieval. Partial retrieval means that any of the motion or temporal charac-
teristics of the given object should match. For example, “#Agents” will return
all objects that match at least one of the motion descriptors.

4.2 The Query Language

The retrieval functions introduced in the previous section are embedded into
the framework of a multimedia functional query language called EVA, de-
scribed in Golshani and Dimitrova [1994]. EVA is the interface to a multime-
dia database system capable of storage, retrieval. management, analysis, and
delivery of objects of various media types, including text, audio, images, and
moving pictures. The language deals with the temporal and spatial aspects of
multimedia information retrieval and delivery, in addition to the usual
capabilities provided by the ordinary database languages. EVA has five
groups of operators, namely: operations for
editing) the multimedia information, operations for screen management,
temporal operators, operators for specifying rules and constraints, and aggre-
gation (computational) operators. EVA is an extension of a functional qrurel‘}’
]apguage whose notation is based on that of conventional set theory. Both the
original Ianguage.and its extensions are formally defined in an algebraic
framework. EVA is object oriented and supports objects, object classes, at-
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995,
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tributes and methods of objects, and relationshi
been ported onto several different platforms,
EVA provides a wide collection of operators that deal
scanned images, audio, and video. In addition, there are
penrl(-nt operators such as set ope
of the general operations is: the se

ps between objects, It has

with text, graphics,
. _ numerous type-inde-
rators like union and set membership. One

. ; set construction operator. Generally, this has
the form (/(x) | P(x)}, where f(x) denotes the desired output objects, and
P(x) denotes the retrieval predicate which has to be true for those obje::ts.

— set operation symbols: isin, 1sSubsetOf. is i i
tinn‘](hI‘f'(-r'c'tlc'r;. Union, Intersection, no&)?TrUESUbsetOf’ PP
— equality operators: is, isnot.
— temporal synchronization ( for all media types): sim, before, meets, equals,
starts, at, finishes.
spatial composition (applied only to graphics, images, and video): left,
right, bottom, up, showln, arrange.
— media-dependent operation symbols include
—text: appendPar, cutPar, eqPar, keyword, isKeywordIn, parSim.
—graphics: insPatch, pictureSum, fill, domain, colors, getPatch, getColor,
restriction, scale, translate, dot, lineSeg, box, coincident, contains, dis-
joint, visible, bounded.
—images. shift, zoom, superimpose, overlay, imageSim.
—audio: intensity, extract, audiolns, audioLen, audioSim.
—uvideo: videoLen, pace, videoClip, videoIns.
—integer operation symbols: +, —, *, <, >, <=, >=, min, max, ave,
sum, prod.
—string operation symbols: concat, strLen.

—logical operation symbols: and, or, implies, not.

To demonstrate the capabilities of EVA and how queries are copstructed.
we present a simplified example. The first part of the 'example will derpon-
strate the language without the OMV extensions. The v1d§30 content retrieval
extensions will be discussed once the appropriate distinctions are made. A

We present the schema of a multimedia database system and then prov1d‘e
a few sample queries. The schema is represented as a graph whose npdes are
object classes (in algebraic terms, sorts) and whose ares are the .I'.elatl().l'lshlps
between object classes (represented as functions). Readers familiar with the
algebraic framework would recognize this as a many-sorted algebra. ot

Ilustrated in Figure 8, the schema models a col]gge basketballAm; m’lrixt
database. The basic types in this system are String, Integer, ];1 11'(:1 hte(i
Video, while Player and School are user-defined data types. Th?’d]g c:)itent
portion appeariﬁg in dotted lines relates to the extension for video
retrieval described in Section 4.3 .

The main difference between these basic and user-deﬁned ty;)esnls Zk;ﬁ;tr'lh:
former constitute the npplicatinn-independent con_st1t.ufents]0 ali;{tion .
whereas the user-defined types depend on each individual app :
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attributes of objects and their rel

N. Dimitrova and F. Golshani

< Motion i E
S Covid
: . . ‘
*Object ! \ nteger
..‘ —I ! 2
L heighpof
Video
Y g¢
."I.‘
g ey . o
teant members of
_ Player A A School
mlervie of
posinom of
e ; J 3 teamName
Audio ks ' name _of 1 < 5 .
e Text _( String &
Fig. 8. Basketball schema
Figure 8, all object types, both basic and user defined. appear in ovals. The

ationships that are captured by arrows are

the following functions:

name_of : Player
position _of : Player
state _of : Player
interview : Player
playingHighlights : Plaver
height_of : Player
age_of : Player
plays_for : Player
teammembers_of : School
sname_of : School
teamName _of : School
coach_of : School

> String
» String
» Text

> Audio

» Video

> Integer

> Integer
» School
» A(School)

» String
> String

» String

Here are some queries on this database.

(1) List all guards who are taller than 190cm.

{name_of (P) | position_of (P)is“Guard” and height _of (P) 190}

This is a simple query on the non multimedia portion of the database. P is
a variable of type Player. The result is a list of names of players who
satisfy the given conditions.
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(2) Play video clips of all centers, and simultaneously display their statistics
{(name_of (P), stats_of (P))sim playingHigh[;'ng_of(p”
position_of (P)is“Center”)

While variable P ranges over the elements of type Player, whenever the
condition on position is satisfied, the name, statistics, and i:he correspond-
ing video clip of the qualified player are displayed. “sim,” standinpg for
“simultaneously,” is one of the synchronization operatm:s that ensure
proper semantics for presentations.

(3

Display the statistics of all Phoenix State University guards, and show
their highlights before playing their interviews.

{(name of (P), stats_of (P))sim( playingHighlights_of (P)
beforeinterview(P))| plays_for(P)is“PhoenixStateUniversity”and
position_of (P)is“Guard”)

The result of this query is that, for every guard of the appropriate school,
while their name and statistics are displayed, their video clip is presented
first, and then their respective interview is played. The term “before” is
another synchronization operator.

4.3 Querying Video Contents

Note that in the above queries, we treated Video, Audio, and Text as basic
types in a similar manner to the type Integer, i.e., as objects whose contents
can be displayed or presented, but no further specific characteristics are
known about the contents. Our motion recovery algorithm and specifically the
OMV functions enable us to treat Video in a different way, as described
below.

Grosky's [1994] categorization makes a distinction between the physical
basic data types and the conceptual data types. He adopts a generic model Fo
represent content-independent and content-based properties of mgltimedla
objects. Content-independent properties are related to the physical data
object itself (uninterpreted data) as well as synchronization and storage
information. Content-based properties refer to relationships between nonmul-
timedia real-world application entities and multimedia objects. The content-
based properties associate semantics to the object at various levels. 1

A binary object containing the video stream that corresponds to the playing
highlights of a particular player is an instance of ph.yszcal data type.t;I‘he
extracted spatial and motion characteristics are stored in the C(_JnCePanl ?}:ﬂ
type. The queries on the content of the video data are directed to the
conceptual video data type. : b

The conceptual video data type is molded from the spatloten?por;hhlgﬁi\!
chy presented in Figure 7 using the ObjECt-mOtlon-V'lC'le.O strluctme;s., tem o
retrieval functions augment EVA’s retrieval capabilities Sl,n}fe_tt e\;\ml; o
physical object Video into a conceptual one, i.e., an object with 1ts 0 p

/ ctober 1995.
ACM Transactions on Information Systems, Vol. 13, No. 4, October

Canon Ex. 1055 Page 33 of 45




R X NN R ey Tev e

430 . N. Dimitrova and F. Golshani

set of properties that can be incorporated into queries for more-precise
questions. The extension to the schema which enhances the video type to be a
conceptual type appears in the dotted line in Figure 8. Below is a list of
operators that augment the retrieval capabilities based on the OMV retrieval
functions:

— Function Composition: given functions f: X - Y and g:Y — Z. the com-
position is fe g(x) = g(f(x)). For example, Given an object (any charac-
teristic) in a video sequence v, retrieve objects in another video sequence
v, which have similar motion.

T TR S L SR T |

Agents(Object _motion(o,,v,),v,)

— Temporal Combination Functions: flg where 0 € {before, meets, simulta-
neously, starts, finishes}. Although the same syntax is used, these should
not be mistaken for the synchronization operators. In this case, no confu-
sion 1s expected since the context would determine the designation of the

| operator. An example of usage for this type of operator is the query

j “retrieve all the sequences in which a tall person is waving while the

president walks.”

— Spatial Combination Functions: fég where ¢ € {next, behind, inFront, left,
right).

Using the above combinators and the OMV structure. many new types of
i queries that refer to the contents of video sequences can be specified. Specifi-
. cally, we can express queries that refer to the contents of video sequences.
Examples include the following:

(1) “Retrieve all the video sequences with the longest successful shots.” This

! query translates into “retrieve all the video sequences for which the
length of the trajectory of the ball is maximum.”

(2) “Spell out all the details of movements of the players whose height is
greater than 200cm.” This query is good for analyzing the pattern in
which certain players move and achieve the score

o s e

(3) “Find the video sequences in which the player is wearing a blue shirt.”
The “blue shirt” is inferred using image analysis.

The target language is a visual one that allows for inclusion of spatial
properties (sketches) and exact and inexact images. The notation presented in
this article is the basis for the visual query interface [Dimitrova 1995;
Michael 1994].

5. AN ARCHITECTURE FOR VIDEO CLASSIFICATION AND RETRIEVAL

In the previous sections we introduced a model for video classification which
exploits motion recovery and representation. In this section, we discuss a
general architecture for video database retrieval based on the model. The
proposed architecture, as presented in Figure 9, consists of:

— Insertion module
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DERIVATION MODULE
A INTERACTIVE QUERY MODULE

Events
Attributes

Visual
representations R
2 N
1= —_— Presentation
Specialized Customized )
‘ manager
Interpretations |
|

=— Complex rules

uary
Constraints | ‘ il

jomain knowledge

Generic activitiey
descriptions | |

e |

e —

— Extract trajectorics

— |

Detect motion

=
e = i) {

~T \
EEEEEEEEEE

Incoming Yideo

INSERTION MODULE

Fig. 9.  An architecture for video classification and retrieval.

— Derivation module
— Interactive query module

— Video storage server.

The insertion module is responsible for initial analysis of the incoming
video signal. It consists of a suite of operators for image enhancement,
operators for the extraction of basic spatial properties, and operators for
motion detection and the extraction of motion trajectories. With respect to the
spatiotemporal hierarchy, this module is an implementation of the operators
between the lowest level of the hierarchy (raw physical data]. to the mtgrme-
diate representation. Currently, the functionalities for spatial analysis are
supplied by the Khoros computer vision environment [BB§UYE et al. 1990].
The extraction of image features, finding regions, and thinning operators all]:e
performed by calls to Khoros functions. Although features are automatically
extracted, the process of feature selection is manual. For e;fampl.e, Wef_';‘::;
apply an operator for image segmentation and find the regions 1n ab”th
frame. However, the selection of regions of importance 18 decided by the

i S N ctober 1995
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application designer. The automation of this whole process is possible for
strictly limited application domains such as industrial monitoring, domain-
specific video editing, camera surveillance, and others. The motion detection
and tracing operators are also part of the insertion module. The implementa-
tion of the motion-tracing algorithm is given in Section 5.2.

The derivation module consists of operators for translation of the extracted
features into meaningful descriptions for retrieval. Each application typically
defines its own set of meaningful entities and events and has its own
interpretation of the same. In our video model and language, the extracted
properties are represented by predicates. The derivation module provides the
mapping between the visual properties extracted form the video sequences
which are geometric by nature and the algebraic representation which is used
for querying.

The query module consists of a visual front-end for query composition, a
visual query parser, a schema designer, and a presentation manager. The
schema designer and the visual front-end are incorporated into the visual
query language VEVA [Dimitrova 1995]. The VEVA prototype serves as a
testbed for development of new algorithms for video /image segmentation,
video parsing, feature selection, and classification. The prototype has been
implemented in Tel/Tk [Osterhout 1994] with the added image and video
widgets on top of an existing MPEG encoder [Rowe and Smith 1992].

The video storage server is envisioned to be a disk array serving as a
repository of the video sequences. At this point we use a simple file system for
storing a limited number of MPEG compressed video sequences.

5.1 The Visual Query Language VEVA

Spatial and motion characteristics of objects, derived from images and video
sequences respectively, are inherently visual. In this section. we outline the
design of a multimedia database language which has well-defined semantics
in both character-based and icon-based paradigms.

Defined within the algebraic framework described above, VEVA is a visual
query language that provides all the necessary constructs for retrieval and
management of multimedia information. The basis for the language 1s a
schema (algebraic signature) which contains entity types (both user-defined
and application-independent types) and the associated operators [Golshani
and Dimitrova 1994]. By using these operators, the user can visually specify a
query for the desired objects in a simple way. VEVA has a formal grammar
with which the set of acceptable expressions can be generated. The grammar
for the visual language VEVA is given using visual rules in the style of a
picture description language which was developed within the syntactic ap-
proach to pattern recognition [Schalkoff 1989]. The grammar rules contain
nonterminal and terminal icons. The rules are given as graph-rewriting rules
where the left-hand side is a nonterminal icon, and the right-hand side is a
1g"r‘akph containing nonterminal and terminal icons connected with customized

inks.
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Parsing of visual expressions in VEVA is a process of determining the
structure of the workspace. Note that parsing is the first step of the VEVA
!anguagv processing, because lexical analysis is not necessary. All available
icon symbols can be drawn from the given pallette and connected by a set of
permissible links. Thus, every expression that is drawn is lexically correct.
The execution process begins by parsing the contents of the VEVA workspace.
The algorithm finds the top-level set expressions which may contain other set
expressions. Translated into visual terms, this algorithm finds the enclosed
visual expressions or other iconic elements within a given oval. The algorithm
calls the set evaluation procedure recursively for the sets that are contained
in it, until there are single sets with simple function-predicate expressions
left. The evaluated sets can be connected with temporal links which prescribe
the order in which the resulting objects should be presented by the presenta-
tion manager. If the evaluated expression contains temporal links, then the
parsed execution order is delivered to the presentation manager.

An example query is given in Figure 10. As we stated earlier, VEVA allows
for visual queries in which we can specify the path of a moving object. In this

example the input trajectory for the player is given as a smoothed trajectory.
10 will select those video sequences from the

The visual query given in Figure
ms, Val. 13, No. 4, October 1995.
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This window displays a set of movies
that you can choose from. If you click
on one of the movie icons, the
corresponding movie will be played in
the upper window.,

<=

Fig. 11. Results from the visual query. Courtesy of NBA Entertainment
repository in which the player’s trajectory is similar to the one drawn by the
user and display the name and the position of the player. The result of the
query is shown in Figure 11. The user can browse and play the selected video
segments.

Various models have been proposed for temporal synchronization. COMposi-
tion, and presentation in multimedia applications, for example, Buchanan
and Zellweger [1993] and Little et al. [1991]. On the other hand, a number of
models for content-based access of digital video has been proposed [Arman et
al. 1994; Bobick 1993; Rowe et al. 1994; Swanberg et al. 1993; Zhang et al.
1994]. However, a general formal model and a language
tation, composition, and querying of digital vide
the spatial properties of objects found in the

for content represen-
0 based on the temporal and
video sequences has not been
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Fig. 12, Macroblock motion extraction.

offered yet. Our video model and language VEVA attempts to unify the
presentation aspects as well as content representation aspects of multimedia
objects.

5.2 Implementation of Macroblock Tracing

The motion-tracing algorithm is a part of the derivation module in our video
classification architecture. We have tested our ideas by implementing the
motion-tracing and extraction algorithm under Solaris 2.3 using the MPEG
encoder produced by the Digital Video research team at the University‘ of
California, Berkeley. A functional view of the MPEG-based motion extract}on
is given in Figure 12. We have introduced functions for extraction_ of moty)n
vectors during the generation of P- and B-frames. We use the motion-tracing
algorithm to compute the macroblock trajectories.

The performance results are shown in Figure 13. We have t_ested our
motion-tracing algorithm by ranging the number of macroblocks being traced
from zero to all macroblocks. The input video sequence.is the standard 'tab]le
tennis sequence, which consists of 10 frames, each of size 352 by 2‘40 P:lxe Z
This sequence is a good performance test case, because 1t has background an
foreground motion. The encoding frame pattern is IBBBPBBBBP. Thlsdq\eaniz
that all the input frames are used for video encoding. If only engc}t_mi s
performed without any motion-tracing algorithm,.the topal ela]tpse:‘thrlnm 1
326 seconds (+ /— 0.05 seconds). With the motion-tracing agl:n e o
time increase is evident with the increase of the number of blocks. Starting

r 1995.
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Performance graph for low level motion analysis of the table tennis video sequence
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Fig. 13. Performance of object motion tracking

with one macroblock, we get elapsed time of 32.76 seconds for encoding and
tracing which is 0.16 seconds more than the previous case. As shown in
Figure 13, when the number of traced macroblocks increases up to 300, the
elapsed time goes up to 34.72 seconds. This shows that even if we keep track
of the motion of all the macroblocks we have a time increase of 6%.

The gain in MPEG compression is mostly achieved by exploiting temporal
redundancy. MPEG avoids coding the same block twice by storing/sending
over the displacement vector from the previous image. Thus, the basic
assumption is that the frame pattern used for MPEG compression is going to
contain P- and B-frames.

Our algorithm for motion tracing would have very limited application if the
stream to be encoded is using only I-frames. In that case. there the motion
algorithm cannot find any motion vectors to take advantage of. If high quality
of encoded video is crucial to the application at hand, then the algorithm has
to be rewritten, so that motion estimation is performed using some imaginary
frame pattern which would not have any impact on the encoded video stream.
Then the motion-tracing algorithm would be performed on the obtained
motion estimates. In this case, the motion information that is obtained from
the encoder is in the forward vectors of the P-framesg only. From the P-frame
to the next I-frame we do not have any motion information, We have several
choices:

(a) We can make a prediction for the motion vector between the P-frame and
the next I-frame. This prediction is a guess that we can use the same
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motion vector as the vector for
introduce additional overhead. Th
the assumption for the
motion 1s constant.

the P-fran_m. This solution does not
rheed. T proble.m 1s that it relies not only on
continuity of motion but alsg assumes that the

We can perform the actual seare

il i b : rh and compute the motion vector for the
Jlocks fron ¢ I- 1o the next I-frame. This meang that i i

i we will be addin
much more compute cycles than it is necessary for the encoding pr‘ocessg

We also need much more complicated motion models to recover the true
motion of the objects in the case of complicated camera motion. For example
when we have the camera focus on a moving object, then the object appears t(;
be stationary. The motion of the object is implied by the macroblock vectors of
the background. More-sophisticated relative-motion detection algorithms are
needed. This work is part of our ongoing SunSet Multimedia Information
System project [ Golshani and Dimitrova 1994: Michael 1994].

6. CONCLUSIONS

From the point of view of video retrieval, the video technology has not seen
much progress from the days when film editors examined each and every
frame by hand in order to find the exact place of each cut. In fact, despite the
introduction of many video editing systems such as VideoShop and Adobe’s
Premiere, much of retrieval is done by either time pointers (e.g., the frame
counter), visual proxies, or various types of graphical or descriptive pointers.
What is clearly missing from the video technology is the ability to locate and
retrieve video clips that contain an object with specific characteristics, partic-
ularly with respect to movements. Video databases can be useful to many
application areas such as education, business, medicine, and more promi-
nently, entertainment. As such, the value of better and more-equipped video
systems are becoming clearer. While many aspects of video systems, such as
presentation editing tools, have seen significant improvement, our progress
on content-based retrieval has not been as forthcoming. ,

We believe that our attempts to address the above needs must start with a
modeling mechanism that allows for the representation of_' semgntiq knowl-
edge from both spatial and temporal features of the object§ in video se-
quences. Computing high-level motion description can be done‘ independently
of recognizing objects [Allmen 1991]. We elaborate on this property by
showing that the recovery of object trajectories can be pe.rformed w1thout.
prior knowledge of objects undergoing motion. The goa! is to }_zave both:
independent retrieval along the temporal and the spatial hierarchies as well
as retrieval of combined features from the spatial and the. temporal hlergl‘—
chies. We treat motion vectors extracted during the motion compensation
arse-level optical flow that 1s furthf:‘r used for
n. Motion information extrac-
detection, at the
ciating an

phase of video encoding as co :
intermediate- and high-level motion description.
tion is then carried out at low level by motion vector
intermediate level by motion tracing, and the hlgh. ].e\_’e] By ass0
object and a set of trajectories with recognizable activities.
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In our object motion representations. we provide various levels of precision
of trajectory representation. Retrieval functions based on these representa-
tions offer a wide spectrum of approximation in the process of matching, We
need to relate the motion at a higher level of abstraction of the object to the
detailed motion of parts of objects. Events can be represented in a form that
is common in the image-understanding and interpretation area: predicates,
temp(“‘ﬂl n("l\’\'()l'kﬁ‘ ete.
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