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[, Emily R. Florio, state and declare as follows:

1. [ have prepared this Declaration in connection with the Petitions of
Axis Communications AB, Canon Inc., and Canon U.S.A., Inc. (collectively
“Petitioner”) for two inter partes reviews of U.S. Patent No. 7,868,912 (“the *912
patent”), Case Nos. [PR2019-00235 and IPR2019-00236, which I understand will
be filed concurrently with this Declaration.

2. [ am currently the Director of Research & Information Services at
Finnegan, Henderson, Farabow, Garrett & Dunner LLP, 901 New York Avenue
NW, Washington, DC 20001-4413.

3. [ am over 18 years of age and am competent to make this Declaration.
I make this Declaration based on my own personal knowledge, based on my
knowledge of library science practices, as well as my knowledge of the practices at
the Massachusetts Institute of Technology (“MIT”) Libraries.

4. I earned a Master’s of Library Science (“MILS”) from Simmons
College in 2006, and I have worked as a librarian for over a decade. I have been
employed in the Research & Information Services (formerly Library) Department
of Finnegan since 2013, and from 2005-2013, I worked in the Library Department

of Fish & Richardson P.C.
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5. I am currently the Vice-President Elect of the American Association
of Law Libraries and the President of the LLaw Librarians’ Society of Washington,
DC, and a member of the International Legal Technology Association.

Attachments

6. Attached as Exhibit A (Exhibit 1003 to the Petition in IPR2019-
00235) is a true and correct copy of “Visual Memory,” May 1993, pp. 1-92, by
Christopher James Kellogg (“Kellogg”), obtained from the MIT Libraries.

7. Attached as Exhibit B is a true and correct copy of the “Standard”
record from the MIT Libraries’ catalog system (known as the Barton Catalog) for
its copy of Kellogg.

8. Attached as Exhibit C is a true and correct copy of the MARC record
of the MIT Libraries for its copy of Kellogg.

9. Attached as Exhibit D (Exhibit 1005 to the Petition in IPR2019-
00235) is a true and accurate copy of B. Flinchbaugh et al., “Autonomous Video
Surveillance,” SPIE Proceedings, 25" AIPR Workshop: Emerging Applications of
Computer Vision, Ieb. 26, 1997, Vol. 2962, p. 144-151 (“Flinchbaugh”), obtained
from the MIT Libraries.

10.  Attached as Exhibit E is a true and correct copy of the MARC record
of the Library of Congress for its copy of the SPIE Proceedings publication that

includes Flinchbaugh.
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11.  Attached as Exhibit F is a true and correct copy of the MARC record
of the MIT Libraries for its copy of the SPIE Proceedings publication that includes
Flinchbaugh.

12.  Attached as Exhibit G (Exhibit 1004 in each Petition in IPR2019-
00235 and IPR2019-00230) is a true and correct copy of. Brill et al., “Lvent
Recognition and Reliability Improvements for the Autonomous Video Surveillance
System,” Proceedings of the Image Understanding Workshop, Monterey, CA, Nov.
20-23, 1998, Vol. 1, pp. 267-283 (“Brill”), obtained from the Duderstadt Center,
formerly known as the University of Michigan Media Union (UMMU).

13. Attached as Exhibit H is a true and correct copy of the MARC record
of the University of Virginia Library for its copy of Brill.

14, Attached as Exhibit [ is a true and correct copy of the MARC record
of the North Carolina State University library for its copy of Brill.

The MARC Cataloging System

15, The MAchine-Readable Cataloging (“MARC”) system is used by
libraries to catalog materials. The MARC system was developed in the 1960s to
standardize bibliographic records so they could be read by computers and shared
among libraries. By the mid-1970’s, MARC had become the international standard

for bibliographic data, and it is still used today.
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16.  Each field in a MARC record provides information about the
cataloged item. MARC uses a simple three-digit numeric code (from 001-999) to
identify each field in the record.

7. For example, field 245 lists the title of the work and field 260 lists
publisher information. In addition, field 008 provides the date the item was
cataloged. The first six characters of the field 008 are always in the “YYMMDD”
format.

18.  Itis standard library practice that once an item is cataloged using the
MARC system, it is shelved. This process may take a relatively nominal amount
of time (i.e., a few days or weeks). During the time between the cataloging and
shelving of an item, the public may still find the item by searching the catalog and
requesting the item from the library.

Kellogg

19. As indicated in Exhibit A (Exhibit 1003 to the Petition in IPR2019-
00235), Kellogg has an MIT Libraries date stamp of “JUL 09 1993 on page 1,
indicating that the MIT Libraries received Kellogg on July 9, 1993. Further, as
indicated in Exhibit B, the Standard record of the Barton Catalog confirms that
Kellogg is shelved at the MIT Libraries and was published in 1993. In view of the
above and the following, Kellogg was published and accessible to the public in

1993, years before October 1999.
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20.  Asindicated in Exhibit C, Kellogg has a cataloging date of September
28, 1993 (shown as “930928” in field 008). This confirms that Kellogg was
entered into the OCLC database, in which MIT does its cataloging, on September
28, 1993. This is also consistent with its noted year of publication in the MARC
record (shown as “1993” in field 260). The OCLC database (also referred to as
“WorldCat”) is the largest online public access catalog (OPAC) in the world.

21.  Soon after Kellogg received a cataloging date, a record of its existence
would have appeared in and been keyword-searchable through the Barton Catalog
of the MIT Libraries. The Barton Catalog is currently available online to any user
of the World Wide Web. Before it was accessible by Web (i.e., at the time the
Kellogg thesis was reqeived by the MIT Libraries in July 1993), it would have been
accessible to anyone on the MIT campus and anyone who had access to the OCLC
database.

22, During the time period from September 1993 through October 1999,
the Barton Catalog allowed keyword searching for words in the thesis title, and
Kellogg would have appeared in a relevant Barton Catalog search conducted on or
shortly after September 28, 1993.

23. After being cataloged, a document such as Kellogg will undergo a
process of being labeled and then shelved at the MIT Libraries. Based on my
knowledge of MIT Libraries’ current and prior practices, Kellogg would have been

6
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shelved in a relatively nominal amount of time (i.e., a few days or weeks). Thus,
Kellogg was cataloged and shelved at the MI'T Libraries at least before the end of
1993.

24. Once shelved, Kellogg can be borrowed by any member of the MIT
community. Furthermore, a copy of Kellogg can be purchased from MIT by any
member of the public. Indeed, the first page of Kellogg confirms that there were
no restrictions placed on its publication, as it states that “[t]he author hereby grants
to MIT permission fo reproduce and to distribute copies of this thesis document in
whole or in part, and to grant others the right to do so0.”

25.  Further evidence of the public availability of Kellogg before October
1999 is provided in Exhibit D, which is a copy of Flinchbaugh. In its
Bibliography, Flinchbaugh cites to Kellogg (reference [4] on p. 151). As
addressed below, FFlinchbaugh was published in SPIE Volume 2962, which
corresponds to the Proceedings from the 25" Annual AIPR Workshop on
Emerging Applications of Computer Vision. The Workshop was held October 16-
18, 1996, and the Proceedings were published by at least 1997. Thus, Kellogg was
at least available to members of the public in 1997, as shown by its citation in
Flinchbaugh.

26.  For the avoidance of any doubt, I note that on June 23, 2001, Kellogg
was also cataloged in the MIT Archive Noncirculating Collection 1,

7
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Noncirculating Collection 3, and in microfiche form in the Barker Library, as
indicated in the three entries for PSTS and in the second, third, and fourth instances
of field 008 on page 1 of Exhibit C. However, none of this alters the fact that
Kellogg was published and accessible to the public in 1993, as indicated above.

Flinchbaugh

27.  Asindicated in Exhibit D, Flinchbaugh (Exhibit 1005 to the Petition
in [IPR2019-00235) was published in the Proceedings of the 25" AIPR Workshop:
Emerging Applications of Computer Vision, SPIE Vol. 2962. The Workshop was
held in Washington, D.C. during October 16-18, 1996, and the Proceedings was
published by SPIE (The International Society for Optical Engineering). Ex. D at 1.
In view of the above and the following, Flinchbaugh was published and accessible
to the public before October 1999.

28.  Page 2 of Exhibit D shows a copyright date of 1997. The edition of
the SPIE Proceedings that was published with Flinchbaugh is Volume 2962, and it
was “Printed in the United States of America.” Ex. D at 2.

29.  Although the copyright date of Flinchbaugh is listed as 1997, it
appears that Ilinchbaugh was actually published before that, in 1996. First, as
noted above, the Workshop was held in Washington, D.C. during October 16-18,
1996. Second, a copy of Flinchbaugh was received and cataloged by the Library
of Congress in November 1996. See Ex. E at 1. Exhibit E is the MARC record for

8
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the SPIE Proceedings, including Flinchbaugh, that was obtained from the Library
of Congress. As shown in field 008 near the top of page 2 of Exhibit E,
Flinchbaugh was cataloged by the library on November 21, 1996. Based on
standard library practices, this reference would have been shelved shortly after it
was cataloged (i.e., within a few days or weeks). Collectively, Exhibits D and If
show that Flinchbaugh was published and accessible to the public years before
October 1999.

30.  Further evidence of the publication and public availability of
Flinchbaugh can be found in Exhibit I, which is the MARC record for the SPIE
Proceedings, including Flinchbaugh, that was obtained from the MIT Libraries.
As shown in field 008 on page 1 of Exhibit F, Flinchbaugh was cataloged by the
library on March 10, 1997. Based on standard library practices and my
understanding of the practices of the MIT Libraries, this reference would have
been shelved shortly after it was cataloged (i.e., within a few days or weeks) and
accessible to the public before October 1999.

31.  For the avoidance of any doubt, I note that on April 8, 201 1,‘ online
access to I'linchbaugh was provided to certain MIT-associated individuals, as
indicated by the fields 008 and 8528 and the URL entry at the top of page 2 of
Exhibit F. Also, on June 23, 2001, the SPIE Proceedings, including Flinchbaugh,
was archived at the MIT Library Storage Annex (“LLSA”), as indicated by the

9
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second 008 field and subsequent 8520 entry on page 2 of Exhibit F. However,
none of this alters the fact that Flinchbaugh was published and accessible to the
public years before October 1999, as indicated above.

32.  Asindicated in Exhibit G, Brill (Exhibit 1004 to each Petition in
[PR2019-00235 and IPR2019-00236) is part of the published Proceedings of the
1998 Image Understanding Workshop. The Workshop was held in Monterey,
California during November 20-23, 1998, and the Proceedings were “APPROVED
FOR PUBLIC RELEASE” with “DISTRIBUTION UNLIMITED.” Ex. Gat 1. In
view of the above and the following, the Proceedings, including Brill, was
published and accessible to the public before October 1999.

33.  Evidence of Brill’s publication and availability to the public includes
the hand-written receipt date of “8-13-99” at the top of page 3 of Exhibit G. This
indicates it was received by the UMMU (the University of Michigan Media Union,
now known as the Duderstadt Center) on August 13, 1999. In my experience as a
librarian and knowledge of standard library practices, the hand-written information
at the top of p. 2 of Exhibit G appears to be the catalog record information for
Brill. Based on standard library practices, this reference would have been shelved

shortly after being received and cataloged by UMMU.

10
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34.  Further evidence of the publication and accessibility of Brill to the
public can be found in Exhibit H, which is the MARC record for the‘ Proceedings,
including Brill, that was obtained from the University of Virginia Library. As
shown in field 008 near the top of page 2 of Exhibit H, Brill was cataloged by the
library on December 15, 1998. Based on standard library practices, this reference
would have been shelx}ed shortly after (i.e., within a few days or weeks) and been
accessible to the public prior to October 1999.

35.  Further evidence of the publication and public availability of Brill can
be found in Exhibit I, which is the MARC record for the Proceedings, including
Brill, that was obtained from North Carolina State University. As shown in field
008 on page 1 of Exhibit I, Brill was cataloged by the library on December 15,
1998. Based on standard library practices, this reference would have been shelved
shortly after (i.e., within a few days or weeks) and been accessible to the public

prior to October 1999.

I declare under penalty of perjury that the foregoing is true and correct.

IExecuted on November 9, 2018 in Washington, D.C.

Emily R. Florio

11
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Chapter 1

Introduction

Visual memory supports computer vision applications by efficiently storing and re-
trieving spatiotemporal information. It is a unique combination of databases, spatial
representation and indexing, and temporal representation and indexing. Visual mem-
ory provides representational flexibility and high-performance information access to

meet the requirements of a variety of computer vision applications.

1.1 Needs for Visual Memory

Applications use spatiotemporal data in many different ways and place many different
demands on a visual memory. Studying possible uses helps to clarify the concept of
a visual memory and to identify the functionality it provides.

Visual memory could serve as the repository for static information, such as ob-
ject descriptions, maps, and environment models, that applications reference during
execution. For example, a vehicle navigator could store maps and images to help it
later recognize its location. A large amount of such information could be established
prior to application execution, and the visual memory would subsequently provide an
application with efficient access to desired pieces of information.

An application could store dynamic information in the visual memory. For ex-
ample, a vehicle navigator’s input systems could maintain in the visual memory a

description of the vehicle’s local environment, updating it as the vehicle moved. The
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visual memory could provide the navigator’s planning processes with information
about the vehicle’s latest state and could analyze its progress to help determine a
course of action. The high performance of the visual memory allows it to handle the
frequent updates and queries needed by such dynamic, real-time systems.

Visual memory could manipulate spatiotemporal information about objects and
collections of objects too large to fit into volatile memory. For example, a computer-
aided design and modeling system could use the visual memory in building up a large
design layout and simulating its execution over time; a photo interpretation system
could similarly construct in the visual memory a complex representation of a scene.
The visual memory would retrieve into main memory only a manageable part of a
large representation at a time.

Visual memory could act as the interface between inputs and applications in a
computer vision system. For example, computer vision algorithms for a security
system could analyze data provided by various cameras and store information in the
visual memory. Applications could then retrieve this data to track objects, watch for
suspicious events, and respond to user queries. The visual memory would coordinate
the information from its inputs and eliminate the need for full connectivity between
inputs and applications.

Finally, visual memory could serve as a means for data transfer. A computer
vision application could store spatiotemporal information in the visual memory for
other applications to retrieve at any time in the future. To run comparative studies,

different algorithms could use common data stored in the visual memory.

1.2 Goals

This thesis explores visual memory design and implementation. The primary goal
of the thesis is to design a visual memory architecture that meets the requirements
of various computer vision applications. A secondary goal is to implement a visual

memory prototype to support a real-time scene monitoring prototype.

10
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Chapter 2

Background

Visual memory builds on research in database design, spatial representation and
indexing, and temporal representation and indexing. While there has been significant
research in each of these areas, no previous project has combined them in this manner.
The visual memory design uses knowledge gained from research projects in all these

areas. This chapter summarizes and discusses some especially relevant projects.

2.1 Database Research

Visual memory must address concerns that a great deal of database research has
already investigated. It must provide everything from information storage techniques
to concurrency control for multiple inputs and outputs. Visual memory should build
on the results of research into these topics. Presented here are two databases that
address a number of the issues important to visual memory and that could be the

basis for a visual memory system.

2.1.1 DARPA Open OODB

The DARPA Open Object-Oriented Database (Open OODB) project at Texas In-
struments outlines an extensible architecture that allows “...tailoring database func-
tionality for particular applications in the framework of an incrementally improvable

system ....” [25] The architecture meets functional requirements such as an object

11
Axis Exhibit 1003, Page 11 of 92

Axis Exhibit 1007, Page 23 of 154



data model and concurrent access, along with “meta requirements” including open-
ness and reusability. The open architecture lets separate modules handle extensions
to the basic storage mechanism. These extensions cover standard database issues
such as transactions, versions, and queries.

The Open OODB architecture is very suitable for visual memory. The object-
oriented model can flexibly and intuitively represent the information used by computer
vision applications. Following the Open OODB architecture, visual memory could
avoid confronting standard database issues by letting other modules support those
features. Instead, visual memory would consist only of those extensions necessary to
support efficient manipulation of spatiotemporal information. If new features were

needed, extra modules could easily be added to the architecture.

2.1.2 POSTGRES

The POSTGRES database [23] expands the relational database model to meet the
needs of complex applications. Because it builds on traditional relational databases, it
provides a number of standard features, such as transactions, a query language, and
recovery processing. In addition, it allows applications to specify new data types,
operators, and access methods. POSTGRES supports active databases and rules,
letting applications set up daemons in the database that react to changes in the data.
A versioning mechanism keeps track of old data and works with the query language
to let applications retrieve this information. Finally, the POSTGRES storage server
can “vacuum” old data onto archival media.

POSTGRES supplies many features useful to a visual memory, such as transac-
tions, queries, and application-defined access methods. However, the relational model
might not be sufficiently expressive to meet the representational needs of complex
computer vision applications. In addition, the POSTGRES design does not support
application-specific extensions to the database, so it would be hard for the visual

memory to expand to meet future requirements.
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2.2 Spatial Research

There are many ways to describe spatial objects and to handle their storage and
retrieval. Visual memory must consider how well different spatial models meet the
representational needs of computer vision applications and how efficiently information

in these models can be stored and retrieved.

2.2.1 CODGER

Researchers at Carnegie Mellon University developed the CODGER (COmmunica-
tions Database with GEometric Reasoning) “whiteboard” database and communica-
tion system to support the autonomous NAVLAB vehicle [20]. CODGER stores data
to be communicated among the various modules that control vehicle navigation. It
represents this information as tokens consisting of attributes and values.

CODGER uses a fairly simple spatial model. Token attributes represent basic
spatial information such as position and object extent. The tokens support some
standard geometric operations like area calculation. A query mechanism can answer
some spatial queries like the proximity query “Return the tokens with location within
5 units of (45,32).” CODGER does not provide an indexing mechanism, and spatial

operations and queries are performed in memory.

2.2.2 Core Knowledge System

The Core Knowledge System (CKS) [24], developed at SRI International, stores in-
formation for a robot. Like CODGER, it encodes this information as attribute-value
tokens. CKS introduces special support for the uncertainty that results from incon-
sistent or incomplete information provided to the database. Its query mechanism
includes keywords such as apparently and possibly to discern multiple opinions. Since
spatial information is often imprecise, this support for uncertainty would be very use-
ful in a visual memory context. However, CKS does not provide any special spatial

operations or query constructs.
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2.2.3 ISR

The ISR project at the University of Massachusetts at Amherst [3] defines a spatial
representation (the Intermediate Symbolic Representation) and a management system
for accessing data represented this way. The intermediate symbolic representation
includes tokens for basic spatial objects such as lines, regions, and sets of parallel
lines, but not for higher-level spatial objects such as people and vehicles. The data
management system manipulates these tokens in an efficient manner. Applications

built with ISR perform classification and in-memory spatial indexing.

2.2.4 Image Understanding Environments

The Image Understanding Environments (IUE) program [16] specifies a spatial rep-
resentation to meet the needs of a wide variety of computer vision applications. An
IUE spatial object is defined by a set of points; this point set can be concrete (a list
of all the points) or abstract (an equation defining the points in the object). IUE
spatial objects are manipulated through set operations — complex objects can be con-
structed through conjunction and disjunction of point sets. In addition to its point
set, each spatial object also defines a bounding box, a centroid, and other attributes
for different, and perhaps more efficient, methods of spatial manipulation. The IUE
specification only briefly discusses data transfer and does not provide database sup-

port for storage and retrieval of spatial information.

2.2.5 PROBE

The PROBE database [15], developed at the Computer Corporation of America,
extends an object-oriented database management system to meet the requirements
of a variety of computer vision applications. It implements a number of spatial
data types and supports operations on sets of points. It outlines a query language
with some support for spatial queries. To provide more efficient spatial access, it
also provides what the authors call approzimate geometry, a limited form of spatial

indexing.
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2.2.6 Spatial Indices

A large number of spatial data structures can provide efficient access to spatial in-
formation. Samet [18] describes a number of these, including quadtrees, hash tables,
grid files, range trees, and R trees. Each index is specialized for specific storage and
retrieval characteristics; visual memory would benefit from including a number of

different indices to efficiently manipulate data for different applications.

2.3 Temporal Research

Databases manipulate two different types of time: transaction time, specifying when
updates for events are stored in the database, and valid time, specifying when events
actually happen. Rollback databases implement transaction time, historical databases
implement valid time, and temporal databases implement both. Sometimes historical
and rollback databases are informally called temporal databases to indicate their con-
cern with time. Since the computer vision applications discussed in the Introduction
are concerned with the times at which events happen, visual memory should be a
historical database.

A number of different historical and temporal databases represent and store tem-
poral information. Each addresses a different set of concerns, and some designs suit
visual memory better than others. The following research projects address many of

the issues that visual memory must consider.

2.3.1 TQuel

The temporal database TQuel [21] is a temporal extension to a relational database.
TQuel associates with each database record the slots valid-from and valid-to, defining
an interval during which the record is valid. For example, the Employees relation
might have three records for Frank, one valid from 0 to 1/1/93, another valid from
1/1/93 to 5/7/93, and a third valid from 5/7/93 to co. If Frank were changed on
8/7/93, then the third record’s valid-to slot would be changed to 8/7/93, and a new
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record valid from 8/7/93 to co would be added.

TQuel extends the query language Quel [12] to support temporal access of records.
A temporal query specifies an interval of interest; the database retrieves any record
whose valid interval overlaps that interval. A query can also ask for records before,
after, or as of a given moment. TQuel provides operators such as overlaps and exztend

to form complex query intervals.

2.3.2 Temporal Sequences

The temporal database outlined in [19] models object state changes with temporal
sequences. A temporal sequence can be discrete or continuous; for example, sales
per month could be modeled as a discrete temporal sequence, while the voltage in
alternating current could be modeled as a continuous temporal sequence. A temporal
sequence is always represented by a set of state snapshots; interpolating functions
estimate continuous sequences. Characteristics such as granularity and regularity of
state snapshots define each temporal sequence. Functions including selection, ag-
gregation, and accumulation operate on sets of time sequences. The database also

includes a powerful SQL-like [1] query language for retrieving temporal sequences.

2.3.3 Temporal Sets

Researchers at the University of Houston proposed some temporal additions [8] to
the Extended Entity-Relationship Model. The basic temporal representation in this
temporal model is a finite union of time intervals; for example, a particular state
could be valid during the set of time intervals { [50,60), [90,230), [231,239) }. The
database stores with each object a temporal element denoting its valid time. Basing
temporal representation on sets of intervals preserves closure under set operations
and provides a standard means for manipulating temporal information and querying
the database.

This model was later augmented to better represent temporal uncertainty [13].

The extended model preserves the definition of a temporal element but modifies the
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definition of a temporal interval. Each endpoint in an interval specifies a valid time
method that returns an ordered set of time points. The endpoint belongs to this set,
but in order to allow for uncertainty, it is not explicitly specified. The model also

modifies the standard set operations to manipulate uncertain temporal elements.

2.3.4 Relative Time

Some applications, such as computer-aided design systems, know how events are
ordered but not the actual times of the events. Chaudhuri [5] proposes a temporal
model to handle these cases. This model represents time as a graph rather than as
a time line. Events are ordered with binary relations like before and simultaneously.
These relations must obey properties such as transitivity and antisymmetry so that
the database can navigate through a graph and infer additional relationships. The
model supports temporal queries about event relations; for example, a query could
ask for a lower time bound on an event or for common ancestors of two events. This
capability could be useful in a visual memory to support efficient handling of temporal

information for some applications.

2.3.5 Temporal Indices

Much of the spatial indexing research also applies to temporal indexing. For example,
interval trees can store intervals in space or in time. To handle more complex, spe-
cialized temporal representations, however, requires additional research. Some of the
databases described above provide their own temporal indices; [22] references many

other systems with temporal indices.
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Chapter 3

Design

This chapter presents a design for a visual memory system. It examines require-
ments and considerations that the design must take into account. It discusses key
visual memory topics such as representation and indexing of spatial, temporal and
spatiotemporal information. This chapter outlines a concrete, implementable system;

the next chapter presents the prototype implementation of this design.
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3.1 Requirements and Considerations

The design of a visual memory must address a number of concerns. Some of these
come from anticipated uses of the visual memory, while others are common themes
in spatial, temporal, and database research. This section covers a number of these

requirements and considerations.

3.1.1 Database Considerations

One database issue relevant to visual memory is how to represent and store informa-
tion. There are several standard models, including the relational model, the entity-
relationship model, and the object-oriented model. The visual memory should use an
object-oriented model to meet the broad representational requirements of a variety of
applications. An object-oriented approach is intuitive and highly extensible, allowing
applications to define new, complex objects at any time.

Another important consideration is concurrency control. The visual memory must
be able to handle multiple, dynamic inputs and outputs. For example, in a scene-
monitoring system, many different cameras could update the visual memory simulta-
neously. The visual memory must ensure data consistency.

Much database research involves well-defined program interfaces, including ex-
plicit storage mechanisms and query algebras. Applications using the visual memory
do not need to know how it achieves its results, but they should know what results to
expect. For example, performance-enhancing measures such as indexing and caching
do not affect the objects returned by a query and can be added without affecting the
query algebra.

Recoverability is another database issue important to some visual memory ap-
plications. The visual memory must work to guarantee that, even in the case of a
system crash, it does not lose stored information. In addition, it must be able to

remove inconsistencies resulting from system failure during information storage.

19
Axis Exhibit 1003, Page 19 of 92

Axis Exhibit 1007, Page 31 of 154



3.1.2 Spatial and Temporal Considerations

The purpose of visual memory is to store information about the history of a visual
environment. Visual memory is not just a generic database — it must have spa-
tiotemporal concerns at the heart of its design.

A visual memory must provide representational flexibility. Rather than forcing
one spatiotemporal representation on all applications, the visual memory should be
tailorable to an application’s needs. Applications can trade off between representa-
tional power and performance.

A visual memory must handle dynamic objects. Some computer vision applica-
tions need to update spatial information in response to changes in the environment.
The visual memory must define spatiotemporal representations to effectively handle
such changes. It must provide a versioning mechanism to store and retrieve different
state snapshots of objects.

A visual memory must provide a flexible, expressive query mechanism with exten-
sive spatiotemporal support. This query mechanism should support a wide variety of
spatiotemporal queries. For example, a security system might ask the visual memory
to retrace a person’s path over the past five minutes, a vehicle navigator might ask
it to watch for objects entering the field of view, and a CAD system might ask for
simulation results for everything electrically connected to a specific chip. The visual

memory should let applications conveniently express such queries.

3.1.3 Performance Considerations

High performance is one of the key requirements for a visual memory. Some visual
memory applications, such as a vehicle navigator, need to store and retrieve infor-
mation very quickly. Many spatial and temporal models in the literature are very
expressive but do not provide the necessary information throughput. A visual mem-
ory must be both expressive and fast enough to meet the demands of its applications.

Indexing can help a visual memory achieve high performance by quickly identifying

objects satisfying given constraints. Visual memory indices should be conservative,
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never mistakenly omitting objects that satisfy a query. In this manner, indices can
improve query performance but are guaranteed to not affect the results.

A visual memory must provide a variety of indices to meet the needs of different
applications. For example, a real-time scene monitoring system could set up an index
to track the centroids of moving objects, while a photo interpretation system could
index the areas covered by objects. A visual memory indexing mechanism should be
extensible, handling additional application-defined indices.

A visual memory must let applications control which objects are indexed. For
example, an application could establish one index on all objects, another index on
everything in the current session, and yet another index only on certain objects of
interest. This would prevent the visual memory from wasting time and space updating
unimportant indexing information.

Caching and look-ahead techniques can increase the performance of a visual mem-
ory. Caching improves storage performance by not requiring the visual memory to
wait for information to be written to disk. Both caching and look-ahead improve
retrieval performance by reducing the number of disk accesses.

Visual memory performance can be increased by letting applications tailor the
visual memory to their specific requirements. For example, some applications can
afford to lose a small amount of data, so they could eliminate recoverability infor-
mation. Other applications could optimize specific storage and retrieval cases; for
example, a vehicle navigator could optimize its real-time performance by sacrificing

some historical performance.
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3.2 Design Overview

The visual memory design consists of a set of extensions to an open database architec-
ture like DARPA Open OODB [25]. An open architecture allows the visual memory
to add spatiotemporal customizations to the database. The visual memory can take
full advantage of other modules implementing features such as concurrency control,
caching, and versioning, without having to handle these capabilities directly.

The visual memory design follows the object-oriented model discussed in the previ-
ous section. A class hierarchy defines representations for spatiotemporal information.
Abstract superclasses define the interfaces for manipulating spatiotemporal informa-
tion, and their subclasses extend the definitions to represent more specific types of
objects. This document denotes classes in italics; for example, SpatialObject is the
class representing spatial objects. A concrete member of this class is referred to as
“a SpatialObject instance” or informally just as “a spatial object.”

The visual memory design specifies a number of classes for representing spatiotem-
poral information. These classes provide methods through which computer vision
applications and the visual memory can manipulate them. For example, the spatial
class Square could include a method to return its area, the temporal class Temporal-
Interval could have a method to determine its duration, and the spatiotemporal class
Person could implement a method plotting its space-time trajectory. Applications
can design their own classes inheriting from these classes and extending them to meet
additional needs.

The visual memory design extends the database’s storage mechanism. It provides
a mechanism for object identity and maintains a history for each object. Each version
of an object specifies when it was valid, and the visual memory can manipulate
versions based on valid time. The design lets applications customize the database
storage server based on characteristics of the data they typically store.

The visual memory design extends the database’s query mechanism to provide
spatiotemporal support. The additional spatiotemporal constructs allow computer

vision applications to flexibly and expressively specify objects of interest.
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To achieve suitable query performance, the visual memory provides spatiotempo-
ral indices that can efficiently identify objects satisfying query conditions. A visual
memory index is an object that maintains information about other objects, allowing
it to efficiently indicate those objects that meet certain constraints. For example, a
visual memory spatial index might store object centroids so that it can quickly iden-
tify all the objects within a specified area. The visual memory provides a powerful

and flexible indexing mechanism.
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3.3 Spatial Representations

The visual memory spatial class hierarchy provides a powerful framework that allows
applications flexibility in designing spatial representations while ensuring that the
visual memory can access the information it requires. The class hierarchy draws on
the research outlined in the Background chapter. It provides the basic framework
for any visual memory application, and it allows applications to extend it to meet
additional needs.

Spatial operations are often complex and require much computation. Spatial
indices, described in Section 3.8, can increase the performance of these operations
by maintaining information about sets of spatial objects. This chapter presents a

number of spatial operations; Section 3.8 describes related performance issues.

3.3.1 Core Spatial Classes
SpatialObject

The SpatialObject class is the basis for all high-level spatial representations. Possi-
ble subclasses derived from SpatialObject include Cube, QuestionMark, and Person,
depicted in Figure 3-1. SpatialObject captures the common representational require-
ments of a variety of such spatial objects. It provides a standard set of slots and
methods to yield a consistent spatial interface. Applications can design additional
spatial representations as long as they provide the same functionality.

A spatial object is defined by a set of points and a local coordinate system. This
information is sufficient to fully represent a spatial object. The point set specifies
what area of space the object fills. The coordinate system relates these points to the
points in other spatial objects. Additional information, such as centroid, orientation,
and bounding box, is derivable from this information.

SpatialObject provides a wide variety of methods to manipulate its data. These
methods can translate and rotate an object, operate on its point set, and find the
object’s bounding box, among other things. Most of these are actually point set and

coordinate system functions and will be discussed further below. Concrete spatial
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Figure 3-2: Discrete point set

to store and manipulate sets of points. Since PointSet is a kind of Set, it provides
standard set operations, such as union, disjunction, member, and difference. This
allows a powerful means for constructing complex objects. It also furnishes a well-
defined and sound mathematical basis for spatial representation and manipulation.

The class DiscretePointSet represents a set of points simply as an exhaustive
list of all desired points. This representation is feasible only for small point sets.
For example, consider the task of representing the square area of the points plotted
in Figure 3-2. A system could, by convention, represent a square area by such a
discrete set of points. Standard set operations can easily manipulate this information.
Unfortunately, the space required for this representation grows too quickly to be
broadly applicable.

The class AbstractPointSet is a far more efficient means for representing large
or even infinite point sets. It abandons an exhaustive list of all points in favor of
a functional definition of the points in the set. An abstract point set specifies a
function that returns TRUE for points in the set and FALSE for points not in the
set. For example, the function for the continuous square in Figure 3-3 would check for
—1 <= z,y <= 1. This fully represents the square area. A point set’s representation

function grows complex as the set is modified by operations such as conjunction and
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Figure 3-4: Coordinate systems

dimensions, axes, and other features of the space. These specifications give meaning
to points and provide the basis for relating points. The visual memory defines a coor-
dinate system for a set of points; the SpatialObject class associates a local coordinate
system with each point set.

The main job of a coordinate system is to relate points. To do this, it maintains a
list of coordinate transforms between it and other coordinate systems. To achieve high
run-time speed efficiency, a coordinate system can maintain transforms between it and
several other coordinate systems. Alternatively, it can trade off speed of operation
for lower space requirements by storing only a few transforms and letting the visual
memory follow a chain of transforms among related coordinate systems.

To reduce the cost of multiple transforms, an application can adopt a unified co-
ordinate system to relate a number of nearby local coordinate systems. This unified
coordinate system would maintain transforms to and from each local coordinate sys-
tem. In this manner each coordinate system would not need to keep a large list of
transforms, and only two transforms would be needed to relate points in one coor-
dinate system to those in any other. A limitation of this approach is that it does

not scale well for large distances, because the error induced by each transform could
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compound significantly.

The CoordinateSystem class provides methods to transform a coordinate system’s
relationship with other coordinate systems. For example, one coordinate system
might translate and rotate with respect to others. Transforming a coordinate system
modifies its list of coordinate transforms, and all coordinate transforms between it
and other systems must be updated. This is automatically provided by the visual
memory as part of the transformation method.

Transforms like translation and rotation are CoordinateSystem methods rather
than PointSet methods for a number of reasons. The coordinate system relates the
point set to other coordinate systems, and it is probably more efficient to store a
transform than a transformed point set for each other coordinate system. It is also
more efficient to accumulate a set of transforms into one transform than to repeatedly
apply transforms to a whole set of points. If the points are represented by a function,
it could be hard to determine how the transform should modify that function. The
transform could be applied only when needed; if it were used repeatedly, the results
could be cached.

Coordinate system transforms permit the construction of multiple-object scenes.
Each spatial object is developed in its local coordinate system, and then coordinate
system transforms construct relations between local coordinate systems. The oppo-
site effect occurs when multiple sets of points in one coordinate system are split into
separate spatial objects with local coordinate systems. In this case, the transforma-
tion from each local coordinate system to the original unified coordinate system is
already defined. Standard computer graphics texts, such as [11], discuss coordinate

system transforms and the construction of multiple-object scenes in further detail.

3.3.2 Relative Spatial Specification

In many cases, a coordinate system has explicitly-defined relationships to other co-
ordinate systems. For example, one coordinate system might have an origin 3 units
to the east of the origin of another coordinate system. In other instances, however,

this information is not so clear. For example, an application might only need to know
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spatial specification mentioned above, since an instance can be defined relative to any
spatial object, including a fixed position or another relative spatial object.

An application can construct arbitrary graphs of relative spatial objects. For
example, in Figure 3-5, object 1 is to the west of object 2, which is to the west of
object 3, and so forth. RelativeSpatialObject provides methods to trace through the
transitive closure of a graph operation. In the above example, since object 1 is to the
west of object 2 and object 2 is to the west of object 3, it follows that object 1 is to
the west of object 3. Both objects must keep track of the relationship so that the
connection can go in either direction; in the above example, it also follows that object
3 is to the east of object 1. If a large number of links separate two related objects,
an application might want to establish a direct connection. Alternatively, the visual
memory could cache this information.

The design of RelativeSpatialObject must determine how to handle transformation
of an object in a relative object graph. In Figure 3-5, object 2 was to the east of
object 1. If object 2 moved west, it could be either to the east or to the west of object
1, as shown in Figure 3-6 and Figure 3-7 respectively. When an object is transformed,
the visual memory must eliminate all of its relative dependencies. If objects maintain
their relationship after transformation, that relationship must be reasserted. If objects
are somehow connected so that the relationship is always maintained, they should be

established as subobjects of a larger object that maintains the relationship.

3.3.3 Uncertain Spatial Specification

Some computer vision applications do not know exactly where objects are located and
exactly which points are in the point sets. They deal with approximate information
and conflicting evidence from multiple sources. These applications require uncertain
spatial specifications.

The visual memory class ProbabilisticPointSet, a subclass of PointSet, represents
uncertain spatial information. ProbabilisticPointSet associates with each point the
probability that it belongs to the point set. Thus instead of just knowing that point
(3,4,5) was in a point set, a probabilistic point set would know that point (3,4,5) was
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3.4 Temporal Representations

Temporal representations fit into another branch of the visual memory class hierarchy.
There are some parallels between the spatial branch and the temporal branch, but
the temporal branch has many of its own requirements and features. This section
presents the visual memory temporal representations. Like spatial operations, many
temporal operations are complex and require the indexing mechanism of Section 3.8

to achieve high performance.

3.4.1 Core Temporal Classes
TemporalObject

The class TemporalQbject is the basis for high-level representation of temporal in-
formation in the visual memory. Visual memory is concerned with valid time, the
time at which events happen. TemporalObject provides slots and methods defining
a standard interface for visual memory temporal support. Its subclasses extend the
definition to handle additional temporal information. Any class that needs to keep
track of its valid time should inherit from TemporalObject.

TemporalObject represents valid time as a set of time intervals and a local clock.
It provides methods to manipulate this information, setting and retrieving the valid
time, relating the clock to other clocks, and so forth. Most of these methods are
furnished by the lower-level classes that make up TemporalObject, discussed further

in the following sections.

VMTime

The most elementary temporal representation is the class VM Time, an abbreviation
for Visual Memory Time. An instance of this class represents exactly one point in
time. Like its spatial counterpart Point, VMTime is a fairly simple but essential

building block in the visual memory class hierarchy.
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Temporallnterval

Most objects are valid not for just one point in time but rather for some duration of
time. The visual memory provides the class Temporallnterval to represent temporal
extents. Temporallnterval is defined as an open interval [t;,t;) to denote valid time
from time ¢, to time ¢;. The interval is open because applications generally recognize
when an object is first valid (¢,) and when it is first invalid (¢,); its valid interval then
extends from ¢; up to but not including ¢,.

Temporallnterval provides a variety of methods for manipulating temporal infor-
mation. Standard methods set and retrieve the starting and ending times of the
interval. Additional methods check interval overlap, combine overlapping intervals,

and check the equality of intervals.

TemporalElement

While some temporal databases use the temporal interval as the main temporal repre-
sentation, that is insufficient for all visual memory applications. One problem is that
the difference of two temporal intervals might not be a temporal interval: if interval
1 covered [10, 30) and interval 2 covered [15, 25), the difference would be [10,15)
U [25,30). The same problem occurs with disjunction, when an object is valid for
multiple distinct intervals. The visual memory follows Elmasri [10] and goes one step
further than Temporallnterval to provide a more powerful temporal representation.

The class TemporalElement maintains a temporal object’s valid time in the visual
memory. A temporal element consists of a set of temporal intervals. Thus it is closed
under set operations and can represent complex temporal specifications. Each of the
less expressive temporal representations is a subcase of TemporalElement: Temporal-
Interval is a singleton TemporalElement and VM Time is a singleton TemporalElement
with the same starting and ending point. Figure 3-11 depicts an example temporal
element.

TemporalElement furnishes many methods for manipulating its temporal informa-
tion. It is a subclass of the generic Set class, so it provides standard set operations

such as member, conjoin, disjoin, and difference. In addition, by using TemporalFEle-

37
Axis Exhibit 1003, Page 37 of 92

Axis Exhibit 1007, Page 49 of 154



Y

| I 1 1 | | 1 1
0 5 10 15 20 25 30 35

Figure 3-11: Temporal element

— t

rrrrrrrriTiit T
1 23 4567 8 910

Figure 3-12: Overlapping temporal elements

ment methods, an application can set and retrieve valid times, compare valid times,
combine overlapping intervals in a temporal element, and resolve two temporal ele-
ments, eliminating overlapping times from one in favor of the other.

Resolution of conflicting temporal elements is an important concept in the visual
memory. An application can specify what to do in case of conflict between valid
times: it can resolve in favor of the original valid time, it can resolve in favor of the
new valid time, or it can leave them in an inconsistent state. Figure 3-12 shows two
overlapping temporal elements, version A and version B; Figure 3-13 and Figure 3-14
show the two ways in which they can be resolved. Temporal resolution is especially
useful for an application that is initially unsure of the full extent of an object’s valid
time. The application could assume that the object was valid from a given point until
told otherwise and then later resolve that when it learned more information.

Like its spatial counterpart PointSet, TemporalElement has both discrete and ab-
stract subclasses. The class Discrete TemporalElement lists all the temporal intervals
in the set, while the class AbstractTemporalElement uses a function to determine

whether or not a given temporal interval is in the set. Since time is one-dimensional
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Figure 3-13: Temporal resolution in favor of version A

1 23 456 7 8 910

Figure 3-14: Temporal resolution in favor of version B

and most valid times are in just a few continuous blocks, the discrete class is probably
more useful for most applications. The abstract class is available for applications that

need to represent a large number of disjoint intervals.

Clock

A time point makes sense only with specification of the clock on which it was mea-
sured. The visual memory provides the class Clock, the temporal analog of the spatial
class CoordinateSystem, to represent this information. Each clock can assign a differ-
ent meaning to time points: one clock might use milliseconds since January 1, 1900,
while another might use seconds since March 8, 1970. In addition, a Clock instance
can specify the machine on which the clock is located so that applications can try to
account for inaccuracies and differences between system clocks.

The TemporalObject class associates a clock with a temporal element. Clocks are
associated at this level of granularity because TemporalElement is the main visual

memory temporal representation. Using a finer granularity would hurt performance
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Figure 3-15: Relative temporal specification

for complex temporal specifications and would not greatly improve performance for
simple temporal specifications that can be represented as trivial temporal elements.

Like each coordinate system, each clock provides a set of transforms between it
and other clocks. This establishes meaning behind the time points associated with
a clock and allows the visual memory to convert times among clocks. To increase

performance, applications can use the same or compatible clocks.

3.4.2 Relative Temporal Specification

Some applications, such as planners and schedulers, do not know explicit temporal
information but can specify some relative ordering of events. For example, a planner
might know that it must move to the other side of the room, which will take 5
seconds, before it can pick up a block. To support these applications the visual
memory provides classes representing relative temporal specifications.

There are two kinds of relative temporal specification: specification relative to
a definite time or object with a definite time, and specification relative to another
relative temporal specification. For example, Figure 3-15 illustrates that I plan to
eat dinner after 6:00, watch TV after that, and start writing my thesis while I watch
TV. This description does not precisely specify the times of these events; if I took a
longer break between eating and watching TV the relative specification would be the
same.

The visual memory class Relative TemporalObject, a subclass of TemporalObject,
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supports relative temporal specification. A relative temporal object maintains a list
of other objects to which it is temporally related. For example, one subclass of
Relative TemporalObject might keep track of events before and after it, while another
might maintain a list of events happening at approximately the same time.

Relative TemporalObject allows applications to build arbitrary graphs of tempo-
ral relations. For example, the specification in Figure 3-15 directly relates a time
and three temporal objects. Relative TemporalObject also provides methods to trace
through the transitive closure of a graph. In this example, it could report that I will
study after 6:00. Both related objects must keep track of the relationship so that the
link can be traversed in either direction. In this manner, the visual memory could

also report that 6:00 is before the time when I will study.

3.4.3 Uncertain Temporal Specification

In many cases an application might be unsure about the valid time of an object’s state.
This could happen, for instance, if the application did not notice an abrupt change
of state or could not pinpoint the time of the state change. The visual memory pro-
vides two classes, Probabilistic Temporallnterval and Probabilistic TemporalElement,
to support uncertain temporal information. Like their spatial counterpart Probabilis-
ticPointSet, these classes follow in the tradition of multi-valued logics and expert

system certainty factors.

ProbabilisticTemporallnterval

Probabilistic Temporallnterval extends the definition of an interval to include a func-
tion that, given a time, returns the probability that the interval includes that time.
Thus, as shown in Figure 3-16, a probabilistic temporal interval can specify that the
valid time most likely includes [10,25), is increasingly less likely to include times on
the other sides of 10 and 25, and definitely does not include times outside of [5,30).
This probability drop-off could indicate where the application was trying to determine
state-change boundaries. The deterministic temporal interval is merely a special case

where the probability is 1 during a specific interval and 0 elsewhere.

41
Axis Exhibit 1003, Page 41 of 92

Axis Exhibit 1007, Page 53 of 154



Prob(t)

|
1.0

05 —

T T 1T 1T T "t
0 5 10 15 20 25 30

Figure 3-16: Probabilistic temporal interval

Probabilistic Temporallnterval modifies standard Temporallnterval methods to use
the temporal probability function. For example, a probabilistic temporal interval does
not have clearly-defined endpoints; the method to find endpoints uses a threshold

supplied by the application to separate points in the interval from those outside it.

ProbabilisticTemporalElement

Probabilistic TemporalElement, a subclass of TemporalElement, contains a set of prob-
abilistic temporal intervals rather than a set of temporal intervals. This allows a
temporal object to represent the probability that it is valid during a time in a set of
disjoint intervals.

The methods of Probabilistic TemporalElement are specialized to handle tempo-
ral probability. For example, multi-valued logic systems often define probabilistic
conjunction as a minimization operation and probabilistic disjunction as a maximiza-
tion operation [14]. Figure 3-17 shows two overlapping temporal elements; Figure 3-
18 demonstrates conjunction by minimization and Figure 3-19 shows disjunction by

maximization.
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Figure 3-17: Overlapping probabilistic temporal intervals
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Figure 3-18: Probabilistic conjunction by minimization
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' Figure 3-19: Probabilistic disjunction by maximization
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3.5 Spatiotemporal Representations

Many objects stored in the visual memory have both spatial and temporal compo-
nents. For example, a vehicle navigator might watch other vehicles driving nearby
and a security system might track people walking in a hall. In both of these cases,
objects are moving in space over an extent of time. The meshing of spatial and tem-
poral information in these cases suggests that, in addition to spatial and temporal
support, the visual memory should provide spatiotemporal support.

The class SpatiotemporalObject, a subclass of both SpatialObject and TemporalOb-
ject, represents spatiotemporal information in the visual memory. Because it is a
subclass of both SpatialObject and TemporalObject, it contains the same information,
including a point set, a coordinate system, a set of valid times, and a clock. It also
supports all the SpatialObject and TemporalObject methods for manipulating this
information.

The class DiscreteSpatiotemporalObject, a subclass of SpatiotemporalObject, stores
state snapshots of objects. For example, a vehicle navigator could use an instance of
this class to periodically store information indicating the spatial extent of the vehicle
over some interval of time. In this way it could build up a whole history of the
vehicle’s motion.

DiscreteSpatiotemporalObject provides interpolation methods to estimate addi-
tional spatiotemporal information from existing information. For example, from the
information in Figure 3-20, the visual memory could interpolate the snapshot of
Figure 3-21. DiscreteSpatiotemporalObject subclasses implement a variety of inter-
polation procedures; for example, the circle in Figure 3-21 could be interpolated by
radius or by area, and acceleration over several snapshots could be taken into account.
Interpolation allows applications to store spatiotemporal information more sparsely
and still closely approximate necessary information.

Like SpatialObject and TemporalObject, SpatiotemporalObject also provides an ab-
stract subclass to represent information by means of a function. AbstractSpatiotem-

poralObject uses a trajectory method to determine which points are in its point set
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circle with expanding radius in Figure 3-22 could check z% + y? <=t to determine
all points (z,y) in the point set at time ¢. If the changes in the point set follow some
pattern, the spatiotemporal point set function can capture that pattern; otherwise,
the discrete approach is probably more suitable.

The trajectory can change relationships between point sets over time by estab-
lishing a function to specify coordinate system transforms as a function of time. In
Figure 3-23, the trajectory would translate the coordinate system one unit along
the x-axis every second. This can be implemented by establishing an initial coordi-
nate system and its relationships to other coordinate systems and then identifying
differences between the coordinate system at a given time and the initial coordinate
system. This way the trajectory does not have to establish all the coordinate system’s
relations at each time; instead, it can transform from a given coordinate system to
the established coordinate system and from it to any other related coordinate system.

Visual memory provides the class RelativeSpatiotemporalObject to express spa-
tiotemporal relationships. For example, an application could describe a relative
spatiotemporal object as being to the right of another object sometime after 6:00.
RelativeSpatiotemporalObject and its subclasses simply combine the relative spatial
and temporal classes detailed in earlier sections.

Spatiotemporal representations can benefit from probabilistic methods. The vi-
sual memory class ProbabilisticSpatiotemporalObject combines the spatial and tem-
poral probabilistic methods previously described. It allows applications to express
uncertainty about both the spatial and temporal extents of spatiotemporal objects.
Probabilistic functions are especially useful with spatiotemporal interpolation, allow-
ing a measure of uncertainty to accompany an interpolated object description. Ab-
stract spatiotemporal objects can establish probabilistic trajectories to be imprecise

about the changes in an object’s spatial description over time.
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3.6 Object Storage

An important part of the visual memory design addresses how to store and retrieve
spatiotemporal information. The object-oriented database on which the visual mem-
ory builds provides basic support for object storage and retrieval. This section dis-

cusses the concepts and issues most relevant to the visual memory design.

3.6.1 Identity

Each object in the visual memory has a unique identity. This identity does not
necessarily correspond to physical identity; for example, an application might not
recognize a person appearing in its view as the same person who disappeared moments
ago, causing it to create a new object for the person. To preserve identity, the visual
memory assigns each object an object identitifier (OID), a number that distinguishes
that object from all others. The object maintains the same OID through all of its
state changes.

Each object can have multiple versions. For example, a security system could track
a person walking down a hall and store a new version describing that person’s location
every tenth of a second. The versions of an object maintain the same OID, but each
has a different version number. Thus an <OID, version number> pair uniquely
distinguishes a particular state snapshot of a particular object. By maintaining all
of an object’s versions, the visual memory can answer questions about the object’s
history.

Some visual memory applications might need to combine the histories of different
objects to form the history of one object. This could happen, for example, if a
tracking system lost sight of a person, found a new person and created a new object,
and later realized that the two people were actually the same. The visual memory
can consolidate object histories to create versions of one object from versions of other
objects.

An application can report to the visual memory that an object has disappeared.

Making an object disappear is quite different from deleting that object, which actu-
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ally removes old versions of the object from the visual memory. Disappearing does
not affect an object’s history but instead removes it from the current state of the
visual memory. Visual memory queries after an object’s time of disappearance do not

retrieve that object.

3.6.2 Storage Mechanism

The database underlying the visual memory decides how to store objects. To imple-
ment an appropriate storage policy, the database should consider the visual memory’s
storage needs and the characteristics of the objects that it stores. This section dis-
cusses how object storage should be tailored for the visual memory.

Many visual memory objects change very little from one version to the next. For
example, a rigid object moving across the room changes only its coordinate system
and valid time; the point set, clock, and other information remains the same. In cases
like this, the database should store one base version of the object and then indicate
differences for each new version.

The visual memory obeys a nondeletion policy: it creates a new version each time
an object changes, and it never deletes old versions. Deleting a version would cause
problems for other object versions containing references to it. The visual memory is
not an append-only database since it actually modifies old versions, as discussed below
in section 3.6.3. Only the visual memory can modify old versions, since uncontrolled
modification could lead to inconsistencies. These considerations allow the database
to implement a simpler storage policy.

Some visual memory applications store a great amount of data. Since old informa-
tion might never be deleted, the available space can quickly fill. Once old information
has settled down and will not be accessed or modified often, the database can move it
onto long-term, high-capacity storage devices. This keeps the most useful information

readily available while increasing the amount of information that can be stored.
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3.6.3 Time

As a historical database, the visual memory keeps track of when events happened.
It stores with each version of a temporal object information about that version’s
valid time. Since one version’s valid time might conflict with the valid times of other
versions, the visual memory attempts to ensure consistency by resolving these valid
times. Section 3.4.1 discusses temporal resolution strategies.

The valid time of a new version could conflict with the valid times of many old
versions. The indexing strategies discussed below in Section 3.8 allow the visual
memory to quickly identify which old versions must be changed. The necessity of
resolving old temporal information encourages the use of caching techniques to reduce
the number of disk accesses.

Applications can improve the performance of temporal resolution by operating in
“real-time mode.” In real-time mode, the valid time of the latest version of an object
is an infinite interval starting from the current time. Thus each new version must be
resolved only with the previous version. For example, if the first version were valid
[0, 00), then a second version valid [5, co) would change the first version’s valid time
to [0, 5), a third version valid [10, o) would change the second version’s valid time
to [5, 10), and so forth. Performing only one temporal resolution per object update

can greatly improve storage performance.
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3.7 Queries

The visual memory provides a powerful and expressive mechanism for retrieving infor-
mation. This query mechanism is tailored to the spatial and temporal representations
presented in earlier sections. It is also designed to meet a wide variety of retrieval
needs, providing flexibility in specifying objects of interest. This section describes the

query mechanism and the types of queries supported by the visual memory.

3.7.1 Query Mechanism

The visual memory query mechanism extends a standard SQL-based [1] object query
language, such as OQL [2]. The queries below demonstrate the basic form and func-

tionality of such a query language.

Find everyone with the same age as the object stored in program variable “me”:

Select p from Person
where p.age() == Yme.age()

Find everyone named Larry who used to play professional basketball:

Select p from Person

where p.firstname() == "Larry" and
p.occupation().title() == "pro basketball player" and
p.occupation().status() == "retired"

Find the children of the above people:

Select p from Person
where p.father() in
(Select p from Person

where p.firstname() == "Larry" and
p.occupation() .title() == "pro basketball player" and
p.occupation() .status() == "retired")

The database literature contains many examples demonstrating the power of query
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languages. The visual memory query language extensions allow applications to con-
struct complex spatiotemporal queries.

A query language provides flexibility and expressiveness but can be hard to use.
For applications that do not need the full power of a query language, graphical query
specification might be more suitable. A graphical query could be specified by outlining
regions of space and intervals of time; objects satisfying the specification could also
be displayed graphically. A graphical query language could be built over the visual
memory query language by transforming graphical specifications into visual memory
queries. Chapter 4 discusses an implementation of such a graphical query language.

A query mechanism works on two levels, on disk and in memory. The visual
memory indices, discussed further in Section 3.8, provide information to help the
query mechanism eliminate objects that do not satisfy a query before bringing them
into memory. The query mechanism then further filters these objects to determine
which objects satisfy the specification. A number of the query constructs outlined
below could easily be performed in memory but are implemented as part of the query
language to allow the query language to optimize object retrieval.

Rather than adding a large number of special spatial and temporal constructs
to the query language, the visual memory bases its query support on instances of
the spatial and temporal classes discussed in previous sections. Each query includes
spatial or temporal keywords and a spatial or temporal object; the keyword describes
how instances satisfying the query must interact with the given object. The specified
spatial or temporal object could be a program variable, allowing the application to
form a complex specification before posing the query. Alternatively, it could be the re-
sult of another query, allowing an application to compose queries. These mechanisms

provide great flexibility in spatial and temporal query specification.

3.7.2 Spatial Queries

Instances of the class SpatialObject form the basis for all spatial queries. A query
specifies a spatial object of interest and how objects satisfying the query must interact

with that spatial object. Described below are the ways that applications can use a
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the road in front of the vehicle.

Borders Query

The borders query checks for bordering objects. The set { person-4.torso() } satisfies
the following query:

Select p from Person
where p borders Yperson-4.head()

A VLSI system could use this query construct to look for electrical contact, and a
photo interpretation system could use it in constructing a high-level representation of
connected regions. Applications can use probabilistic point sets to specify imprecise

borders for this query.

Centroid-Within Query

The centroid-within query ignores the spatial extent of objects and checks distances

between centroids. For example, the following query returns the set { person-1 person-

2 }:

Select p from Person
where p centroid within distance of person-2

This distance parameter specifies within how many units, using the specified spa-
tial object’s coordinate system, an object must be to satisfy the query. With this
query, applications can quickly gather objects roughly within a given distance from a
specified object. The estimation is fairly accurate if the point sets are much smaller

than the distance between them.

Point Set-Within Query

To select nearby objects with greater accuracy than the centroid-within query pro-
vides, applications can use the point set-within query. The following example selects

the set { person-1, person-2, person-3 }:
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Select p from Person
where p point set within Ydistance of person-2

This query is similar to the centroid-within query, but it retrieves all objects
that have at least one point within the given distance of any point of the specified
spatial object. To select objects meeting some specialized definition of nearness, an
application can construct any spatial object and perform an intersects query; this is

just a specialized, optimized version of that process.

Transitive-Closure Query

The transitive-closure query compounds any of the above specifications, applying a
query to its results until there are no new results. It returns all objects identified
in the process. For example, the transitive closure of a borders query shown below

returns the set { person-4.torso(), person-4.legs() }:

Select p from Person
where p borders by transitive closure person-4.head()

This query retrieves any objects bordering the given object, any object border-
ing those objects, and so forth. A photo interpretation system could use it to find

connected regions.

3.7.3 Temporal Queries

The visual memory temporal query mechanism retrieves all the versions of objects
that satisfy some set of constraints. A temporal query specifies a TemporalObject
instance to describe the times of interest and a keyword to describe how the valid
time of a satisfying version must interact with those times. Described below are the
visual memory temporal query specifications. Accompanying examples demonstrate

the query language syntax using versions shown in Figure 3-25.
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Figure 3-25: Temporal queries

During Query

The during query checks for versions whose valid times intersect the given valid time.

For example, the following query returns the set { Version-B, Version-C, Version-D }:

Select p from Person during query

This is a very powerful query, allowing applications to retrieve versions during any
specified set of times. It is also useful in its negated form, where it returns versions
whose valid times do not intersect the given valid time. The negated query below

selects the set { Version-A, Version-E }:

Select p from Person
not during Jquery

Latest-During Query

The latest-during query retrieves only the latest version of an object during some

specified temporal element. For example, the set { Version-D } satisfies the following

query:
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Select p from Person
latest during Jquery

An application could use this query to update a memory-resident model with
the latest information in the visual memory. For example, a vehicle navigator could
establish a model of static objects at the beginning of its execution and then use this
query to update that model with the latest dynamic information stored by image

processing software.

3.7.4 Spatiotemporal Queries

In addition to spatial and temporal queries, the visual memory supports spatiotempo-
ral queries. Some of this support comes from the query language’s natural ability to

handle combined specifications. For example an application could pose the following

query:

Select p from Person
where p intersects ),square
during %times

This query retrieves all versions of all objects valid during the specified times and
intersecting the specified square. Figure 3-26 depicts five states of a spatial object,
at time t = 1 through t = 5. Figure 3-27 depicts a square valid over [1,5) and shows
that the above query would return the third state of the object.

The joint spatial and temporal query checks a static spatial object over time,
so it does not handle interactions between spatial and temporal information. Some
applications want to track a moving object and retrieve versions near it at various
times. To handle cases like this, the visual memory provides spatiotemporal queries.

A spatiotemporal query specifies a spatiotemporal object and a temporal object,
and how objects must interact with these to satisfy the query. The spatiotemporal
object’s history describes where an object must be at given times, and the temporal
object specifies a portion of the history of the spatiotemporal object. The query can

use any of the spatial constructs discussed above to specify spatiotemporal interac-
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Select p from Person
during Ytimes-1
where p in
(Select q from Person
where q centroid within 3 of Yspatiotemporal-spec
during %times-2)

This query tracks all objects that came within 3 units of a given object on its
trajectory during a certain set of valid times. Queries like this demonstrate the power

of a query language extended with the visual memory spatiotemporal constructs.
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3.8 Indices

The visual memory provides an indexing mechanism to quickly identify objects meet-
ing sets of constraints. Indices tie in with both the query mechanism and the various
spatial, temporal, and spatiotemporal operations described in preceding sections. For
example, a spatial index can help identify solutions to an intersection query retrieving
objects stored in the visual memory, and it can help identify intersecting memory-
resident objects. The two types of indexing work similarly, so for conciseness this
section primarily considers how indices can improve retrieval performance.

Indices maintain information allowing them to quickly eliminate objects that do
not satisfy a query. They provide conservative approximate answers to queries; that
is, they can mistakenly retrieve objects that do not satisfy a query, but they can never
mistakenly leave out objects that do satisfy a query. The design of an index must
trade off between how quickly the index can answer a query and how much overhead
is necessary to maintain the indexing information. A well-designed index can greatly

help query performance while adding minimal information overhead.

3.8.1 Mechanism

Visual memory indices are object-oriented: they are objects and they maintain infor-
mation about objects. This yields a consistent approach to information representa-
tion. The database can store and retrieve indices just like other objects. Indices can
keep track of other indices, a technique further discussed below. Finally, due to the
extensible nature of the object-oriented approach, it provides flexibility in designing
indices.

The purpose of an index is to maintain information to help it efficiently identify
objects that might satisfy a query. In the visual memory design, this information
consists of <OID, version number> records, each uniquely specifying a particular
version of a particular object. An index structures these records so that it can quickly
provide a set of records identifying the objects that meet specific constraints.

Indices maintain information in many different ways, such as tables, arrays, and
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trees. The visual memory can handle a very large index by retrieving only a necessary,
manageable part at a time. However, an index must strive to minimize the amount
of retrieval required to reach an answer, so that the the cost of using the index does
not outweigh the query efficiency it yields.

An application can specify which sets of objects it wants to index and how it
wants to index them. It simply specifies the class of the index desired and the set of
objects for which it should maintain information. For example, consider the following

examples of index specification:

Index temporal-btree on
(Select p from Person)

Index spatial-grid on
Jmy-set

Index spatial-quadtree on
(Select o from Object
where o intersects Jmy-room)

The first example establishes a temporal index for all people; the second establishes
a spatial index on a specific set specified by a program variable; the third indexes all
the objects in a certain scene. The visual memory maintains a list of all the indices
in use and knows when to update them and for which queries they are appropriate.

The following sections present issues in the design of spatial, temporal, and spa-
tiotemporal indices. Chapter 4 discusses additional indexing issues raised by one

visual memory application and describes indices designed for the application.

3.8.2 Spatial Indices

Spatial indices organize information about the objects in a scene. The literature de-
scribes many different spatial indices; see [18] for descriptions of quite a few. Different
spatial indices use different parts of an object’s spatial representation and thus are
most appropriate for different queries. For example, a point quadtree uses an object’s

centroid and works best with proximity queries, while an interval tree uses spatial in-
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tervals and is most suitable for intersection queries. An application must pick spatial

indices applicable to its retrieval needs.

3.8.3 Temporal Indices

Temporal indices store information about object histories. The task of ordering the
temporal component of an object is similar to that of ordering the spatial component,
if time is viewed as just another dimension. Thus a lot of spatial indexing research
applies to temporal indexing as well. For example, a spatial interval tree could store
lists of versions valid during temporal intervals. However, temporal representation
poses some concerns unique to temporal indexing.

Temporal indices must address the monotonicity of time. The visual memory
allows applications to modify the past or predict the future, but some applications
maintain an always-increasing sense of time. This could hurt the performance of some
temporal indices; for example, a tree could become unbalanced. Temporal indices still
need to support nonmonotonic temporal specification, but some could be optimized
for the monotonic case.

Because a temporal index retains historic information, it constantly increases in
size throughout its lifetime. A temporal index must not lose too much efficiency as
it grows. Some temporal indices should even partition their data between short- and
long-term storage, as in [9].

Temporal indices must be able to represent infinite temporal intervals. An infinite
interval occurs, for example, when an application assumes that an object will be valid
until otherwise notified and assigns the object a valid time extending to infinity. An
infinite interval would cause problems for a temporal index representing intervals as

collections of subintervals in a tree.

3.8.4 Spatiotemporal Indices

Spatiotemporal indices store spatial information about a scene as it varies in time.

The interaction of space and time makes spatiotemporal indexing a complex problem.

66
Axis Exhibit 1003, Page 66 of 92

Axis Exhibit 1007, Page 78 of 154



There are two kinds of spatiotemporal indexing, corresponding to the discrete and
abstract spatiotemporal classes discussed in Section 3.5.

The first type of spatiotemporal indexing stores information about versions of
discrete spatiotemporal objects. The indexing is a two-step process: spatial indices
maintain spatial descriptions of objects, and temporal indices maintain the temporal
descriptions of the spatial indices. To perform a spatiotemporal query, the indexing
mechanism finds the temporal description in the temporal indices, retrieves the cor-
responding versions of the spatial indices, finds the spatial description in them, and
retrieves the corresponding spatiotemporal object versions.

Discrete spatiotemporal indexing must address some concerns. Spatiotemporal
objects that move continuously cause constant index updates. This leads to large
temporal indices, raising the issues previously discussed. The structure of a spatial
index used in spatiotemporal indexing should not depend on the objects contained
within it, since those objects move.

The second type of spatiotemporal indexing stores information about abstract
spatiotemporal objects. An abstract spatiotemporal index could build up its own
spatiotemporal function representing a set of object trajectories. Given a spatiotem-
poral specification, this function would return a list of those objects satisfying it.
This function could grow very complex, so the index would have to devise some
means of efficiently storing, retrieving, and evaluating it. In this manner an index

could efficiently answer queries about abstract spatiotemporal objects.
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Chapter 4

Implementation

To test the visual memory design, a subset of it was implemented in support of a real-
time scene monitoring prototype. In this prototype, image processing using video
cameras tracks objects and stores information about them in the visual memory.
Through a graphical query interface, users can specify queries to the visual memory
and view the results in various ways. Figure 4-1 shows the basic flow of information
in the prototype. This chapter describes the implementation of the scene monitoring
prototype and the visual memory supporting it.

Scene monitoring is a good testbed for the visual memory. Its constant updates
and retrievals of information test the visual memory’s performance. Multiple sensors
and outputs test concurrency issues. The query interface tests the power of the query
language by specifying a variety of queries, including spatial (“Watch for anything
that comes within 3 feet of that button.”), temporal (“Play back the last 10 sec-
onds.”), and spatiotemporal (“Did anybody come into the room between 12:00 and
1:007”). Finally, the construction of such a prototype tests the usefulness of the visual

memory spatiotemporal representations.

4.1 Database

An object-oriented database called Persistent C++, or PC++ for short [17], is the
basis for the visual memory prototype. This database is a prototype for the DARPA
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Open Object-Oriented Database project at Texas Instruments [25]. PC++ has an
open architecture, allowing the visual memory to add spatiotemporal extensions and
take advantage of the features provided by other modules.

Some of the features provided by Persistent C++ are particularly useful to the
visual memory. A versioning mechanism allows access to any previous state of any ob-
ject. Transactions ensure atomicity, consistency, isolation, and durability. The object
storage mechanism caches recently accessed information to increase performance.

A Persistent C++ preprocessor gathers information about the classes of objects
to be stored in the database. This particular prototype preprocessor is somewhat
limited, not allowing multiple inheritance or function pointers; these constraints limit
the prototype in some situations. The preprocessor adds extra information to the
class descriptions and forms actual C++ classes for an application to use. It adds
function hooks into these classes so that the application can establish daemons to be
executed when objects are stored or retrieved. Finally, when one object contains a
pointer to another object, its class specification indicates either that the referenced
object should be automatically retrieved with the referring object or that it should
be retrieved only on demand.

Persistent C++ stores objects with the Exodus storage manager [4]. It stores a
whole Exodus object for each version of a PC++ object, rather than storing differ-
ences between versions. This could hurt performance for objects that change very
little from one version to the next. PC++ maintains a B-tree structure to map its
OIDs to Exodus OIDs; this hurts performance as the number of OIDs grows large.

Persistent C++ can retrieve an object specified by OID and version or by a char-
acter string previously assigned to that object. It provides an object query language
extension, OQL [2], but this query language does not interface well with the visual
memory indexing mechanism. Thus the visual memory prototype has its own spa-

tiotemporal query mechanism.
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4.2 Spatiotemporal Representations

The prototype visual memory implements as Persistent C++ classes a number of the
spatial, temporal, and spatiotemporal representations discussed in Chapter 3. These
representations conform to the design except for some differences due to limitations
in Persistent C++ and some optimizations and simplifications tailored to the scene
monitoring application.

The prototype implements only the basic discrete classes. Since Persistent C++
cannot store functions, an instance cannot construct an arbitrary abstract function
for its point set, temporal element, or trajectory function. In addition, the scene
monitoring prototype does not need relative or probabilistic specifications.

To increase performance, the prototype uses a global coordinate system and a
global clock. This eliminates the need for spatial transforms between coordinate
systems and temporal transforms between clocks. Translation and rotation methods
act on objects themselves rather than on their coordinate systems.

The prototype implements specific subclasses of the class SpatiotemporalObject
to represent the objects tracked by the scene monitoring system. For example, the
Person class adds a slot for estimations of the person’s height; it could also store the
person’s name and other such information if it were connected to face recognition

software.

4.3 Indices

4.3.1 Mechanism

Index updates occur in the visual memory prototype at transaction commit time,
through Persistent C++ commit daemons. When the database stores an object, it
automatically calls the object’s commit daemons. The visual memory establishes
commit daemons for all objects to update index information.

The visual memory prototype implements the discrete spatiotemporal indexing

described in Section 3.8.4. Spatial indices store information about object locations,
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and temporal indices store information about the valid times of these spatial indices.

The visual memory prototype handles multiple indices. An application can create
sets of indices and specify the types of information they should store and the types
of queries they should answer. However, the prototype only implements start and
stop control over indices; that is, an application can tell an index to start recording
information about all objects committed, or to stop recording such information. This
is a simpler approach than the specification of arbitrary index sets discussed in the

design, but it is adequate for the prototype application.

4.3.2 Spatial Indices

The prototype spatial indices store information about the centroids of objects stored
in the visual memory. This information allows them to efficiently answer locational
and proximity queries, such as “Find everything in this square” and “Find everything
within 5 units of this coordinate.” Two such indices were implemented; this section
describes the two-dimensional version of each.

The first spatial index is a simple fixed grid [18], dividing space into a number of
cells. Each cell stores a list indicating those objects with centroids in the cell. The
index can determine the correct cell for an object by rounding down the coordinates
of the object’s centroid, modulo the cell size. Figure 4-2 shows a fixed grid with a cell
size of 5. Using the scheme described above, object G at spatial coordinate (14,18)
belongs to cell (2,3).

To answer a spatial query, the grid determines relevant cells in the manner de-
scribed above and retrieves the objects they list. A query for objects within the
shaded rectangle in Figure 4-2 searches cells (2,3), (2,4), (3,3), (3,4), (4,3), and (4,4),
and returns objects C, F, and G. The fixed grid index is most suitable for visual mem-
ory applications with unknown distributions of object positions and frequent needs
for efficient updates.

The second spatial index implemented in the prototype is a bucket PR quadtree
[18]. Each node in the tree keeps a bucket of object records for some region. The

index initially consists of one node covering the entire indexed region and containing
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A bucket PR quadtree answers a spatial query with a recursive search through all
nodes intersecting the region of interest. A query for objects in the shaded rectangle
in Figure 4-3 searches the left half of the tree in Figure 4-4, and it returns objects C,
F, and G.

The bucket PR quadtree index is best suited for visual memory applications where
objects are spread out and do not move often. In these cases, it has much less
overhead than the fixed grid. Thus an application might use a quadtree to store

static background information and a grid to store dynamic information.

4.3.3 Temporal Indices

The prototype temporal indices keep track of the valid times of object versions. They
can efficiently answer temporal intersection queries, such as “Find all events that
happened after work last Tuesday and Wednesday.” The prototype implements two
different temporal indices.

The first temporal index is a segment tree [18]. Each node in the tree represents
a temporal interval and contains a list of all versions valid throughout the entire
interval. The children of a node represent subintervals of their parent’s interval, so
that a version that is not valid throughout a node’s interval can be stored in one of
its descendants. For example, if version A were valid from time 35 to time 140, it
would appear at the indicated nodes in Figure 4-5.

To answer a temporal intersection query, the temporal segment tree retrieves the
versions referenced by all nodes with intervals intersecting the specified temporal
element. To find all versions valid during [105, 118) in Figure 4-5, the index searches
the darkened branches and returns versions A and E.

The second temporal index is a B+ tree [6] with times as its keys. Each leaf node
maintains a start-list containing versions that become valid at the node’s key time
and a stop-list containing versions that stop being valid at that time. The keys in
an internal node separate its children. Leaves are connected in a linked list, and the
start-list for the first leaf of an internal node also indicates “carry-over” versions still

valid after the last key in the previous node. In Figure 4-6, version A, valid from
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Figure 4-6: Temporal B+ tree

time 35 to time 140, has a start record at node 35, a stop record at node 140, and a
carry-over record at node 107.

A temporal intersection query proceeds down the tree to the first leaf of an internal
node with a time less than the earliest specified time. There it gathers the carry-over
records and traverses the linked list to the earliest specified time to determine which
carry-over versions are still valid then. Next it continues through the list to the latest
specified time, noting which versions become valid during the temporal element. In
Figure 4-6, a query for the interval [105,118) would go down to leaf node 11 and
traverse the linked list to leaf node 107, noting that only version A was still valid at
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time 105. It would then proceed to leaf node 121 to find the remaining valid versions,

finally returning versions A and E.

4.4 Queries

The prototype visual memory implements a functional query interface rather than a
full query language. To pose a query, an application calls a visual memory function,
passing it parameters specifying the query. For example, a spatial proximity query’s
parameters are a point and a radius, while a temporal intersection query takes a
temporal element. The visual memory returns a set of <OID, version number> index
records indicating objects that might satisfy the query. This set can be combined
with other such sets to construct complex queries. Once a query has been fully
specified, the query mechanism can retrieve the indicated objects. The indices provide
only approximate answers, so the query mechanism filters the retrieved objects to
return only those objects satisfying the specification. This query mechanism allows

applications to pose fairly complex queries.

4.5 Input

The input for the scene monitoring prototype comes from real-time processing of
CCD camera images. This software, which tracks people walking in its field of view,
was implemented by Tom Bannon and Tom O’Donnell in the Image Understanding
Branch at the Texas Instruments Computer Science Laboratory. Using a calibrated
internal model of its field of view, the software estimates the positions and heights of
people and updates the visual memory a few times per second. This yields enough
information to test the visual memory’s performance and to provide interesting data

for queries to retrieve.

77
Axis Exhibit 1003, Page 77 of 92

Axis Exhibit 1007, Page 89 of 154



Axis Exhibit 1003, Page 78 of 92

Axis Exhibit 1007, Page 90 of 154



Axis Exhibit 1003, Page 79 of 92

Axis Exhibit 1007, Page 91 of 154



Axis Exhibit 1003, Page 80 of 92

Axis Exhibit 1007, Page 92 of 154



Chapter 5

Performance

One of the key requirements for the visual memory is to provide high-performance
storage and retrieval of spatiotemporal information. The scene monitoring prototype
described in Chapter 4 not only demonstrates the representational power of the vi-
sual memory design, it also provides a means for examining the performance of the
prototype visual memory. This chapter studies some tests conducted to analyze the
prototype’s performance.

Visual memory performance can be measured in two main ways: by the number
of objects stored and retrieved, and by the amount of time taken to store and retrieve
those objects. The scene monitoring prototype is most concerned with how fast it can
manipulate information, suggesting the use of temporal performance measurement.
However, measuring the number of objects stored and retrieved can give an idea of
the bottom-line visual memory performance and can help predict how changes in the
storage and retrieval mechanism could affect the temporal performance. This chapter
only discusses temporal performance, since both measurements follow approximately
the same pattern and since timing measurements provide an intuitive benchmark.

The results of timing tests vary from machine to machine and from one execution
to the next depending on system load, so they are most useful in providing compara-
tive information. To reduce inaccuracy, times discussed here are the averages of three
test executions. To provide more valid comparisons, the tests were run during the

same time frame on a single machine with approximately the same system load.
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Figure 5-1: Spatiotemporal update performance

5.1 Spatiotemporal Object Storage and Retrieval

The prototype visual memory achieves reasonable spatiotemporal object storage per-
formance. The underlying database limits the attainable performance, since it is
responsible for actual object storage. With every spatiotemporal object update, the
visual memory stores additional indexing information. A useful test of storage per-
formance compares the time to store raw spatiotemporal objects with that to store
both spatiotemporal objects and associated index information. The graph in Fig-
ure 5-1 shows storage times for spatiotemporal objects and different sets of indices as
a function of the number of objects per update and the number of updates.

This graph shows that both raw storage time and indexed storage time steadily
increase with the number of updates and the number of objects per update. Indexed
storage costs a nearly constant factor of 2 to 3 times the raw update time. This

overhead factor follows from the spatiotemporal indexing strategy discussed in Sec-
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tion 3.8.4, since for each update the visual memory stores spatiotemporal objects in a
spatial index and the spatial index in a temporal index. While this seems to be a high
price, it is necessary so that the visual memory can provide efficient spatiotemporal
access to the stored information.

As a result of storing spatiotemporal index information, the visual memory can
quickly answer spatiotemporal queries. Depending on indices, query complexity, and
number of satisfying objects, the visual memory answered test spatiotemporal queries
in 0.1 to 2.1 seconds. Clearly, retrieval performance is much better than storage

performance.

5.2 Index Comparison

Chapter 4 describes two spatial and two temporal indices implemented in the visual
memory prototype. The spatial indices can answer the same queries, but they differ in
structure: the grid has a static structure built prior to execution, while the quadtree
has a dynamic structure defined by the objects stored in it. Similarly, the temporal
indices provide the same functionality, but the segment tree has a static structure
and the B+ tree has a dynamic structure. The visual memory prototype provides a
basis for comparing the performance of these indices.

Parameters such as branching factor and cell size affect index structure, so the
tests must use comparable parameters. The spatial tests cover a 100-unit by 100-unit
square. The quadtree has a bucket size of 10 objects and the fixed grid has a cell size
of 10 units; this implies that the grid has 100 nodes and the quadtree has from 1 to a
few hundred nodes. The temporal tests cover a time interval of up to 1000 seconds,
and both temporal indices have a branching factor of 64.

In addition to the indices described above, each test also includes a “bucket” index.
A bucket index simply maintains a list of all the objects stored in the visual memory.
Since there is no overhead for the storage of complex index structure, a bucket index
can achieve the highest update performance. A bucket index answers a query by

retrieving all the objects in its list and checking them against the query specification.
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Figure 5-2: Spatial update performance

This is not an efficient query mechanism for large queries, but it provides a useful
basis for comparing the performance of other indices.

One important performance measure compares how quickly indices can update in-
formation about objects. Figure 5-2 shows the update performance of spatial indices,
and Figure 5-3 shows the update performance of temporal indices.

As expected, the bucket indices achieve the highest performance for small numbers
of objects. However, the temporal bucket cannot store much more than 100 updates,
since it saves an entire list with each update and quickly fills the database. Dynamic
structures tend to perform slightly better than static structures for small numbers of
objects, while static structures are better for large numbers of objects. This follows
from the relative sizes of the structures; dynamic indices are initially small but grow
as they store information about additional objects, while static indices maintain the
same structure no matter how much information is stored.

Another important measure for index comparison is query performance. Timing
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Figure 5-3: Temporal update performance

tests show that query performance follows a pattern similar to that of update perfor-
mance: bucket indices achieve the best performance with small numbers of objects,
dynamic structures work better than static structures with small numbers of objects,
and static structures work better than dynamic structures with large number of ob-
jects. Figure 5-4 shows the performance for spatial indices with a 10-unit by 10-unit
query square. Figure 5-5 shows the performance for temporal indices with a query

interval of 10 seconds.
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Chapter 6

Conclusion

The visual memory design presented in this thesis combines and extends spatial,
temporal, and database research to meet the needs of a number of computer vision
applications. It provides powerful and expressive spatiotemporal representations that
it can efficiently manipulate, store, and retrieve. A prototype visual memory imple-
mented in support of a scene monitoring prototype demonstrates the potential of this
design. This prototype achieves useful storage and query performance and provides
a basis for comparison of different indices.

Visual memory research could continue in many different directions. One step
is to more fully implement the design. Some of the unimplemented spatiotemporal
representations, such as probabilistic, relative, and abstract objects, could be ben-
eficial to the scene monitoring prototype. The prototype visual memory could be
connected to a number of different computer vision applications. Further implemen-
tation and testing would provide more feedback on the design and help identify areas
for additional research.

The visual memory could furnish additional functionality if it used a different
database. For example, if the database provided active rules, a security system could
establish visual memory daemons to automatically check for alarms and to resolve
old data. If the database provided real-time guarantees, a vehicle navigator could
be sure that it would not crash because of visual memory performance. Finally,

if the database provided data partitioning capabilities, applications that store large
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amounts of spatiotemporal data could make use of separate storage devices.

A number of extensions could improve the performance of the visual memory. Vi-
sual memory customization of caching and look-ahead could improve both storage and
retrieval performance. Lightweight transactions could reduce overhead and increase
storage performance for applications that continuously update the visual memory.
Query optimization could increase retrieval performance by ordering parts of a query
to reduce the number of retrievals. These extensions could help the visual mem-
ory reach its potential as high-performance system for manipulating spatiotemporal

information.
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Event Recognition and Reliability Improvements for
the Autonomous Video Surveillance System

Frank Z. Brill, Thomas J. Olson, and Christopher Tserng

Texas Instruments
P.O. Box 655303, MS 8374, Dallas, TX 75265
brill@csc.ti.com, olson@csc.ti.com, tserng @csc.ti.com

Abstract

This report describes recent progress in the devel-
opment of the Autonomous Video Surveillance
(AVS) system, a general-purpose system for mov-
ing object detection and event recognition. AVS
analyses live video of a scene and builds a descrip-
tion of the activity in that scene. The recent
enhancements to AVS described in this report are:
(1) use of collateral information sources, (2) cam-
era hand-off, (3) vehicle event recognition, and (4)
complex-event recognition. Also described is a
new segmentation and tracking technique and an
evaluation of AVS performing the best-view selec-
tion task.

1. Introduction

The Autonomous Video Surveillance (AVS) sys-
tem processes live video streams from surveillance
cameras to automatically produce a real-time map-
based display of the locations of people, objects
and events in a monitored region. The system al-
lows a wuser to specify alarm conditions
interactively, based on the locations of people and
objects in the scene, the types of objects in the
scene, the events in which the people and objects
are involved, and the times at which the events oc-
cur. Furthermore, the user can specify the action to
take when an alarm is triggered, e.g., to generate an
audio alarm or write a log file. For example, the
user can specify that an audio alarm should be trig-
gered if a person deposits a briefcase on a given
table between 5:00pm and 7:00am on a weeknight.
Section 2 below describes recent enhancements to

This research was sponsored in part by the DARPA Image
Understanding Program.
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the AVS system. Section 3 describes progress in
improving the reliability of segmentation and
tracking. Section 4 describes an experiment that
quantifies the performance of the AVS “best view
selection” capability.

2. New AVS functionality

The structure and function of the AVS system is
described in detail in a previous IUW paper [Olson
and Brill, 1997]. The primary purpose of the cur-
rent paper is to describe recent enhancements to
the AVS system. These enhancements are de-
scribed in four sections below: (1) collateral
information sources, (2) camera hand-off, (3) vehi-
cle event recognition, and (4) complex-event
recognition.

2.1. Collateral information sources

Figuare 1 shows a diagram of the AVS system. One
or more “smart” cameras process the video stream
to recognize events. The resulting event streams
are sent to a Video Surveillance Shell (VSS),
which integrates the information and displays it on
a map. The VSS can also generate alarms based on
the information in the event streams. In recent
work, the VSS was enhanced to accept information
from other sources, or “recognition devices” which
can identify the objects being reported on by the
cameras. For example, a camera may report that
there is a person near a door. A recognition device
may report that the person near the door is Joe
Smith. The recognition device may be a badge
reader, a keypad in which a person types their PIN,
a face recognition system, or other recognition sys-
tem.
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Figure 1: AVS system diagram

The recognition device we have incorporated is a
voice verification system. The user stands in a pre-
defined location in the room, and speaks his or her
name. The system matches the utterance to previ-
ously captured examples of the person speaking
their name, and reports to the VSS if there is a
match. The VSS now knows the identity of the per-
son being observed, and can customize alarms
based on the person’s identity.

A recognition device could identify things other
than people, and could classify actions instead of
objects. For example, the MIT Action Recognition
System (MARS) recognizes actions of people in
the scene, such as raising their arms or bending
over. MARS is trained by observing examples of
the action to be recognized and forming “temporal
templates” that briefly describe the action [Davis
and Bobick, 1997]. At run time, MARS observes
the motion in the scene and determines when the
motion matches one of the stored temporal tem-
plates. TI has obtained an evaluation copy of the

MARS software and used it as an recognition de-
vice which identifies actions, and sends the result
to the AVS VSS. We successfully trained MARS to
recognize the actions of opening a door, and open-
ing the drawer of a file cabinet. When MARS
recognizes these actions, it sends a message to the
AVS VSS, which can generate an appropriate
alarm.

2.2. Camera hand-off

As depicted in Figure 1, the AVS system incorpo-
rates multiple cameras to enable surveillance of a
wider area than can be monitored via a single cam-
era. If the fields of view of these cameras are
adjacent, a person can be tracked from one moni-
tored area to another. When the person leaves the
field of view of one camera and enters another, the
process of maintaining the track from one camera
view to another is termed camera hand-off. Figure
2 shows an area monitored by two cameras. Cam-

Figure 2: Multiple cameras with adjacent fields of view
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era-1 monitors the hallway, and Camera-2
monitors the interior of the room. When a person
moves through the doorway to enter the room from
the hall or vice-versa, camera hand-off is necessary
to enable the system to know that the person that
was being monitored in the hall via Camera-1 is
the same as the person being monitored in the
room via Camera-2.

The AVS system accomplishes camera hand-off by
integrating the information from the two cameras
in the map coordinate system. The AVS “smart”
cameras report the locations of the monitored ob-
jects and people in map coordinates, so that when
the VSS receives reports about a person from two
separate cameras, and both cameras are reporting
the person’s coordinates at about the same map lo-
cation, the VSS can deduce that the two separate
reports refer to the same person. In the example de-
picted in Figure 2, when a person is standing in the
doorway, both cameras can see the person and re-
port his or her location at nearly the same place.
The VSS reports this as one person, using a mini-
mum distance to allow for errors in location. When
Camera-2 first sees a person at a location near the
doorway and reports this to the VSS, the VSS
checks to see if Camera-1 recently reported a per-
son near the door. If so, the VSS reports the person
in the room as the same one that Camera-1 had
been tracking in the hall.

2.3. Vehicle event recognition

This section describes extensions to the existing
AVS system that enable the recognition of events
involving interactions of people with cars. These
new capabilities enable smart security cameras to
monitor streets, parking lots and driveways and re-
port when suspicious events occur. For example, a
smart camera signals an alarm when a person exits
a car, deposits an object near a building, reenters
the car, and drives away.

2.3.1. Scope and assumptions

Extending the AVS system to handle human-vehi-
cle interactions reliably involved two separable
subproblems. First, the system’s vocabulary for
events and objects must be extended to handle a
new class of object (vehicle) and new event types.
Second, the AVS moving object detection and
tracking software must be modified to handle the
outdoor environment, which features variable
lighting, strong shadows, atmospheric disturbanc-

269

es, and dynamic backgrounds. The work
described here in section 2.3 addresses the first
problem, to extend the system for vehicle events in
conditions of uniform overcast with little wind.
Our approach to handling general outdoor lighting
conditions is discussed in section 4.

The method is further specialized for imaging con-
ditions in which:

1. The camera views cars laterally.

2. Cars are unoccluded by other cars.

3. When cars and people overlap, only one of
the overlapping objects is moving

4. The events of interest are people getting
into and out of cars.

2.3.2. Car detection

The first thing that was done to expand the event
recognizing capability of the current system was to
give the system the ability to distinguish between
people and cars. The system classifies objects as
cars by using their sizes and aspect ratios. The size
of an object in feet is obtained using the AVS sys-
tem’s image coordinate to world coordinate
mapping. Once the system has detected a car, it an-
alyzes the motion graph to recognize new events.

2.3.3. Car event recognition

In principle, car exit and car entry events could be
recognized by detecting characteristic interactions
of blobs in difference images, in a manner similar
to the way AVS recognizes DEPOSIT and RE-
MOVE events. In early experiments, however, this
method turned out to be unsatisfactory because the
underlying motion segmentation method did not
segment cars from people. Whenever the people
pass near the car they appear to merge with it, and
track is lost until they walk away from it.

To solve this problem, a new approach involving
additional image differencing was developed. The
technique allows objects to be detected and tracked
even when their images overlap the image of the
car. This method requires two reference images:
one consists of the original background scene
(background image), and the other is identical to
the first except it includes the car. The system takes
differences between the current video image and
the original reference image as usual. However, it
also differences the current video image with the
reference image containing the car. This allows the
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system to detect objects which may be overlapping
the car. Using this technique, it is easy to detect
when people enter and exit a car. If an object disap-
pears while overlapping with a car, it probably
entered the car. Similarly, if an object appears over-
lapping a car, it probably exited the car.

2.3.4. Basic method

When a car comes to rest, the following steps are
taken. First, the image of the car object is removed
from its frame and stored. Then, the car image is
merged with the background image, creating an
updated reference image containing the car. (Ter-
minology: a reference car image is the subregion
of the updated reference image that contains the
car.) Then, the car background image, the region of

(a)

the original background image that is replaced by
the car image, is stored.

For each successive frame, two difference images
are generated. One difference image, the fore-
ground difference image, is calculated by
differencing the current video image with the up-
dated reference image. The foreground difference
image will contain all the blobs that represent ob-
jects other than the car, including ones that overlap
the car. The second difference image, the car dif-
ference image, is calculated using the car
background image. The car difference image is
formed from the difference between the current
frame and the car background image, and contains
the large blob for the car itself. Figures 3 and 4
show the construction and use of these images.

(b)

Figure 3: (a) Background image. (b) Car background image.
(c) Updated reference image

(@)

Figure 4: (a) Current video image. (b) Foreground difference image

~>

(b)
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Figure 5: Creation of the motion graph.
The starred frame represents the frame prior to the background image being updated.

The blobs in the foreground difference image are
grouped into objects using the normal grouping
heuristics and placed in the current frame. The
blobs in the car difference image necessarily repre-
sent the car, so they are all grouped into one current
car object and placed in a special reference frame.
Normal links occur between objects in the previous
frame and objects in the current frame. Additional-
ly, the stored car object, which was removed from
its frame, (from Step 1) is linked to the current car
object which is in the reference frame. In any given
sequence, there is only one reference frame.

Figure 5 demonstrates the creation of this new mo-
tion graph. As indicated by the dotted lines, all
objects maintain their tracks using this method.
Notice that even though the car object disappears
from future frames (due to the updated reference
image), it is not detected to have exited because its
track is maintained throughout every frame. Using
this method, the system is able to keep track of the
car object as well as any objects overlapping the
car. If an object appears intersecting a car object,

an INCAR event is reported. If an object disap-
pears while intersecting a car object, an OUTCAR
event is reported. Figure 6 shows the output of the
system. The system will continue to operate in this
manner until the car in the reference frame begins
to move again.

When the car moves again, the system reverts to its
normal single-reference-image state. The system
detects the car’s motion based on the movement of
its centroid. It compares the position of the cen-
troid of the stored car object with the centroid of
the current car object. Figure 7 shows the slight
movement of the car.

e

Figure 6: Final output of system

o=

(©)

mn

(@

Figure 7: (a) Reference car image. (b) Moving car image.
(c) Reference car difference image. (d) Moving car difference image
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Figure 8: Restoration of normal differencing. The starred frame represents the last frame prior to the
original reference image being restored.

If the centroid locations differ by more than a
threshold, the following sequence of events occur
to restore the system to its original state:

1. An object representing the moving car is

created in the current frame.

The stored car object is linked to this new

moving car object in the current frame.

. Objects in the previous frame that intersect
the moving car are removed from that
frame.

. The car background image is merged with

the updated reference image to restore the

original reference image.

Normal differencing continues.

2.

3

5.

Figure 8 demonstrates how the system is restored
to its original state. Note that there is one continu-
ous track that represents the path of the car
throughout.

‘When the car begins to move again, transient blobs
appear in the foreground difference image due to
the fact that the car is in the updated reference im-
age as seen in Figure 9. Therefore, to create a new
moving car object in the current frame, these tran-
sient objects, which are identified by their
intersection with the location of the resting car, are

@

Figure 9: (a) Updated reference image. (b) Current video image. (c) Foreground difference image
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®)

grouped together as one car object. If there are no
transient objects, a copy of the stored car object is
inserted into the current frame. This way, there is
definitely a car object in the current frame to link
with the stored car object. Transient objects might
also appear in the previous frame when a car is
moving. Therefore, these transient objects must be
removed from their frame in order to prevent them
from being linked to the new moving car object
that was just created in the current frame. After the
steps described above occur, the system continues
as usual until another car comes to rest.

2.3.5. Experiments: disk-based sequences

To test the principles behind the modified AVS sys-
tem, three sequences of video that represented
interesting events were captured to disk. These se-
quences represented events which the modified
system should be able to recognize. Capturing the
sequences to disk reduces noise and ensures that
the system processes the same frames on every run,
making the results deterministic. In addition to
these sequences, longer sequences were recorded
and run directly from videotape to test how the sys-
tem would work under less ideal conditions.

(©)
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2.3.5.1. Simple sequence. The first sequence was
filmed from the 3rd story of an office building
overlooking the driveway in front of the building.
A car drives up and a person exits the car, walks
away, deposits a briefcase, and finally reenters the
car. Then, the car drives away. In this segment, the
system successfully detects the person exiting the
car. However, the person entering the car is missed
because the person gets grouped with a second per-
son walking near the car.

Further on in the sequence, the car drives up again
and a person exits the car, walks away, removes the
briefcase, and finally reenters the car. Again, the
car drives away. In this segment, both the person
entering and exiting the car are recognized. In both
these sequences, there was only the one false nega-
tive mentioned earlier and no false positives.

2.3.5.2. Pickup sequence. This  sequence was
filmed in front of a house looking at the street in
front of the house. In the sequence, a person walks
into the scene and waits at the curb. A car drives
up, picks up the person, and drives away. The sys-
tem correctly detects the person entering the car.
There are no false positives or negatives.

2.3.5.3. Drop off sequence. This sequence was
filmed in the same location as the previous one. In
this sequence, a car drives up and a person is
dropped off. The car drives away with the person
still standing in the same location. Then, the person
walks off. The system correctly detects the person
exiting the car and does not report a false enter
event when the car moves away.

2.3.6. Experiments: videotaped sequences

These sequences were run on the system straight
from videotape. These were all run at a higher
threshold to accommodate noise on the videotape.
However, this tended to decrease the performance
of the system.

2.3.6.1. Dark day. ‘This is a 15 minute sequence
that was recorded from the 3rd floor of a building
on a fairly dark day. In that time span, 8 cars passed
through the camera’s field of view. The system de-
tected 6 cars correctly and one false car (due to
people grouped together). One car that was not de-
tected was due to its small size. The other car was
undetected because the system slowed down (due
to multiple events occurring) and missed the imag-
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es with the car in them. In this sequence, two
people entered a car. However, both events were
missed because the car was not recognized as rest-
ing due to the dark lighting conditions on this rainy
day.

2.3.6.2. Cloudy day. This is a 13 minute sequence
in the same location as the previous sequence ex-
cept it is a cloudy day. In this time span, 9 cars
passed through the camera’s field of view and all of
them were detected by the system. There were a to-
tal of 2 people entering a car and 2 people exiting a
car. The system successfully detected them all. Ad-
ditionally, it incorrectly reported one person
walking near a car as an instance of a person exit-
ing a car.

2.3.6.3. Cloudy day—extended time. This is a 30
minute sequence in the same location as the previ-
ous two. In this time span, 28 cars pass through and
all of them were detected. The system successfully
detected one person exiting a car but missed two
others. The two people were missed because the
car was on the edge of the camera’s field of view
and so it was not recognized immediately as a car.

2.3.7. Evaluation of car-event recognition

The modified AVS system performs reasonably
well on the test data. However, it has only been
tested on a small number of videotaped sequences,
in which much of the action was staged. Further
experiments and further work with live, uncon-
trolled data will be required to make the system
handle outdoor vehicle events as well as it handles
indoor events. The technique of using multiple ref-
erence images is interesting and can be applied to
other problems, e.g. handling repositioned furni-
ture in indoor environments. For more detail on
this method, see [Tserng, 1998].

2.4. Complex events

The AVS video monitoring technology enables the
recognition of specific events such as when a per-
son enters a room, deposits or picks up an object,
or loiters for a while in a given area. Although
these events are more sophisticated than those de-
tected via simple motion detection, they are still
unstructured events that are detected regardless of
the context in which they occur. This can result in
alarms being generated on events that are not of
interest.
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For example, if the system is monitoring a room or
store with the intention of detecting theft, the sys-
tem could be set up to generate an alarm whenever
an object is picked up (i.e., whenever a REMOVE
event occurs). However, no theft has occurred un-
less the person leaves the area with the object. A
simple, unstructured event recognition system
would generate an alarm every time someone
picked up an object, resulting in many false alarms;
whereas a system that can recognize complex
events could be programmed to only generate an
alarm when the REMOVE event is followed by an
EXIT event. The EXIT event provides context for
the REMOVE event that enables the system to fil-
ter out uninteresting cases in which the person does
not leave the area with the object they picked up.
This section describes the design and implementa-
tion of such a complex-event recognition system.

We use the term simple event to mean an unstruc-
tured atomic event. A complex event is structured,
in that it is made up of one or more sub-events. The
sub-events of a complex event may be simple
events, or they may be complex, enabling the defi-
nition of event hierarchies. We will simply say
event to refer to an event that may be either simple
or complex. In our theft example above, REMOVE
and EXIT are simple events, and THEFT is a com-
plex event. A user may also define a further event,
e.g., CRIME-SPREE, which may have one or more
complex THEFT events as sub-events.

We created a user interface that enables definition
of a complex event by constructing a list of sub-
events. After one or more complex events have
been defined, the sub-events of subsequently de-
fined complex events can be complex events
themselves.

2.4.1. Complex-event recognition

Once the user has defined the complex events and
the actions to take when they occur, the event rec-
ognition system recognizes these events as they
occur in the monitored area. For the purposes of
this section, we assume a priori that the simple
events can be recognized, and that the object in-
volved in them can be tracked. In the
implementation we will use the methods discussed
in [Courtney, 1997, Olson and Brill, 1997] to track
objects and recognize the simple events. In order to
recognize a complex event, the system must keep a
record of the sub-events that have occurred thus
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far, and the objects involved in them. Whenever the
first sub-event in a complex event’s sequence is
recognized, an activation for that complex event is
created. The activation contains the /D of the ob-
ject involved in the event, and an index, which is
the number of sub-events in the sequence that have
been recognized thus far. The index is initialized to
1 when the activation is created, since the activa-
tion is only created when the first sub-event
matches. The system maintains a list of current ac-
tivations for each defined complex-event type.
Whenever any new event is recognized, the list of
current activations is consulted to see if the newly
recognized (or incoming) event matches the next
sub-event in the complex event. If so, the index is
incremented. If the index reaches the total number
of sub-events in the sequence, the complete com-
plex event has been recognized, and any desired
alarm can be generated. Also, since the complex
event that was just recognized may also be a sub-
event of another complex event, the activation lists
are consulted again (recursively) to see if the indi-
ces of any other complex event activations can be
advanced.

To return to our THEFT example, the complex
THEFT event has two sub-events, REMOVE and
EXIT. When a REMOVE event occurs, an activa-
tion for the THEFT event is created, containing the
ID of the person involved in the REMOVE event,
and an index set to 1. Later, when another event is
recognized by the system, the activation is consult-
ed to see if the event type of this new, incoming
event matches the next sub-event in the sequence
(in this case, EXIT). If the event type matches, the
object ID is also checked, in this case to see if the
person EXITing is the same as that of the person
who REMOVE( the object earlier. This is to ensure
that we do not signal a THEFT event when one
person picks up an object and a different person ex-
its the area. In a closed environment, the IDs used
may merely be track-IDs, in which each object that
enters the monitored area is assigned a unique
track-ID, and the track-ID is discarded when the
object is no longer being tracked. If both the event
type and the object ID match, the activation’s index
is incremented to 2. Since there are only 2 sub-
events in the complex event in this example, the en-
tire complex-event has been recognized, and an
alarm is generated if desired. Also, since the
THEFT event has been recognized, this newly rec-
ognized THEFT event may be a sub-event of
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another complex event. When the complex THEFT
event is recognized, the current activations are re-
cursively checked to see if the theft is a part of
another higher-level event, such as a CRIME-
SPREE.

2.4.2. Variations and enhancements

We have described the basic mechanism of defin-
ing and recognizing complex events. There are
several variations on this basic mechanism. One is
to allow unordered events, i.e., complex events
which are simply the conjunction or disjunction of
their sub-events. Another is to allow negated sub-
events, which can be used to cancel an activation
when the negated sub-event occurs. For example,
considering the definition for THEFT again, if the
person pays for the item, it is not a theft. Also, if
the person puts the item back down before leaving,
no theft has occurred. A more complete definition
of theft is one in which “a person picks up an item
and then leaves without putting it back or paying.”
Assuming we can recognize the simple events RE-
MOVE, DEPOSIT, PAY, and EXIT, the complex
THEFT event can now be expressed as the ordered
list (REMOVE, ~DEPOSIT, ~PAY, EXIT), where
“~” indicates negation. Another application of the
complex event with negated sub-events is to detect
suspicious behavior in front of a building. The nor-
mal behavior may be for a person to park the car,
get out of it, and then come up into the building. If
the person parks the vehicle and leaves the area
without coming up into the building, this may be a
car bombing scenario. If we can detect the sub-
events for PARK, OUTCAR, ENTER-BUILDING,
and EXIT, we can define the car-bombing scenario
as (PARK, OUTCAR, ~ENTER-BUILDING,
EXIT).

Another variation is to allow the user to label the
objects involved in the events, which facilitates the
ability to specify that two object be different. Con-

sider a different car bombing scenario in which two
cars pull up in front of the building, and a person
gets out of one car and into the other, which drives
away. The event definition must specify that there
are two different cars involved: the car-bomb and
the getaway-car. This can be accomplished by la-
belling the object involved when defining the
event, and giving different labels to objects which
must be different.

Finally, one could allow multiple activations for
the same event. For example, the desired behavior
may be that a separate THEFT event should be sig-
nalled for each item stolen by a given person, e.g.,
if a person goes into a store and steals three things,
three THEFT events are recognized. The basic
mechanism described above signals a single
THEFT event no matter how many objects are sto-
len. We can achieve the alternate behavior by
creating multiple activations for a given event type,
differing only in the ID’s of the objects involved.

2.4.3. Implementation in AVS

We have described a method for defining and rec-
ognizing complex events. Most of this has been
implemented and incorporated into the AVS sys-
tem. This subsection describes the current
implementation.

AVS analyzes the incoming video stream to detect
and recognize events such as ENTER, EXIT, DE-
POSIT, and REMOVE. The primary technique
used by AVS for event recognition is motion graph
matching as described in [Courtney, 1997]. The
AVS system recognizes and reports these events in
real time as illustrated in Figure 10. When the per-
son enters the monitored area, an ENTER event is
recognized as shown in the image on the left.
When the person picks up an object, a REMOVE
event is recognized, as depicted in the center image
below. When the person exits the area, the EXIT

Figure 10: A series of simple events
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event is signalled as shown in the image on the
right

While the AVS system recognizes numerous events
as shown above, the user can select which events
are of interest by providing the dialog box interface
illustrated in Figure 11. The user selects the event
type, object type, time, location, and duration of
the event of interest using a mouse. The user can
also select an action for the AVS system to take
when the event is recognized. This dialog box de-
fines one type of simple event; an arbitrary number
of different simple event types can be defined via
multiple uses of the dialog box. The illustration in
Figure 11 shows a dialog box defining an event
called “Loiter by the door” which is triggered
when a person loiters in the area near the door for
more than 5 seconds.

AVS will generate a voice alarm and write a log en-
try when the specified event occurs. If the event is
only being defined in order to be used as a sub-
event in a complex event, the user might not check
any action box, and no action will be taken when

the event is recognized except to see if it matches
the next sub-event in a complex-event activation, or
generate a new activation if it matches the first sub-
event in a complex event.

After one or more simple events have been defined,
the user can define a complex event via the dialog
box shown in Figure 12. This dialog box presents
two lists: on the left is a scrolling list of all the
event types that have been defined thus far, and on
the right is a list of the sub-events of the complex
event being defined. The sub-event list is initially
blank when defining a new complex event. When
the user double-clicks with the left mouse button
on an item in the event list on the left, it is added as
the next item in the sub-event list on the right.
When the user double-clicks with the right mouse
button on an item in the event list on the left, that
item is also added to the sub-event list on the right,
but as a negated sub-event. The event name is pre-
fixed with a tilde (~) to indicate that the event is
negated.

Figure 12: Defining a complex event
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In the upper right corner of the complex-event defi-
nition dialog box is an option menu via which the
user indicates how the sub-events are to be com-
bined. The default selection is “ordered” to
indicate sequential processing of the sub-events.
The other options are “all” and “any.” If “all” is se-
lected, the complex event will be signalled if all of
the sub-events are matched, regardless of order,
i.e., the complex event is simply the conjunction of
the sub-events. If “any” is selected, the complex
event occurs if any of the sub-events occurs, i.e.,
the complex event is the disjunction of the sub-
events. At the bottom of the dialog box, the user
can select the action to take when the complex
event is recognized. The user can save the entire set
of event definitions to a file so that they may be
read back in at a later time.

Once a simple or complex event has been defined,
the AVS system immediately begins recognition of
the new events in real time, and taking the actions
specified by the user. The AVS system, augmented
as described, provides a functioning realization of
the complex-event recognition method.

3. Advanced segmentation and tracking

In security applications, it is often necessary to
track the movements of one or more people and ob-
jects in a scene monitored by a video camera. In
real scenes, the objects move in unpredictable
ways, may move close to one another, and may oc-
clude each other. When a person moves, the shape
of his or her image changes. These factors make it
difficult to track the locations of individual objects
throughout a scene containing multiple objects.
The tracking capabilities of the original AVS sys-
tem fail when there is mutual occlusion between
the tracked objects. This section describes a new

tracking method which overcomes this limitations
of the previous tracking method, and maintains the
integrity of the tracks of people even when they
partially occlude one another.

The segmentation algorithm described here is relat-
ed to tracking systems such as [Wren et al., 1997,
Grimson et al., 1998, Cai et al., 1995] in that it ex-
tends the reference image to include a statistical
model of the background. Our method further ex-
tends the tracking algorithm to reason explicitly
about occlusion and maintain object tracks during
mutual occlusion events. Unlike the capabilities
described in previous sections, the new tracking
method does not run in real time, and has not yet
been integrated into the AVS system. Optimiza-
tions of the new method are expected to enable it to
achieve real time operation in the future.

Figure 13 depicts an example scene containing two
people. In (a), the two people are standing apart
from each other, with Person-1 on the left, and Per-
son-2 on the right. In (b), Person-1 moves to the
right so that he is partially occluded by Person-2.
Using a conventional technique such as back-
ground subtraction, it is difficult to maintain the
separate tracks of the two people in the scene, since
the images of the two people merge into a single
large region.

Figure 14 shows a sequence of frames (in normal
English reading order) in which it is particularly
difficult to properly maintain the tracks of the two
people in the scene. In this sequence, Person-2
moves from right to left and back again, crossing in
front of Person-1. There are significant occlusions
(e.g., in the third frame shown), and the orienta-
tions of both people with respect to the camera
change significantly throughout the sequence,

(a)

Figure 13: An example scene containing two people with occlusion

(b)
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Figure 14: A difficult tracking sequence

making conventional template matching fail on this
sequence.

A new tracking method is used to maintain tracks
in sequences such as those depicted in Figures 13
and 14. The method maintains an estimate of the
size and location of the objects being tracked, and
creates an image which approximates the probabil-
ity that the object intersects that pixel location.
Figure 15b shows the probability images for the
two person scene of Figure 13a, which is repeated
here as 15a. The ellipse on the left indicates the es-
timated location of Person-1, and the ellipse on the
right indicates the estimated location of Person-2.
The brightness indicates the probability that the
person’s image intersects the given pixel, which is
highest in the middle of the region, and falls off to-
wards the edge. The black outlines represent the
50% probability contours. The size and shape of
the regions are roughly the size and shape of a per-
son standing at that location in the image.

We refer to the “person shaped” probability regions
as probabilistic templates or simply p-templates.
The path of the p-template through the scene repre-
sents the “track” of a given person which is

(@)

maintained by the tracking system. P-templates can
be used to reason about occlusion in a video se-
quence. While we only address the issue of p-
templates for tracking people that are walking up-
right, the concept is applicable to tracking any
object, e.g., vehicles and crawling people; although
the shape of the p-template would need to be
adapted to the type of object being tracked.

When the people in the scene overlap, the separate
locations of the people can be maintained using the
p-templates, and the region of partial occlusion can
be detected. Figure 16 shows examples of such a
situation. The two ellipses are maintained, even
though the people are overlapping. The tracks of
the people can be maintained through occlusions
by tracking primarily on the basis of non-overlap-
ping areas. This works for both the slight occlusion
in Figures 16 (a) and (b), and often even for the
very strong occlusions such as in Figures 16 (c)
and (d). During the occlusions shown in Figure 14
and again in Figure 16 (c) and (d), the head of Per-
son-1 is tracked, and the lower-body of Person-2 is
tracked.

®)

Figure 15: Probability image for the locations of the people in the scene

278

Axis Exhibit 1004, Page 15 of 20

Axis Exhibit 1007, Page 143 of 154


esperw
Sticky Note
None set by esperw

esperw
Sticky Note
MigrationNone set by esperw

esperw
Sticky Note
Unmarked set by esperw


(©

The new method requires a means of instantiating a
new p-template when a person enters the scene,
and updating the location of the region as the per-
son moves through the scene. First we will
describe the update mechanism, assuming that the
p-templates have already been instantiated. The in-
stantiation mechanism is described later.

The p-templates described above and depicted in
Figures 15 and 16 represent the prior probabilities
of the person locations, based on looking at the
previous frame. These priors are then used to com-
pute an estimate of the posterior probabilities of
the person locations by looking at the new or cur-
rent frame. The computation of the posterior
probabilities takes into account both the prior prob-
abilities and the information in the new frame. The
posterior probabilities are used to update the loca-
tions of the people, and the new locations of the
people are then used to compute the priors for the
next frame. ’

Our current implementation computes the posteri-
ors using a form of background differencing.
Figure 17 shows the posteriors for the p-templates
shown in Figure 16. Note that although there is sig-
nificant overlap in the posterior estimates,
especially in Figures 17 (e) and (f), there are signif-
icant differences in the brightnesses of the non-

(b)

(@
Figure 16: P-template images for partially occluding people

occluding areas. In Figure 17 (e), which represents
the posteriors for Person-1, the head area of Per-
son-1 is significantly brighter than in Figure 17 (f).
Similarly, Figure 17 (f), which represents the pos-
teriors for Person-2, is significantly brighter in the
unoccluding area of Person-2’s lower body.

Once the posteriors are computed, they are used to
estimate the location of the tracked objects. In our
implementation of a person tracker, we specifically
need to estimate the location of the person’s feet in
the image, and their height in the image in pixels.
Once the location and height are estimated, we can
use the image-to-world coordinate transformation
technique used in the original AVS system and de-
scribed in [Olson and Brill, 1997]. That technique,
called quad-mapping, computes the map locations
of objects given the image locations of the bottom
of the objects, e.g., in the case of a person, the loca-
tion of the feet. Furthermore, if the scale of the
map is known, the quad-mapping technique will
estimate the size of the object, i.e., the height of a
person being tracked.

If the lower portion of the p-template is unocclud-
ed, foot locations are estimated directly from the
image by looking at the bottom portion of the
brightened region. If the upper portion is also un-
occluded, the height can similarly obtained directly
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Figure 17: Posterior probability images for partially occluding people

from the image. If the upper part is occluded, but
the lower part is not, the foot location is still deter-
mined directly from the image, but height is
estimated using an estimate of the three-dimen-
sional height of the person. The image height is
then obtained by projecting the 3D height back into
the image using the quad-mapping technique. If the
lower portion is occluded, but the upper part is not,
then the upper location is determined directly from
the image, and then the 3D height is back-projected
into the image to determine the foot location. If
both the top and bottom are occluded, the location
and height estimates are left unchanged from the
previous frame.

Once the foot location and height of the person are
computed, it is straightforward to compute the new
location of the p-template, which is the Gaussian
oval whose location and dimensions are deter-
mined by the foot location and image height
computed above. The new p-template is then used
to find the location of the person in the next frame,
and the process repeats while the person remains in
the scene.

A new p-template is instantiated whenever a new
person enters the scene. Instantiation is best de-
scribed in a Bayesian probabilistic framework. The
p-templates constitute models of the objects in the

(b)

©
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environment. All of the pixels in the image are the
result of a projection of some object in the environ-
ment—either from the background, or one of the
people in the scene, or something else. The sum of
the probabilities that the pixel is either from the
background, from a person, or from “something
else” must be 1.0. We maintain an “unknown”
model to account for the probability that pixels
may arise as a result of “something else.” We com-
pute the probability that each of the models caused
the observed pixel value (where the unknown mod-
el is equally likely to produce any pixel value), and
then use Bayes’ formula to compute the inverse,
ie., the probability that the observed pixel value
came from each of the models. When this compu-
tation is performed, for some of the pixels, the
probability that the pixel came from the unknown
model is the highest of all of the model probabili-
ties. This results in a probability image for the
unknown model, which represents pixels which
probably came from something other than the ob-
jects the system knows about. At each frame, the
probability image for the unknown model is com-
puted, and this image is examined to see if adding a
new person model would account for these un-
known pixels. If so, a new person p-template is
instantiated at the appropriate location, and the
posteriors are recomputed.
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Use of the procedure described above to track mul-
tiple people maintains tracks through occlusions
where our previous technique could not. The ro-
bustness to occlusion of the new method enables
video monitoring applications to improve tracking
reliability in natural environments.

4. Best-view selection performance

Olson and Brill [1997] previously described the
“best view selection” application of AVS technolo-
gy. In this application, the system monitors and
records the movements of humans in its field of
view. For every person that it sees, it creates a log
file that summarizes important information about
the person, including a snapshot taken when the
person was close to the camera and (if possible)
facing it.

As the person is tracked through the scene, the
tracker examines each image it captures of that per-
son. If the new image is a better view of the person
than the previously saved snapshot, the snapshot is
replaced with the new view. In this manner, the
system always contains the “best” view seen of the
person thus far. When the person leaves the scene,
the log entry is saved to a file. Each log entry
records the time when the person entered the scene
and a list of coordinate pairs showing their position
in each video frame. The log entry also contains
the “best” snapshot of the person while they were
in the scene. Finally, the log entry file contains a
pointer to the reference image that was in effect
when the snapshot was taken. This information
forms an extremely concise description of the per-
son’s movements and appearance while they were
in the scene. An example of such a record in shown
in Figure 18.

3

Figure 18: Example best view selection record

281

In an initial evaluation of this system, the system
was installed in an uncontrolled office hallway and
run for 118 hours. In this time, the system recorded
965 log entries in 35MB (uncompressed). The re-
sulting records were examined to estimate the
system performance, and we estimated 96% detec-
tion rate at 6% false alarm rate, with most errors
due to segmentation and correspondence failure.
However, for this initial experiment, there was no
ground truth against which the performance could
be measured.

Recently, we have evaluated the system against
ground truth observations. The performance of the
system was initially evaluated on four hours of in-
door video data. The video was manually
annotated to obtain ground truth, and the surveil-
lance system was evaluated against this ground
truth. For situations in which only one person was
in the scene, the system recorded exactly one
record for each person, i.e., no person passed unde-
tected though the field of view, and there is exactly
one record for each such person. In the indoor con-
dition, we observed a 100% detection rate.

For situations involving more than one person, the
system occasionally failed to maintain track
through partial occlusions. The result of this is that
the system took extra pictures of these people when
their track was re-acquired after the occlusion. On
other occasions, the system failed to recognize that
a motion region contained two people, and so it
only took one picture that contained both people.
We expect to reduce these errors via the use of the
new tracking algorithms described above, once
these algorithms are running in real time and are
incorporated into the AVS system.

In order to evaluate and improve the system perfor-
mance in outdoor monitoring environments, we
have adopted an iterative research methodology in
which we record representative videotape (2-3
hours), ground truth it with respect to the ‘person
events’ that occur in the scene. One ‘person event’
is defined to be a video sequence in which one per-
son enters monitored area completely, walking
upright, and then exits field of view completely. We
then run AVS system on the videotape and measure
the false positives and negatives on person events.
We then improve system as necessary to eliminate
errors on video sequence. and repeat the process.
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Figure 19: Outdoor environments

Outdoor environments can be particularly difficult
for video monitoring systems that operate based on
change detection, due to the outdoor lighting varia-
tion. Figure 19 depicts two outdoor environments
used to evaluate AVS best-view-selection perfor-
mance. In Figure 19 (a), there is a strong shadow
line running down the center of the field of view,
which moves as the sun angle changes. The shad-
ow motion here is sufficient to cause problems for
a fixed background subtraction system within 5
minutes. There are also a number of trees in the
background which move when the wind blows.
Moreover, the shadows of these trees fall directly
into the rear of the monitored area, and these shad-
ows move with the wind as well. The shadow of
the tree in Figure 19 (b) has a similar behavior.
Cloud movement also causes large changes in
brightness throughout the images.

282

Our initial outdoor evaluation was conducted in the
environment depicted in Figure 19 (a). We cap-
tured two hours of outdoor video with extremely
difficult imaging conditions caused by wind blown
vegetation and strong shadows, which produced a
large amount of “noise” motion. Additionally, the
gate at the rear of the scene often blew open and
closed. We manually ground-truthed the video to
determine that a person entered the scene 20 times
during the two hour sequence. The system record-
ed 16 of these events, for a detection rate of 75%.
The undetected people were “lost in the noise.”
The system also produced 16 false detections in the
two hour period, caused by noise from the moving
shadows.

We were able to improve on this performance us-
ing our iterative research methodology to achieve a
100% detection rate for the 20 events in this two
hour sequence. The system still recorded 8 false
positives on this sequence. Four of these were
caused by the gate blowing open and closed. The
other four were cases in which the system lost
track of the person in the field of view, and there-
fore took two pictures of the person, one before
losing track, and another after picking up the track
again. These cases are therefore more properly re-
ferred to as “extra pictures” rather than false
positives.

Having achieved improved performance in the en-
vironment depicted in Figure 19 (a), we proceeded
to test the system in the environment of Figure 19
(b). One three separate days we captured 1-2 hours
of video, for a total of 4 hours of test video data in
the environment of Figure 19 (b). We ground-tru-
thed this video to determine that it contained 115
person events. The AVS system processed this vid-
eo using the best-view-selection algorithm, and the
results were compared to ground truth. We ob-
served a 100% detection rate and a 2.6% false
positive rate as a result of three false positives, all
of which were “extra pictures.”

In general, system performance was excellent in
the indoor condition, with the exception of scenes
containing multiple people, which produced extra
records. We expect to address the multi-person
problem using the p-template technique described
in section 3. No person entered the scene without
being recorded, even when there were multiple
people. The system performance degrades in diffi-
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cult outdoor lighting conditions, but it has
improved significantly in recent work.

5. Conclusion

We have described several improvements in the
video monitoring capabilities of the AVS system.
Some improvements, such as vehicle event recog-
nition, increase the functionality of the system to
enable it to recognize new classes of events. Other
improvements, such as the advanced segmentation
and tracking, increase the robustness of the sys-
tem’s ability to recognize events in the presence of
complications such as occlusion. We will continue
to make improvements in the two categories of in-
creased functionality and increased robustness. For
the functionality improvements, we expect to rec-
ognize new classes of events, especially events
regarding vehicles. For the robustness improve-
ments, we are pursuing techniques that enable the
system to be robust to lighting variation. As the
techniques become more complex, additional effort
will be needed to optimize the algorithms for real
time operation. Our advanced segmentation and
tracking will be the subject of optimization efforts
in the near future.
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