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Axis Communications AB, Canon Inc., and Canon U.S.A., Inc. (collectively 

"Petitioner") for two inter partes reviews of U.S. Patent No. 7,868,912 ("the '912 
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the Massachusetts Institute of Technology ("MIT") Libraries. 

4. I earned a Master's ofijbrary Science ("MLS") from Simmons 

College in 2006, and I have worked as a librarian for over a decade. I have been 

employed in the Research & Information Services (formerly Library) Department 

ofFinnegan since 2013, and from 2005-2013, I worked in the Library Department 

ofFish & Richardson P.C. 
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5. I am currently the Vice-President Elect of the American Association 

of Law Libraries and the President ofthe Law Librarians' Society of Washington, 

DC, and a member of the International Legal Technology Association. 

Attachments 

6. Attached as Exhibit A (Exhibit 1003 to the Petition in IPR20 19-

00235) is a true and correct copy of"Visual Memory," May 1993, pp. 1-92, by 

Christopher James Kellogg ("Kellogg"), obtained from the MIT Libraries. 

7. Attached as Exhibit B is a true and correct copy of the "Standard" 

record from the MIT Libraries' catalog system (known as the Barton Catalog) for 

its copy of Kellogg 

8. Attached as Exhibit Cis a true and correct copy of the MARC record 

of the MIT Libraries for its copy of Kellogg. 

9. Attached as r;:xhibit D (Exhibit 1005 to the Petition in IPR20 19-

00235) is a true and accurate copy of B. Flinchbaugh et al., "Autonomous Video 

Surveillance," SPIE Proceedings, 25th AIPR Workshop: Emerging Applications of 

Computer Vision, Feb. 26, 1997, Vol. 2962, p. 144-151 ("Flinchbaugh"), obtained 

from the MIT Libraries. 

10. Attached as Exhibit Eisa true and correct copy ofthe MARC record 

of the Library of Congress for its copy of the SPIE Proceedings publication that 

includes Flinchbaugh. 
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11. Attached as Exhibit F is a true and correct copy of the MARC record 

of the MIT Libraries for its copy of the SPIE Proceedings publication that includes 

Flinchbaugh. 

12. Attached as Exhibit G (Exhibit 1004 in each Petition in IPR20 19-

00235 and IPR20 19-00236) is a true and correct copy of. Brill et al., "Event 

Recognition and Reliability Improvements for the Autonomous Video Surveillance 

System," Proceedings ofthe Image Understanding Workshop, Monterey, CA, Nov. 

20-23, 1998, Vol. 1, pp. 267-283 ("Brill"), obtained from the Duderstadt Center, 

formerly known as the University of Michigan Media Union (UMMU). 

13. Attached as Exhibit H is a true and correct copy of the MARC record 

of the University of Virginia Library for its copy of Brill. 

14. Attached as Exhibit I is a true and correct copy of the MARC record 

of the North Carolina State University library for its copy of Brill. 

The MARC Cataloging System 

15. The MAchine-Readable Cataloging ("MARC") system is used by 

libraries to catalog materials. The MARC system was developed in the 1960s to 

standardize bibliographic records so they could be read by computers and shared 

among libraries. By the mid-1970's, MARC had become the international standard 

for bibliographic data, and it is still used today. 
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16. Each field in a MARC record provides information about the 

cataloged item. MARC uses a simple three-digit numeric code (from 00 1-999) to 

identify each field in the record. 

17. For example, field 245 lists the title of the work and field 260 lists 

publisher information. In addition, field 008 provides the date the item was 

cataloged. The first six characters of the field 008 are always in the "YYMMDD" 

format. 

18. It is standard library practice that once an item is cataloged using the 

MARC system, it is shelved. This process may take a relatively nominal amount 

of time (i.e., a few days or weeks). During the time between the cataloging and 

shelving of an item, the public may still find the item by searching the catalog and 

requesting the item from the library. 

Kellogg 

19. As indicated in Exhibit A (Exhibit 1003 to the Petition in IPR20 19-

00235), Kellogg has an MIT Libraries date stamp of ''JUL 09 1993" on page 1, 

indicating that the MIT Libraries received Kellogg on July 9, 1993. Further, as 

indicated in Exhibit B, the Standard record of the Barton Catalog confirms that 

Kellogg is shelved at the MIT Libraries and was published in 1993. In view of the 

above and the following, Kellogg was published and accessible to the public in 

1993, years before October 1999. 
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20. As indicated in Exhibit C, Kellogg has a cataloging date of September 

28, 1993 (shown as "930928" in field 008). This confirms that Kellogg was 

entered into the OCLC database, in which MIT does its cataloging, on September 

28, 1993. This is also consistent with its noted year of publication in the MARC 

record (shown as" 1993" in field 260). The OCLC database (also refened to as 

"WorldCat") is the largest online public access catalog (OP AC) in the world. 

21. Soon after Kellogg received a cataloging date, a record of its existence 

would have appeared in and been keyword-searchable through the Barton Catalog 

of the MIT Libraries. The Barton Catalog is currently available online to any user 

of the World Wide Web. Before it was accessible by Web (i.e., at the time the 

Kellogg thesis was received by the MIT Libraries in July 1993), it would have been 

accessible to anyone on the MIT campus and anyone who had access to the OCLC 

database. 

22. During the time period from September 1993 through October 1999, 

the Barton Catalog allowed keyword searching for words in the thesis title, and 

Kellogg would have appeared in a relevant Barton Catalog search conducted on or 

shortly after September 28, 1993. 

23. After being cataloged, a document such as Kellogg will undergo a 

process of being labeled and then shelved at the MIT Libraries. Based on my 

knowledge of MIT Libraries' cunent and prior practices, Kellogg would have been 
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shelved in a relatively nominal amount of time (i.e., a few days or weeks). Thus, 

Kellogg was cataloged and shelved at the MIT Libraries at least before the end of 

1993. 

24. Once shelved, Kellogg can be borrowed by any member of the MIT 

community. Furthermore, a copy of Kellogg can be purchased from MIT by any 

member of the public. Indeed, the first page of Kellogg confirms that there were 

no restrictions placed on its publication, as it states that "[t]he author hereby grants 

to MIT permission to reproduce and to distribute copies of this thesis document in 

whole or in part, and to grant others the right to do so." 

25. Further evidence of the public availability of Kellogg before October 

1999 is provided in Exhibit D, which is a copy of Flinchbaugh. In its 

Bibliography, Flinchbaugh cites to Kellogg (reference [4] on p. 151 ). As 

addressed below, Flinchbaugh was published in SPIE Volume 2962, which 

corresponds to the Proceedings from the 25th Annual AIPR Workshop on 

Emerging Applications of Computer Vision. The Workshop was held October 16-

18, 1996, and the Proceedings were published by at least 1997. Thus, Kellogg was 

at least available to members of the public in 1997, as shown by its citation in 

Flinchbaugh. 

26. For the avoidance of any doubt, I note that on June 23,2001, Kellogg 

was also cataloged in the MIT Archive Non circulating Collection 1, 
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Noncirculating Collection 3, and in microfiche form in the Barker Jjbrary, as 

indicated in the three entries for PST8 and in the second, third, and fourth instances 

of field 008 on page 1 of Exhibit C. However, none of this alters the fact that 

Kellogg was published and accessible to the public in 1993, as indicated above. 

Flinchbaugh 

27. As indicated in Exhibit D, Flinchbaugh (Exhibit 1005 to the Petition 

in IPR20 19-00235) was published in the Proceedings of the 25th AIPR Workshop: 

Emerging Applications of Computer Vision, SPIE Vol. 2962. The Workshop was 

held in Washington, D.C. during October 16-18, 1996, and the Proceedings was 

published by SPIE (The International Society for Optical Engineering). Ex. D at 1. 

In view of the above and the following, Flinchbaugh was published and accessible 

to the public before October 1999. 

28. Page 2 of Exhibit D shows a copyright date of 1997. The edition of 

the SPIE Proceedings that was published with Flinchbaugh is Volume 2962, and it 

was "Printed in the United States of America." Ex. D at 2. 

29. Although the copyright date of Flinchbaugh is listed as 1997, it 

appears that Flinchbaugh was actually published before that, in 1996. First, as 

noted above, the Workshop was held in Washington, D.C. during October 16-18, 

1996. Second, a copy of Flinchbaugh was received and cataloged by the Library 

of Congress in November 1996. See Ex. E at 1. Exhibit E is the MARC record for 
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the SPIE Proceedings, including Flinchbaugh, that was obtained from the Library 

of Congress. As shown in field 008 near the top of page 2 of Exhibit E, 

Flinchbaugh was cataloged by the library on November 21, 1996. Based on 

standard library practices, this reference would have been shelved shortly after it 

was cataloged (i.e., within a few days or weeks). Collectively, Exhibits D and E 

show that Flinchbaugh was published and accessible to the public years before 

October 1999. 

30. Further evidence of the publication and public availability of 

Flinchbaugh can be found in Exhibit F, which is the MARC record for the SPIE 

Proceedings, including Flinchbaugh, that was obtained from the MIT Libraries. 

As shown in field 008 on page 1 of Exhibit F, Flinchbaugh was cataloged by the 

library on March 10, 1997. Based on standard library practices and my 

understanding of the practices of the MIT Libraries, this reference would have 

been shelved shortly after it was cataloged (i.e., within a few days or weeks) and 

accessible to the public before October 1999. 

31. For the avoidance of any doubt, I note that on April 8, 2011, online 

access to Flinchbaugh was provided to certain MIT-associated individuals, as 

indicated by the fields 008 and 8528 and the URL entry at the top of page 2 of 

Exhibit F. Also, on June 23, 2001, the SPIE Proceedings, including Flinchbaugh, 

was archived at the MIT Library Storage Annex ("LSA"), as indicated by the 
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second 008 field and subsequent 8520 entry on page 2 of Exhibit F. However, 

none of this alters the fact that Flinchbaugh was published and accessible to the 

public years before October 1999, as indicated above. 

Brill 

32. As indicated in Exhibit G, Brill (Exhibit 1004 to each Petition in 

IPR20 19-0023 5 and IPR20 19-0023 6) is part of the published Proceedings of the 

1998 Image Understanding Workshop. The Workshop was held in Monterey, 

California during November 20-23, 1998, and the Proceedings were "APPROVED 

FOR PUBLIC RELEASE" with "DISTRIBUTION UNLIMITED." Ex. Gat 1. In 

view of the above and the following, the Proceedings, including Brill, was 

published and accessible to the public before October 1999. 

33. Evidence of Brill's publication and availability to the public includes 

the hand-written receipt date of"8-13-99" at the top of page 3 ofExhibit G. This 

indicates it was received by the UMMU (the University of Michigan Media Union, 

now known as the Duderstadt Center) on August 13, 1999. In my experience as a 

librarian and knowledge of standard library practices, the hand-written information 

at the top of p. 2 of Exhibit G appears to be the catalog record information for 

Brill. Based on standard library practices, this reference would have been shelved 

shortly after being received and cataloged by UMMU. 
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34. Further evidence of the publication and accessibility of Brill to the 

public can be found in Exhibit H, which is the MARC record for the Proceedings, 

including Brill, that was obtained from the University of Virginia Library. As 

shown in field 008 ncar the top of page 2 of Exhibit I I, Brill was cataloged by the 

library on December 15, 1998. Based on standard library practices, this reference 

would have been shelved shortly after (i.e., within a few days or weeks) and been 

accessible to the public prior to October 1999. 

3 5. Further evidence of the publication and public availability of Brill can 

be found in Exhibit I, which is the MARC record for the Proceedings, including 

Brill, that was obtained from North Carolina State University. As shown in field 

008 on page 1 of Exhibit I, Brill was cataloged by the library on December 15, 

1998. Based on standard library practices, this reference would have been shelved 

shortly after (i.e., within a few days or weeks) and been accessible to the public 

prim· to October 1999. 

I declare under penalty of perjury that the foregoing is true and correct. 

Executed on November 9, 2018 in Washington, D.C. 

Emily R. Florio 
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Chapter 1 

Introduction 

Visual memory supports computer vision applications by efficiently storing and re­

trieving spatiotemporal information. It is a unique combination of databases, spatial 

representation and indexing, and temporal representation and indexing. Visual mem­

ory provides representational flexibility and high-performance information access to 

meet the requirements of a variety of computer vision applications. 

1.1 Needs for Visual Memory 

Applications use spatiotemporal data in many different ways and place many different 

demands on a visual memory. Studying possible uses helps to clarify the concept of 

a visual memory and to identify the functionality it provides. 

Visual memory could serve as the repository for static information, such as ob­

ject descriptions, maps, and environment models, that applications reference during 

execution. For example, a vehicle navigator could store maps and images to help it 

later recognize its location. A large amount of such information could be established 

prior to application execution, and the visual memory would subsequently provide an 

application with efficient access to desired pieces of information. 

An application could store dynamic information in the visual memory. For ex­

ample, a vehicle navigator's input systems could maintain in the visual memory a 

description of the vehicle's local environment, updating it as the vehicle moved. The 
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visual memory could provide the navigator's planning processes with information 

about the vehicle's latest state and could analyze its progress to help determine a 

course of action. The high performance of the visual memory allows it to handle the 

frequent updates and queries needed by such dynamic, real-time systems. 

Visual memory could manipulate spatiotemporal information about objects and 

collections of objects too large to fit into volatile memory. For example, a computer­

aided design and modeling system could use the visual memory in building up a large 

design layout and simulating its execution over time; a photo interpretation system 

could similarly construct in the visual memory a complex representation of a scene. 

The visual memory would retrieve into main memory only a manageable part of a 

large representation at a time. 

Visual memory could act as the interface between inputs and applications in a 

computer vision system. For example, computer vision algorithms for a security 

system could analyze data provided by various cameras and store information in the 

visual memory. Applications could then retrieve this data to track objects, watch for 

suspicious events, and respond to user queries. The visual memory would coordinate 

the information from its inputs and eliminate the need for full connectivity between 

inputs and applications. 

Finally, visual memory could serve as a means for data transfer. A computer 

vision application could store spatiotemporal information in the visual memory for 

other applications to retrieve at any time in the future. To run comparative studies, 

different algorithms could use common data stored in the visual memory. 

1.2 Goals 

This thesis explores visual memory design and implementation. The primary goal 

of the thesis is to design a visual memory architecture that meets the requirements 

of various computer vision applications. A secondary goal is to implement a visual 

memory prototype to support a real-time scene monitoring prototype. 

10 



Chapter 2 

Background 

Visual memory builds on research in database design, spatial representation and 

indexing, and temporal representation and indexing. While there has been significant 

research in each of these areas, no previous project has combined them in this manner. 

The visual memory design uses knowledge gained from research projects in all these 

areas. This chapter summarizes and discusses some especially relevant projects. 

2.1 Database Research 

Visual memory must address concerns that a great deal of database research has 

already investigated. It must provide everything from information storage techniques 

to concurrency control for multiple inputs and outputs. Visual memory should build 

on the results of research into these topics. Presented here are two databases that 

address a number of the issues important to visual memory and that could be the 

basis for a visual memory system. 

2.1.1 DARPA Open OODB 

The DARPA Open Object~Oriented Database (Open OODB) project at Texas In~ 

struments outlines an extensible architecture that allows " ... tailoring database func~ 

tionality for particular applications in the framework of an incrementally improvable 

system .... " [25] The architecture meets functional requirements such as an object 
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data model and concurrent access, along with "meta requirements" including open­

ness and reusability. The open architecture lets separate modules handle extensions 

to the basic storage mechanism. These extensions cover standard database issues 

such as transactions, versions, and queries. 

The Open OODB architecture is very suitable for visual memory. The object­

oriented model can flexibly and intuitively represent the information used by computer 

vision applications. Following the Open OODB architecture, visual memory could 

avoid confronting standard database issues by letting other modules support those 

features. Instead, visual memory would consist only of those extensions necessary to 

support efficient manipulation of spatiotemporal information. If new features were 

needed, extra modules could easily be added to the architecture. 

2.1.2 POSTGRES 

The POSTGRES database [23] expands the relational database model to meet the 

needs of complex applications. Because it builds on traditional relational databases, it 

provides a number of standard features, such as transactions, a query language, and 

recovery processing. In addition, it allows applications to specify new data types, 

operators, and access methods. POSTGRES supports active databases and rules, 

letting applications set up daemons in the database that react to changes in the data. 

A versioning mechanism keeps track of old data and works with the query language 

to let applications retrieve this information. Finally, the POSTGRES storage server 

can "vacuum" old data onto archival media. 

POSTGRES supplies many features useful to a visual memory, such as transac­

tions, queries, and application-defined access methods. However, the relational model 

might not be sufficiently expressive to meet the representational needs of complex 

computer vision applications. In addition, the POSTGRES design does not support 

application-specific extensions to the database, so it would be hard for the visual 

memory to expand to meet future requirements. 
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2.2 Spatial Research 

There are many ways to describe spatial objects and to handle their storage and 

retrieval. Visual memory must consider how well different spatial models meet the 

representational needs of computer vision applications and how efficiently information 

in these models can be stored and retrieved. 

2.2.1 CODGER 

Researchers at Carnegie Mellon University developed the CODGER (COmmunica­

tions Database with GEometric Reasoning) "whiteboard" database and communica­

tion system to support the autonomous NAVLAB vehicle [20]. CODGER stores data 

to be communicated among the various modules that control vehicle navigation. It 

represents this information as tokens consisting of attributes and values. 

CODGER uses a fairly simple spatial model. Token attributes represent basic 

spatial information such as position and object extent. The tokens support some 

standard geometric operations like area calculation. A query mechanism can answer 

some spatial queries like the proximity query "Return the tokens with location within 

5 units of ( 45,32)." CODGER does not provide an indexing mechanism, and spatial 

operations and queries are performed in memory. 

2.2.2 Core Knowledge System 

The Core Knowledge System (CKS) [24], developed at SRI International, stores in­

formation for a robot. Like CODGER, it encodes this information as attribute-value 

tokens. CKS introduces special support for the uncertainty that results from incon­

sistent or incomplete information provided to the database. Its query mechanism 

includes keywords such as apparently and possibly to discern multiple opinions. Since 

spatial information is often imprecise, this support for uncertainty would be very use­

ful in a visual memory context. However, CKS does not provide any special spatial 

operations or query constructs. 
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2.2.3 ISR 

The ISR project at the University of Massachusetts at Amherst [3] defines a spatial 

representation (the Intermediate Symbolic Representation) and a management system 

for accessing data represented this way. The intermediate symbolic representation 

includes tokens for basic spatial objects such as lines, regions, and sets of parallel 

lines, but not for higher-level spatial objects such as people and vehicles. The data 

management system manipulates these tokens in an efficient manner. Applications 

built with ISR perform classification and in-memory spatial indexing. 

2.2.4 Image Understanding Environments 

The Image Understanding Environments (IUE) program [16] specifies a spatial rep­

resentation to meet the needs of a wide variety of computer vision applications. An 

IUE spatial object is defined by a set of points; this point set can be concrete (a list 

of all the points) or abstract (an equation defining the points in the object). IUE 

spatial objects are manipulated through set operations- complex objects can be con­

structed through conjunction and disjunction of point sets. In addition to its point 

set, each spatial object also defines a bounding box, a centroid, and other attributes 

for different, and perhaps more efficient, methods of spatial manipulation. The IUE 

specification only briefly discusses data transfer and does not provide database sup­

port for storage and retrieval of spatial information. 

2.2.5 PROBE 

The PROBE database [15], developed at the Computer Corporation of America, 

extends an object-oriented database management system to meet the requirements 

of a variety of computer vision applications. It implements a number of spatial 

data types and supports operations on sets of points. It outlines a query language 

with some support for spatial queries. To provide more efficient spatial access, it 

also provides what the authors call approzimate geometry, a limited form of spatial 

indexing. 
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2.2.6 Spatial Indices 

A large number of spatial data structures can provide efficient access to spatial in­

formation. Samet [18] describes a number of these, including quadtrees, hash tables, 

grid files, range trees, and R trees. Each index is specialized for specific storage and 

retrieval characteristics; visual memory would benefit from including a number of 

different indices to efficiently manipulate data for different applications. 

2.3 Temporal Research 

Databases manipulate two different types of time: transaction time, specifying when 

updates for events are stored in the database, and valid time, specifying when events 

actually happen. Rollback databases implement transaction time, historical databases 

implement valid time, and temporal databases implement both. Sometimes historical 

and rollback databases are informally called temporal databases to indicate their con­

cern with time. Since the computer vision applications discussed in the Introduction 

are concerned with the times at which events happen, visual memory should be a 

historical database. 

A number of different historical and temporal databases represent and store tem­

poral information. Each addresses a different set of concerns, and some designs suit 

visual memory better than others. The following research projects address many of 

the issues that visual memory must consider. 

2.3.1 TQuel 

The temporal database TQuel [21] is a temporal extension to a relational database. 

TQuel associates with each database record the slots valid-from and valid-to, defining 

an interval during which the record is valid. For example, the Employees relation 

might have three records for Frank, one valid from 0 to 1/1/93, another valid from 

1/1/93 to 5/7/93, and a third valid from 5/7/93 to oo. If Frank were changed on 

8/7/93, then the third record's valid-to slot would be changed to 8/7/93, and a new 
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record valid from 8/7/93 to oo would be added. 

TQuel extends the query language Quel [12] to support temporal access of records. 

A temporal query specifies an interval of interest; the database retrieves any record 

whose valid interval overlaps that interval. A query can also ask for records before, 

after, or as of a given moment. TQuel provides operators such as overlaps and eztend 

to form complex query intervals. 

2.3.2 Temporal Sequences 

The temporal database outlined in [19] models object state changes with temporal 

sequences. A temporal sequence can be discrete or continuous; for example, sales 

per month could be modeled as a discrete temporal sequence, while the voltage in 

alternating current could be modeled as a continuous temporal sequence. A temporal 

sequence is always represented by a set of state snapshots; interpolating functions 

estimate continuous sequences. Characteristics such as granularity and regularity of 

state snapshots define each temporal sequence. Functions including selection, ag­

gregation, and accumulation operate on sets of time sequences. The database also 

includes a powerful SQL-like [1] query language for retrieving temporal sequences. 

2.3.3 Temporal Sets 

Researchers at the University of Houston proposed some temporal additions [8] to 

the Extended Entity-Relationship Model. The basic temporal representation in this 

temporal model is a finite union of time intervals; for example, a particular state 

could be valid during the set of time intervals { [50,60), [90,230), [231,239) }. The 

database stores with each object a temporal element denoting its valid time. Basing 

temporal representation on sets of intervals preserves closure under set operations 

and provides a standard means for manipulating temporal information and querying 

the database. 

This model was later augmented to better represent temporal uncertainty [13]. 

The extended model preserves the definition of a temporal element but modifies the 
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definition of a temporal interval. Each endpoint in an interval specifies a valid time 

method that returns an ordered set of time points. The endpoint belongs to this set, 

but in order to allow for uncertainty, it is not explicitly specified. The model also 

modifies the standard set operations to manipulate uncertain temporal elements. 

2.3.4 Relative Time 

Some applications, such as computer-aided design systems, know how events are 

ordered but not the actual times of the events. Chaudhuri [5) proposes a temporal 

model to handle these cases. This model represents time as a graph rather than as 

a time line. Events are ordered with binary relations like before and simultaneously. 

These relations must obey properties such as transitivity and antisymmetry so that 

the database can navigate through a graph and infer additional relationships. The 

model supports temporal queries about event relations; for example, a query could 

ask for a lower time bound on an event or for common ancestors of two events. This 

capability could be useful in a visual memory to support efficient handling of temporal 

information for some applications. 

2.3.5 Temporal Indices 

Much of the spatial indexing research also applies to temporal indexing. For example, 

interval trees can store intervals in space or in time. To handle more complex, spe­

cialized temporal representations, however, requires additional research. Some of the 

databases described above provide their own temporal indices; [22) references many 

other systems with temporal indices. 
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Chapter 3 

Design 

This chapter presents a design for a visual memory system. It examines require­

ments and considerations that the design must take into account. It discusses key 

visual memory topics such as representation and indexing of spatial, temporal and 

spatiotemporal information. This chapter outlines a concrete, implementable system; 

the next chapter presents the prototype implementation of this design. 
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3.1 Requirements and Considerations 

The design of a visual memory must address a number of concerns. Some of these 

come from anticipated uses of the visual memory, while others are common themes 

in spatial, temporal, and database research. This section covers a number of these 

requirements and considerations. 

3.1.1 Database Considerations 

One database issue relevant to visual memory is how to represent and store informa­

tion. There are several standard models, including the relational model, the entity­

relationship model, and the object-oriented model. The visual memory should use an 

object-oriented model to meet the broad representational requirements of a variety of 

applications. An object-oriented approach is intuitive and highly extensible, allowing 

applications to define new, complex objects at any time. 

Another important consideration is concurrency control. The visual memory must 

be able to handle multiple, dynamic inputs and outputs. For example, in a scene­

monitoring system, many different cameras could update the visual memory simulta­

neously. The visual memory must ensure data consistency. 

Much database research involves well-defined program interfaces, including ex­

plicit storage mechanisms and query algebras. Applications using the visual memory 

do not need to know how it achieves its results, but they should know what results to 

expect. For example, performance-enhancing measures such as indexing and caching 

do not affect the objects returned by a query and can be added without affecting the 

query algebra. 

Recoverability is another database issue important to some visual memory ap­

plications. The visual memory must work to guarantee that, even in the case of a 

system crash, it does not lose stored information. In addition, it must be able to 

remove inconsistencies resulting from system failure during information storage. 
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3.1.2 Spatial and Temporal Considerations 

The purpose of visual memory is to store information about the history of a visual 

environment. Visual memory is not just a generic database - it must have spa­

tiotemporal concerns at the heart of its design. 

A visual memory must provide representational flexibility. Rather than forcing 

one spatiotemporal representation on all applications, the visual memory should be 

tailorable to an application's needs. Applications can trade off between representa­

tional power and performance. 

A visual memory must handle dynamic objects. Some computer vision applica­

tions need to update spatial information in response to changes in the environment. 

The visual memory must define spatiotemporal representations to effectively handle 

such changes. It must provide a versioning mechanism to store and retrieve different 

state snapshots of objects. 

A visual memory must provide a flexible, expressive query mechanism with exten­

sive spatiotemporal support. This query mechanism should support a wide variety of 

spatiotemporal queries. For example, a security system might ask the visual memory 

to retrace a person's path over the past five minutes, a vehicle navigator might ask 

it to watch for objects entering the field of view, and a CAD system might ask for 

simulation results for everything electrically connected to a specific chip. The visual 

memory should let applications conveniently express such queries. 

3.1.3 Performance Considerations 

High performance is one of the key requirements for a visual memory. Some visual 

memory applications, such as a vehicle navigator, need to store and retrieve infor­

mation very quickly. Many spatial and temporal models in the literature are very 

expressive but do not provide the necessary information throughput. A visual mem­

ory must be both expressive and fast enough to meet the demands of its applications. 

Indexing can help a visual memory achieve high performance by quickly identifying 

objects satisfying given constraints. Visual memory indices should be conservative, 
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never mistakenly omitting objects that satisfy a query. In this manner, indices can 

improve query performance but are guaranteed to not affect the results. 

A visual memory must provide a variety of indices to meet the needs of different 

applications. For example, a real-time scene monitoring system could set up an index 

to track the centroids of moving objects, while a photo interpretation system could 

index the areas covered by objects. A visual memory indexing mechanism should be 

extensible, handling additional application-defined indices. 

A visual memory must let applications control which objects are indexed. For 

example, an application could establish one index on all objects, another index on 

everything in the current session, and yet another index only on certain objects of 

interest. This would prevent the visual memory from wasting time and space updating 

unimportant indexing information. 

Caching and look-ahead techniques can increase the performance of a visual mem­

ory. Caching improves storage performance by not requiring the visual memory to 

wait for information to be written to disk. Both caching and look-ahead improve 

retrieval performance by reducing the number of disk accesses. 

Visual memory performance can be increased by letting applications tailor the 

visual memory to their specific requirements. For example, some applications can 

afford to lose a small amount of data, so they could eliminate recoverability infor­

mation. Other applications could optimize specific storage and retrieval cases; for 

example, a vehicle navigator could optimize its real-time performance by sacrificing 

some historical performance. 
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3.2 Design Overview 

The visual memory design consists of a set of extensions to an open database architec­

ture like DARPA Open OODB [25]. An open architecture allows the visual memory 

to add spatiotemporal customizations to the database. The visual memory can take 

full advantage of other modules implementing features such as concurrency control, 

caching, and versioning, without having to handle these capabilities directly. 

The visual memory design follows the object-oriented model discussed in the previ­

ous section. A class hierarchy defines representations for spatiotemporal information. 

Abstract superclasses define the interfaces for manipulating spatiotemporal informa­

tion, and their subclasses extend the definitions to represent more specific types of 

objects. This document denotes classes in italics; for example, Spatia/Object is the 

class representing spatial objects. A concrete member of this class is referred to as 

"a Spatia/Object instance" or informally just as "a spatial object." 

The visual memory design specifies a number of classes for representing spatiotem­

poral information. These classes provide methods through which computer vision 

applications and the visual memory can manipulate them. For example, the spatial 

class Square could include a method to return its area, the temporal class Temporal­

Interval could have a method to determine its duration, and the spatiotemporal class 

Person could implement a method plotting its space-time trajectory. Applications 

can design their own classes inheriting from these classes and extending them to meet 

additional needs. 

The visual memory design extends the database's storage mechanism. It provides 

a mechanism for object identity and maintains a history for each object. Each version 

of an object specifies when it was valid, and the visual memory can manipulate 

versions based on valid time. The design lets applications customize the database 

storage server based on characteristics of the data they typically store. 

The visual memory design extends the database's query mechanism to provide 

spatiotemporal support. The additional spatiotemporal constructs allow computer 

vision applications to :flexibly and expressively specify objects of interest. 
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To achieve suitable query performance, the visual memory provides spatiotempo­

ral indices that can efficiently identify objects satisfying query conditions. A visual 

memory index is an object that maintains information about other objects, allowing 

it to efficiently indicate those objects that meet certain constraints. For example, a 

visual memory spatial index might store object centroids so that it can quickly iden­

tify all the objects within a specified area. The visual memory provides a powerful 

and flexible indexing mechanism. 
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3.3 Spatial Representations 

The visual memory spatial class hierarchy provides a powerful framework that allows 

applications flexibility in designing spatial representations while ensuring that the 

visual memory can access the information it requires. The class hierarchy draws on 

the research outlined in the Background chapter. It provides the basic framework 

for any visual memory application, and it allows applications to extend it to meet 

additional needs. 

Spatial operations are often complex and require much computation. Spatial 

indices, described in Section 3.8, can increase the performance of these operations 

by maintaining information about sets of spatial objects. This chapter presents a 

number of spatial operations; Section 3.8 describes related performance issues. 

3.3.1 Core Spatial Classes 

SpatialObject 

The Spatia/Object class is the basis for all high-level spatial representations. Possi­

ble subclasses derived from Spatia/Object include Cube, QuestionMark, and Person, 

depicted in Figure 3-1. Spatia/Object captures the common representational require­

ments of a variety of such spatial objects. It provides a standard set of slots and 

methods to yield a consistent spatial interface. Applications can design additional 

spatial representations as long as they provide the same functionality. 

A spatial object is defined by a set of points and a local coordinate system. This 

information is sufficient to fully represent a spatial object. The point set specifies 

what area of space the object fills. The coordinate system relates these points to the 

points in other spatial objects. Additional information, such as centroid, orientation, 

and bounding box, is derivable from this information. 

Spatia/Object provides a wide variety of methods to manipulate its data. These 

methods can translate and rotate an object, operate on its point set, and find the 

object's bounding box, among other things. Most of these are actually point set and 

coordinate system functions and will be discussed further below. Concrete spatial 
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Figure 3-1: Spatial objects 

objects can provide additional relevant information; for example, a cube could have 

functions returning the length of its side, its surface area, and its volume. Using the 

methods of SpatialObject and its subclasses, an application can manipulate spatial 

data in many differe:nt ways. 

Several lower-level classes manipulate information for the high-level Sp,atialObjecl 

class. The following sections present these classes. 

Point 

The most elementary unit of spatial representation is the point. The visual memory 

provides the abstrac:t class Point and subclasses TwoDPoint, ThreeDPoint , etc., to 

represent this elementary unit. Point is a fairly simple class, only storing and ma­

nipulating a coordinate in some space. As will be shown below 1 howevt!r, it is an 

important building block. 

Point Set 

Complex spatial information can be represented as a collection of points, or point 

set . The visual memory provides the class PointSet, derived from a generic Set class, 
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Figure 3-2: Discrete point set 

to store and manipulate sets of points. Since PointSet is a kind of Set, it provides 

standard set operations, such as union, disjunction, member, and difference. This 

allows a powerful means for constructing complex objects. It also furnishes a well­

defined and sound mathematical basis for spatial representation and manipulation. 

The class DiscretePointSet represents a set of points simply as an exhaustive 

list of all desired points. This representation is feasible only for small point sets. 

For example, consider the task of representing the square area of the points plotted 

in Figure 3-2. A system could, by convention, represent a square area by such a 

discrete set of points. Standard set operations can easily manipulate this information. 

Unfortunately, the space required for this representation grows too quickly to be 

broadly applicable. 

The class AbstractPointSet is a far more efficient means for representing large 

or even infinite point sets. It abandons an exhaustive list of all points in favor of 

a functional definition of the points in the set. An abstract point set specifies a 

function that returns TRUE for points in the set and FALSE for points not in the 

set. For example, the function for the continuous square in Figure 3-3 would check for 

-1 <= x,y <= 1. This fully represents the square area. A point set's representation 

function grows complex as the set is modified by operations such as conjunction and 
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Figure 3-3: Abstract point set 

disjunction, but a sutitably complex function can represent any desired set of points. 

Some visual memory applications start with discrete approximations t.o the con­

tinuous world but want to interpolate to a continuous description. For example, 

an application might recognize only the list of discrete points above that ma.ke up 

just a small part of an actual continuous square. For these applications, a subclass 

of AbstractPointSet, InterpolatingAbstractPointSet, can apply a specified interpola­

tion function to that list of points to derive a continuous function. For example, an 

interpolation of the JPOint set in Figure 3-2 could yield the point set in Fi@;ure 3-3. 

An instance of PointSet is more than just a set of points; it also includes a number 

of methods deriving Bpatial information from this set . Important methods ftnd a point 

set's centroid, boundary, bounding box, and surface normal, among otller things. 

These methods extend the power of the point set and enhance the visual memory 

spatial support . 

CoordinateSystem 

A point in space is useful only in relation to other points. The CoordinateSystem 

class establishes relationships between points in the visual memory. Figure 3-4 shows 

a couple of possible coordinate systems. Each CoordinateSystem subclass must define 
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Figure 3-4: Coordinate systems 

dimensions, axes, and other features of the space. These specifications give meaning 

to points and provide the basis for relating points. The visual memory defines a coor­

dinate system for a set of points; the Spatia/Object class associates a local coordinate 

system with each point set. 

The main job of a coordinate system is to relate points. To do this, it maintains a 

list of coordinate transforms between it and other coordinate systems. To achieve high 

run-time speed efficiency, a coordinate system can maintain transforms between it and 

several other coordinate systems. Alternatively, it can trade off speed of operation 

for lower space requirements by storing only a few transforms and letting the visual 

memory follow a chain of transforms among related coordinate systems. 

To reduce the cost of multiple transforms, an application can adopt a unified co­

ordinate system to relate a number of nearby local coordinate systems. This unified 

coordinate system would maintain transforms to and from each local coordinate sys­

tem. In this manner each coordinate system would not need to keep a large list of 

transforms, and only two transforms would be needed to relate points in one coor­

dinate system to those in any other. A limitation of this approach is that it does 

not scale well for large distances, because the error induced by each transform could 
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compound significantly. 

The CoordinateSystem class provides methods to transform a coordinate system's 

relationship with other coordinate systems. For example, one coordinate system 

might translate and rotate with respect to others. Transforming a coordinate system 

modifies its list of coordinate transforms, and all coordinate transforms between it 

and other systems must be updated. This is automatically provided by the visual 

memory as part of the transformation method. 

Transforms like translation and rotation are CoordinateSystem methods rather 

than PointSet methods for a number of reasons. The coordinate system relates the 

point set to other coordinate systems, and it is probably more efficient to store a 

transform than a transformed point set for each other coordinate system. It is also 

more efficient to accumulate a set of transforms into one transform than to repeatedly 

apply transforms to a whole set of points. If the points are represented by a function, 

it could be hard to determine how the transform should modify that function. The 

transform could be applied only when needed; if it were used repeatedly, the results 

could be cached. 

Coordinate system transforms permit the construction of multiple-object scenes. 

Each spatial object is developed in its local coordinate system, and then coordinate 

system transforms construct relations between local coordinate systems. The oppo­

site effect occurs when multiple sets of points in one coordinate system are split into 

separate spatial objects with local coordinate systems. In this case, the transforma­

tion from each local coordinate system to the original unified coordinate system is 

already defined. Standard computer graphics texts, such as [11], discuss coordinate 

system transforms and the construction of multiple-object scenes in further detail. 

3.3.2 Relative Spatial Specification 

In many cases, a coordinate system has explicitly-defined relationships to other co­

ordinate systems. For example, one coordinate system might have an origin 3 units 

to the east of the origin of another coordinate system. In other instances, however, 

this information is not so clear. For example, an application might only need to know 
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Figure 3-5: Relative spatial objects 

that one block was to the east of another block, without knowing an explicit distance. 

In these cases a rela.tive spatial specification is required. 

There are actuaUly two kinds of relative spatial specification: specificatiion relative 

to a concrete position or object with concrete position, and specification relative to 

another relative spatial specification. For example, in Figure 3-5 the visual memory 

knows that object 1 is to the east of the point {23,18), object 2 is to the eaiSt of object 

1, and object 3 is to• the east of object 2. This description does not precisely specify 

the scene; for example, object 2 could be further to the north and east and still meet 

the specification. 

The visual memory provides the class RelativeSpatialObject , a subclass of Spa­

tia/Object, to handl•e relative spatial specification. A relative spatial objject simply 

keeps lists of objects relative to it in various ways. For example, one subclass of Rel­

ativeSpatialObject might provide lists for objects west, east, north, and south of it, 

while another subcla.ss might provide a list for nearby objects, where "near'" is defined 

by a method of the class. RelativeSpatialObject can represent both kinds of relative 
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spatial specification mentioned above, since an instance can be defined relative to any 

spatial object, including a fixed position or another relative spatial object. 

An application can construct arbitrary graphs of relative spatial objects. For 

example, in Figure 3-5, object 1 is to the west of object 2, which is to the west of 

object 3, and so forth. RelativeSpatialObject provides methods to trace through the 

transitive closure of a graph operation. In the above example, since object 1 is to the 

west of object 2 and object 2 is to the west of object 3, it follows that object 1 is to 

the west of object 3. Both objects must keep track of the relationship so that the 

connection can go in either direction; in the above example, it also follows that object 

3 is to the east of object 1. If a large number of links separate two related objects, 

an application might want to establish a direct connection. Alternatively, the visual 

memory could cache this information. 

The design of RelativeSpatialObject must determine how to handle transformation 

of an object in a relative object graph. In Figure 3-5, object 2 was to the east of 

object 1. If object 2 moved west, it could be either to the east or to the west of object 

1, as shown in Figure 3-6 and Figure 3-7 respectively. When an object is transformed, 

the visual memory must eliminate all of its relative dependencies. If objects maintain 

their relationship after transformation, that relationship must be reasserted. If objects 

are somehow connected so that the relationship is always maintained, they should be 

established as subobjects of a larger object that maintains the relationship. 

3.3.3 Uncertain Spatial Specification 

Some computer vision applications do not know exactly where objects are located and 

exactly which points are in the point sets. They deal with approximate information 

and conflicting evidence from multiple sources. These applications require uncertain 

spatial specifications. 

The visual memory class ProbabilisticPointSet, a subclass of PointSet, represents 

uncertain spatial information. ProbabilisticPointSet associates with each point the 

probability that it belongs to the point set. Thus instead of just knowing that point 

(3,4,5) was in a point set, a probabilistic point set would know that point (3,4,5) was 
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Figure ~1-7: Breaking a relative spatial specification, part 2 
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Figure 3-8: Uncertain edges 

in the point set with probability 0.7. Point probabilities allow applications to specify 

empirical certainty factors for point sets. As will be shown below, this provides great 

flexibility in representing uncertain spatial information. 

The standard Po·intSet methods must be modified to take point probahilities into 

account. The methods can reflect uncertainty in various ways. For example, there is 

no real boundary to a point set with point probabilities asymptotically approaching 0. 

However, an application can define the boundary as the set of points with probability 

0.1. Subclasses of PmbabilisticPointSet support such variations. 

Like PointSet, ProbabilisticPointSet has both discrete and abstract subclasses. 

The discrete subclass maintains a list of <point, probability> pairs, whlle the ab­

stract subclass defines a function that returns a probability for a given point. Set 

operations can combine the point probabilities from different point sets by maximiz­

ing, minimizing, or a.veraging, among other operations. 

Probabilistic point sets can handle a number of different types of uncertain spatial 

specification. The folllowing sections examine a few of these. 

Uncertain Edges 

ProbabilisticPointSet lets applications be fuzzy about the region of space occupied 

by an object. For example, the probability function can decrease at the edges of an 

object, where a segmentation algorithm might be unsure of exactly how to separate 

regions. Figure 3-8 shows examples of a standard person and a person with uncertain 

edges, where darker 1regions have higher probability. 
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Figure 3-9: Uncertain location 

Uncertain Locati1()n 

An application miglo.t know the points in the point set but might not be sure of its 

exact location. For (~xample, a. tracking algorithm might identify a group of points as a 

person and decide to use the default point set to represent it . However, it might know 

the person's location only to within a meter. The point set for this particular person 

can be "spread out''' to cover the range of possibilities. An application c.an indicate 

the areas most likely to contain the object by giving them the highest probability. 

Figure 3-9 shows a person and a "spread out" probabilistic point set, with darker 

regions for points with higher probability. 

Conflicting Information 

An application might have separate processes providing inconsistent information to 

the visual memory. For example, one process in a vehicle navigator migM identify a 
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Figure 3-10: Conflicting information 

car at one location, while another process might identify the same car a.t a. slightly 

different location. ProbabilisticPointSet handles this situation similarly to uncertain 

location, but it mus;t combine only a discrete set of point sets rather than spreading 

out one point set over a continuous area. 

ProbabilisticPointSet provides several different ways to combine point sets. For 

example, it can combine point probabilities by maximizing, minimizing, summing, 

or differencing (with probabilities staying between 0 and 1), or it can interpolate 

between the point sets. These approaches to combining probabilities are similar to 

those taken by expe·rt systems [7] and multi-valued logics [14] . 

Figure 3-10 shows two point sets to be combined and the results of three different 

types of combination. The points in the original point sets have the same probabilities. 

The leftmost combination is formed by maximization; since the probabili1ties are all 

the same, this is equivalent to a point set union operation. The middle combination 

interpolates horizon1tally between the two point sets. The rightmost combination adds 

probabilities, assigniing higher probabHities to the areas where the point sets overlap. 
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3.4 Temporal Representations 

Temporal representations fit into another branch of the visual memory class hierarchy. 

There are some parallels between the spatial branch and the temporal branch, but 

the temporal branch has many of its own requirements and features. This section 

presents the visual memory temporal representations. Like spatial operations, many 

temporal operations are complex and require the indexing mechanism of Section 3.8 

to achieve high performance. 

3.4.1 Core Temporal Classes 

Temporal Object 

The class TemporalObject is the basis for high-level representation of temporal in­

formation in the visual memory. Visual memory is concerned with valid time, the 

time at which events happen. TemporalObject provides slots and methods defining 

a standard interface for visual memory temporal support. Its subclasses extend the 

definition to handle additional temporal information. Any class that needs to keep 

track of its valid time should inherit from TemporalObject. 

TemporalObject represents valid time as a set of time intervals and a local clock. 

It provides methods to manipulate this information, setting and retrieving the valid 

time, relating the clock to other clocks, and so forth. Most of these methods are 

furnished by the lower-level classes that make up TemporalObject, discussed further 

in the following sections. 

VMTime 

The most elementary temporal representation is the class VMTime, an abbreviation 

for Visual Memory Time. An instance of this class represents exactly one point in 

time. Like its spatial counterpart Point, VMTime is a fairly simple but essential 

building block in the visual memory class hierarchy. 
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Temporallnterval 

Most objects are valid not for just one point in time but rather for some duration of 

time. The visual memory provides the class Temporallnterval to represent temporal 

extents. Temporallnterval is defined as an open interval [tl! t 2 ) to denote valid time 

from time t 1 to time t2 • The interval is open because applications generally recognize 

when an object is first valid (ti) and when it is first invalid (t2 ); its valid interval then 

extends from t 1 up to but not including t 2 • 

Temporallnterval provides a variety of methods for manipulating temporal infor­

mation. Standard methods set and retrieve the starting and ending times of the 

interval. Additional methods check interval overlap, combine overlapping intervals, 

and check the equality of intervals. 

TemporalElement 

While some temporal databases use the temporal interval as the main temporal repre­

sentation, that is insufficient for all visual memory applications. One problem is that 

the difference of two temporal intervals might not be a temporal interval: if interval 

1 covered [10, 30) and interval 2 covered (15, 25), the difference would be (10,15) 

U [25,30). The same problem occurs with disjunction, when an object is valid for 

multiple distinct intervals. The visual memory follows Elmasri [10] and goes one step 

further than Temporallnterval to provide a more powerful temporal representation. 

The class TemporalElement maintains a temporal object's valid time in the visual 

memory. A temporal element consists of a set of temporal intervals. Thus it is closed 

under set operations and can represent complex temporal specifications. Each of the 

less expressive temporal representations is a subcase of TemporalElement: Temporal­

Interval is a singleton TemporalElement and VMTime is a singleton TemporalElement 

with the same starting and ending point. Figure 3-11 depicts an example temporal 

element. 

TemporalElement furnishes many methods for manipulating its temporal informa­

tion. It is a subclass of the generic Set class, so it provides standard set operations 

such as member, conjoin, disjoin, and difference. In addition, by using TemporalEle-
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Figure 3-11: Temporal element 
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Figure 3-12: Overlapping temporal elements 

ment methods, an application can set and retrieve valid times, compare valid times, 

combine overlapping intervals in a temporal element, and resolve two temporal ele­

ments, eliminating overlapping times from one in favor of the other. 

Resolution of conflicting temporal elements is an important concept in the visual 

memory. An application can specify what to do in case of conflict between valid 

times: it can resolve in favor of the original valid time, it can resolve in favor of the 

new valid time, or it can leave them in an inconsistent state. Figure 3-12 shows two 

overlapping temporal elements, version A and version B; Figure 3-13 and Figure 3-14 

show the two ways in which they can be resolved. Temporal resolution is especially 

useful for an application that is initially unsure of the full extent of an object's valid 

time. The application could assume that the object was valid from a given point until 

told otherwise and then later resolve that when it learned more information. 

Like its spatial counterpart PointSet, TemporalElement has both discrete and ab­

stract subclasses. The class Discrete TemporalElement lists all the temporal intervals 

in the set, while the class AbstractTemporalElement uses a function to determine 

whether or not a given temporal interval is in the set. Since time is one-dimensional 
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Figure 3-13: Temporal resolution in favor of version A 
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Figure 3-14: Temporal resolution in favor of version B 

and most valid times are in just a few continuous blocks, the discrete class is probably 

more useful for most applications. The abstract class is available for applications that 

need to represent a large number of disjoint intervals. 

Clock 

A time point makes sense only with specification of the clock on which it was mea­

sured. The visual memory provides the class Clock, the temporal analog of the spatial 

class CoordinateSystem, to represent this information. Each clock can assign a differ­

ent meaning to time points: one clock might use milliseconds since January 1, 1900, 

while another might use seconds since March 8, 1970. In addition, a Clock instance 

can specify the machine on which the clock is located so that applications can try to 

account for inaccuracies and differences between system clocks. 

The TemporalObject class associates a clock with a temporal element. Clocks are 

associated at this level of granularity because TemporalElement is the main visual 

memory temporal representation. Using a finer granularity would hurt performance 
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Figure 3-15: Relative temporal specification 

for complex temporal specifications and would not greatly improve performance for 

simple temporal specifications that can be represented as trivial temporal elements. 

Like each coordinate system, each clock provides a set of transforms between it 

and other clocks. This establishes meaning behind the time points associated with 

a clock and allows the visual memory to convert times among clocks. To increase 

performance, applications can use the same or compatible clocks. 

3.4.2 Relative Temporal Specification 

Some applications, such as planners and schedulers, do not know explicit temporal 

information but can specify some relative ordering of events. For example, a planner 

might know that it must move to the other side of the room, which will take 5 

seconds, before it can pick up a block. To support these applications the visual 

memory provides classes representing relative temporal specifications. 

There are two kinds of relative temporal specification: specification relative to 

a definite time or object with a definite time, and specification relative to another 

relative temporal specification. For example, Figure 3-15 illustrates that I plan to 

eat dinner after 6:00, watch TV after that, and start writing my thesis while I watch 

TV. This description does not precisely specify the times of these events; if I took a 

longer break between eating and watching TV the relative specification would be the 

same. 

The visual memory class RelativeTemporalObject, a subclass of TemporalObject, 
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supports relative temporal specification. A relative temporal object maintains a list 

of other objects to which it is temporally related. For example, one subclass of 

RelativeTemporalObject might keep track of events before and after it, while another 

might maintain a list of events happening at approximately the same time. 

Relative Temporal Object allows applications to build arbitrary graphs of tempo­

ral relations. For example, the specification in Figure 3-15 directly relates a time 

and three temporal objects. Relative TemporalObject also provides methods to trace 

through the transitive closure of a graph. In this example, it could report that I will 

study after 6:00. Both related objects must keep track of the relationship so that the 

link can be traversed in either direction. In this manner, the visual memory could 

also report that 6:00 is before the time when I will study. 

3.4.3 Uncertain Temporal Specification 

In many cases an application might be unsure about the valid time of an object's state. 

This could happen, for instance, if the application did not notice an abrupt change 

of state or could not pinpoint the time of the state change. The visual memory pro­

vides two classes, Probabilistic Temporallnterval and Probabilistic TemporalElement, 

to support uncertain temporal information. Like their spatial counterpart Probabilis­

ticPointSet, these classes follow in the tradition of multi-valued logics and expert 

system certainty factors. 

ProbabilisticTemporallnterval 

ProbabilisticTemporallnterval extends the definition of an interval to include a func­

tion that, given a time, returns the probability that the interval includes that time. 

Thus, as shown in Figure 3-16, a probabilistic temporal interval can specify that the 

valid time most likely includes [10,25), is increasingly less likely to include times on 

the other sides of 10 and 25, and definitely does not include times outside of [5,30). 

This probability drop-off could indicate where the application was trying to determine 

state-change boundaries. The deterministic temporal interval is merely a special case 

where the probability is 1 during a specific interval and 0 elsewhere. 
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Figure 3-16: Probabilistic temporal interval 

Probabilistic Temporallnterval modifies standard Temporallnterval methods to use 

the temporal probability function. For example, a probabilistic temporal interval does 

not have clearly-defined endpoints; the method to find endpoints uses a threshold 

supplied by the application to separate points in the interval from those outside it. 

ProbabilisticTemporalElement 

ProbabilisticTemporalElement, a subclass of TemporalElement, contains a set of prob­

abilistic temporal intervals rather than a set of temporal intervals. This allows a 

temporal object to represent the probability that it is valid during a time in a set of 

disjoint intervals. 

The methods of ProbabilisticTemporalElement are specialized to handle tempo­

ral probability. For example, multi-valued logic systems often define probabilistic 

conjunction as a minimization operation and probabilistic disjunction as a maximiza­

tion operation [14]. Figure 3-17 shows two overlapping temporal elements; Figure 3-

18 demonstrates conjunction by minimization and Figure 3-19 shows disjunction by 

maximization. 

42 



Prob(t) 

1.0 

0.5 

0 5 10 15 20 25 30 35 40 45 50 

Figure 3-17: Overlapping probabilistic temporal intervals 
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Figure 3-18: Probabilistic conjunction by minimization 
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. Figure 3-19: Probabilistic disjunction by maximization 
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3.5 Spatiotemporal Representations 

Many objects stored in the visual memory have both spatial and temporal compo­

nents. For example, a vehicle navigator might watch other vehicles driving nearby 

and a security system might track people walking in a hall. In both of these cases, 

objects are moving in space over an extent of time. The meshing of spatial and tem­

poral information in these cases suggests that, in addition to spatial and temporal 

support, the visual memory should provide spatiotemporal support. 

The class SpatiotemporalObject, a subclass of both SpatialObject and TemporalOb­

ject, represents spatiotemporal information in the visual memory. Because it is a 

subclass of both SpatialObject and TemporalObject, it contains the same information, 

including a point set, a coordinate system, a set of valid times, and a clock. It also 

supports all the SpatialObject and TemporalObject methods for manipulating this 

information. 

The class DiscreteSpatiotemporalObject, a subclass of SpatiotemporalObject, stores 

state snapshots of objects. For example, a vehicle navigator could use an instance of 

this class to periodically store information indicating the spatial extent of the vehicle 

over some interval of time. In this way it could build up a whole history of the 

vehicle's motion. 

DiscreteSpatiotemporalObject provides interpolation methods to estimate addi­

tional spatiotemporal information from existing information. For example, from the 

information in Figure 3-20, the visual memory could interpolate the snapshot of 

Figure 3-21. DiscreteSpatiotemporalObject subclasses implement a variety of inter­

polation procedures; for example, the circle in Figure 3-21 could be interpolated by 

radius or by area, and acceleration over several snapshots could be taken into account. 

Interpolation allows applications to store spatiotemporal information more sparsely 

and still closely approximate necessary information. 

Like SpatialObject and TemporalObject, SpatiotemporalObject also provides an ab­

stract subclass to represent information by means of a function. AbstractSpatiotem­

poralObject uses a trajectory method to determine which points are in its point set 
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at specified times. The trajectory specifies how the object's point set and coordinate 

system change with time. Thus an abstract spatiotemporal object is equivalent to a 

set. of discrete spatiotemporal state snapshots. 

The spatial descJription of an object can change over time in two different ways: 

the point set itself can change, or the point set's relation with other points can 

change. The circle with an expanding radius shown in Figure 3-22 is an •example of 

a changing point set, while the translating circle shown in Figure 3-23 demonstrates 

changing relationships. A trajectory for an abstract spatiotemporal object can handle 

either or both types of change. 

The trajectory ca.n modify a point set over time by supplying a time point as an 

additional argument to the point set function. For example, the trajectory for the 

47 



y 

y 

_._X 
X 

y 

1=1 X 

X 

y 

1=2 

---------r------~x 

1=3 
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circle with expanding radius in Figure 3-22 could check x2 + y 2 <= t to determine 

all points ( x, y) in the point set at time t. If the changes in the point set follow some 

pattern, the spatiotemporal point set function can capture that pattern; otherwise, 

the discrete approach is probably more suitable. 

The trajectory can change relationships between point sets over time by estab­

lishing a function to specify coordinate system transforms as a function of time. In 

Figure 3-23, the trajectory would translate the coordinate system one unit along 

the x-axis every second. This can be implemented by establishing an initial coordi­

nate system and its relationships to other coordinate systems and then identifying 

differences between the coordinate system at a given time and the initial coordinate 

system. This way the trajectory does not have to establish all the coordinate system's 

relations at each time; instead, it can transform from a given coordinate system to 

the established coordinate system and from it to any other related coordinate system. 

Visual memory provides the class RelativeSpatiotemporalObject to express spa­

tiotemporal relationships. For example, an application could describe a relative 

spatiotemporal object as being to the right of another object sometime after 6:00. 

RelativeSpatiotemporalObject and its subclasses simply combine the relative spatial 

and temporal classes detailed in earlier sections. 

Spatiotemporal representations can benefit from probabilistic methods. The vi­

sual memory class ProbabilisticSpatiotemporalObject combines the spatial and tem­

poral probabilistic methods previously described. It allows applications to express 

uncertainty about both the spatial and temporal extents of spatiotemporal objects. 

Probabilistic functions are especially useful with spatiotemporal interpolation, allow­

ing a measure of uncertainty to accompany an interpolated object description. Ab­

stract spatiotemporal objects can establish probabilistic trajectories to be imprecise 

about the changes in an object's spatial description over time. 
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3.6 Object Storage 

An important part of the visual memory design addresses how to store and retrieve 

spatiotemporal information. The object-oriented database on which the visual mem­

ory builds provides basic support for object storage and retrieval. This section dis­

cusses the concepts and issues most relevant to the visual memory design. 

3.6.1 Identity 

Each object in the visual memory has a unique identity. This identity does not 

necessarily correspond to physical identity; for example, an application might not 

recognize a person appearing in its view as the same person who disappeared moments 

ago, causing it to create a new object for the person. To preserve identity, the visual 

memory assigns each object an object identitifier (OlD), a number that distinguishes 

that object from all others. The object maintains the same OlD through all of its 

state changes. 

Each object can have multiple versions. For example, a security system could track 

a person walking down a hall and store a new version describing that person's location 

every tenth of a second. The versions of an object maintain the same OlD, but each 

has a different version number. Thus an <OlD, version number> pair uniquely 

distinguishes a particular state snapshot of a particular object. By maintaining all 

of an object's versions, the visual memory can answer questions about the object's 

history. 

Some visual memory applications might need to combine the histories of different 

objects to form the history of one object. This could happen, for example, if a 

tracking system lost sight of a person, found a new person and created a new object, 

and later realized that the two people were actually the same. The visual memory 

can consolidate object histories to create versions of one object from versions of other 

objects. 

An application can report to the visual memory that an object has disappeared. 

Making an object disappear is quite different from deleting that object, which actu-

50 



ally removes old versions of the object from the visual memory. Disappearing does 

not affect an object's history but instead removes it from the current state of the 

visual memory. Visual memory queries after an object's time of disappearance do not 

retrieve that object. 

3.6.2 Storage Mechanism 

The database underlying the visual memory decides how to store objects. To imple­

ment an appropriate storage policy, the database should consider the visual memory's 

storage needs and the characteristics of the objects that it stores. This section dis­

cusses how object storage should be tailored for the visual memory. 

Many visual memory objects change very little from one version to the next. For 

example, a rigid object moving across the room changes only its coordinate system 

and valid time; the point set, clock, and other information remains the same. In cases 

like this, the database should store one base version of the object and then indicate 

differences for each new version. 

The visual memory obeys a nondeletion policy: it creates a new version each time 

an object changes, and it never deletes old versions. Deleting a version would cause 

problems for other object versions containing references to it. The visual memory is 

not an append-only database since it actually modifies old versions, as discussed below 

in section 3.6.3. Only the visual memory can modify old versions, since uncontrolled 

modification could lead to inconsistencies. These considerations allow the database 

to implement a simpler storage policy. 

Some visual memory applications store a great amount of data. Since old informa­

tion might never be deleted, the available space can quickly :fill. Once old information 

has settled down and will not be accessed or modified often, the database can move it 

onto long-term, high-capacity storage devices. This keeps the most useful information 

readily available while increasing the amount of information that can be stored. 
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3.6.3 Time 

As a historical database, the visual memory keeps track of when events happened. 

It stores with each version of a temporal object information about that version's 

valid time. Since one version's valid time might conflict with the valid times of other 

versions, the visual memory attempts to ensure consistency by resolving these valid 

times. Section 3.4.1 discusses temporal resolution strategies. 

The valid time of a new version could conflict with the valid times of many old 

versions. The indexing strategies discussed below in Section 3.8 allow the visual 

memory to quickly identify which old versions must be changed. The necessity of 

resolving old temporal information encourages the use of caching techniques to reduce 

the number of disk accesses. 

Applications can improve the performance of temporal resolution by operating in 

"real-time mode." In real-time mode, the valid time of the latest version of an object 

is an infinite interval starting from the current time. Thus each new version must be 

resolved only with the previous version. For example, if the first version were valid 

[0, oo ), then a second version valid [5, oo) would change the first version's valid time 

to [0, 5), a third version valid [10, oo) would change the second version's valid time 

to [5, 10), and so forth. Performing only one temporal resolution per object update 

can greatly improve storage performance. 
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3. 7 Queries 

The visual memory provides a powerful and expressive mechanism for retrieving infor­

mation. This query mechanism is tailored to the spatial and temporal representations 

presented in earlier sections. It is also designed to meet a wide variety of retrieval 

needs, providing flexibility in specifying objects of interest. This section describes the 

query mechanism and the types of queries supported by the visual memory. 

3.7.1 Query Mechanism 

The visual memory query mechanism extends a standard SQL-based [1) object query 

language, such as OQL [2). The queries below demonstrate the basic form and func­

tionality of such a query language. 

Find everyone with the same age as the object stored in program variable "me": 

Select p from Person 
where p.age() == Y.me.age() 

Find everyone named Larry who used to play professional basketball: 

Select p from Person 
where p. firstname() == "Larry" and 

p.occupation() .title() == "pro basketball player" and 
p.occupation() .status() == "retired" 

Find the children of the above people: 

Select p from Person 
where p.father() in 

(Select p from Person 
where p. firstname () == "Larry" and 

p. occupation() . title() == "pro basketball player" and 
p.occupation() .status() == "retired") 

The database literature contains many examples demonstrating the power of query 
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languages. The visual memory query language extensions allow applications to con­

struct complex spatiotemporal queries. 

A query language provides flexibility and expressiveness but can be hard to use. 

For applications that do not need the full power of a query language, graphical query 

specification might be more suitable. A graphical query could be specified by outlining 

regions of space and intervals of time; objects satisfying the specification could also 

be displayed graphically. A graphical query language could be built over the visual 

memory query language by transforming graphical specifications into visual memory 

queries. Chapter 4 discusses an implementation of such a graphical query language. 

A query mechanism works on two levels, on disk and in memory. The visual 

memory indices, discussed further in Section 3.8, provide information to help the 

query mechanism eliminate objects that do not satisfy a query before bringing them 

into memory. The query mechanism then further filters these objects to determine 

which objects satisfy the specification. A number of the query constructs outlined 

below could easily be performed in memory but are implemented as part of the query 

language to allow the query language to optimize object retrieval. 

Rather than adding a large number of special spatial and temporal constructs 

to the query language, the visual memory bases its query support on instances of 

the spatial and temporal classes discussed in previous sections. Each query includes 

spatial or temporal keywords and a spatial or temporal object; the keyword describes 

how instances satisfying the query must interact with the given object. The specified 

spatial or temporal object could he a program variable, allowing the application to 

form a complex specification before posing the query. Alternatively, it could he the re­

sult of another query, allowing an application to compose queries. These mechanisms 

provide great flexibility in spatial and temporal query specification. 

3. 7.2 Spatial Queries 

Instances of the class SpatialObject form the basis for all spatial queries. A query 

specifies a spatial object of interest and how objects satisfying the query must interact 

with that spatial object. Described below are the ways that applications can use a 
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Figure 3-24: Spatial queries 

specified spatial objoect to retrieve objects of interest . The accompanyin@; examples 

demonstrate the que·ry language syntax and reference objects of Figure 3-:24. 

Intersects Query 

The intersects query looks for the intersection of spatial objects. For example, the 

following query retUJrns the set { person-1, person-4 }: 

Select p from !Person 
where p inte:rsects %rectangle 

This is one of the most broadly useful spatial query constructs. Th•e specified 

spatial object can be a point, line, pentagon, pyramid, or just about any other spatial 

specification imaginaLble. This construct is also useful when negated. F01r example, 

the set { person-2, person-3 } satisfies the following query: 

Select p from Person 
where not p :intersects %rectangle 

A security system could use intersection to find all the objects within a room, and 

a vehicle navigator could use negated intersection to make sure that nothing was on 
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the road in front of the vehicle. 

Borders Query 

The borders query checks for bordering objects. The set { person-4.torso() } satisfies 

the following query: 

Select p from Person 
where p borders Y.person-4.head() 

A VLSI system could use this query construct to look for electrical contact, and a 

photo interpretation system could use it in constructing a high-level representation of 

connected regions. Applications can use probabilistic point sets to specify imprecise 

borders for this query. 

Centroid-Within Query 

The centroid-within query ignores the spatial extent of objects and checks distances 

between centroids. For example, the following query returns the set { person-1 person-

2 }: 

Select p from Person 
where p centroid within Y.distance of Y.person-2 

This distance parameter specifies within how many units, using the specified spa­

tial object's coordinate system, an object must be to satisfy the query. With this 

query, applications can quickly gather objects roughly within a given distance from a 

specified object. The estimation is fairly accurate if the point sets are much smaller 

than the distance between them. 

Point Set-Within Query 

To select nearby objects with greater accuracy than the centroid-within query pro­

vides, applications can use the point set-within query. The following example selects 

the set { person-1, person-2, person-3 }: 
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Select p from Person 
where p point set within %distance of %person-2 

This query is similar to the centroid-within query, but it retrieves all objects 

that have at least one point within the given distance of any point of the specified 

spatial object. To select objects meeting some specialized definition of nearness, an 

application can construct any spatial object and perform an intersects query; this is 

just a specialized, optimized version of that process. 

Transitive-Closure Query 

The transitive-closure query compounds any of the above specifications, applying a 

query to its results until there are no new results. It returns all objects identified 

in the process. For example, the transitive closure of a borders query shown below 

returns the set { person-4.torso(), person-4.legs() }: 

Select p from Person 
where p borders by transitive closure %person-4.head() 

This query retrieves any objects bordering the given object, any object border­

ing those objects, and so forth. A photo interpretation system could use it to find 

connected regions. 

3. 7.3 Temporal Queries 

The visual memory temporal query mechanism retrieves all the versions of objects 

that satisfy some set of constraints. A temporal query specifies a TemporalObject 

instance to describe the times of interest and a keyword to describe how the valid 

time of a satisfying version must interact with those times. Described below are the 

visual memory temporal query specifications. Accompanying examples demonstrate 

the query language syntax using versions shown in Figure 3-25. 
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Figure 3-25: Temporal queries 

During Query 

The during query checks for versions whose valid times intersect the given valid time. 

For example, the following query returns the set { Version-B, Version-C, Version-D }: 

Select p from Person during Y.query 

This is a very powerful query, allowing applications to retrieve versions during any 

specified set of times. It is also useful in its negated form, where it returns versions 

whose valid times do not intersect the given valid time. The negated query below 

selects the set { Version-A, Version-E }: 

Select p from Person 
not during Y.query 

Latest-During Query 

The latest-during query retrieves only the latest version of an object during some 

specified temporal element. For example, the set { Version-D } satisfies the following 

query: 
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Select p from Person 
latest during Y.query 

An application could use this query to update a memory-resident model with 

the latest information in the visual memory. For example, a vehicle navigator could 

establish a model of static objects at the beginning of its execution and then use this 

query to update that model with the latest dynamic information stored by image 

processing software. 

3. 7.4 Spatiotemporal Queries 

In addition to spatial and temporal queries, the visual memory supports spatiotempo­

ral queries. Some of this support comes from the query language's natural ability to 

handle combined specifications. For example an application could pose the following 

query: 

Select p from Person 
where p intersects Y.square 
during Y.times 

This query retrieves all versions of all objects valid during the specified times and 

intersecting the specified square. Figure 3-26 depicts five states of a spatial object, 

at timet= 1 through t = 5. Figure 3-27 depicts a square valid over [1,5) and shows 

that the above query would return the third state of the object. 

The joint spatial and temporal query checks a static spatial object over time, 

so it does not handle interactions between spatial and temporal information. Some 

applications want to track a moving object and retrieve versions near it at various 

times. To handle cases like this, the visual memory provides spatiotemporal queries. 

A spatiotemporal query specifies a spatiotemporal object and a temporal object, 

and how objects must interact with these to satisfy the query. The spatiotemporal 

object's history describes where an object must be at given times, and the temporal 

object specifies a portion of the history of the spatiotemporal object. The query can 

use any of the spatial constructs discussed above to specify spatiotemporal interac-
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F'igure 3-26: States of a spatiotemporal object 
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F'igure 3-27: Joint spatial and temporal queries 
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Figure 3-28: Spatiotemporal queries 

tions. For example, consider the following query: 

Select p from Person 
where p intt,rsects %square 
during Y.timt3s 

X 

This query conshuct retrieves versions of objects that intersect the square in its 

trajectory over a set. of times. The query shown in Figure 3-28 uses as the spatiotem­

poral query object a square translating equally in the x and y dimensions over time. 

This query returns :all five states of the object of Figure 3-26. 

This powerful query construct can handle many complex queries, espedally when 

combined with the join capability of the query language. For example, 
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Select p from Person 
during Y.times-1 
where p in 

(Select q from Person 
where q centroid within 3 of Y.spatiotemporal-spec 
during Y,times-2) 

This query tracks all objects that came within 3 units of a given object on its 

trajectory during a certain set of valid times. Queries like this demonstrate the power 

of a query language extended with the visual memory spatiotemporal constructs. 
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3.8 Indices 

The visual memory provides an indexing mechanism to quickly identify objects meet­

ing sets of constraints. Indices tie in with both the query mechanism and the various 

spatial, temporal, and spatiotemporal operations described in preceding sections. For 

example, a spatial index can help identify solutions to an intersection query retrieving 

objects stored in the visual memory, and it can help identify intersecting memory­

resident objects. The two types of indexing work similarly, so for conciseness this 

section primarily considers how indices can improve retrieval performance. 

Indices maintain information allowing them to quickly eliminate objects that do 

not satisfy a query. They provide conservative approximate answers to queries; that 

is, they can mistakenly retrieve objects that do not satisfy a query, but they can never 

mistakenly leave out objects that do satisfy a query. The design of an index must 

trade off between how quickly the index can answer a query and how much overhead 

is necessary to maintain the indexing information. A well-designed index can greatly 

help query performance while adding minimal information overhead. 

3.8.1 Mechanism 

Visual memory indices are object-oriented: they are objects and they maintain infor­

mation about objects. This yields a consistent approach to information representa­

tion. The database can store and retrieve indices just like other objects. Indices can 

keep track of other indices, a technique further discussed below. Finally, due to the 

extensible nature of the object-oriented approach, it provides flexibility in designing 

indices. 

The purpose of an index is to maintain information to help it efficiently identify 

objects that might satisfy a query. In the visual memory design, this information 

consists of <OlD, version number> records, each uniquely specifying a particular 

version of a particular object. An index structures these records so that it can quickly 

provide a set of records identifying the objects that meet specific constraints. 

Indices maintain information in many different ways, such as tables, arrays, and 
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trees. The visual memory can handle a very large index by retrieving only a necessary, 

manageable part at a time. However, an index must strive to minimize the amount 

of retrieval required to reach an answer, so that the the cost of using the index does 

not outweigh the query efficiency it yields. 

An application can specify which sets of objects it wants to index and how it 

wants to index them. It simply specifies the class of the index desired and the set of 

objects for which it should maintain information. For example, consider the following 

examples of index specification: 

Index temporal-btree on 
(Select p from Person) 

Index spatial-grid on 
%my-set 

Index spatial-quadtree on 
(Select o from Object 

where o intersects %my-room) 

The first example establishes a temporal index for all people; the second establishes 

a spatial index on a specific set specified by a program variable; the third indexes all 

the objects in a certain scene. The visual memory maintains a list of all the indices 

in use and knows when to update them and for which queries they are appropriate. 

The following sections present issues in the design of spatial, temporal, and spa­

tiotemporal indices. Chapter 4 discusses additional indexing issues raised by one 

visual memory application and describes indices designed for the application. 

3.8.2 Spatial Indices 

Spatial indices organize information about the objects in a scene. The literature de­

scribes many different spatial indices; see [18] for descriptions of quite a few. Different 

spatial indices use different parts of an object's spatial representation and thus are 

most appropriate for different queries. For example, a point quadtree uses an object's 

centroid and works best with proximity queries, while an interval tree uses spatial in-
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tervals and is most suitable for intersection queries. An application must pick spatial 

indices applicable to its retrieval needs. 

3.8.3 Temporal Indices 

Temporal indices store information about object histories. The task of ordering the 

temporal component of an object is similar to that of ordering the spatial component, 

if time is viewed as just another dimension. Thus a lot of spatial indexing research 

applies to temporal indexing as well. For example, a spatial interval tree could store 

lists of versions valid during temporal intervals. However, temporal representation 

poses some concerns unique to temporal indexing. 

Temporal indices must address the monotonicity of time. The visual memory 

allows applications to modify the past or predict the future, but some applications 

maintain an always-increasing sense of time. This could hurt the performance of some 

temporal indices; for example, a tree could become unbalanced. Temporal indices still 

need to support nonmonotonic temporal specification, but some could be optimized 

for the monotonic case. 

Because a temporal index retains historic information, it constantly increases in 

size throughout its lifetime. A temporal index must not lose too much efficiency as 

it grows. Some temporal indices should even partition their data between short- and 

long-term storage, as in [9]. 

Temporal indices must be able to represent infinite temporal intervals. An infinite 

interval occurs, for example, when an application assumes that an object will be valid 

until otherwise notified and assigns the object a valid time extending to infinity. An 

infinite interval would cause problems for a temporal index representing intervals as 

collections of subintervals in a tree. 

3.8.4 Spatiotemporal Indices 

Spatiotemporal indices store spatial information about a scene as it varies in time. 

The interaction of space and time makes spatiotemporal indexing a complex problem. 
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There are two kinds of spatiotemporal indexing, corresponding to the discrete and 

abstract spatiotemporal classes discussed in Section 3.5. 

The first type of spatiotemporal indexing stores information about versions of 

discrete spatiotemporal objects. The indexing is a two-step process: spatial indices 

maintain spatial descriptions of objects, and temporal indices maintain the temporal 

descriptions of the spatial indices. To perform a spatiotemporal query, the indexing 

mechanism finds the temporal description in the temporal indices, retrieves the cor­

responding versions of the spatial indices, finds the spatial description in them, and 

retrieves the corresponding spatiotemporal object versions. 

Discrete spatiotemporal indexing must address some concerns. Spatiotemporal 

objects that move continuously cause constant index updates. This leads to large 

temporal indices, raising the issues previously discussed. The structure of a spatial 

index used in spatiotemporal indexing should not depend on the objects contained 

within it, since those objects move. 

The second type of spatiotemporal indexing stores information about abstract 

spatiotemporal objects. An abstract spatiotemporal index could build up its own 

spatiotemporal function representing a set of object trajectories. Given a spatiotem­

poral specification, this function would return a list of those objects satisfying it. 

This function could grow very complex, so the index would have to devise some 

means of efficiently storing, retrieving, and evaluating it. In this manner an index 

could efficiently answer queries about abstract spatiotemporal objects. 
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Chapter 4 

Implementation 

To test the visual memory design, a subset of it was implemented in support of a real­

time scene monitoring prototype. In this prototype, image processing using video 

cameras tracks objects and stores information about them in the visual memory. 

Through a graphical query interface, users can specify queries to the visual memory 

and view the results in various ways. Figure 4-1 shows the basic flow of information 

in the prototype. This chapter describes the implementation of the scene monitoring 

prototype and the visual memory supporting it. 

Scene monitoring is a good testbed for the visual memory. Its constant updates 

and retrievals of information test the visual memory's performance. Multiple sensors 

and outputs test concurrency issues. The query interface tests the power of the query 

language by specifying a variety of queries, including spatial ("Watch for anything 

that comes within 3 feet of that button."), temporal ("Play back the last 10 sec­

onds."), and spatiotemporal ("Did anybody come into the room between 12:00 and 

1:00?"). Finally, the construction of such a prototype tests the usefulness of the visual 

memory spatiotemporal representations. 

4.1 Database 

An object-oriented database called Persistent 0++, or PC++ for short [17], is the 

basis for the visual memory prototype. This database is a prototype for the DARPA 
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Figure 4-1: Scene monitoring prototype 
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Open Object-Oriented Database project at Texas Instruments [25). PC++ has an 

open architecture, allowing the visual memory to add spatiotemporal extensions and 

take advantage of the features provided by other modules. 

Some of the features provided by Persistent C++ are particularly useful to the 

visual memory. A versioning mechanism allows access to any previous state of any ob­

ject. Transactions ensure atomicity, consistency, isolation, and durability. The object 

storage mechanism caches recently accessed information to increase performance. 

A Persistent C++ preprocessor gathers information about the classes of objects 

to be stored in the database. This particular prototype preprocessor is somewhat 

limited, not allowing multiple inheritance or function pointers; these constraints limit 

the prototype in some situations. The preprocessor adds extra information to the 

class descriptions and forms actual C++ classes for an application to use. It adds 

function hooks into these classes so that the application can establish daemons to be 

executed when objects are stored or retrieved. Finally, when one object contains a 

pointer to another object, its class specification indicates either that the referenced 

object should be automatically retrieved with the referring object or that it should 

be retrieved only on demand. 

Persistent C++ stores objects with the Exodus storage manager [4). It stores a 

whole Exodus object for each version of a PC++ object, rather than storing differ­

ences between versions. This could hurt performance for objects that change very 

little from one version to the next. PC++ maintains a B-tree structure to map its 

OIDs to Exodus OIDs; this hurts performance as the number of OIDs grows large. 

Persistent C++ can retrieve an object specified by OlD and version or by a char­

acter string previously assigned to that object. It provides an object query language 

extension, OQL [2), but this query language does not interface well with the visual 

memory indexing mechanism. Thus the visual memory prototype has its own spa­

tiotemporal query mechanism. 
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4.2 Spatiotemporal Representations 

The prototype visual memory implements as Persistent C++ classes a number of the 

spatial, temporal, and spatiotemporal representations discussed in Chapter 3. These 

representations conform to the design except for some differences due to limitations 

in Persistent C++ and some optimizations and simplifications tailored to the scene 

monitoring application. 

The prototype implements only the basic discrete classes. Since Persistent C++ 

cannot store functions, an instance cannot construct an arbitrary abstract function 

for its point set, temporal element, or trajectory function. In addition, the scene 

monitoring prototype does not need relative or probabilistic specifications. 

To increase performance, the prototype uses a global coordinate system and a 

global clock. This eliminates the need for spatial transforms between coordinate 

systems and temporal transforms between clocks. Translation and rotation methods 

act on objects themselves rather than on their coordinate systems. 

The prototype implements specific subclasses of the class SpatiotemporalObject 

to represent the objects tracked by the scene monitoring system. For example, the 

Person class adds a slot for estimations of the person's height; it could also store the 

person's name and other such information if it were connected to face recognition 

software. 

4.3 Indices 

4.3.1 Mechanism 

Index updates occur in the visual memory prototype at transaction commit time, 

through Persistent C++ commit daemons. When the database stores an object, it 

automatically calls the object's commit daemons. The visual memory establishes 

commit daemons for all objects to update index information. 

The visual memory prototype implements the discrete spatiotemporal indexing 

described in Section 3.8.4. Spatial indices store information about object locations, 
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and temporal indices store information about the valid times of these spatial indices. 

The visual memory prototype handles multiple indices. An application can create 

sets of indices and specify the types of information they should store and the types 

of queries they should answer. However, the prototype only implements start and 

stop control over indices; that is, an application can tell an index to start recording 

information about all objects committed, or to stop recording such information. This 

is a simpler approach than the specification of arbitrary index sets discussed in the 

design, but it is adequate for the prototype application. 

4.3.2 Spatial Indices 

The prototype spatial indices store information about the centroids of objects stored 

in the visual memory. This information allows them to efficiently answer locational 

and proximity queries, such as "Find everything in this square" and "Find everything 

within 5 units of this coordinate." Two such indices were implemented; this section 

describes the two-dimensional version of each. 

The first spatial index is a simple fixed grid [18], dividing space into a number of 

cells. Each cell stores a list indicating those objects with centroids in the cell. The 

index can determine the correct cell for an object by rounding down the coordinates 

of the object's centroid, modulo the cell size. Figure 4-2 shows a fixed grid with a cell 

size of 5. Using the scheme described above, object G at spatial coordinate (14,18) 

belongs to cell (2,3). 

To answer a spatial query, the grid determines relevant cells in the manner de­

scribed above and retrieves the objects they list. A query for objects within the 

shaded rectangle in Figure 4-2 searches cells (2,3), (2,4), (3,3), (3,4), ( 4,3), and ( 4,4), 

and returns objects C, F, and G. The fixed grid index is most suitable for visual mem­

ory applications with unknown distributions of object positions and frequent needs 

for efficient updates. 

The second spatial index implemented in the prototype is a bucket PR quadtree 

[18]. Each node in the tree keeps a bucket of object records for some region. The 

index initially consists of one node covering the entire indexed region and containing 
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no records. As objects are added to a node's bucket, it eventually becomes full and 

the node must be split . A node is split into four children, one for each quadrant, 

and the node's bucket is appropriately divided among the children; full children a.re 

recursively split . Figure 4-3 shows how space would be segmented for a quadtree 

with bucket size of 2 and the given objects. Figure 4-4 shows the corresponding index 

structure. 
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A bucket PR quadtree answers a spatial query with a recursive search through all 

nodes intersecting the region of interest. A query for objects in the shaded rectangle 

in Figure 4-3 searches the left half of the tree in Figure 4-4, and it returns objects C, 

F, and G. 

The bucket PR quadtree index is best suited for visual memory applications where 

objects are spread out and do not move often. In these cases, it has much less 

overhead than the fixed grid. Thus an application might use a quadtree to store 

static background information and a grid to store dynamic information. 

4.3.3 Temporal Indices 

The prototype temporal indices keep track of the valid times of object versions. They 

can efficiently answer temporal intersection queries, such as "Find all events that 

happened after work last Tuesday and Wednesday." The prototype implements two 

different temporal indices. 

The first temporal index is a segment tree [18]. Each node in the tree represents 

a temporal interval and contains a list of all versions valid throughout the entire 

interval. The children of a node represent subintervals of their parent's interval, so 

that a version that is not valid throughout a node's interval can be stored in one of 

its descendants. For example, if version A were valid from time 35 to time 140, it 

would appear at the indicated nodes in Figure 4-5. 

To answer a temporal intersection query, the temporal segment tree retrieves the 

versions referenced by all nodes with intervals intersecting the specified temporal 

element. To find all versions valid during [105, 118) in Figure 4-5, the index searches 

the darkened branches and returns versions A and E. 

The second temporal index is a B+ tree [6] with times as its keys. Each leaf node 

maintains a start-list containing versions that become valid at the node's key time 

and a stop-list containing versions that stop being valid at that time. The keys in 

an internal node separate its children. Leaves are connected in a linked list, and the 

start-list for the first leaf of an internal node also indicates "carry-over" versions still 

valid after the last key in the previous node. In Figure 4-6, version A, valid from 
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Figure 4-6: Temporal B+ tree 

time 35 to time 140, has a start record at node 35, a stop record at node 140, and a 

carry-over record at node 107. 

A temporal intersection query proceeds down the tree to the first leaf of an internal 

node with a time less than the earliest specified time. There it gathers the carry-over 

records and traverses the linked list to the earliest specified time to determine which 

carry-over versions are still valid then. Next it continues through the list to the latest 

specified time, noting which versions become valid during the temporal element. In 

Figure 4-6, a query for the interval [105,118) would go down to leaf node 11 and 

traverse the linked list to leaf node 107, noting that only version A was still valid at 
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time 105. It would then proceed to leaf node 121 to find the remaining valid versions, 

finally returning versions A and E. 

4.4 Queries 

The prototype visual memory implements a functional query interface rather than a 

full query language. To pose a query, an application calls a visual memory function, 

passing it parameters specifying the query. For example, a spatial proximity query's 

parameters are a point and a radius, while a temporal intersection query takes a 

temporal element. The visual memory returns a set of <OlD, version number> index 

records indicating objects that might satisfy the query. This set can be combined 

with other such sets to construct complex queries. Once a query has been fully 

specified, the query mechanism can retrieve the indicated objects. The indices provide 

only approximate answers, so the query mechanism filters the retrieved objects to 

return only those objects satisfying the specification. This query mechanism allows 

applications to pose fairly complex queries. 

4.5 Input 

The input for the scene monitoring prototype comes from real-time processing of 

CCD camera images. This software, which tracks people walking in its field of view, 

was implemented by Tom Bannon and Tom O'Donnell in the Image Understanding 

Branch at the Texas Instruments Computer Science Laboratory. Using a calibrated 

internal model of its field of view, the software estimates the positions and heights of 

people and updates the visual memory a few times per second. This yields enough 

information to test the visual memory's performance and to provide interesting data 

for queries to retrieve. 
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Figure 4-7: Graphical query interface viewing region 

4.6 Graphilcal Query Interface 

The scene monitorintg prototype includes a graphical interface through which users 

can query the visual memory to retrieve information stored by the tracking software. 

A user establishes regions, times, and object types of interest, and the visu;al memory 

retrieves the corresponding objects. The query interface can display the results by 

dynamically stepping through the state changes of the objects, by displaying all the 

changes at once, or by displaying textual information about the objects. 

The first step in posing a query is to select the query region. The query interface 

allows a user to step through a map hierarchy to select the map for th~: region of 

interest. The user can resize and scroll the query interface window to select an 

exact query region. This region specifies the spatial area for which objects should be 

retrieved. Figure 4-7 demonstrates a typical viewing region. 

The next step is to establish alarm regions by shading rectangles on t he map. In 

addition to displayin.g objects in the query region, the scene monitoring system alerts 
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Figure 4-8: Specification of query times and classes 

the user to events i.n alarm regions. Alarm regions can be established all over the 

map, allowing the user to monitor a number of disjoint regions without having to 

watch them all. 

Another step in query specification is to indicate a set of time intervals for each 

region, as shown in the left half of Figure 4-8. The system can parse times such as 

"3/8/93 8:00" and "today 13:00." It includes a special construct " ... " to represent 

infinite queries retrieving all information after a given point. In addition, it provides 

the keyword "now" to signify a real-time query, one that constantly polls th.e database 

for new information. 

An alarm region''s temporal specification defaults to that of the query region. If 

an alarm region has an explicit temporal specification, that specification is conjoined 

with the query region's specification. This allows a user to specify, for example, that 

an alarm region should be active only during certain hours. The temporal S!l•ecification 

for the query region identifies times of interest, and the temporal specification for an 

alarm region further restricts that specification to indicate exactly when the alarm 

should be active. 

The user can spedfy for each region what types of objects are important., as shown 

in the right half of Fiigure 4-8. For example, the query region might return all objects, 

an indoor alarm region only people, and an outdoor alarm region both people and 

vehicles. Alarm regions default to the same type specification as the query region. 

Associated with each alarm region is a delay specification that indicates how long 
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Figure 4-9: Graphical query results 

an object must rem<Lin in that region before the system triggers an alarm. This lets 

the user specify that an alarm should fire only if an object remains in a f4egion for a 

suspicious amount of time. The default value is 0 seconds, causing an alarm to be 

sounded as soon as am object enters the alarm region. 

Once a query is fully specified, the results can be displayed in one of three ways: 

playback, event report, and trail trace. A playback steps through the retrioeved infor­

mation in temporal order, displaying moving blocks for moving objects and printing 

alarm information in another window. An event report textually describes alarms 

that were triggered. A trail trace displays blocks for all the retrieved information si­

multaneously and provides information about a certain object in response to a button 

press over its picturE~. Figure 4-9 shows part of a playback window, with one object 

inside an alarm region and two other objects also being monitored. 
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Chapter 5 

Performance 

One of the key requirements for the visual memory is to provide high-performance 

storage and retrieval of spatiotemporal information. The scene monitoring prototype 

described in Chapter 4 not only demonstrates the representational power of the vi­

sual memory design, it also provides a means for examining the performance of the 

prototype visual memory. This chapter studies some tests conducted to analyze the 

prototype's performance. 

Visual memory performance can be measured in two main ways: by the number 

of objects stored and retrieved, and by the amount of time taken to store and retrieve 

those objects. The scene monitoring prototype is most concerned with how fast it can 

manipulate information, suggesting the use of temporal performance measurement. 

However, measuring the number of objects stored and retrieved can give an idea of 

the bottom-line visual memory performance and can help predict how changes in the 

storage and retrieval mechanism could affect the temporal performance. This chapter 

only discusses temporal performance, since both measurements follow approximately 

the same pattern and since timing measurements provide an intuitive benchmark. 

The results of timing tests vary from machine to machine and from one execution 

to the next depending on system load, so they are most useful in providing compara­

tive information. To reduce inaccuracy, times discussed here are the averages of three 

test executions. To provide more valid comparisons, the tests were run during the 

same time frame on a single machine with approximately the same system load. 
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5.1 Spatiotemporal Object Storage and Retrieval 

The prototype visual memory achieves reasonable spatiotemporal object storage per­

formance. The underlying database limits the attainable performance, since it is 

responsible for actual object storage. With every spatiotemporal object update, the 

visual memory stores additional indexing information. A useful test of storage per­

formance compares the time to store raw spatiotemporal objects with that to store 

both spatiotemporal objects and associated index information. The graph in Fig­

ure 5-1 shows storage times for spatiotemporal objects and different sets of indices as 

a function of the number of objects per update and the number of updates. 

This graph shows that both raw storage time and indexed storage time steadily 

increase with the number of updates and the number of objects per update. Indexed 

storage costs a nearly constant factor of 2 to 3 times the raw update time. This 

overhead factor follows from the spatiotemporal indexing strategy discussed in Sec-
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tion 3.8.4, since for each update the visual memory stores spatiotemporal objects in a 

spatial index and the spatial index in a temporal index. While this seems to be a high 

price, it is necessary so that the visual memory can provide efficient spatiotemporal 

access to the stored information. 

As a result of storing spatiotemporal index information, the visual memory can 

quickly answer spatiotemporal queries. Depending on indices, query complexity, and 

number of satisfying objects, the visual memory answered test spatiotemporal queries 

in 0.1 to 2.1 seconds. Clearly, retrieval performance is much better than storage 

performance. 

5.2 Index Comparison 

Chapter 4 describes two spatial and two temporal indices implemented in the visual 

memory prototype. The spatial indices can answer the same queries, but they differ in 

structure: the grid has a static structure built prior to execution, while the quadtree 

has a dynamic structure defined by the objects stored in it. Similarly, the temporal 

indices provide the same functionality, but the segment tree has a static structure 

and the B+ tree has a dynamic structure. The visual memory prototype provides a 

basis for comparing the performance of these indices. 

Parameters such as branching factor and cell size affect index structure, so the 

tests must use comparable parameters. The spatial tests cover a 100-unit by 100-unit 

square. The quadtree has a bucket size of 10 objects and the fixed grid has a cell size 

of 10 units; this implies that the grid has 100 nodes and the quadtree has from 1 to a 

few hundred nodes. The temporal tests cover a time interval of up to 1000 seconds, 

and both temporal indices have a branching factor of 64. 

In addition to the indices described above, each test also includes a "bucket" index. 

A bucket index simply maintains a list of all the objects stored in the visual memory. 

Since there is no overhead for the storage of complex index structure, a bucket index 

can achieve the highest update performance. A bucket index answers a query by 

retrieving all the objects in its list and checking them against the query specification. 
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This is not an efficient query mechanism for large queries, but it provides a useful 

basis for comparing the performance of other indices. 

One important performance measure compares how quickly indices can update in­

formation about objects. Figure 5-2 shows the update performance of spatial indices, 

and Figure 5-3 shows the update performance of temporal indices. 

As expected, the bucket indices achieve the highest performance for small numbers 

of objects. However, the temporal bucket cannot store much more than 100 updates, 

since it saves an entire list with each update and quickly fills the database. Dynamic 

structures tend to perform slightly better than static structures for small numbers of 

objects, while static structures are better for large numbers of objects. This follows 

from the relative sizes of the structures; dynamic indices are initially small but grow 

as they store information about additional objects, while static indices maintain the 

same structure no matter how much information is stored. 

Another important measure for index comparison is query performance. Timing 
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Figure 5-3: Temporal update performance 

tests show that query performance follows a pattern similar to that of update perfor­

mance: bucket indices achieve the best performance with small numbers of objects, 

dynamic structures work better than static structures with small numbers of objects, 

and static structures work better than dynamic structures with large number of ob­

jects. Figure 5-4 shows the performance for spatial indices with a 10-unit by 10-unit 

query square. Figure 5-5 shows the performance for temporal indices with a query 

interval of 10 seconds. 
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Chapter 6 

Conclusion 

The visual memory design presented in this thesis combines and extends spatial, 

temporal, and database research to meet the needs of a number of computer vision 

applications. It provides powerful and expressive spatiotemporal representations that 

it can efficiently manipulate, store, and retrieve. A prototype visual memory imple­

mented in support of a scene monitoring prototype demonstrates the potential of this 

design. This prototype achieves useful storage and query performance and provides 

a basis for comparison of different indices. 

Visual memory research could continue in many different directions. One step 

is to more fully implement the design. Some of the unimplemented spatiotemporal 

representations, such as probabilistic, relative, and abstract objects, could be ben­

eficial to the scene monitoring prototype. The prototype visual memory could be 

connected to a number of different computer vision applications. Further implemen­

tation and testing would provide more feedback on the design and help identify areas 

for additional research. 

The visual memory could furnish additional functionality if it used a different 

database. For example, if the database provided active rules, a security system could 

establish visual memory daemons to automatically check for alarms and to resolve 

old data. If the database provided real-time guarantees, a vehicle navigator could 

be sure that it would not crash because of visual memory performance. Finally, 

if the database provided data partitioning capabilities, applications that store large 
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amounts of spatiotemporal data could make use of separate storage devices. 

A number of extensions could improve the performance of the visual memory. Vi­

sual memory customization of caching and look-ahead could improve both storage and 

retrieval performance. Lightweight transactions could reduce overhead and increase 

storage performance for applications that continuously update the visual memory. 

Query optimization could increase retrieval performance by ordering parts of a query 

to reduce the number of retrievals. These extensions could help the visual mem­

ory reach its potential as high-performance system for manipulating spatiotemporal 

information. 
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Abstract 

Autonomous Scene Monitoring System 

Bruce Flinchbaugh & Tom Bannon 

T1~xas Instruments 
Systems & Information Science Laboratory 

P.O. Box 655474, MS 238 
Dallas, TX 75265 

Phone: 214-995-0349 

Autonomous scene monitoring poses substantial requirements for extracting, storing, and 
displaying information ab9ut three-dimensional (3-D) scenes. We have developed and 
demonstrated a data base system c;a.lled visual memory that interfaces automated Yideo 
camera monitoring systems with end-user applications requiring real-time and histmical 
information about observed objects:. T~is paper describes our visual memory and real­
time camera monitoring capabilities. The visual memory prototype uses state-of-the-art 
object-oriented data base technology with spatic:rtemporal indexing extensions. The 
video monitoring system reports 3-D positions of people in the field of view of a CCD 
camera to visual m.emory, which dy·namically maintains the information with respect to 
a map, and a user interface provides interactive access to the data via historical ~d 
real-time queries. 

1 Motivation 

CCTV surveillance cameras provide valuable data in many security monitoring situat:ions. 
For example, in some cases CCTV images are recorded using time lapse video recox·ders. 
Security system operators use CCTV monitors for remote situation assessment when an 
alarm detector signals a potential problem. And in some systems video ... motion detectors 
are used to automati<::ally signal alarms when changes are detected in the CCTV d.ata.. 

lnterestingly, practically all of the information available from CCTV cameras is essen­
tially ignored. In many time-lapse 11ideo surveillance situations, the images recorded on 
tape are never viewed or used in a.n:y way unless a specific event occurs, such as an acci­
dent or a theft, and even then only a small portion Qf the data may be 'viewed. Although 
people are generally good at assessing situations using CCTV data, it is well known that 
operator performance deteriorates significantly with fatigue. And video motion detectors 
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Figure 1: Autonomous Scene Monitoring System. 

simply detect changes in· the incoming light, relying on operators to visually assess the 
situation .. 

In principle, situation assessment can be performed automatically by computers, to 
continuously exploit available CCTV surveillance data all of the time. Computer vision 
systems can be used to extract information about the scene, such as how many people 
are in the field of view, and whether a particular kind of vehicle has entered the scene. 
In some cases this descriptive information may be all that is needed to facilit ate efficient 
security monitoring and concise record keeping. 

2 Autonomous Scene Monitoring Architecture 

At Texas Instruments we have developed a prototype scene monitoring system that au­
tomatically extracts complex information about scenes from CCTV camera images and 
provides •operators with convenient access to the information. 

The o•verall scene monitoring system is illustrated in Figure 1. The Vision System 
detects p•eople walking in the CCTV camera fieid of view and continuously reports their 
3-D positions as they move. The Visual Memory at the center of the scene monitoring 
system is an object-oriented data base that stores the information reported by the vision 
system. As people walk, their current 3-D positions are updated in visual memory, and a 
history of their movement is maintained for future reference. The User Interface provides 
interactiv·e graphical access to.real-time and historical events stored in visual memory. 

The Vision System, Visual Memory, and User Interface software. are implemented 
on two c<>mputers. Th:e Vision System uses a Datacube MaxVideo 20 real-time image 
processor and a Sun SPARCstation 10, while the Visual Memory and User Interface run 
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on the Sun workstation. Users may also access Visual Memory over a network using an 
X Window System server or another workstation. The camera is a Texas Instruments 
monochrome MC-780PH CCD camera with a resolution of 755x484 8-bit pixels, of which 
492x460 pixels are used by the Vision Syste~. The camera is mounted in a pan/tilt/zoom 
unit about 8 feet high on a hallway ceiling in our laboratories. From this vantage point 
the camera can observe several hallways, including a section approximately 9 feet wide, 
117 feet long, and 12 feet high. The hallway is illuminated by overhead and wall-mounted 
fluorescent lighting, with significant variations caused by natural light from large windows 
at one end of the hall. 

3 Real-Time Scene Monitoring 

Algorithms of the Vision System report where people are walking in the field of view. 
The algorithms use basic image processing techniques to continuously detect scene mo­
tion. Regions of motion are analyzed for consistent interpretations as people standing or 
walking. By using knowledge of the scene geometry, the algorithms estimate positions 
and heights of people in the scene. The system detects and updates the positions of 
people at a rate of t en frames per second. 

4 Visual Memory 

Our visual memory prototype project developed an architecture [1] to interface vision 
systems with applications requiring access to informatio~ about 3-D objects, events and 
their environment. Visual Memory requirements include: 

• Storage of objects at high frame rates 

• Retrieval from multi-gigabyte data volumes 

• Support for diverse data. structures 

We selected an object-oriented data base {OODB) [2, 3] to use as the basis for the 
visual memory prototype. Relational data. base technology is poorly suited for Visual 
Memory because it does not adequately support diverse data structures. The OODB is 
illustrated in Figure 2. For Visual Memory, the Indexing and Address Space modules of 
the OODB were extended to speed object storage and retrievaL In particular, sev~ral 
spatiO..temporal indexing mechanisms were introduced a.s described below·. 

4.1 Spatial Indexing 

Spatial indexing provides fast, efficient answers to quest:ions such as, "Is anyone in area 
X?" Spatial indices typically provide conservative approximate answers, allowing false 
positives but not false negatives, and rely on further filtering for exact results. 

Several different spatial indices are available, caterin;g to different types of questions. 
For example, grids ab.d point quadtrees are good for doetermining objects near a given 
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Figure 2: ObjeCt-Oriented Data Base. 

point; while interval trees are better for finding object intersections [4]. The visual 
memory architecture supports multiple indices, and its query mechanism determines the 
appropriate index for a given qu•estion. 

4.2 Temporal Indexing 

Temporal indices provide means for accessing object histories by efficiently determining 
an object's state at a given time and how objects changed over a given interval of time. 
They help answer questions such as, "Was anyone in hall X during the night?" and 

"Where was object" Y at lO:OOa.m?" 
Mathematically, temporal indexing mechanisms may be regarded as special cases of 

spatialln.dices for one dimension (time). Thus selection of a particular temporal index 
depends on the intended use. For example, image processing inputs to visual memory 
us~ only increasing time. Also, old information becomes increasingly unimportant and 
can be archived [5] for infrequent access. Tree indices support these requirements. 

5 User Interface 

The user interface provides interactive a.ccess to visual memory data via historical and 
real-time queries. To make historical queries, the user specifies periods of time, regions 
of space, and object types. Th·~n the system retrieves the corresponding objects. To 
display real-time information, lo•cations of people are indicated on a ·floor plan display 
and changed dynamically as the visual memory is updated. 
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Users may specify alarm regions on the map so that when someone enters that area 
an alarm is signaled. Digital snapshots of the scene may be kept and saved for future 
reference. Other user interface features provide interactive control of t he camera pan, 
tilt, zoom, focus, and gain settings. 

6 Concluding Remarks 

The automomous scene monitoring system currently operates in our laboratories with two 
remotely controlled pan/tilt/zoom cameras. We have also demonstrated operation of the 
system outdoors, using an infrared camera to map the position of a person walking along 
a sidewalk and across a street. The object-oriented data base architecture [3] underlying 
the Visual Memory facilitates expansion of the prototype scene monitoring system to 
handle hu.ndr~ds of cameras, vision systems, and many users. As vision systems and 
visual memory evolve, increasingly sophisticated surveilla.nce tasks will be automated to 
enhance scecurity systems. 
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Event Recognition and Reliability Improvements for 
the Autonomous Video Surveillance System 

Frank Z. Brill, Thomas J. Olson, and Christopher Tserng 
Texas Instruments 

P.O. Box 655303, MS 8374, Dallas, TX 75265 
brill @csc.ti.com, olson @csc.ti.com, tsemg@csc.ti.com 

Abstract 

This report describes recent progress in the devel­
opment of the Autonomous Video Surveillance 
(AVS) system, a general-purpose system for mov­
ing object detection and event recognition. AVS 
analyses live video of a scene and builds a descrip­
tion of the activity in that scene. The recent 
enhancements to AVS described in this report are: 
(1) use of collateral information sources, (2) cam­
era hand-off, (3) vehicle event recognition, and ( 4) 
complex-event recognition. Also described is a 
new segmentation and tracking technique and an 
evaluation of AVS performing the best-view selec­
tion task. 

1. Introduction 

The Autonomous Video Surveillance (AVS) sys­
tem processes live video streams from surveillance 
cameras to automatically produce a real-time map­
based display of the locations of people, objects 
and events in a monitored region. The system al­
lows a user to specify alarm conditions 
interactively, based on the locations of people and 
objects in the scene, the types of objects in the 
scene, the events in which the people and objects 
are involved, and the times at which the events oc­
cur. Furthermore, the user can specify the action to 
take when an alarm is triggered, e.g., to generate an 
audio alarm or write a log file. For example, the 
user can specify that an audio alarm should be trig­
gered if a person deposits a briefcase on a given 
table between 5:OOpm and 7:OOam on a weeknight. 
Section 2 below describes recent enhancements to 

This research was sponsored in part by the DARPA Image 
Understanding Program. 
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the AVS system. Section 3 describes progress in 
improving the reliability of segmentation and 
tracking. Section 4 describes an experiment that 
quantifies the performance of the AVS "best view 
selection" capability. 

2. New AVS functionality 

The structure and function of the AVS system is 
described in detail in a previous IUW paper [Olson 
and Brill, 1997]. The primary purpose of the cur­
rent paper is to describe recent enhancements to 
the AVS system. These enhancements are de­
scribed in four sections below: (1) collateral 
information sources, (2) camera hand-off, (3) vehi­
cle event recognition, and (4) complex-event 
recognition. 

2.1. Collateral information sources 

Figure 1 shows a diagram of the AVS system. One 
or more "smart" cameras process the video stream 
to recognize events. The resulting event streams 
are sent to a Video Surveillance Shell (VSS), 
which integrates the information and displays it on 
a map. The VSS can also generate alarms based on 
the information in the event streams. In recent 
work, the VSS was enhanced to accept information 
from other sources, or "recognition devices" which 
can identify the objects being reported on by the 
cameras. For example, a camera may report that 
there is a person near a door. A recognition device 
may report that the person near the door is Joe 
Smith. The recognition device may be a badge 
reader, a keypad in which a person types their PIN, 
a face recognition system, or other recognition sys­
tem. 
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Figure 1: AVS system diagram 

The recognition device we have incorporated is a 
voice verification system. The user stands in a pre­
defined location in the room, and speaks his or her 
name. The system matches the utterance to previ­
ously captured examples of the person speaking 
their name, and reports to the VSS if there is a 
match. The VSS now knows the identity of the per­
son being observed, and can customize alarms 
based on the person's identity. 

A recognition device could identify things other 
than people, and could classify actions instead of 
objects. For example, the MIT Action Recognition 
System (MARS) recognizes actions of people in 
the scene, such as raising their arms or bending 
over. MARS is trained by observing examples of 
the action to be recognized and forming "temporal 
templates" that briefly describe the action [Davis 
and Bobick, 1997]. At run time, MARS observes 
the motion in the scene and determines when the 
motion matches one of the stored temporal tem­
plates. TI has obtained an evaluation copy of the 

)..,: 

MARS software and used it as an recognition de­
vice which identifies actions, and sends the result 
to the AVS VSS. We successfully trained MARS to 
recognize the actions of opening a door, and open­
ing the drawer of a file cabinet. When MARS 
recognizes these actions, it sends a message to the 
AVS VSS, which can generate an appropriate 
alarm. 

2.2. Camera hand-off 

As depicted in Figure 1, the AVS system incorpo­
rates multiple cameras to enable surveillance of a 
wider area than can be monitored via a single cam­
era. If the fields of view of these cameras are 
adjacent, a person can be tracked from one moni­
tored area to another. When the person leaves the 
field of view of one camera and enters another, the 
process of maintaining the track from one camera 
view to another is termed camera hand-off. Figure 
2 shows an area monitored by two cameras. Cam-

Figure 2: Multiple cameras with adjacent fields of view 
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era-1 monitors the hallway, and Camera-2 
monitors the interior of the room. When a person 
moves through the doorway to enter the room from 
the hall or vice-versa, camera hand-off is necessary 
to enable the system to know that the person that 
was being monitored in the hall via Camera-l is 
the same as the person being monitored in the 
room via Camera-2. 

The AVS system accomplishes camera hand-off by 
integrating the information from the two cameras 
in the map coordinate system. The AVS "smart" 
cameras report the locations of the monitored ob­
jects and people in map coordinates, so that when 
the VSS receives reports about a person from two 
separate cameras, and both cameras are reporting 
the person's coordinates at about the same map lo­
cation, the VSS can deduce that the two separate 
reports refer to the same person. In the example de­
picted in Figure 2, when a person is standing in the 
doorway, both cameras can see the person and re­
port his or her location at nearly the same place. 
The VSS reports this as one person, using a mini­
mum distance to allow for errors in location. When 
Camera-2 first sees a person at a location near the 
doorway and reports this to the VSS, the VSS 
checks to see if Camera-l recently reported a per­
son near the door. If so, the VSS reports the person 
in the room as the same one that Camera-l had 
been tracking in the hall. 

2.3. Vehicle event recognition 

This section describes extensions to the existing 
AVS system that enable the recognition of events 
involving interactions of people with cars. These 
new capabilities enable smart security cameras to 
monitor streets, parking lots and driveways andre­
port when suspicious events occur. For example, a 
smart camera signals an alarm when a person exits 
a car, deposits an object near a building, reenters 
the car, and drives away. 

2.3.1. Scope and assumptions 

Extending the AVS system to handle human-vehi­
cle interactions reliably involved two separable 
subproblems. First, the system's vocabulary for 
events and objects must be extended to handle a 
new class of object (vehicle) and new event types. 
Second, the AVS moving object detection and 
tracking software must be modified to handle the 
outdoor environment, which features variable 
lighting, strong shadows, atmospheric disturbanc-

269 

es, and dynamic backgrounds. The work 
described here in section 2.3 addresses the first 
problem, to extend the system for vehicle events in 
conditions of uniform overcast with little wind. 
Our approach to handling general outdoor lighting 
conditions is discussed in section 4. 

The method is further specialized for imaging con­
ditions in which: 

1. The camera views cars laterally. 
2. Cars are unoccluded by other cars. 
3. When cars and people overlap, only one of 

the overlapping objects is moving 
4. The events of interest are people getting 

into and out of cars. 

2.3.2. Car detection 

The first thing that was done to expand the event 
recognizing capability of the current system was to 
give the system the ability to distinguish between 
people and cars. The system classifies objects as 
cars by using their sizes and aspect ratios. The size 
of an object in feet is obtained using the AVS sys­
tem's image coordinate to world coordinate 
mapping. Once the system has detected a car, it an­
alyzes the motion graph to recognize new events. 

2.3.3. Car event recognition 

In principle, car exit and car entry events could be 
recognized by detecting characteristic interactions 
of blobs in difference images, in a manner similar 
to the way AVS recognizes DEPOSIT and RE­
MOVE events. In early experiments, however, this 
method turned out to be unsatisfactory because the 
underlying motion segmentation method did not 
segment cars from people. Whenever the people 
pass near the car they appear to merge with it, and 
track is lost until they walk away from it. 

To solve this problem, a new approach involving 
additional image differencing was developed. The 
technique allows objects to be detected and tracked 
even when their images overlap the image of the 
car. This method requires two reference images: 
one consists of the original background scene 
(background image), and the other is identical to 
the first except it includes the car. The system takes 
differences between the current video image and 
the original reference image as usual. However, it 
also differences the current video image with the 
reference image containing the car. This allows the 
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system to detect objects which may be overlapping 
the car. Using this technique, it is easy to detect 
when people enter and exit a car. If an object disap­
pears while overlapping with a car, it probably 
entered the car. Similarly, if an object appears over­
lapping a car, it probably exited the car. 

2.3.4. Basic method 

When a car comes to rest, the following steps are 
taken. First, the image of the car object is removed 
from its frame and stored. Then, the car image is 
merged with the background image, creating an 
updated reference image containing the car. (Ter­
minology: a reference car image is the subregion 
of the updated reference image that contains the 
car.) Then, the car background image, the region of 

the original background image that is replaced by 
the car image, is stored. 

For each successive frame, two difference images 
are generated. One difference image, the fore­
ground difference image, is calculated by 
differencing the current video image with the up­
dated reference image. The foreground difference 
image will contain all the blobs that represent ob­
jects other than the car, including ones that overlap 
the car. The second difference image, the car dif­
ference image, is calculated using the car 
background image. The car difference image is 
formed from the difference between the current 
frame and the car background image, and contains 
the large blob for the car itself. Figures 3 and 4 
show the construction and use of these images. 

(a) (b) (c) 

Figure 3: (a) Background image. (b) Car background image. 
(c) Updated reference image 

• 
(a) (b) 

Figure 4: (a) Current video image. (b) Foreground difference image 
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Figure 5: Creation of the motion graph. 
The starred frame represents the frame prior to the background image being updated. 

The blobs in the foreground difference image are 
grouped into objects using the normal grouping 
heuristics and placed in the current frame. The 
blobs in the car difference image necessarily repre­
sent the car, so they are all grouped into one current 
car object and placed in a special reference frame. 
Normal links occur between objects in the previous 
frame and objects in the current frame. Additional­
ly, the stored car object, which was removed from 
its frame, (from Step 1) is linked to the current car 
object which is in the reference frame. In any given 
sequence, there is only one reference frame. 

Figure 5 demonstrates the creation of this new mo­
tion graph. As indicated by the dotted lines, all 
objects maintain their tracks using this method. 
Notice that even though the car object disappears 
from future frames (due to the updated reference 
image), it is not detected to have exited because its 
track is maintained throughout every frame. Using 
this method, the system is able to keep track of the 
car object as well as any objects overlapping the 
car. If an object appears intersecting a car object, 

(a) 

(b) 

(c) 

an INCAR event is reported. If an object disap­
pears while intersecting a car object, an OUTCAR 
event is reported. Figure 6 shows the output of the 
system. The system will continue to operate in this 
manner until the car in the reference frame begins 
to move again. 

When the car moves again, the system reverts to its 
normal single-reference-image state. The system 
detects the car's motion based on the movement of 
its centroid. It compares the position of the cen­
troid of the stored car object with the centroid of 
the current car object. Figure 7 shows the slight 
movement of the car. 

Figure 6: Final output of system 

(d) 

Figure 7: (a) Reference car image. (b) Moving car image. 
(c) Reference car difference image. (d) Moving car difference image 
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Figure 8: Restoration of normal differencing. The starred frame represents the last frame prior to the 
original reference image being restored. 

If the centroid locations differ by more than a 
threshold, the following sequence of events occur 
to restore the system to its original state: 

1. An object representing the moving car is 
created in the current frame. 

2. The stored car object is linked to this new 
moving car object in the current frame. 

3. Objects in the previous frame that intersect 
the moving car are removed from that 
frame. 

4. The car background image is merged with 
the updated reference image to restore the 
original reference image. 

5. Normal differencing continues. 

Figure 8 demonstrates how the system is restored 
to its original state. Note that there is one continu­
ous track that represents the path of the car 
throughout. 

When the car begins to move again, transient blobs 
appear in the foreground difference image due to 
the fact that the car is in the updated reference im­
age as seen in Figure 9. Therefore, to create a new 
moving car object in the current frame, these tran­
sient objects, which are identified by their 
intersection with the location of the resting car, are 

(a) (b) 

grouped together as one car object. If there are no 
transient objects, a copy of the stored car object is 
inserted into the current frame. This way, there is 
definitely a car object in the current frame to link 
with the stored car object. Transient objects might 
also appear in the previous frame when a car is 
moving. Therefore, these transient objects must be 
removed from their frame in order to prevent them 
from being linked to the new moving car object 
that was just created in the current frame. After the 
steps described above occur, the system continues 
as usual until another car comes to rest. 

2.3.5. Experiments: disk-based sequences 

To test the principles behind the modified AVS sys­
tem, three sequences of video that represented 
interesting events were captured to disk. These se­
quences represented events which the modified 
system should be able to recognize. Capturing the 
sequences to disk reduces noise and ensures that 
the system processes the same frames on every run, 
making the results deterministic. In addition to 
these sequences, longer sequences were recorded 
and run directly from videotape to test how the sys­
tem would work under less ideal conditions . 

• 

(c) 

Figure 9: (a) Updated reference image. (b) Current video image. (c) Foreground difference image 
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2.3.5.1. Simple sequence. The first sequence was 
filmed from the 3rd story of an office building 
overlooking the driveway in front of the building. 
A car drives up and a person exits the car, walks 
away, deposits a briefcase, and finally reenters the 
car. Then, the car drives away. In this segment, the 
system successfully detects the person exiting the 
car. However, the person entering the car is missed 
because the person gets grouped with a second per­
son walking near the car. 

Further on in the sequence, the car drives up again 
and a person exits the car, walks away, removes the 
briefcase, and finally reenters the car. Again, the 
car drives away. In this segment, both the person 
entering and exiting the car are recognized. In both 
these sequences, there was only the one false nega­
tive mentioned earlier and no false positives. 

2.3.5.2. Pickup sequence. This sequence was 
filmed in front of a house looking at the street in 
front of the house. In the sequence, a person walks 
into the scene and waits at the curb. A car drives 
up, picks up the person, and drives away. The sys­
tem correctly detects the person entering the car. 
There are no false positives or negatives. 

2.3.5.3. Drop off sequence. This sequence was 
filmed in the same location as the previous one. In 
this sequence, a car drives up and a person is 
dropped off. The car drives away with the person 
still standing in the same location. Then, the person 
walks off. The system correctly detects the person 
exiting the car and does not report a false enter 
event when the car moves away. 

2.3.6. Experiments: videotaped sequences 

These sequences were run on the system straight 
from videotape. These were all run at a higher 
threshold to accommodate noise on the videotape. 
However, this tended to decrease the performance 
of the system. 

2.3.6.1. Dark day. This is a 15 minute sequence 
that was recorded from the 3rd floor of a building 
on a fairly dark day. In that time span, 8 cars passed 
through the camera's field of view. The system de­
tected 6 cars correctly and one false car (due to 
people grouped together). One car that was not de­
tected was due to its small size. The other car was 
undetected because the system slowed down (due 
to multiple events occurring) and missed the imag-
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es with the car in them. In this sequence, two 
people entered a car. However, both events were 
missed because the car was not recognized as rest­
ing due to the dark lighting conditions on this rainy 
day. 

2.3.6.2. Cloudy day. This is a 13 minute sequence 
in the same location as the previous sequence ex­
cept it is a cloudy day. In this time span, 9 cars 
passed through the camera's field of view and all of 
them were detected by the system. There were a to­
tal of 2 people entering a car and 2 people exiting a 
car. The system successfully detected them all. Ad­
ditionally, it incorrectly reported one person 
walking near a car as an instance of a person exit­
ing a car. 

2.3.6.3. Cloudy day-extended time. This is a 30 
minute sequence in the same location as the previ­
ous two. In this time span, 28 cars pass through and 
all of them were detected. The system successfully 
detected one person exiting a car but missed two 
others. The two people were missed because the 
car was on the edge of the camera's field of view 
and so it was not recognized immediately as a car. 

2.3. 7. Evaluation of car-event recognition 

The modified AVS system performs reasonably 
well on the test data. However, it has only been 
tested on a small number of videotaped sequences, 
in which much of the action was staged. Further 
experiments and further work with live, uncon­
trolled data will be required to make the system 
handle outdoor vehicle events as well as it handles 
indoor events. The technique of using multiple ref­
erence images is interesting and can be applied to 
other problems, e.g. handling repositioned furni­
ture in indoor environments. For more detail on 
this method, see [Tsemg, 1998]. 

2.4. Complex events 

The AVS video monitoring technology enables the 
recognition of specific events such as when a per­
son enters a room, deposits or picks up an object, 
or loiters for a while in a given area. Although 
these events are more sophisticated than those de­
tected via simple motion detection, they are still 
unstructured events that are detected regardless of 
the context in which they occur. This can result in 
alarms being generated on events that are not of 
interest. 
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For example, if the system is monitoring a room or 
store with the intention of detecting theft, the sys­
tem could be set up to generate an alarm whenever 
an object is picked up (i.e., whenever a REMOVE 
event occurs). However, no theft has occurred un­
less the person leaves the area with the object. A 
simple, unstructured event recognition system 
would generate an alarm every time someone 
picked up an object, resulting in many false alarms; 
whereas a system that can recognize complex 
events could be programmed to only generate an 
alarm when the REMOVE event is followed by an 
EXIT event. The EXIT event provides context for 
the REMOVE event that enables the system to fil­
ter out uninteresting cases in which the person does 
not leave the area with the object they picked up. 
This section describes the design and implementa­
tion of such a complex-event recognition system. 

We use the term simple event to mean an unstruc­
tured atomic event. A complex event is structured, 
in that it is made up of one or more sub-events. The 
sub-events of a complex event may be simple 
events, or they may be complex, enabling the defi­
nition of event hierarchies. We will simply say 
event to refer to an event that may be either simple 
or complex. In our theft example above, REMOVE 
and EXIT are simple events, and THEFT is a com­
plex event. A user may also define a further event, 
e.g., CRIME-SPREE, which may have one or more 
complex THEFT events as sub-events. 

We created a user interface that enables definition 
of a complex event by constructing a list of sub­
events. After one or more complex events have 
been defined, the sub-events of subsequently de­
fined complex events can be complex events 
themselves. 

2.4.1. Complex-event recognition 

Once the user has defined the complex events and 
the actions to take when they occur, the event rec­
ognition system recognizes these events as they 
occur in the mbnitored area. For the purposes of 
this section, we assume a priori that the simple 
events can be recognized, and that the object in­
volved in them can be tracked. In the 
implementation we will use the methods discussed 
in [Courtney, 1997, Olson and Brill, 1997] to track 
objects and recognize the simple events. In order to 
recognize a complex event, the system must keep a 
record of the sub-events that have occurred thus 
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far, and the objects involved in them. Whenever the 
first sub-event in a complex event's sequence is 
recognized, an activation for that complex event is 
created. The activation contains the ID of the ob­
ject involved in the event, and an index, which is 
the number of sub-events in the sequence that have 
been recognized thus far. The index is initialized to 
1 when the activation is created, since the activa­
tion is only created when the first sub-event 
matches. The system maintains a list of current ac­
tivations for each defined complex-event type. 
Whenever any new event is recognized, the list of 
current activations is consulted to see if the newly 
recognized (or incoming) event matches the next 
sub-event in the complex event. If so, the index is 
incremented. If the index reaches the total number 
of sub-events in the sequence, the complete com­
plex event has been recognized, and any desired 
alarm can be generated. Also, since the complex 
event that was just recognized may also be a sub­
event of another complex event, the activation lists 
are consulted again (recursively) to see if the indi­
ces of any other complex event activations can be 
advanced. 

To return to our THEFT example, the complex 
THEFT event has two sub-events, REMOVE and 
EXIT. When a REMOVE event occurs, an activa­
tion for the THEFT event is created, containing the 
ID of the person involved in the REMOVE event, 
and an index set to 1. Later, when another event is 
recognized by the system, the activation is consult­
ed to see if the event type of this new, incoming 
event matches the next sub-event in the sequence 
(in this case, EXIT). If the event type matches, the 
object ID is also checked, in this case to see if the 
person EXITing is -the same as that of the person 
who REMOVEd the object earlier. This is to ensure 
that we do not signal a THEFT event when one 
person picks up an object and a different person ex­
its the area. In a closed environment, the IDs used 
may merely be track-IDs, in which each object that 
enters the monitored area is assigned a unique 
track-ID, and the track-ID is discarded wh~n the 
object is no longer being tracked. If both the event 
type and the object ID match, the activation's index 
is incremented to 2. Since there are only 2 sub­
events in the complex event in this example, the en­
tire complex-event has been recognized, and an 
alarm is generated if desired. Also, since the 
THEFT event has been recognized, this newly rec­
ognized THEFT event may be a sub-event of 
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another complex event. When the complex THEFT 
event is recognized, the current activations are re­
cursively checked to see if the theft is a part of 
another higher-level event, such as a CRIME­
SPREE. 

2.4.2. Variations and enhancements 

We have described the basic mechanism of defin­
ing and recognizing complex events. There are 
several variations on this basic mechanism. One is 
to allow unordered events, i.e., complex events 
which are simply the conjunction or disjunction of 
their sub-events. Another is to allow negated sub­
events, which can be used to cancel an activation 
when the negated sub-event occurs. For example, 
considering the definition for THEFT again, if the 
person pays for the item, it is not a theft. Also, if 
the person puts the item back down before leaving, 
no theft has occurred. A more complete definition 
of theft is one in which ''a person picks up an item 
and then leaves without putting it back or paying." 
Assuming we can recognize the simple events RE­
MOVE, DEPOSIT, PAY, and EXIT, the complex 
THEFT event can now be expressed as the ordered 
list (REMOVE, -DEPOSIT, -PAY, EXIT), where 
"-" indicates negation. Another application of the 
complex event with negated sub-events is to detect 
suspicious behavior in front of a building. The nor­
mal behavior may be for a person to park the car, 
get out of it, and then come up into the building. If 
the person parks the vehicle and leaves the area 
without coming up into the building, this may be a 
car bombing scenario. If we can detect the sub­
events for PARK, OUTCAR, ENTER-BUILDING, 
and EXIT, we can define the car-bombing scenario 
as (PARK, OUTCAR, -ENTER-BUILDING, 
EXIT). 

Another variation is to allow the user to label the 
objects involved in the events, which facilitates the 
ability to specify that two object be different. Con-

sider a different car bombing scenario in which two 
cars pull up in front of the building, and a person 
gets out of one car and into the other, which drives 
away. The event definition must specify that there 
are two different cars involved: the car-bomb and 
the getaway-car. This can be accomplished by la­
belling the object involved when defining the 
event, and giving different labels to objects which 
must be different. 

Finally, one could allow multiple activations for 
the same event. For example, the desired behavior 
may be that a separate THEFT event should be sig­
nalled for each item stolen by a given person, e.g., 
if a person goes into a store and steals three things, 
three THEFT events are recognized. The basic 
mechanism described above signals a single 
THEFT event no matter how many objects are sto­
len. We can achieve the alternate behavior by 
creating multiple activations for a given event type, 
differing only in the ID's of the objects involved. 

2.4.3. Implementation in AVS 

We have described a method for defining and rec­
ognizing complex events. Most of this has been 
implemented and incorporated into the AVS sys­
tem. This subsection describes the current 
implementation. 

AVS analyzes the incoming video stream to detect 
and recognize events such as ENTER, EXIT, DE­
POSIT, and REMOVE. The primary technique 
used by AVS for event recognition is motion graph 
matching as described in [Courtney, 1997]. The 
AVS system recognizes and reports these events in 
real time as illustrated in Figure 10. When the per­
son enters the monitored area, an ENTER event is 
recognized as shown in the image on the left. 
When the person picks up an object, a REMOVE 
event is recognized, as depicted in the center image 
below. When the person exits the area, the EXIT 

Figure 10: A series of simple events 

275 

esperw
Sticky Note
None set by esperw

esperw
Sticky Note
MigrationNone set by esperw

esperw
Sticky Note
Unmarked set by esperw



event is signalled as shown in the image on the 
right 

While the AVS system recognizes numerous events 
as shown above, the user can select which events 
are of interest by providing the dialog box interface 
illustrated in Figure 11. The user selects the event 
type, object type, time, location, and duration of 
the event of interest using a mouse. The user can 
also select an action for the AVS system to take 
when the event is recognized. This dialog box de­
fines one type of simple event; an arbitrary number 
of different simple event types can be defined via 
multiple uses of the dialog box. The illustration in 
Figure 11 shows a dialog box defining an event 
called "Loiter by the door" which is triggered 
when a person loiters in the area near the door for 
more than 5 seconds. 

AVS will generate a voice alarm and write a log en­
try when the specified event occurs. If the event is 
only being defined in order to be used as a sub­
event in a complex event, the user might not check 
any action box, and no action will be taken when 

the event is recognized except to see if it matches 
the next sub-event in a complex-event activation, or 
generate a new activation if it matches the first sub­
event in a complex event. 

After one or more simple events have been defined, 
the user can define a complex event via the dialog 
box shown in Figure 12. This dialog box presents 
two lists: on the left is a scrolling list of all the 
event types that have been defined thus far, and on 
the right is a list of the sub-events of the complex 
event being defined. The sub-event list is initially 
blank when defining a new complex event. When 
the user double-clicks with the left mouse button 
on an item in the event list on the left, it is added as 
the next item in the sub-event list on the right. 
When the user double-clicks with the right mouse 
button on an item in the event list on the left, that 
item is also added to the sub-event list on the right, 
but as a negated sub-event. The event name is pre­
fixed with a tilde (-) to indicate that the event is 
negated. 

Figure 11: Selecting a type of simple event 

Figure 12: Defining a complex event 
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In the upper right comer of the complex-event defi­
nition dialog box is an option menu via which the 
user indicates how the sub-events are to be com­
bined. The default selection is "ordered" to 
indicate sequential processing of the sub-events. 
The other options are "all" and "any." If "all" is se­
lected, the complex event will be signalled if all of 
the sub-events are matched, regardless of order, 
i.e., the complex event is simply the conjunction of 
the sub-events. If "any" is selected, the complex 
event occurs if any of the sub-events occurs, i.e., 
the complex event is the disjunction of the sub­
events. At the bottom of the dialog box, the user 
can select the action to take when the complex 
event is recognized. The user can save the entire set 
of event definitions to a file so that they may be 
read back in at a later time. 

Once a simple or complex event has been defined, 
the AVS system immediately begins recognition of 
the new events in real time, and taking the actions 
specified by the user. The AVS system, augmented 
as described, provides a functioning realization of 
the complex-event recognition method. 

3. Advanced segmentation and tracking 

In security applications, it is often necessary to 
track the movements of one or more people and ob­
jects in a scene monitored by a video camera. In 
real scenes, the objects move in unpredictable 
ways, may move close to one another, and may oc­
clude each other. When a person moves, the shape 
of his or her image changes. These factors make it 
difficult to track the locations of individual objects 
throughout a scene containing multiple objects. 
The tracking capabilities of the original AVS sys­
tem fail when there is mutual occlusion between 
the tracked objects. This section describes a new 

(a) 

tracking method which overcomes this limitations 
of the previous tracking method, and maintains the 
integrity of the tracks of people even when they 
partially occlude one another. 

The segmentation algorithm described here is relat­
ed to tracking systems such as [Wren et al., 1997, 
Grimson et al., 1998, Cai et al., 1995] in that it ex­
tends the reference image to include a statistical 
model of the background. Our method further ex­
tends the tracking algorithm to reason explicitly 
about occlusion and maintain object tracks during 
mutual occlusion events. Unlike the capabilities 
described in previous sections, the new tracking 
method does not run in real time, and has not yet 
been integrated into the AVS system. Optimiza­
tions of the new method are expected to enable it to 
achieve real time operation in the future. 

Figure 13 depicts an example scene containing two 
people. In (a), the two people are standing apart 
from each other, with Person-1 on the left, and Per­
son-2 on the right. In (b), Person-1 moves to the 
right so that he is partially occluded by Person-2. 
Using a conventional technique such as back­
ground subtraction, it is difficult to maintain the 
separate tracks of the two people in the scene, since 
the images of the two people merge into a single 
large region. 

Figure 14 shows a sequence of frames (in normal 
English reading order) in which it is particularly 
difficult to properly maintain the tracks of the two 
people in the scene. In this sequence, Person-2 
moves from right to left and back again, crossing in 
front of Person-1. There are significant occlusions 
(e.g., in the third frame shown), and the orienta­
tions of both people with respect to the camera 
change significantly throughout the sequence, 

(b) 

Figure 13: An example scene containing two people with occlusion 
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Figure 14: A difficult tracking sequence 
making conventional template matching fail on this maintained by the tracking system. P-templates can 
sequence. 

A new tracking method is used to maintain tracks 
in sequences such as those depicted in Figures 13 
and 14. The method maintains an estimate of the 
size and location of the objects being tracked, and 
creates an image which approximates the probabil­
ity that the object intersects that pixel location. 
Figure 15b shows the probability images for the 
two person scene of Figure 13a, which is repeated 
here as 15a. The ellipse on the left indicates the es­
timated location of Person-1, and the ellipse on the 
right indicates the estimated location of Person-2. 
The brightness indicates the probability that the 
person's image intersects the given pixel, which is 
highest in the middle of the region, and falls off to­
wards the edge. The black outlines represent the 
50% probability contours. The size and shape of 
the regions are roughly the size and shape of a per­
son standing at that location in the image. 

We refer to the "person shaped" probability regions 
as probabilistic templates or simply p-templates. 
The path of the p-template through the scene repre­
sents the "track" of a given person which is 

(a) 

be used to reason about occlusion in a video se­
quence. While we only address the issue of p­
templates for tracking people that are walking up­
right, the concept is applicable to tracking any 
object, e.g., vehicles and crawling people; although 
the shape of the p-template would need to be 
adapted to the type of object being tracked. 

When the people in the scene overlap, the separate 
locations of the people can be maintained using the 
p-templates, and the region of partial occlusion can 
be detected. Figure 16 shows examples of such a 
situation. The two ellipses are maintained, even 
though the people are overlapping. The tracks of 
the people can be maintained through occlusions 
by tracking primarily on the basis of non-overlap­
ping areas. This works for both the slight occlusion 
in Figures 16 (a) and (b), and often even for the 
very strong occlusions such as in Figures 16 (c) 
and (d). During the occlusions shown in Figure 14 
and again in Figure 16 (c) and (d), the head ofPer­
son-1 is tracked, and the lower-body of Person-2 is 
tracked. 

(b) 

Figure 15: Probability image for the locations of the people in the scene 
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(a) (b) 

(c) (d) 

Figure 16: P-template images for partially occluding people 

The new method requires a means of instantiating a 
new p-template when a person enters the scene, 
and updating the location of the region as the per­
son moves through the scene. First we will 
describe the update mechanism, assuming that the 
p-templates have already been instantiated. The in­
stantiation mechanism is described later. 

The p-templates described above and depicted in 
Figures 15 and 16 represent the prior probabilities 
of the person locations, based on looking at the 
previous frame. These priors are then used to com­
pute an estimate of the posterior probabilities of 
the person locations by looking at the new or cur­
rent frame. The computation of the posterior 
probabilities takes into account both the prior prob­
abilities and the information in the new frame. The 
posterior probabilities are used to update the loca­
tions of the people, and the new locations of the 
people are then used to compute the priors for the 
next frame. 

Our current implementation computes the posteri­
ors using a form of background differencing. 
Figure 17 shows the posteriors for the p-templates 
shown in Figure 16. Note that although there is sig­
nificant overlap in the posterior estimates, 
especially in Figures 17 (e) and (f), there are signif­
icant differences in the brightnesses of the non-
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occluding areas. In Figure 17 (e), which represents 
the posteriors for Person-1, the head area of Per­
son-1 is significantly brighter than in Figure 17 (f). 
Similarly, Figure 17 (f), which represents the pos­
teriors for Person-2, is significantly brighter in the 
unoccluding area of Person-2's lower body. 

Once the posteriors are computed, they are used to 
estimate the location of the tracked objects. In our 
implementation of a person tracker, we specifically 
need to estimate the location of the person's feet in 
the image, and their height in the image in pixels. 
Once the location and height are estimated, we can 
use the image-to-world coordinate transformation 
technique used in the original AVS system and de­
scribed in [Olson and Brill, 1997]. That technique, 
called quad-mapping, computes the map locations 
of objects given the image locations of the bottom 
of the objects, e.g., in the case of a person, the loca­
tion of the feet. Furthermore, if the scale of the 
map is known, the quad-mapping technique will 
estimate the size of the object, i.e., the height of a 
person being tracked. 

If the lower portion of the p-template is unocclud­
ed, foot locations are estimated directly from the 
image by looking at the bottom portion of the 
brightened region. If the upper portion is also un­
occluded, the height can similarly obtained directly 
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(a) (b) (c) 

(d) (e) (f) 

Figure 17: Posterior probability images for partially occluding people 

from the image. If the upper part is occluded, but 
the lower part is not, the foot location is still deter­
mined directly from the image, but height is 
estimated using an estimate of the three-dimen­
sional height of the person. The image height is 
then obtained by projecting the 3D height back into 
the image using the quad-mapping technique. If the 
lower portion is occluded, but the upper part is not, 
then the upper location is determined directly from 
the image, and then the 3D height is back-projected 
into the image to determine the foot location. If 
both the top and bottom are occluded, the location 
and height estimates are left unchanged from the 
previous frame. 

Once the foot location and height of the person are 
computed, it is straightforward to compute the new 
location of the p-template, which is the Gaussian 
oval whose location and dimensions are deter­
mined by the foot location and image height 
computed above. The new p-template is then used 
to find the location of the person in the next frame, 
and the process repeats while the person remains in 
the scene. 

A new p-template is instantiated whenever a new 
person enters the scene. Instantiation is best de­
scribed in a Bayesian probabilistic framework. The 
p-templates constitute models of the objects in the 
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environment. All of the pixels in the image are the 
result of a projection of some object in the environ­
ment--either from the background, or one of the 
people in the scene, or something else. The sum of 
the probabilities that the pixel is either from the 
background, from a person, or from "something 
else" must be 1.0. We maintain an "unknown" 
model to account for the probability that pixels 
may arise as a result of "something else." We com­
pute the probability that each of the models caused 
the observed pixel value (where the unknown mod­
el is equally likely to produce any pixel value), and 
then use Bayes' formula to compute the inverse, 
i.e., the probability that the observed pixel value 
came from each of the models. When this compu­
tation is performed, for some of the pixels, the 
probability. that the pixel came from the unknown 
model is the highest of all of the model probabili­
ties. This results in a probability image for the 
unknown model, which represents pixels which 
probably came from something other than the ob­
jects the system knows about. At each frame, the 
probability image for the unknown model is com­
puted, and this image is examined to see if adding a 
new person model would account for these un­
known pixels. If so, a new person p-template is 
instantiated at the appropriate location, and the 
posteriors are recomputed. 
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Use of the procedure described above to track mul­
tiple people maintains tracks through occlusions 
where our previous technique could not. The ro­
bustness to occlusion of the new method enables 
video monitoring applications to improve tracking 
reliability in natural environments. 

4. Best-view selection performance 

Olson and Brill [1997] previously described the 
"best view selection" application of AVS technolo­
gy. In this application, the system monitors and 
records the movements of humans in its field of 
view. For every person that it sees, it creates a log 
file that summarizes important information about 
the person, including a snapshot taken when the 
person was close to the camera and (if possible) 
facing it. 

As the person is tracked through the scene, the 
tracker examines each image it captures of that per­
son. If the new image is a better view of the person 
than the previously saved snapshot, the snapshot is 
replaced with the new view. In this manner, the 
system always contains the "best" view seen of the 
person thus far. When the person leaves the scene, 
the log entry is saved to a file. Each log entry 
records the time when the person entered the scene 
and a list of coordinate pairs showing their position 
in each video frame. The log entry also contains 
the "best" snapshot of the person while they were 
in the scene. Finally, the log entry file contains a 
pointer to the reference image that was in effect 
when the snapshot was taken. This information 
forms an extremely concise description of the per­
son's movements and appearance while they were 
in the scene. An example of such a record in shown 
in Figure 18. 

Figure 18: Example best view selection record 
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In an initial evaluation of this system, the system 
was installed in an uncontrolled office hallway and 
run for 118 hours. In this time, the system recorded 
965 log entries in 35MB (uncompressed). The re­
sulting records were examined to estimate the 
system performance, and we estimated 96% detec­
tion rate at 6% false alarm rate, with most errors 
due to segmentation and correspondence failure. 
However, for this initial experiment, there was no 
ground truth against which the performance could 
be measured. 

Recently, we have evaluated the system against 
ground truth observations. The performance of the 
system was initially evaluated on four hours of in­
door video data. The video was manually 
annotated to obtain ground truth, and the surveil­
lance system was evaluated against this ground 
truth. For situations in which only one person was 
in the scene, the system recorded exactly one 
record for each person, i.e., no person passed unde­
tected though the field of view, and there is exactly 
one record for each such person. In the indoor con­
dition, we observed a 100% detection rate. 

For situations involving more than one person, the 
system occasionally failed to maintain track 
through partial occlusions. The result of this is that 
the system took extra pictures of these people when 
their track was re-acquired after the occlusion. On 
other occasions, the system failed to recognize that 
a motion region contained two people, and so it 
only took one picture that contained both people. 
We expect to reduce these errors via the use of the 
new tracking algorithms described above, once 
these algorithms are running in real time and are 
incorporated into the AVS system. 

In order to evaluate and improve the system perfor­
mance in outdoor monitoring environments, we 
have adopted an iterative research methodology in 
which we record representative videotape (2-3 
hours), ground truth it with respect to the 'person 
events' that occur in the scene. One 'person event' 
is defined to be a video sequence in which one per­
son enters monitored area completely, walking 
upright, and then exits field of view completely. We 
then run AVS system on the videotape and measure 
the false positives and negatives on person events. 
We then improve system as necessary to eliminate 
errors on video sequence. and repeat the process. 
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(a) 

(b) 

Figure 19: Outdoor environments 

Outdoor environments can be particularly difficult 
for video monitoring systems that operate based on 
change detection, due to the outdoor lighting varia­
tion. Figure 19 depicts two outdoor environments 
used to evaluate AVS best-view-selection perfor­
mance. In Figure 19 (a), there is a strong shadow 
line running down the center of the field of view, 
which moves as the sun angle changes. The shad­
ow motion here is sufficient to cause problems for 
a fixed background subtraction system within 5 
minutes. There are also a number of trees in the 
background which move when the wind blows. 
Moreover, the shadows of these trees fall directly 
into the rear of the monitored area, and these shad­
ows move with the wind as well. The shadow of 
the tree in Figure 19 (b) has a similar behavior. 
Cloud movement also causes large changes in 
brightness throughout the images. 
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Our initial outdoor evaluation was conducted in the 
environment depicted in Figure 19 (a). We cap­
tured two hours of outdoor video with extremely 
difficult imaging conditions caused by wind blown 
vegetation and strong shadows, which produced a 
large amount of "noise" motion. Additionally, the 
gate at the rear of the scene often blew open and 
closed. We manually ground-truthed the video to 
determine that a person entered the scene 20 times 
during the two hour sequence. The system record­
ed 16 of these events, for a detection rate of 75%. 
The undetected people were "lost in the noise." 
The system also produced 16 false detections in the 
two hour period, caused by noise from the moving 
shadows. 

We were able to improve on this performance us­
ing our iterative research methodology to achieve a 
100% detection rate for the 20 events in this two 
hour sequence. The system still recorded 8 false 
positives on this sequence. Four of these were 
caused by the gate blowing open and closed. The 
other four were cases in which the system lost 
track of the person in the field of view, and there­
fore took two pictures of the person, one before 
losing track, and another after picking up the track 
again. These cases are therefore more properly re­
ferred to as "extra pictures" rather than false 
positives. 

Having achieved improved performance in the en­
vironment depicted in Figure 19 (a), we proceeded 
to test the system in the environment of Figure 19 
(b). One three separate days we captured 1-2 hours 
of video, for a total of 4 hours of test video data in 
the environment of Figure 19 (b). We ground-tru­
thed this video to determine that it contained 115 
person events. The AVS system processed this vid­
eo using the best-view-selection algorithm, and the 
results were compared to ground truth. We ob­
served a 100% detection rate and a 2.6% false 
positive rate as a result of three false positives, all 
of which were "extra pictures." 

In general, system performance was excellent in 
the indoor condition, with the exception of scenes 
containing multiple people, which produced extra 
records. We expect to address the multi-person 
problem using the p-template technique described 
in section 3. No person entered the scene without 
being recorded, even when there were multiple 
people. The system performance degrades in diffi-
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cult outdoor lighting conditions, but it has 
improved significantly in recent work. 

5. Conclusion 

We have described several improvements in the 
video monitoring capabilities of the AVS system. 
Some improvements, such as vehicle event recog­
nition, increase the functionality of the system to 
enable it to recognize new classes of events. Other 
improvements, such as the advanced segmentation 
and tracking, increase the robustness of the sys­
tem's ability to recognize events in the presence of 
complications such as occlusion. We will continue 
to make improvements in the two categories of in­
creased functionality and increased robustness. For 
the functionality improvements, we expect to rec­
ognize new classes of events, especially events 
regarding vehicles. For the robustness improve­
ments, we are pursuing techniques that enable the 
system to be robust to lighting variation. As the 
techniques become more complex, additional effort 
will be needed to optimize the algorithms for real 
time operation. Our advanced segmentation and 
tracking will be the subject of optimization efforts 
in the near future. 
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