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CANON,INC., CANON U.S.A., INC.
AND AXIS COMM.AB,
Plaintiffs,

Vv. Civil Action No. 1:19-MC-91401-NMG-
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AVIGILON FORTRESS
CORPORATION,
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DECLARATION OF KATHERINE ZIMMERMAN

I, Katherine Zimmerman,state and declare as follows:

1. I am a Scholarly Communications and Licensing Librarian at the Massachusetts

Institute of Technology (“MIT”) Libraries, 105 Broadway, Building NE36, Suite

6101, Cambridge, Massachusetts 02142.

2. Iam over 18 years of age and am competent to makethis Declaration. I makethis

Declaration based on my own personal knowledge, based on my knowledge and

review of the business records and practices of the MIT Libraries, based on

conversations with other library staff, and based on the notes and records ofMarilyn

McSweeneywhoprepared Declarations until her retirement in 2016.

3. Ihave been employed at MIT since 2016.

4. Through the actions described in paragraph 2, I have become knowledgeable about

the MIT Libraries’ normal business practices with respect to how MITreceives,

catalogs, indexes, shelves, and makes available to the public journals and

publications.
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5. Attached as Exhibit A to this Declaration is a true and accurate copyofthe catalog

record from the MIT Libraries’ online catalog system (known as the Barton

Catalog) for the publication series entitled ACM Transactions on Information

Systems: a publication of the Association for Computing Machinery vols. 7 (1989)

- 26 (2008) (“ACM Transactions on Information Systems”). This is a record that

MIT maintainsin the ordinary course ofits regular activities. |
6. Attached as Exhibit B to this Declaration is a true and accurate copy of the issue

cover, first page, back cover, and full article text, for the article titled “Motion

Recovery for Video Content Classification” by Nevenka Dimitrova and Forouzan

Golshani published on pages 408-439 of Volume 13, No. 4 of the ACM

Transactions on Information Systems, which was published in October 1995 (the

“October 1995 Issue.”). The ACM Transactions on Information Systems is

available in print format in vols: 7 (1989) - 26 (2008) from the MIT Libraries, and

is a record that MIT maintains in the ordinary course ofits regular activities.

7. The October 1995 Issue has an MIT Libraries date stamp of “NOV 13 1995,”

indicating that the MIT Libraries received the issue on November13, 1995.

8. After a serials issue receives a date stamp, it undergoes a process ofbeing labeled

and moved to a shelf of the MIT Libraries. Based on current MIT Libraries

practice, this process typically takes one to two weeks. According to the MIT

Libraries’ current normal business practice, the October 1995 Issue would have

been displayed on a shelf of the MIT Libraries no later than November 27, 1995.
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9. Once a publication is on a shelf of the MIT Libraries it is available to be viewed

within the MIT Libraries by any memberofthe public or requested viaInterlibrary

Loan.

10. To the best of my knowledge and that of current MITemployees, unless stated

otherwise, the above statements are descriptions ofnormal businesspractices at the

MITLibraries from at least the beginning of 1995 and through thepresent.

I declare under penalty of perjury that the foregoing is true and correct. Executed on

October 23, 2019, at Cambridge, Massachusetts.

x

KAxp— 
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Motion Recovery for Video Content
Classification

NEVENKA DIMITROVA and FOROUZAN GOLSHANI

Arizona State University, Tempe

Like other types of digital information, video sequences must be classified based on the
semantics of their contents. A more-precise and completer extraction of semanticinformation will
result in a more-effective classification. The most-discernible difference between still images and
moving pictures stems from movements and variations. Thus, to go from the realm ofstill-image
repositories to video databases, we must be able to deal with motion. Particularly, we need the
ability to classify objects appearing in a video sequence based on their characteristics and features such as

we derive from the process of motion analysis, we introducea dual hierarchy consisting ofspatial
and temporal parts for video sequence representation. This gives us the flexibility to examine
arbitrary sequences of frames at various levels of abstraction and to retrieve the associated
temporal information (say, object trajectories) in addition to the spatial representation. Our
algorithmfor motion detection uses the motion compensation component of the MPEGvideo-en-
coding scheme and then computes trajectories for objects of interest. The specification of a
languagefor retrieval of video based on the spatial as well as motion characteristics is presented.

shapeorcolor, as well as their movements. By describing the movements that

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.5.1 [Information Interfaces and Presentation]: Multimedia Infor-
mation Systems; 1.2.10 [Artificial Intelligence]: Vision and Scene Understanding—motion

General Terms: Algorithms, Design

Additional Key Words and Phrases: Content-based retrieval of video, motion recovery, MPEG
compressed videoanalysis, video databases, video retrieval
 

1. INTRODUCTION

Applications such as video on demand, automated surveillance systems, video
databases, industrial monitoring, video editing, road traffic monitoring, ete.
involve storage and processing of video data. Manyofthese applications can
benefit from retrieval of the video data based on their content. The problem is
that, generally, any content retrieval model must have the capability of
 

This article is a revised version with major extensionsof an earlier paper which was presented at
the ACM Multimedia '94 Conference.

Authors’ addresses: N. Dimitrova, Philips Laboratories, 345 Scarborough Road, Briarcliff Manor,
NY 10562; email: nvd@philabs.philips.com; F. Golshani, Department of Computer Science and
Engineering, Arizona State University, Tempe, AZ 85287-5406; email: golshani@asu.edu.
Permission to make digital /hard copy of part orall of this work for personal or classroom useis
granted without fee provided that copies are not madeor distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of ACM,Ine. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/ora fee.
© 1995 ACM 1046-8188/95/ 1000-0408 $03.50
ACM
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Video Content Classification . 409

dealing with massive amountsofdata. As such, classifi
step for ensuringtheeffectiveness of these systems.

Motion is an essential feature of video sequences. By analyzing motion of
objects we can extract information that is unique to the video sequences, In
human and computer vision research there are theories about extracting
motion information independently of recognizing objects. This gives us sup-
port for the idea of classifying sequences based on the motion information
ext racted from video sequences regardless of the level of recognition of the
objects. For example, using the motion information we can not only submit
queries | like “retrieve all the video sequences in which there is a moving
pedestrian and a car” but also queries that involve the exact position and
trajectories of the car and the pedestrian.

Previous work in dynamic computervision can beclassified into two major
categories based on the type of information recovered from an image se-
quence: recognition through recovering structure from motion and recognition
through motiondirectly. The first approach may be characterized as attempt-
ing to recovereither low-level structures or high-level structures. The low-level
structure category is primarily concerned with recovering the structure of
rigid objects, whereas the high-level structure category is concerned primar-
ily with recovering nonrigid objects from motion. Recovering objects from
motion is divided into two subcategories: low-level motion recognition and
high-level motion recognition. Low-level motion recognition is concerned with
making the changes betweenconsecutive video frames explicit (this is called
optical flow [Horn and Schunck 1981]). High-level motion recognition is
concerned with recovering coordinated sequences of events from the lower-
level motion descriptions.

Compression is an inevitable process when dealing with large multimedia
objects. Digital video is compressed by exploiting the inherent redundancies
that are common in motion pictures. Compared to encodingof still images,
video compression can result in huge reductionsin size. In the compression of
still images, we take advantage of spatial redundancies caused by the simi-
larity of adjacent pixels. To reduce this type of redundancy, some form of
transform-based coding (e.g., Discrete Cosine Transform, known as DCT) is
used. The objective is to transform the signal from one domain(in this case,
spatial) to the frequency domain. DCT operates on 8 x 8 blocksof pixels and
produces another block of 8 < 8 in the frequency domain nee poetiicien?
are subsequently quantized and coded. The importantpoint is that most of
the coefficients are near zero and after quantization will be unde
zero. Run-length coding, which is an algorithm for recording the numberof
consecutive symbols with the same value, can efficiently compress such oe
object. The next step is coding. By using variable-length codes (an eeamiele :
Huffman tables), smaller code words are assigned to objects occurring more
frequently, thus further minimizingthesize.

Our aim in the coding ofvideo signals is to reduce the temporal ae
cies. This is based on the fact that, within a sequence et moh ae
except for the moving objects, the background remains unchange : cat a
reduce temporal redundancy a process known as motion compens

ACMTransactions on Information System
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410 . N. Dimitrova and F. Golshani

used. Motion compensation is based on both predictive and interpolative
coding.

MPEG(Moving Pictures Expert Group) is the most general of the numer-
ous techniques for video compression |Furht 1994; LeGall 1991; Mattison
1994]. In fact, the phrase “video in a rainbow”is used for MPEG, implying
that by adjusting the parameters, one can get a close approximation of any
other proposal for video encoding. Motion compensation in MPEG consists of
predicting the position of each 16 = 16 block of pixels (called a macroblock)
through a sequence of predicted and interpolated frames. Thus we work with
three types of frames—namely, those that are fully coded independently of
others (called reference frames or I-frames), those that are constructed by
prediction (called predicted frames or P-frames), and those that are con-
structed by bidirectional interpolation (known as B-frames). It begins by
selecting a frame pattern which dictates the frequency of I-frames and the
intermixing of other frames. For example, the frame pattern IBBPBBI indi-
cates (1) that every seventh frame is an I-frame, (2) that there is one
predicted frame in the sequence, and (3) that there are two B-frames between
each pair of reference and/or predicted frames. Figure 1 illustrates this
pattern.

Ourapproach to extracting object motion is based on the idea that during
video encoding by the MPEGmethod,a great deal of information is extracted
from the motion vectors. Part of the low-level motion analysis is already
performed by the video encoder. The encoder extracts the motion vectors for
the encoding of the blocks in the predicted and bidirectional frames. A
macroblock can be viewed as a coarse-grained representation of the optical
flow. The difference is that the optical flow represents the displacement of
individual pixels while the macroblock flow represents the displacement of
macroblocks between two frames. At the next, intermediatelevel, we extract
macroblock trajectories which are spatiotemporal representations of mac-
roblock motion. These macroblock trajectories are further used for object
motion recovery. At the highest level, we associate the event descriptions to
object /motion representations.

Macroblock displacement in each individual frame is described by the
motion vectors which form a coarse optical-flow field. We assume that our
tracing algorithm is fixed on a moving set of macroblocks and that the
correspondence problem is elevated to the level of macroblocks instead of
individual points. The advantage of this elevation is that even if we lose
individual points (due to turning, occlusion, etc.) we are still able to trace the
object through the displacement of a macroblock. In other words, the corre-
spondence problem is mucheasierto solve and less ambiguous. Occlusion and
tracing of objects which are continuously changing are the subject of our
current investigations.

In Section 2 of this article we survey some of the research projects related
to our work. In Section 3 we present the object motion analysis starting from
the low-level analysis through the high-level analysis. We discuss the impor-
tance of motion analysis and its relevance to our model which is presented in
Section 3.4. Section 4 introduces the basic OMV structures (object, motion,
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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Fig. 1. Forward andbidirectional prediction in MPEG.

video-sequence), as the basis for the video information model. The basic
retrieval operators, the OMV-languagespecification, and some examples are
given. Empirical results are outlined in Section 5, and Section 6 presents
some concluding remarks.

2. RELATED WORK

The research presented in this article builds on the existing results in two
areas: dynamic computervision and digital video modeling.

A current trend in computational vision is influenced by the idea that
motion analysis does not depend on complex-object descriptions. Our work
follows this trend and is based on the recent publications that are in
agreement with this idea in computational vision. The idea of object/event
recognition regardless of the existence of object representations can be traced
back to the early 70’s when Johansson [1976] introduced his experiments
With moving-light displays. The idea was to attach lights to the joints of a
human subject dressed in dark-colored clothing and observe the motion of
lights against a dark background. The audience not only could recognize the
object (human being) but could also describe the motion and the events
taking place. Goddard [1992] investigated the high-level representations and
computational processes required for the recognition of human motion based
on moving-light displays. The idea is that recognition of any motion involves
indexing into stored models of the movement. These stored models, ielled
scenarios, are represented based on coordinated sequences of discrete motion
events. The structures and the algorithms are articulated in the language of
structured connectionist models. Allmen [1991] introduced a computational
framework for intermediate-level and high-level motion analysis based -
spatiotemporal surface flow and spatiotemporal flow curves. See
surfaces are projections of contours over time. Thus, these surfaces are dir
representations of object motion. t 1995.

ACMTransactions on Information Systems, Vol. 13, No. 4, October
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412 . N. Dimitrova and F. Golshani

In the dynamic computervision literature there are general models for
object motion estimation and representation, as well as domain-restricted
models. A general architecture for the analysis of moving objects is proposed
by Kubota et al. [1993]. The process of motion analysis is divided into three
stages: moving-object candidate detection, object tracking, and final motion
analysis. The experiments are conducted using human motion. Another ap-
proach to interpretation of the movements of articulated bodies in image
sequences is presented by Rohr [1994]. The humanbodyis represented by a
three-dimensional model consisting of cylinders. This approach uses the
modeling of the movement from medical motion studies. Kolleret al. [1993]
discuss an approach to tracking vehicles in roadtraffic scenes. The motion of
the vehicle contouris described using an affine motion model with a transla-
tion and a changein scale. A vehicle contour is represented by closed cubic
splines. We make use of the research results in all these domain-specific
motion analysis projects. Our model combines the general area of motion
analysis with individual frame(image) analysis.

In case of video modeling, the video footage usuallyis first segmentedinto
shots. Segmentation is an important step for detection ofcut points which can
be used for further analysis. Each video shot can be represented by oneor
more key frames. Features such as color, shape, and texture could be ex-
tracted from the key frames. An approach for automatic video indexing and
full video search is introduced by Nagasaka and Tanaka [1992]. This video-
indexing method relies on automatic cut detection andselection offirst
frames within a shot for content representation. Otsuji and Tonomura[1993]
propose a video cut detection method. Their projection detection filter is
based on finding the biggest difference in consecutive-frame histogram differ-
ences over a period of time. A model-driven approach to digital video segmen-
tation is proposed by Hampapuretal. [1994]. The paperdeals with extracting
features that correspond tocuts, spatial edits, and chromatic edits. The
authors present an extensive formal treatment ofshot boundaryidentifica-
tion based on models of video edit effects. In our work. we rely on these
methods for the initial stages of video processing, since we needto identify
shot boundaries to be able to extract meaningful information within a shot.

One representation scheme of segmented video footage uses key frames
[Arman et al. 1994]. The video segments can also be processed for extraction
of synthetic images, or layered representational images, to represent closely
the meaning of the segments. A methodology for extracting a representative
image, salient video stills, from a sequence of images is introduced by
Teodosio and Bender [1993]. The method involves determining the optical
flow between successive frames, applying affine transformations calculated
from the flow-warping transforms, such as rotation, translation, etc., and
applying a weighted medianfilter to the high-resolution image data resulting
in the final image. A similar method for synthesizing panoramic overviews
from a sequence of frames is implemented by Teodosio and Mills [1993].

Swanberget al. [1993] introduced a method for identifying desired objects,
shots, and episodesprior to insertion in video databases. During the insertion
process, the data arefirst analyzed with image-processing routines to identify
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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tetanusaeneerpcsng
cameal. Ta. L ntly well defined structure can

be -amraer on Heide! exploits the spatial structure of the video data
without ana yzing object motion. Zhang et al. [1994] presented an evaluation
and a study of knowledge-guided parsing algorithms. The method has been
implemented for parsing of television news, since video content parsing is
possible when one has anapriori modelof a video's structure.

Another system, implemented by Little et al. [1993], supports content-based
retrieval and playback. They define a specific schema composed of movie,
scene, and actor relations with a fixedset ofattributes. Their system requires
manual feature extraction. It then fits these features into the schema.
Querying involves theattributes of movie, scene, and actor. Once a movie is
selected, a user can browse fromscene to scene beginning with the initial
selection. Weiss [1994] presented an algebraic approach to content-based
access to video. Video presentations are composed of video segments using a
video algebra. The algebra contains methods for temporally and spatially
combining video segments, as well as methods for navigation and querying.
Media Streamsis a visual language that enables users to create multilayered
iconic annotations of video content [Davis 1993]. The objects denoted by icons
are organized into hierarchies. The icons are used to annotate the video
streams in a Media Time Line. The Media TimeLineis the core browser and

viewer of Media Streams. It enables users to visualize video at multiple time
scales simultaneously, in order to read and write multilayered, iconic annota-
tions, and it provides one consistent interface for annotation, browsing,
query, and editing of video and audio data.

The work presented here follows from a numberofefforts listed above.
Specifically, we use low- and intermediate-level motion analysis methods
similar to those offered by Allmen [1991] and others. Our object recognition
ideas have been influenced bythe work of Jain andhis students [Guptaetal.
1991a; 1991b], Grosky [Grosky and Mehrotra 1989], and the research in
image databases. Several lines of research such as those in Little et al.
[1993], Swanbergetal. [1993], Zhangetal. [1994], and Weiss [1994] provided
many useful ideas for the modeling aspects of our investigations. An early
report of our work was presented in Dimitrova and Golshani [1994].

3. MOTION RECOVERY IN DIGITAL VIDEO

In this section we describe in detail each level of the motion analysis pipeline.
At the low-level motion analysis we start with a domain of motion vectors.
During intermediate-level motion analysis we extract motion trajectories that
are madeof motion vectors. Each trajectory can be thought of as ann-tuple 2
motion vectors. This trajectory representation is a basis for various ae
trajectory representations. At the high-level motion analysis we ae eel
activity to a set of trajectories of an object using domain knowledgerules.
3.1 Low-Level Motion Extraction: Single Macroblock Tracing
In MPEG,to encode a macroblock in a predicted or a bidirectional frame, we: h
first need to find the best matching macroblock in the reference frames, thenstober 1995.

ACM Transactions on Information Systems, Vol. 13, No. 4, October
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414 . N. Dimitrova and F. Golshani

find the amount of x and ytranslation (i.e., the motion vector), and finally
calculate the error component [Patel et al. 1993]. The motion vector is
obtained by minimizing a cost function that measures the mismatch between
a block and each predictor candidate. Each bidirectional and predicted frame
is an abundant source of motion information. In fact, each of these frames
might be considered a crude interpolation of the optical flow. Thus, the
extraction of the motion vectors of a single macroblock through a sequence of
frames is similar to low-level motion analysis.

Tracing a macroblock can continueuntil the endofthe video sequenceif we
do not impose a stopping criterion. We have a choice: to stop after a certain
numberof frames, stop after the object (macroblock) has cometorest. stop if
the block comes to a certain position in the frame. stop if the macroblock gets
out of the scene, or stop if the macroblock is occluded.

The algorithm for tracing the motion ofa single macroblock through one
frame pattern for MPEG encoding is given in Figure 2. In Dimitrova| 1995],
we describe object motion tracing for video databases in more detail. The
algorithm takes the forward and backward motion vectors that belong to a
particular macroblock and computes the macroblock’s trajectory. The algo-
rithm computes the macroblock’s position in a B-frame by averaging the
positions obtained from: (1) the previous block coordinates and forward
motion vectors and (2) next (predicted) block coordinates and the backward
motion vector. The position of a macroblock in a P-frameis computed using
only block coordinates and forward motion vectors. If during the tracing
proceduretheinitial macroblock moves completes out of its position, then we
have to extract motion vectors for the new macroblock position, which implies
that we are continuing by tracing the macroblock whose position coincides
with the (x, y) coordinates oftheinitial macroblock, In therest of this article,
we will use 7 to indicate the set ofall possible motion vectors.

3.1.1 Trajectory Description. Various motion retrieval procedures have
specific requirements for retrieving desired objects. These requirements de-
pend on the characteristics of the retrieval which maybeflexible to strict.
The choice of trajectory representation may dictate the manner in which
retrieval is conducted. Given a set of motion vectors for a macroblock, a
numberof mechanisms exist for trajectory representation. Below we present
a samplelist:

(1) Point Representation: A trajectory in this case is a set of points repre-
sented by the absolute orrelative frame coordinates of the position of the
object, say

(C41, 91),(%2,¥2),--.,(",, y,))

where Gar, y;) is derived by projecting (x, y, t) onto the image plane.
(x, y, i) denotes the position of an object, i.e., (x, y), at time instanti.

(2) Curve Representation: A parametric B-spline curve P(w) can be computed
that passes through each of the trajectory points (x,, y;) (see Farin [1990]
for a detailed discussion). The first step involves generating a parameteri-

ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995,
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Given: frames F = Fi i= 0,...,n;

motion vectors V = (fmx(i),fmy(i)), (ome(i) ybmy(i)) i= t,n
initial block coordinates bz, by
Initialize R = 4,
for tool ciey: TU

if F(i) # I then
if F(i) == P then

if previousType ==
ex = bx - fmx(i)/2;
cy = by - fmy(i)/2;
nextblockx = cx; nextblocky = cy;

if previousType == P
givenx = futurex;
giveny = futurey;
futurex = futurex - fmx(i)/2;
futurey = futurey - fmy(i)/2;

ife(l) == Bithen
cex=((givenx-fmx(i)/2)+(futurex-bmx(i)/2))/2;
cy=((giveny-fmy(i)/2)+(futurey-bmy(i)/2))/2;

if block(bx,by) 9 block(cx,cy) == @ then
extract(mx(i),my(i)) for (cx,cy)

R = RU {(mx(i),my(i))}
if F(i) is the last in a group of B frames before a P frame

cx = futurex;

cy = futurey;
if block(bx,by) 9 block(cx,cy) == @ then

extract(mx(i),my(i)) for (cx,cy)
R = RU {(mx(i),my(i))}

if FG) == then
(bx,by) — bestMatch(bx,by) in I

if stopping criteria == true, then
return R;

endfor

Fig. 2. Algorithmfor tracing the motion of a macroblock

zation or knot sequence u, < Ug SS Up: A commonly used approach
employs cumulative chord lengths defined by the points (x,, y,). The next
step involves setting up and solving a tridiagonal linear system of equa-
tions whose unknownsarethecontrol points d; of the B-splines Niu).
The linear system depends on the x,, Yj, and u, values. This linear
system can be efficiently solved in @(7) time using standard techniques
for tridiagonal matrices. The B-spline curve has the form:

P(u) = Y4,Nv),

and it satisfies the following:

(a) Plu;)=(x;, 93
ACM Transactior

i? !Jol. 1: + 1995.
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(b) P(u) is a piecewise cubic polynomial, i.e., for u, <u < u,, 1 Plu)isa
polynomial of degree less or equal to three; and

(c) the first and the second derivatives of P(w) are continuous.

 (3) Chain Code Representation: Wedevelop a piecewiselinear approximation
to the trajectory using a set of orientation primitives. Given a set of
discrete trajectory orientation primitives, we use a zig-zag line represen-
tation of the trajectory to generate the code. Another wayof viewing this
approach is derived from a neighborhood matrix with each neighborcoded
to correspond to the primitives in the figure [Schalkoff 1989].

- Differential Chain Code Representation: Each segment is coded relative to
the next line segment using the direction (left or right) and the length.
For example, we can haveacodefor: right shorter—1, right equal-2, right
longer-3, left shorter—4, left equal-5, left longer—6 [Schalkoff 1989]. This
scheme is useful for approximate matching of object trajectories. It is a
rotation-, scaling-, and translation-invariant scheme.

Figure 3 illustrates these methods used for the representation of an
arbitrary movement. Figure 3(a) is an exact coordinate representation; 3(b) is
a B-spline curve representation. Figure 3(c) represents the chain-coding
process, and 3(d) shows the differential chain code representation of the
trajectory.

Note that in the coordinate representation and B-spline and chain code
representation schemes we have a wayof representing zero motion, i.e., when
the motion vector is a null vector. If the macroblock does not move over a
certain numberof frames, the point will be repeated. In the B-spline repre-
sentation, the knot (i.e., the control point) will have a multiplicity greater
than one. In the chain code representation, the zero motion is represented by
the code “0.” So, in all these representations the trajectory is not only a
spatial representation of the object’s motion (the path) but also a temporal
characterization of the motion, By keeping track of the zero motion weare
able to describe stationary objects as well.

The diversity of the trajectory representations makes the querying process
J more flexible. The actual method ofrepresentation does not have a significant

Impact on the querying process as long as modeling, representation, and
| querying are all done in the samefashion.

3.1.2 Trajectory-Matching Functions. Applications such as automated
a surveillance mayrequire retrieval of either video sequences or objects con-

Wie tained in these sequences based on the object trajectories, For example,
queries of the type “retrieve objects that have a motion trajectory whose point
of origination is the main gallery door and terminate at the Juan Miro’s
picture on the opposite wall” mayhelp in the identification ofthe person who
damagedthepicture.

Matching functions used for motion retrieval depend on the method em-
ployed for trajectory representation, as described below.
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.

Canon Ex. 1055 Page 20 of 45

   
-_ha...



Canon Ex. 1055 Page 21 of 45

Video ContentClassification
 

 

   
 

   
  

417

(a) — a (b)
Soe

=<aee
(cl) (c2) !

Primitive ft *. < fe \ “hy : 2
Code 3 4 5 6 7 8

result: 1812777212
. 2ee|

(dl) (d2)
Relative right right right left left left
condition shorter equal longer shorter equal longer

Code | i 3 4 5 6
result: 36343

Fig. 3. Alternatives for object motion representation: (a) motion trajectory; (b) B-spline curve
representation; (cl) chain-coding scheme; (c2) chain code representing the trajectory; (d1) differ-
ential chain-coding scheme; (d2) resulting differential chain code.

— Exact matching function that uses absolute frame coordinates(least-square
minimization problem). This matching function has two variations:

(1) exact start position and exact trajectory match
(2) any start position and exact trajectory match.

—Exact matching function that uses relative coordinates. This function is
used when theinitial position of the object is not important.

—Curve comparison based on the curve-fitting approach used for interpo-
lated trajectory representation.

— Approximate matching that uses chain code:

(1) exact start position andinexact trajectory match
(2) any start position and inexact trajectory match.
The chain code matching translates the problem oftrajectory matching
into a pattern-matching problem.

— Qualitative matching that uses differential chain code.
The result in each caseis a similarity factor between the input trajectory

and a target trajectory in theset of object trajectories.

3.2 Intermediate-Level Motion Analysis

A macroblock trajectory is the spatiotemporal representation e phe aaa
block’s motion. These trajectories are further used for eee abieet
motion. This process is different for rigid and nonrigid eae if the object
consists of one solid part to which motion trajectory 18eewith inde
consists of several parts which themselves representrigid objectsion S s October 1995.

ACMTransactions on Information Systems, Vol. 13, No. 4,
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pendent movements, then, such a nonrigid object is represented as a set of
rigid objects with their respective trajectories. At the highest level of motion
analysis, we associate “activities” with the object trajectory representations,

Rigid-object motion is represented bya single trajectory. The trajectory is
one common representation of the trajectories of all the component macro-
blocks. Finding the most-representative trajectory is not a simple task. In the
simplest case we can take the trajectoryof the object centroid as the reference
object trajectory. A more-complicated case occurs if we decide to create a
common trajectory by processing all of the macroblock trajectories or by
examining onlya subsetofall macroblock trajectories.

Mean averaging ofall trajectories of the macroblocks of the object is an
alternative to choosing the object centroid’s trajectory. The averaging of the
trajectories in the exact form is pointwise averaging of the trajectories at
each frame.

The following two assumptions makethe object motion recovery feasible:

(1) Integrity of Objects: We assume objects are rigid orconsistofrigid parts
connected to each other. We do not consider situations in which objects
disintegrate. This assumption is important because we only use object
trajectory representation.

(2) Motion Continuity: Each macroblock underconsideration has continuous
motion. This assumptionis important for the trajectory representation,
since every trajectory segment represents continuation of the previous
trajectory segment.

 
| Averaging trajectories is used for determininga representation of a non-
r rigid body motion. For nonrigid objects, we must determine the numberof

Hi trajectory clusters and their locations. Each cluster corresponds to a single
. | coherent motionthat represents a moving part(i.e., a rigid object). We use a

hierarchical clusteri ng algorithm (due to DudaandHart {1973]) for determin-
ing the numberofrigid object parts. Initially, the algorithm begins with

i clusters that contain only one trajectory each. At each subsequent step, we
attempt to merge those neighboring clusters that have a similar trajectory.
Individual trajectories, in this case, will be averaged to computea trajectory
for the extendedcluster,

An example of a traced object through 20 encoded frames using the
IBBPBBBPframe pattern is given in Figure 4. Figure 4(a) contains first,
middle, and last frames of a video sequence capturing a water skiing scene.
Figure 4(b) contains the motion trace for the moving yacht. The axes in

Hel Figure 4(b) correspond to the x and ¥y axes of the video frames where the
(0, 0) coordinate is at the top left corner.

Figure 5 shows six out of the 60 frames of the “Walfky” video sequence
used for our next experiment. The object being traced is a small toy which

ai performs very uneven motion, Figure 6(a) shows how the tracing of a macro-
block progresses when every frame in the sequence is used. The frame
pattern IBBBPBBBis used for video encoding when macroblock trajectories
are extracted in Figure 6. This experiment shows that the macroblock tracing
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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Frame |

 
Frame 4

 
Frame 21 Frame 51

 
Fig.5. Snapshots from a video sequence

1s possible whentheobjects exhibit jerky motion. As expected the trajectoryis
not only curved but also has the properties of a zig-zag line. In this case the
macroblock with coordinates (14, 14) is traced. In terms of absolute frame
coordinates, these coordinates correspond to (112,
tracing of the same video sequence
used for encoding and tracing.

We use the notation T to indicate the set of object trajectories, Each
memberof JT’ is a sequence! whose rangeis the set of all motion vectors 7,
Le., Vt © T(t: =7), where-/ is the set of natural numbers. In other words

112). Figure 6(b) shows
in the case when every other frameis

A sequenceis simply a function whose domainis the natural numbers
ACM Transactions on Information Systems, Vol. 13, No 4, October 1995
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(a) Trace of the macroblock (14,14) usingall frames

  
80:

$04

<a! a yeeetVa ‘

1304

140+ r100 110 120 130 140 150 160 170 180

(b) Trace of the macroblock (14,14) using every otherframe

“plottwo, txt" —

90-4

1304
  

140 ' 170 180
100 110 120 130 140 150 ot

; ‘ ;: (b) only every other
Fig. 6. Traced trajectories in the Walfky video sequence. (a) all frames; ;
frameis used.

3 5, Vi Q ¢ or 1995.
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each object trajectory is a sequence of motion vectors identifying macroblock
displacement for the components of the object. As discussed previously, the
actual appearance of the members of 7 depends on thechoice of the repre-
sentation scheme.

3.3 High-Level Motion Analysis

At the highest level of motion analysis, we associate domain-dependent
“activities” with the object trajectory representations. An activity can be
recognized by the system based on a predefinedset of procedures, orit can be
designated by the user. We realize that recognizing activities is one of the
most-difficult tasks in any vision system. Such undertaking requires informa-
tion on:

(1) Relative positioning between rigid subparts
(2) Relative timing of the parts movements

(3) Actual and perceived interaction of object parts.

The two main problemsin recovering high-level motion representation are
(1) the fact that multiple sequences are occurring simultaneously(for exam-
ple, arm movements and leg movements in human motion) and in a coordi-
nated fashion and (2) tempo changes are global (in the case of the human
body, the changes applytoall four limbs and occurslowly).

An activity involves both spatial and temporal representations of the
objects of interest. We must identify the object components (shape and other
features) and their respective trajectories (as we did in the previous section)
at the intermediate-level motion analysis and then assembleactivities, The
temporal information is needed for discrimination of activities of the same
type, for example, strolling, walking, hurrying, etc. After assembling object
activities, based on additional knowledge, we can infer event information.

We use .¥ to symbolize the set ofactivities. We assume theexistence of a
knowledge base .7 whose contents include all the necessary rules, con-
straints, and the procedures for deriving activities from lower-level descrip-tions.

Each membera of.0/ is a “composition” of ¢,, ts,...,¢,, where for every
1<i<nwehave:

be eae ancd

— t; satisfies every constraint in ¢ a» Where @, ©.% represents the con-
straints governing theactivitya.

High-level event representation and manipulationcall for the use of either
temporal Petri nets, an event-based approach to temporal objects, or other
event representation and manipulation schemes.

3.4 Spatiotemporal Hierarchical Representation
We use a semantic multiresolution hierarchy for sp
tion (Figure 7) because it helps video analysis at
with coarser resolutions used for high-level event/

atiotemporal representa-
various resolution levels,

scenario descriptions. The
ACMTransactions on Information Systems, Vol. 13, No. 4, October 1995.
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Object semantics
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Spaual hierarchy Temporal hierarchy

Fig. 7. Multiresolutionhierarchyfor spatial and temporal videorepresentation.

advantage of multiresolution representation is that it offers a mechanism to
make the trade-off between the competing demandsoffine spatial /temporal
resolution and low computational complexity. The idea of representational
hierarchy for still images has been utilized by several image data models
[Grosky and Mehrotra 1989; Gupta et al. 1991a; 1991b].

At successive time intervals, a frame is inserted at the base of the spatial

hierarchy, and the features are computed for the next levels. The motion
features are computedstarting at the frame, and the temporal part of the
hierarchyis filled with the appropriate motion descriptions. Motion analysis
starts with the motion vector recovery (bottom of the temporal hierarchy,
Figure 7). At the next level, individual macroblock trajectories are traced. At
the intermediate level, rigid-body motion is recovered, followed by nonrigid-
motion recovery. Finally, at the highestlevel of motion analysis, description
of activities is derived from previously computed motion features (top of the
temporal hierarchy, Figure 7). :

The temporal part of the hierarchycan be used for various kinds of motion
retrieval ranging fromfull-object trajectory-based matching to single-macro-

e we provide exact and inexact trajectory
ke inputs in terms of precise

ualitative descriptions.

block trajectory matching. Sine
representation, our retrieval functions can ta
spatial coordinates, orientation coordinates, and q

4. INFORMATION FILTERING AND DIGITAL VIDEO
ntroduced in previous sec-
trieval of video sequences.

1 (motion) part of the

The motion-tracing and representation scheme 1
tions serves as a basis for the classification and re
Video sequences may be retrieved using the tempora

1 Information Systems, Vol. 13, No. 4, October 1995.ACM Transactions on
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hierarchy or the combination of spatial and the temporal representations.
The idea of this representation is that we can compute the spatial and
temporal features independently of each other. We emphasize that temporal
features coupled with spatial features are important in discriminating and
classifying video sequences.

Like other knowledge representation cases, we do not attempt to have a
universal system that can recognize and distinguishall possible objects. Such
general-purpose (i.e., domain independent) representations have been shown
to be too complex for present technologies. Thus, we assume that the domain
of interest is known a priori and that the video classification system will be
confined to working on only those objects. Consider a domain D, called the
“scope,” containing all objects of interest. Formally, the elements of D are
defined as object-oriented structures with potentially complex internal com-
ponents. Similar to any object-oriented representation, the user can identify
the objects of D by their attributes, such as object ID, image descriptions,
name, and shape (or convex hull), or a combination of these. Thus, the user
may provide any available information on any of the attributes of desired
object (for example, object ID, or shape together with apartial description),
and the system will attempt to identify the intended object. Although we do
not make any assumptions on howtheelements of D andtheir attributes are
represented, we offer the following example as an indication of a typical
structure.

Example 4.1. A walking human may be represented as a moving object
a, = (0,, m,, v,) where

0, = (category: human, convexHull : 0,:skeleton: On;
]

parts: {head : 0, ,torso:0,}),

m, = (trajectory : 2467332, activity : walking), and

U, = (v# 234, firstFrame: 45, lastFrame: 485).

Similarly, the head and torso also have their spatial and motion descrip-tions.

In a database containing only “still” images, a correspondencetableofthe
form (O, I)—where Ostands for the object, and I stands for the image—will
suffice. In a video database, we have the added parameter of temporal

me changes. Although the motion of each object can be modeledas an attributeof
i} the object, say, “dog, big, brown, running,” it is more appropriate to separate

objects and their motions as twodifferent parameters. Note that if motionis
considered as just anotherattributeof the object, then in case the sameobject

ba appears more than once, each time with a different motion, we would need
| multiple, different entries into the database. For example, there would be

| multiple entries for the big brown dog: running right, runningleft, running in
a circles, and jumping.

Video Sequences are identified by objects present in the scene and their
respective motion. The goal of the motion analysis is to extract activity and
event representation. An index entry of an activity in a video sequence has
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the following form:

(O,M.V) = (objectRep, motionRep, vid)

—objectRep: an object represented by its extracted features (q ‘ conv
object skeleton, centroid, texture ex hull,eto! ntr , Set of macroblocks covering the object
etc.; see left side of Figure 7). An object representation might include a set
of object representationsofthe constituting parts (e.g., objects that repre-
sent a human figure include head, torso, arms, and legs object eeetes
tions).

-motionRep: an object trajectory specified by objectRep,velocity, trajectory
curvature, torsion, and activity description (see right side of Figure 7).

— vid: identity of the video subsequence to which an object belongs to: vid
consists of (viSeq/d, firstFrame, lastFrame)

(1) viSeqld is a video sequence identity which is unique for a sequence
across the whole video database.

(2) firstFrame: the first frame in which the specified object appears.
(3) lastf'rame: the last frame in which the specified object appears.

4.1 Content-Filtering Operators

The OMVtriplet is the basis for the query functions. There are many
possibilities for the selection offilters (in this context, query functions.) A
sample selection is presented below. These operators may be used in a
relational form, mostly in a table lookup mode, or may be embedded into a
more-elaborate query language, as presented in Section 4.2. Recall that(A)
is used to denote the powersetof the set A,i.e., the set of all subsets of A.

V_Seq:0 XM > AV)

This function takes any description that can be provided at any level of the
spatial hierarchy. The input might be a characterization of the object in
terms ofits bounding polygon, stick figure, a name, or concept. At this point
we need to emphasizethat we use the properties of the object-oriented nature
of the representation ofthe objects. For example, the expression

V_Seq(O_category = pet, ( Activity = walking, Trajectory = t,))
translates into “retrieve all the video sequences in which a pet walks and

” The answerwill include all the objects (animals) that
lled Wanda,etc. It is important to

in an informal way and
dow-based

makes a trajectory ¢).
are classified as pets: cats, dogs, fish ca
note that here wediscuss only the formal framework
that these functions are implemented within an interactive win
graphical query interface which we discuss in Section 5.1.

The function

Object_motion:O x V > AM)
ular video sequence and returns atakes sect. descripti da partic 3kes any object description an p cece order to detect whichset of motion descriptions related to tha 5 r 1995.
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objects performed a particular type of motion, i.e., the agent of the action, we
use a function of the following family:

Agents:M x V > (0).

The next function is used to get a detailed description ofall the objects and
their respective motions in a video sequence:

Describe_Video:V > 7(O x M).

If we just want information about the spatial characteristics of objects in a
sequence, we use the function 

 
Objects: V > FCO).

This is equivalent to the “agents” function where the first argument is
unimportant. Thus, given a v, € V, Objects(v,) = Agents(any, v,).

The above functions allow for inexactness, and by default, they return
results that are approximately similar to the precise answer. To make the
operator exact, we use a higher-order operator that converts the query
function in the desired manner,in this case, makesit exact. Thereare several
types of these operators, e.g., exact, partial, and similar.

For making the retrieval exact, the symbol ! is placed in front ofthe query
function. For example, “! Agents” returns only objects that have exactly the
same motion description as the one given in M. Similarly, “!Object_motion”
returns only motion descriptions of objects whose spatial characteristics (for
example, exact bounding polygon, texture) match the spatial characteristics
of a given object.

The # symbol placed in front of the query function is used for partial
retrieval. Partial retrieval means that anyof the motionor temporal charac-
teristics of the given object should match. For exa mple, “#Agents” will return
all objects that match at least one of the motion descriptors.

4.2 The Query Language

The retrieval functions introduced in the previous section are embedded into
the framework of a multimedia functional query language called EVA, de-
scribed in Golshani and Dimitrova [1994]. EVAis the interface to a multime-

ie dia database system capable of storage, retrieval, management, analysis, and
Wa delivery of objects of various media types, including text, audio, images, and

in | moving pictures. The language deals with the temporal and spatial aspects of
ie multimedia information retrieval and delivery, in addition to the usual

capabilities provided by the ordinary database languages. EVA has five
groups of operators, namely: operations for

| editing) the multimedia information, operations for screen management,
Ht temporal operators, operators for specifying rules and constraints, and aggre-

gation (computational) operators. EVA is an extension of a functional query
language whose notation is based on that of conventional set theory. Both the
original language and its extensions are formally defined in an algebraic
framework. EVA is object oriented and supports objects, object classes, at-
ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995
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tributes and methods of objects, and relationshi
been ported onto several different platforms.

EVA provides a widecollection of operators that deal
scanned images, audio, and video. In addition, there are
pendent operators suchas set ope

ps between objects. It has

with text, graphics,
' numerous type-inde-

ratorslike union and set membership. One
of the general operations is: the set construction operator. Generally, this has
the form [(/(«)|P(x)}, where f(x) denotes the desired output objects, and
P(x) denotes theretrieval predicate which hasto be truefor those objects

— set operation symbols: isin, isSubsetOf, isTrueSubsetOf, union intersec¢ : ' , ? ms
tion, difference, Union, Intersection, noOf.

equality operators; 1s, isnot.

— temporal synchronization( forall media types): sim, before, meets, equals,
starts, at, finishes.

spatial composition (applied only to graphics, images, and video): left,
right, bottom, up, showIn, arrange. |
media-dependentoperation symbols include

—text: appendPar, cutPar, eqPar, keyword, isKeywordIn, parSim.
—graphics: insPatch, pictureSum, fill, domain, colors, getPatch, getColor,

restriction, scale, translate, dot, lineSeg, box, coincident, contains, dis-
joint, visible, bounded.

—images: shift, zoom, superimpose, overlay, imageSim.

—audio: intensity, extract, audioIns, audioLen, audioSim.

—video: videoLen, pace, videoClip, videolns.

—integer operation symbols: +, —, *, <, >, <=, >=, Min, max, ave,
sum, prod.

—string operation symbols: concat, strLen.

—logical operation symbols: and, or, implies, not.

To demonstrate the capabilities of EVA and how queries are constructed,
we present a simplified example. Thefirst part of the example will demon-
strate the language without the OMVextensions. The video content retrieval
extensionswill be discussed once the appropriate distinctions are made.

Wepresent the schemaof a multimedia database system and then provide
a few sample queries. The schemais represented as a graph whose nodes are
object classes (in algebraic terms, sorts) and whose ares are the relationships
between object classes (represented as functions). Readers familiar with the
algebraic framework would recognize this as a many-sorted algebra. _ ;

Illustrated in Figure8, the schema models a college basketball ee, a
database. The basic types in this system are String, Integer, Aw ee ne
Video, while Player and School are user-defined data types. The hig o S
portion appeari ng in dotted lines relates to the extension for video conten
retrieval described in Section 4.3.

The main difference between th
former constitute the application-independent
whereas the user-defined types depend on eac

jon Syste

ese basic and user-defined types is that the
constituents of any schema,
h individual application. In

tober 1995
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Fig. 8. Basketball schema

Figure 8, all object types, both basic and userdefined. appearin ovals. The
attributes of objects and their relationships that are captured by arrows are
the following functions:

name_of : Player > String
position_of : Player > String
state_of : Player > Text

interview : Player > Audio
playingHighlights : Player > Video
height_of : Player > Integer
age_of : Player > Integer
plays_for : Player > School
teammembers_of : School > A School)
sname_of : School—String
teamName-_of : School > String
coach_of : School>String

Here are some queries on this database.

(1) List all guards whoaretaller than 190cm.

{name_of(P) | position of(P)is“Guard” and height of(P) > 190}
This is a simple queryon the non multimedia portion of the database. Pis
a variable of type Player. The result is a list of names of players who
satisfy the given conditions.
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(2) Play videoclips ofall centers, and simultaneously display their statisticS.

{(name_of(P), stats_of(P))sim playingHighlights_of( P)|
position_of(P)is“Center”}

While variable P ranges over the elements of type Player, whenever th
condition on positionis satisfied, the name,statistics, and the corres a
ing video clip of the qualified player are displayed. “sim,” steric for
“simultaneously,” is one of the synchronization operators that zitliea
proper semantics for presentations.

(3 Display thestatistics of all Phoenix State University guards, and show
their highlights before playingtheir interviews.

{(name—of( P), stats_of(P))sim( playingHighlights_of(P)

beforernterview( P))| plays_for( P )is“PhoenixStateUniversity”and
position_of(P )is“Guard”}

The result of this queryis that, for every guard of the appropriate school,
while their name and statistics are displayed, their video clip is presented
first, and then their respective interview is played. The term “before” is
another synchronization operator.

4.3 Querying Video Contents

Note that in the above queries, we treated Video, Audio, and Text as basic
types in a similar mannerto the type Integer, i.e., as objects whose contents
can be displayed or presented, but no further specific characteristics are
known about the contents. Our motion recovery algorithm and specifically the
OMVfunctions enable us to treat Video in a different way, as described
below.

Grosky’s [1994] categorization makes a distinction between the physical
basic data types andthe conceptual data types. He adopts a generic model to
represent content-independent and content-based properties of multimedia
objects. Content-independent properties are related to the physical data
object itself (uninterpreted data) as well as synchronization and storage
information. Content-based properties refer to relationships between nonmul-
timedia real-world application entities and multimedia objects. The content-
based properties associate semantics to the object at variouslevels.

A binary object containing the video stream that correspondsto the playing
highlights of a particular playeris an instance of physical data type. The
extracted spatial and motion characteristics are stored in the conceptual ae
type. The queries on the content of the video data are directed to the
conceptual video data type. ; oe

The conceptual video data type is molded from the Seeear
chy presented in Figure 7 using the object-motion-video sano = ‘ ee
retrieval functions augment EVA’s retrieval capabilities since they ee
physical object Video into a conceptualone, i.e., an object with its own spC r 1995.
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set of properties that can be incorporated into queries for more-precise
questions. The extension to the schema which enhances thevideotypeto be a
conceptual type appears in the dotted line in Figure 8. Belowis a list of
operators that augment the retrieval capabilities based on the OMVretrieval
functions:

— Function Composition: given functions f: X - Y and g:Y>Z, the com-
position is f° g(x) = g(f(x)). For example, Given an object (any charac-
teristic) in a video sequence v,, retrieve objects in another video sequence
vy which have similar motion.

Agents( Object_motion(o,,v,), Uv.)

— Temporal Combination Functions: fog where @ € {before, meets, simulta-
neously, starts, finishes}. Although the same syntax is used, these should
not be mistaken for the synchronization operators. In this case, no confu-
sion is expected since the context would determinethe designation of the
operator. An example of usage for this type of operator is the query
“retrieve all the sequences in which a tall person is waving while the
president walks.”

— Spatial Combination Functions: fég where € € {next, behind, inFront, left,
right).

Using the above combinators and the OMVstructure, many newtypes of
queries that refer to the contents of video sequences can bespecified. Specifi-

i Hh cally, we can express queries that refer to the contents of video sequences.
a | Examples include the following:

 
(1) “Retrieve all the video sequences with the longest successful shots.” This

query translates into “retrieve all the video sequences for which the
Bi | length ofthe trajectory of the ball is maximum.”

(2) “Spell out all the details of movements of the players whose height is
greater than 200cm.” This query is good for analyzing the pattern in
which certain players move and achievethescore

(3) “Find the video sequences in which the player is wearing a blue shirt.”
The “blue shirt” is inferred using image analysis. 

Bei The target language is a visual one that allows for inclusion of spatial
properties (sketches) and exact and inexact images. The notation presented in

| i this article is the basis for the visual query interface [Dimitrova 1995;
ia Michael 1994],

5. AN ARCHITECTURE FOR VIDEO CLASSIFICATION AND RETRIEVAL
In the previous sections we introduced a model for videoclassification which
exploits motion recovery and representation. In this section, we discuss a
general architecture for video database retrieval based on the model. The

i proposed architecture, as presented in Figure 9, consistsof:
— Insertion module
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Fig. 9. An architectureforvideo classification and retrieval£

— Derivation module

— Interactive query module
— Video storageserver.

The insertion module is responsible for initial analysis of the incoming
video signal. It consists of a suite of operators for image enhancement,
operators for the extraction of basic spatial properties, and operators for
motion detection and the extraction of motion trajectories.With eben
spatiotemporal hierarchy, this module is an implementation of the operators
between the lowest level of the hierarchy (raw physical data) mune ee
diate representation. Currently, the functionalities for a Sea
supplied by the Khoros computervision environment pasuce . - :
The extraction of image features, findingregions, and thinning operators oe
performed by calls to Khoros functions. Although features areee
extracted, the process offeature selection is manual. ion eae a video
apply an operator for image segmentation and find the Dasa by the
frame, However, the selection of regions of importance is decided by5 i ctober 1995
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application designer. The automation of this whole process is possible for
strictly limited application domains such as industrial monitoring, domain-
specific video editing, camera surveillance, and others. The motion detection
and tracing operators are also part of the insertion module. The implementa-
tion of the motion-tracing algorithm is given in Section 5.2.

The derivation module consists of operators for translation of the extracted
features into meaningful descriptions for retrieval. Each application typically
defines its own set of meaningful entities and events and has its own
interpretation of the same. In our video model and language, the extracted
properties are represented bypredicates. The derivation moduleprovides the
mapping between the visual properties extracted form the video sequences
which are geometric by nature and the algebraic representation whichis used
for querying.

The query module consists of a visual front-end for query composition, a
visual query parser, a schemadesigner, and a presentation manager. The
schema designer and the visual front-end are incorporated into the visual
query language VEVA [Dimitrova 1995]. The VEVA prototype serves as a
testbed for development of new algorithms for video /image segmentation,
video parsing, feature selection, and classification. The prototype has been
implemented in Tel/Tk [Osterhout 1994] with the added image and video
widgets ontop of an existing MPEGencoder [Rowe and Smith 1992].

The video storage server is envisioned to be a disk array serving as a
repositoryof the video sequences. At this point we use a simplefile system for
storing a limited number of MPEG compressed video sequences.

5.1 The Visual Query Language VEVA

Spatial and motion characteristics of objects, derived from images and video
sequences respectively, are inherently visual. In this section, we outline the
design of a multimedia database language which has well-defined semantics
in both character-based and icon-based paradigms.

Defined within the algebraic framework described above, VEVAis a visual
query language that provides all the necessary constructs for retrieval and
management of multimedia information. The basis for the language is a
schema (algebraic signature) which contains entity types (both user-defined
and application-independent types) and the associated operators [Golshani
and Dimitrova 1994]. By using these operators, the user can visually specify a
query for the desired objects in a simple way. VEVA has a formal grammar
with which the set of acceptable expressions can be generated. The grammar
for the visual language VEVA is given using visual rules in the style of a
picture description language which was developed within the syntactic ap-
proach to pattern recognition [Schalkoff 1989]. The grammar rules contain
nonterminal and terminalicons. The rules are given as graph-rewriting rules
where theleft-handside is a nonterminalicon, and the right-hand side is a
re containing nonterminal and terminal icons connected with customizedinks.
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Ultimate Video Enterprising Machine

 
  

| MEL [sores] ser ny] 

Fig. 10. Visual queryinvolving a trajectorydescription.

Parsing of visual expressions in VEVA is a process of determining the
structure of the workspace. Note that parsingis the first step of the VEVA
language processing, becauselexical analysis is not necessary. All available
icon symbols can be drawnfromthe given pallette and connected by a set of
permissible links. Thus, every expression that is drawn is lexically correct.
The execution process begins by parsing the contents of the VEVA workspace.
The algorithm finds the top-level set expressions which maycontainotherset
expressions. Translatedinto visual terms, this algorithm finds the enclosed
visual expressions orother iconic elements within a given oval. The algorithm
calls the set evaluation procedurerecursivelyfor the sets that are contained
in it, until there are single sets with simple function-predicate expressions
left.The evaluated sets can be connected with temporal links which prescribe
the order in which theresulting objects should be presented by the presenta-
tion manager. If the evaluated expression contains temporal links, then the
parsed execution orderis delivered to the presentation manager. . ,

An examplequeryis given in Figure 10. As we stated earlier, VEVA oh
for visual queries in which we can specify the path of a moving puecetn t B
example the inputtrajectory for the playeris given as a smoothedee
The visual query givenin Figure 10 will select those video sequences trom theion S fal. 13 ctober 1995.
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This window displays a set of movies
that you can choose from. If you click
on one of the movie icons, the
corresponding movie will be played in
the upper window.

   
Results from the visual query. Courtesy of NBA Ente rt ainment

repository in which theplayer’s trajectory is similar to the one drawn by the
user and display the name andthepositionofthe player. The result of the
query is shownin Figure 11. The user can browse and play the selected video
segments.

Various models have been proposed for temporal synchronization. composi-
tion, and presentation in multimedia applications, for example, Buchanan
and Zellweger[1993] and Littleet al. | 1991]. On the other hand. a numberof
models for content-based access of digital video has been proposed [Armanet
al. 1994: Bobick 1993: Roweetal. 1994; Swanberg et all. 1993; Zhangetal.
1994]. However, a general formal model anda language
tation, composition, and querying of digital vide
the spatial properties of objects found in the

for content represen-
o based on the temporal and

video sequences has not been
ACMTransactions on Information Systems, Vol. 13, No. 4. October 1995
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Fig. 12. Macroblock motion extraction.

offered yet. Our video model and language VEVA attempts to unify the
presentation aspects as well as content representation aspects of multimedia
objects.

5.2 Implementation of Macroblock Tracing

The motion-tracing algorithm is a part of the derivation module in ourvideo
classification architecture. We have tested our ideas by implementing the
motion-tracing and extraction algorithm underSolaris 2.3 using the MPEG
encoder produced by the Digital Video research team at the University of
California, Berkeley. A functional viewof the MPEG-based motion extraction
is given in Figure 12. We have introduced functions for extraction of motion
vectors during the generation of P- and B-frames. We use the motion-tracing
algorithm to compute the macroblock trajectories.

The performance results are shown in Figure 13. We have tested our
motion-tracing algorithm by ranging the number of macroblocks being traced
from zero to all macroblocks. The input video sequence 1s the standard ae
tennis sequence, which consists of 10 frames, each of size 352 by = a :
This sequenceis a good performancetest case, because it has backgr oun a
foreground motion. The encodingframepattern is IBBBPBBBBP. Ces i
that all the input frames are used for video encoding. If only See -
performed without any motion-tracing algorithm, the total eyae
32.6 seconds (+ /— 0.05 seconds). With the motion-tracing ae anetime increase is evident with the increase of the numberof blocks.

1 S ber 1995.
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Performance graphtor low level motion analysis of the table tennis video sequence
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Fig. 13. Performance of object motion tracking

with one macroblock, we get elapsed timeof 32.76 seconds for encoding and
tracing which is 0.16 seconds more than the previous case. As shown in
Figure 13, when the numberof traced macroblocks increases up to 300, the
elapsed timegoes up to 34.72 seconds. This shows that even if we keep track
of the motionofall the macroblocks wehaveatimeincreaseof 6%.

The gain in MPEGcompression is mostly achieved by exploiting temporal
redundancy. MPEGavoids coding the sameblock twice by storing/sending
over the displacement vector from the previous image. Thus, the basic
assumptionis that the frame pattern used for MPEG compressionis going to
contain P- and B-frames.

Our algorithm for motion tracing would have verylimited applicationif the
stream to be encoded is using onlyI-frames. In that case, there the motion
algorithm cannotfind any motion vectors to take advantageof. If high quality
of encodedvideois crucial to the application at hand, then the algorithm has
to be rewritten, so that motion estimationis performed using some imaginary
frame pattern which would not have any impact on the encodedvideo stream.
Then the motion-tracing algorithm would be performed on the obtained
motion estimates. In this case, the motion information that is obtained from
the encoderis in the forward vectors of the P-frames only, From the P-frame
to the next I-frame we do not have any motion information. We haveseveralchoices:

(a) We can makea prediction for the motion vector between the P-frame and
the next I-frame. This prediction is a guess that we can use the same

ACM Transactions on Information Systems, Vol. 13, No. 4, October 1995.
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motion vector as the vector for
introduce additional overhead. Th
the assumption for the

the P-frame, This solution does not
€ problem is that it relies not only on

continuity of motion but also assumes that themotion 1s constant.

Wecan perform theactual
S

search and compute the motion vector for the
ext I-frame, This means that wewill be adding

much more computecycles thanit is necessary for the encoding process
blocks from the P- to the n

We also need much more complicated motion models to recover the true
motion of the objects in the case of complicated camera motion. For example
when we have the camera focus on a moving object, then the object appears to
be stationary. The motionofthe object is implied by the macroblock vectors of
the background. More-sophisticated relative-motion detection algorithms are
needed, This work is part of our ongoing SunSet Multimedia Information
System project [Golshani and Dimitrova 1994: Michael 1994].

6. CONCLUSIONS

From the point of viewofvideo retrieval, the video technology has not seen
much progress from the days when film editors examined each and every
frame by handinorderto find the exact place of each cut. In fact, despite the
introduction of many video editing systems such as VideoShop and Adobe’s
Premiere, muchofretrieval is done by either time pointers (e.g., the frame
counter), visual proxies, or various types of graphical or descriptive pointers.
What is clearly missing from the video technologyis the ability to locate and
retrieve video clips that contain an object with specific characteristics, partic-
ularly with respect to movements. Video databases can be useful to many
application areas such as education, business, medicine, and more promi-
nently, entertainment. As such, the value of better and more-equipped video
systems are becoming clearer. While many aspects of video systems, such as
presentation editing tools, have seen significant improvement, our progress

on content-based retrieval has not been as forthcoming. ;
Webelieve that our attempts to address the above needs must start with a

modeling mechanismthat allows for the representation of semantic knowl-
edge from both spatial and temporal features of the objects in video Be
quences. Computinghigh-level motion description can be done independently
of recognizing objects [Allmen 1991]. We elaborate on this property by
showing that the recovery of object trajectories can be performed ee
prior knowledge of objects undergoing motion. The goal Is to have 0 :
independentretrieval along the temporal and thespatial hierarchies we
as retrieval of combined features from the spatial and the temporal pcied
chies. We treat motion vectors extracted during the motion compensation

i r used forphaseof video encoding as coarse-level optical flow thatis CE
intermediate- and high-level motion description. Motion unformalson.a
tion is then carried out at low level by motion vectorsemi
intermediate level by motion tracing, and the high evel ac
object and a setoftrajectories with recognizable AGRICion 8 ; < ctober 1995
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In ourobject motion representations, we provide various levels of precision
of trajectory representation, Retrieval functions based on these representa-
tions offer a wide spectrum of approximation in the process of matching. We
need to relate the motion at a higherlevel of abstraction of the object to the
detailed motion of parts of objects. Events can be represented in a form that
is commonin the image-understanding and interpretation area: predicates,
temporal networks, etc.
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