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I, Emily R. Florio, state and declare as follows:

l. I have prepared this Declaration in connection with the Petitions of

Axis Communications AB, CanonInc., and Canon U.S.A., Inc. (collectively

“Petitioner”) for two inter partes reviews of U.S. Patent No. 7,932,923 (“the °923

patent”), which I understand will be filed concurrently with this Declaration. I also

understand that October 1999 is a date that is relevant for determining whatis prior

art to the °923 patent.

2. [am currently the Director of Research & Information Servicesat

Finnegan, Henderson, Farabow, Garrett & Dunner LLP, 901 New York Avenue

NW, Washington, DC 20001-4413.

3. lam over 18 years of age and am competent to makethis Declaration.

I make this Declaration based on my ownpersonal knowledge, based on my

knowledge oflibrary science practices, as well as my knowledgeof the practices at

the Massachusetts Institute of Technology (“MIT”) Libraries.

4, J earned a Master’s of Library Science (“MLS”) from Simmons

College in 2006, and I have worked asa librarian for over a decade. I have been

employed in the Research & Information Services (formerly Library) Department

of Finnegan since 2013, and from 2005-2013, I worked in the Library Department

of Fish & Richardson P.C.
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5. I am currently the Vice-President Elect of the American Association

of Law Libraries and the President of the Law Librarians’ Society of Washington,

DC, and a memberofthe International Legal Technology Association.

Attachments

6. Attached as Exhibit A (Exhibit 1003 to the Petition) is a true and

correct copy of “Visual Memory,” May 1993, pp. 1-92, by Christopher James

Kellogg (“Kellogg”), obtained from the MITLibraries.

7. Attached as Exhibit Bis a true and correct copy ofthe “Standard”

record from the MITLibraries’ catalog system (knownas the Barton Catalog) for

its copy of Kellogg.

8. Attached as Exhibit C is a true and correct copy of the MARCrecord

of the MIT Libraries for its copy of Kellogg.

9. Attached as Exhibit D (Exhibit 1004 to the Petition) is a true and

correct copy of F. Brill et al., “Event Recognition and Reliability Improvements

for the Autonomous Video Surveillance System,” Proceedings of the Image

Understanding Workshop, Monterey, CA, Nov. 20-23, 1998, Vol. 1, pp. 267-283

(“Brill”), obtained from the Duderstadt Center, formerly known as the University

of Michigan Media Union (UMMU).

10. Attached as Exhibit Eis a true and correct copy of the MARCrecord

of the University of Virginia Library forits copy of Brill.
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11. Attached as Exhibit Fis a true and correct copy of the MARCrecord

of the North Carolina State University library forits copy of Brill.

12. Attached as Exhibit G (Exhibit 1006to the Petition) is a true and

correct copy of N. Dimitrovaet al., “Motion Recovery for Video Content

Classification,” ACM Transactions on Information Systems, October 1995, Vol.

13, No. 4, pp. 408-439 (“Dimitrova’”), obtained from University of California Los

Angeles Science & Engineering Library.

13. Attached as Exhibit His a true and correct copy of Dimitrova,

obtained from the Library of Congress.

14. Attached as Exhibit I is a true and correct copy of the MARCrecord

of the MITLibraries for its copy of the ACM Transactions on Information Systems

journal, in which Dimitrova was published.

15. Attached as Exhibit J is a true and accurate copy of B. Flinchbaughet

al., “Autonomous Video Surveillance,” SPIE Proceedings, 25" AIPR Workshop:

Emerging Applications of ComputerVision, Feb. 26, 1997, Vol. 2962, p. 144-151

(“Flinchbaugh”), obtained from the MITLibraries.

16. Attached as Exhibit Kis a true and correct copy of the MARC record

of the Library of Congress forits copy of the SPIE Proceedings publication that

includes Flinchbaugh.
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17. Attached as Exhibit Lis a true and correct copy of the MARCrecord

of the MITLibraries forits copy of the SPIE Proceedings publication that includes
vy

The MARC Cataloging System

18. The MAchine-Readable Cataloging (“MARC”) system is used by

libraries to catalog materials. The MARC system was developed in the 1960sto

standardize bibliographic records so they could be read by computers and shared

amonglibraries. By the mid-1970’s, MARChad becomethe international standard

for bibliographic data,andit is still used today.

19. Each field ina MARCrecord provides information aboutthe

cataloged item. MARCusesa simple three-digit numeric code (from 001-999) to

identify each field in the record.

20. For example,field 245lists the title of the work and field 260lists

publisher information. In addition, field 008 provides the date the item was

cataloged. The first six characters of the field 008 are always in the “YYMMDD”

format.

21. It is standard library practice that once an item is cataloged using the

MARCsystem,it is shelved. This process may take a relatively nominal amount

of time (i.e., a few days or weeks). During the time between the cataloging and
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shelving of an item, the public maystill find the item by searching the catalog and
requesting the item from thelibrary.

Kellogg

22. As indicated in Exhibit A (Exhibit 1003 to the Petition), Kellogg has

an MIT Libraries date stamp of “JUL 09 1993”on page 1, indicating that the MIT
Libraries received Kellogg on July 9, 1993. Further, as indicated in Exhibit B, the

Standard record of the Barton Catalog confirms that Kellogg is shelved at the MIT

Libraries and was published in 1993. In view of the above and the following,
Kellogg was published andaccessible to the public in 1993, years before October
1999.

23. Asindicated in Exhibit C, Kellogg has a cataloging date of September

28, 1993 (shown as “930928”in field 008). This confirms that Kellogg was

entered into the OCLC database, in which MITdoesits cataloging, on September

28, 1993. This is also consistent with its noted yearof publication in the MARC

record (shown as “1993”in field 260). The OCLC database(also referred to as

“WorldCat”) is the largest online public access catalog (OPAC)in the world.

24. Soonafter Kellogg received a cataloging date, a record ofits existence

would have appeared in and been keyword-searchable through the Barton Catalog

of the MITLibraries. The Barton Catalog is currently available online to any user

of the World Wide Web. Before it was accessible by Web(i.e., at the timethe

6
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Kellogg thesis wasreceived by the MITLibraries in July 1993), it would have been

accessible to anyone on the MIT campus and anyone who hadaccess to the OCLC

database.

25. During the time period from September 1993 through October 1999,

the Barton Catalog allowed keyword searching for wordsin the thesis title, and

Kellogg would have appearedin a relevant Barton Catalog search conductedon or

shortly after September 28, 1993.

26. After being cataloged, a document such as Kellogg will undergo a

process of being labeled and then shelved at the MIT Libraries. Based on my

knowledge of MITLibraries’ current and priorpractices, Kellogg would have been
shelved in a relatively nominal amountoftime(i.e., a few days or weeks). Thus,

Kellogg was cataloged and shelved at the MITLibraries at least before the end of

1993.

27. Once shelved, Kellogg can be borrowed by any memberof the MIT

community. Furthermore, a copy of Kellogg can be purchased from MITby any

member of the public. Indeed,thefirst page of Kellogg confirmsthat there were

no restrictions placed onits publication,as it states that “[t]he author hereby grants

to MITpermission fo reproduce and to distribute copies ofthis thesis document in

whole orin part, and to grantothers the right to do so.”
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28. Further evidence of the public availability of Kellogg before October

1999 is provided in Exhibit J, which is a copy of Flinchbaugh. Inits Bibliography,

Flinchbaughcites to Kellogg (reference [4] on p. 151). Asaddressed below,

Flinchbaugh waspublished in SPIE Volume 2962, which correspondsto the

Proceedings from the 25" Annual AIPR Workshop on Emerging Applications of

Computer Vision. The Workshop was held October 16-18, 1996, and the

Proceedings were published by at least 1997. Thus, Kellogg wasat least available

to members of the public in 1997, as shownbyits citation in Flinchbaugh.

29. For the avoidance of any doubt, | note that on June 23, 2001, Kellogg

wasalso cataloged in the MIT Archive Noncirculating Collection 1,

Noncirculating Collection 3, and in microfiche form in the Barker Library, as

indicated in the three entries for PST8 andin the second, third, and fourth instances

of field 008 on page 1 of Exhibit C. However, noneofthis alters the fact that

Kellogg was published and accessible to the public in 1993, as indicated above.

30. Asindicated in Exhibit D, Brill is part of the published Proceedingsof

the 1998 Image Understanding Workshop. The Workshop washeldin Monterey,

California during November 20-23, 1998, and the Proceedings were “APPROVED

FOR PUBLIC RELEASE”with “DISTRIBUTION UNLIMITED.” Ex. D at 1. In
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view of the above and the following, the Proceedings, including Brill, was

published andaccessible to the public before October 1999.

31. Evidence of Brill’s publication and availability to the public includes

the hand-written receipt date of “8-13-99”at the top of page 3 of Exhibit D. This

indicates it was received by theUMMU(the University of Michigan Media Union,

now knownas the Duderstadt Center) on August 13, 1999. In my experience as a

librarian and knowledgeofstandard library practices, the hand-written information

at the top of p. 2 of Exhibit D appearsto be the catalog record informationfor

Brill. Based on standard library practices, this reference would have been shelved

shortly after being received and cataloged by UMMU.

32. Further evidence of the publication and accessibility of Brill to the

public can be found in Exhibit E, which is the MARCrecord forthe Proceedings,

including Brill, that was obtained from the University of Virginia Library. As

shownin field 008 nearthe top of page 2 of Exhibit E, Brill was cataloged bythe

library on December15, 1998. Based on standard library practices, this reference

would have been shelvedshortly after(i.e., within a few days or weeks) and been

accessible to the public prior to October 1999,

33. Further evidence of the publication and public availability of Brill can

be found in Exhibit F, which is the MARC record forthe Proceedings, including

Brill, that was obtained from North Carolina State University. As shownin field

9
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008 on page 1 of Exhibit F, Brill was cataloged bythe library on December 15,

1998. Based on standardlibrary practices, this reference would have been shelved

shortly after (i.e., within a few days or weeks) and been accessible to the public

prior to October 1999,

Dimitrova

34. As indicated in Exhibit G, Dimitrova was publishedin a special issue

of the ACM Transactions on Information Systems Journal. Ex. G at 1. In view of

the above and the following, the ACM Journal, including Dimitrova, was
published and accessible to the public before October 1999.

35. Evidence of Dimitrova’s publication and availability to the public

includes the “November 17, 1995” date stamp on page | of Exhibit G. This

confirms that Dimitrova was received by the University of California Los Angeles

Science & Engineering Library on November 17, 1995. Based on standard library

practices, this reference would have been shelved shortly after (i.e., within a few

days or weeks) and accessibleto the public before October 1999.

36. Further evidenceofthe publication and accessibility of Dimitrova to

the public is found in Exhibit H, which is a copy of Dimitrova obtained from the

Library of Congress. Page 3 of Exhibit H bears the date stamp of “November 21,

1995” from the Library of Congress. This confirms that Dimitrova was received

by Library of Congress on November 21, 1995. Based on standard library

10
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practices, this reference would have been shelved shortly after(i.e., within a few

days or weeks) and accessible to the public before October 1999,

37. Further evidence of the publication and accessibility of Dimitrova to

the public can be found in Exhibit I, which is the MARCrecord of the ACM

Journal, which includes Dimitrova, obtained from the MIT Libraries. As shown in

field 008 nearthe top of page 1 of Exhibit I, the MIT Libraries began receiving the

ACM Journal in September 1989.

38. Field 362 (shownas “3620”) on page | of Exhibit I indicatesthat the

MITLibraries has issues dating back to Volume 7 of the journal, which as noted

above was published in September 1989. There is no end-date in field 362,

indicating that the MITLibraries has an ongoing subscription, which would have

included receipt of the issue that contained Dimitrova in 1995. Based on standard

library practices, the issue containing Dimitrova would have beenshelved shortly

after cataloging (i.e., within a few days or weeks) and accessible to the public

before October 1999.

39. For the avoidance of any doubt, I note that it appears that on June 23,

2001, online access to Dimitrova was provided to certain MIT-associated

individuals, as indicated by the field 008 on thelast line of page 1, field 8528, and

the URLentry at the top of page 2 of Exhibit I. Also on June 23, 2001, the ACM

Journal, including Dimitrova, was archived at the MITLibrary Storage Annex

1]
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(“LSA”), as indicated by the 008 field and subsequent 85271 entry on page 2 of

Exhibit I. However, noneofthis alters the fact that Dimitrova was published and

accessible to the public years before October 1999, as indicated above.

Flinchbaugh

40. As indicated in Exhibit J, F/inchbaugh was published in the

Proceedings of the 25" AIPR Workshop: Emerging Applications of Computer

Vision, SPIE Vol. 2962. The Workshop was held in Washington, D.C. during

October 16-18, 1996, and the Proceedings was published by SPIE (The

International Society for Optical Engineering). Ex. J at 1. In view of the above

and the following, Flinchbaugh was published andaccessible to the public before

October 1999.

41. Page 2 of Exhibit J shows a copyright date of 1997. The edition of the

SPIE Proceedings that was published with Flinchbaugh is Volume 2962, andit

was “Printed in the United States of America.” Ex. J at 2.

42. Althoughthe copyright date of Flinchbaughislisted as 1997, it

appears that /’linchbaugh wasactually published before that, in 1996. First, as

noted above, the Workshop was held in Washington, D.C. during October 16-18,

1996. Second, a copy of Flinchbaugh wasreceived and cataloged by the Library

of Congress in November 1996. See Ex. K at 1. Exhibit K is the MARC record

for the SPIE Proceedings, including linchbaugh, that was obtained from the

12
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Library of Congress. As shownin field 008 nearthe top of page 2 of Exhibit K,

Flinchbaugh wascataloged bythe library on November 21, 1996. Based on

standard library practices, this reference would have beenshelvedshortly afterit

wascataloged (i.e., within a few days or weeks). Collectively, Exhibits J and kK

show that Flinchbaugh waspublished and accessible to the public years before

October 1999,

43. Further evidence of the publication and public availability of

Flinchbaugh can be found in Exhibit L, which is the MARCrecord for the SPIE

Proceedings, including F/inchbaugh, that was obtained from the MITLibraries.

As shown in field 008 on page 1 of Exhibit L, Flinchbaugh was cataloged by the

library on March 10, 1997. Based on standard library practices and my

understanding of the practices of the MITLibraries, this reference would have

been shelved shortly after it was cataloged (i.e., within a few days or weeks) and

accessible to the public before October 1999.

44. For the avoidance of any doubt, I note that on April 8, 2011, online

access to Flinchbaugh wasprovided to certain MIT-associated individuals,as

indicated by the fields 008 and 8528 and the URLentry at the top of page 2 of

Exhibit L. Also, on June 23, 2001, the SPIE Proceedings, including Flinchbaugh,

was archived at the MIT Library Storage Annex (“LSA”), as indicated by the

second 008 field and subsequent 8520 entry on page 2 of Exhibit L. However,

13
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ay

public years before October 1999, as indicated above.

I declare underpenalty of perjury that the foregoing is true and correct.

Executed on November6, 2018 in Washington, D.C.

fn No fy// mA | [ (  
\
SA

Emily R. Florio
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Chapter 1 

Introduction 

Visual memory supports computer vision applications by efficiently storing and re

trieving spatiotemporal information. It is a unique combination of databases, spatial 

representation and indexing, and temporal representation and indexing. Visual mem

ory provides representational flexibility and high-performance information access to 

meet the requirements of a variety of computer vision applications. 

1.1 Needs for Visual Memory 

Applications use spatiotemporal data in many different ways and place many different 

demands on a visual memory. Studying possible uses helps to clarify the concept of 

a visual memory and to identify the functionality it provides. 

Visual memory could serve as the repository for static information, such as ob

ject descriptions, maps, and environment models, that applications reference during 

execution. For example, a vehicle navigator could store maps and images to help it 

later recognize its location. A large amount of such information could be established 

prior to application execution, and the visual memory would subsequently provide an 

application with efficient access to desired pieces of information. 

An application could store dynamic information in the visual memory. For ex

ample, a vehicle navigator's input systems could maintain in the visual memory a 

description of the vehicle's local environment, updating it as the vehicle moved. The 

9 
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visual memory could provide the navigator's planning processes with information 

about the vehicle's latest state and could analyze its progress to help determine a 

course of action. The high performance of the visual memory allows it to handle the 

frequent updates and queries needed by such dynamic, real-time systems. 

Visual memory could manipulate spatiotemporal information about objects and 

collections of objects too large to fit into volatile memory. For example, a computer

aided design and modeling system could use the visual memory in building up a large 

design layout and simulating its execution over time; a photo interpretation system 

could similarly construct in the visual memory a complex representation of a scene. 

The visual memory would retrieve into main memory only a manageable part of a 

large representation at a time. 

Visual memory could act as the interface between inputs and applications m a 

computer vision system. For example, computer vision algorithms for a security 

system could analyze data provided by various cameras and store information in the 

visual memory. Applications could then retrieve this data to track objects, watch for 

suspicious events, and respond to user queries. The visual memory would coordinate 

the information from its inputs and eliminate the need for full connectivity between 

inputs and applications. 

Finally, visual memory could serve as a means for data transfer. A computer 

vision application could store spatiotemporal information in the visual memory for 

other applications to retrieve at any time in the future. To run comparative studies, 

different algorithms could use common data stored in the visual memory. 

1.2 Goals 

This thesis explores visual memory design and implementation. The primary goal 

of the thesis is to design a visual memory architecture that meets the requirements 

of various computer vision applications. A secondary goal is to implement a visual 

memory prototype to support a real-time scene monitoring prototype. 

10 
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Chapter 2 

Background 

Visual memory builds on research in database design, spatial representation and 

indexing, and temporal representation and indexing. While there has been significant 

research in each of these areas, no previous project has combined them in this manner. 

The visual memory design uses knowledge gained from research projects in all these 

areas. This chapter summarizes and discusses some especially relevant projects. 

2.1 Database Research 

Visual memory must address concerns that a great deal of database research has 

already investigated. It must provide everything from information storage techniques 

to concurrency control for multiple inputs and outputs. Visual memory should build 

on the results of research into these topics. Presented here are two databases that 

address a number of the issues important to visual memory and that could be the 

basis for a visual memory system. 

2.1.1 DARPA Open OODB 

The DARPA Open Object~Oriented Database (Open OODB) project at Texas In~ 

struments outlines an extensible architecture that allows " ... tailoring database func~ 

tionality for particular applications in the framework of an incrementally improvable 

system .... " [25] The architecture meets functional requirements such as an object 
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data model and concurrent access, along with "meta requirements" including open

ness and reusability. The open architecture lets separate modules handle extensions 

to the basic storage mechanism. These extensions cover standard database issues 

such as transactions, versions, and queries. 

The Open OODB architecture is very suitable for visual memory. The object

oriented model can flexibly and intuitively represent the information used by computer 

vision applications. Following the Open OODB architecture, visual memory could 

avoid confronting standard database issues by letting other modules support those 

features. Instead, visual memory would consist only of those extensions necessary to 

support efficient manipulation of spatiotemporal information. If new features were 

needed, extra modules could easily be added to the architecture. 

2.1.2 POSTGRES 

The POSTGRES database [23] expands the relational database model to meet the 

needs of complex applications. Because it builds on traditional relational databases, it 

provides a number of standard features, such as transactions, a query language, and 

recovery processing. In addition, it allows applications to specify new data types, 

operators, and access methods. POSTGRES supports active databases and rules, 

letting applications set up daemons in the database that react to changes in the data. 

A versioning mechanism keeps track of old data and works with the query language 

to let applications retrieve this information. Finally, the POSTGRES storage server 

can "vacuum" old data onto archival media. 

POSTGRES supplies many features useful to a visual memory, such as transac

tions, queries, and application-defined access methods. However, the relational model 

might not be sufficiently expressive to meet the representational needs of complex 

computer vision applications. In addition, the POSTGRES design does not support 

application-specific extensions to the database, so it would be hard for the visual 

memory to expand to meet future requirements. 
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2.2 Spatial Research 

There are many ways to describe spatial objects and to handle their storage and 

retrieval. Visual memory must consider how well different spatial models meet the 

representational needs of computer vision applications and how efficiently information 

in these models can be stored and retrieved. 

2.2.1 CODGER 

Researchers at Carnegie Mellon University developed the CODGER (COmmunica

tions Database with GEometric Reasoning) "whiteboard" database and communica

tion system to support the autonomous NAVLAB vehicle [20]. CODGER stores data 

to be communicated among the various modules that control vehicle navigation. It 

represents this information as tokens consisting of attributes and values. 

CODGER uses a fairly simple spatial model. Token attributes represent basic 

spatial information such as position and object extent. The tokens support some 

standard geometric operations like area calculation. A query mechanism can answer 

some spatial queries like the proximity query "Return the tokens with location within 

5 units of ( 45,32)." CODGER does not provide an indexing mechanism, and spatial 

operations and queries are performed in memory. 

2.2.2 Core Knowledge System 

The Core Knowledge System (CKS) [24], developed at SRI International, stores in

formation for a robot. Like CODGER, it encodes this information as attribute-value 

tokens. CKS introduces special support for the uncertainty that results from incon

sistent or incomplete information provided to the database. Its query mechanism 

includes keywords such as apparently and possibly to discern multiple opinions. Since 

spatial information is often imprecise, this support for uncertainty would be very use

ful in a visual memory context. However, CKS does not provide any special spatial 

operations or query constructs. 
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2.2.3 ISR 

The ISR project at the University of Massachusetts at Amherst [3] defines a spatial 

representation (the Intermediate Symbolic Representation) and a management system 

for accessing data represented this way. The intermediate symbolic representation 

includes tokens for basic spatial objects such as lines, regions, and sets of parallel 

lines, but not for higher-level spatial objects such as people and vehicles. The data 

management system manipulates these tokens in an efficient manner. Applications 

built with ISR perform classification and in-memory spatial indexing. 

2.2.4 Image Understanding Environments 

The Image Understanding Environments (IUE) program [16] specifies a spatial rep

resentation to meet the needs of a wide variety of computer vision applications. An 

IUE spatial object is defined by a set of points; this point set can be concrete (a list 

of all the points) or abstract (an equation defining the points in the object). IUE 

spatial objects are manipulated through set operations- complex objects can be con

structed through conjunction and disjunction of point sets. In addition to its point 

set, each spatial object also defines a bounding box, a centroid, and other attributes 

for different, and perhaps more efficient, methods of spatial manipulation. The IUE 

specification only briefly discusses data transfer and does not provide database sup

port for storage and retrieval of spatial information. 

2.2.5 PROBE 

The PROBE database [15], developed at the Computer Corporation of America, 

extends an object-oriented database management system to meet the requirements 

of a variety of computer vision applications. It implements a number of spatial 

data types and supports operations on sets of points. It outlines a query language 

with some support for spatial queries. To provide more efficient spatial access, it 

also provides what the authors call approzimate geometry, a limited form of spatial 

indexing. 
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2.2.6 Spatial Indices 

A large number of spatial data structures can provide efficient access to spatial in

formation. Samet [18] describes a number of these, including quadtrees, hash tables, 

grid files, range trees, and R trees. Each index is specialized for specific storage and 

retrieval characteristics; visual memory would benefit from including a number of 

different indices to efficiently manipulate data for different applications. 

2.3 Temporal Research 

Databases manipulate two different types of time: transaction time, specifying when 

updates for events are stored in the database, and valid time, specifying when events 

actually happen. Rollback databases implement transaction time, historical databases 

implement valid time, and temporal databases implement both. Sometimes historical 

and rollback databases are informally called temporal databases to indicate their con

cern with time. Since the computer vision applications discussed in the Introduction 

are concerned with the times at which events happen, visual memory should be a 

historical database. 

A number of different historical and temporal databases represent and store tem

poral information. Each addresses a different set of concerns, and some designs suit 

visual memory better than others. The following research projects address many of 

the issues that visual memory must consider. 

2.3.1 TQuel 

The temporal database TQuel [21] is a temporal extension to a relational database. 

TQuel associates with each database record the slots valid-from and valid-to, defining 

an interval during which the record is valid. For example, the Employees relation 

might have three records for Frank, one valid from 0 to 1/1/93, another valid from 

1/1/93 to 5/7/93, and a third valid from 5/7/93 to oo. If Frank were changed on 

8/7/93, then the third record's valid-to slot would be changed to 8/7/93, and a new 
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record valid from 8/7/93 to oo would be added. 

TQuel extends the query language Quel [12] to support temporal access of records. 

A temporal query specifies an interval of interest; the database retrieves any record 

whose valid interval overlaps that interval. A query can also ask for records before, 

after, or as of a given moment. TQuel provides operators such as overlaps and eztend 

to form complex query intervals. 

2.3.2 Temporal Sequences 

The temporal database outlined in [19] models object state changes with temporal 

sequences. A temporal sequence can be discrete or continuous; for example, sales 

per month could be modeled as a discrete temporal sequence, while the voltage in 

alternating current could be modeled as a continuous temporal sequence. A temporal 

sequence is always represented by a set of state snapshots; interpolating functions 

estimate continuous sequences. Characteristics such as granularity and regularity of 

state snapshots define each temporal sequence. Functions including selection, ag

gregation, and accumulation operate on sets of time sequences. The database also 

includes a powerful SQL-like [1] query language for retrieving temporal sequences. 

2.3.3 Temporal Sets 

Researchers at the University of Houston proposed some temporal additions [8] to 

the Extended Entity-Relationship Model. The basic temporal representation in this 

temporal model is a finite union of time intervals; for example, a particular state 

could be valid during the set of time intervals { [50,60), [90,230), [231,239) }. The 

database stores with each object a temporal element denoting its valid time. Basing 

temporal representation on sets of intervals preserves closure under set operations 

and provides a standard means for manipulating temporal information and querying 

the database. 

This model was later augmented to better represent temporal uncertainty [13]. 

The extended model preserves the definition of a temporal element but modifies the 
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definition of a temporal interval. Each endpoint in an interval specifies a valid time 

method that returns an ordered set of time points. The endpoint belongs to this set, 

but in order to allow for uncertainty, it is not explicitly specified. The model also 

modifies the standard set operations to manipulate uncertain temporal elements. 

2.3.4 Relative Time 

Some applications, such as computer-aided design systems, know how events are 

ordered but not the actual times of the events. Chaudhuri [5) proposes a temporal 

model to handle these cases. This model represents time as a graph rather than as 

a time line. Events are ordered with binary relations like before and simultaneously. 

These relations must obey properties such as transitivity and antisymmetry so that 

the database can navigate through a graph and infer additional relationships. The 

model supports temporal queries about event relations; for example, a query could 

ask for a lower time bound on an event or for common ancestors of two events. This 

capability could be useful in a visual memory to support efficient handling of temporal 

information for some applications. 

2.3.5 Temporal Indices 

Much of the spatial indexing research also applies to temporal indexing. For example, 

interval trees can store intervals in space or in time. To handle more complex, spe

cialized temporal representations, however, requires additional research. Some of the 

databases described above provide their own temporal indices; [22) references many 

other systems with temporal indices. 
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Chapter 3 

Design 

This chapter presents a design for a visual memory system. It examines reqmre

ments and considerations that the design must take into account. It discusses key 

visual memory topics such as representation and indexing of spatial, temporal and 

spatiotemporal information. This chapter outlines a concrete, implementable system; 

the next chapter presents the prototype implementation of this design. 
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3.1 Requirements and Considerations 

The design of a visual memory must address a number of concerns. Some of these 

come from anticipated uses of the visual memory, while others are common themes 

in spatial, temporal, and database research. This section covers a number of these 

requirements and considerations. 

3.1.1 Database Considerations 

One database issue relevant to visual memory is how to represent and store informa

tion. There are several standard models, including the relational model, the entity

relationship model, and the object-oriented model. The visual memory should use an 

object-oriented model to meet the broad representational requirements of a variety of 

applications. An object-oriented approach is intuitive and highly extensible, allowing 

applications to define new, complex objects at any time. 

Another important consideration is concurrency control. The visual memory must 

be able to handle multiple, dynamic inputs and outputs. For example, in a scene

monitoring system, many different cameras could update the visual memory simulta

neously. The visual memory must ensure data consistency. 

Much database research involves well-defined program interfaces, including ex

plicit storage mechanisms and query algebras. Applications using the visual memory 

do not need to know how it achieves its results, but they should know what results to 

expect. For example, performance-enhancing measures such as indexing and caching 

do not affect the objects returned by a query and can be added without affecting the 

query algebra. 

Recoverability is another database issue important to some visual memory ap

plications. The visual memory must work to guarantee that, even in the case of a 

system crash, it does not lose stored information. In addition, it must be able to 

remove inconsistencies resulting from system failure during information storage. 
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3.1.2 Spatial and Temporal Considerations 

The purpose of visual memory is to store information about the history of a visual 

environment. Visual memory is not just a generic database - it must have spa

tiotemporal concerns at the heart of its design. 

A visual memory must provide representational flexibility. Rather than forcing 

one spatiotemporal representation on all applications, the visual memory should be 

tailorable to an application's needs. Applications can trade off between representa

tional power and performance. 

A visual memory must handle dynamic objects. Some computer vision applica

tions need to update spatial information in response to changes in the environment. 

The visual memory must define spatiotemporal representations to effectively handle 

such changes. It must provide a versioning mechanism to store and retrieve different 

state snapshots of objects. 

A visual memory must provide a flexible, expressive query mechanism with exten

sive spatiotemporal support. This query mechanism should support a wide variety of 

spatiotemporal queries. For example, a security system might ask the visual memory 

to retrace a person's path over the past five minutes, a vehicle navigator might ask 

it to watch for objects entering the field of view, and a CAD system might ask for 

simulation results for everything electrically connected to a specific chip. The visual 

memory should let applications conveniently express such queries. 

3.1.3 Performance Considerations 

High performance is one of the key requirements for a visual memory. Some visual 

memory applications, such as a vehicle navigator, need to store and retrieve infor

mation very quickly. Many spatial and temporal models in the literature are very 

expressive but do not provide the necessary information throughput. A visual mem

ory must be both expressive and fast enough to meet the demands of its applications. 

Indexing can help a visual memory achieve high performance by quickly identifying 

objects satisfying given constraints. Visual memory indices should be conservative, 
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never mistakenly omitting objects that satisfy a query. In this manner, indices can 

improve query performance but are guaranteed to not affect the results. 

A visual memory must provide a variety of indices to meet the needs of different 

applications. For example, a real-time scene monitoring system could set up an index 

to track the centroids of moving objects, while a photo interpretation system could 

index the areas covered by objects. A visual memory indexing mechanism should be 

extensible, handling additional application-defined indices. 

A visual memory must let applications control which objects are indexed. For 

example, an application could establish one index on all objects, another index on 

everything in the current session, and yet another index only on certain objects of 

interest. This would prevent the visual memory from wasting time and space updating 

unimportant indexing information. 

Caching and look-ahead techniques can increase the performance of a visual mem

ory. Caching improves storage performance by not requiring the visual memory to 

wait for information to be written to disk. Both caching and look-ahead Improve 

retrieval performance by reducing the number of disk accesses. 

Visual memory performance can be increased by letting applications tailor the 

visual memory to their specific requirements. For example, some applications can 

afford to lose a small amount of data, so they could eliminate recoverability infor

mation. Other applications could optimize specific storage and retrieval cases; for 

example, a vehicle navigator could optimize its real-time performance by sacrificing 

some historical performance. 
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3.2 Design Overview 

The visual memory design consists of a set of extensions to an open database architec

ture like DARPA Open OODB [25]. An open architecture allows the visual memory 

to add spatiotemporal customizations to the database. The visual memory can take 

full advantage of other modules implementing features such as concurrency control, 

caching, and versioning, without having to handle these capabilities directly. 

The visual memory design follows the object-oriented model discussed in the previ

ous section. A class hierarchy defines representations for spatiotemporal information. 

Abstract superclasses define the interfaces for manipulating spatiotemporal informa

tion, and their subclasses extend the definitions to represent more specific types of 

objects. This document denotes classes in italics; for example, Spatia/Object is the 

class representing spatial objects. A concrete member of this class is referred to as 

"a Spatia/Object instance" or informally just as "a spatial object." 

The visual memory design specifies a number of classes for representing spatiotem

poral information. These classes provide methods through which computer vision 

applications and the visual memory can manipulate them. For example, the spatial 

class Square could include a method to return its area, the temporal class Temporal

Interval could have a method to determine its duration, and the spatiotemporal class 

Person could implement a method plotting its space-time trajectory. Applications 

can design their own classes inheriting from these classes and extending them to meet 

additional needs. 

The visual memory design extends the database's storage mechanism. It provides 

a mechanism for object identity and maintains a history for each object. Each version 

of an object specifies when it was valid, and the visual memory can manipulate 

versions based on valid time. The design lets applications customize the database 

storage server based on characteristics of the data they typically store. 

The visual memory design extends the database's query mechanism to provide 

spatiotemporal support. The additional spatiotemporal constructs allow computer 

vision applications to :flexibly and expressively specify objects of interest. 
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To achieve suitable query performance, the visual memory provides spatiotempo

ral indices that can efficiently identify objects satisfying query conditions. A visual 

memory index is an object that maintains information about other objects, allowing 

it to efficiently indicate those objects that meet certain constraints. For example, a 

visual memory spatial index might store object centroids so that it can quickly iden

tify all the objects within a specified area. The visual memory provides a powerful 

and flexible indexing mechanism. 
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3.3 Spatial Representations 

The visual memory spatial class hierarchy provides a powerful framework that allows 

applications flexibility in designing spatial representations while ensuring that the 

visual memory can access the information it requires. The class hierarchy draws on 

the research outlined in the Background chapter. It provides the basic framework 

for any visual memory application, and it allows applications to extend it to meet 

additional needs. 

Spatial operations are often complex and requue much computation. Spatial 

indices, described in Section 3.8, can increase the performance of these operations 

by maintaining information about sets of spatial objects. This chapter presents a 

number of spatial operations; Section 3.8 describes related performance issues. 

3.3.1 Core Spatial Classes 

SpatialObject 

The Spatia/Object class is the basis for all high-level spatial representations. Possi

ble subclasses derived from Spatia/Object include Cube, QuestionMark, and Person, 

depicted in Figure 3-1. Spatia/Object captures the common representational require

ments of a variety of such spatial objects. It provides a standard set of slots and 

methods to yield a consistent spatial interface. Applications can design additional 

spatial representations as long as they provide the same functionality. 

A spatial object is defined by a set of points and a local coordinate system. This 

information is sufficient to fully represent a spatial object. The point set specifies 

what area of space the object fills. The coordinate system relates these points to the 

points in other spatial objects. Additional information, such as centroid, orientation, 

and bounding box, is derivable from this information. 

Spatia/Object provides a wide variety of methods to manipulate its data. These 

methods can translate and rotate an object, operate on its point set, and find the 

object's bounding box, among other things. Most of these are actually point set and 

coordinate system functions and will be discussed further below. Concrete spatial 

24 
Ex. A Page 24 of 92

Canon Ex. 1007 Page 38 of 219



7 
0 

Figure 3-1: Spatial objects 

objects can provide additional relevant information; for example, a cube could have 

functions returning the length of its side, its surface area, and its volume. Using the 

methods of SpatialObject and its subclasses, an application can manipulate spatial 

data. in many different ways. 

Several lower-level classes manipulate information for the high-level Spatia/Object 

class. The following sections present these classes. 

Point 

The most elementary unit of spatial representation is the point. The visual memory 

provides the abstract class Point and subclasses TwoDPoint, ThreeDPoint, etc., to 

represent this elementary unit. Point is a fairly simple class, only storing and ma

nipulating a coordinate in some space. As will be shown below, however, it is an 

important building block. 

Point Set 

Complex spatial information can be represented as a collection of points, or point 

set. The visual memory provides the class PointSet, derived from a generic Set class, 
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Figure 3-2: Discrete point set 

to store and manipulate sets of points. Since PointSet is a kind of Set, it provides 

standard set operations, such as union, disjunction, member, and difference. This 

allows a powerful means for constructing complex objects. It also furnishes a well

defined and sound mathematical basis for spatial representation and manipulation. 

The class DiscretePointSet represents a set of points simply as an exhaustive 

list of all desired points. This representation is feasible only for small point sets. 

For example, consider the task of representing the square area of the points plotted 

in Figure 3-2. A system could, by convention, represent a square area by such a 

discrete set of points. Standard set operations can easily manipulate this information. 

Unfortunately, the space required for this representation grows too quickly to be 

broadly applicable. 

The class AbstractPointSet is a far more efficient means for representing large 

or even infinite point sets. It abandons an exhaustive list of all points in favor of 

a functional definition of the points in the set. An abstract point set specifies a 

function that returns TRUE for points in the set and FALSE for points not in the 

set. For example, the function for the continuous square in Figure 3-3 would check for 

-1 < = x, y < = 1. This fully represents the square area. A point set's representation 

function grows complex as the set is modified by operations such as conjunction and 
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Figure 3-3: Abstract point set 

disjunction, but a suitably complex function can represent any desired set of points. 

Some visual memory applications start with discrete approximations to the con

tinuous world but want to interpolate to a continuous description. For example, 

an application might recognize only the list of discrete points above that make up 

just a small part of an actual continuous square. For these applications, a subclass 

of AbstractPointSet, lnterpolatingAbstractPointSet , can apply a specified interpola

tion function to that list of points to derive a continuous function. For example, an 

interpolation of the point set in Figure 3-2 could yield the point set in Figure 3-3. 

An instance of PointSet is more than just a set of points; it also includes a number 

of methods deriving spatial information from this set. Important methods find a point 

set's centroid, boundary, bounding box, and surface normal, among other things . 

These methods extend the power of the point set and enhance the visual memory 

spatial support. 

CoordinateSystem 

A point in space is useful only in relation to other points. The CoordinateSystem 

class establishes relationships between points in the visual memory. Figure 3-4 shows 

a couple of possible coordinate systems. Each CoordinateSystem subclass must define 
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Figure 3-4: Coordinate systems 

dimensions, axes, and other features of the space. These specifications give meaning 

to points and provide the basis for relating points. The visual memory defines a coor

dinate system for a set of points; the Spatia/Object class associates a local coordinate 

system with each point set. 

The main job of a coordinate system is to relate points. To do this, it maintains a 

list of coordinate transforms between it and other coordinate systems. To achieve high 

run-time speed efficiency, a coordinate system can maintain transforms between it and 

several other coordinate systems. Alternatively, it can trade off speed of operation 

for lower space requirements by storing only a few transforms and letting the visual 

memory follow a chain of transforms among related coordinate systems. 

To reduce the cost of multiple transforms, an application can adopt a unified co

ordinate system to relate a number of nearby local coordinate systems. This unified 

coordinate system would maintain transforms to and from each local coordinate sys

tem. In this manner each coordinate system would not need to keep a large list of 

transforms, and only two transforms would be needed to relate points in one coor

dinate system to those in any other. A limitation of this approach is that it does 

not scale well for large distances, because the error induced by each transform could 
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Figure 3-4: Coordinate systems

dimensions, axes, and other features of the space. These specifications give meaning

to points and provide the basis for relating points. The visual memory defines a coor-

dinate system for a set of points; the SpatialObject class associates a local coordinate

system with each point set.

The main job of a coordinate system is to relate points. To do this, it maintains a

list of coordinate transforms between it and other coordinate systems. To achieve high

run-time speedefficiency, a coordinate system can maintain transforms between it and

several other coordinate systems. Alternatively, it can trade off speed of operation

for lower space requirements by storing only a few transforms andletting the visual

memory follow a chain of transforms amongrelated coordinate systems.

To reduce the cost of multiple transforms, an application can adopt a unified co-

ordinate system to relate a number of nearby local coordinate systems. This unified

coordinate system would maintain transforms to and from eachlocal coordinate sys-

tem. In this manner each coordinate system would not need to keep a large list of

transforms, and only two transforms would be neededto relate points in one coor-

dinate system to those in any other. A limitation of this approach is that it does

not scale well for large distances, because the error induced by each transform could
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compound significantly. 

The CoordinateSystem class provides methods to transform a coordinate system's 

relationship with other coordinate systems. For example, one coordinate system 

might translate and rotate with respect to others. Transforming a coordinate system 

modifies its list of coordinate transforms, and all coordinate transforms between it 

and other systems must be updated. This is automatically provided by the visual 

memory as part of the transformation method. 

Transforms like translation and rotation are CoordinateSystem methods rather 

than PointSet methods for a number of reasons. The coordinate system relates the 

point set to other coordinate systems, and it is probably more efficient to store a 

transform than a transformed point set for each other coordinate system. It is also 

more efficient to accumulate a set of transforms into one transform than to repeatedly 

apply transforms to a whole set of points. If the points are represented by a function, 

it could be hard to determine how the transform should modify that function. The 

transform could be applied only when needed; if it were used repeatedly, the results 

could be cached. 

Coordinate system transforms permit the construction of multiple-object scenes. 

Each spatial object is developed in its local coordinate system, and then coordinate 

system transforms construct relations between local coordinate systems. The oppo

site effect occurs when multiple sets of points in one coordinate system are split into 

separate spatial objects with local coordinate systems. In this case, the transforma

tion from each local coordinate system to the original unified coordinate system is 

already defined. Standard computer graphics texts, such as [11], discuss coordinate 

system transforms and the construction of multiple-object scenes in further detail. 

3.3.2 Relative Spatial Specification 

In many cases, a coordinate system has explicitly-defined relationships to other co

ordinate systems. For example, one coordinate system might have an origin 3 units 

to the east of the origin of another coordinate system. In other instances, however, 

this information is not so clear. For example, an application might only need to know 
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Figure 3-5: Relative spatial objects 

that one block was to the east of another block, without knowing an explicit distance. 

In these cases a relative spatial specification is required. 

There are actually two kinds of relative spatial specification: specification relative 

to a concrete position or object with concrete position, and specification relative to 

another relative spatial specification. For example, in Figure 3-5 the visual memory 

knows that object 1 is to the east of the point (23,18), object 2 is to the east of object 

1, and object 3 is to the east of object 2. This description does not precisely specify 

the scene; for example, object 2 could be further to the north and east and still meet 

the specification. 

The visual memory provides the class RelativeSpatialObject, a subclass of Spa

tialObject, to handle relative spatial specification. A relative spatial object simply 

keeps lists of objects relative to it in various ways. For example, one subclass of Rel

ativeSpatialObject might provide lists for objects west, east, north, and south of it, 

while another subclass might provide a list for nearby objects, where "near" is defined 

by a method of the class. RelativeSpatialObject can represent both kinds of relative 
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that one block was to the east of another block, without knowing an explicit distance.

In these cases a relative spatial specification is required.

There are actually two kinds of relative spatial specification: specification relative

to a concrete position or object with concrete position, and specification relative to

another relative spatial specification. For example, in Figure 3-5 the visual memory

knows that object 1 is to the east of the point (23,18), object 2 is to the east of object

1, and object 3 is to the east of object 2. This description does not precisely specify

the scene; for example, object 2 could be further to the north and east andstill meet

the specification.

The visual memory provides the class RelativeSpatialObject, a subclass of Spa-

tialObject, to handle relative spatial specification. A relative spatial object simply

keepslists of objects relative to it in various ways. For example, one subclass of Rel-

ativeSpatialObject might provide lists for objects west, east, north, and south ofit,

while another subclass might providea list for nearby objects, where “near” is defined

by a method of the class. RelativeSpatialObject can represent both kinds of relative
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spatial specification mentioned above, since an instance can be defined relative to any 

spatial object, including a fixed position or another relative spatial object. 

An application can construct arbitrary graphs of relative spatial objects. For 

example, in Figure 3-5, object 1 is to the west of object 2, which is to the west of 

object 3, and so forth. RelativeSpatialObject provides methods to trace through the 

transitive closure of a graph operation. In the above example, since object 1 is to the 

west of object 2 and object 2 is to the west of object 3, it follows that object 1 is to 

the west of object 3. Both objects must keep track of the relationship so that the 

connection can go in either direction; in the above example, it also follows that object 

3 is to the east of object 1. If a large number of links separate two related objects, 

an application might want to establish a direct connection. Alternatively, the visual 

memory could cache this information. 

The design of RelativeSpatialObject must determine how to handle transformation 

of an object in a relative object graph. In Figure 3-5, object 2 was to the east of 

object 1. If object 2 moved west, it could be either to the east or to the west of object 

1, as shown in Figure 3-6 and Figure 3-7 respectively. When an object is transformed, 

the visual memory must eliminate all of its relative dependencies. If objects maintain 

their relationship after transformation, that relationship must be reasserted. If objects 

are somehow connected so that the relationship is always maintained, they should be 

established as subobjects of a larger object that maintains the relationship. 

3.3.3 Uncertain Spatial Specification 

Some computer vision applications do not know exactly where objects are located and 

exactly which points are in the point sets. They deal with approximate information 

and conflicting evidence from multiple sources. These applications require uncertain 

spatial specifications. 

The visual memory class ProbabilisticPointSet, a subclass of PointSet, represents 

uncertain spatial information. ProbabilisticPointSet associates with each point the 

probability that it belongs to the point set. Thus instead of just knowing that point 

(3,4,5) was in a point set, a probabilistic point set would know that point (3,4,5) was 
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Figure 3-6: Breaking a relative spatial specification, part 1 
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Figure 3-7: Breaking a relative spatial specification, part 2 
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Figure 3-8: Uncertain edges 

in the point set with probability 0. 7. Point probabilities allow applications to specify 

empirical certainty factors for point sets. As will be shown below, this provides great 

flexibility in representing uncertain spatial information. 

The standard PointSet methods must be modified to take point probabilities into 

account. The methods can reflect uncertainty in various ways. For example, there is 

no real boundary to a point set with point probabilities asymptotically approaching 0. 

However, an application can define the boundary as the set of points with probability 

0.1. Subclasses of ProbabilisticPointSet support such variations. 

Like PointSet, ProbabilisticPointSet has both discrete and abstract subclasses. 

The discrete subclass maintains a list of <point, probability> pairs, while the ab

stract subclass defines a function that returns a probability for a given point. Set 

operations can combine the point probabilities from different point sets by maximiz

ing, minimizing, or averaging, among other operations. 

Probabilistic point sets can handle a number of different types of uncertain spatial 

specification. The following sections examine a few of these. 

Uncertain Edges 

ProbabilisticPointSet lets applications be fuzzy about the region of space occupied 

by an object. For example, the probability function can decrease at the edges of an 

object, where a segmentation algorithm might be unsure of exactly how to separate 

regions. Figure 3-8 shows examples of a standard person and a person with uncertain 

edges, where darker regions have higher probability. 
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Like PointSet, ProbabilisticPointSet has both discrete and abstract subclasses.

The discrete subclass maintains a list of <point, probability> pairs, while the ab-

stract subclass defines a function that returns a probability for a given point. Set

operations can combine the point probabilities from different point sets by maximiz-

ing, minimizing, or averaging, among other operations.

Probabilistic point sets can handle a numberofdifferent types of uncertain spatial

specification. The following sections examine a few of these.

Uncertain Edges

ProbabilisticPointSet lets applications be fuzzy about the region of space occupied

by an object. For example, the probability function can decrease at the edges of an

object, where a segmentation algorithm might be unsure of exactly how to separate

regions. Figure 3-8 shows examples of a standard person and a person with uncertain

edges, where darker regions have higher probability.
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Figure 3-9: Uncertain location 

Uncertain Location 

An application might know the points in the point set but might not be sure of its 

exact location. For example, a tracking algorithm might identify a group of points as a 

person and decide to use the default point set to represent it. However, it might know 

the person's location only to within a meter. The point set for this particular person 

can be "spread out" to cover the range of possibilities. An application can inclicate 

the areas most likely to contain the object by giving them the highest probability. 

Figure 3-9 shows a person and a "spread out" probabilistic point set, with darker 

regions for points with higher probability. 

Conflicting Information 

An application might have separate processes providing inconsistent information to 

the visual memory. For example, one process in a vehicle navigator might identify a 
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Figure 3-10: Conflicting information 

car at one location, while another process might identify the same car at a slightly 

different location. ProbabilisticPointSet handles this situation similarly to uncertain 

location, but it must combine only a discrete set of point sets rather than spreading 

out one point set over a continuous area. 

ProbabilisticPointSet provides several different ways to combine point sets. For 

example, it can combine point probabilities by maximizing, minimizing, summing, 

or differencing (with probabilities staying between 0 and 1), or it can interpolate 

between the point sets. These approaches to combining probabilities are similar to 

those taken by expert systems [7] and multi-valued logics [14]. 

Figure 3-10 shows two point sets to be combined and the results of three different 

types of combination. The points in the original point sets have the same probabilities. 

The leftmost combination is formed by maximization; since the probabilities are all 

the same, this is equivalent to a point set union operation. The middle combination 

interpolates horizontally between the two point sets. The rightmost combination adds 

probabilities, assigning higher probabilities to the areas where the point sets overlap. 
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3.4 Temporal Representations 

Temporal representations fit into another branch of the visual memory class hierarchy. 

There are some parallels between the spatial branch and the temporal branch, but 

the temporal branch has many of its own requirements and features. This section 

presents the visual memory temporal representations. Like spatial operations, many 

temporal operations are complex and require the indexing mechanism of Section 3.8 

to achieve high performance. 

3.4.1 Core Temporal Classes 

Temporal Object 

The class TemporalObject is the basis for high-level representation of temporal in

formation in the visual memory. Visual memory is concerned with valid time, the 

time at which events happen. TemporalObject provides slots and methods defining 

a standard interface for visual memory temporal support. Its subclasses extend the 

definition to handle additional temporal information. Any class that needs to keep 

track of its valid time should inherit from TemporalObject. 

TemporalObject represents valid time as a set of time intervals and a local clock. 

It provides methods to manipulate this information, setting and retrieving the valid 

time, relating the clock to other clocks, and so forth. Most of these methods are 

furnished by the lower-level classes that make up TemporalObject, discussed further 

in the following sections. 

VMTime 

The most elementary temporal representation is the class VMTime, an abbreviation 

for Visual Memory Time. An instance of this class represents exactly one point in 

time. Like its spatial counterpart Point, VMTime is a fairly simple but essential 

building block in the visual memory class hierarchy. 
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Temporallnterval 

Most objects are valid not for just one point in time but rather for some duration of 

time. The visual memory provides the class Temporallnterval to represent temporal 

extents. Temporallnterval is defined as an open interval [tl! t 2 ) to denote valid time 

from time t 1 to time t 2 • The interval is open because applications generally recognize 

when an object is first valid (ti) and when it is first invalid (t2 ); its valid interval then 

extends from t 1 up to but not including t 2 • 

Temporallnterval provides a variety of methods for manipulating temporal infor

mation. Standard methods set and retrieve the starting and ending times of the 

interval. Additional methods check interval overlap, combine overlapping intervals, 

and check the equality of intervals. 

TemporalElement 

While some temporal databases use the temporal interval as the main temporal repre

sentation, that is insufficient for all visual memory applications. One problem is that 

the difference of two temporal intervals might not be a temporal interval: if interval 

1 covered [10, 30) and interval 2 covered (15, 25), the difference would be (10,15) 

U [25,30). The same problem occurs with disjunction, when an object is valid for 

multiple distinct intervals. The visual memory follows Elmasri [10] and goes one step 

further than Temporallnterval to provide a more powerful temporal representation. 

The class TemporalElement maintains a temporal object's valid time in the visual 

memory. A temporal element consists of a set of temporal intervals. Thus it is closed 

under set operations and can represent complex temporal specifications. Each of the 

less expressive temporal representations is a subcase of TemporalElement: Temporal

Interval is a singleton TemporalElement and VMTime is a singleton TemporalElement 

with the same starting and ending point. Figure 3-11 depicts an example temporal 

element. 

TemporalElement furnishes many methods for manipulating its temporal informa

tion. It is a subclass of the generic Set class, so it provides standard set operations 

such as member, conjoin, disjoin, and difference. In addition, by using TemporalEle-
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Figure 3-11: Temporal element 
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Figure 3-12: Overlapping temporal elements 

ment methods, an application can set and retrieve valid times, compare valid times, 

combine overlapping intervals in a temporal element, and resolve two temporal ele

ments, eliminating overlapping times from one in favor of the other. 

Resolution of conflicting temporal elements is an important concept in the visual 

memory. An application can specify what to do in case of conflict between valid 

times: it can resolve in favor of the original valid time, it can resolve in favor of the 

new valid time, or it can leave them in an inconsistent state. Figure 3-12 shows two 

overlapping temporal elements, version A and version B; Figure 3-13 and Figure 3-14 

show the two ways in which they can be resolved. Temporal resolution is especially 

useful for an application that is initially unsure of the full extent of an object's valid 

time. The application could assume that the object was valid from a given point until 

told otherwise and then later resolve that when it learned more information. 

Like its spatial counterpart PointSet, TemporalElement has both discrete and ab

stract subclasses. The class Discrete TemporalElement lists all the temporal intervals 

in the set, while the class AbstractTemporalElement uses a function to determine 

whether or not a given temporal interval is in the set. Since time is one-dimensional 
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ment methods, an application can set and retrieve valid times, compare valid times,

combine overlapping intervals in a temporal element, and resolve two temporal ele-

ments, eliminating overlapping times from one in favor of the other.

Resolution of conflicting temporal elements is an important concept in the visual

memory. An application can specify what to do in case of conflict between valid

times: it can resolve in favor of the original valid time, it can resolve in favor of the

new valid time, or it can leave them in an inconsistent state. Figure 3-12 shows two

overlapping temporal elements, version A and version B; Figure 3-13 and Figure 3-14

show the two ways in which they can be resolved. Temporal resolution is especially

useful for an application that is initially unsure of the full extent of an object’s valid

time. The application could assumethat the object was valid from a given point until

told otherwise and then later resolve that when it learned more information.

Like its spatial counterpart PointSet, TemporalElement has both discrete and ab-

stract subclasses. The class Discrete TemporalElementlists all the temporal intervals

in the set, while the class AbstractTemporalElement uses a function to determine

whether or not a given temporal interval is in the set. Since time is one-dimensional
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Figure 3-13: Temporal resolution in favor of version A 
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Figure 3-14: Temporal resolution in favor of version B 

and most valid times are in just a few continuous blocks, the discrete class is probably 

more useful for most applications. The abstract class is available for applications that 

need to represent a large number of disjoint intervals. 

Clock 

A time point makes sense only with specification of the clock on which it was mea

sured. The visual memory provides the class Clock, the temporal analog of the spatial 

class CoordinateSystem, to represent this information. Each clock can assign a differ

ent meaning to time points: one clock might use milliseconds since January 1, 1900, 

while another might use seconds since March 8, 1970. In addition, a Clock instance 

can specify the machine on which the clock is located so that applications can try to 

account for inaccuracies and differences between system clocks. 

The TemporalObject class associates a clock with a temporal element. Clocks are 

associated at this level of granularity because TemporalElement is the main visual 

memory temporal representation. Using a finer granularity would hurt performance 
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Figure 3-15: Relative temporal specification 

for complex temporal specifications and would not greatly improve performance for 

simple temporal specifications that can be represented as trivial temporal elements. 

Like each coordinate system, each clock provides a set of transforms between it 

and other clocks. This establishes meaning behind the time points associated with 

a clock and allows the visual memory to convert times among clocks. To increase 

performance, applications can use the same or compatible clocks. 

3.4.2 Relative Temporal Specification 

Some applications, such as planners and schedulers, do not know explicit temporal 

information but can specify some relative ordering of events. For example, a planner 

might know that it must move to the other side of the room, which will take 5 

seconds, before it can pick up a block. To support these applications the visual 

memory provides classes representing relative temporal specifications. 

There are two kinds of relative temporal specification: specification relative to 

a definite time or object with a definite time, and specification relative to another 

relative temporal specification. For example, Figure 3-15 illustrates that I plan to 

eat dinner after 6:00, watch TV after that, and start writing my thesis while I watch 

TV. This description does not precisely specify the times of these events; if I took a 

longer break between eating and watching TV the relative specification would be the 

same. 

The visual memory class RelativeTemporalObject, a subclass of TemporalObject, 
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supports relative temporal specification. A relative temporal object maintains a list 

of other objects to which it is temporally related. For example, one subclass of 

RelativeTemporalObject might keep track of events before and after it, while another 

might maintain a list of events happening at approximately the same time. 

Relative Temporal Object allows applications to build arbitrary graphs of tempo

ral relations. For example, the specification in Figure 3-15 directly relates a time 

and three temporal objects. Relative TemporalObject also provides methods to trace 

through the transitive closure of a graph. In this example, it could report that I will 

study after 6:00. Both related objects must keep track of the relationship so that the 

link can be traversed in either direction. In this manner, the visual memory could 

also report that 6:00 is before the time when I will study. 

3.4.3 Uncertain Temporal Specification 

In many cases an application might be unsure about the valid time of an object's state. 

This could happen, for instance, if the application did not notice an abrupt change 

of state or could not pinpoint the time of the state change. The visual memory pro

vides two classes, Probabilistic Temporallnterval and Probabilistic TemporalElement, 

to support uncertain temporal information. Like their spatial counterpart Probabilis

ticPointSet, these classes follow in the tradition of multi-valued logics and expert 

system certainty factors. 

ProbabilisticTemporallnterval 

ProbabilisticTemporallnterval extends the definition of an interval to include a func

tion that, given a time, returns the probability that the interval includes that time. 

Thus, as shown in Figure 3-16, a probabilistic temporal interval can specify that the 

valid time most likely includes [10,25), is increasingly less likely to include times on 

the other sides of 10 and 25, and definitely does not include times outside of [5,30). 

This probability drop-off could indicate where the application was trying to determine 

state-change boundaries. The deterministic temporal interval is merely a special case 

where the probability is 1 during a specific interval and 0 elsewhere. 
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Figure 3-16: Probabilistic temporal interval 

Probabilistic Temporallnterval modifies standard Temporallnterval methods to use 

the temporal probability function. For example, a probabilistic temporal interval does 

not have clearly-defined endpoints; the method to find endpoints uses a threshold 

supplied by the application to separate points in the interval from those outside it. 

ProbabilisticTemporalElement 

ProbabilisticTemporalElement, a subclass of TemporalElement, contains a set of prob

abilistic temporal intervals rather than a set of temporal intervals. This allows a 

temporal object to represent the probability that it is valid during a time in a set of 

disjoint intervals. 

The methods of ProbabilisticTemporalElement are specialized to handle tempo

ral probability. For example, multi-valued logic systems often define probabilistic 

conjunction as a minimization operation and probabilistic disjunction as a maximiza

tion operation [14]. Figure 3-17 shows two overlapping temporal elements; Figure 3-

18 demonstrates conjunction by minimization and Figure 3-19 shows disjunction by 

maximization. 
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Figure 3-17: Overlapping probabilistic temporal intervals 
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Figure 3-18: Probabilistic conjunction by minimization 
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. Figure 3-19: Probabilistic disjunction by maximization 
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3.5 Spatiotemporal Representations 

Many objects stored in the visual memory have both spatial and temporal compo

nents. For example, a vehicle navigator might watch other vehicles driving nearby 

and a security system might track people walking in a hall. In both of these cases, 

objects are moving in space over an extent of time. The meshing of spatial and tem

poral information in these cases suggests that, in addition to spatial and temporal 

support, the visual memory should provide spatiotemporal support. 

The class SpatiotemporalObject, a subclass of both SpatialObject and TemporalOb

ject, represents spatiotemporal information in the visual memory. Because it is a 

subclass of both SpatialObject and TemporalObject, it contains the same information, 

including a point set, a coordinate system, a set of valid times, and a clock. It also 

supports all the SpatialObject and TemporalObject methods for manipulating this 

information. 

The class DiscreteSpatiotemporalObject, a subclass of SpatiotemporalObject, stores 

state snapshots of objects. For example, a vehicle navigator could use an instance of 

this class to periodically store information indicating the spatial extent of the vehicle 

over some interval of time. In this way it could build up a whole history of the 

vehicle's motion. 

DiscreteSpatiotemporalObject provides interpolation methods to estimate addi

tional spatiotemporal information from existing information. For example, from the 

information in Figure 3-20, the visual memory could interpolate the snapshot of 

Figure 3-21. DiscreteSpatiotemporalObject subclasses implement a variety of inter

polation procedures; for example, the circle in Figure 3-21 could be interpolated by 

radius or by area, and acceleration over several snapshots could be taken into account. 

Interpolation allows applications to store spatiotemporal information more sparsely 

and still closely approximate necessary information. 

Like SpatialObject and TemporalObject, SpatiotemporalObject also provides an ab

stract subclass to represent information by means of a function. AbstractSpatiotem

poralObject uses a trajectory method to determine which points are in its point set 
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Figure 3-20: Discrete spatiotemporal information 
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Figure 3-21: Interpolated spatiotemporal state 
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Figure 3-20: Discrete spatiotemporal information
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Figure 3-21: Interpolated spatiotemporal state
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Figure 3-22: Point set trajectory 

at specified times. The trajectory specifies how the object's point set and coordinate 

system change with time. Thus an abstract spatiotemporal object is equivalent to a 

set of discrete spatiotemporal state snapshots. 

The spatial description of an object can change over time in two different ways: 

the point set itself can change, or the point set's relation with other points can 

change. The circle with an expanding radius shown in Figure 3-22 is an example of 

a changing point set, while the translating circle shown in Figure 3-23 demonstrates 

changing relationships. A trajectory for an abstract spatiotemporal object can handle 

either or both types of change. 

The trajectory can modify a point set over time by supplying a time point as an 

additional argument to the point set function. For example, the trajectory for the 
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Figure 3-23: Coordinate system trajectory 

48 
Ex. A Page 48 of 92

Canon Ex. 1007 Page 62 of 219

 
t=3

Figure 3-23: Coordinate system trajectory
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circle with expanding radius in Figure 3-22 could check x2 + y 2 <= t to determine 

all points ( x, y) in the point set at time t. If the changes in the point set follow some 

pattern, the spatiotemporal point set function can capture that pattern; otherwise, 

the discrete approach is probably more suitable. 

The trajectory can change relationships between point sets over time by estab

lishing a function to specify coordinate system transforms as a function of time. In 

Figure 3-23, the trajectory would translate the coordinate system one unit along 

the x-axis every second. This can be implemented by establishing an initial coordi

nate system and its relationships to other coordinate systems and then identifying 

differences between the coordinate system at a given time and the initial coordinate 

system. This way the trajectory does not have to establish all the coordinate system's 

relations at each time; instead, it can transform from a given coordinate system to 

the established coordinate system and from it to any other related coordinate system. 

Visual memory provides the class RelativeSpatiotemporalObject to express spa

tiotemporal relationships. For example, an application could describe a relative 

spatiotemporal object as being to the right of another object sometime after 6:00. 

RelativeSpatiotemporalObject and its subclasses simply combine the relative spatial 

and temporal classes detailed in earlier sections. 

Spatiotemporal representations can benefit from probabilistic methods. The vi

sual memory class ProbabilisticSpatiotemporalObject combines the spatial and tem

poral probabilistic methods previously described. It allows applications to express 

uncertainty about both the spatial and temporal extents of spatiotemporal objects. 

Probabilistic functions are especially useful with spatiotemporal interpolation, allow

ing a measure of uncertainty to accompany an interpolated object description. Ab

stract spatiotemporal objects can establish probabilistic trajectories to be imprecise 

about the changes in an object's spatial description over time. 
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3.6 Object Storage 

An important part of the visual memory design addresses how to store and retrieve 

spatiotemporal information. The object-oriented database on which the visual mem

ory builds provides basic support for object storage and retrieval. This section dis

cusses the concepts and issues most relevant to the visual memory design. 

3.6.1 Identity 

Each object in the visual memory has a unique identity. This identity does not 

necessarily correspond to physical identity; for example, an application might not 

recognize a person appearing in its view as the same person who disappeared moments 

ago, causing it to create a new object for the person. To preserve identity, the visual 

memory assigns each object an object identitifier (OlD), a number that distinguishes 

that object from all others. The object maintains the same OlD through all of its 

state changes. 

Each object can have multiple versions. For example, a security system could track 

a person walking down a hall and store a new version describing that person's location 

every tenth of a second. The versions of an object maintain the same OlD, but each 

has a different version number. Thus an <OlD, version number> pair uniquely 

distinguishes a particular state snapshot of a particular object. By maintaining all 

of an object's versions, the visual memory can answer questions about the object's 

history. 

Some visual memory applications might need to combine the histories of different 

objects to form the history of one object. This could happen, for example, if a 

tracking system lost sight of a person, found a new person and created a new object, 

and later realized that the two people were actually the same. The visual memory 

can consolidate object histories to create versions of one object from versions of other 

objects. 

An application can report to the visual memory that an object has disappeared. 

Making an object disappear is quite different from deleting that object, which actu-
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ally removes old versions of the object from the visual memory. Disappearing does 

not affect an object's history but instead removes it from the current state of the 

visual memory. Visual memory queries after an object's time of disappearance do not 

retrieve that object. 

3.6.2 Storage Mechanism 

The database underlying the visual memory decides how to store objects. To imple

ment an appropriate storage policy, the database should consider the visual memory's 

storage needs and the characteristics of the objects that it stores. This section dis

cusses how object storage should be tailored for the visual memory. 

Many visual memory objects change very little from one version to the next. For 

example, a rigid object moving across the room changes only its coordinate system 

and valid time; the point set, clock, and other information remains the same. In cases 

like this, the database should store one base version of the object and then indicate 

differences for each new version. 

The visual memory obeys a nondeletion policy: it creates a new version each time 

an object changes, and it never deletes old versions. Deleting a version would cause 

problems for other object versions containing references to it. The visual memory is 

not an append-only database since it actually modifies old versions, as discussed below 

in section 3.6.3. Only the visual memory can modify old versions, since uncontrolled 

modification could lead to inconsistencies. These considerations allow the database 

to implement a simpler storage policy. 

Some visual memory applications store a great amount of data. Since old informa

tion might never be deleted, the available space can quickly :fill. Once old information 

has settled down and will not be accessed or modified often, the database can move it 

onto long-term, high-capacity storage devices. This keeps the most useful information 

readily available while increasing the amount of information that can be stored. 
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3.6.3 Time 

As a historical database, the visual memory keeps track of when events happened. 

It stores with each version of a temporal object information about that version's 

valid time. Since one version's valid time might conflict with the valid times of other 

versions, the visual memory attempts to ensure consistency by resolving these valid 

times. Section 3.4.1 discusses temporal resolution strategies. 

The valid time of a new version could conflict with the valid times of many old 

versions. The indexing strategies discussed below in Section 3.8 allow the visual 

memory to quickly identify which old versions must be changed. The necessity of 

resolving old temporal information encourages the use of caching techniques to reduce 

the number of disk accesses. 

Applications can improve the performance of temporal resolution by operating in 

"real-time mode." In real-time mode, the valid time of the latest version of an object 

is an infinite interval starting from the current time. Thus each new version must be 

resolved only with the previous version. For example, if the first version were valid 

[0, oo ), then a second version valid [5, oo) would change the first version's valid time 

to [0, 5), a third version valid [10, oo) would change the second version's valid time 

to [5, 10), and so forth. Performing only one temporal resolution per object update 

can greatly improve storage performance. 
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3. 7 Queries 

The visual memory provides a powerful and expressive mechanism for retrieving infor

mation. This query mechanism is tailored to the spatial and temporal representations 

presented in earlier sections. It is also designed to meet a wide variety of retrieval 

needs, providing flexibility in specifying objects of interest. This section describes the 

query mechanism and the types of queries supported by the visual memory. 

3.7.1 Query Mechanism 

The visual memory query mechanism extends a standard SQL-based [1) object query 

language, such as OQL [2). The queries below demonstrate the basic form and func

tionality of such a query language. 

Find everyone with the same age as the object stored in program variable "me": 

Select p from Person 
where p.age() == Y.me.age() 

Find everyone named Larry who used to play professional basketball: 

Select p from Person 
where p. firstname() == "Larry" and 

p.occupation() .title() == "pro basketball player" and 
p. occupation(). status() == "retired" 

Find the children of the above people: 

Select p from Person 
where p.father() in 

(Select p from Person 
where p. firstname () == "Larry" and 

p. occupation() . title() == "pro basketball player" and 
p.occupation() .status() == "retired") 

The database literature contains many examples demonstrating the power of query 
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languages. The visual memory query language extensions allow applications to con

struct complex spatiotemporal queries. 

A query language provides flexibility and expressiveness but can be hard to use. 

For applications that do not need the full power of a query language, graphical query 

specification might be more suitable. A graphical query could be specified by outlining 

regions of space and intervals of time; objects satisfying the specification could also 

be displayed graphically. A graphical query language could be built over the visual 

memory query language by transforming graphical specifications into visual memory 

queries. Chapter 4 discusses an implementation of such a graphical query language. 

A query mechanism works on two levels, on disk and in memory. The visual 

memory indices, discussed further in Section 3.8, provide information to help the 

query mechanism eliminate objects that do not satisfy a query before bringing them 

into memory. The query mechanism then further filters these objects to determine 

which objects satisfy the specification. A number of the query constructs outlined 

below could easily be performed in memory but are implemented as part of the query 

language to allow the query language to optimize object retrieval. 

Rather than adding a large number of special spatial and temporal constructs 

to the query language, the visual memory bases its query support on instances of 

the spatial and temporal classes discussed in previous sections. Each query includes 

spatial or temporal keywords and a spatial or temporal object; the keyword describes 

how instances satisfying the query must interact with the given object. The specified 

spatial or temporal object could be a program variable, allowing the application to 

form a complex specification before posing the query. Alternatively, it could be the re

sult of another query, allowing an application to compose queries. These mechanisms 

provide great flexibility in spatial and temporal query specification. 

3. 7.2 Spatial Queries 

Instances of the class SpatialObject form the basis for all spatial queries. A query 

specifies a spatial object of interest and how objects satisfying the query must interact 

with that spatial object. Described below are the ways that applications can use a 

54 
Ex. A Page 54 of 92

Canon Ex. 1007 Page 68 of 219



rectangle 

Figure 3-24: Spatial queries 

specified spatial object to retrieve objects of interest. The accompanying examples 

demonstrate the query language syntax and reference objects of Figure 3-24. 

Intersects Query 

The intersects query looks for the intersection of spatial objects. For example, the 

following query returns the set { person-1, person-4 }: 

Select p from Person 
where p intersects %rectangle 

This is one of the most broadly useful spatial query constructs. The specified 

spatial object can be a point, line, pentagon, pyramid, or just about any other spatial 

specification imaginable. This construct is also useful when negated. For example, 

the set { person-2, person-3 } satisfies the following query: 

Select p from Person 
where not p intersects %rectangle 

A security system could use intersection to find all the objects within a room, and 

a vehicle navigator could use negated intersection to make sure that nothing was on 
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specified spatial object to retrieve objects of interest. The accompanying examples

demonstrate the query language syntax and reference objects of Figure 3-24.

Intersects Query

The intersects query looks for the intersection of spatial objects. For example, the

following query returns the set { person-1, person-4 }:

Select p from Person
where p intersects rectangle

This is one of the most broadly useful spatial query constructs. The specified

spatial object can be a point, line, pentagon, pyramid, or just about any other spatial

specification imaginable. This construct is also useful when negated. For example,

the set { person-2, person-3 } satisfies the following query:

Select p from Person

where not p intersects rectangle

A security system could use intersection to find all the objects within a room, and

a vehicle navigator could use negated intersection to make sure that nothing was on
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the road in front of the vehicle. 

Borders Query 

The borders query checks for bordering objects. The set { person-4.torso() } satisfies 

the following query: 

Select p from Person 
where p borders Y.person-4.head() 

A VLSI system could use this query construct to look for electrical contact, and a 

photo interpretation system could use it in constructing a high-level representation of 

connected regions. Applications can use probabilistic point sets to specify imprecise 

borders for this query. 

Centroid-Within Query 

The centroid-within query ignores the spatial extent of objects and checks distances 

between centroids. For example, the following query returns the set { person-1 person-

2 }: 

Select p from Person 
where p centroid within Y.distance of Y.person-2 

This distance parameter specifies within how many units, using the specified spa

tial object's coordinate system, an object must be to satisfy the query. With this 

query, applications can quickly gather objects roughly within a given distance from a 

specified object. The estimation is fairly accurate if the point sets are much smaller 

than the distance between them. 

Point Set-Within Query 

To select nearby objects with greater accuracy than the centroid-within query pro

vides, applications can use the point set-within query. The following example selects 

the set { person-1, person-2, person-3 }: 
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Select p from Person 
where p point set within %distance of %person-2 

This query is similar to the centroid-within query, but it retrieves all objects 

that have at least one point within the given distance of any point of the specified 

spatial object. To select objects meeting some specialized definition of nearness, an 

application can construct any spatial object and perform an intersects query; this is 

just a specialized, optimized version of that process. 

Transitive-Closure Query 

The transitive-closure query compounds any of the above specifications, applying a 

query to its results until there are no new results. It returns all objects identified 

in the process. For example, the transitive closure of a borders query shown below 

returns the set { person-4.torso(), person-4.legs() }: 

Select p from Person 
where p borders by transitive closure %person-4.head() 

This query retrieves any objects bordering the given object, any object border

ing those objects, and so forth. A photo interpretation system could use it to find 

connected regions. 

3. 7.3 Temporal Queries 

The visual memory temporal query mechanism retrieves all the versions of objects 

that satisfy some set of constraints. A temporal query specifies a TemporalObject 

instance to describe the times of interest and a keyword to describe how the valid 

time of a satisfying version must interact with those times. Described below are the 

visual memory temporal query specifications. Accompanying examples demonstrate 

the query language syntax using versions shown in Figure 3-25. 
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Figure 3-25: Temporal queries 

During Query 

The during query checks for versions whose valid times intersect the given valid time. 

For example, the following query returns the set { Version-B, Version-C, Version-D }: 

Select p from Person during Y.query 

This is a very powerful query, allowing applications to retrieve versions during any 

specified set of times. It is also useful in its negated form, where it returns versions 

whose valid times do not intersect the given valid time. The negated query below 

selects the set { Version-A, Version-E }: 

Select p from Person 
not during Y.query 

Latest-During Query 

The latest-during query retrieves only the latest version of an object during some 

specified temporal element. For example, the set { Version-D } satisfies the following 

query: 
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Select p from Person 
latest during Y.query 

An application could use this query to update a memory-resident model with 

the latest information in the visual memory. For example, a vehicle navigator could 

establish a model of static objects at the beginning of its execution and then use this 

query to update that model with the latest dynamic information stored by image 

processing software. 

3. 7.4 Spatiotemporal Queries 

In addition to spatial and temporal queries, the visual memory supports spatiotempo

ral queries. Some of this support comes from the query language's natural ability to 

handle combined specifications. For example an application could pose the following 

query: 

Select p from Person 
where p intersects Y.square 
during Y.times 

This query retrieves all versions of all objects valid during the specified times and 

intersecting the specified square. Figure 3-26 depicts five states of a spatial object, 

at timet= 1 through t = 5. Figure 3-27 depicts a square valid over [1,5) and shows 

that the above query would return the third state of the object. 

The joint spatial and temporal query checks a static spatial object over time, 

so it does not handle interactions between spatial and temporal information. Some 

applications want to track a moving object and retrieve versions near it at various 

times. To handle cases like this, the visual memory provides spatiotemporal queries. 

A spatiotemporal query specifies a spatiotemporal object and a temporal object, 

and how objects must interact with these to satisfy the query. The spatiotemporal 

object's history describes where an object must be at given times, and the temporal 

object specifies a portion of the history of the spatiotemporal object. The query can 

use any of the spatial constructs discussed above to specify spatiotemporal interac-
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Figure 3-26: States of a spatiotemporal object 
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Figure 3-27: Joint spatial and temporal queries 
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Figure 3-28: Spatiotemporal queries 

tions. For example, consider the following query: 

Select p from Person 
where p intersects %square 
during Y.times 

X 

This query construct retrieves versions of objects that intersect the square in its 

trajectory over a set of times. The query shown in Figure 3-28 uses as the spatiotem

poral query object a square translating equally in the x and y dimensions over time. 

This query returns all five states of the object of Figure 3-26. 

This powerful query construct can handle many complex queries, especially when 

combined with the join capability of the query language. For example, 
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tions. For example, consider the following query:

Select p from Person

where p intersects square
during /times

This query construct retrieves versions of objects that intersect the square in its

trajectory over a set of times. The query shown in Figure 3-28 uses as the spatiotem-

poral query object a square translating equally in the x and y dimensions over time.

This query returns all five states of the object of Figure 3-26.

This powerful query construct can handle many complex queries, especially when

combined with the join capability of the query language. For example,
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Select p from Person 
during Y.times-1 
where p in 

(Select q from Person 
where q centroid within 3 of Y.spatiotemporal-spec 
during Y,times-2) 

This query tracks all objects that came within 3 units of a given object on its 

trajectory during a certain set of valid times. Queries like this demonstrate the power 

of a query language extended with the visual memory spatiotemporal constructs. 
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3.8 Indices 

The visual memory provides an indexing mechanism to quickly identify objects meet

ing sets of constraints. Indices tie in with both the query mechanism and the various 

spatial, temporal, and spatiotemporal operations described in preceding sections. For 

example, a spatial index can help identify solutions to an intersection query retrieving 

objects stored in the visual memory, and it can help identify intersecting memory

resident objects. The two types of indexing work similarly, so for conciseness this 

section primarily considers how indices can improve retrieval performance. 

Indices maintain information allowing them to quickly eliminate objects that do 

not satisfy a query. They provide conservative approximate answers to queries; that 

is, they can mistakenly retrieve objects that do not satisfy a query, but they can never 

mistakenly leave out objects that do satisfy a query. The design of an index must 

trade off between how quickly the index can answer a query and how much overhead 

is necessary to maintain the indexing information. A well-designed index can greatly 

help query performance while adding minimal information overhead. 

3.8.1 Mechanism 

Visual memory indices are object-oriented: they are objects and they maintain infor

mation about objects. This yields a consistent approach to information representa

tion. The database can store and retrieve indices just like other objects. Indices can 

keep track of other indices, a technique further discussed below. Finally, due to the 

extensible nature of the object-oriented approach, it provides flexibility in designing 

indices. 

The purpose of an index is to maintain information to help it efficiently identify 

objects that might satisfy a query. In the visual memory design, this information 

consists of <OlD, version number> records, each uniquely specifying a particular 

version of a particular object. An index structures these records so that it can quickly 

provide a set of records identifying the objects that meet specific constraints. 

Indices maintain information in many different ways, such as tables, arrays, and 
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trees. The visual memory can handle a very large index by retrieving only a necessary, 

manageable part at a time. However, an index must strive to minimize the amount 

of retrieval required to reach an answer, so that the the cost of using the index does 

not outweigh the query efficiency it yields. 

An application can specify which sets of objects it wants to index and how it 

wants to index them. It simply specifies the class of the index desired and the set of 

objects for which it should maintain information. For example, consider the following 

examples of index specification: 

Index temporal-btree on 
(Select p from Person) 

Index spatial-grid on 
%my-set 

Index spatial-quadtree on 
(Select o from Object 

where o intersects %my-room) 

The first example establishes a temporal index for all people; the second establishes 

a spatial index on a specific set specified by a program variable; the third indexes all 

the objects in a certain scene. The visual memory maintains a list of all the indices 

in use and knows when to update them and for which queries they are appropriate. 

The following sections present issues in the design of spatial, temporal, and spa

tiotemporal indices. Chapter 4 discusses additional indexing issues raised by one 

visual memory application and describes indices designed for the application. 

3.8.2 Spatial Indices 

Spatial indices organize information about the objects in a scene. The literature de

scribes many different spatial indices; see [18] for descriptions of quite a few. Different 

spatial indices use different parts of an object's spatial representation and thus are 

most appropriate for different queries. For example, a point quadtree uses an object's 

centroid and works best with proximity queries, while an interval tree uses spatial in-
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tervals and is most suitable for intersection queries. An application must pick spatial 

indices applicable to its retrieval needs. 

3.8.3 Temporal Indices 

Temporal indices store information about object histories. The task of ordering the 

temporal component of an object is similar to that of ordering the spatial component, 

if time is viewed as just another dimension. Thus a lot of spatial indexing research 

applies to temporal indexing as well. For example, a spatial interval tree could store 

lists of versions valid during temporal intervals. However, temporal representation 

poses some concerns unique to temporal indexing. 

Temporal indices must address the monotonicity of time. The visual memory 

allows applications to modify the past or predict the future, but some applications 

maintain an always-increasing sense of time. This could hurt the performance of some 

temporal indices; for example, a tree could become unbalanced. Temporal indices still 

need to support nonmonotonic temporal specification, but some could be optimized 

for the monotonic case. 

Because a temporal index retains historic information, it constantly increases in 

size throughout its lifetime. A temporal index must not lose too much efficiency as 

it grows. Some temporal indices should even partition their data between short- and 

long-term storage, as in [9]. 

Temporal indices must be able to represent infinite temporal intervals. An infinite 

interval occurs, for example, when an application assumes that an object will be valid 

until otherwise notified and assigns the object a valid time extending to infinity. An 

infinite interval would cause problems for a temporal index representing intervals as 

collections of subintervals in a tree. 

3.8.4 Spatiotemporal Indices 

Spatiotemporal indices store spatial information about a scene as it varies in time. 

The interaction of space and time makes spatiotemporal indexing a complex problem. 
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There are two kinds of spatiotemporal indexing, corresponding to the discrete and 

abstract spatiotemporal classes discussed in Section 3.5. 

The first type of spatiotemporal indexing stores information about versiOns of 

discrete spatiotemporal objects. The indexing is a two-step process: spatial indices 

maintain spatial descriptions of objects, and temporal indices maintain the temporal 

descriptions of the spatial indices. To perform a spatiotemporal query, the indexing 

mechanism finds the temporal description in the temporal indices, retrieves the cor

responding versions of the spatial indices, finds the spatial description in them, and 

retrieves the corresponding spatiotemporal object versions. 

Discrete spatiotemporal indexing must address some concerns. Spatiotemporal 

objects that move continuously cause constant index updates. This leads to large 

temporal indices, raising the issues previously discussed. The structure of a spatial 

index used in spatiotemporal indexing should not depend on the objects contained 

within it, since those objects move. 

The second type of spatiotemporal indexing stores information about abstract 

spatiotemporal objects. An abstract spatiotemporal index could build up its own 

spatiotemporal function representing a set of object trajectories. Given a spatiotem

poral specification, this function would return a list of those objects satisfying it. 

This function could grow very complex, so the index would have to devise some 

means of efficiently storing, retrieving, and evaluating it. In this manner an index 

could efficiently answer queries about abstract spatiotemporal objects. 
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Chapter 4 

Implementation 

To test the visual memory design, a subset of it was implemented in support of a real

time scene monitoring prototype. In this prototype, image processing using video 

cameras tracks objects and stores information about them in the visual memory. 

Through a graphical query interface, users can specify queries to the visual memory 

and view the results in various ways. Figure 4-1 shows the basic flow of information 

in the prototype. This chapter describes the implementation of the scene monitoring 

prototype and the visual memory supporting it. 

Scene monitoring is a good testbed for the visual memory. Its constant updates 

and retrievals of information test the visual memory's performance. Multiple sensors 

and outputs test concurrency issues. The query interface tests the power of the query 

language by specifying a variety of queries, including spatial ("Watch for anything 

that comes within 3 feet of that button."), temporal ("Play back the last 10 sec

onds."), and spatiotemporal ("Did anybody come into the room between 12:00 and 

1:00?"). Finally, the construction of such a prototype tests the usefulness of the visual 

memory spatiotemporal representations. 

4.1 Database 

An object-oriented database called Persistent 0++, or PC++ for short [17], is the 

basis for the visual memory prototype. This database is a prototype for the DARPA 
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Open Object-Oriented Database project at Texas Instruments [25). PC++ has an 

open architecture, allowing the visual memory to add spatiotemporal extensions and 

take advantage of the features provided by other modules. 

Some of the features provided by Persistent C++ are particularly useful to the 

visual memory. A versioning mechanism allows access to any previous state of any ob

ject. Transactions ensure atomicity, consistency, isolation, and durability. The object 

storage mechanism caches recently accessed information to increase performance. 

A Persistent C++ preprocessor gathers information about the classes of objects 

to be stored in the database. This particular prototype preprocessor is somewhat 

limited, not allowing multiple inheritance or function pointers; these constraints limit 

the prototype in some situations. The preprocessor adds extra information to the 

class descriptions and forms actual C++ classes for an application to use. It adds 

function hooks into these classes so that the application can establish daemons to be 

executed when objects are stored or retrieved. Finally, when one object contains a 

pointer to another object, its class specification indicates either that the referenced 

object should be automatically retrieved with the referring object or that it should 

be retrieved only on demand. 

Persistent C++ stores objects with the Exodus storage manager [4). It stores a 

whole Exodus object for each version of a PC++ object, rather than storing differ

ences between versions. This could hurt performance for objects that change very 

little from one version to the next. PC++ maintains a B-tree structure to map its 

OIDs to Exodus OIDs; this hurts performance as the number of OIDs grows large. 

Persistent C++ can retrieve an object specified by OlD and version or by a char

acter string previously assigned to that object. It provides an object query language 

extension, OQL [2), but this query language does not interface well with the visual 

memory indexing mechanism. Thus the visual memory prototype has its own spa

tiotemporal query mechanism. 
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4.2 Spatiotemporal Representations 

The prototype visual memory implements as Persistent C++ classes a number of the 

spatial, temporal, and spatiotemporal representations discussed in Chapter 3. These 

representations conform to the design except for some differences due to limitations 

in Persistent C++ and some optimizations and simplifications tailored to the scene 

monitoring application. 

The prototype implements only the basic discrete classes. Since Persistent C++ 

cannot store functions, an instance cannot construct an arbitrary abstract function 

for its point set, temporal element, or trajectory function. In addition, the scene 

monitoring prototype does not need relative or probabilistic specifications. 

To increase performance, the prototype uses a global coordinate system and a 

global clock. This eliminates the need for spatial transforms between coordinate 

systems and temporal transforms between clocks. Translation and rotation methods 

act on objects themselves rather than on their coordinate systems. 

The prototype implements specific subclasses of the class SpatiotemporalObject 

to represent the objects tracked by the scene monitoring system. For example, the 

Person class adds a slot for estimations of the person's height; it could also store the 

person's name and other such information if it were connected to face recognition 

software. 

4.3 Indices 

4.3.1 Mechanism 

Index updates occur in the visual memory prototype at transaction commit time, 

through Persistent C++ commit daemons. When the database stores an object, it 

automatically calls the object's commit daemons. The visual memory establishes 

commit daemons for all objects to update index information. 

The visual memory prototype implements the discrete spatiotemporal indexing 

described in Section 3.8.4. Spatial indices store information about object locations, 
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and temporal indices store information about the valid times of these spatial indices. 

The visual memory prototype handles multiple indices. An application can create 

sets of indices and specify the types of information they should store and the types 

of queries they should answer. However, the prototype only implements start and 

stop control over indices; that is, an application can tell an index to start recording 

information about all objects committed, or to stop recording such information. This 

is a simpler approach than the specification of arbitrary index sets discussed in the 

design, but it is adequate for the prototype application. 

4.3.2 Spatial Indices 

The prototype spatial indices store information about the centroids of objects stored 

in the visual memory. This information allows them to efficiently answer locational 

and proximity queries, such as "Find everything in this square" and "Find everything 

within 5 units of this coordinate." Two such indices were implemented; this section 

describes the two-dimensional version of each. 

The first spatial index is a simple fixed grid [18], dividing space into a number of 

cells. Each cell stores a list indicating those objects with centroids in the cell. The 

index can determine the correct cell for an object by rounding down the coordinates 

of the object's centroid, modulo the cell size. Figure 4-2 shows a fixed grid with a cell 

size of 5. Using the scheme described above, object G at spatial coordinate (14,18) 

belongs to cell (2,3). 

To answer a spatial query, the grid determines relevant cells in the manner de

scribed above and retrieves the objects they list. A query for objects within the 

shaded rectangle in Figure 4-2 searches cells (2,3), (2,4), (3,3), (3,4), ( 4,3), and ( 4,4), 

and returns objects C, F, and G. The fixed grid index is most suitable for visual mem

ory applications with unknown distributions of object positions and frequent needs 

for efficient updates. 

The second spatial index implemented in the prototype is a bucket PR quadtree 

[18]. Each node in the tree keeps a bucket of object records for some region. The 

index initially consists of one node covering the entire indexed region and containing 
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no records. As objects are added to a node's bucket, it eventually becomes full and 

the node must be split. A node is split into four children, one for each quadrant, 

and the node's bucket is appropriately divided among the children; full children are 

recursively split. Figure 4-3 shows how space would be segmented for a quadtree 

with bucket size of 2 and the given objects. Figure 4-4 shows the corresponding index 

structure. 

{ } (E,F} (C} { } 

Figure 4-4: Data structure for bucket PR quadtree 
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A bucket PR quadtree answers a spatial query with a recursive search through all 

nodes intersecting the region of interest. A query for objects in the shaded rectangle 

in Figure 4-3 searches the left half of the tree in Figure 4-4, and it returns objects C, 

F, and G. 

The bucket PR quadtree index is best suited for visual memory applications where 

objects are spread out and do not move often. In these cases, it has much less 

overhead than the fixed grid. Thus an application might use a quadtree to store 

static background information and a grid to store dynamic information. 

4.3.3 Temporal Indices 

The prototype temporal indices keep track of the valid times of object versions. They 

can efficiently answer temporal intersection queries, such as "Find all events that 

happened after work last Tuesday and Wednesday." The prototype implements two 

different temporal indices. 

The first temporal index is a segment tree [18]. Each node in the tree represents 

a temporal interval and contains a list of all versions valid throughout the entire 

interval. The children of a node represent subintervals of their parent's interval, so 

that a version that is not valid throughout a node's interval can be stored in one of 

its descendants. For example, if version A were valid from time 35 to time 140, it 

would appear at the indicated nodes in Figure 4-5. 

To answer a temporal intersection query, the temporal segment tree retrieves the 

versions referenced by all nodes with intervals intersecting the specified temporal 

element. To find all versions valid during [105, 118) in Figure 4-5, the index searches 

the darkened branches and returns versions A and E. 

The second temporal index is a B+ tree [6] with times as its keys. Each leaf node 

maintains a start-list containing versions that become valid at the node's key time 

and a stop-list containing versions that stop being valid at that time. The keys in 

an internal node separate its children. Leaves are connected in a linked list, and the 

start-list for the first leaf of an internal node also indicates "carry-over" versions still 

valid after the last key in the previous node. In Figure 4-6, version A, valid from 
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Figure 4-6: Temporal B+ tree 

time 35 to time 140, has a start record at node 35, a stop record at node 140, and a 

carry-over record at node 107. 

A temporal intersection query proceeds down the tree to the first leaf of an internal 

node with a time less than the earliest specified time. There it gathers the carry-over 

records and traverses the linked list to the earliest specified time to determine which 

carry-over versions are still valid then. Next it continues through the list to the latest 

specified time, noting which versions become valid during the temporal element. In 

Figure 4-6, a query for the interval [105,118) would go down to leaf node 11 and 

traverse the linked list to leaf node 107, noting that only version A was still valid at 
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time 35 to time 140, has a start record at node 35, a stop record at node 140, and a

carry-over record at node 107.

A temporal intersection query proceeds downthetree to thefirst leaf of an internal

node with a timeless than the earliest specified time. There it gathers the carry-over

records and traverses the linked list to the earliest specified time to determine which

carry-over versionsarestill valid then. Next it continues through thelist to the latest

specified time, noting which versions becomevalid during the temporal element. In

Figure 4-6, a query for the interval {105,118) would go downto leaf node 11 and

traverse the linked list to leaf node 107, noting that only version A wasstill valid at
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time 105. It would then proceed to leaf node 121 to find the remaining valid versions, 

finally returning versions A and E. 

4.4 Queries 

The prototype visual memory implements a functional query interface rather than a 

full query language. To pose a query, an application calls a visual memory function, 

passing it parameters specifying the query. For example, a spatial proximity query's 

parameters are a point and a radius, while a temporal intersection query takes a 

temporal element. The visual memory returns a set of <OlD, version number> index 

records indicating objects that might satisfy the query. This set can be combined 

with other such sets to construct complex queries. Once a query has been fully 

specified, the query mechanism can retrieve the indicated objects. The indices provide 

only approximate answers, so the query mechanism filters the retrieved objects to 

return only those objects satisfying the specification. This query mechanism allows 

applications to pose fairly complex queries. 

4.5 Input 

The input for the scene monitoring prototype comes from real-time processmg of 

CCD camera images. This software, which tracks people walking in its field of view, 

was implemented by Tom Bannon and Tom O'Donnell in the Image Understanding 

Branch at the Texas Instruments Computer Science Laboratory. Using a calibrated 

internal model of its field of view, the software estimates the positions and heights of 

people and updates the visual memory a few times per second. This yields enough 

information to test the visual memory's performance and to provide interesting data 

for queries to retrieve. 
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Figure 4-7: Graphical query interface viewing region 

4.6 Graphical Query Interface 

The scene monitoring prototype includes a graphical interface through which users 

can query the visual memory to retrieve information stored by the tracking software. 

A user establishes regions, times, and object types of interest, and the visual memory 

retrieves the corresponding objects. The query interface can display the results by 

dynamically stepping through the state changes of the objects, by displaying all the 

changes at once, or by displaying textual information about the objects. 

The first step in posing a query is to select the query region. The query interface 

allows a user to step through a map hierarchy to select the map for the region of 

interest. The user can resize and scroll the query interface window to select an 

exact query region. This region specifies the spatial area for which objects should be 

retrieved. Figure 4-7 demonstrates a typical viewing region. 

The next step is to establish alarm regions by shading rectangles on the map. In 

addition to displaying objects in the query region, the scene monitoring system alerts 
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Figure 4-8: Specification of query times and classes 

the user to events in alarm regions. Alarm regions can be established all over the 

map, allowing the user to monitor a number of disjoint regions without having to 

watch them all. 

Another step in query specification is to indicate a set of time intervals for each 

region, as shown in the left half of Figure 4-8. The system can parse times such as 

"3/ 8/ 93 8:00" and "today 13:00." It includes a special construct " . .. " to represent 

infinite queries retrieving all information after a given point. In addition, it provides 

the keyword "now" to signify a real-time query, one that constantly polls the database 

for new information. 

An alarm region's temporal specification defaults to that of the query region. If 

an alarm region has an explicit temporal specification, that specification is conjoined 

with the query region's specification. This allows a user to specify, for example, that 

an alarm region should be active only during certain hours. The temporal specification 

for the query region identifies times of interest, and the temporal specification for an 

alarm region further restricts that specification to indicate exactly when the alarm 

should be active. 

The user can specify for each region what types of objects are important, as shown 

in the right half of Figure 4-8. For example, the query region might return all objects, 

an indoor alarm region only people, and an outdoor alarm region both people and 

vehicles. Alarm regions default to the same type specification as the query region. 

Associated with each alarm region is a delay specification that indicates how long 
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Figure 4-9: Graphical query results 

an object must remain in that region before the system triggers an alarm. This lets 

the user specify that an alarm should fire only if an object remains in a region for a 

suspicious amount of time. The default value is 0 seconds, causing an alarm to be 

sounded as soon as an object enters the alarm region. 

Once a query is fully specified, the results can be displayed in one of three ways: 

playback, event report, and trail trace. A playback steps through the retrieved infor

mation in temporal order, displaying moving blocks for moving objects and printing 

alarm information in another window. An event report textually describes alarms 

that were triggered. A trail trace displays blocks for all the retrieved information si

multaneously and provides information about a certain object in response to a button 

press over its picture. Figure 4-9 shows part of a playback window, with one object 

inside an alarm region and two other objects also being monitored. 
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Chapter 5 

Performance 

One of the key requirements for the visual memory is to provide high-performance 

storage and retrieval of spatiotemporal information. The scene monitoring prototype 

described in Chapter 4 not only demonstrates the representational power of the vi

sual memory design, it also provides a means for examining the performance of the 

prototype visual memory. This chapter studies some tests conducted to analyze the 

prototype's performance. 

Visual memory performance can be measured in two main ways: by the number 

of objects stored and retrieved, and by the amount of time taken to store and retrieve 

those objects. The scene monitoring prototype is most concerned with how fast it can 

manipulate information, suggesting the use of temporal performance measurement. 

However, measuring the number of objects stored and retrieved can give an idea of 

the bottom-line visual memory performance and can help predict how changes in the 

storage and retrieval mechanism could affect the temporal performance. This chapter 

only discusses temporal performance, since both measurements follow approximately 

the same pattern and since timing measurements provide an intuitive benchmark. 

The results of timing tests vary from machine to machine and from one execution 

to the next depending on system load, so they are most useful in providing compara

tive information. To reduce inaccuracy, times discussed here are the averages of three 

test executions. To provide more valid comparisons, the tests were run during the 

same time frame on a single machine with approximately the same system load. 
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Figure 5-l: Spatiotemporal update performance 

5.1 Spatiotemporal Object Storage and Retrieval 

The prototype visual memory achieves reasonable spatiotemporal object storage per

formance. The underlying database limits the attainable performance, since it is 

responsible for actual object storage. With every spatiotemporal object update, the 

visual memory stores additional indexing information. A useful test of storage per

formance compares the time to store raw spatiotemporal objects with that to store 

both spatiotemporal objects and associated index information. The graph in Fig

ure 5-1 shows storage times for spatiotemporal objects and different sets of indices as 

a function of the number of objects per update and the number of updates. 

This graph shows that both raw storage time and indexed storage time steadily 

increase with the number of updates and the number of objects per update. Indexed 

storage costs a nearly constant factor of 2 to 3 times the raw update time. This 

overhead factor follows from the spatiotemporal indexing strategy discussed in Sec-
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5.1 Spatiotemporal Object Storage and Retrieval

The prototype visual memory achieves reasonable spatiotemporal object storage per-

formance. The underlying database limits the attainable performance, since it is

responsible for actual object storage. With every spatiotemporal object update, the

visual memory stores additional indexing information. A useful test of storage per-

formance compares the time to store raw spatiotemporal objects with that to store

both spatiotemporal objects and associated index information. The graph in Fig-

ure 5-1 shows storage times for spatiotemporal objects and different sets of indices as

a function of the numberof objects per update and the numberof updates.

This graph shows that both raw storage time and indexed storage time steadily

increase with the numberof updates and the numberof objects per update. Indexed

storage costs a nearly constant factor of 2 to 3 times the raw update time. This
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tion 3.8.4, since for each update the visual memory stores spatiotemporal objects in a 

spatial index and the spatial index in a temporal index. While this seems to be a high 

price, it is necessary so that the visual memory can provide efficient spatiotemporal 

access to the stored information. 

As a result of storing spatiotemporal index information, the visual memory can 

quickly answer spatiotemporal queries. Depending on indices, query complexity, and 

number of satisfying objects, the visual memory answered test spatiotemporal queries 

in 0.1 to 2.1 seconds. Clearly, retrieval performance is much better than storage 

performance. 

5.2 Index Comparison 

Chapter 4 describes two spatial and two temporal indices implemented in the visual 

memory prototype. The spatial indices can answer the same queries, but they differ in 

structure: the grid has a static structure built prior to execution, while the quadtree 

has a dynamic structure defined by the objects stored in it. Similarly, the temporal 

indices provide the same functionality, but the segment tree has a static structure 

and the B+ tree has a dynamic structure. The visual memory prototype provides a 

basis for comparing the performance of these indices. 

Parameters such as branching factor and cell size affect index structure, so the 

tests must use comparable parameters. The spatial tests cover a 100-unit by 100-unit 

square. The quadtree has a bucket size of 10 objects and the fixed grid has a cell size 

of 10 units; this implies that the grid has 100 nodes and the quadtree has from 1 to a 

few hundred nodes. The temporal tests cover a time interval of up to 1000 seconds, 

and both temporal indices have a branching factor of 64. 

In addition to the indices described above, each test also includes a "bucket" index. 

A bucket index simply maintains a list of all the objects stored in the visual memory. 

Since there is no overhead for the storage of complex index structure, a bucket index 

can achieve the highest update performance. A bucket index answers a query by 

retrieving all the objects in its list and checking them against the query specification. 
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Figure 5-2: Spatial update performance 

This is not an efficient query mechanism for large queries, but it provides a useful 

basis for comparing the performance of other indices. 

One important performance measure compares how quickly indices can update in

formation about objects. Figure 5-2 shows the update performance of spatial indices, 

and Figure 5-3 shows the update performance of temporal indices. 

As expected, the bucket indices achieve the highest performance for small numbers 

of objects. However, the temporal bucket cannot store much more than 100 updates, 

since it saves an entire list with each update and quickly fills the database. Dynamic 

structures tend to perform slightly better than static structures for small numbers of 

objects, while static structures are better for large numbers of objects. This follows 

from the relative sizes of the structures; dynamic indices are initially small but grow 

as they store information about additional objects, while static indices maintain the 

same structure no matter how much information is stored. 

Another important measure for index comparison is query performance. Timing 
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Figure 5-3: Temporal update performance 

tests show that query performance follows a pattern similar to that of update perfor

mance: bucket indices achieve the best performance with small numbers of objects, 

dynamic structures work better than static structures with small numbers of objects, 

and static structures work better than dynamic structures with large number of ob

jects. Figure 5-4 shows the performance for spatial indices with a 10-unit by 10-unit 

query square. Figure 5-5 shows the performance for temporal indices with a query 

interval of 10 seconds. 
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tests show that query performance follows a pattern similar to that of update perfor-

mance: bucket indices achieve the best performance with small numbersof objects,
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jects. Figure 5-4 shows the performance for spatial indices with a 10-unit by 10-unit

query square. Figure 5-5 shows the performance for temporal indices with a query

interval of 10 seconds.
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Chapter 6 

Conclusion 

The visual memory design presented in this thesis combines and extends spatial, 

temporal, and database research to meet the needs of a number of computer vision 

applications. It provides powerful and expressive spatiotemporal representations that 

it can efficiently manipulate, store, and retrieve. A prototype visual memory imple

mented in support of a scene monitoring prototype demonstrates the potential of this 

design. This prototype achieves useful storage and query performance and provides 

a basis for comparison of different indices. 

Visual memory research could continue in many different directions. One step 

is to more fully implement the design. Some of the unimplemented spatiotemporal 

representations, such as probabilistic, relative, and abstract objects, could be ben

eficial to the scene monitoring prototype. The prototype visual memory could be 

connected to a number of different computer vision applications. Further implemen

tation and testing would provide more feedback on the design and help identify areas 

for additional research. 

The visual memory could furnish additional functionality if it used a different 

database. For example, if the database provided active rules, a security system could 

establish visual memory daemons to automatically check for alarms and to resolve 

old data. If the database provided real-time guarantees, a vehicle navigator could 

be sure that it would not crash because of visual memory performance. Finally, 

if the database provided data partitioning capabilities, applications that store large 
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amounts of spatiotemporal data could make use of separate storage devices. 

A number of extensions could improve the performance of the visual memory. Vi

sual memory customization of caching and look-ahead could improve both storage and 

retrieval performance. Lightweight transactions could reduce overhead and increase 

storage performance for applications that continuously update the visual memory. 

Query optimization could increase retrieval performance by ordering parts of a query 

to reduce the number of retrievals. These extensions could help the visual mem

ory reach its potential as high-performance system for manipulating spatiotemporal 

information. 
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Event Recognition and Reliability Improvements for 
the Autonomous Video Surveillance System 

Frank Z. Brill, Thomas J. Olson, and Christopher Tserng 
Texas Instruments 

P.O. Box 655303, MS 8374, Dallas, TX 75265 
brill@csc.ti.com, olson@csc.ti.com, tserng@csc.ti.com 

Abstract 

This report describes recent progress in the devel
opment of the Autonomous Video Surveillance 
(AVS) system, a general-purpose system for mov
ing object detection and event recognition. AVS 
analyses live video of a scene and builds a descrip
tion of the activity in that scene. The recent 
enhancements to AVS described in this report are: 
(1) use of collateral information sources, (2) cam
era hand-off, (3) vehicle event recognition, and (4) 
complex-event recognition. Also described is a 
new segmentation and tracking technique and an 
evaluation of AVS performing the best-view selec
tion task. 

1. Introduction 

The Autonomous Video Surveillance (AVS) sys
tem processes live video streams from surveillance 
cameras to automatically produce a real-time map
based display of the locations of people, objects 
and events in a monitored region. The system al
lows a user to specify alarm conditions 
interactively, based on the locations of people and 
objects in the scene, the types of objects in the 
scene, the events in which the people and objects 
are involved, and the times at which the events oc
cur. Furthermore, the user can specify the action to 
take when an alarm is triggered, e.g., to generate an 
audio alarm or write a log file. For example, the 
user can specify that an audio alarm should be trig
gered if a person deposits a briefcase on a given 
table between 5:00pm and 7:00am on a weeknight. 
Section 2 below describes recent enhancements to 

This research was sponsored in part by the DARPA Image 
Understanding Program. 
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the AVS system. Section 3 describes progress in 
improving the reliability of segmentation and 
tracking. Section 4 describes an experiment that 
quantifies the performance of the AVS "best view 
selection" capability. 

2. New AVS functionality 

The structure and function of the AVS system is 
described in detail in a previous IUW paper [Olson 
and Brill, 1997]. The primary purpose of the cur
rent paper is to describe recent enhancements to 
the AVS system. These enhancements are de
scribed in four sections below: (1) collateral 
information sources, (2) camera hand-off, (3) vehi
cle event recognition, and ( 4) complex-event 
recognition. 

2.1. Collateral information sources 

Figure 1 shows a diagram of the AVS system. One 
or more "smart" cameras process the video stream 
to recognize events. The resulting event streams 
are sent to a Video Surveillance Shell (VSS), 
which integrates the information and displays it on 
a map. The VSS can also generate alarms based on 
the information in the event streams. In recent 
work, the VSS was enhanced to accept information 
from other sources, or "recognition devices" which 
can identify the objects being reported on by the 
cameras. For example, a camera may report that 
there is a person near a door. A recognition device 
may report that the person near the door is Joe 
Smith. The recognition device may be a badge 
reader, a keypad in which a person types their PIN, 
a face recognition system, or other recognition sys
tem. 
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Figure 1: AVS system diagram 

The recognition device we have incorporated is a 
voice verification system. The user stands in a pre
defined location in the room, and speaks his or her 
name. The system matches the utterance to previ
ously captured examples of the person speaking 
their name, and reports to the VSS if there is a 
match. The VSS now knows the identity of the per
son being observed, and can customize alarms 
based on the person's identity. 

A recognition device could identify things other 
than people, and could classify actions instead of 
objects. For example, the MIT Action Recognition 
System (MARS) recognizes actions of people in 
the scene, such as raising their arms or bending 
over. MARS is trained by observing examples of 
the action to be recognized and forming "temporal 
templates" that briefly describe the action [Davis 
and Bobick, 1997]. At run time, MARS observes 
the motion in the scene and determines when the 
motion matches one of the stored temporal tem
plates. TI has obtained an evaluation copy of the 

~ 

MARS software and used it as an recognition de
vice which identifies actions, and sends the result 
to the AVS VSS. We successfully trained MARS to 
recognize the actions of opening a door, and open
ing the drawer of a file cabinet. When MARS 
recognizes these actions, it sends a message to the 
AVS VSS, which can generate an appropriate 
alarm. 

2.2. Camera hand-off 

As depicted in Figure 1, the AVS system incorpo
rates multiple cameras to enable surveillance of a 
wider area than can be monitored via a single cam
era. If the fields of view of these cameras are 
adjacent, a person can be tracked from one moni
tored area to another. When the person leaves the 
field of view of one camera and enters another, the 
process of maintaining the track from one camera 
view to another is termed camera hand-off Figure 
2 shows an area monitored by two cameras. Cam-

Figure 2: Multiple cameras with adjacent fields of view 
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era-1 monitors the hallway, and Camera-2 
monitors the interior of the room. When a person 
moves through the doorway to enter the room from 
the hall or vice-versa, camera hand-off is necessary 
to enable the system to know that the person that 
was being monitored in the hall via Camera-l is 
the same as the person being monitored in the 
room via Camera-2. 

The AVS system accomplishes camera hand-off by 
integrating the information from the two cameras 
in the map coordinate system. The AVS "smart" 
cameras report the locations of the monitored ob
jects and people in map coordinates, so that when 
the VSS receives reports about a person from two 
separate cameras, and both cameras are reporting 
the person's coordinates at about the same map lo
cation, the VSS can deduce that the two separate 
reports refer to the same person. In the example de
picted in Figure 2, when a person is standing in the 
doorway, both cameras can see the person and re
port his or her location at nearly the same place. 
The VSS reports this as one person, using a mini
mum distance to allow for errors in location. When 
Camera-2 first sees a person at a location near the 
doorway and reports this to the VSS, the VSS 
checks to see if Camera-l recently reported a per
son near the door. If so, the VSS reports the person 
in the room as the same one that Camera-l had 
been tracking in the hall. 

2.3. Vehicle event recognition 

This section describes extensions to the existing 
AVS system that enable the recognition of events 
involving interactions of people with cars. These 
new capabilities enable smart security cameras to 
monitor streets, parking lots and driveways and re
port when suspicious events occur. For example, a 
smart camera signals an alarm when a person exits 
a car, deposits an object near a building, reenters 
the car, and drives away. 

2.3.1. Scope and assumptions 

Extending the AVS system to handle human-vehi
cle interactions reliably involved two separable 
subproblems. First, the system's vocabulary for 
events and objects must be extended to handle a 
new class of object (vehicle) and new event types. 
Second, the AVS moving object detection and 
tracking software must be modified to handle the 
outdoor environment, which features variable 
lighting, strong shadows, atmospheric disturbanc-

269 

es, and dynamic backgrounds. The work 
described here in section 2.3 addresses the first 
problem, to extend the system for vehicle events in 
conditions of uniform overcast with little wind. 
Our approach to handling general outdoor lighting 
conditions is discussed in section 4. 

The method is further specialized for imaging con
ditions in which: 

1. The camera views cars laterally. 
2. Cars are unoccluded by other cars. 
3. When cars and people overlap, only one of 

the overlapping objects is moving 
4. The events of interest are people getting 

into and out of cars. 

2.3.2. Car detection 

The first thing that was done to expand the event 
recognizing capability of the current system was to 
give the system the ability to distinguish between 
people and cars. The system classifies oojects as 
cars by using their sizes and aspect ratios. The size 
of an object in feet is obtained using the AVS sys
tem's image coordinate to world coordinate 
mapping. Once the system has detected a car, it an
alyzes the motion graph to recognize new events. 

2.3.3. Car event recognition 

In principle, car exit and car entry events could be 
recognized by detecting characteristic interactions 
of blobs in difference images, in a manner similar 
to the way AVS recognizes DEPOSIT and RE
MOVE events. In early experiments, however, this 
method turned out to be unsatisfactory because the 
underlying motion segmentation method did not 
segment cars from people. Whenever the people 
pass near the car they appear to merge with it, and 
track is lost until they walk away from it. 

To solve this problem, a new approach involving 
additional image differencing was developed. The 
technique allows objects to be detected and tracked 
even when their images overlap the image of the 
car. This method requires two reference images: 
one consists of the original background scene 
(background image), and the other is identical to 
the first except it includes the car. The system takes 
differences between the current video image and 
the original reference image as usual. However, it 
also differences the current video image with the 
reference image containing the car. This allows the 
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system to detect objects which may be overlapping 
the car. Using this technique, it is easy to detect 
when people enter and exit a car. If an object disap
pears while overlapping with a car, it probably 
entered the car. Similarly, if an object appears over
lapping a car, it probably exited the car. 

2.3.4. Basic method 

When a car comes to rest, the following steps are 
taken. First, the image of the car object is removed 
from its frame and stored. Then, the car image is 
merged with the background image, creating an 
updated reference image containing the car. (Ter
minology: a reference car image is the subregion 
of the updated reference image that contains the 
car.) Then, the car background image, the region of 

the original background image that is replaced by 
the car image, is stored. 

For each successive frame, two difference images 
are generated. One difference image, the fore
ground difference image, is calculated by 
differencing the current video image with the up
dated reference image. The foreground difference 
image will contain all the blobs that represent ob
jects other than the car, including ones that overlap 
the car. The second difference image, the car dif
ference image, is calculated using the car 
background image. The car difference image is 
formed from the difference between the current 
frame and the car background image, and contains 
the large blob for the car itself. Figures 3 and 4 
show the construction and use of these images. 

(a) (b) (c) 

Figure 3: (a) Background image. (b) Car background image. 
(c) Updated reference image 

·------·-----------··--·-·-l 

(a) 

• 
.... 
I 

I 
I 

L~-·-----~ (b) 

Figure 4: (a) Current video image. (b) Foreground difference image 
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pears while overlapping with a car, it probably
entered the car. Similarly, if an object appears over-
lappingacar, it probably exited the car.
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from its frame and stored. Then, the car image is
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of the updated reference image that contains the
car.) Then, the car background image,the region of

the original background image that is replaced by
the car image,is stored.

For each successive frame, two difference images
are generated. One difference image, the fore-
ground difference image, is calculated by
differencing the current video image with the up-
dated reference image. The foreground difference
image will contain all the blobs that represent ob-
jects other than the car, including onesthat overlap
the car. The second difference image, the car dif-
ference image, is calculated using the car
background image. The car difference image is
formed from the difference between the current

frame and the car background image, and contains
the large blob for the car itself. Figures 3 and 4
show the construction and use of these images.
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Figure 5: Creation of the motion graph. 
The starred frame represents the frame prior to the background image being updated. 

The blobs in the foreground difference image are 
grouped into objects using the normal grouping 
heuristics and placed in the current frame. The 
blobs in the car difference image necessarily repre
sent the car, so they are all grouped into one current 
car object and placed in a special reference frame. 
Normal links occur between objects in the previous 
frame and objects in the current frame. Additional
ly, the stored car object, which was removed from 
its frame, (from Step 1) is linked to the current car 
object which is in the reference frame. In any given 
sequence, there is only one reference frame. 

Figure 5 demonstrates the creation of this new mo
tion graph. As indicated by the dotted lines, all 
objects maintain their tracks using this method. 
Notice that even though the car object disappears 
from future frames (due to the updated reference 
image), it is not detected to have exited because its 
track is maintained throughout every frame. Using 
this method, the system is able to keep track of the 
car object as well as any objects overlapping the 
car. If an object appears intersecting a car object, 

(a) 

i- .. -. 

(c) 

an !NCAR event is reported. If an object disap
pears while intersecting a car object, an OUTCAR 
event is reported. Figure 6 shows the output of the 
system. The system will continue to operate in this 
manner until the car in the reference frame begins 
to move again. 

When the car moves again, the system reverts to its 
normal single-reference-image state. The system 
detects the car's motion based on the movement of 
its centroid. It compares the position of the cen
troid of the stored car object with the centroid of 
the current car object. Figure 7 shows the slight 
movement of the car. 

Figure 6: Final output of system 

(d) 

Figure 7: (a) Reference car image. (b) Moving car image. 
(c) Reference car difference image. (d) Moving car difference image 
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Figure 8: Restoration of normal differencing. The starred frame represents the last frame prior to the 
original reference image being restored. 

If the centroid locations differ by more than a 
threshold, the following sequence of events occur 
to restore the system to its original state: 

1. An object representing the moving car is 
created in the current frame. 

2. The stored car object is linked to this new 
moving car object in the cm1'ent frame. 

3. Objects in the previous frame that intersect 
the moving car are removed from that 
frame. 

4. The car background image is merged with 
the updated reference image to restore the 
original reference image. 

5. Normal differencing continues. 

Figure 8 demonstrates how the system is restored 
to its original state. Note that there is one continu
ous track that represents the path of the car 
throughout. 

When the car begins to move again, transient blobs 
appear in the foreground difference image due to 
the fact that the car is in the updated reference im
age as seen in Figure 9. Therefore, to create a new 
moving car object in the current frame, these tran
sient objects, which are identified by their 
intersection with the location of the resting car, are 

(a) (b) 

grouped together as one car object. If there are no 
transient objects, a copy of the stored car object is 
inserted into the current frame. This way, there is 
definitely a car object in the current frame to link 
with the stored car object. Transient objects might 
also appear in the previous frame when a car is 
moving. Therefore, these transient objects must be 
removed from their frame in order to prevent them 
from being linked to the new moving car object 
that was just created in the current frame. After the 
steps described above occur, the system continues 
as usual until another car comes to rest. 

2.3.5. Experiments: disk-based sequences 

To test the principles behind the modified AVS sys
tem, three sequences of video that represented 
interesting events were captured to disk. These se
quences represented events which the modified 
system should be able to recognize. Capturing the 
sequences to disk reduces noise and ensures that 
the system processes the same frames on every run, 
making the results deterministic. In addition to 
these sequences, longer sequences were recorded 
and run directly from videotape to test how the sys
tem would work under less ideal conditions. 

---·-- ··-···---·-··- ··-
' 

• 

(c) 

Figure 9: (a) Updated reference image. (b) Current video image. (c) Foreground difference image 
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Figure 8: Restoration of normal differencing. The starred frame represents the last frame prior to the
original reference image being restored.

If the centroid locations differ by more than a
threshold, the following sequence of events occur
to restore the system to its original state:

grouped together as one car object. If there are no
transient objects, a copy of the stored car objectis
inserted into the current frame. This way, there is
definitely a car object in the current frame to link
with the stored car object. Transient objects might
also appear in the previous frame whenacar is
moving. Therefore, these transient objects must be
removed from their frame in order to prevent them
from being linked to the new moving car object
that wasjust created in the current frame. After the
steps described above occur, the system continues
as usual until another car comestorest.

1. An object representing the moving car is
created in the current frame.

2. The stored car object is linked to this new
moving car object in the current frame.

3. Objects in the previous frame that intersect
the moving car are removed from that
frame.

4. The car background image is merged with
the updated reference image to restore the
original reference image.

>. Normal differencing continues. 2.3.5. Experiments: disk-based sequences

Figure 8 demonstrates how the system is restored
to its original state. Note that there is one continu-
ous track that represents the path of the car
throughout.

To test the principles behind the modified AVS sys-
tem, three sequences of video that represented
interesting events were captured to disk. These se-
quences represented events which the modified

Whenthe car begins to move again, transient blobs
appear in the foreground difference image due to
the fact that the car is in the updated reference im-
age as seen in Figure 9. Therefore, to create a new
moving car object in the current frame, these tran-
sient objects, which are identified by their
intersection with the location of the resting car, are

  

system should be able to recognize. Capturing the
sequences to disk reduces noise and ensures that
the system processes the same frames on every run,
making the results deterministic. In addition to
these sequences, longer sequences were recorded
and run directly from videotapeto test how the sys-
tem would work underless ideal conditions.

(a) | (b) nr)
Figure 9: (a) Updated reference image. (b) Current video image. (c) Foreground difference image
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2.3.5.1. Simple sequence. The first sequence was 
filmed from the 3rd story of an office building 
overlooking the driveway in front of the building. 
A car drives up and a person exits the car, walks 
away, deposits a briefcase, and finally reenters the 
car. Then, the car drives away. In this segment, the 
system successfully detects the person exiting the 
car. However, the person entering the car is missed 
because the person gets grouped with a second per
son walking near the car. 

Further on in the sequence, the car drives up again 
and a person exits the car, walks away, removes the 
briefcase, and finally reenters the car. Again, the 
car drives away. In this segment, both the person 
entering and exiting the car are recognized. In both 
these sequences, there was only the one false nega
tive mentioned earlier and no false positives. 

2.3.5.2. Pickup sequence. This sequence was 
filmed in front of a house looking at the street in 
front of the house. In the sequence, a person walks 
into the scene and waits at the curb. A car drives 
up, picks up the person, and drives away. The sys
tem correctly detects the person entering the car. 
There are no false positives or negatives. 

2.3.5.3. Drop off sequence. This sequence was 
filmed in the same location as the previous one. In 
this sequence, a car drives up and a person is 
dropped off. The car drives away with the person 
still standing in the same location. Then, the person 
walks off. The system correctly detects the person 
exiting the car and does not report a false enter 
event when the car moves away. 

2.3.6. Experiments: videotaped sequences 

These sequences were run on the system straight 
from videotape. These were all run at a higher 
threshold to accommodate noise on the videotape. 
However, this tended to decrease the performance 
of the system. 

2.3.6.1. Dark day. This is a 15 minute sequence 
that was recorded from the 3rd floor of a building 
on a fairly dark day. In that time span, 8 cars passed 
through the camera's field of view. The system de
tected 6 cars correctly and one false car (due to 
people grouped together). One car that was not de
tected was due to its small size. The other car was 
undetected because the system slowed down (due 
to multiple events occurring) and missed the imag-
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es with the car in them. In this sequence, two 
people entered a car. However, both events were 
missed because the car was not recognized as rest
ing due to the dark lighting conditions on this rainy 
day. 

2.3.6.2. Cloudy day. This is a 13 minute sequence 
in the same location as the previous sequence ex
cept it is a cloudy day. In this time span, 9 cars 
passed through the camera's field of view and all of 
them were detected by the system. There were a to
tal of 2 people entering a car and 2 people exiting a 
car. The system successfully detected them all. Ad
ditionally, it incorrectly reported one person 
walking near a car as an instance of a person exit
ing a car. 

2.3.6.3. Cloudy day-extended time. This is a 30 
minute sequence in the same location as the previ
ous two. In this time span, 28 cars pass through and 
all of them were detected. The system successfully 
detected one person exiting a car but missed two 
others. The two people were missed because the 
car was on the edge of the camera's field of view 
and so it was not recognized immediately as a car. 

2.3.7. Evaluation of car-event recognition 

The modified AVS system performs reasonably 
well on the test data. However, it has only been 
tested on a small number of videotaped sequences, 
in which much of the action was staged. Further 
experiments and further work with live, uncon
trolled data will be required to make the system 
handle outdoor vehicle events as well as it handles 
indoor events. The technique of using multiple ref
erence images is interesting and can be applied to 
other problems, e.g. handling repositioned furni
ture in indoor environments. For more detail on 
this method, see [Tsemg, 1998]. 

2.4. Complex events 

The AVS video monitoring technology enables the 
recognition of specific events such as when a per
son enters a room, deposits or picks up an object, 
or loiters for a while in a given area. Although 
these events are more sophisticated than those de
tected via simple motion detection, they are still 
unstructured events that are detected regardless of 
the context in which they occur. This can result in 
alarms being generated on events that are not of 
interest. 
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For example, if the system is monitoring a room or 
store with the intention of detecting theft, the sys
tem could be set up to generate an alarm whenever 
an object is picked up (i.e., whenever a REMOVE 
event occurs). However, no theft has occurred un
less the person leaves the area with the object. A 
simple, unstructured event recognition system 
would generate an alarm every time someone 
picked up an object, resulting in many false alarms; 
whereas a system that can recognize complex 
events could be programmed to only generate an 
alarm when the REMOVE event is followed by an 
EXIT event. The EXIT event provides context for 
the REMOVE event that enables the system to fil
ter out uninteresting cases in which the person does 
not leave the area with the object they picked up. 
This section describes the design and implementa
tion of such a complex-event recognition system. 

We use the term simple event to mean an unstruc
tured atomic event. A complex event is structured, 
in that it is made up of one or more sub-events. The 
sub-events of a complex event may be simple 
events, or they may be complex, enabling the defi
nition of event hierarchies. We will simply say 
event to refer to an event that may be either simple 
or complex. In our theft example above, REMOVE 
and EXIT are simple events, and THEFT is a com
plex event. A user may also define a further event, 
e.g., CRIME-SPREE, which may have one or more 
complex THEFT events as sub-events. 

We created a user interface that enables definition 
of a complex event by constructing a list of sub
events. After one or more complex events have 
been defined, the sub-events of subsequently de
fined complex events can be complex events 
themselves. 

2.4.1. Complex-event recognition 

Once the user has defined the complex events and 
the actions to take when they occur, the event rec
ognition system recognizes these events as they 
occur in the monitored area. For the purposes of 
this section, we assume a priori that the simple 
events can be recognized, and that the object in
volved in them can be tracked. In the 
implementation we will use the methods discussed 
in [Courtney, 1997, Olson and Brill, 1997] to track 
objects and recognize the simple events. In order to 
recognize a complex event, the system must keep a 
record of the sub-events that have occurred thus 
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far, and the objects involved in them. Whenever the 
first sub-event in a complex event's sequence is 
recognized, an activation for that complex event is 
created. The activation contains the ID of the ob
ject involved in the event, and an index, which is 
the number of sub-events in the sequence that have 
been recognized thus far. The index is initialized to 
1 when the activation is created, since the activa
tion is only created when the first sub-event 
matches. The system maintains a list of current ac
tivations for each defined complex-event type. 
Whenever any new event is recognized, the list of 
current activations is consulted to see if the newly 
recognized (or incoming) event matches the next 
sub-event in the complex event. If so, the index is 
incremented. If the index reaches the total number 
of sub-events in the sequence, the complete com
plex event has been recognized, and any desired 
alarm can be generated. Also, since the complex 
event that was just recognized may also be a sub
event of another complex event, the activation lists 
are consulted again (recursively) to see if the indi
ces of any other complex event activations can be 
advanced. 

To return to our THEFT example, the complex 
THEFT event has two sub-events, REMOVE and 
EXIT. When a REMOVE event occurs, an activa
tion for the THEFT event is created, containing the 
ID of the person involved in the REMOVE event, 
and an index set to 1. Later, when another event is 
recognized by the system, the activation is consult
ed to see if the event type of this new, incoming 
event matches the next sub-event in the sequence 
(in this case, EXIT). If the event type matches, the 
object ID is also checked, in this case to see if the 
person EXITing is -the same as that of the person 
who REMOVEd the object earlier. This is to ensure 
that we do not signal a THEFT event when one 
person picks up an object and a different person ex
its the area. In a closed environment, the IDs used 
may merely be track-IDs, in which each object that 
enters the monitored area is assigned a unique 
track-ID, and the track-ID is discarded when the 
object is no longer being tracked. If both the event 
type and the object ID match, the activation's index 
is incremented to 2. Since there are only 2 sub
events in the complex event in this example, the en
tire complex-event has been recognized, and an 
alarm is generated if desired. Also, since the 
THEFT event has been recognized, this newly rec
ognized THEFT event may be a sub-event of 
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another complex event. When the complex THEFT 
event is recognized, the current activations are re
cursively checked to see if the theft is a part of 
another higher-level event, such as a CRIME
SPREE. 

2.4.2. Variations and enhancements 

We have described the basic mechanism of defin
ing and recognizing complex events. There are 
several variations on this basic mechanism. One is 
to allow unordered events, i.e., complex events 
which are simply the conjunction or disjunction of 
their sub-events. Another is to allow negated sub
events, which can be used to cancel an activation 
when the negated sub-event occurs. For example, 
considering the definition for THEFT again, if the 
person pays for the item, it is not a theft. Also, if 
the person puts the item back down before leaving, 
no theft has occurred. A_ more complete definition 
of theft is one in which "a person picks up an item 
and then leaves without putting it back or paying." 
Assuming we can recognize the simple events RE
MOVE, DEPOSIT, PAY, and EXIT, the complex 
THEFT event can now be expressed as the ordered 
list (REMOVE, -DEPOSIT, -PAY, EXIT), where 
"-" indicates negation. Another application of the 
complex event with negated sub-events is to detect 
suspicious behavior in front of a building. The nor
mal behavior may be for a person to park the car, 
get out of it, and then come up into the building. If 
the person parks the vehicle and leaves the area 
without coming up into the building, this may be a 
car bombing scenario. If we can detect the sub
events for PARK, OUTCAR, ENTER-BUILDING, 
and EXIT, we can define the car-bombing scenario 
as (PARK, OUTCAR, -ENTER-BUILDING, 
EXIT). 

Another variation is to allow the user to label the 
objects involved in the events, which facilitates the 
ability to specify that two object be different. Con-

sider a different car bombing scenario in which two 
cars pull up in front of the building, and a person 
gets out of one car and into the other, which drives 
away. The event definition must specify that there 
are two different cars involved: the car-bomb and 
the getaway-car. This can be accomplished by la
belling the object involved when defining the 
event, and giving different labels to objects which 
must be different. 

Finally, one could allow multiple activations for 
the same event. For example, the desired behavior 
may be that a separate THEFT event should be sig
nalled for each item stolen by a given person, e.g., 
if a person goes into a store and steals three things, 
three THEFT events are recognized. The basic 
mechanism described above signals a single 
THEFT event no matter how many objects are sto
len. We can achieve the alternate behavior by 
creating multiple activations for a given event type, 
differing only in the ID's of the objects involved. 

2.4.3. Implementation in AVS 

We have described a method for defining and rec
ognizing complex events. Most of this has been 
implemented and incorporated into the AVS sys
tem. This subsection describes the current 
implementation. 

AVS analyzes the incoming video stream to detect 
and recognize events such as ENTER, EXIT, DE
POSIT, and REMOVE. The primary technique 
used by AVS for event recognition is motion graph 
matching as described in [Courtney, 1997]. The 
AVS system recognizes and reports these events in 
real time as illustrated in Figure 10. When the per
son enters the monitored area, an ENTER event is 
recognized as shown in the image on the left. 
When the person picks up an object, a REMOVE 
event is recognized, as depicted in the center image 
below. When the person exits the area, the EXIT 

Figure 10: A series of simple events 
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event is signalled as shown in the image on the 
right 

While the AVS system recognizes numerous events 
as shown above, the user can select which events 
are of interest by providing the dialog box interface 
illustrated in Figure 11. The user selects the event 
type, object type, time, location, and duration of 
the event of interest using a mouse. The user can 
also select an action for the AVS system to take 
when the event is recognized. This dialog box de
fines one type of simple event; an arbitrary number 
of different simple event types can be defined via 
multiple uses of the dialog box. The illustration in 
Figure 11 shows a dialog box defining an event 
called "Loiter by the door" which is triggered 
when a person loiters in the area near the door for 
more than 5 seconds. 

AVS will generate a voice alarm and write a log en
try when the specified event occurs. If the event is 
only being defined in order to be used as a sub
event in a complex event, the user might not check 
any action box, and no action will be taken when 

the event is recognized except to see if it matches 
the next sub-event in a complex-event activation, or 
generate a new activation if it matches the first sub
event in a complex event. 

After one or more simple events have been defined, 
the user can define a complex event via the dialog 
box shown in Figure 12. This dialog box presents 
two lists: on the left is a scrolling list of all the 
event types that have been defined thus far, and on 
the right is a list of the sub-events of the complex 
event being defined. The sub-event list is initially 

blank when defining a new complex event. When 
the user double-clicks with the left mouse button 
on an item in the event list on the left, it is added as 
the next item in the sub-event list on the right. 
When the user double-clicks with the right mouse 
button on an item in the event list on the left, that 
item is also added to the sub-event list on the right, 
but as a negated sub-event. The event name is pre
fixed with a tilde (-) to indicate that the event is 
negated. 

Figure 11: Selecting a type of simple event 

Figure 12: Defining a complex event 
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In the upper right comer of the complex-event defi
nition dialog box is an option menu via which the 
user indicates how the sub-events are to be com
bined. The default selection is "ordered" to 
indicate sequential processing of the sub-events. 
The other options are "all" and "any." If "all" is se
lected, the complex event will be signalled if all of 
the sub-events are matched, regardless of order, 
i.e., the complex event is simply the conjunction of 
the sub-events. If "any" is selected, the complex 
event occurs if any of the sub-events occurs, i.e., 
the complex event is the disjunction of the sub
events. At the bottom of the dialog box, the user 
can select the action to take when the complex 
event is recognized. The user can save the entire set 
of event definitions to a file so that they may be 
read back in at a later time. 

Once a simple or complex event has been defined, 
the AVS system immediately begins recognition of 
the new events in real time, and taking the actions 
specified by the user. The AVS system, augmented 
as described, provides a functioning realization of 
the complex-event recognition method. 

3. Advanced segmentation and tracking 

In security applications, it is often necessary to 
track the movements of one or more people and ob
jects in a scene monitored by a video camera. In 
real scenes, the objects move in unpredictable 
ways, may move close to one another, and may oc
clude each other. When a person moves, the shape 
of his or her image changes. These factors make it 
difficult to track the locations of individual objects 
throughout a scene containing multiple objects. 
The tracking capabilities of the original AVS sys
tem fail when there is mutual occlusion between 
the tracked objects. This section describes a new 

(a) 

tracking method which overcomes this limitations 
of the previous tracking method, and maintains the 
integrity of the tracks of people even when they 
partially occlude one another. 

The segmentation algorithm described here is relat
ed to tracking systems such as [Wren et al., 1997, 
Grimson et al., 1998, Cai et al., 1995] in that it ex
tends the reference image to include a statistical 
model of the background. Our method further ex
tends the tracking algorithm to reason explicitly 
about occlusion and maintain object tracks during 
mutual occlusion events. Unlike the capabilities 
described in previous sections, the new tracking 
method does not run in real time, and has not yet 
been integrated into the AVS system. Optimiza
tions of the new method are expected to enable it to 
achieve real time operation in the future. 

Figure 13 depicts an example scene containing two 
people. In (a), the two people are standing apart 
from each other, with Person- I on the left, and Per
son-2 on the right. In (b), Person-1 moves to the 
right so that he is partially occluded by Person-2. 
Using a conventional technique such as back
ground subtraction, it is difficult to maintain the 
separate tracks of the two people in the scene, since 
the images of the two people merge into a single 
large region. 

Figure 14 shows a sequence of frames (in normal 
English reading order) in which it is particularly 
difficult to properly maintain the tracks of the two 
people in the scene. In this sequence, Person-2 
moves from right to left and back again, crossing in 
front of Person-1. There are significant occlusions 
(e.g., in the third frame shown), and the orienta
tions of both people with respect to the camera 
change significantly throughout the sequence, 

(b) 

Figure 13: An example scene containing two people with occlusion 
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Figure 14: A difficult tracking sequence 
making conventional template matching fail on this maintained by the tracking system. P-templates can 
sequence. 

A new tracking method is used to maintain tracks 
in sequences such as those depicted in Figures 13 
and 14. The method maintains an estimate of the 
size and location of the objects being tracked, and 
creates an image which approximates the probabil
ity that the object intersects that pixel location. 
Figure 15b shows the probability images for the 
two person scene of Figure 13a, which is repeated 
here as 15a. The ellipse on the left indicates the es
timated location of Person-1, and the ellipse on the 
right indicates the estimated location of Person-2. 
The brightness indicates the probability that the 
person's image intersects the given pixel, which is 
highest in the middle of the region, and falls off to
wards the edge. The black outlines represent the 
50% probability contours. The size and shape of 
the regions are roughly the size and shape of a per
son standing at that location in the image. 

We refer to the "person shaped" probability regions 
as probabilistic templates or simply p-templates. 
The path of the p-template through the scene repre
sents the "track" of a given person which is 

(a) 

be used to reason about occlusion in a video se
quence. While we only address the issue of p
templates for tracking people that are walking up
right, the concept is applicable to tracking any 
object, e.g., vehicles and crawling people; although 
the shape of the p-template would need to be 
adapted to the type of object being tracked. 

When the people in the scene overlap, the separate 
locations of the people can be maintained using the 
p-templates, and the region of partial occlusion can 
be detected. Figure 16 shows examples of such a 
situation. The two ellipses are maintained, even 
though the people are overlapping. The tracks of 
the people can be maintained through occlusions 
by tracking primarily on the basis of non-overlap
ping areas. This works for both the slight occlusion 
in Figures 16 (a) and (b), and often even for the 
very strong occlusions such as in Figures 16 (c) 
and (d). During the occlusions shown in Figure 14 
and again in Figure 16 (c) and (d), the head ofPer
son-1 is tracked, and the lower-body of Person-2 is 
tracked. 

(b) 

Figure 15: Probability image for the locations of the people in the scene 
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(a) (b) 

(c) (d) 

Figure 16: P-template images for partially occluding people 

The new method requires a means of instantiating a 
new p-template when a person enters the scene, 
and updating the location of the region as the per
son moves through the scene. First we will 
describe the update mechanism, assuming that the 
p-templates have already been instantiated. The in
stantiation mechanism is described later. 

The p-templates described above and depicted in 
Figures 15 and 16 represent the prior probabilities 
of the person locations, based on looking at the 
previous frame. These priors are then used to com
pute an estimate of the posterior probabilities of 
the person locations by looking at the new or cur
rent frame. The computation of the posterior 
probabilities takes into account both the prior prob
abilities and the information in the new frame. The 
posterior probabilities are used to update the loca
tions of the people, and the new locations of the 
people are then used to compute the priors for the 
next frame. 

Our current implementation computes the posteri
ors using a form of background differencing. 
Figure 17 shows the posteriors for the p-templates 
shown in Figure 16. Note that although there is sig
nificant overlap in the posterior estimates, 
especially in Figures 17 (e) and (f), there are signif
icant differences in the brightnesses of the non-
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occluding areas. In Figure 17 (e), which represents 
the posteriors for Person-!, the head area of Per
son-1 is significantly brighter than in Figure 17 (f). 
Similarly, Figure 17 (f), which represents the pos
teriors for Person-2, is significantly brighter in the 
unoccluding area of Person-2's lower body. 

Once the posteriors are computed, they are used to 
estimate the location of the tracked objects. In our 
implementation of a person tracker, we specifically 
need to estimate the location of the person's feet in 
the image, and their height in the image in pixels. 
Once the location and height are estimated, we can 
use the image-to-world coordinate transformation 
technique used in the original AVS system and de
scribed in [Olson and Brill, 1997]. That technique, 
called quad-mapping, computes the map locations 
of objects given the image locations of the bottom 
of the objects, e.g., in the case of a person, the loca
tion of the feet. Furthermore, if the scale of the 
map is known, the quad-mapping technique will 
estimate the size of the object, i.e., the height of a 
person being tracked. 

If the lower portion of the p-template is unocclud
ed, foot locations are estimated directly from the 
image by looking at the bottom portion of the 
qrightened region. If the upper portion is also un
occluded, the height can similarly obtained directly 

Ex. D Page 16 of 20

Canon Ex. 1007 Page 126 of 219



(a) (b) (c) 

(d) (e) (f) 

Figure 17: Posterior probability images for partially occluding people 

from the image. If the upper part is occluded, but 
the lower part is not, the foot location is still deter
mined directly from the image, but height is 
estimated using an estimate of the three-dimen
sional height of the person. The image height is 
then obtained by projecting the 3D height back into 
the image using the quad-mapping technique. If the 
lower portion is occluded, but the upper part is not, 
then the upper location is determined directly from 
the image, and then the 3D height is back-projected 
into the image to determine the foot location. If 
both the top and bottom are occluded, the location 
and height estimates are left unchanged from the 
previous frame. 

Once the foot location and height of the person are 
computed, it is straightforward to compute the new 
location of the p-template, which is the Gaussian 
oval whose location and dimensions are deter
mined by the_ foot location and image height 
computed above. The new p-template is then used 
to find the location of the person in the next frame, 
and the process repeats while the person remains in 
the scene. 

A new p-template is instantiated whenever a new 
person enters the scene. Instantiation is best de
scribed in a Bayesian probabilistic framework. The 
p-templates constitute models of the objects in the 
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environment. All of the pixels in the image are the 
result of a projection of some object in the environ
ment--either from the background, or one of the 
people in the scene, or something else. The sum of 
the probabilities that the pixel is either from the 
background, from a person, or from "something 
else" must be 1.0. We maintain an "unknown" 
model to account for the probability that pixels 
may arise as a result of "something else." We com
pute the probability that each of the models caused 
the observed pixel value (where the unknown mod
el is equally likely to produce any pixel value), and 
then use Bayes' formula to compute the inverse, 
i.e., the probability that the observed pixel value 
came from each of the models. When this compu
tation is performed,· for some of the pixels, the 
probability that the pixel came from the unknown 
model is the highest of all of the model probabili
ties. This results in a probability image for the 
unknown model, which represents pixels which 
probably carne from something other than the ob
jects the system knows about. At each frame, the 
probability image for the unknown model is com
puted, and this image is examined to see if adding a 
new person model would account for these un
known pixels. If so, a new person p-template is 
instantiated at the appropriate location, and the 
posteriors are recomputed. 
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Use of the procedure described above to track mul
tiple people maintains tracks through occlusions 
where our previous technique could not. The ro
bustness to occlusion of the new method enables 
video monitoring applications to improve tracking 
reliability in natural environments. 

4. Best-view selection performance 

Olson and Brill [1997] previously described the 
"best view selection" application of AVS technolo
gy. In this application, the system monitors and 
records the movements of humans in its field of 
view. For every person that it sees, it creates a log 
file that summarizes important information about 
the person, including a snapshot taken when the 
person was close to the camera and (if possible) 
facing it. 

As the person is tracked through the scene, the 
tracker examines each image it captures of that per
son. If the new image is a better view of the person 
than the previously saved snapshot, the snapshot is 
replaced with the new view. In this manner, the 
system always contains the "best" view seen of the 
person thus far. When the person leaves the scene, 
the log entry is saved to a file. Each log entry 
records the time when the person entered the scene 
and a list of coordinate pairs showing their position 
in each video frame. The log entry also contains 
the "best" snapshot of the person while they were 
in the scene. Finally, the log entry file contains a 
pointer to the reference image that was in effect 
when the snapshot was taken. This information 
forms an extremely concise description of the per
son's movements and appearance while they were 
in the scene. An example of such a record in shown 
in Figure 18. 

Figure 18: Example best view selection record 
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In an initial evaluation of this system, the system 
was installed in an uncontrolled office hallway and 
run for 118 hours. In this time, the system recorded 
965 log entries in 35MB (uncompressed). The re
sulting records were examined to estimate the 
system performance, and we estimated 96% detec
tion rate at 6% false alarm rate, with most errors 
due to segmentation and correspondence failure. 
However, for this initial experiment, there was no 
ground truth against which the performance could 
be measured. 

Recently, we have evaluated the system against 
ground truth observations. The performance of the 
system was initially evaluated on four hours of in
door video data. The video was manually 
annotated to obtain ground truth, and the surveil
lance system was evaluated against this ground 
truth. For situations in which only one person was 
in the scene, the system recorded exactly one 
record for each person, i.e., no person passed unde
tected though the field of view, and there is exactly 
one record for each such person. In the indoor con
dition, we observed a 100% detection rate. 

For situations involving more than one person, the 
system occasionally failed to maintain track 
through partial occlusions. The result of this is that 
the system took extra pictures of these people when 
their track was re-acquired after the occlusion. On 
other occasions, the system failed to recognize that 
a motion region contained two people, and so it 
only took one picture that contained both people. 
We expect to reduce these errors via the use of the 
new tracking algorithms described above, once 
these algorithms are running in real time and are 
incorporated into the AVS system. 

In order to evaluate and improve the system perfor
mance in outdoor monitoring environments, we 
have adopted an iterative research methodology in 
which we record representative videotape (2-3 
hours), ground truth it with respect to the 'person 
events' that occur in the scene. One 'person event' 
is defined to be a video sequence in which one per
son enters monitored area completely, walking 
upright, and then exits field of view completely. We 
then run AVS system on the videotape and measure 
the false positives and negatives on person events. 
We then improve system as necessary to eliminate 
errors on video sequence. and repeat the process. 
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(a) 

(b) 

Figure 19: Outdoor environments 

Outdoor environments can be particularly difficult 
for video monitoring systems that operate based on 
change detection, due to the outdoor lighting varia
tion. Figure 19 depicts two outdoor environments 
used to evaluate AVS best-view-selection perfor
mance. In Figure 19 (a), there is a strong shadow 
line running down the center of the field of view, 
which moves as the sun angle changes. The shad
ow motion here is sufficient to cause problems for 
a fixed background subtraction system within 5 
minutes. There are also a number of trees in the 
background which move when the wind blows. 
Moreover, the shadows of these trees fall directly 
into the rear of the monitored area, and these shad
ows move with the wind as well. The shadow of 
the tree in Figure 19 (b) has a similar behavior. 
Cloud movement also causes large changes in 
brightness throughout the images. 
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Our initial outdoor evaluation was conducted in the 
environment depicted in Figure 19 (a). We cap
tured two hours of outdoor video with extremely 
difficult imaging conditions caused by wind blown 
vegetation and strong shadows, which produced a 
large amount of "noise" motion. Additionally, the 
gate at the rear of the scene often blew open and 
closed. We manua11y ground-truthed the video to 
determine that a person entered the scene 20 times 
during the two hour sequence. The system record
ed 16 of these events, for a detection rate of 75%. 
The undetected people were "lost in the noise." 
The system also produced 16 false detections in the 
two hour period, caused by noise from the moving 
shadows. 

We were able to improve on this performance us
ing our iterative research methodology to achieve a 
1 00% detection rate for the 20 events in this two 
hour sequence. The system still recorded 8 false 
positives on this sequence. Four of these were 
caused by the gate blowing open and closed. The 
other four were cases in which the system lost 
track of the person in the field of view, and there
fore took two pictures of the person, one before 
losing track, and another after picking up the track 
again. These cases are therefore more properly re
ferred to as "extra pictures" rather than false 
positives. 

Having achieved improved performance in the en
vironment depicted in Figure 19 (a), we proceeded 
to test the system in the environment of Figure 19 
(b). One three separate days we captured 1-2 hours 
of video, for a total of 4 hours of test video data in 
the environment of Figure 19 (b). We ground-tru
tbed this video to deterrriine that it contained 115 
person events. The AVS system processed this vid
eo using the best-view-selection algorithm, and the 
results were compared to ground truth. We ob
served a 100% detection rate and a 2.6% false 
positive rate as a result of three false positives, all 
of which were "extra pictures." 

In general, system performance was excellent in 
the indoor condition, with the exception of scenes 
containing multiple people, which produced extra 
records. We expect to address the multi-person 
problem using the p-template technique described 
in section 3. No person entered the scene without 
being recorded, even when there were multiple 
people. The system performance degrades in diffi-
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cult outdoor lighting conditions, but it has 
improved significantly in recent work. 

5. Conclusion 

We have described several improvements in the 
video monitoring capabilities of the AVS system. 
Some improvements, such as vehicle event recog
nition, increase the functionality of the system to 
enable it to recognize new classes of events. Other 
improvements, such as the advanced segmentation 
and tracking, increase the robustness of the sys
tem's ability to recognize events in the presence of 
complications such as occlusion. We will continue 
to make improvements in the two categories of in
creased functionality and increased robustness. For 
the functionality improvements, we expect to rec
ognize new classes of events, especially events 
regarding vehicles. For the robustness improve
ments, we are pursuing techniques that enable the 
system to be robust to lighting variation. As the 
techniques become more complex, additional effort 
will be needed to optimize the algorithms for real 
time operation. Our advanced segmentation and 
tracking will be the subject of optimization efforts 
in the near future. 
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Motion Recovery for Video Content 
Classification 

NEVENKA DIMITROVA and FOROUZAN GOLSHAN! 
Arizona State University, Tempe 

Like other types of digital informatwn, vrdeo sequences must be classified based on the 
semantics of their contents. A more-precise and completer extraction of semantic informatwn wrll 
result m a more-effective classification. The most-discernible difference between stillrmages and 
moving pictures stems from movements and variations Thus, to go from the realm of still-rmage 
repositories to video databases, we must be able to deal wrth motion. Particularly, we need the 
abrhty to classify objects appearing in a vrdeo sequence based on therr characteristics and 
features such as shape or color, as well as their movements By describing the movements that 
we derive from the process of motwn analysis, we introduce a dual hrerarchy consistmg of spatial 
and temporal parts for vrdeo sequence representation. This grves us the flexrbility to examine 
arbitrary sequences of frames at various levels of abstractwn and to retrieve the assocrated 
temporal informatwn (say, object trajectories) in additwn to the spatial representation. Our 
algonthm for motion detection uses the motion compensation component of the MPEG video-en
coding scheme and then computes traJectories for obJects of interest. The specification of a 
language for retrieval of video based on the spatial as well as motwn characteristics rs presented. 

Categories and Subject Descriptors. H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval; H.5 1 [Information Interfaces and Presentation]· Multimedia Infor
mation Systems; I.2.10 [Artificial Intelligence]: Vision and Scene Understandmg-motwn 

General Terms: Algorithms, Desrgn 

Additional Key Words and Phrases: Content-based retrieval of video, motion recovery, MPEG 
compressed video analysis, video databases, vrdeo retrieval 

i. INTRODUCTION 

Applications such as video on demand, automated surveillance systems, video 
databases, industrial monitoring, video editing, road traffic monitoring, etc. 
involve storage and processing of video data. Many of these applications can 
benefit from retrieval of the video data based on their content. The problem is 
that, generally, any content retrieval model must have the capability of 
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dealing with massive amounts of data. As such, classification is an essential 
step for ensuring the effectiveness of these systems. 

Motion is an essential feature of video sequences. By analyzing motion of 
objects we can extract information that is unique to the video sequences. In 
human and computer vision research there are theories about extracting 
motion information independently of recognizing objects. This gives us sup
port for the idea of classifying sequences based on the motion information 
extracted from video sequences regardless of the level of recognition of the 
objects. For example, using the motion information we can not only submit 
queries like "retrieve all the video sequences in which there is a moving 
pedestrian and a car" but also queries that involve the exact position and 
trajectories of the car and the pedestrian. 

Previous work in dynamic computer vision can be classified into two major 
categories based on the type of information recovered from an image se
quence: recognition through recovering structure from motion and recognition 
through motion directly. The first approach may be characterized as attempt
ing to recover either low-level structures or high-level structures. The low-level 
structure category is primarily concerned with recovering the structure of 
rigid objects, whereas the high-level structure category is concerned primar
ily with recovering nonrigid objects from motion. Recovering objects from 
motion is divided into two subcategories: low-level motion recognition and 
high-level motion recognition. Low-level motion recognition is concerned with 
making the changes between consecutive video frames explicit (this is called 
optical flow [Horn and Schunck 1981]). High-level motion recognition is 
concerned with recovering coordinated sequences of events from the lower
level motion descriptions. 

Compression is an inevitable process when dealing with large multimedia 
objects. Digital video is compressed by exploiting the inherent redundancies 
that are common in motion pictures. Compared to encoding of still images, 
video compression can result in huge reductions in size. In the compression of 
still images, we take advantage of spatial redundancies caused by the simi
larity of adjacent pixels. To reduce this type of redundancy, some form of 
transform-based coding (e.g., Discrete Cosine Transform, known as DCT) is 
used. The objective is to transform the signal from one domain (in this case, 
spatial) to the frequency domain. DCT operates on 8 X 8 blocks of pixels and 
produces another block of 8 X 8 in the frequency domain whose coefficients 
are subsequently quantized and coded. The important point is that most of 
the coefficients are near zero and after quantization will be rounded off to 
zero. Run-length coding, which is an algorithm for recording the number of 
consecutive symbols with the same value, can efficiently compress such an 
object. The next step is coding. By using variable-length codes (an example is 
Huffman tables), smaller code words are assigned to objects occurring more 
frequently, thus further minimizing the size. 

Our aim in the coding of video signals is to reduce the temporal redundan
cies. This is based on the fact that, within a sequence of related frames, 
except for the moving objects, the background remains unchanged. Thus to 
reduce temporal redundancy a process known as motion compensation is 
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used. Motion compensation is based on both predictive and interpolative 
coding. 

MPEG (Moving Pictures Expert Group) is the most general of the numer
ous techniques for video compression [Furht 1994; LeGall 1991; Mattison 
1994]. In fact, the phrase "video in a rainbow'' is used for MPEG, implying 
that by adjusting the parameters, one can get a close approximation of any 
other proposal for video encoding. Motion compensation in MPEG consists of 
predicting the position of each 16 X 16 block of pixels (called a macroblock) 
through a sequence of predicted and interpolated frames. Thus we work with 
three types of frames-namely, those that are fully coded independently of 
others (called reference frames or !-frames), those that are constructed by 
prediction (called predicted frames or P-frames), and those that are con
structed by bidirectional interpolation (known as B-frames). It begins by 
selecting a frame pattern which dictates the frequency of !-frames and the 
intermixing of other frames. For example, the frame pattern IBBPBBI indi
cates (1) that every seventh frame is an !-frame, (2) that there is one 
predicted frame in the sequence, and (3) that there are two B-frames between 
each pair of reference andjor predicted frames. Figure 1 illustrates this 
pattern. 

Our approach to extracting object motion is based on the idea that during 
video encoding by the MPEG method, a great deal of information is extracted 
from the motion vectors. Part of the low-level motion analysis is already 
performed by the video encoder. The encoder extracts the motion vectors for 
the encoding of the blocks in the predicted and bidirectional frames. A 
macroblock can be viewed as a coarse-grained representation of the optical 
flow. The difference is that the optical flow represents the displacement of 
individual pixels while the macroblock flow represents the displacement of 
macroblocks between two frames. At the next, intermediate level, we extract 
macroblock trajectories which are spatiotemporal representations of mac
roblock motion. These macroblock trajectories are further used for object 
motion recovery. At the highest level, we associate the event descriptions to 
object/motion representations. 

Macroblock displacement in each individual frame is described by the 
motion vectors which form a coarse optical-flow field. We assume that our 
tracing algorithm is fixed on a moving set of macroblocks and that the 
correspondence problem is elevated to the level of macroblocks instead of 
individual points. The advantage of this elevation is that even if we lose 
individual points (due to turning, occlusion, etc.) we are still able to trace the 
object through the displacement of a macroblock. In other words, the corre
spondence problem is much easier to solve and less ambiguous. Occlusion and 
tracing of objects which are continuously changing are the subject of our 
current investigations. 

In Section 2 of this article we survey some of the research projects related 
to our work. In Section 3 we present the object motion analysis starting from 
the low-level analysis through the high-level analysis. We discuss the impor
tance of motion analysis and its relevance to our model which is presented in 
Section 3.4. Section 4 introduces the basic OMV structures (object, motion, 
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Fig. 1. Forward and bidirectional prediction in MPEG. 

video-sequence), as the basis for the video information model. The basic 
retrieval operators, the OMV-language specification, and some examples are 
given. Empirical results are outlined in Section 5, and Section 6 presents 
some concluding remarks. 

2. RELATED WORK 

The research presented in this article builds on the existing results in two 
areas: dynamic computer vision and digital video modeling. 

A current trend in computational vision is influenced by the idea that 
motion analysis does not depend on complex-object descriptions. Our work 
follows this trend and is based on the recent publications that are in 
agreement with this idea in computational vision. The idea of objectjevent 
recognition regardless of the existence of object representations can be traced 
back to the early 70's when Johansson [1976] introduced his experiments 
with moving-light displays. The idea was to attach lights to the joints of a 
human subject dressed in dark-colored clothing and observe the motion of 
lights against a dark background. The audience not only could recognize the 
object (human being) but could also describe the motion and the events 
taking place. Goddard [ 1992] investigated the high-level representations and 
computational processes required for the recognition of human motion based 
on moving-light displays. The idea is that recognition of any motion involves 
indexing into stored models of the movement. These stored models, called 
scenarios, are represented based on coordinated sequences of discrete motion 
events. The structures and the algorithms are articulated in the language of 
structured connectionist models. Allmen [1991] introduced a computational 
framework for intermediate-level and high-level motion analysis based on 
spatiotemporal surface flow and spatiotemporal flow curves. Spatiotemporal 
surfaces are projections of contours over time. Thus, these surfaces are direct 
representations of object motion. 
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video-sequence), as the basis for the video information model. The basic
retrieval operators, the OMV-language specification, and some examples are
given. Empirical results are outlined in Section 5, and Section 6 presents
some concluding remarks.

2. RELATED WORK

The research presented in this article builds on the existing results in two
areas: dynamic computer vision and digital video modeling.

A current trend in computational vision is influenced by the idea that
motion analysis does not depend on complex-object descriptions. Our work
follows this trend and is based on the recent publications that are in
agreement with this idea in computational vision. The idea of object/event
recognition regardless of the existence of object representations can be traced
back to the early 70’s when Johansson [1976] introduced his experiments
with moving-light displays. The idea was to attach lights to the joints of a
human subject dressed in dark-colored clothing and observe the motion of
lights against a dark background. The audience not only could recognize the
object (human being) but could also describe the motion and the events
taking place. Goddard [1992] investigated the high-level representations and
computational processes required for the recognition of human motion based
on moving-light displays. The idea is that recognition of any motion involves
indexing into stored models of the movement. These stored models, called
scenarios, are represented based on coordinated sequencesof discrete motion
events. The structures and the algorithmsare articulated in the language of
structured connectionist models. Allmen [1991] introduced a computational
framework for intermediate-level and high-level motion analysis based on
spatiotemporal surface flow and spatiotemporal flow curves. Spatiotemporal
surfaces are projections of contours over time. Thus, these surfaces are direct
representations of object motion.
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In the dynamic computer vision literature there are general models for 
object motion estimation and representation, as well as domain-restricted 
models. A general architecture for the analysis of moving objects is proposed 
by Kubota et al. [1993]. The process of motion analysis is divided into three 
stages: moving-object candidate detection, object tracking, and final motion 
analysis. The experiments are conducted using human motion. Another ap
proach to interpretation of the movements of articulated bodies in image 
sequences is presented by Rohr [1994]. The human body is represented by a 
three-dimensional model consisting of cylinders. This approach uses the 
modeling of the movement from medical motion studies. Koller et al. [1993] 
discuss an approach to tracking vehicles in road traffic scenes. The motion of 
the vehicle contour is described using an affine motion model with a transla
tion and a change in scale. A vehicle contour is represented by closed cubic 
splines. We make use of the research results in all these domain-specific 
motion analysis projects. Our model combines the general area of motion 
analysis with individual frame (image) analysis. 

In case of video modeling, the video footage usually is first segmented into 
shots. Segmentation is an important step for detection of cut points which can 
be used for further analysis. Each video shot can be represented by one or 
more key frames. Features such as color, shape, and texture could be ex
tracted from the key frames. An approach for automatic video indexing and 
full video search is introduced by Nagasaka and Tanaka [1992]. This video
indexing method relies on automatic cut detection and selection of first 
frames within a shot for content representation. Otsuji and Tonomura [1993] 
propose a video cut detection method. Their projection detection filter is 
based on finding the biggest difference in consecutive-frame histogram differ
ences over a period of time. A model-driven approach to digital video segmen
tation is proposed by Hampapur et al. [ 1994]. The paper deals with extracting 
features that correspond to cuts, spatial edits, and chromatic edits. The 
authors present an extensive formal treatment of shot boundary identifica
tion based on models of video edit effects. In our work, we rely on these 
methods for the initial stages of video processing, since we need to identify 
shot boundaries to be able to extract meaningful information within a shot. 

One representation scheme of segmented video footage uses key frames 
[Arman et al. 1994]. The video segments can also be processed for extraction 
of synthetic images, or layered representational images, to represent closely 
the meaning of the segments. A methodology for extracting a representative 
image, salient video stills, from a sequence of images is introduced by 
Teodosio and Bender [1993]. The method involves determining the optical 
flow between successive frames, applying affine transformations calculated 
from the flow-warping transforms, such as rotation, translation, etc., and 
applying a weighted median filter to the high-resolution image data resulting 
in the final image. A similar method for synthesizing panoramic overviews 
from a sequence of frames is implemented by Teodosio and Mills [ 1993]. 

Swanberg et al. [1993] introduced a method for identifying desired objects, 
shots, and episodes prior to insertion in video databases. During the insertion 
process, the data are first analyzed with image-processing routines to identify 
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the key features of the data. In this model, episodes are represented using 
finite automata. Only video clips with inherently well defined structure can 
be represented. The model exploits the spatial structure of the video data 
without analyzing object motion. Zhang et al. [ 1994] presented an evaluation 
and a study of knowledge-guided parsing algorithms. The method has been 
implemented for parsing of television news, since video content parsing is 
possible when one has an a priori model of a video's structure. 

Another system, implemented by Little et al. [ 1993], supports content-based 
retrieval and playback. They define a specific schema composed of movie, 
scene, and actor relations with a fixed set of attributes. Their system requires 
manual feature extraction. It then fits these features into the schema. 
Querying involves the attributes of movie, scene, and actor. Once a movie is 
selected, a user can browse from scene to scene beginning with the initial 
selection. Weiss [1994] presented an algebraic approach to content-based 
access to video. Video presentations are composed of video segments using a 
video algebra. The algebra contains methods for temporally and spatially 
combining video segments, as well as methods for navigation and querying. 
Media Streams is a visual language that enables users to create multilayered 
iconic annotations of video content [Davis 1993]. The objects denoted by icons 
are organized into hierarchies. The icons are used to annotate the video 
streams in a Media Time Line. The Media Time Line is the core browser and 
viewer of Media Streams. It enables users to visualize video at multiple time 
scales simultaneously, in order to read and write multilayered, iconic annota
tions, and it provides one consistent interface for annotation, browsing, 
query, and editing of video and audio data. 

The work presented here follows from a number of efforts listed above. 
Specifically, we use low- and intermediate-level motion analysis methods 
similar to those offered by Allmen [1991] and others. Our object recognition 
ideas have been influenced by the work of Jain and his students [Gupta et al. 
1991a; 1991b], Grosky [Grosky and Mehrotra 1989], and the research in 
image databases. Several lines of research such as those in Little et al. 
[ 1993], Swanberg et al. [ 1993], Zhang et al. [ 1994], and Weiss [ 1994] provided 
many useful ideas for the modeling aspects of our investigations. An early 
report of our work was presented in Dimitrova and Golshani [1994]. 

3. MOTION RECOVERY IN DIGITAL VIDEO 

In this section we describe in detail each level of the motion analysis pipeline. 
At the low-level motion analysis we start with a domain of motion vectors. 
During intermediate-level motion analysis we extract motion trajectories that 
are made of motion vectors. Each trajectory can be thought of as an n-tuple of 
motion vectors. This trajectory representation is a basis for various other 
trajectory representations. At the high-level motion analysis we associate an 
activity to a set of trajectories of an object using domain knowledge rules. 

3.1 Low-Level Motion Extraction: Single Macroblock Tracing 

In MPEG, to encode a macroblock in a predicted or a bidirectional frame, we 
first need to find the best matching macroblock in the reference frames, then 
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find the amount of x and y translation (i.e., the motion vector), and finally 
calculate the error component [Patel et al. 1993]. The motion vector is 
obtained by minimizing a cost function that measures the mismatch between 
a block and each predictor candidate. Each bidirectional and predicted frame 
is an abundant source of motion information. In fact, each of these frames 
might be considered a crude interpolation of the optical flow. Thus, the 
extraction of the motion vectors of a single macro block through a sequence of 
frames is similar to low-level motion analysis. 

Tracing a macro block can continue until the end of the video sequence if we 
do not impose a stopping criterion. We have a choice: to stop after a certain 
number of frames, stop after the object (macroblock) has come to rest, stop if 
the block comes to a certain position in the frame, stop if the macro block gets 
out of the scene, or stop if the macroblock is occluded. 

The algorithm for tracing the motion of a single macroblock through one 
frame pattern for MPEG encoding is given in Figure 2. In Dimitrova [1995], 
we describe object motion tracing for video databases in more detail. The 
algorithm takes the forward and backward motion vectors that belong to a 
particular macroblock and computes the macroblock's trajectory. The algo
rithm computes the macroblock's position in a B-frame by averaging the 
positions obtained from: (1) the previous block coordinates and forward 
motion vectors and (2) next (predicted) block coordinates and the backward 
motion vector. The position of a macroblock in a P-frame is computed using 
only block coordinates and forward motion vectors. If during the tracing 
procedure the initial macroblock moves completes out of its position, then we 
have to extract motion vectors for the new macroblock position, which implies 
that we are continuing by tracing the macroblock whose position coincides 
with the (x, y) coordinates ofthe initial macroblock. In the rest of this article, 
we will use T to indicate the set of all possible motion vectors. 

3.1.1 Trajectory Description. Various motion retrieval procedures have 
specific requirements for retrieving desired objects. These requirements de
pend on the characteristics of the retrieval which may be flexible to strict. 
The choice of trajectory representation may dictate the manner in which 
retrieval is conducted. Given a set of motion vectors for a macroblock, a 
number of mechanisms exist for trajectory representation. Below we present 
a sample list: 

(1) Point Representation: A trajectory in this case is a set of points repre
sented by the absolute or relative frame coordinates of the position of the 
object, say 

where (x,, y,) is derived by projecting (x, y, i) onto the image plane. 
( x, y, i) denotes the position of an object, i.e., ( x, y ), at time instant i. 

(2) Curve Representation: A parametric B-spline curve P(u) can be computed 
that passes through each of the trajectory points ( x,, y,) (see Farin [ 1990] 
for a detailed discussion). The first step involves generating a parameteri-
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Given: trames F = Fi i = O, ... ,n; 
motion vectors V = (fmx(i),fmy(i)),(bmx(i),bmy(i)) i= 1,n 
initial block coordinates bx, by 
Initialize R = 0, 
for i=l, ... , n 

if F(i) :f= I then 
if F(i) == P then 

if previousType == I 
ex = bx- fmx(i)/2; 
cy = by- fmy(i)/2; 
nextblockx = ex; nextblocky = cy; 

if previousType == P 
givenx = futurex; 
giveny = futurey; 
futurex = futurex - fmx(i)/2; 
futurey = futurey - fmy(i)/2; 

if F(i) == B then 
ex=( (givenx-fmx(i)/2)+(futurex-bmx(i) /2)) /2; 
cy=( (giveny-fmy(i) /2)+(futurey-bmy(i) /2)) /2; 

if block(bx,by) n block(cx,cy) == 0 then 
extract(mx(i),my(i)) for (cx,cy) 

R = R U {(mx(i),my(i))} 
if F(i) is the last in a group of B frames before a P frame 

ex = futurex; 
cy = futurey; 

if block(bx,by) n block(cx,cy) == 0 then 
extract(mx(i),my(i)) for (cx,cy) 

R = R U {(mx(i},my(i))} 
if F(i) == I then 

(bx,by) +- bestMatch(bx,by) in I 
if stopping criteria == true, then 

return R; 
endfor 

Fig. 2. Algorithm for tracing the motion of a macro block. 

zation or knot sequence u 1 ~ u 2 ~ .. · ~ un. A commonly used approach 
employs cumulative chord lengths defined by the points ( x,, y, ). The next 
step involves setting up and solving a tridiagonal linear system of equa
tions whose unknowns are the control points d, of the B-splines N,(u). 
The linear system depends on the x,, y, and u, values. This linear 
system can be efficiently solved in ct"(n) time using standard techniques 
for tridiagonal matrices. The B-spline curve has the form: 

P( u) = L, d,N,(u), 

and it satisfies the following: 

(a) P(u,) = (x, y,); 
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(b) P(u) is a piecewise cubic polynomial, i.e., for u, sus u,+l, P(u) is a 
polynomial of degree less or equal to three; and 

(c) the first and the second derivatives of P( u) are continuous. 

(3) Chain Code Representation: We develop a piecewise linear approximation 
to the trajectory using a set of orientation primitives. Given a set of 
discrete trajectory orientation primitives, we use a zig-zag line represen
tation of the trajectory to generate the code. Another way of viewing this 
approach is derived from a neighborhood matrix with each neighbor coded 
to correspond to the primitives in the figure [Schalkoff 1989]. 

(4) Differential Chain Code Representation: Each segment is coded relative to 
the next line segment using the direction (left or right) and the length. 
For example, we can have a code for: right shorter-1, right equal-2, right 
longer-3, left shorter-4, left equal-5, left longer-6 [Schalkoff 1989]. This 
scheme is useful for approximate matching of object trajectories. It is a 
rotation-, scaling-, and translation-invariant scheme. 

Figure 3 illustrates these methods used for the representation of an 
arbitrary movement. Figure 3(a) is an exact coordinate representation; 3(b) is 
a B-spline curve representation. Figure 3(c) represents the chain-coding 
process, and 3(d) shows the differential chain code representation of the 
trajectory. 

Note that in the coordinate representation and B-spline and chain code 
representation schemes we have a way of representing zero motion, i.e., when 
the motion vector is a null vector. If the macroblock does not move over a 
certain number of frames, the point will be repeated. In the B-spline repre
sentation, the knot G.e., the control point) will have a multiplicity greater 
than one. In the chain code representation, the zero motion is represented by 
the code "0." So, in all these representations the trajectory is not only a 
spatial representation of the object's motion (the path) but also a temporal 
characterization of the motion. By keeping track of the zero motion we are 
able to describe stationary objects as well. 

The diversity of the trajectory representations makes the querying process 
more flexible. The actual method of representation does not have a significant 
impact on the querying process as long as modeling, representation, and 
querying are all done in the same fashion. 

3.1.2 Trajectory-Matching Functions. Applications such as automated 
surveillance may require retrieval of either video sequences or objects con
tained in these sequences based on the object trajectories. For example, 
queries of the type "retrieve objects that have a motion trajectory whose point 
of origination is the main gallery door and terminate at the Juan Miro's 
picture on the opposite wall" may help in the identification of the person who 
damaged the picture. 

Matching functions used for motion retrieval depend on the method em
ployed for trajectory representation, as described below. 
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(a) (b) 

Fig. 3. Alternatives for object motion representation: (a) motion trajectory; (b) B-spline curve 
representation; (ell chain-coding scheme; (c2) chain code representing the trajectory; (dl) differ
ential chain-coding scheme; (d2) resulting differential chain code. 

-Exact matching function that uses absolute frame coordinates (least-square 
minimization problem). This matching function has two variations: 

(1) exact start position and exact trajectory match 
(2) any start position and exact trajectory match. 

-Exact matching function that uses relative coordinates. This function is 
used when the initial position of the object is not important. 

-Curve comparison based on the curve-fitting approach used for interpo
lated trajectory representation. 
Approximate matching that uses chain code: 

(1) exact start position and inexact trajectory match 

(2) any start position and inexact trajectory match. 

The chain code matching translates the problem of trajectory matching 
into a pattern-matching problem. 

-Qualitative matching that uses differential chain code. 

The result in each case is a similarity factor between the input trajectory 
and a target trajectory in the set of object trajectories. 

3.2 Intermediate-Level Motion Analysis 

A macroblock trajectory is the spatiotemporal representation of the macro
block's motion. These trajectories are further used for extracting object 
motion. This process is different for rigid and nonrigid bodies. A rigid object 
consists of one solid part to which motion trajectory is associated. If the object 
consists of several parts which themselves represent rigid objects with inde-
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Fig. 3. Alternatives for object motion representation: (a) motion trajectory; (b) B-spline curve
representation; (cl) chain-coding scheme;(c2) chain code representing the trajectory; (d1) differ-
ential chain-coding scheme; (d2) resulting differential chain code.

—~ Exact matching function that uses absolute frame coordinates (least-square
minimization problem). This matching function has two variations:

(1) exact start position and exact trajectory match

(2) any start position and exact trajectory match.

— Exact matching function that uses relative coordinates. This function is
used whentheinitial position of the object is not important.

— Curve comparison based on the curve-fitting approach used for interpo-
lated trajectory representation.

-~ Approximate matching that uses chain code:

(1) exact start position and inexact trajectory match

(2) any start position and inexact trajectory match.

The chain code matching translates the problem of trajectory matching
into a pattern-matching problem.

— Qualitative matching that uses differential chain code.

The result in each case is a similarity factor between the input trajectory
and a target trajectory in the set of object trajectories.

3.2 Intermediate-Level Motion Analysis

A macroblock trajectory is the spatiotemporal representation of the macro-
block’s motion. These trajectories are further used for extracting object
motion. This process is different for rigid and nonrigid bodies. A rigid object
consists of one solid part to which motion trajectory is associated. If the object
consists of several parts which themselves represent rigid objects with inde-
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pendent movements, then, such a nonrigid object is represented as a set of 
rigid objects with their respective trajectories. At the highest level of motion 
analysis, we associate "activities" with the object trajectory representations. 

Rigid-object motion is represented by a single trajectory. The trajectory is 
one common representation of the trajectories of all the component macro
blocks. Finding the most-representative trajectory is not a simple task. In the 
simplest case we can take the trajectory of the object centroid as the reference 
object trajectory. A more-complicated case occurs if we decide to create a 
common trajectory by processing all of the macroblock trajectories or by 
examining only a subset of all macroblock trajectories. 

Mean averaging of all trajectories of the macroblocks of the object is an 
alternative to choosing the object centroid's trajectory. The averaging of the 
trajectories in the exact form is pointwise averaging of the trajectories at 
each frame. 

The following two assumptions make the object motion recovery feasible: 

(1) Integrity of Objects: We assume objects are rigid or consist of rigid parts 
connected to each other. We do not consider situations in which objects 
disintegrate. This assumption is important because we only use object 
trajectory representation. 

(2) Motion Continuity: Each macroblock under consideration has continuous 
motion. This assumption is important for the trajectory representation, 
since every trajectory segment represents continuation of the previous 
trajectory segment. 

Averaging trajectories is used for determining a representation of a non
rigid body motion. For nonrigid objects, we must determine the number of 
trajectory clusters and their locations. Each cluster corresponds to a single 
coherent motion that represents a moving part (i.e., a rigid object). We use a 
hierarchical clustering algorithm (due to Duda and Hart [1973]) for determin
ing the number of rigid object parts. Initially, the algorithm begins with 
clusters that contain only one trajectory each. At each subsequent step, we 
attempt to merge those neighboring clusters that have a similar trajectory. 
Individual trajectories, in this case, will be averaged to compute a trajectory 
for the extended cluster. 

An example of a traced object through 20 encoded frames using the 
IBBPBBBP frame pattern is given in Figure 4. Figure 4(a) contains first, 
middle, and last frames of a video sequence capturing a water skiing scene. 
Figure 4(b) contains the motion trace for the moving yacht. The axes in 
Figure 4(b) correspond to the x and y axes of the video frames where the 
(0, 0) coordinate is at the top left corner. 

Figure 5 shows six out of the 60 frames of the "W alfky" video sequence 
used for our next experiment. The object being traced is a small toy which 
performs very uneven motion. Figure 6(a) shows how the tracing of a macro
block progresses when every frame in the sequence is used. The frame 
pattern IBBBPBBB is used for video encoding when macroblock trajectories 
are extracted in Figure 6. This experiment shows that the macroblock tracing 
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(a) 

(b) 

Fig. 4. Tracing a moving yacht. (a) first. middle. and last frames in video sequences: (b) motion 
trace of the yacht. 
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Fig. 4. Tracing a moving yacht. (a) first, middle. and last frames in video sequences; (b) motion
trace of the yacht.
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Frame 1 Frame31 

Frame 11 Frame41 

Frame 21 Frame 51 

Fig. 5. Snapshots from a v1deo sequence. 

is possible when the objects exhibit jerky motion. As expected the trajectory is 
not only curved but also has the properties of a zig-zag line. In this case the 
macroblock with coordinates (14, 14) is traced. In terms of absolute frame 
coordinates, these coordinates correspond to (112, 112J. Figure 6(bl shows 
tracing of the same video sequence in the case when every other frame is 
used for encoding and tracing. 

We use the notation T to indicate the set of object trajectories. Each 
member of T is a sequence1 whose range is the set of all motion vectors T, 

i.e., \It E T(t :A·-'> T), whereof' is the set of natural numbers. In other words 

1 A sequence is simply a funcbon whose domam 1s the natural numbers. 

ACM Transactwns on Informahon Systems. Vol 13. No 4, Octoher 1995 

Ex. G Page 15 of 34

Canon Ex. 1007 Page 149 of 219

420 . N. Dimitrova and F. Golshani

Frame |
eee Frame31fag
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Frame 21 

Fig. 5. Snapshots from a video sequence.

is possible when the objects exhibit jerky motion. As expected the trajectory is
not only curved but also has the properties of a zig-zag line. In this case the
macroblock with coordinates (14, 14) is traced. In terms of absolute frame
coordinates, these coordinates correspond to (112, 112). Figure 6(b) shows
tracing of the same video sequence in the case when every other frameis
used for encoding andtracing.

We use the notation T to indicate the set of object trajectories. Each
member of 7’ is a sequence’ whose rangeis the set of all motion vectors 7,
Le., Vt & T(t :.4°— 7), where./ is the set of natural numbers. In other words

1 : :
A sequenceis simply a function whose domain is the natural numbers.
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(a) Trace of the macroblock (14, 14) using all frames 
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(b) Trace of the macro block ( 14, 14) using every other frame 
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Fig. 6. Traced trajectones in the Walfky video sequence. (a) all frames; (b) only every other 
frame 1s used. 

ACM Transactions on Informatwn Systems, Vol. 13, No.4, October 1995. 

Ex. G Page 16 of 34

Canon Ex. 1007 Page 150 of 219

Video Content Classification ° 421

(a) Trace of the macroblock (14,14) using all frames
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(b) Trace of the macroblock (14,14) using every other frame
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Fig. 6. Traced trajectories in the Walfky video sequence. (a) all frames; (b) only every other
frame is used.
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each object trajectory is a sequence of motion vectors identifying macroblock 
displacement for the components of the object. As discussed previously, the 
actual appearance of the members of T depends on the choice of the repre
sentation scheme. 

3.3 High-Level Motion Analysis 

At the highest level of motion analysis, we associate domain-dependent 
"activities" with the object trajectory representations. An activity can be 
recognized by the system based on a predefined set of procedures, or it can be 
designated by the user. We realize that recognizing activities is one of the 
most-difficult tasks in any vision system. Such undertaking requires informa
tion on: 

(1) Relative positioning between rigid subparts 
(2) Relative timing of the parts movements 

(3) Actual and perceived interaction of object parts. 

The two main problems in recovering high-level motion representation are 
(1) the fact that multiple sequences are occurring simultaneously (for exam
ple, arm movements and leg movements in human motion) and in a coordi
nated fashion and (2) tempo changes are global (in the case of the human 
body, the changes apply to all four limbs and occur slowly). 

An activity involves both spatial and temporal representations of the 
objects of interest. We must identify the object components (shape and other 
features) and their respective trajectories (as we did in the previous section) 
at the intermediate-level motion analysis and then assemble activities. The 
temporal information is needed for discrimination of activities of the same 
type, for example, strolling, walking, hurrying, etc. Mter assembling object 
activities, based on additional knowledge, we can infer event information. 

We use JV to symbolize the set of activities. We assume the existence of a 
knowledge base % whose contents include all the necessary rules, con
straints, and the procedures for deriving activities from lower-level descrip
tions. 

Each member a of <W' is a "composition" of t 1 , t 2 , ... , tn, where for every 
1 < i < n we have: 

- t, E T and 

- t, satisfies every constraint in '{::, where 'D'a E ::?' represents the con-
straints governing the activity a. 

High-level event representation and manipulation call for the use of either 
temporal Petri nets, an event-based approach to temporal objects, or other 
event representation and manipulation schemes. 

3.4 Spatiotemporal Hierarchical Representation 

We use a semantic multiresolution hierarchy for spatiotemporal representa
tion (Figure 7) because it helps video analysis at various resolution levels, 
with coarser resolutions used for high-level event/scenario descriptions. The 
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Fig. 7. Multiresolution h1erarchy for spatial and temporal video representation. 

advantage of multiresolution representation is that it offers a mechanism to 
make the trade-off between the competing demands of fine spatialjtemporal 
resolution and low computational complexity. The idea of representational 
hierarchy for still images has been utilized by several image data models 
[Grosky and Mehrotra 1989; Gupta et al. 1991a; 1991b]. 

At successive time intervals, a frame is inserted at the base of the spatial 
hierarchy, and the features are computed for the next levels. The motion 
features are computed starting at the frame, and the temporal part of the 
hierarchy is filled with the appropriate motion descriptions. Motion analysis 
starts with the motion vector recovery (bottom of the temporal hierarchy, 
Figure 7). At the next level, individual macroblock trajectories are traced. At 
the intermediate level, rigid-body motion is recovered, followed by nonrigid
motion recovery. Finally, at the highest level of motion analysis, description 
of activities is derived from previously computed motion features (top of the 
temporal hierarchy, Figure 7). 

The temporal part of the hierarchy can be used for various kinds of motion 
retrieval ranging from full-object trajectory-based matching to single-macro
block trajectory matching. Since we provide exact and inexact trajectory 
representation, our retrieval functions can take inputs in terms of precise 
spatial coordinates, orientation coordinates, and qualitative descriptions. 

4. INFORMATION FILTERING AND DIGITAL VIDEO 

The motion-tracing and representation scheme introduced in previous sec
tions serves as a basis for the classification and retrieval of video sequences. 
Video sequences may be retrieved using the temporal (motion) part of the 
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hierarchy or the combination of spatial and the temporal representations. 
The idea of this representation is that we can compute the spatial and 
temporal features independently of each other. We emphasize that temporal 
features coupled with spatial features are important in discriminating and 
classifying video sequences. 

Like other knowledge representation cases, we do not attempt to have a 
universal system that can recognize and distinguish all possible objects. Such 
general-purpose (i.e., domain independent) representations have been shown 
to be too complex for present technologies. Thus, we assume that the domain 
of interest is known a priori and that the video classification system will be 
confined to working on only those objects. Consider a domain D, called the 
"scope," containing all objects of interest. Formally, the elements of D are 
defined as object-oriented structures with potentially complex internal com
ponents. Similar to any object-oriented representation, the user can identify 
the objects of D by their attributes, such as object ID, image descriptions, 
name, and shape (or convex hull), or a combination of these. Thus, the user 
may provide any available information on any of the attributes of desired 
object (for example, object ID, or shape together with a partial description), 
and the system will attempt to identify the intended object. Although we do 
not make any assumptions on how the elements of D and their attributes are 
represented, we offer the following example as an indication of a typical 
structure. 

Example 4.1. A walking human may be represented as a moving object 
a 1 = (o 1 , m 1 , v1) where 

o 1 = (category: human, convexHull: o6 : skeleton: o 7 , 

parts :{head: o 2 , torso: o3}), 

m 1 = (trajectory : 2467332, activity : walking), and 

v 1 = ( v# : 234, first Frame : 45, lastFrame : 485). 

Similarly, the head and torso also have their spatial and motion descrip
tions. 

In a database containing only ''still" images, a correspondence table of the 
form (0, I)-where 0 stands for the object, and I stands for the image-will 
suffice. In a video database, we have the added parameter of temporal 
changes. Although the motion of each object can be modeled as an attribute of 
the object, say, "dog, big, brown, running," it is more appropriate to separate 
objects and their motions as two different parameters. Note that if motion is 
considered as just another attribute of the object, then in case the same object 
appears more than once, each time with a different motion, we would need 
multiple, different entries into the database. For example, there would be 
multiple entries for the big brown dog: running right, running left, running in 
circles, and jumping. 

Video sequences are identified by objects present in the scene and their 
respective motion. The goal of the motion analysis is to extract activity and 
event representation. An index entry of an activity in a video sequence has 

ACM Transactions on InformatiOn Systems. Vol 13. No 4. October 1995 

Ex. G Page 19 of 34

Canon Ex. 1007 Page 153 of 219



Video Content Classif1cat1on 425 

the following form: 

(0, M, V) = (objectRep, motionRep, uid) 

- objectRep: an object represented by its extracted features (convex hull, 
object skeleton, centroid, texture, set of macroblocks covering the object, 
etc.; see left side of Figure 7). An object representation might include a set 
of object representations of the constituting parts (e.g., objects that repre
sent a human figure include head, torso, arms, and legs object representa
tions). 

- motionRep: an object trajectory specified by objectRep, velocity, trajectory 
curvature, torsion, and activity description (see right side of Figure 7). 

- uid: identity of the video subsequence to which an object belongs to: uid 
consists of (viSeqld, firstFrame, lastFrame). 

(1) uiSeqld is a video sequence identity which is unique for a sequence 
across the whole video database. 

(2) firstFrame: the first frame in which the specified object appears. 
(3) lastFrame: the last frame in which the specified object appears. 

4.1 Content-Filtering Operators 

The OMV triplet is the basis for the query functions. There are many 
possibilities for the selection of filters (in this context, query functions.) A 
sample selection is presented below. These operators may be used in a 
relational form, mostly in a table lookup mode, or may be embedded into a 
more-elaborate query language, as presented in Section 4.2. Recall that B"(A) 
is used to denote the powerset of the set A, i.e., the set of all subsets of A. 

V_Seq: 0 X M ->9"(V) 

This function takes any description that can be provided at any level of the 
spatial hierarchy. The input might be a characterization of the object in 
terms of its bounding polygon, stick figure, a name, or concept. At this point 
we need to emphasize that we use the properties of the object-oriented nature 
of the representation of the objects. For example, the expression 

V_Seq(O_category =pet, (Activity= walking, Trajectory= t 1)) 

translates into "retrieve all the video sequences in which a pet walks and 
makes a trajectory t 1." The answer will include all the objects (animals) that 
are classified as pets: cats, dogs, fish called Wanda, etc. It is important to 
note that here we discuss only the formal framework in an informal way and 
that these functions are implemented within an interactive window-based 
graphical query interface which we discuss in Section 5.1. 

The function 

Object-motion : 0 X V -> 9"( M) 

takes any object description and a particular video sequence and returns a 
set of motion descriptions related to that object. In order to detect which 
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objects performed a particular type of motion, i.e., the agent of the action, we 
use a function of the following family: 

Agents: M XV -->9'(0). 

The next function is used to get a detailed description of all the objects and 
their respective motions in a video sequence: 

Describe_ Video : V --> 9'( 0 X M). 

If we just want information about the spatial characteristics of objects in a 
sequence, we use the function 

Objects : V --> 9'( 0). 

This is equivalent to the "agents" function where the first argument is 
unimportant. Thus, given a v, E V, Objects(v) = Agents(any, v). 

The above functions allow for inexactness, and by default, they return 
results that are approximately similar to the precise answer. To make the 
operator exact, we use a higher-order operator that converts the query 
function in the desired manner, in this case, makes it exact. There are several 
types of these operators, e.g., exact, partial, and similar. 

For making the retrieval exact, the symbol ! is placed in front of the query 
function. For example, "!Agents" returns only objects that have exactly the 
same motion description as the one given in M. Similarly, "!Object-motion" 
returns only motion descriptions of objects whose spatial characteristics (for 
example, exact bounding polygon, texture) match the spatial characteristics 
of a given object. 

The # symbol placed in front of the query function is used for partial 
retrieval. Partial retrieval means that any of the motion or temporal charac
teristics of the given object should match. For example, "#Agents'' will return 
all objects that match at least one of the motion descriptors. 

4.2 The Query Language 

The retrieval functions introduced in the previous section are embedded into 
the framework of a multimedia functional query language called EVA, de
scribed in Golshani and Dimitrova [1994]. EVA is the interface to a multime
dia database system capable of storage, retrieval, management, analysis, and 
delivery of objects of various media types, including text, audio, images, and 
moving pictures. The language deals with the temporal and spatial aspects of 
multimedia information retrieval and delivery, in addition to the usual 
capabilities provided by the ordinary database languages. EVA has five 
groups of operators, namely: operations for querying and updating (i.e., 
editing) the multimedia information, operations for screen management, 
temporal operators, operators for specifying rules and constraints, and aggre
gation (computational) operators. EVA is an extension of a functional query 
language whose notation is based on that of conventional set theory. Both the 
original language and its extensions are formally defined in an algebraic 
framework. EVA is object oriented and supports objects, object classes, at-
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tributes and methods of objects, and relationships between objects. It has 
been ported onto several different platforms. 

EVA provides a wide collection of operators that deal with text, graphics, 
scanned images, audio, and video. In addition, there are numerous type-inde
pendent operators such as set operators like union and set membership. One 
of the general operations is: the set construction operator. Generally, this has 
the form {f(x) I P(x)}, where f( x) denotes the desired output objects, and 
P(x) denotes the retrieval predicate which has to be true for those objects. 

- set operation symbols: isin, isSubsetOf, isTrueSubsetOf, union, intersec-
tion, difference, Union, Intersection, noOf. 

-equality operators: is, isnot. 
-temporal synchronization (for all media types): sim, before, meets, equals, 

starts, at, finishes. 
-spatial composition (applied only to graphics, images, and video): left, 

right, bottom, up, showin, arrange. 
media-dependent operation symbols include 

-text: appendPar, cutPar, eqPar, keyword, isKeywordin, parSim. 
-graphics: insPatch, pictureSum, fill, domain, colors, getPatch, getColor, 

restriction, scale, translate, dot, lineSeg, box, coincident, contains, dis
joint, visible, bounded. 

-images: shift, zoom, superimpose, overlay, imageSim. 
-audio: intensity, extract, audioins, audioLen, audioSim. 
-video: videoLen, pace, videoClip, videoins. 

-integer operation symbols: +, , *, < , > , < = , > = , min, max, ave, 
sum, prod. 

-string operation symbols: concat, strLen. 
-logical operation symbols: and, or, implies, not. 

To demonstrate the capabilities of EVA and how queries are constructed, 
we present a simplified example. The first part of the example will demon
strate the language without the OMV extensions. The video content retrieval 
extensions will be discussed once the appropriate distinctions are made. 

We present the schema of a multimedia database system and then provide 
a few sample queries. The schema is represented as a graph whose nodes are 
object classes (in algebraic terms, sorts) and whose arcs are the relationships 
between object classes (represented as functions). Readers familiar with the 
algebraic framework would recognize this as a many-sorted algebra. 

Illustrated in Figure 8, the schema models a college basketball multimedia 
database. The basic types in this system are String, Integer, Audio, Text, 
Video, while Player and School are user-defined data types. The highlighted 
portion appearing in dotted lines relates to the extension for video content 
retrieval described in Section 4.3. 

The main difference between these basic and user-defined types is that the 
former constitute the application-independent constituents of any schema, 
whereas the user-defined types depend on each individual application. In 

ACM TransactiOns on Information Systems, Vol 13, No 4, October 1995 

Ex. G Page 22 of 34

Canon Ex. 1007 Page 156 of 219



428 N. D1m1trova and F. Golshani 

/ .... ·. ·. 
f :Object; 
\ ... .: 

. ~ .. 
:Mot1on:1 ·. 

.··· .· 
: Vid ! 
·. 

Fig 8. Basketball schema. 

Figure 8, all object types, both basic and user defined, appear in ovals. The 
attributes of objects and their relationships that are captured by arrows are 
the following functions: 

name_of 
position-of 
state-of 
interview 
playingHighlights 
height-of 
age-of 
plays-for 
teammembers-of 
sname_of 
teamName_of 
coach_of 

: Player ~ String 
:Player~ String 
: Player ~ Text 
: Player ~ Audio 
: Player ~ Video 
: Player ~ Integer 
:Player ~Integer 
: Player ~ School 
:School ~ Y'(School) 
: School ~ String 
: School ~ String 
: School ~ Stnng 

Here are some queries on this database. 

(1) List all guards who are taller than 190cm. 

{name-of(P) lposition-of(P)is"Guard" andheight-of(P) > 190} 

This is a simple query on the nonmultimedia portion of the database. P is 
a variable of type Player. The result is a list of names of players who 
satisfy the given conditions. 
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(2) Play video clips of all centers, and simultaneously display their statistics. 

{ (name-of( P), stats-of(P)) sim playingHighlights-of(P )I 

position-of( P) is"Center "} 

While variable P ranges over the elements of type Player, whenever the 
condition on position is satisfied, the name, statistics, and the correspond
ing video clip of the qualified player are displayed. "sim," standing for 
"simultaneously," is one of the synchronization operators that ensure 
proper semantics for presentations. 

(3) Display the statistics of all Phoenix State University guards, and show 
their highlights before playing their interviews. 

{ (name-of( P), stats-of( P) )sim( playingHighlights-of( P) 

before interview( P) )I plays-for(P )is"PhoenixStateUniversity" and 

position-of ( P) is "Guard"} 

The result of this query is that, for every guard of the appropriate school, 
while their name and statistics are displayed, their video clip is presented 
first, and then their respective interview is played. The term "before" is 
another synchronization operator. 

4.3 Querying Video Contents 

Note that in the above queries, we treated Video, Audio, and Text as basic 
types in a similar manner to the type Integer, i.e., as objects whose contents 
can be displayed or presented, but no further specific characteristics are 
known about the contents. Our motion recovery algorithm and specifically the 
OMV functions enable us to treat Video in a different way, as described 
below. 

Grosky's [1994] categorization makes a distinction between the physical 
basic data types and the conceptual data types. He adopts a generic model to 
represent content-independent and content-based properties of multimedia 
objects. Content-independent properties are related to the physical data 
object itself (uninterpreted data) as well as synchronization and storage 
information. Content-based properties refer to relationships between nonmul
timedia real-world application entities and multimedia objects. The content
based properties associate semantics to the object at various levels. 

A binary object containing the video stream that corresponds to the playing 
highlights of a particular player is an instance of physical data type. The 
extracted spatial and motion characteristics are stored in the conceptual data 
type. The queries on the content of the video data are directed to the 
conceptual video data type. 

The conceptual video data type is molded from the spatiotemporal hierar
chy presented in Figure 7 using the object-motion-video structures. The OMV 
retrieval functions augment EVA's retrieval capabilities since they turn the 
physical object Video into a conceptual one, i.e., an object with its own specific 
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set of properties that can be incorporated into queries for more-precise 
questions. The extension to the schema which enhances the video type to be a 
conceptual type appears in the dotted line in Figure 8. Below is a list of 
operators that augment the retrieval capabilities based on the OMV retrieval 
functions: 

-Function Composition: given functions f: X --7 Y and g : Y --7 Z, the com
position is fog( x) = g( f( x )). For example, Given an object (any charac
teristic) in a video sequence v1, retrieve objects in another video sequence 
v 2 which have similar motion. 

Agents(ObjecLmotion(o 1 , v 1), v2 ) 

-Temporal Combination Functions: f8g where e E {before, meets, simulta
neously, starts, finishes}. Although the same syntax is used, these should 
not be mistaken for the synchronization operators. In this case, no confu
sion is expected since the context would determine the designation of the 
operator. An example of usage for this type of operator is the query 
"retrieve all the sequences in which a tall person is waving while the 
president walks." 

-Spatial Combination Functions: fl;g where I; E {next, behind, inFront, left, 
right}. 

Using the above combinators and the OMV structure, many new types of 
queries that refer to the contents of video sequences can be specified. Specifi
cally, we can express queries that refer to the contents of video sequences. 
Examples include the following: 

(1) "Retrieve all the video sequences with the longest successful shots." This 
query translates into "retrieve all the video sequences for which the 
length of the trajectory of the ball is maximum." 

(2) "Spell out all the details of movements of the players whose height is 
greater than 200cm." This query is good for analyzing the pattern in 
which certain players move and achieve the score. 

(3) "Find the video sequences in which the player is wearing a blue shirt." 
The "blue shirt" is inferred using image analysis. 

The target language is a visual one that allows for inclusion of spatial 
properties (sketches) and exact and inexact images. The notation presented in 
this article is the basis for the visual query interface [Dimitrova 1995; 
Michael 1994]. 

5. AN ARCHITECTURE FOR VIDEO CLASSIFICATION AND RETRIEVAL 

In the previous sections we introduced a model for video classification which 
exploits motion recovery and representation. In this section, we discuss a 
general architecture for video database retrieval based on the model. The 
proposed architecture, as presented in Figure 9, consists of: 

- Insertion module 
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Fig. 9. An architecture for video classification and retneval. 

- Derivation module 

- Interactive query module 

-Video storage server. 

The insertion module is responsible for initial analysis of the incoming 
video signal. It consists of a suite of operators for image enhancement, 
operators for the extraction of basic spatial properties, and operators for 
motion detection and the extraction of motion trajectories. With respect to the 
spatiotemporal hierarchy, this module is an implementation of the operators 
between the lowest level of the hierarchy (raw physical data) to the interme
diate representation. Currently, the functionalities for spatial analysis are 
supplied by the Khoros computer vision environment [Rasure et al. 1990]. 
The extraction of image features, finding regions, and thinning operators are 
performed by calls to Khoros functions. Although features are automatically 
extracted, the process of feature selection is manual. For example, we can 
apply an operator for image segmentation and find the regions in a video 
frame. However, the selection of regions of importance is decided by the 
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application designer. The automation of this whole process is possible for 
strictly limited application domains such as industrial monitoring, domain
specific video editing, camera surveillance, and others. The motion detection 
and tracing operators are also part of the insertion module. The implementa
tion of the motion-tracing algorithm is given in Section 5.2. 

The derivation module consists of operators for translation of the extracted 
features into meaningful descriptions for retrieval. Each application typically 
defines its own set of meaningful entities and events and has its own 
interpretation of the same. In our video model and language, the extracted 
properties are represented by predicates. The derivation module provides the 
mapping between the visual properties extracted form the video sequences 
which are geometric by nature and the algebraic representation which is used 
for querying. 

The query module consists of a visual front-end for query composition, a 
visual query parser, a schema designer, and a presentation manager. The 
schema designer and the visual front-end are incorporated into the visual 
query language VEVA [Dimitrova 1995]. The VEVA prototype serves as a 
testbed for development of new algorithms for videojimage segmentation, 
video parsing, feature selection, and classification. The prototype has been 
implemented in TcljTk [Osterhout 1994] with the added image and video 
widgets on top of an existing MPEG encoder [Rowe and Smith 1992]. 

The video storage server is envisioned to be a disk array serving as a 
repository of the video sequences. At this point we use a simple file system for 
storing a limited number of MPEG compressed video sequences. 

5.1 The V1sual Query Language VEVA 

Spatial and motion characteristics of objects, derived from images and video 
sequences respectively, are inherently visual. In this section, we outline the 
design of a multimedia database language which has well-defined semantics 
in both character-based and icon-based paradigms. 

Defined within the algebraic framework described above, VEV A is a visual 
query language that provides all the necessary constructs for retrieval and 
management of multimedia information. The basis for the language is a 
schema (algebraic signature) which contains entity types (both user-defined 
and application-independent types) and the associated operators [Golshani 
and Dimitrova 1994]. By using these operators, the user can visually specify a 
query for the desired objects in a simple way. VEV A has a formal grammar 
with which the set of acceptable expressions can be generated. The grammar 
for the visual language VEV A is given using visual rules in the style of a 
picture description language which was developed within the syntactic ap
proach to pattern recognition [Schalkoff 1989]. The grammar rules contain 
nonterminal and terminal icons. The rules are given as graph-rewriting rules 
where the left-hand side is a nonterminal icon, and the right-hand side is a 
graph containing nonterminal and terminal icons connected with customized 
links. 
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Fig. 10. Visual query involving a traJectory description. 

Parsing of visual expressions in VEV A is a process of determining the 
structure of the workspace. Note that parsing is the first step of the VEVA 
language processing, because lexical analysis is not necessary. All available 
icon symbols can be drawn from the given pallette and connected by a set of 
permissible links. Thus, every expression that is drawn is lexically correct. 
The execution process begins by parsing the contents of the VEVA workspace. 
The algorithm finds the top-level set expressions which may contain other set 
expressions. Translated into visual terms, this algorithm finds the enclosed 
visual expressions or other iconic elements within a given oval. The algorithm 
calls the set evaluation procedure recursively for the sets that are contained 
in it, until there are single sets with simple function-predicate expressions 
left. The evaluated sets can be connected with temporal links which prescribe 
the order in which the resulting objects should be presented by the presenta
tion manager. If the evaluated expression contains temporal links, then the 
parsed execution order is delivered to the presentation manager. 

An example query is given in Figure 10. As we stated earlier, VEVA allows 
for visual queries in which we can specify the path of a moving object. In this 
example the input trajectory for the player is given as a smoothed trajectory. 
The visual query given in Figure 10 will select those video sequences from the 
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Fig. 10. Visual query involving a trajectory description.

Parsing of visual expressions in VEVA is a process of determining the
structure of the workspace. Note that parsing is the first step of the VEVA
language processing, because lexical analysis is not necessary. All available
icon symbols can be drawn from the given pallette and connected by a set of
permissible links. Thus, every expression that is drawn is lexically correct.
The execution process begins by parsing the contents of the VEVA workspace.
The algorithm finds the top-level set expressions which may contain other set
expressions. Translated into visual terms, this algorithm finds the enclosed
visual expressions or other iconic elements within a given oval. The algorithm
calls the set evaluation procedure recursively for the sets that are contained
in it, until there are single sets with simple function-predicate expressions
left. The evaluated sets can be connected with temporal links which prescribe
the order in which the resulting objects should be presented by the presenta-
tion manager. If the evaluated expression contains temporal links, then the
parsed execution order is delivered to the presentation manager.

An example query is given in Figure 10. As we stated earlier, VEVA allows
for visual queries in which we can specify the path of a moving object. In this
example the input trajectory for the player is given as a smoothedtrajectory.
The visual query given in Figure 10 will select those video sequences from the
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This window displays a set of movie$ 
that you· can choose from. If you click 

. ·on one.of the movie icons., the 
col're$ponding movie will be played in 
the upper window, · 

Fig. 11. Results from the visual query. Courtesy ofNBA Entertainment. 

repository in which the player's trajectory is similar to the one drawn by the 
user and display the name and the position of the player. The result of the 
query is shown in Figure 11. The user can browse and play the selected video 
segments. 

Various models have been proposed for temporal synchronization, composi
tion, and presentation in multimedia applications, for example, Buchanan 
and Zellweger [1993] and Little et al. [1991]. On the other hand, a number of 
models for content-based access of digital video has been proposed [Arman et 
al. 1994; Bobick 1993; Rowe et al. 1994; Swanberg et al. 1993; Zhang et al. 
1994]. However, a general formal model and a language for content represen
tation, composition, and querying of digital video based on the temporal and 
the spatial properties of objects found in the video sequences has not been 
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Fig. 11. Results from the visual query. Courtesy of NBA Entertainment.

repository in which the player’s trajectory is similar to the one drawn by the
user and display the name and the position of the player. The result of the
query is shown in Figure 11. The user can browse and play the selected video
segments.

Various models have been proposed for temporal synchronization, composi-
tion, and presentation in multimedia applications, for example, Buchanan
and Zellweger [1993] and Little et al. [1991]. On the other hand, a numberof
models for content-based access of digital video has been proposed [Arman et
al. 1994; Bobick 1993; Rowe et al. 1994; Swanberg et al. 1993; Zhangetal.
1994]. However, a general formal model and a languagefor content represen-
tation, composition, and querying of digital video based on the temporal and
the spatial properties of objects found in the video sequences has not been
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MACROBLOCK TRACER 

', MPEG ENCODER 

Fig. 12. Macro block motion extraction. 

offered yet. Our video model and language VEV A attempts to unify the 
presentation aspects as well as content representation aspects of multimedia 
objects. 

5.2 Implementation of Macroblock Tracing 

The motion-tracing algorithm is a part of the derivation module in our video 
classification architecture. We have tested our ideas by implementing the 
motion-tracing and extraction algorithm under Solaris 2.3 using the MPEG 
encoder produced by the Digital Video research team at the University of 
California, Berkeley. A functional view of the MPEG-based motion extraction 
is given in Figure 12. We have introduced functions for extraction of motion 
vectors during the generation of P- and B-frames. We use the motion-tracing 
algorithm to compute the macroblock trajectories. 

The performance results are shown in Figure 13. We have tested our 
motion-tracing algorithm by ranging the number of macro blocks being traced 
from zero to all macroblocks. The input video sequence is the standard table 
tennis sequence, which consists of 10 frames, each of size 352 by 240 pixels. 
This sequence is a good performance test case, because it has background and 
foreground motion. The encoding frame pattern is IBBBPBBBBP. This means 
that all the input frames are used for video encoding. If only encoding is 
performed without any motion-tracing algorithm, the total elapsed time is 
32.6 seconds ( + 1- 0.05 seconds). With the motion-tracing algorithm, the 
time increase is evident with the increase of the number of blocks. Starting 
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Fig. 12. Macroblock motion extraction.

offered yet. Our video model and language VEVA attempts to unify the
presentation aspects as well as content representation aspects of multimedia
objects.

5.2 Implementation of Macroblock Tracing

The motion-tracing algorithm is a part of the derivation module in our video
classification architecture. We have tested our ideas by implementing the
motion-tracing and extraction algorithm underSolaris 2.3 using the MPEG
encoder produced by the Digital Video research team at the University of
California, Berkeley. A functional view of the MPEG-based motion extraction
is given in Figure 12. We have introduced functions for extraction of motion
vectors during the generation of P- and B-frames. We use the motion-tracing
algorithm to compute the macroblock trajectories.

The performance results are shown in Figure 13. We have tested our
motion-tracing algorithm by ranging the numberof macroblocks being traced
from zero to all macroblocks. The input video sequence is the standard table
tennis sequence, which consists of 10 frames, each of size 352 by 240 pixels.
This sequence is a good performancetest case, because it has background and
foreground motion. The encoding frame pattern is IBBBPBBBBP. This means
that all the input frames are used for video encoding. If only encoding is
performed without any motion-tracing algorithm, the total elapsed time is
32.6 seconds (+ /— 0.05 seconds). With the motion-tracing algorithm, the
time increase is evident with the increase of the numberof blocks. Starting
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Fig. 13. Performance of object motion trackmg. 

with one macroblock, we get elapsed time of 32.76 seconds for encoding and 
tracing which is 0.16 seconds more than the previous case. As shown in 
Figure 13, when the number of traced macroblocks increases up to 300, the 
elapsed time goes up to 34.72 seconds. This shows that even if we keep track 
of the motion of all the macroblocks we have a time increase of 6%. 

The gain in MPEG compression is mostly achieved by exploiting temporal 
redundancy. MPEG avoids coding the same block twice by storing/ sending 
over the displacement vector from the previous image. Thus, the basic 
assumption is that the frame pattern used for MPEG compression is going to 
contain P- and B-frames. 

Our algorithm for motion tracing would have very limited application if the 
stream to be encoded is using only !-frames. In that case, there the motion 
algorithm cannot find any motion vectors to take advantage of. If high quality 
of encoded video is crucial to the application at hand, then the algorithm has 
to be rewritten, so that motion estimation is performed using some imaginary 
frame pattern which would not have any impact on the encoded video stream. 
Then the motion-tracing algorithm would be performed on the obtained 
motion estimates. In this case, the motion information that is obtained from 
the encoder is in the forward vectors of the P-frames only. From the P-frame 
to the next !-frame we do not have any motion information. We have several 
choices: 

(a) We can make a prediction for the motion vector between the P-frame and 
the next !-frame. This prediction is a guess that we can use the same 
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with one macroblock, we get elapsed time of 32.76 seconds for encoding and
tracing which is 0.16 seconds more than the previous case. As shown in
Figure 13, when the number of traced macroblocks increases up to 300, the
elapsed time goes up to 34.72 seconds. This shows that even if we keep track
of the motion of all the macroblocks we have a time increase of 6%.

The gain in MPEG compression is mostly achieved by exploiting temporal
redundancy. MPEG avoids coding the same block twice by storing/sending
over the displacement vector from the previous image. Thus, the basic
assumption is that the frame pattern used for MPEG compressionis going to
contain P- and B-frames.

Our algorithm for motion tracing would have very limited application if the
stream to be encoded is using only I-frames. In that case, there the motion
algorithm cannot find any motion vectors to take advantageof. If high quality
of encoded videois crucial to the application at hand, then the algorithm has
to be rewritten, so that motion estimation is performed using some imaginary
frame pattern which would not have any impact on the encoded video stream.
Then the motion-tracing algorithm would be performed on the obtained
motion estimates. In this case, the motion information that is obtained from
the encoder is in the forward vectors of the P-frames only. From the P-frame
to the next I-frame we do not have any motion information. We have several
choices:

(a) We can makea prediction for the motion vector between the P-frame and
the next I-frame. This prediction is a guess that we can use the same
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motion vector as the vector for the P-frame. This solution does not 
introduce additional overhead. The problem is that it relies not only on 
the assumption for the continuity of motion but also assumes that the 
motion is constant. 

(b) We can perform the actual search and compute the motion vector for the 
blocks from the P- to the next !-frame. This means that we will be adding 
much more compute cycles than it is necessary for the encoding process. 

We also need much more complicated motion models to recover the true 
motion of the objects in the case of complicated camera motion. For example, 
when we have the camera focus on a moving object, then the object appears to 
be stationary. The motion of the object is implied by the macro block vectors of 
the background. More-sophisticated relative-motion detection algorithms are 
needed. This work is part of our ongoing SunSet Multimedia Information 
System project [Golshani and Dimitrova 1994; Michael 1994]. 

6. CONCLUSIONS 

From the point of view of video retrieval, the video technology has not seen 
much progress from the days when film editors examined each and every 
frame by hand in order to find the exact place of each cut. In fact, despite the 
introduction of many video editing systems such as VideoShop and Adobe's 
Premiere, much of retrieval is done by either time pointers (e.g., the frame 
counter), visual proxies, or various types of graphical or descriptive pointers. 
What is clearly missing from the video technology is the ability to locate and 
retrieve video clips that contain an object with specific characteristics, partic
ularly with respect to movements. Video databases can be useful to many 
application areas such as education, business, medicine, and more promi
nently, entertainment. As such, the value of better and more-equipped video 
systems are becoming clearer. While many aspects of video systems, such as 
presentation editing tools, have seen significant improvement, our progress 
on content-based retrieval has not been as forthcoming. 

We believe that our attempts to address the above needs must start with a 
modeling mechanism that allows for the representation of semantic knowl
edge from both spatial and temporal features of the objects in video se
quences. Computing high-level motion description can be done independently 
of recognizing objects [Allmen 1991]. We elaborate on this property by 
showing that the recovery of object trajectories can be performed without 
prior knowledge of objects undergoing motion. The goal is to have both: 
independent retrieval along the temporal and the spatial hierarchies as well 
as retrieval of combined features from the spatial and the temporal hierar
chies. We treat motion vectors extracted during the motion compensation 
phase of video encoding as coarse-level optical flow that is further used for 
intermediate- and high-level motion description. Motion information extrac
tion is then carried out at low level by motion vector detection, at the 
intermediate level by motion tracing, and the high level by associating an 
object and a set of trajectories with recognizable activities. 
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In our object motion representations, we provide various levels of precision 
of trajectory representation. Retrieval functions based on these representa
tions offer a wide spectrum of approximation in the process of matching. We 
need to relate the motion at a higher level of abstraction of the object to the 
detailed motion of parts of objects. Events can be represented in a form that 
is common in the image-understanding and interpretation area: predicates, 
temporal networks, etc. 
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Introduction to the Special Issu
Video Information Retrieval

This special issue of the ACM Transactions on Information Systems is
focused on the topic of digital video in information systems. Multimedia in
general and digital video in particular can deliver more information, more
effectively, than any schemedeveloped to date. But more than just delivering
information, effective digital video systems require a deep understandingof
how users interact with huge volumesof information in many forms.

Early and most current multimedia applications incorporating digital video
tend to be based on one of two models: real-time video for communications

(desktop video conferencing) or the selection and playback of digital video
clips (interrupted video). Because they treat the video segmentas a black box,
they are inadequate for access to extremely large digital video libraries or for
creating truly interactive video applications.

Recent developments in consumer electronics and communications can
provide a tighter integration of digital video and information system tech-
nologies. Computer manufacturers in cooperation with game companies are
delivering 64-bit, 100MHzprocessors, for home machines, costing under $250.
While most commercial “Information Superhighway” prototypes focus on
video-on-demand, emerging technologies are enabling digital video, multime-
dia solutions to an ever-widening variety of commercial products and re-
search projects. These advanced,digital video applications have the potential
to transform how people work, learn, and play.

The articles included in this special issue address topics related to video
indexing, analysis, content-basedretrieval, delivery, and architecture. For
example,in the article by Tat-Seng Chua and Li-Qun Ruana novel system
is described that is designed to support the entire process of video informa-
tion management from segmenting and indexing of video to its retrieval and
reuse. The article by Nevenka Dimitrova and Forouzan Golshanilooksat
extracting semantic information from video, in particular the application of
motion analysis to retrieve temporal information associated with video. Dick
Bulterman’sarticle reports on control issues whenapplications manipulate
video data. Andfinally, the article by Ralf Keller, Wolfgang Effelsberg,
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focused on the topic of digital video in information systems. Multimedia in
general and digital video in particular can deliver more information, more
effectively, than any scheme developed to date. But more than just delivering
information, effective digital video systems require a deep understanding of
how users interact with huge volumes of information in many forms.

Early and most current multimedia applications incorporating digital video
tend to be based on one of two models: real-time video for communications

(desktop video conferencing) or the selection and playback of digital video
clips (interrupted video). Because they treat the video segmentas a black box,
they are inadequate for access to extremely large digital videolibraries or for
creating truly interactive video applications.

Recent developments in consumer electronics and communications can
provide a tighter integration of digital video and information system tech-
nologies. Computer manufacturers in cooperation with game companies are
delivering 64-bit, 100MHzprocessors, for home machines,costing under $250.
While most commercial “Information Superhighway” prototypes focus on
video-on-demand, emerging technologies are enabling digital video, multime-
dia solutions to an ever-widening variety of commercial products and re-
search projects. These advanced,digital video applications have the potential
to transform how people work,learn, and play.

The articles included in this special issue address topics related to video
indexing, analysis, content-based retrieval, delivery, and architecture. For
example, in the article by Tat-Seng Chua and Li-Qun Ruana novel system
is described that is designed to support the entire process of video informa-
tion management from segmenting and indexing of video to its retrieval and
reuse. The article by Nevenka Dimitrova and Forouzan Golshani looks at
extracting semantic information from video, in particular the application of
motion analysis to retrieve temporal information associated with video. Dick
Bulterman’sarticle reports on control issues when applications manipulate
video data. And finally, the article by Ralf Keller, Wolfgang Effelsberg,
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Motion Recovery for Video Content
Classification

{

NEVENKA DIMITROVA and FOROUZAN GOLSHANI

Arizona State University, Tempe (

(

Like other types of digital information, video sequences must be classified based on the
semantics of their contents. A more-precise and completer extraction of semantic information will ¢
result in a more-effective classification. The most-discernible difference betweenstill images and

moving pictures stems from movements and variations. Thus, to go from the realm ofstill-image /
repositories to video databases, we must be able to deal with motion. Particularly, we need the ‘
ability to classify objects appearing in a video sequence based on their characteristics and
features such as shape or color, as well as their movements. By describing the movements that
we derive from the process of motion analysis, we introduce a dual hierarchy consistingof spatial |
and temporal parts for video sequence representation. This gives us the flexibility to examine
arbitrary sequences of frames at various levels of abstraction and to retrieve the associated
temporal information (say, object trajectories) in addition to the spatial representation. Our
algorithm for motion detection uses the motion compensation component of the MPEG video-en-
coding scheme and then computestrajectories for objects of interest. The specification of a
language for retrieval of video based on the spatial as well as motion characteristics is presented.

NN.
a

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.5.1 [Information Interfaces and Presentation]: Multimedia Infor-
mation Systems; 1.2.10 [Artificial Intelligence]: Vision and Scene Understanding—motion

General Terms:Algorithms, Design

Additional Key Words and Phrases: Content-based retrieval of video, motion recovery, MPEG
compressed video analysis, video databases, video retrieval

1. INTRODUCTION

Applications such as video on demand, automated surveillance systems, video
databases, industrial monitoring, video editing, road traffic monitoring, etc.
involve storage and processing of video data. Many of these applications can
benefit from retrieval of the video data based on their content. The problem is
that, generally, any content retrieval model must have the capability of
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Video Content Classification . 409

dealing with massive amountsof data. As such, classification is an essential
step for ensuring the effectiveness of these systems.

Motion is an essential feature of video sequences. By analyzing motion of
objects we can extract information that is unique to the video sequences. In
human and computer vision research there are theories about extracting
motion information independently of recognizing objects. This gives us sup-
port for the idea of classifying sequences based on the motion information
extracted from video sequences regardless of the level of recognition of the
objects. For example, using the motion information we can not only submit
queries like “retrieve all the video sequences in which there is a moving
pedestrian and a car” but also queries that involve the exact position and
trajectories of the car and the pedestrian.

Previous work in dynamic computer vision can be classified into two major
categories based on the type of information recovered from an image se-
quence: recognition through recovering structure from motion and recognition
through motion directly. The first approach may be characterized as attempt-
ing to recover either low-level structures or high-level structures. The low-level
structure category is primarily concerned with recovering the structure of
rigid objects, whereas the high-level structure category is concerned primar-
ily with recovering nonrigid objects from motion. Recovering objects from
motion is divided into two subcategories: low-level motion recognition and
high-level motion recognition. Low-level motion recognition is concerned with
making the changes between consecutive video frames explicit (this is called
optical flow [Horn and Schunck 1981]). High-level motion recognition is
concerned with recovering coordinated sequences of events from the lower-
level motion descriptions.

Compression is an inevitable process when dealing with large multimedia
objects. Digital video is compressed by exploiting the inherent redundancies
that are common in motion pictures. Compared to encoding of still images,
video compression can result in huge reductionsinsize. In the compression of
still images, we take advantage of spatial redundancies caused by the simi-
larity of adjacent pixels. To reduce this type of redundancy, some form of
transform-based coding (e.g., Discrete Cosine Transform, known as DCT)is
used. The objective is to transform the signal from one domain(in this case,
spatial) to the frequency domain. DCT operates on 8 x 8 blocksof pixels and
produces another block of 8 Xx 8 in the frequency domain whosecoefficients
are subsequently quantized and coded. The important point is that most of
the coefficients are near zero and after quantization will be rounded off to
zero. Run-length coding, which is an algorithm for recording the numberof
consecutive symbols with the same value, can efficiently compress such an
object. The next step is coding. By using variable-length codes (an example is
Huffman tables), smaller code words are assigned to objects occurring more
frequently, thus further minimizing the size.

Our aim in the coding ofvideo signals is to reduce the temporal redundan-
cies. This is based on the fact that, within a sequence of related frames,
except for the moving objects, the background remains unchanged. Thus to
reduce temporal redundancy a process known as motion compensation is

ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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410 : N. Dimitrova and F. Goishani \

used. Motion compensation is based on both predictive and interpolative
coding.

MPEG(Moving Pictures Expert Group) is the most general of the numer-
ous techniques for video compression [Furht 1994; LeGall 1991; Mattison
1994]. In fact, the phrase “video in a rainbow” is used for MPEG, implying
that by adjusting the parameters, one can get a close approximation of any
other proposal for video encoding. Motion compensation in MPEGconsists of
predicting the position of each 16 Xx 16 block of pixels (called a macroblock)
through a sequenceof predicted and interpolated frames. Thus we work with
three types of frames—namely, those that are fully coded independently of
others (called reference frames or I-frames), those that are constructed by
prediction (called predicted frames or P-frames), and those that are con-
structed by bidirectional interpolation (known as B-frames). It begins by
selecting a frame pattern which dictates the frequency of I-frames and the
intermixing of other frames. For example, the frame pattern IBBPBBIindi-
cates (1) that every seventh frame is an I-frame, (2) that there is one
predicted frame in the sequence, and (3) that there are two B-frames between
each pair of reference and/or predicted frames. Figure 1 illustrates this
pattern.

Our approach to extracting object motion is based on the idea that during
video encoding by the MPEG method,a greatdealof information is extracted
from the motion vectors. Part of the low-level motion analysis is already
performed by the video encoder. The encoder extracts the motion vectors for
the encoding of the blocks in the predicted and bidirectional frames. A
macroblock can be viewed as a coarse-grained representation of the optical
flow. The difference is that the optical flow represents the displacement of
individual pixels while the macroblock flow represents the displacement of
macroblocks between two frames. At the next, intermediate level, we extract
macroblock trajectories which are spatiotemporal representations of mac-
roblock motion. These macroblock trajectories are further used for object
motion recovery. At the highest level, we associate the event descriptions to
object/motion representations.

Macroblock displacement in each individual frame is described by the
motion vectors which form a coarse optical-flow field. We assume that our
tracing algorithm is fixed on a moving set of macroblocks and that the
correspondence problem is elevated to the level of macroblocks instead of
individual points. The advantage of this elevation is that even if we lose
individual points (dueto turning, occlusion, etc.) we are still able to trace the
object through the displacement of a macroblock. In other words, the corre-
spondenceproblem is mucheasierto solve andless ambiguous. Occlusion and
tracing of objects which are continuously changing are the subject of our
current investigations,

In Section 2 of this article we survey someof the research projects related
to our work. In Section 3 we present the object motion analysis starting from
the low-level analysis through the high-level analysis. We discuss the impor-
tance of motion analysis andits relevance to our model which is presented in
Section 3.4. Section 4 introduces the basic OMV structures (object, motion, {
ACMTransactions on Information Systems, Vol. 13, No. 4, October 1995.
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Forward prediction

OOO
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Bidirectional prediction

Fig. 1. Forward andbidirectional prediction in MPEG.

video-sequence), as the basis for the video information model. The basic
retrieval operators, the OMV-languagespecification, and some examples are
given. Empirical results are outlined in Section 5, and Section 6 presents
some concluding remarks.

2. RELATED WORK

The research presented in this article builds on the existing results in two
areas: dynamic computervision and digital video modeling.

A current trend in computational vision is influenced by the idea that
motion analysis does not depend on complex-object descriptions. Our work
follows this trend and is based on the recent publications that are in
agreement with this idea in computational vision. The idea of object/event
recognition regardless of the existence of object representations can be traced
back to the early 70’s when Johansson [1976] introduced his experiments
with moving-light displays. The idea was to attach lights to the joints of a
human subject dressed in dark-colored clothing and observe the motion of
lights against a dark background. The audience not only could recognize the
object (human being) but could also describe the motion and the events
taking place. Goddard [1992] investigated the high-level representations and
computational processes required for the recognition of human motion based
on moving-light displays. The idea is that recognition of any motion involves
indexing into stored models of the movement. These stored models, called
scenarios, are represented based on coordinated sequences of discrete motion
events. The structures and the algorithmsare articulated in the language of
structured connectionist models. Allmen [1991] introduced a computational
framework for intermediate-level and high-level motion analysis based on
spatiotemporal surface flow and spatiotemporal flow curves. Spatiotemporal
surfaces are projections of contours over time. Thus, these surfaces are direct
representations of object motion.

ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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In the dynamic computer vision literature there are general models for

object motion estimation and representation, as well as domain-restricted
models. A general architecture for the analysis of moving objects is proposed
by Kubota et al. [1993]. The process of motion analysis is divided into three
stages: moving-object candidate detection, object tracking, and final motion
analysis. The experiments are conducted using human motion. Another ap-
proach to interpretation of the movements of articulated bodies in image
sequencesis presented by Rohr [1994]. The human body is represented by a
three-dimensional model consisting of cylinders. This approach uses the
modeling of the movement from medical motion studies. Koller et al. [1993]
discuss an approachto tracking vehicles in road traffic scenes. The motion of
the vehicle contour is described using an affine motion model with a transla-
tion and a changein scale. A vehicle contour is represented by closed cubic
splines. We make use of the research results in all these domain-specific
motion analysis projects. Our model combines the general area of motion
analysis with individual frame (image) analysis.

In case of video modeling, the video footage usually is first segmented into
shots. Segmentation is an important step for detection of cut points which can
be used for further analysis. Each video shot can be represented by one or
more key frames. Features such as color, shape, and texture could be ex-
tracted from the key frames. An approach for automatic video indexing and
full video search is introduced by Nagasaka and Tanaka [1992]. This video-
indexing method relies on automatic cut detection and selection of first
frames within a shot for content representation. Otsuji and Tonomura[1993]
propose a video cut detection method. Their projection detection filter is
based on finding the biggest difference in consecutive-frame histogram differ-
ences over a period of time. A model-driven approach to digital video segmen-
tation is proposed by Hampapuret al. [1994]. The paper deals with extracting
features that correspond to cuts, spatial edits, and chromatic edits. The
authors present an extensive formal treatment of shot boundary identifica-
tion based on models of video edit effects. In our work, we rely on these
methodsfor the initial stages of video processing, since we need to identify
shot boundaries to be able to extract meaningful information within a shot. i

One representation scheme of segmented video footage uses key frames
[Armanet al. 1994]. The video segments can also be processed for extraction
of synthetic images, or layered representational images, to represent closely |
the meaning of the segments. A methodology for extracting a representative
image, salient video stills, from a sequence of images is introduced by
Teodosio and Bender [1993]. The method involves determining the optical
flow between successive frames, applying affine transformations calculated
from the flow-warping transforms, such as rotation, translation, ete., and
applying a weighted medianfilter to the high-resolution image data resulting
in the final image. A similar method for synthesizing panoramic overviews
from a sequence of frames is implemented by Teodosio and Mills [1993].

Swanberget al. [1993] introduced a methodfor identifying desired objects,
shots, and episodesprior to insertion in video databases. During the insertion
process, the dataare first analyzed with image-processingroutines to identify

412 . N. Dimitrova and F. Golshani |
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Video ContentClassification . 413

the key features of the data. In this model, episodes are represented using
finite automata. Only video clips with inherently well defined structure can
be represented. The model exploits the spatial structure of the video data
without analyzing object motion. Zhangetal. [1994] presented an evaluation
and a study of knowledge-guided parsing algorithms. The method has been
implemented for parsing of television news, since video content parsing is
possible when one hasana priori modelof a video’s structure.

Anothersystem, implementedbyLittle et al. [1993], supports content-based
retrieval and playback. They define a specific schema composed of movie,
scene, and actor relations withafixed set of attributes. Their system requires
manual feature extraction. It then fits these features into the schema.

Querying involves the attributes of movie, scene, and actor. Once a movie is
selected, a user can browse from scene to scene beginning with the initial
selection. Weiss [1994] presented an algebraic approach to content-based
access to video. Video presentations are composed of video segments using a
video algebra. The algebra contains methods for temporally and spatially
combining video segments, as well as methods for navigation and querying.
Media Streamsis a visual language that enables users to create multilayered
iconic annotations of video content [Davis 1993]. The objects denoted by icons
are organized into hierarchies. The icons are used to annotate the video
streams in a Media Time Line. The Media TimeLineis the core browser and

viewer of Media Streams. It enables users to visualize video at multiple time
scales simultaneously, in order to read and write multilayered, iconic annota-
tions, and it provides one consistent interface for annotation, browsing,
query, and editing of video and audio data.

The work presented here follows from a numberof efforts listed above.
Specifically, we use low- and intermediate-level motion analysis methods
similar to those offered by Allmen [1991] and others. Our object recognition
ideas have been influenced by the work of Jain and his students [Gupta etal.
1991a; 1991b], Grosky [Grosky and Mehrotra 1989], and the research in
image databases. Several lines of research such as those in Little et al.
[1993], Swanberget al. [1993], Zhang etal. [1994], and Weiss [1994] provided
many useful ideas for the modeling aspects of our investigations. An early
report of our work was presented in Dimitrova and Golshani [1994].

3. MOTION RECOVERYIN DIGITAL VIDEO

In this section we describein detail each level of the motion analysis pipeline.
At the low-level motion analysis we start with a domain of motion vectors.
During intermediate-level motion analysis we extract motion trajectories that
are madeof motion vectors. Each trajectory can be thought of as an n-tuple of
motion vectors. This trajectory representation is a basis for various other
trajectory representations. At the high-level motion analysis we associate an
activity to a set of trajectories of an object using domain knowledgerules.
3.1 Low-Level Motion Extraction: Single Macroblock Tracing

In MPEG,to encode a macroblock in a predicted or a bidirectional frame, we
first need to find the best matching macroblock in the reference frames, then
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find the amount of x and y translation (i.e., the motion vector), and finally
calculate the error component [Patel et al. 1993]. The motion vector is
obtained by minimizing a cost function that measures the mismatch between
a block and each predictor candidate. Each bidirectional and predicted frame
is an abundant source of motion information. In fact, each of these frames
might be considered a crude interpolation of the optical flow. Thus, the

[! extraction of the motion vectors of a single macroblock through a sequence of
frames is similar to low-level motion analysis.

Tracing a macroblock can continue until the end of the video sequenceifwe
do not impose a stopping criterion. We havea choice: to stop after a certain
numberof frames, stop after the object (macroblock) has cometo rest, stopif
the block comesto a certain position in the frame, stop if the macroblock gets
out of the scene, or stop if the macroblock is occluded.

The algorithm for tracing the motion of a single macroblock through one
frame pattern for MPEG encodingis given in Figure 2. In Dimitrova [1995],
we describe object motion tracing for video databases in more detail. The
algorithm takes the forward and backward motion vectors that belong to a
particular macroblock and computes the macroblock’s trajectory. The algo-
rithm computes the macroblock’s position in a B-frame by averaging the
positions obtained from: (1) the previous block coordinates and forward
motion vectors and (2) next (predicted) block coordinates and the backward
motion vector. The position of a macroblock in a P-frame is computed using
only block coordinates and forward motion vectors. If during the tracing
procedurethe initial macroblock moves completes outof its position, then we
have to extract motion vectors for the new macroblock position, which implies
that we are continuing by tracing the macroblock whose position coincides
with the (x, y) coordinatesof the initial macroblock. In the rest of this article,

| we will use 7 to indicate the set of all possible motion vectors.

 
j 3.1.1 Trajectory Description. Various motion retrieval procedures have

specific requirements for retrieving desired objects. These requirements de-
pend on the characteristics of the retrieval which may beflexible to strict.
The choice of trajectory representation may dictate the manner in which
retrieval is conducted. Given a set of motion vectors for a macroblock, a
numberof mechanismsexist for trajectory representation. Below we present
a sample list:

(1) Point Representation: A trajectory in this case is a set of points repre-
sented by the absolute or relative frame coordinates of the position of the
object, say

{(x,, Vi), (49, 92),-0-5 (2, 9}

where (x;, y,;) is derived by projecting (x, y, i) onto the image plane.
(x, y, i) denotes the position of an object, ie., (x, y), at time instanti.

(2) Curve Representation: A parametric B-spline curve P(u) can be computed
that passes through eachof the trajectory points (x;, y,;) (see Farin [1990]
for a detailed discussion). The first step involves generating a parameteri-
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Given: frames F= Fii=0,...,n;
motion vectors V = (fmx(i),fmy(i)), (omx(i),bmy(i)) i= i,n
initial block coordinates bx, by
Initialize R = 4,
for i=1,..., n

if F(i) # I then
if F(i) == P then

if previousType == I
cx = bx - fmx(i)/2;
cy = by - fmy(i)/2;
nextblockx = cx; nextblocky = cy;

if previousType == P
givenx = futurex;
giveny = futurey;
futurex = futurex - fmx(i)/2;
futurey = futurey - fmy(i)/2;

if F(i) == B then
ex=((givenx-fmx(i)/2)+(futurex-bmx(i)/2))/25
cy=((giveny-fmy(i)/2)+(futurey-bmy(i)/2))/2;

if block(bx,by) M block(cx,cy) == # then
extract(mx(i),my(i)) for (cx,cy)

R=RU {(mx(i),my(i))}
if F(i) is the last in a group of B frames before a P frame

cx = futurex;

cy = futurey;
if block(bx,by) 9 block(cx,cy) == # then

extract(mx(i),my(i)) for (cx,cy)
R = RU {(mx(i),my(i))}

if F(i) == I then
(bx,by) — bestMatch(bx,by) in I

if stopping criteria == true, then
return R;

endfor

Fig. 2. Algorithm for tracing the motion of a macroblock.

zation or knot sequence u, <U,< °° SU, A commonly used approach
employs cumulative chord lengths defined by the points (x;, y,). The next
step involves setting up and solving a tridiagonal linear system of equa-
tions whose unknownsare the control points d; of the B-splines N;(w).
The linear system depends on the %;, 9; and u, values. This linear
system can beefficiently solved in @(n) time using standard techniques
for tridiagonal matrices. The B-spline curve has the form:

Plu) = Ld,Ni(u),

andit satisfies the following:

(a) P(u;) = (x;, ¥));
ACM Transactions on Information Systems,Vol. 13, No. 4, October 1995.
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(b) P(u) is a piecewise cubic polynomial, ie., for u; < u < u;4,, P(u)isa
polynomial of degree less or equal to three; and

(c) the first and the second derivatives of P(u) are continuous.

(3) Chain Code Representation: We develop a piecewise linear approximation
to the trajectory using a set of orientation primitives. Given a set of
discrete trajectory orientation primitives, we use a zig-zag line represen-

| tation of the trajectory to generate the code. Another way of viewing this
approachis derived from a neighborhood matrix with each neighbor coded
to correspond to the primitives in the figure [Schalkoff 1989].

| (4) Differential Chain Code Representation: Each segmentis coded relative to
: the next line segment using the direction (left or right) and the length.

For example, we can havea codefor: right shorter-1, right equal-2, right
longer—3, left shorter—4, left equal—5, left longer—6 [Schalkoff 1989]. This
scheme is useful for approximate matching of object trajectories. It is a |
rotation-, scaling-, and translation-invariant scheme.

Figure 3 illustrates these methods used for the representation of an
arbitrary movement. Figure 3(a) is an exact coordinate representation; 3(b)is

ca a B-spline curve representation. Figure 3(c) represents the chain-coding
oth process, and 3(d) shows the differential chain code representation of the
- | trajectory.
| Note that in the coordinate representation and B-spline and chain code
: representation schemes we have a wayof representing zero motion,i.e., when

the motion vector is a null vector. If the macroblock does not move over a

certain numberof frames, the point will be repeated. In the B-spline repre-
sentation, the knot (i.e., the control point) will have a multiplicity greater

| than one. In the chain code representation, the zero motion is represented by
al | the code “0.” So, in all these representations the trajectory is not only a

spatial representation of the object’s motion (the path) but also a temporal
characterization of the motion. By keeping track of the zero motion we are
able to describe stationary objects as well.

The diversity of the trajectory representations makes the querying process
moreflexible. The actual method of representation does not have a significant
impact on the querying process as long as modeling, representation, and
querying are all done in the same fashion.

  
i

| 3.1.2 Trajectory-Matching Functions. Applications such as automated
surveillance may require retrieval of either video sequences or objects con-
tained in these sequences based on the object trajectories. For example,
queries of the type “retrieve objects that have a motion trajectory whose point
of origination is the main gallery door and terminate at the Juan Miro’s

1h picture on the opposite wall” may help in theidentification of the person who
me damagedthepicture.

Matching functions used for motion retrieval depend on the method em-
ployed for trajectory representation, as described below.
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995. 
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(cl)
Primitive

result: 1812777212

(dl) IFTEPRAIAAY
Relative right right right left left left
condition shorter equal longer shorter equal longer

result: 36343

 
Fig. 3. Alternatives for object motion representation: (a) motion trajectory; (b) B-spline curve
representation;(c1) chain-coding scheme; (c2) chain code representing the trajectory; (d1) differ-
ential chain-coding scheme; (d2) resulting differential chain code.

— Exact matching function that uses absolute frame coordinates (least-square
minimization problem). This matching function has two variations: nro
(1) exact start position and exact trajectory match
(2) any start position and exact trajectory match.

— Exact matching function that uses relative coordinates. This function is
used when theinitial position of the object is not important.

— Curve comparison based on the curve-fitting approach used for interpo-
lated trajectory representation.

— Approximate matching that uses chain code:

(1) exact start position and inexact trajectory match
(2) any start position and inexact trajectory match. ;
The chain code matching translates the problem of trajectory matching
into a pattern-matching problem.

— Qualitative matching that uses differential chain code.
The result in each case is a similarity factor between the inputtrajectory ‘

and a target trajectory in the set of object trajectories.

3.2 Intermediate-Level Motion Analysis

A macroblock trajectory is the spatiotemporal representation of the macro-
block’s motion. These trajectories are further used for extracting object
motion. This process is different for rigid and nonrigid bodies. A rigid object
consists of one solid part to which motion trajectory is associated.If the object
consists of several parts which themselves representrigid objects with inde-

tems, Vol. 13, No. 4, October 1995.
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pendent movements, then, such a nonrigid object is represented as a set of
rigid objects with their respective trajectories. At the highest level of motion
analysis, we associate “activities” with the object trajectory representations.

Rigid-object motion is represented by a single trajectory. The trajectory is
one common representation of the trajectories of all the component macro-
blocks. Finding the most-representative trajectory is not a simple task. In the
simplest case we can take the trajectory of the object centroid as the reference
object trajectory. A more-complicated case occurs if we decide to create a
common trajectory by processing all of the macroblock trajectories or by
examining only a subsetof all macroblock trajectories.

Mean averaging ofall trajectories of the macroblocks of the object is an
alternative to choosing the object centroid’s trajectory. The averaging of the
trajectories in the exact form is pointwise averaging of the trajectories at
each frame.

The following two assumptions makethe object motion recovery feasible:

(1) Integrity of Objects: We assumeobjects are rigid or consist of rigid parts
connected to each other. We do not consider situations in which objects
disintegrate. This assumption is important because we only use object
trajectory representation.

i (2) Motion Continuity: Each macroblock under consideration has continuous
motion. This assumption is important for the trajectory representation,

i since every trajectory segment represents continuation of the previous
ia trajectory segment.

 
Averaging trajectories is used for determining a representation of a non-

rigid body motion. For nonrigid objects, we must determine the number of
| trajectory clusters and their locations. Each cluster corresponds to a single

coherent motion that represents a movingpart (i.e., a rigid object). We use a
i hierarchical clustering algorithm (due to Duda and Hart [1973]) for determin-

Lis ing the number ofrigid object parts. Initially, the algorithm begins with
op clusters that contain only one trajectory each. At each subsequent step, we

attempt to merge those neighboring clusters that have a similar trajectory.
Individual trajectories, in this case, will be averaged to compute a trajectory
for the extended cluster.

An example of a traced object through 20 encoded frames using the
IBBPBBBEPframepattern is given in Figure 4. Figure 4(a) contains first,

/ middle, and last frames of a video sequence capturing a water skiing scene.
i Figure 4(b) contains the motion trace for the moving yacht. The axes in

|
|

Figure 4(b) correspond to the x and y axes of the video frames where the
(0, 0) coordinate is at the top left corner.

Figure 5 showssix out of the 60 frames of the “Walfky” video sequence
Ap used for our next experiment. The object being traced is a small toy which

performs very uneven motion. Figure 6(a) shows how the tracing of a macro-
block progresses when every frame in the sequence is used. The frame

AH pattern IBBBPBBBis used for video encoding when macroblock trajectories
Wey are extracted in Figure 6. This experiment shows that the macroblock tracing

ACMTransactions on Information Systems, Vol. 13, No. 4, October 1995. |
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Fig. 4. Tracing a moving yacht. (a)
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Frame 11 Frame 41 .

  
vt Frame 21 Frame 51

 
Fig. 5. Snapshots from a video sequence.

 
is possible when the objects exhibit jerky motion. As expected the trajectory is
not only curved but also has the properties of a zig-zag line. In this case the

: | macroblock with coordinates (14, 14) is traced. In terms of absolute frame
; coordinates, these coordinates correspond to (112, 112). Figure 6(b) shows
app tracing of the same video sequence in the case when every other frameis

used for encoding andtracing.
We use the notation T to indicate the set of object trajectories. Each

af member of T is a sequence! whose range is the set of all motion vectors 7,
Aye ie. Vt € T(t:7), where/ is the set of natural numbers.In other words

 
1 . . : - .

A sequenceis simply a function whose domain is the natural numbers.
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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(a) Trace of the macroblock (14,14) using all frames
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Fig. 6. Traced trajectories in the Walfky video sequence. (a) all frames; (b) only every other
frameis used.
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422 . N. Dimitrova and F. Golshani

each object trajectory is a sequence of motion vectors identifying macroblock
displacement for the components of the object. As discussed previously, the
actual appearance of the members of T depends on the choice of the repre-
sentation scheme.

3.3 High-Level Motion Analysis

At the highest level of motion analysis, we associate domain-dependent
“activities” with the object trajectory representations. An activity can be
recognized by the system based on a predefined set of procedures,or it can be
designated by the user. Werealize that recognizing activities is one of the
most-difficult tasks in any vision system. Such undertaking requires informa-
tion on:

(1) Relative positioning between rigid subparts
(2) Relative timing of the parts movements
(3) Actual and perceived interaction of object parts.

 
The two main problemsin recovering high-level motion representation are

(1) the fact that multiple sequences are occurring simultaneously (for exam-
ple, arm movements and leg movements in human motion) and in a coordi-
nated fashion and (2) tempo changesare global (in the case of the human
body, the changes apply to all four limbs and occur slowly).

An activity involves both spatial and temporal representations of the
objects of interest. We must identify the object components (shape and other
features) and their respective trajectories (as we did in the previous section)
at the intermediate-level motion analysis and then assemble activities. The
temporal information is needed for discrimination of activities of the same
type, for example, strolling, walking, hurrying, etc. After assembling object
activities, based on additional knowledge, we can infer event information.

Weuse Y to symbolize the set of activities. We assume the existence of a
knowledge base .% whose contents include all the necessary rules, con-
straints, and the procedures for deriving activities from lower-level descrip-
tions.

Each membera of is a “composition” of t,, fy,...,t,, where for every
1 <i<n we have:

—t, © T and

— t; satisfies every constraint in @,, where &, €% represents the con-
straints governing the activity a.

High-level event representation and manipulation call for the use of either
temporal Petri nets, an event-based approach to temporal objects, or other
event representation and manipulation schemes.

3.4 Spatiotemporal Hierarchical Representation

We use a semantic multiresolution hierarchy for spatiotemporal representa-
tion (Figure 7) because it helps video analysis at various resolution levels,
with coarser resolutions used for high-level event/scenario descriptions. The
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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Semantic level

Object semantics
association

Imagefeatures  

LEE
Spatial hierarchy Temporal hierarchy

Object descriptors

Physical image

eda
Fig. 7. Multiresolution hierarchy for spatial and temporal video representation.

advantage of multiresolution representation is that it offers a mechanism to
makethe trade-off between the competing demandsof fine spatial/temporal
resolution and low computational complexity. The idea of representational
hierarchy for still images has been utilized by several image data models
[Grosky and Mehrotra 1989; Gupta et al. 1991a; 1991b].

At successive time intervals, a frame is inserted at the base of the spatial
hierarchy, and the features are computed for the next levels. The motion
features are computed starting at the frame, and the temporal part of the
hierarchyis filled with the appropriate motion descriptions. Motion analysis
starts with the motion vector recovery (bottom of the temporal hierarchy,
Figure 7). At the next level, individual macroblock trajectories are traced. At
the intermediate level, rigid-body motion is recovered, followed by nonrigid-
motion recovery. Finally, at the highest level of motion analysis, description
of activities is derived from previously computed motion features (top of the
temporal hierarchy, Figure 7).

The temporalpart of the hierarchy can be used for various kinds of motion
retrieval ranging from full-object trajectory-based matching to single-macro-
block trajectory matching. Since we provide exact and inexact trajectory
representation, our retrieval functions can take inputs in terms of precise
spatial coordinates, orientation coordinates, and qualitative descriptions.

4. INFORMATION FILTERING AND DIGITAL VIDEO

The motion-tracing and representation scheme introduced in previous sec-
tions serves as a basis for the classification and retrieval of video sequences.
Video sequences may beretrieved using the temporal (motion) part of the
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hierarchy or the combination of spatial and the temporal representations.
The idea of this representation is that we can compute the spatial and
temporal features independently of each other. We emphasize that temporal
features coupled with spatial features are important in discriminating and
classifying video sequences.

Like other knowledge representation cases, we do not attempt to have a
universal system that can recognize and distinguish all possible objects. Such
general-purpose(i.e., domain independent) representations have been shown
to be too complex for present technologies. Thus, we assume that the domain
of interest is known a priori and that the video classification system will be
confined to working on only those objects. Consider a domain D,called the
“scope,” containing all objects of interest. Formally, the elements of D are
defined as object-oriented structures with potentially complex internal com-
ponents. Similar to any object-oriented representation, the user can identify
the objects of D by their attributes, such as object ID, image descriptions,
name, and shape(or convex hull), or a combination of these. Thus, the user
may provide any available information on any of the attributes of desired
object (for example, object ID, or shape together with a partial description),
and the system will attempt to identify the intended object. Although we do
not make any assumptions on how the elementsof D andtheir attributes are
represented, we offer the following example as an indication of a typical
structure.

Example 4.1. A walking human maybe represented as a moving object
a, = (0,, m,, v,) where

0, = (category : human, convexHull : 0g : skeleton : O75
parts : {head : 0,, torso: 03}),

m, = (trajectory : 2467382, activity : walking), and
v, = (v#: 234, firstFrame : 45, lastFrame : 485).

Similarly, the head and torso also have their spatial and motion descrip-
tions.

In a database containing only “still” images, a correspondencetable of the
form (O, I)—where O standsfor the object, and I stands for the image—will
suffice. In a video database, we have the added parameter of temporal
changes. Although the motionof each object can be modeled as an attribute of
the object, say, “dog, big, brown, running,” it is more appropriate to separate
objects and their motions as two different parameters. Note that if motion is
consideredas just anotherattribute of the object, then in case the sameobject
appears more than once, each time with a different motion, we would need
multiple, different entries into the database. For example, there would be
multiple entries for the big brown dog: runningright, runningleft, running in
circles, and jumping.

Video sequences are identified by objects present in the scene and their
respective motion. The goal of the motion analysis is to extract activity and
event representation. An index entry of an activity in a video sequence has
ACMTransactions on Information Systems, Vol. 13, No. 4, October 1995.
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the following form:

(O,M,V) = (objectRep, motionRep, vid)

— objectRep: an object represented by its extracted features (convex hull,
object skeleton, centroid, texture, set of macroblocks covering the object,
etc.; see left side of Figure 7). An object representation might include a set
of object representations of the constituting parts (e.g., objects that repre-
sent a humanfigure include head, torso, arms, and legs object representa-
tions).

— motionRep: an object trajectory specified by objectRep, velocity, trajectory
curvature, torsion, and activity description (see right side of Figure 7).

— vid: identity of the video subsequence to which an object belongs to: vid
consists of (viSeq!/d, firstFrame, lastFrame).

(1) viSegId is a video sequence identity which is unique for a sequence
across the whole video database.

(2) firstFrame:thefirst frame in which the specified object appears.
(3) lastFrame: the last frame in which the specified object appears.

4.1 Content-Filtering Operators

The OMV triplet is the basis for the query functions. There are many
possibilities for the selection of filters (in this context, query functions.) A
sample selection is presented below. These operators may be used in a
relational form, mostly in a table lookup mode, or may be embeddedinto a
more-elaborate query language, as presented in Section 4.2. Recall that A(A)
is used to denote the powerset of the set A,i-e., the set of all subsets of A.

V_Seq:0X M > A(V)

This function takes any description that can be provided at anylevel of the
spatial hierarchy. The input might be a characterization of the object in
terms of its bounding polygon,stick figure, a name, or concept. At this point
we need to emphasize that weuse the properties of the object-oriented nature
of the representation of the objects. For example, the expression

V_Seq(O_category = pet, (Activity = walking , Trajectory = t,))

translates into “retrieve all the video sequences in which a pet walks and
makes a trajectory f,.” The answerwill include all the objects (animals) that
are classified as pets: cats, dogs, fish called Wanda,etc. It is important to
note that here we discuss only the formal framework in an informal way and
that these functions are implemented within an interactive window-based
graphical query interface which we discuss in Section 5.1.

The function

Object-motion:O X V - F(M)

takes any object description and a particular video sequence and returns a
set of motion descriptions related to that object. In order to detect which
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objects performeda particular type of motion,i.e., the agent of the action, we
use a function of the following family:

Agents: M x V > F(O).

The next function is used to get a detailed description of all the objects and
their respective motions in a video sequence:

Describe_Video:V ~ F(O XM).

If we just want information about the spatial characteristics of objects in a
sequence, we use the function

Objects: V > FCO).

This is equivalent to the “agents” function where the first argument is
unimportant. Thus, given a uv, € V, Objects(v;) = Agents(any,v,).

The above functions allow for inexactness, and by default, they return
results that are approximately similar to the precise answer. To make the
operator exact, we use a higher-order operator that converts the query
function in the desired manner,in this case, makes it exact. There are several
types of these operators, e.g., exact, partial, and similar.

For makingthe retrieval exact, the symbol! is placed in front of the query
function. For example, “! Agents” returns only objects that have exactly the
same motion description as the one given in M.Similarly, “!Object_motion”
returns only motion descriptions of objects whose spatial characteristics (for
example, exact bounding polygon, texture) match the spatial characteristics
of a given object.

The # symbol placed in front of the query function is used for partial
retrieval. Partial retrieval means that any of the motion or temporal charac-
teristics of the given object should match. For example, “#Agents” will return
all objects that match at least one of the motion descriptors.

 
4.2 The Query Language

The retrieval functions introduced in the previous section are embedded into
the framework of a multimedia functional query language called EVA, de-
scribed in Golshani and Dimitrova [1994]. EVA is the interface to a multime-
dia database system capable of storage, retrieval, management, analysis, and
delivery of objects of various media types, including text, audio, images, and
moving pictures. The language deals with the temporal and spatial aspects of
multimedia information retrieval and delivery, in addition to the usual
capabilities provided by the ordinary database languages. EVA has five
groups of operators, namely: operations for querying and updating (ie.,
editing) the multimedia information, operations for screen management,
temporaloperators, operators for specifying rules and constraints, and agere-
gation (computational) operators. EVA is an extension of a functional query
language whose notation is based on that of conventional set theory. Both the
original language and its extensions are formally defined in an algebraic
framework. EVA is object oriented and supports objects, object classes, at-
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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tributes and methods of objects, and relationships between objects. It has
been ported onto severaldifferent platforms.

EVAprovides a wide collection of operators that deal with text, graphics,
scanned images, audio, and video. In addition, there are numerous type-inde-
pendentoperators such as set operators like union and set membership. One
of the general operationsis: the set construction operator. Generally, this has
the form {f(x) | P(x)}, where f(x) denotes the desired output objects, and
P(x) denotes the retrieval predicate which hasto be true for those objects.
—— set operation symbols: isin, isSubsetOf, isTrueSubsetOf, union, intersec-

tion, difference, Union, Intersection, noOf.
~—— equality operators:is, isnot.

— temporal synchronization( for all media types): sim, before, meets, equals,
starts, at, finishes.

— spatial composition (applied only to graphics, images, and video): left,
right, bottom, up, showIn,arrange.

— media-dependent operation symbols include

—text: appendPar, cutPar, eqPar, keyword, isKeywordIn, parSim.
—graphics: insPatch, pictureSum,fill, domain, colors, getPatch, getColor,

restriction, scale, translate, dot, lineSeg, box, coincident, contains, dis-
joint, visible, bounded.

—images: shift, zoom, superimpose, overlay, imageSim.

—audio: intensity, extract, audioIns, audioLen, audioSim.

—video: videoLen,pace, videoClip, videoIns.

—integer operation symbols: +, —, *, <, >, <=, >=, min, max,ave,
sum, prod.

—string operation symbols: concat, strLen.
—logical operation symbols: and, or, implies, not.

To demonstrate the capabilities of EVA and how queries are constructed,
we present a simplified example. Thefirst part of the example will demon-
strate the language without the OMV extensions. The video contentretrieval
extensions will be discussed once the appropriate distinctions are made.

Wepresent the schemaof a multimedia database system and then provide
a few sample queries. The schema is represented as a graph whose nodes are
object classes (in algebraic terms, sorts) and whosearcsare the relationships
between object classes (represented as functions). Readers familiar with the
algebraic framework would recognize this as a many-sorted algebra.

Illustrated in Figure 8, the schema models a college basketball multimedia
database. The basic types in this system are String, Integer, Audio, Text,
Video, while Player and School are user-defined data types. The highlighted
portion appearing in dotted lines relates to the extension for video content
retrieval described in Section 4.3.

The main difference between these basic and user-defined typesis that the
former constitute the application-independent constituents of any schema,
whereas the user-defined types depend on each individual application. In
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a“ ‘Motion!

| t Object # se ve

Fig. 8. Basketball schema.

Figure 8, all object types, both basic and user defined, appear in ovals. The
attributes of objects and their relationships that are captured by arrows are
the following functions: pe name_of : Player — String

po position_of : Player — String
yt state_of : Player > Text

interview : Player - Audio
ri playingHighlights : Player > Video
ae height_of : Player — Integer

age_of : Player > Integer
| | plays_for : Player ~ School

abe teammembers_of : School - A(School)
a sname_of : School > String
tl teamName_of : School > String

coach_of : School > String
al. Here are some queries on this database.

(1) List all guards whoaretaller than 190cm.

ie {name_of(P)| position_of(P )is“Guard” and height_of(P) > 190}
This is a simple query on the nonmultimedia portion of the database. P is

| a variable of type Player. The result is a list of names of players who
satisfy the given conditions.
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(2) Play videoclips ofall centers, and simultaneously display theirstatistics.

{(name_of(P), stats_of(P)) sim playingHighlights_of(P)|
position—of(P)is“Center”}

While variable P ranges over the elements of type Player, whenever the
condition on positionis satisfied, the name, statistics, and the correspond-
ing video clip of the qualified player are displayed. “sim,” standing for
“simultaneously,” is one of the synchronization operators that ensure
proper semantics for presentations.

(3) Display the statistics of all Phoenix State University guards, and show
their highlights before playing their interviews.

{(name_of(P), stats_of(P))sim( playingHighlights_of(P)

beforeinterview( P))| plays—for (P )is“PhoenixStateUniversity”and
position—of (P )is“Guard”}

The result of this query is that, for every guard of the appropriate school,
while their nameand statistics are displayed, their video clip is presented
first, and then their respective interview is played. The term “before” is
another synchronization operator.

4.3 Querying Video Contents

Note that in the above queries, we treated Video, Audio, and Text as basic
types in a similar mannerto the type Integer, i.e., as objects whose contents
can be displayed or presented, but no further specific characteristics are
knownabout the contents. Our motion recovery algorithm andspecifically the
OMV functions enable us to treat Video in a different way, as described
below.

Grosky’s [1994] categorization makes a distinction between the physical
basic data types and the conceptual data types. He adopts a generic model to
represent content-independent and content-based properties of multimedia
objects. Content-independent properties are related to the physical data
object itself (uninterpreted data) as well as synchronization and storage
information. Content-based properties refer to relationships between nonmul-
timedia real-world application entities and multimedia objects. The content-
based properties associate semantics to the object at various levels.

A binary object containing the video stream that correspondsto the playing
highlights of a particular player is an instance of physical data type. The
extracted spatial and motion characteristics are stored in the conceptual data
type. The queries on the content of the video data are directed to the
conceptual video data type.

The conceptual video data type is molded from the spatiotemporal hierar-
chy presented in Figure 7 using the object-motion-video structures. The OMV
retrieval functions augment EVA’s retrieval capabilities since they turn the
physical object Video into a conceptualone,i.e., an object with its own specific
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set of properties that can be incorporated into queries for more-precise
questions. The extension to the schema which enhances the video type to bea
conceptual type appears in the dotted line in Figure 8. Below isalist of
operators that augmentthe retrieval capabilities based on the OMVretrieval
functions:

— Function Composition: given functions f: X > Y and g:Y — Z, the com-
position is f° g(x) = g(f(«)). For example, Given an object (any charac-
teristic) in a video sequence v,, retrieve objects in another video sequence
UV, which have similar motion.

Agents(Object_motion(o,, 01), U2)

— Temporal Combination Functions: fog where @ € {before, meets, simulta-
neously, starts, finishes}. Although the same syntax is used, these should
not be mistaken for the synchronization operators. In this case, no confu-
sion is expected since the context would determine the designation of the
operator. An example of usage for this type of operator is the query
“retrieve all the sequences in whichatall person is waving while the
president walks.”

— Spatial Combination Functions: fég where & € {next, behind, inFront, left,
right}.

Using the above combinators and the OMV structure, many new typesof
queries that refer to the contents of video sequences can bespecified. Specifi-
cally, we can express queries that refer to the contents of video sequences.
Examples include the following:

(1) “Retrieve all the video sequences with the longest successful shots.” This
query translates into “retrieve all the video sequences for which the
length of the trajectory of the ball is maximum.”

(2) “Spell out all the details of movements of the players whose height is
greater than 200cm.” This query is good for analyzing the pattern in
which certain players move and achievethescore.

(3) “Find the video sequences in which the player is wearing a blueshirt.”
The “blue shirt” is inferred using image analysis.

The target language is a visual one that allows for inclusion of spatial
properties (sketches) and exact and inexact images. The notation presented in
this article is the basis for the visual query interface [Dimitrova 1995;
Michael 1994].

5. AN ARCHITECTURE FOR VIDEO CLASSIFICATION AND RETRIEVAL

In the previous sections we introduced a model for video classification which
exploits motion recovery and representation. In this section, we discuss a
general architecture for video database retrieval based on the model. The
proposed architecture, as presented in Figure 9, consistsof:

— Insertion module
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Fig. 9. An architecture for video classification andretrieval.

— Derivation module

— Interactive query module

~~ Video storage server.

The insertion module is responsible for initial analysis of the incoming
video signal. It consists of a suite of operators for image enhancement,
operators for the extraction of basic spatial properties, and operators for
motion detection and the extraction of motion trajectories. With respect to the
spatiotemporal hierarchy, this module is an implementation of the operators
between the lowest level of the hierarchy (raw physical data) to the interme-
diate representation. Currently, the functionalities for spatial analysis are
supplied by the Khoros computer vision environment [Rasure et al. 1990].
The extraction of imagefeatures, finding regions, and thinning operators are
performed by calls to Khoros functions. Although features are automatically
extracted, the process of feature selection is manual. For example, we can
apply an operator for image segmentation and find the regions in a video
frame. However, the selection of regions of importance is decided by the
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application designer. The automation of this whole process is possible for
strictly limited application domains such as industrial monitoring, domain-
specific video editing, camera surveillance, and others. The motion detection
and tracing operators are also part of the insertion module. The implementa-
tion of the motion-tracing algorithm is given in Section 5.2.

| The derivation module consists of operators for translation of the extracted
features into meaningful descriptions for retrieval. Each application typically
defines its own set of meaningful entities and events and has its own
interpretation of the same. In our video model and language, the extracted
properties are represented by predicates. The derivation module provides the
mapping between the visual properties extracted form the video sequences
which are geometric by nature andthe algebraic representation which is used
for querying.

The query module consists of a visual front-end for query composition, a
visual query parser, a schema designer, and a presentation manager. The
schema designer and the visual front-end are incorporated into the visual
query language VEVA [Dimitrova 1995]. The VEVA prototype serves as a
testbed for development of new algorithms for video/image segmentation,
video parsing, feature selection, and classification. The prototype has been
implemented in Tcl/Tk [Osterhout 1994] with the added image and video
widgets on top of an existing MPEG encoder [Rowe and Smith 1992].

The video storage server is envisioned to be a disk array serving as a
repository of the video sequences. At this point we use a simple file system for
storing a limited number of MPEG compressed video sequences.

 

a 5.1 The Visual Query Language VEVA
Spatial and motion characteristics of objects, derived from images and video
sequences respectively, are inherently visual. In this section, we outline the

ine design of a multimedia database language which has well-defined semantics
i: in both character-based and icon-based paradigms.
e Defined within the algebraic framework described above, VEVAis a visual

query language that provides all the necessary constructs for retrieval and
management of multimedia information. The basis for the language is a
schema(algebraic signature) which contains entity types (both user-defined
and application-independent types) and the associated operators [Golshani
and Dimitrova 1994]. By using these operators, the user can visually specify a
query for the desired objects in a simple way. VEVA has a formal grammar
with which the set of acceptable expressions can be generated. The grammar
for the visual language VEVAis given using visual rules in the style of a
picture description language which was developed within the syntactic ap-
proach to pattern recognition [Schalkoff 1989]. The grammarrules contain
nonterminal and terminal icons. The rules are given as graph-rewriting rules

= where the left-hand side is a nonterminal icon, and the right-hand side is a

a. | | graph containing nonterminal and terminalicons connected with customizedinks.
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prisingMachine

 
Fig. 10. Visual query involving a trajectory description.

Parsing of visual expressions in VEVA is a process of determining the
structure of the workspace. Note that parsing is the first step of the VEVA
language processing, because lexical analysis is not necessary. All available
icon symbols can be drawn from the given pallette and connected by a set of
permissible links. Thus, every expression that is drawn is lexically correct.
The execution process begins by parsing the contents of the VEVA workspace.
The algorithm finds the top-level set expressions which may contain other set
expressions. Translated into visual terms, this algorithm finds the enclosed
visual expressionsor other iconic elements within a given oval. The algorithm
calls the set evaluation procedure recursively for the sets that are contained
in it, until there are single sets with simple function-predicate expressions
left. The evaluated sets can be connected with temporal links which prescribe
the order in which the resulting objects should be presented by the presenta-
tion manager.If the evaluated expression contains temporal links, then the
parsed execution order is delivered to the presentation manager.

An example query is given in Figure 10. As we stated earlier, VEVA allows
for visual queries in which we can specify the path of a moving object. In this
example the input trajectory for the player is given as a smoothedtrajectory.
The visual query given in Figure 10 will select those video sequencesfrom the
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‘ThiswindowSIS asetofmovies
‘thatyou canchoose from.Ifyou click
on one of themovieicons,the

corresponding movie will beplayediin 
Fig. 11. Results from the visual query. Courtesy of NBA Entertainment.

repository in which the player’s trajectory is similar to the one drawn by the
user and display the nameandtheposition of the player. The result of the
query is shownin Figure 11. The user can browseandplay the selected video
segments.

Various models have been proposed for temporal synchronization, composi-
tion, and presentation in multimedia applications, for example, Buchanan
and Zellweger [1993] andLittle et al. [1991]. On the other hand, a numberof
models for content-basedaccess ofdigital video has been proposed [Armanet
al. 1994; Bobick 1993; Rowe et al. 1994; Swanberg et al. 1993; Zhanget al.
1994]. However, a general formal model and a languagefor content represen-
tation, composition, and queryingof digital video based on the temporal and
the spatial properties of objects found in the video sequences has not been
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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Fig. 12. Macroblock motion extraction.

offered yet. Our video model and language VEVA attempts to unify the
presentation aspects as well as content representation aspects of multimedia
objects.

5.2 Implementation of Macroblock Tracing

The motion-tracing algorithm is a part of the derivation module in our video
classification architecture. We have tested our ideas by implementing the
motion-tracing and extraction algorithm under Solaris 2.3 using the MPEG
encoder produced by the Digital Video research team at the University of
California, Berkeley. A functional view of the MPEG-based motion extraction
is given in Figure 12. We have introduced functions for extraction of motion
vectors during the generation of P- and B-frames. We use the motion-tracing
algorithm to compute the macroblock trajectories.

The performance results are shown in Figure 13. We have tested our
motion-tracing algorithm by ranging the numberof macroblocksbeing traced
from zero to all macroblocks. The input video sequenceis the standard table
tennis sequence, which consists of 10 frames, each of size 352 by 240 pixels.
This sequenceis a good performancetest case, because it has background and
foreground motion. The encoding frame pattern is I]BBBPBBBBP.This means
that all the input frames are used for video encoding. If only encoding is
performed without any motion-tracing algorithm, the total elapsed time is
32.6 seconds (+ /— 0.05 seconds). With the motion-tracing algorithm, the
time increase is evident with the increase of the numberof blocks. Starting
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Performancegraphfor low levei motion analysis of the table tennis video sequence35
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Fig. 13. Performance of object motion tracking.

with one macroblock, we get elapsed time of 32.76 seconds for encoding and
tracing which is 0.16 seconds more than the previous case. As shown in
Figure 13, when the numberof traced macroblocks increases up to 300, the
elapsed time goes up to 34.72 seconds. This showsthat even if we keep track
of the motion of all the macroblocks we have a time increase of 6%.

The gain in MPEG compression is mostly achieved by exploiting temporal
redundancy. MPEG avoids coding the same block twice by storing/sending
over the displacement vector from the previous image. Thus, the basic
assumption is that the frame pattern used for MPEG compression is going to
contain P- and B-frames.

Ouralgorithm for motion tracing would havevery limited application if the
stream to be encoded is using only I-frames. In that case, there the motion
algorithm cannotfind any motion vectors to take advantageof. If high quality
of encodedvideois crucial to the application at hand, then the algorithm has
to be rewritten, so that motion estimation is performed using some imaginary
frame pattern which would not have any impact on the encoded video stream.
Then the motion-tracing algorithm would be performed on the obtained
motion estimates. In this case, the motion information that is obtained from
the encoderis in the forward vectors of the P-frames only. From the P-frame
to the next I-frame we do not have any motion information. We have several
choices:

 
(a) We can makea prediction for the motion vector between the P-frame and

the next I-frame. This prediction is a guess that we can use the same
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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motion vector as the vector for the P-frame. This solution does not
introduce additional overhead. The problem is that it relies not only on
the assumption for the continuity of motion but also assumes that the
motion is constant.

(b) We can perform the actual search and compute the motion vector for the
blocks from the P- to the next I-frame. This means that we will be adding
much more compute cycles thanit is necessary for the encoding process.

We also need much more complicated motion models to recover the true
motion of the objects in the case of complicated camera motion. For example,
when wehavethe camerafocus on a movingobject, then the object appears to
be stationary. The motion of the object is implied by the macroblock vectors of
the background. More-sophisticated relative-motion detection algorithms are
needed. This work is part of our ongoing SunSet Multimedia Information
System project [Golshani and Dimitrova 1994; Michael 1994].

6. CONCLUSIONS

From the point of view of video retrieval, the video technology has not seen
much progress from the days when film editors examined each and every
frame by handin orderto find the exact place of each cut. In fact, despite the
introduction of many video editing systems such as VideoShop and Adobe’s
Premiere, much of retrieval is done by either time pointers (e.g., the frame
counter), visual proxies, or various types of graphical or descriptive pointers. ite
Whatis clearly missing from the video technology is the ability to locate and rE
retrieve video clips that contain an object with specific characteristics, partic-
ularly with respect to movements. Video databases can be useful to many
application areas such as education, business, medicine, and more promi-
nently, entertainment. As such,the value of better and more-equipped video
systems are becoming clearer. While many aspects of video systems, such as
presentation editing tools, have seen significant improvement, our progress
on content-based retrieval has not been as forthcoming.

Webelieve that our attempts to address the above needs must start with a
modeling mechanism that allows for the representation of semantic knowl-
edge from both spatial and temporal features of the objects in video se-
quences. Computing high-level motion description can be done independently
of recognizing objects [Allmen 1991]. We elaborate on this property by
showing that the recovery of object trajectories can be performed without
prior knowledge of objects undergoing motion. The goal is to have both:
independentretrieval along the temporal and the spatial hierarchies as well
as retrieval of combined features from the spatial and the temporal hierar-
chies. We treat motion vectors extracted during the motion compensation
phase of video encoding as coarse-level optical flow that is further used for
intermediate- and high-level motion description. Motion information extrac-
tion is then carried out at low level by motion vector detection, at the
intermediate level by motion tracing, and the high level by associating an
object and a set of trajectories with recognizable activities.
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In our object motion representations, we provide various levels of precision
of trajectory representation. Retrieval functions based on these representa-
tions offer a wide spectrum of approximation in the process of matching. We
need to relate the motion at a higher level of abstraction of the object to the
detailed motion of parts of objects. Events can be represented in a form that
is common in the image-understanding and interpretation area: predicates,
temporal networks,etc.
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Autonomous Video Surveillance 

Bruce E. Flinchbaugh and Thomas J. Olson 

Texas Instruments Corporate Research Laboratories 
P.O. Box 655303, MIS 8374, Dallas, TX 75265 

ABSTRACT 

This presentation highlights needs for autonomous video surveillance in the context of physical secu
rity for office buildings and surrounding areas. Physical security is described from an operational 
perspective, defining the principal responsibilities and concerns of a physical security system. Capabilities 
and limitations of current video surveillance technology are described, followed by examples of how com
puter vision techniques are being used and advanced for autonomous video surveillance systems. 

Keywords: video surveillance, scene monitoring, computer vision, security 

1. Physical Security Systems and Operations 

Major activities of physical security for office buildings today are: access control, intrusion detection, 
guard patrols, CCTV surveillance, alarm monitoring, response dispatching, and investigations. Autono
mous video surveillance technology will ultimately improve productivity and effectiveness in all of these 
activities. The primary responsibilities of physical security are described below. 

I.I Access Control 

The most common approach to physical security is to control who may enter a building or an area at 
the perimeter. By restricting access to trusted individuals (e.g., employees), many opportunities for securi
ty breaches are eliminated. Door locks and keys provide much of this security, and many buildings deploy 
guards at building entrances to control who enters. The primary automatic access control technology in use 
today is provided by electronic badge reader systems. In this approach, an electron ically readable badge is 
issued to each person with access privileges, and the person may use the badge like a key to open doors 
where guards are not stationed. A drawback of keys and electronic badges is that they may be used by un
authorized individuals to gain access . For tighter security in access control, a variety of biometric access 
control technologies are available to measure physical characteristics of people: voice verifcation, retina 
scanners, fingerprint scanners, hand scanners, face recognition, and body weight measurements. The pri
mary limitation of access control technology is that it does not defeat security breaches by insiders. 

1.2 Intrusion Detection 

A second line of defense against physical security breaches is to detect situations where people gain 
unauthorized access to a facility. This may occur at regular access control points (e.g., doors) or at other 
places (e.g. , windows and fences). For example, an unauthorized person might enter by "piggy backing" 
on access by authorized person (i.e., by slipping through a door before it closes), or by any number of 
physical "breaking and entering" approaches. Various technologies are available to detect intrusions. The 
most commonly used devices are door switches and infrared motion detectors, like those found in many 
home security systems. Infrared motion detectors operate by detecting rapid heat changes in an area that 
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are caused when a person enters the area. Other intrusion detection techniques include sound detectors, 
glass-break detectors, light beams, and various other electromagnetic change detectors. Although an intru
sion detector may be used to signal alarms, it does not provide a description of the specific situation that 
causes an alarm, thereby requiring a subsequent follow-up action to respond to the alarm or investigate the 
incident later. 

1.3 Guard Patrols 

In addition to guards who monitor entrances for access control, a common security practice is for 
guards to periodically patrol sites to visually confirm that the premises are secure and to identify and report 
adverse conditions (e.g., missing property and damage from vandalism). Nearly all of the technology that 
supports these visual surveillance activities in practice today involves mechanical and electronic devices 
that the guards use to prove that they visited specific areas and to report observations. However, some ad
vanced robotic security systems attempt to accomplish various guard patrol responsibilities. For example, 
mobile robots equipped with sonic sensors for navigation and detection have been installed for experimen
tal security applications to patrol buildings, but this approach faces many problems to overcome before it 
can compete effectively with guards and more-reliable video surveillance approaches. 

1.4 CCTV Surveillance 

Closed circuit television (CCTV) camera networks that supply video data to security system centers 
are often used to support physical security operations in buildings and surrounding areas. In a small sys
tem, a few cameras may be cabled to TV monitors for remote viewing by guards or other security personel. 
Another common practice is the use of time-lapse video tape recorders to record video data from one or 
more cameras. Some time-lapse recorders provide a multiplexed recording capability so that several cam
eras may be recorded on a single tape. In large CCTV security systems, many cameras are cabled to an 
array of TV monitors and video tape recorders, to support live observations as well as after-the-fact inves
tigations using recorded video data. 

CCTV cameras may be mounted with a fixed field of view, or mounted on a pan and tilt mechanism 
that can be remotely controlled by an observer to view a wider area. Video cameras may also be mounted 
on a small platform that moves along a track, enabling a single camera to scan a much wider area (e.g., by 
moving along a long wall in a large parking garage). 

The primary autonomous video surveillance systems available today are known as "video motion de
tectors" or "VMDs". In principle, VMDs can be programmed for various tasks such as intrusion detection 
and to signal alarms for fairly complex situations . For example, some VMDs can be programmed to signal 
an alarm when something moves across the field of view from left to right, while not signaling an alarm 
when something moves from right to left. However, in practice available VMDs produce too many false 
alarms in typical environments [6], and they require substantial operator training and experience to pro
gram the system. 

1.5 Alarm Monitoring and Response Dispatching 

Large physical security systems generally have a centralized control center where security staff moni
tor alarms, dispatch guards to respond to incidents, and maintain a record of the incidents and their 
resolution. In some cases, control center operators actively monitor remote cameras to detect incidents and 
engage in wide-ranging visual surveillance tasks. Although people are very good at these tasks, long peri
ods of routine activity or inactivity in a scene make this monitoring job tedious. It is also impractical for 
one person to reliably and simultaneously monitor hundreds of cameras. Thus control center operators typ
ically spend most of their time monitoring and processing alarms from autonomous devices. 
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1.6 Investigations 

Although the primary goal of physical security is to prevent security breaches, or to detect and re
spond in time to minimize the impact, a rapid and accurate capability to investigate incidents after the fact 
is also a key activity of physical security. Unlike retail store security (where a frequent threat is shoplifting 
by customers) office building security often faces the challenge of determining which insider has stolen 
something after it is determined that a theft has occurred. In th is matter, differences between physical secu
rity and information security begin to blur. For example, evidence for theft of trade secrets might be 
visually observable (as when an employee opens a file drawer and reads or copies a document) even 
though the document may be physically replaced in the drawer within a few minutes. For cases where a 
large material property item has been stolen, time-lapse video recordings of building entrances and exits 
provide a useful record of events for investigators to search for suspects. However, the limited video sur
veillance tool for investigators in this regard remains a video tape player with a fast-forward button, and 
automatic video surveillance systems to assist investigators in detecting theft of intellectual property are 
beyond the state of the art. 

2. Computer Vision in Autonomous Video Surveillance Systems 

Texas Instruments has demonstrated a variety of autonomous video surveillance capabilities involving 
computer vision. In this section we summarize several TI capabilities for surveillance in office building 
environments. 

Our approach to video surveillance has been to exploit data that is readily computed from incoming 
video streams by using domain-specific constraints and contextual information to interpret the data. The 
video processing is primarily a matter of detecting areas of dynamic change via thresholded image differ
ences and forming connected components for the subsequent analysis. In addition to devising new methods 
for providing more accurate and reliable information about moving entities and their surroundings, we are 
focusing on computer vision for interpreting scene events involving complex spatio-temporal conditions 
and interactions. 

2.1 People Tracking and Position Mapping 

The most basic function of a surveillance system is to provide situational awareness, i.e., to inform se
curity personnel of what is going on in the monitored area. TI has demonstrated an end-to-end real-time 
video survei llance system that uses a visual memory paradigm to integrate information from multiple cam
eras and to provide situational awareness. The visual memory is an object-oriented database that supports a 
variety of spatio-temporal queries [ 1, 3, 4). The system detects and tracks people at ten frames per second, 
applies a ground plane constraint to estimate their 3-D positions, and records their positions and other in
formation in the visual memory. A graphical interface allows users to construct security-related queries 
and view the results. 

Figure I shows the system being used to monitor activity in a hallway. To detect people, the system 
differences live video frames with a background reference image to estimate regions of change. These re
gions are grouped into collections that are consistent with the size and shape of a person walking in the 
field of view. This process is repeated unti l all regions are either interpreted as part of a person, or dis
missed if sizes and shapes of neighboring regions are inconsistent with such an interpretation. The user 
interface presents video surveillance observations from the visual memory in an interactive map display. 
Users interact with a map of the monitored region, and can pan, scroll and zoom to focus on a region of in
terest. Queries enable the display of both current positions of objects of interest and historical positions 
(i.e., paths) of particular objects. Users can also specify alarms to be generated when someone enters a par
ticular region. 
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FIGURE 1. TI people tracking and position mapping system. The system tracks moving objects in video from 
security cameras, as at left. Square icons in the map-based interface at right represent location histories of humans at 
left. Pop-up window gives a detailed view of one observation record. Shaded rectangles in map are alarm regions. 

2.2 Detection of People Carrying Boxes 

After a theft has been reported in an area monitored by time-lapse video recorders, security staff typi
cally review video tapes for the period during which the theft occurred. Tapes captured at building access 
points often reveal how the stolen material left the facility, or yield a short list of people who may have re
moved the material. However, the process of reviewing the tapes can be extremely tedious, especially when 
the period of interest spans many days. 

In these experiments, TI demonstrated a system for screening security video tapes to identify seg
ments that may contain images of people carrying boxes. This task was suggested by experts in physical 
security operations, who often look for boxes as part of theft investigation. The algorithm uses perceptual 
grouping techniques to identify collections of lines that may be projections of rectangular solids. If it finds 
a high-quality grouping of an appropriate size, it flags that video frame for inspection by a human and pro
ceeds to the next frame. This relieves the investigator of the need to examine and interpret every frame. 

The box detection algorithm was tested on 500 frames taken from time-lapse video sequences show
ing humans passing through a revolving door. Figure 2 shows a typical frame. The system exhibited a 93% 
detection rate at a false alarm rate of 13%. Details of the experiments and algorithm are given in a forth
coming paper [5]. 

2.3 Event Description for Video Indexing Using Motion Graphs 

Future autonomous video surveillance systems will need to be able to classify motions and interac
tions of objects into events that are meaningful and important to security staff. TI has developed an 
Automatic Video Indexing (AVI) system ([2], figure 3), which performs event recognition on surveillance 
video tapes. As in the case of the box detection work described above, the immediate goal of this project 
was to assist human investigators in finding relevant segments of security video recordings; however, the 
event recogntion algorithm is general and can be applied to many video understanding tasks. 

In the AVI system, object motions and interactions are described by a directed acyclic graph called a 
motion graph. Each node of the graph is an observation of an object, which is simply a region of change 
detected by image differencing. In the motion graph, each object is tracked and is linked to its predecessor 
and successor in time. Forks and joins in the graph represent complex interactions. For example, if a per
son enters a scene, puts down an objects and leaves, the graph will contain a chain of nodes representing 
the person, with a fork node whose successors are the continuation of the person track and a chain of ob
servations of a stationary object. 
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In these experiments, TI demonstrated a system for screening security video tapesto identify seg-
ments that may contain images of people carrying boxes. This task was suggested by experts in physical
security operations, who often look for boxesas part of theft investigation. The algorithm usesperceptual
grouping techniques to identify collections of lines that may be projections of rectangular solids.Ifit finds
a high-quality grouping of an appropriatesize,it flags that video frame for inspection by a human and pro-
ceeds to the next frame. This relieves the investigator of the need to examine andinterpret every frame.

The box detection algorithm was tested on 500 frames taken from time-lapse video sequences show-
ing humanspassing through a revolving door. Figure 2 showsa typical frame. The system exhibited a 93%
detection rate at a false alarm rate of 13%. Details of the experiments and algorithm are given in a forth-
coming paper[5].

2.3 Event Description for Video Indexing Using Motion Graphs

Future autonomousvideo surveillance systems will need to be able to classify motions and interac-
tions of objects into events that are meaningful and importantto security staff. TI has developed an
Automatic Video Indexing (AVI) system ((2], figure 3), which performs event recognition on surveillance
video tapes. As in the case of the box detection work described above, the immediate goal of this project
was to assist human investigators in finding relevant segments of security video recordings; however, the
event recogntion algorithm is general and can be applied to many video understandingtasks.

In the AVI system, object motions andinteractionsare described by a directed acyclic graph called a
motion graph. Each node ofthe graph is an observation of an object, which is simply a region of change
detected by image differencing. In the motion graph, each objectis tracked andis linkedto its predecessor
and successor in time. Forks andjoins in the graph represent complex interactions. For example, if a per-
son enters a scene, puts down an objects and leaves, the graph will contain a chain of nodes representing
the person, with a fork node whose successors are the continuation of the person track and a chain of ob-
servations of a stationary object.
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FIGURE 2. Box Detection in a security video image. Lines overlaid on the figure were identified by the detection 
algorithm as providing evidence for a box. In testing on 500 frames, the algorithm achieved a 93% detection rate at a 
false alarm rate of 13%. 
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FIGURE 3. The Automatic Video Indexing system detects significant events in securi ty videotapes. Above, the 
system identifies an instance of removal of an object from the scene, defined as disappearance of a stationary object 
(the briefcase) while in contact with a moving object (the human). An overlaid box highlights the objects involved in 
the removal event. Other removals from other points in the videotape are shown on the clipboard at right. 

Figure 4 provides an example of how the motion graph is constructed and interpreted. Vertical lines 
rep~esent frames, here compressed to ID to simplify the diagram. Each node of the graph consists of an ob
servation of an object at a particular place in a particular frame. Links between objects constitute 
hypotheses about identity, constructed by tracking objects over time. Nodes with two or more successors 
correspond to places where the tracking algorithm determined that an object split into multiple objects. 
Similarly, nodes with multiple predecessors result from the merging of multiple objects. Events are defined 
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Figure 4 provides an example of how the motion graph is constructed and interpreted. Vertical lines
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servation of an object at a particular place in a particular frame. Links between objects constitute
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FIGURE 4. Automatic Video Indexing motion graph example. The motion graph captures the motions and 
interactions of objects in the scene. Predicates on the graph correspond to event classes such as Entrance, Exit, 
Removal, et cetera. 
by characten stJc structures m the graph, as shown m the figure . For example, a cham of observations be
ginning near the edge of the image constitutes an Entrance event, a moving object that splits into a moving 
object and a stationary one constitutes a Deposit event, and so on. 

The AVI video indexing capability allows extremely rapid access to significant events in long time
lapse security videos. The algorithms were demonstrated live at the 1996 Image Understanding Workshop 
and have been used with both visible and infrared video data. 

3. Advanced Proof-of-Concept Demonstrations 

In autonomous video surveillance research, TI is integrating the capabilities described in the preced
ing section to produce a series of proof-of-concept demonstrations. Together these demonstrations 
illustrate how physical security operations of the future will use autonomous video surveillance systems. 
Key challenges are computing event graphs on-line at ten frames per second, and devising event graph 
analysis methods to exploit contextual information in useful office surveillance scenarios. 

This research is focussed on three overall surveillance scenarios, for monitoring hallway, office, and 
building perimeter areas. In each area, a camera provides live video data of scenes in the field of view, 
while the AVS system monitors the video to analyze events and signal alarms. 

3.1 Hallway Surveillance 

In this scenario, suggested previously in Figure 1, the autonomous video surveillance system detects 
and tracks people as they walk in office building hallways. Alarms are interactively defined for conditions 
such as when someone loiters in a specified area or enters a particular office. This visual assessment pro
vides information to augment other security system data, such as biometric access control information at 
building entrance points. 
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FIGURE 4. Automatic Video Indexing motion graph example. The motion graph captures the motions and
interactions of objects in the scene. Predicates on the graph correspondto event classes such as Entrance, Exit,
Removal, et cetera.
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The AVI video indexing capability allows extremely rapid access to significant events in long time-
lapse security videos. The algorithms were demonstrated live at the 1996 Image Understanding Workshop
and have been used with both visible and infrared video data.

3. Advanced Proof-of-Concept Demonstrations

In autonomousvideo surveillance research, TI is integrating the capabilities described in the preced-
ing section to produce a series of proof-of-concept demonstrations. Together these demonstrations
illustrate how physical security operations of the future will use autonomousvideo surveillance systems.
Key challenges are computing event graphs on-line at ten frames per second, and devising event graph
analysis methods to exploit contextual informationin useful office surveillance scenarios.

This research is focussed on three overall surveillance scenarios, for monitoring hallway, office, and
building perimeter areas. In each area, a camera provides live video data of scenes in the field of view,
while the AVS system monitors the video to analyze events and signal alarms.

3.1 Hallway Surveillance

In this scenario, suggested previously in Figure 1, the autonomousvideo surveillance system detects
and tracks people as they walk in office building hallways. Alarmsare interactively defined for conditions
such as when someoneloiters in a specified area or enters a particular office. This visual assessmentpro-
vides information to augmentother security system data, such as biometric access control information at
building entrance points.
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FIGURE 5. Office Surveillance Scenario. Video event recognition can be used to detect unauthorized access to 
documents, file drawers, computers, et cetera. 

FIGURE 6. Perimeter Surveillance scenario. The AVI event recognition algorithms can be used with low-cost 
infrared cameras to detect security threats in tptal darkness. 

3.2 Office Surveillance 

Inside individual offices, the autonomous video surveillance system will maintain a situational aware
ness record of events and signal alarms for a variety of specified conditions. For example, an alarm may be 
specified for events in which someone enters the office and places a briefcase on the desk, but not if the 
person leaves a document on the desk. Using contextual information such as time of day and access control 
identification, the system will report other alarm conditions that are functions of the number of people in 
the room and what they do. A representative office surveillance scene is shown in Figure 5. 

3.3 Perimeter Surveillance 

For perimeter monitoring scenarios, a TI NightSight infrared camera will provide video data for the 
surveillance system to monitor areas outside the building at night. For example, the system could monitor a 
building entrance and signal an alarm if someone walks by and leaves a box outside the door (e.g., as illus
trated in Figure 6), but not if someone loiters without leaving a box. 
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FIGURE 6. Perimeter Surveillance scenario. The AVI event recognition algorithms can be used with low-cost
infrared camerasto detect security threats in total darkness.

3.2 Office Surveillance

Inside individual offices, the autonomousvideo surveillance system will maintain a situational aware-
ness record of events and signal alarmsfor a variety of specified conditions. For example, an alarm may be
specified for events in which someone enters the office and places a briefcase on the desk, but not if the
person leaves a documentonthe desk. Using contextualinformation such as timeofdayand accesscontrol
identification, the system will report other alarm conditions that are functions of the numberof people in
the room and whatthey do. A representative office surveillance scene is shown in Figure 5.

3.3 Perimeter Surveillance

For perimeter monitoring scenarios, a TI NightSight infrared camera will provide video data for the
surveillance system to monitor areas outside the building at night. For example, the system could monitora
building entrance and signal an alarm if someone walksby and leaves a box outside the door(e.g., as illus-
trated in Figure 6), but not if someone loiters without leaving a box.
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The ability to reliably discriminate significant and insignificant events is important to reduce false 
alarms for physical security applications, and poses many challenges for computer vision research to ad
vance the state of the art. 
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