
171

JINI LOOKUP DISCOVERYSERVICE,version 1.1 161

After acquiring references to the targeted lookup services, the lookup discovery
service would pass those references to the entity, providing the entity with access
to the services registered with each lookupservice. In this way, the entity partici-
pates in the multicast discovery protocols through a proxy relationship with the
lookup discovery service, gaining access not only to lookup services outside ofits
ownrange,but also toall of the services registered with those lookup services.

Note that the scenario just described does not come withoutrestrictions. For
the lookup discovery service to be able to “link” an entity with lookup services in
the way just described, the lookup discovery service must be registered with a
lookupservice having a location that either is knownto the entity or is within the
multicast radius of the entity. Furthermore, the lookup discovery service must be
running on a host that is located within the multicast radius of the lookup services
with which the entity wishes to be linked. That is, the entity must be able to find
the lookup discovery service, and the lookup discovery service must be able to
find the other desired lookup services.

To address these scenarios, the lookup discovery service participates in both
the multicast discovery protocols and the unicast discovery protocol on behalf of a
registered discovering entity or client. This service will listen for and process mul-
ticast announcement packets from Jini lookup services and will, until successful,
repeatedly attempt to discover specific lookup services that the client is interested
in finding.

Upon discovery of a previously undiscovered lookupservice of interest, the
lookup discovery service notifies all entities that have requested the discovery of
that lookup service that such an event has occurred. The event mechanism
employed by the lookup discovery service satisfies the requirements defined in
The Jini Technology Core Platform Specification, “Distributed Events’’. Note that
the entity that receives such an event notification does not have to be the client of
the lookup discovery service; it may be a third-party event-handling service such
as an event mailbox service. Oncea client is notified of the discovery of a lookup
service, it is left to the client to define the semantics of how it interacts with that

lookup service. For example, the client may wish to join the lookup service, sim-
ply query it for other useful services, or both.

The lookup discovery service must be implemented as a well-behaved Jini
service and must comply with all of the policies embodied in the Jini technology
programming model. Thus, the resources granted by this service are leased, and
implementations of this service must adhere to the distributed leasing model for
Jini technology as defined in The Jini Technology Core Platform Specification,
“Distributed Leasing’’. That is, the lookup discovery service will grant its ser-
vices for only a limited period of time without an active expression of continuing
interest on the part of the client.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

171

172

162

LD.1.1 Goals and Requirements

INTRODUCTION

The requirements of the interfaces and classes specified in this documentare:

@ To define a service that not only employsthe Jini discovery protocolsto dis-
cover, by way of either group association or LookupLocator association,
lookupservices in which clients have registered interest, but that also noti-
fies its clients of the discovery of those lookup services

To providethis service in such a waythatit can be used byentities that deac-
tivate

@ To comply with the policies of the Jini technology programming model

The goals of this documentare as follows:

To describe the lookup discovery service

To provide guidance in the use and deploymentof services that implement
the LookupDiscoveryServiceinterface and related classes and interfaces

LD.1.2. Other Types

The types defined in the specification of the LookupDiscoveryServiceinterface
are in the net. jini.discovery package. The following object types mayberef-
erenced in this chapter. Whenever referenced, these object types will be refer-
enced in unqualified form:

net.

net.

net.

net.

net.

net.

net.

net.

net.

java

java.

java.

java.

java.

jini

jini

jini

jini

jini

jini

jini

jini

jini

.core

.core.

.core.

.core.

.core.

.core.

. discovery .DiscoveryEvent

. discovery .DiscoveryGroupManagement

.discovery.DiscoveryListener

.discovery.LookupLocator

event.EventRegistration
event .RemoteEventListener

lease.Lease

lookup. ServiceID

lookup.ServiceRegistrar

.10. IOException

rmi .MarshalledObject

rmi .NoSuchObjectException

rmi .RemoteException

util .Map

172

173

JINI LOOKUP DISCOVERYSERVICE,version 1.1 163

LD.2 The Interface

Tue LookupDiscoveryService interface defines the service—teferredto as the
lookup discovery service—previously introduced in this specification. Through
this interface, other Jini services and clients may request that discovery processing
be performedon their behalf. This interface belongs to the net. jini.discovery
package, and any service implementing this interface must comply with the defi-
nition of a Jini service. This interface is not a remote interface; each implementa-
tion of this service exports a front-end proxy object that implements this interface
local to the client, using an implementation-specific protocol to communicate with
the actual remote server (the back end). All of the proxy methods mustobey nor-
mal Java Remote Method Invocation (RMI) remote interface semantics except
where explicitly noted. Two proxy objects are equal (using the equals method)if
they are proxies for the same lookup discovery service.

The one method defined in this interface throws a RemoteException, and

requires only the default serialization semantics so that this interface can be
implementeddirectly using Java RMI.

package net.jini.discovery;

public interface LookupDiscoveryService {

public LookupDiscoveryRegistration register(

String[] groups,

LookupLocator[] locators,

RemoteEventListener listener,

MarshalledObject handback,

long leaseDuration)

throws RemoteException;

}

When requesting a registration with the lookup discovery service, the client
indicates the lookup servicesit is interested in discovering by submitting twosets
of objects. Each set may contain zero or more elements. One set consists of the
namesof the groups whose membersare lookup services the client wishes to be

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

173

174

164 THE INTERFACE

discovered. The other set consists of LookupLocator objects, each corresponding
to a specific lookup service the client wishes to be discovered.

For each successful registration the lookup discovery service will manage
both the set of group names and the set of locators submitted. These sets will be
referred to as the managedset ofgroups and the managedset oflocators, respec-
tively. The managed set of groups associated with a particular registration con-
tains the namesof the groups whose members consist of lookup services that the
client wishes to be discovered through multicast discovery. Similarly, the man-
aged set of locators contains instances of LookupLocator, each corresponding to
a specific lookup service that the client wishes to be discovered through unicast
discovery. The references to the lookup services that have been discovered will be
maintainedin a set referred to as the managedset oflookup services (or managed
set of registrars).

Note that when the general term managedsetis used, it should be clear from
the context whether groups, locators, or registrars are being discussed. Further-
more, when the term group discovery or locator discovery is used, it should be
taken to mean, respectively, the employmentof either the multicast discovery pro-
tocols or the unicast discovery protocol to discover lookup services that corre-
spond to membersof the appropriate managedset.

174

175

JINI LOOKUP DISCOVERYSERVICE,version 1.1 165

LD.3 The Semantics

To employ the lookup discovery service to perform discovery on its behalf, a
client must first register with the lookup discovery service by invoking the
register method defined in the LookupDiscoveryService interface. The
register methodis the only methodspecified by this interface.

LD.3.1 Registration Semantics

An invocation of the register method produces an object—referredto as a regis-
tration object (or simply a registration)—that is mutable. Thatis, the registration
object contains methods through which it may be changed. Becauseregistrations
are mutable, each invocation of the register method producesa newregistration
object. Thus, the register method is not idempotent.

The register method may throw a RemoteException. Typically, this excep-
tion occurs when there is a communication failure between the client and the

lookup discovery service. When this exception does occur, the registration may or
maynot have been successful.

Each registration with the lookup discovery service is persistent across
restarts (or crashes) of the lookup discovery service until the lease on the registra-
tion expires oris cancelled.

The register method takes the following as arguments:

@ A String array, none ofwhose elements may be nu11, consisting of zero or
more elements in which each elementis the nameof a group whose mem-
bers are lookup services that the client requesting the registration wishes to
be discovered via group discovery

@ An array of LookupLocator objects, none of whose elements maybe nu11,
consisting of zero or more elements in which each element corresponds to a
specific lookup service that the client requesting the registration wishes to
be discovered via locator discovery

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

175

176

166 THE SEMANTICS

@ A non-null RemoteEventListener object which specifies the entity that
will receive events notifying the registration when a lookupservice ofinter-
est is discovered or discarded

@ Either nu11 or an instance of Marshal ledObject specifying an object that
will be included in the notification event that the lookup discovery service
sendsto the registered listener

@ A long value representing the amount of time (in milliseconds) for which
the resources of the lookup discovery service are being requested

The register method returns an object that implements the
LookupDiscoveryRegi stration interface. It is through this returned object that
the client interacts with the lookup discovery service. This interaction includes
activities such as group and locator management, state retrieval, and discarding
discovered but unavailable lookup servicesso that they are eligible for rediscovery
(see Section LD.4.1, “The LookupDiscoveryRegistration Interface” for definition
of the semantics of the methods of the LookupDiscoveryRegistration inter-
face).

The groups argument takes a String array, none of whose elements may be
null. Although it is acceptable to specify null (which is equivalent to
DiscoveryGroupManagement .ALL_GROUPS) for the groups argumentitself, if the
argument contains one or more null elements, a Nul1PointerException is
thrown.If the value is nu11, the lookup discovery service will attempt to discover
all lookup services located within the multicast radius of the host on which the
lookup discovery service is running. If an empty array (equivalent to
DiscoveryGroupManagement .NO_GROUPS)is passed in, then no group discovery
will be performed for the associated registration until the client, through the regis-
tration’s setGroups or addGroups method, changes the contents of the managed
set of groups to either a non-empty set of group namesor nu11.

The locators argument takes an array of LookupLocator objects, none of
whose elements maybe nu11. If either the empty array or nu11 is passed in as the
locators argument, then no locator discovery will be performed for the associ-
ated registration until the client, through the registration’s addLocators or
setLocators method, changes the managed set of locators to a non-empty set of
locators. Althoughit is acceptable to input nu11 for the locators argumentitself,
if the argument contains one or more nu11 elements, a Nu11PointerExceptionis
thrown.

If the register method is invoked with a set of group namesandaset of
locators in which either or both sets contain duplicate elements (where duplicate
locators are determined by LookupLocator. equals), the invocation is equivalent
to constructing this class with no duplicates in eitherset.

176

177

JINI LOOKUP DISCOVERYSERVICE,version 1.1 167

Upondiscovery of a lookup service, through either group discovery or locator
discovery, the lookup discovery service will send an event, referred to as a discov-
ered event, to the listener associated with the registration produced bythe call to
register.

After initial discovery of a lookup service, the lookup discovery service will
continue to monitor the group membership state reflected in the multicast
announcements from that lookup service. Depending on the lookup service’s cur-
rent group membership, the lookup discovery service may send either a discov-
ered event or an event referred to as a discarded event. The conditions under

whicheither a discovered event or a discarded event will be sent are as follows:

@ If the multicast announcements from an already discovered lookup service
indicate that the lookup service is a memberof a new group, a discovered
event will be sent to the listener of each registration that has yet to receive a
discovered event for that lookup service, but that has previously registered
interest in the new group.

@ If the multicast announcements from an already discovered lookup service
indicate that the lookup service has changedits group membership in such a
waythat the lookup serviceis no longerofinterest to one or more ofthe reg-
istrations that previously registered interest in the groups of that lookupser-
vice, a discarded event will be sent to the listener of each such registration.
This type of discarded event is sometimesreferred to as apassive no-interest
discarded event “passive” because the lookup discovery service, rather than
the client, initiated the discard process).

@ If the multicast announcements from an already discovered lookup service
are no longer being received, a discarded eventwill be sentto the listener of
each registration that previously registered interest in one or more ofthat
lookup service’s membergroups. This type of discarded event is sometimes
referred to as a passive communication discarded event.

It is important to note that when the lookup discovery service (passively) dis-
cards a lookup service, due to group membership changes (lost interest) or
unavailability (communication failure), the discarded event will be sent to only
the listeners of those registrations that have previously requested that the affected
lookupservice be discovered throughat least group discovery. Thatis, the listener
of any registration that is interested in the affected lookup service through only
locator discovery will not be sent either type of passive discarded event. This is
because the semantics of the lookup discovery service assumethat since the cli-
ent, through the registration request, expressed no interest in discovering the

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

177

178

168 THE SEMANTICS

lookup service through its group membership,the client must also have no interest
in any group-related changesin that lookup service’s state.

A more detailed discussion of the event semantics of the lookup discovery
service is presented in Section LD.3.2, “Event Semantics”.

A valid parameter must be passed as the listener argumentof the register
method. If a nu11 valueis input to this argument, then a Nu11PointerException
will be thrownandtheregistration fails.

Note that if an indefinite exception occurs while attempting to send a discov-
ered or discarded event to a registration’s listener, the lookup discovery service
will continue to attempt to send the event until either the event is successfully
delivered or the client’s lease on that registration expires. If an
UnknownEventException, a bad object exception, or a bad invocation exception
occurs while attempting to send a discovered or discarded event to a registration’s
listener, the lookup discovery service assumesthat the client is in an unknown,
possibly corrupt state, and will cancel the lease on the registration and clear the
registration from its managedset.

The state information maintained by the lookup discovery service includes the
set of group names,locators, and listeners submitted by each client through each
invocation of the register method, with duplicates eliminated. This state infor-
mation contains no knowledgeofthe clients that register with the lookup discov-
ery service. Thus, there is no requirement that a client identify itself during the
registration process.

LD.3.2. Event Semantics

For each registration created by the lookup discovery service, an event identifier
will be generated that uniquely mapsthe registration to the listener as well as to
the registration’s managed set of groups and managedset of locators. This event
identifier is returned as a part of the returned registration object and is unique
acrossall other active registrations with the lookup discovery service.

Wheneverthe lookup discovery service finds a lookup service matching the
discovery criteria of one or more of its registrations, it sends an instance of
RemoteDiscoveryEvent(a subclass of RemoteEvent) to the listener correspond-
ing to each such registration. The event sent to each listener will contain the
appropriate eventidentifier.

Once an event signaling the discovery (by group or locator) of a desired
lookup service has been sent, no other discovered events for that lookup service
will be sent to a registration’s listener until the lookup service is discarded (either
actively, by the client through the registration, or passively by the lookup discov-
ery service) and then rediscovered. Note that more information about what it

178

179

JINI LOOKUP DISCOVERYSERVICE,version 1.1

meansfor a lookupserviceto be discarded is presented in Section LD.3.1, “Regis-
tration Semantics” and the section of this specification titled “Discarding Lookup
Services”.

If, between the time a lookupservice is discarded and the time it is rediscov-
ered, a new registration is requested having parameters indicating interest in that
lookup service, upon rediscovery of the lookup service an event will also be sent
to that new registration’s listener.

The sequence numbers for a given event identifier are strictly increasing (as
defined in The Jini Technology Core Platform Specification, “Distributed
Events’’), which means that when any two such successive events have sequence
numbersthat differ by only a value of 1, then no events have been missed. On the
other hand, whentheset of received events is viewed in order, if the difference

between the sequence numbersof two successive events is greater than 1, then one
or more events may or may not have been missed. For example, a difference
greater than 1 could occur if the lookup discovery service crashes, even if no
events are lost because of the crash. When two such successive events have

sequence numbers whose difference is greater than 1, there is said to be a gap
between the events.

Whena gap occurs between events, the local state (on the client) related to the
discovered lookup services may or may notfall out of sync with the correspond-
ing remote state maintained by the lookup discovery service. For example, if the
gap correspondsto a missed event representing the (initial) discovery of a targeted
lookup service, the remote state will reflect this discovery, whereas the client’s
local state will not. To allow clients to identify and correct such a situation, each
registration object provides a methodthat returns a set consisting of the proxies to
the lookup services that have been discovered for that registration. With this infor-
mation the client can updateits local state.

When requesting a registration with the lookup discovery service, a client
may also supply (as a parameter to the register method) a reference to an object,
wrapped in a MarshalledObject, referred to as a handback. When the lookup
discovery service sends an event to a registration’s listener, the event will also
contain a reference to this handback object. The lookup discovery service will not
change the handback object. That is, the handback object contained in the event
sent by the lookup discovery service will be identical to the handbackobject regis-
tered by the client with the event mechanism.

The semantics of the object input to the handback argumentare left to each
client to define, although nul] may be input to this argument. The role of the
handback object in the remote event mechanism is detailed in The Jini Technol-
ogy Core Platform Specification, “Distributed Events”.

169

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

179

180

170 THE SEMANTICS

LD.3.3 Leasing Semantics

Whena client registers with the lookup discovery service, it is effectively request-
ing a lease on the resources provided by that service. The initial duration of the
lease granted to a client by the lookup discovery service will be less than or equal
to the requested duration reflected in the value input to the 1leaseDuration argu-
ment. That value must be positive, Lease. FOREVER, or Lease.ANY. If any other
value is input to this argument, an I] 1legalArgumentException will be thrown.
The client may obtain a reference to the Lease object granted by the lookup dis-
covery service through the associated registration returned by the service (see
Section LD.4.1, “The LookupDiscoveryRegistration Interface”’).

180

181

JINI LOOKUP DISCOVERYSERVICE,version 1.1 171

LD.4 Supporting Interfaces and Classes

Tue lookup discovery service depends on the LookupDiscoveryRegistration
interface, as well as on the concrete classes RemoteDiscoveryEvent and
LookupUnmarshalException.

LD.4.1 The LookupDiscoveryRegistration Interface

Whena client requests a registration with the lookup discovery service, an object
that implements the LookupDiscoveryRegistration interface is returned.It is
through this interface that the client managesthe state of its registration with the
lookup discovery service.

package net.jini.discovery;

public interface LookupDiscoveryRegistration {

public EventRegistration getEventRegistrationQ;

public Lease getLease();

public ServiceRegistrar[] getRegistrars()

throws LookupUnmarshalException,

RemoteException;

public String[] getGroups() throws RemoteException;

public LookupLocator[] getLocatorsQ

throws RemoteException;

public void addGroups(String[] groups)

throws RemoteException;

public void setGroups(String[] groups)

throws RemoteException;

public void removeGroups(String[] groups)

throws RemoteException;

public void addLocators(LookupLocator[] locators)

throws RemoteException;

public void setLocators(LookupLocator[] locators)

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

181

182

172 SUPPORTING INTERFACES AND CLASSES

throws RemoteException;

public void removeLocators(LookupLocator[] locators)

throws RemoteException;

public void discard(ServiceRegistrar registrar)

throws RemoteException;

}

As with the LookupDiscoveryService interface, the

LookupDiscoveryRegi stration interface is not a remote interface. Each imple-
mentation of the lookup discovery service exports proxy objects that implement
this interface local to the client, using an implementation-specific protocol to
communicate with the actual remote server. All of the proxy methods must obey
normal Java RMI remote interface semantics except where explicitly noted. Two
proxy objects are equal (using the equals method) if they are proxies for the same
registration created by the same lookupdiscovery service.

The discovery facility of the lookup discovery service, together with its event
mechanism, make up the set of resources clients register to use. Because the
resources of the lookup discovery service are leased, access is granted for only a
limited period of time unlessthere is an active expression of continuing interest on
the part of the client.

Whena client uses the registration process to request that a lookup discovery
service perform discovery of a set of desired lookup services, the client is also
registered with the service’s event mechanism. Becauseof this implicit registra-
tion with the event mechanism, the lookup discovery service “bundles” both
resources undera single lease. Whenthat lease expires, both discovery processing
and eventnotifications will cease with respect to the registration that resulted from
the client’s request.

To facilitate lease management and_event handling,_the
LookupDiscoveryRegistration interface defines methods that allow the client

to retrieve its event registration information. Additional methods defined by this
interface allow the client to retrieve references to the registration’s currently dis-
covered lookup services, as well as to modify the managed sets of groups and
locators.

If the client’s registration with the lookup discovery service has expired or
been cancelled, then any invocation of a remote method defined in this interface
will result in a NoSuchObjectException. That is, any method that communicates
with the back end server of the lookup discovery service will throw a
NoSuchObjectExceptionif the registration on which the method is invoked no
longer exists. Note that if a client receives a NoSuchObjectExceptionasa result
of an invocation of such a method, although the client can assumethat the regis-

182

183

JINI LOOKUP DISCOVERYSERVICE,version 1.1

tration no longerexists, the client cannot assumethat the lookup discovery service
itself no longerexists.

Each remote method ofthis interface may throw a RemoteException. Typi-
cally, this exception occurs when there is a communication failure between the
client and the lookup discovery service. Whenever this exception occurs as a
result of the invocation of one of these methods, the method may or may not have
completed its processing successfully.

LD.4.1.1 The Semantics

The methodsdefined by this interface are organized into a set of accessor meth-
ods, a set of group mutator methods, a set of locator mutator methods, and the
discard method. Through the accessor methods, various elements of a registra-
tion’s state can be retrieved. The mutator methods provide a mechanism for
changing the set of groups and locators to be discovered for the registration.
Through the discard method, a particular lookup service may be madeeligible
for rediscovery.

The Accessor Methods

The getEventRegistration method returns an EventRegistration object that
encapsulates the information the client needs to identify a notification sent by the
lookup discovery service to the registration’s listener. This method is not remote
and takes no arguments.

The getLease method returns the Lease object that controls a client’s regis-
tration with the lookup discovery service. It is through the Lease object returned
by this method that the client requests the renewal or cancellation of the registra-
tion with the lookup discovery service. This method is not remote and takes no
arguments.

Note that the object returned by the getEventRegistration methodalso
provides a getLease method. That method and the getLease method defined by
the LookupDiscoveryRegi stration interface both return the same Lease object.
The getLease methoddefined here is provided as a convenienceto avoid the indi-
rection associated with the getLease method on the EventRegistration object,
as well as to avoid the overhead of making two methodcalls.

The getRegistrars method returns a set of instances of the
ServiceRegistrar interface. Each element in the set is a proxy to one of the
lookup services that have already been discovered for the registration. Addition-
ally, each elementin the set will be unique with respectto all other elements in the
set, as determined by the equals method provided by each element. The contents

173

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

183

184

174 SUPPORTING INTERFACES AND CLASSES

of the set make up the current remote state of the set of lookup services discovered
for the registration. This method returns a new array on each invocation.

This method can be used to maintain synchronization between the set of dis-
covered lookup services making uparegistration’s local state on the client and the
registration’s corresponding remote state maintained by the lookup discovery ser-
vice. The local state can become unsynchronized with the remote state when a gap
occurs in the events received bythe registration’s listener.

According to the event semantics of the lookup discovery service, if there is
no gap between two sequence numbers, no events have been missed andthestates
remain synchronized with each other; if there is a gap, events may or maynot
have been missed. Therefore, upon finding gaps in the sequenceof events,the cli-
ent can invoke this method and use the returned information to synchronize the
local state with the remotestate.

To construct its return set, the getRegistrars method retrieves from the

lookup discovery service the set of lookup service proxies making uptheregistra-
tion’s current remote state. When the lookup discovery service sends the
requested set of proxies, the set is sent as a set of marshalled instances of the
ServiceRegistrar interface. The lookup discovery service individually marshals
each proxyin the set that it sends becauseif it were not to do so, any deserializa-
tion failure on the set would result in an IOException, and failure would be

declared for the whole deserialization process, not just an individual element. This
would mean that all elements of the set sent by the lookup discovery service—
even those that were successfully deserialized—would be unavailable to the cli-
ent. Individually marshalling each element in the set minimizes the “all or noth-
ing” aspect of the deserialization process, allowing the client to recover those
proxies that can be successfully unmarshalled and to proceed with processing that
might not be possible otherwise.

Whenconstructing the return set, this method attempts to unmarshal eachele-
ment of the set of marshalled proxy objects sent by the lookup discovery service.
Whenfailure occurs while attempting to unmarshal any of those elements, this
method throws an exception of type LookupUnmarshalException (described
later). It is through the contents of that exception that the client can recover any
available proxies and perform error handling related to the unavailable proxies.
The contents of the LookupUnmarshalException provide the client with the fol-
lowing useful information:

@ The knowledgethat a problem has occurred while unmarshalling at least one
of the elements making up the remote state of the registration’s discovered
lookupservices

184

185

JINI LOOKUP DISCOVERYSERVICE,version 1.1 175

@ The set of proxy objects that were successfully unmarshalled by the
getRegistrars method

@ The set of marshalled proxy objects that could not be unmarshalled by the
getRegistrars method

The set of exceptions correspondingto each failed attempt at unmarshalling

The type of exception that occurs when attempting to unmarshal an element
of the set sent by the lookup discovery service is typically an IOException or a
ClassNotFoundException (usually the more common of the two). A
ClassNotFoundException occurs whenever a remote object on which the mar-
shalled proxy depends cannot be retrieved and loaded, usually because the code-
base of one of the object’s classes or interfaces is currently “down.” To address
this situation, the client may wish to proceed with its processing using the suc-
cessfully unmarshalled proxies, and attempt to unmarshal the unavailable proxies
(or re-invoke this method) at somelater time.

If the getRegistrars method returns successfully without throwing a
LookupUnmarshalException, the client is guaranteed that all marshalled proxies
belonging to the set sent by the lookup discovery service have each been success-
fully unmarshalled; the client then has a snapshot—relative to the point in time
whenthis method is invoked—of the remote state of the lookup services discov-
ered for the associated registration.

The getGroups method returns an array consisting of the group names from
the registration’s managedset; that is, the names of the groups the lookup discov-
ery service is currently configured to discover for the associated registration. If the
managedset of groups is empty, this method returns the empty array. If there is no
managedset of groups associated with the registration (that is, the lookup discov-
ery service is configured to discover DiscoveryGroupManagement .ALL_GROUPS
for the registration), then nu11 is returned.

The getLocators methodreturns an array consisting of the LookupLocator
objects from the registration’s managed set; that is, the locators of the specific
lookup services the lookup discovery service is currently configured to discover
for the associated registration. If the managedset of locators is empty, this method
returns the empty array.

The Group Mutator Methods

With respect to a particular registration, the groups to be discovered may be mod-
ified using the methods described in this section. In each case, a set of groupsis
represented as a String array, none of whose elements may be nu11. If any set of
groups input to one of these methods contains one or more null elements, a

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

185

186

176 SUPPORTING INTERFACES AND CLASSES

Nul1PointerException is thrown. The empty set is denoted by the empty array
(DiscoveryGroupManagement .NO_GROUPS), and “no set” is indicated by nul]
(Di scoveryGroupManagement .ALL_GROUPS). Noset indicates that all lookupser-
vices within the multicast radius should be discovered, regardless of group mem-
bership. Invoking any of these methods with an input set of groups that contains
duplicate names is equivalent to performing the invocation with the duplicate
group names removed from the inputset.

The addGroups method adds a set of group namesto the registration’s man-
aged set. This method takes one argument: a String array consisting of the set of
group names with which to augmentthe registration’s managedset.

If the registration has no current managed set of groups to augment, this
method throws an UnsupportedOperationException.If the parameter value is
nul1, this method throws a Nu11PointerException. If the parameter valueis the
empty array, then the registration’s managedset of groups will not change.

The setGroups methodreplaces all of the group namesin the registration’s
managed set with names from a new set. This method takes one argument: a
String array consisting of the set of group names with which to replace the cur-
rent namesin the registration’s managedset.

If nu11 is passed to setGroups, the lookup discovery service will attempt to
discover any undiscovered lookupservices located within range of the lookup dis-
covery service, regardless of group membership.

If the empty set is passed to setGroups, then group discovery will be halted
until the registration’s managedset of groups is changed—through a subsequent
call to this method or to addGroups—to a set that is either a non-empty set of
group namesor nul].

The removeGroups method deletes a set of group names from the registra-
tion’s managed set. This method takes one argument: a String array containing
the set of group names to remove from the registration’s managedset.

If the registration has no current managedset of groups from which to remove
elements, this method throws an UnsupportedOperationException. If null is

input, this method throws a Nu11PointerException. If the registration does have
a managedset of groups from which to remove elements, but either the inputset is
empty or none of the elements in the input set match any element in the managed
set, then the registration’s managedset of groups will not change.

Once a new group namehasbeenplacedin the registration’s managedset as a
result of an invocation of either addGroups or setGroups, if there are lookup ser-
vices belonging to that group that have already been discovered for that registra-
tion, no event will be sent to the registration’s listener for those particular lookup
services. However, attempts to discover any undiscovered lookup services belong-
ing to that group will continue to be made on behalf of the registration.

186

187

JINI LOOKUP DISCOVERYSERVICE,version 1.1 177

Anyalready discovered lookup service that is a memberof one or moreofthe
groups removed from the registration’s managedset as a result of an invocation of
either setGroups or removeGroupswill be discarded and will no longerbeeligi-
ble for discovery (for that registration), but only if that lookup service satisfies
both of the following conditions:

@ The lookup service is not a memberof any groupin the registration’s new
managedset resulting from the invocation of setGroups or removeGroups

@ With respect to the registration, the lookup service is not currently eligible
for discovery through locator discovery; that is, the lookup service does not
correspond to any elementin the registration’s managedset of locators.

The Locator Mutator Methods

With respect to a particular registration, the set of locators to discover may be
modified using the methods described in this section. In each case, a set of loca-
tors is represented as an array of LookupLocator objects, none of whose elements
may be nu11. If any set of locators input to one of these methods contains one of
more nul] elements, a Nul11PointerExceptionis thrown. Invoking any of these
methods with a set of locators that contains duplicate locators (as determined by
LookupLocator.equals) is equivalent to performing the invocation with the
duplicates removed from the inputset.

The addLocators method adds a set of LookupLocator objects to the regis-
tration’s managedset. This method takes one argument: an array consisting of the
set of locators with which to augmentthe registration’s managedset.

If nu11 is passed to addLocators, a Nul1PointerExceptionwill be thrown.
If the parameter value is the empty array, the registration’s managed set of loca-
tors will not change.

The setLocators method replaces all of the locators in the registration’s
managed set with LookupLocator objects from a new set. This method takes one
argument: an array consisting of the set of locators with which to replace the cur-
rent locators in the registration’s managedset.

If nu11 is passed to setLocators, a Nul1PointerException will be thrown.
If the empty set is passed to setLocators, then locator discovery will be

halted until the registration’s managed set of locators is changed—through a sub-
sequentcall to this method or to addLocators—to a set that is non-nu11 and non-
empty.

The removeLocators method deletes a set of LookupLocator objects from
the registration’s managed set. This method takes one argument: an array contain-

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

187

188

178 SUPPORTING INTERFACES AND CLASSES

ing the set of LookupLocator objects to remove from the registration’s managed
set.

If null is passed to removeLocators, a Nul1lPointerException will be
thrown.If any elementof the set of locators to remove is not contained in the reg-
istration’s managed set, removeLocators takes no action with respect to that ele-
ment. If the parameter value is the empty array, the managedset of locators will
not change.

Whenevera new locator is placed in the managedsetas a result of an invoca-
tion of one of the locator mutator methods and that new locator equals none of the
previously discovered locators (acrossall registrations), the lookup discovery ser-
vice will attempt unicast discovery of the lookup service associated with the new
locator.

If locator discovery is attempted for a registration, such discovery attempts
will be repeated until one of the following events occurs:

@ The lookupservice is discovered

@ Theclient’s lease on the registration expires

@ Theclient explicitly removes the locator from the registration’s managed set

Upon discovery of the lookup service corresponding to the new locator, or upon
finding a match between the new locator and a previously discovered lookup ser-
vice, a discovered event will be sent to the registration’s listener, unless that
lookup service was previously discovered for that registration through group dis-
covery.

Any already discovered lookup service corresponding to a locator that is
removedfrom the registration’s managedset as a result of an invocation ofeither
setLocators or removeLocatorswill be discarded and will no longerbeeligible
for discovery, but only if it is not currently eligible for discovery through group
discovery—thatis, only if the lookup service is not also a memberof one or more
of the groupsin the registration’s managedset of groups.

Discarding LookupServices

Whenthe lookup discovery service removes an already discovered lookup service
from a registration’s managedset of lookup services, the lookup service is said to
be discarded.

There are a numberofsituations in which the lookup discovery service will
discard a lookup service:

188

189

JINI LOOKUP DISCOVERYSERVICE,version 1.1 179

In response to a discard request resulting from an invocation ofa registra-
tion’s discard method

In response to a declaration—via an invocation of one of the mutator meth-
ods on a registration—thatthere is no longer any interest in one or more of
the registration’s already discovered lookupservices

In response to the determination that the multicast announcements from an
already discovered lookup service indicate that the lookup service has
changed its group membership in such a waythat the lookup service is no
longer of interest to one or more of the registrations that previously regis-
tered interest in the groups of that lookup service

In response to the determination that the multicast announcements from an
already discovered lookupservice are no longer being received

For each of these cases, whenever the lookup discovery service discards a
lookup service, it will send an event to the registration’s listener to notify it that
the lookup service has been discarded.

The discard method provides a mechanism for registered clients to inform
the lookup discovery service of the existence of an unavailable—or unreach-
able—lookup service, and to request that the lookup discovery service discard
that lookup service and makeit eligible for rediscovery.

The discard methodtakes a single argument: the proxy to the lookup service
to discard. This method takes no action if the parameter to this method equals
none ofthe proxies reflected in the managed set (using proxy equality as defined
in The Jini Technology Core Platform Specification, “Lookup Service”. If nu11 is
passed to discard, a Nul1PointerExceptionis thrown.

Although the lookup discovery service monitors the multicast announcements
from all discovered lookup services for indications of unavailability, it should be
noted that there are conditions under which the lookup discovery service will not
discard such a lookup service, even when the lookup service is found to be
unreachable. Whether or not the lookup discovery service discards such an
unreachable lookup service is dependent on how eachregistration is configured
for discovery with respect to that lookup service. If every registration that is con-
figured to discover the unreachable lookup service is configured to discover it
through locator discovery only, the lookup discovery service will not discard the
lookup service. In other words, in order for the lookup discovery service to dis-
card a lookup service it has determined is unreachable, at least one registration
must be configured for discovery of at least one group in which that lookup ser-
vice is a member.

Thus, whenevera client determines that a previously discovered lookup ser-
vice has become unreachable, it should not rely on the lookup discovery service to
discard the lookup service. Instead, the client should inform the lookup discovery

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

189

190

180 SUPPORTING INTERFACES AND CLASSES

service—through the invocation of the registration’s discard method—that the
previously discovered lookup service is no longer available and that attempts
should be madeto rediscover that lookup service for the registration. Typically, a
client determines that a lookup service is unavailable when the client attempts to
use the lookup service but receives an indefinite exception, a bad object exception,
or a bad invocation exception asa result of the attempt.

Note that the lookup discovery service may be acting on behalf of numerous
clients that have access to the same lookupservice. If that lookup service becomes
unavailable, many of those clients may invoke discard between the time the
lookup service becomes unavailable and the timeit is rediscovered. Uponthefirst
invocation of discard, the lookup discovery service will re-initiate discovery of
the relevant lookup service for the registration of the client that made the invoca-
tion. For all other invocations madeprior to rediscovery, the registrations through
which the invocation is made are sent a discarded event, and addedto thelist of

registrations that will be notified when rediscovery of the lookup service does
occur. That is, upon rediscovery of the lookup service, only those registrations
through which the discard method was invoked will be notified.

Upon successful completion of the discard method, the proxy requested to
be discarded is guaranteed to have been removed from the managedset of the reg-
istration through which the invocation was made. No such guarantee is made with
respect to when the discarded event is sent to each such registration’s listener.
Thatis, the event notifying the listeners that the lookup service has been discarded
may or may not be sent asynchronously.

LD.4.2. The RemoteDiscoveryEvent Class

Whenthe lookup discovery service discovers or discards a lookup service match-
ing the criteria established through one of its registrations, the lookup discovery
service sends an instance of the RemoteDiscoveryEvent class to the

RemoteEventListener implementedby the client and registered with the lookup
discovery service.

package net.jini.discovery;

public class RemoteDiscoveryEvent extends RemoteEvent {

public RemoteDiscoveryEvent(Object source,

long eventID,

long seqNum,

MarshalledObject handback,
boolean discarded,

190

191

JINI LOOKUP DISCOVERYSERVICE,version 1.1

Map groups)

throws IOException {..}

public boolean isDiscarded() {...}

public ServiceRegistrar[] getRegistrars()
throws LookupUnmarshalException {...}

public Map getGroups() {...}

The RemoteDiscoveryEventclass provides an encapsulation of event infor-
mation that the lookup discovery service usesto notify a registration of the occur-
rence of an event involving one or more ServiceRegistrar objects (lookup
services) in which the registration has registered interest. The lookup discovery
service passes an instanceofthis class to the registration’s discovery listener when
one of the following events occurs:

@ Each lookupservice referenced in the event has been discoveredforthefirst
time or rediscovered after having been discarded.

@ Each lookup service referenced in the event has been either actively or pas-
sively discarded.

RemoteDiscoveryEvent is a subclass of RemoteEvent, adding the following
additional items of abstractstate:

@ A boolean indicating whether the lookup services referenced by the event
have been discovered or discarded

A set ofmarshalled instances ofthe ServiceRegistrar interface having the
characteristic that when each element is unmarshalled, the result is a proxy
to one ofthe discovered or discarded lookupservices referenced by the event

@ A Mapinstance in which the elements of the map’s keyset are the instances
of ServiceID that correspond to each lookup service reference returned in
the event, and the map’s value set contains the corresponding member
groups of each lookup service reference

Methods are defined through which this additional state may be retrieved
upon receipt of an instance ofthis class.

Clients need to know not only when a targeted lookup service has been dis-
covered, but also when it has been discarded. The lookup discovery service uses
an instance of RemoteDiscoveryEvent to notify a registration when either of
these events occurs, as indicated by the value of the booleanstate variable. When

181

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

191

192

182 SUPPORTING INTERFACES AND CLASSES

the value of that variable is true, the event is referred to as a discarded event;
when false,it is referred to as a discovered event.

LD.4.2.1 The Semantics

The constructor of the RemoteDiscoveryEventclass takes the following parame-
ters as input:

@ A reference to the lookup discovery service that generated the event

@ The event identifier that mapsa particular registration to both its listener and
its targeted groups and locators

@ The sequence numberofthe event being constructed

@ The client-defined handback (which may be nu11)

@ A flag indicating whether the event being constructed is a discovered event
or a discarded event

@ A Map whosekeyset contains the proxies to newly discovered or discarded
lookupservice(s) the event is to reference, and whose valueset contains the
corresponding membergroupsof each lookupservice

If the groups parameter is empty, the constructor will throw an
I1legalArgumentException.If null is input to the groups parameter, the con-
structor will throw a Nul1PointerException.Ifnone of the proxies referenced in
the groups parameter can be successfully serialized, the constructor will throw an
IOException.

The isDiscarded method returns a booleanthat indicates whether the event

is a discovered event or a discarded event. If the event is a discovered event, then
this method returns false. If the event is a discarded event, true is retuned.

The getRegistrars method returns an array consisting of instances of the
ServiceRegistrar interface. Each elementin the returned set is a proxy to one
of the newly discovered or discarded lookup services that caused a
RemoteDiscoveryEventto be sent. Additionally, each elementin the returnedset
will be unique with respect to all other elements in the set, as determined by the
equals method provided by each element. This method does not make a remote
call. With respect to multiple invocations of this method, each invocation will
return a new atray.

When the lookup’ discovery’ service sends an_instance of
RemoteDiscoveryEventto the listener of a client’s registration, the set of lookup
service proxies contained in the event consists of marshalled instances of the
ServiceRegistrar interface. The lookup discovery service individually marshals

192

193

JINI LOOKUP DISCOVERYSERVICE,version 1.1 183

each proxy associated with the event because if it were not to do so, any deserial-
ization failure on the set would result in an IOException, and failure would be

declared for the whole deserialization process, not just an individual element. This
would meanthat all elements of the set sent in the event—even those that can be

successfully deserialized—would be unavailableto the client through this method.
Just as with the getRegistrars method defined by_the
LookupDiscoveryRegistration interface, individually marshalling each ele-
ment in the set minimizes the “all or nothing” aspect of the deserialization pro-
cess, allowing the client to recover those proxies that can be successfully
unmarshalled and to proceed with processing that might not be possible other-
wise.

Whenconstructing the return set, this method attempts to unmarshaleachele-
ment of the set of marshalled proxy objects contained in the event. Whenfailure
occurs while attempting to unmarshal any of the elements ofthat set, this method
throws an exception of type LookupUnmarshalException.It is through the con-
tents of this exception that the client can recover any available proxies and per-
form error handling with respect to the unavailable proxies.

If the getRegistrars method returns successfully without throwing a
LookupUnmarshalException, the client is guaranteed that all marshalled proxies
sent in the event have each been successfully unmarshalled during that particular
invocation. Furthermore, after the first such successful invocation, no more

unmarshalling attempts will be made (because such attempts are no longer neces-
sary), and all future invocations of this method are guaranteed to return an array
with contents identical to the contents of the array returned bythefirst successful
invocation.

Note that an array, rather than a single proxy, is returned by the
getRegistrars method so that implementations of the lookup discovery service
can choose to “batch” the information sent to a registration. With respect to dis-
coveries, batching the information may beparticularly useful whenaclient first
registers with the lookup discovery service.

Upon initial registration, multiple lookup services are typically found over a
short period of time, providing the lookup discovery service with the opportunity
to send all of the initially discovered lookup services in only one event. After-
ward, as so-called “late joiner” lookup services are found sporadically, the lookup
discovery service may send events referencing only one lookupservice.

Note that the event sequence numbers, as defined earlier in Section LD.3.2,
“Event Semantics”, are strictly increasing, even when the information is batched.

The getGroups methodreturns a Map in which the elements of the map’s key
set are the instances of ServiceID that correspond to each lookup service for
which the event was constructed and sent. Each element of the returned map’s
value set is a String array containing the names of the member groupsof the

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

193

194

184 SUPPORTING INTERFACES AND CLASSES

associated lookup service whose ServiceID equals to the corresponding key. This
method does not make a remote call. On each invocation of this method, the same

Map object is returned; that is, a copy is not made.
The Map returned by the getGroups method is keyed by the ServiceID of

each lookup service in the event, rather than by the proxy of each lookup service
to avoid the deserialization issues addressed by the getRegistrars method.
Thus, client’s wishing to retrieve the set of member groups corresponding to any
element of the array returned by the getRegistrars method, must use the
ServicelIDof the desired element from that array as the key to the get method of
the Map returned by this method and then cast to String[].

LD.4.2.2 Serialized Forms

Class serial VersionUID Serialized Fields

RemoteDiscoveryEvent -9171289945014585248L boolean discarded

ArrayList marshal ledRegs

ServiceRegistrar[] regs

Map groups

LD.4.3. The LookupUnmarshal Exception Class

Recall that when unmarshalling an instance of Marshal ledObject,oneofthe fol-
lowing checked exceptionsis possible:

@ An IOException, which can occur while deserializing the object from its
internal representation

@ A ClassNotFoundException, which can occur if, while deserializing the
object from its internal representation, either the class file of the object can-
not be found,orthe class file of an interface or class referenced by the object
being deserialized cannot be found. Typically, a ClassNotFoundException
occurs when the codebase from whichto retrieve the neededclass file is not

currently available

The LookupUnmarshalException class provides a mechanism that clients of
the lookup discovery service may use forefficient handling of the exceptions that
may occur when unmarshalling elements of a set of marshalled instances of the
ServiceRegistrar interface. When elements in such a set are unmarshalled, the

194

195

JINI LOOKUP DISCOVERYSERVICE,version 1.1 185

LookupUnmarshalException class may be used to collect and report pertinent
information generated whenfailure occurs during the unmarshalling process.

package net.jini.discovery;

public class LookupUnmarshalException extends Exception {

public LookupUnmarshalException

(ServiceRegistrar[] registrars,

MarshalledObject[] marshalledRegistrars,

Throwable[] exceptions) {...}

public LookupUnmarshalException

(ServiceRegistrar[] registrars,

MarshalledObject[] marshalledRegistrars,

Throwable[] exceptions,

String message) {...}

public ServiceRegistrar[] getRegistrars() {...}

public MarshalledObject[] getMarshalledRegistrars() {..}

public Throwable[] getExceptions() {...}
}

The LookupUnmarshalExceptionclass is a subclass of Exception, adding
the following additional items ofabstract state:

@ A set of ServiceRegistrar instances in which each elementis the result of

a successful unmarshalling attempt

@ A set of marshalled instances of ServiceRegistrar in which each element
is the result of an unsuccessful unmarshalling attempt

@ A set of exceptions (IOException, ClassNotFoundException, or some
unchecked exception) in which each element corresponds to one of the
unsuccessful unmarshalling attempts

When exceptional conditions occur while unmarshalling a set of marshalled
instances of ServiceRegistrar, the LookupUnmarshalException class can be
used not only to indicate that an exceptional condition has occurred, but also to
provide information that can be used to perform error handling activities such as:

@ Determiningif it is feasible to continue with processing

@ Reporting errors

@ Attempting recovery

@ Performing debugactivities

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

195

196

186 SUPPORTING INTERFACES AND CLASSES

LD.4.3.1 The Semantics

The constructor of the LookupUnmarshalException class has two forms. The

first form of the constructor takes the following parameters as input:

@ An array containing the set of instances of ServiceRegistrar that were
successfully unmarshalled

@ Anarray containing the set ofmarshalled ServiceRegistrar instancesthat
could not be unmarshalled

@ An array containing the set of exceptions that occurred during the unmar-
shalling process

The second form of the constructor takes the same argumentsasthe first and
one additional argument: a String describing the nature of the exception.

Each element in the exceptions parameter should be an instance of
IOException, ClassNotFoundException, or some unchecked exception. Fur-
thermore, there is a one-to-one correspondence between each element in the
exceptions parameter and each elementin the marshal ledRegistrars parame-
ter. That is, the element of the exceptions parameter corresponding to index i
should be an instance of the exception that occurred while attempting to unmar-
shal the elementat index i of the marshalledRegistrars parameter.

If the number of elements in the exceptions parameter does not equal the
number of elements in the marshalledRegistrars parameter, the constructor
will throw an I11egalArgumentException.

The getRegistrars method is an accessor method that returns an array con-
sisting of instances of ServiceRegistrar, where each elementofthe array corre-
spondsto a successfully unmarshalled object. Note that the samearray is returned
on each invocation of this method; that is, a copy is not made.

The getMarshalledRegistrars method is an accessor method that returns

an array consisting of instances of Marshal ledObject, where each elementof the
array is a marshalled instance of the ServiceRegistrar interface and corre-
sponds to an object that could not be successfully unmarshalled. Note that the
same array is returned on each invocation of this method; that is, a copy is not
made.

The getExceptions method is an accessor method that returns an array con-
sisting of instances of Throwab1e, where each element of the array correspondsto
one of the exceptions that occurred during the unmarshalling process. Each ele-
ment in the return set is an instance of IOException, ClassNotFoundException,

or some unchecked exception. Additionally, there should be a one-to-one corre-
spondence between each element in the array returned by this method and the

196

197

JINI LOOKUP DISCOVERYSERVICE,version 1.1 187

array returned by the getMarshalledRegistrars method. Note that the same
array is returned on each invocation of this method; that is, a copy is not made.

LD.4.3.2 Serialized Forms

Class serialVersionUID Serialized Fields

LookupUnmarshalException 2956893 184719950537L ServiceRegistrar[]

registars

Marshal ledObject[]

marshalledRegistrars

Throwable[] exceptions

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

197

198

188 SUPPORTING INTERFACES AND CLASSES

198

199

LR

Jini Lease Renewal Service

Specification

LR.1 Introduction

Laasinc is a key concept in the Jini architecture; in general, Jini technology-
enabled services (Jini services) grant access to a resource only for as long as the
clients of those Jini services actively express interest in the resource being main-
tained. This pattern is in contrast to many other systems, in which access to a
resource is granted until the client explicitly releases the resource. Using a leasing
model generally makes a distributed system more robust by allowing stale infor-
mation andservices to be cleaned up,butit also places additional requirements on
clients and services.

A client of a leased service may runinto difficulties if that client deactivates.
Unless the client ensures that some other process renewsthe client’s leases while
it is inactive, or that the client is activated before its leases begin to expire,the cli-
ent will lose access to the resources it has acquired. This loss can be particularly
dramatic in the case of lookup service registrations. A service’s registration with a
lookupservice is leased—if the service deactivates (maybe to conserve computa-
tional resourcesonits host) and it does not take appropriate steps, its registrations
with lookup services will expire, and before long it will be inaccessible. If that
service becomes active only when clients invoke its methods, it may never
becomeactive again, becauseat this point new clients may notbe abletofindit.

The need to renew leases creates a constant load on clients, servers, and the

network. Although batching lease renewals can help (see The Jini Technology
Core Platform Specification, “Distributed Leasing”’), a given client is unlikely to
have very manyleases granted by any oneservice at any given time, thus reducing
the opportunities for meaningful batching.

199

189

200

190 INTRODUCTION

This additional load may be anespecially great burden on clients that always
have the ability to access the network but cannot be continuously connected. A
cell phone alwayshasthe ability to connect; however, being connectedall the time
will drain its batteries and accumulate airtime charges. One or two leases may not
pose a problem, but a large numberof leases could force the phone to be on the
network all the time.

A lease renewalservice can help mitigate these problems. Clients that wish to
becomeinactive can pass the responsibility for renewing the leases they have been
granted to a renewalservice. Those clients can then deactivate withoutrisk oflos-
ing access to the resources that they have acquired. Clients that have continuous
access to the network but cannot be continuously connected, such as the cell
phonedescribed previously, can also register with a renewal service that can be
continuously connected. The renewalservice will renew the client’s leases, allow-
ing the client to remain disconnected most of the time. Lastly, if multiple clients
pass their leases to a given renewal service, more opportunities for batching
renewals will be created.

Like other Jini services, the lease renewal service will grant its services for
only a limited period of time without an active expression of continuing interest.
To break the recursive cycle that would otherwise result, the renewal service pro-
vides an optional eventthat is triggered before the leases that it grants expire. This
event gives activatable processes that have deactivated the opportunity to wake up
and renew their lease with the renewal service. Although it may seem odd for the
lease renewalservice to lease its resources,it is very importantthat it does so. If it
did not, then the lease renewalservice could be used to subvert the leasing model.

Lease renewal services are likely to grant longer leases than other Jini ser-
vices. In somecasesthe lease maybeso longthatthe client will not need to worry
about renewingthelease at all. In other cases the lease may be long enoughthat a
client that deactivates will rarely need to reactivate for the sole purpose of renew-
ing its lease with the renewal service. In any case, the leases that the renewal ser-
vice grants are likely to be sufficiently long such that the actual renewalcalls do
not place a significant additional load on the client, the renewalservice,or the net-
work.

LR.1.1 Goals and Requirements

The requirements of the set of classes and interfaces in this specification are:

To provide a service for renewing leases

200

201

JINI LEASE RENEWAL SERVICE SPECIFICATION, version 1.1

To provide this service in such a waythat it can be used by activatable pro-
cesses that deactivate

To provide this service in a way that does not overly weaken the leasing
model

The goals of this specificationare:

@ To describe the lease renewal service

To provide guidancein the use, deployment, and implementation ofthe lease
renewalservice

LR.1.2. Other Types

The types defined in the specification of the LeaseRenewalService interface are
in the net. jini. lease package. The following object types may be referenced in
this chapter. Whenever referenced, these object types will be referenced in
unqualified form:

java.io.IOException

java.rmi.MarshalledObject

java.rmi.RemoteException

java.rmi.NoSuchObjectException

net.jini.core. lease.Lease

net.jini.core. lease.UnknownLeaseException

net. jini.core.event.RemoteEvent

net.jini.core.event.RemoteEventListener

net.jini.core.event.EventRegistration

191

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

201

202

192 INTRODUCTION

202

203

JINI LEASE RENEWAL SERVICE SPECIFICATION, version 1.1 193

LR.2 The Interface

Tz LeaseRenewalService (in the net.jini.lease package) defines the
interface to the renewal service. The interface is not a remote interface; each

implementation of the renewal service exports proxy objects that implement the
LeaseRenewal Service interface local to the client, using an implementation-spe-
cific protocol to communicate with the actual remote server. All of the proxy
methods obey normal RMI remote interface semantics. Two proxy objects are
equal (using the equals method)if they are proxies for the same renewalservice.
All the methods of LeaseRenewalService throw RemoteException and require
only the default serialization semantics. Therefore, LeaseRenewal Service can be
implemented directly using RMI.

package net.jini. lease;

public interface LeaseRenewalService {

public LeaseRenewalSet createLeaseRenewalSet(

long leaseDuration)

throws RemoteException;

}

Clients of the renewal service organize the leases they wish to have renewed
into /ease renewal sets (or sets, for short). A method is provided by the
LeaseRenewalService interface to create these sets. These sets are then popu-
lated by methodson the sets themselves. Two leases in the same set need not be
granted by the sameserviceor have the sameexpiration time; in addition, they can
be added or removed from the set independently.

Every method invocation on a renewal service (whether the invocation is
directly on the service or indirectly on a set the service has created) is atomic
with respect other invocations.

The term client lease is used to refer to a lease that has been placed into a
renewal set. Client leases are distinct from the leases that the renewal service

grants on renewalsets it has created.
In general, there will be times when an implementation of the renewal service

needs to pass one client lease as an argument to a methodcall on a secondclient

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

203

204

194 THE INTERFACE

lease. There is a security risk in doing so, because such actions can let the second
client lease “capture”the first. Implementations may wantto verify that their cli-
ents can be trusted not to place leases in the set that would take such actions.
Another alterative is to pass one Lease object to another only if they trust each
other. Depending on the environment, conservative tests for such trust could
include: ensuring the codebases of both leases are constructed from the same set
of URLs, or that all of the URLs come from a commonsetof hosts or host/port
pairs.

Each client lease has two expiration related times associated with it: the
desired expiration time for the lease and the actual expiration time granted when
the lease is created or last renewed. The desired expiration represents when the
client would like the lease to expire. The actual expiration represents when the
lease is going to expire if it is not renewed. Both time values are absolute times,
not relative time durations. Whenaclient lease’s desired expiration arrives, the
lease will be removed from the set without further client intervention.

Eachclient lease also has two other associated attributes: a renewal duration

and a remaining desired duration. The remaining desired duration is always the
desired expiration less the current time. The renewal duration is usually a positive
numberand represents the duration that will be requested when the renewal ser-
vice renews the client lease, unless the renewal duration is greater than the
remaining desired duration. If the renewal duration is greater than the remaining
desired duration, then the remaining desired duration will be requested when
renewing the client lease. One exception is that when the desired expiration is
Lease.FOREVER, the renewal duration may be Lease.ANY, in which case
Lease.ANY will be requested when renewing the client lease, regardless of the
value of the remaining desired duration.

For example, if the renewal duration associated with a given client lease is
360,000 milliseconds, then when the renewal service renewsthe client lease, it
will ask for a new duration of 360,000 milliseconds—unless the client lease is

going to reachits desired expiration in less than 360,000 milliseconds. If the client
lease’s desired expiration is within 360,000 milliseconds, the renewalservice will
ask for the difference between the current time and the desired expiration. If the
renewal duration had been Lease. ANY, the renewal service would have asked for a
new duration of Lease. ANY.

If a lease’s actual expiration is later than the lease’s desired expiration, the
renewal service will not renew the lease; the lease will remain in the set until its

desired expiration is reached,the set is destroyed, or it is removed bytheclient.
Eachset is leased from the renewalservice. If the lease on a set expires oris

cancelled, the renewal service will destroy the set and take no further action with
regard to the client leases in the set. Each lease renewalset has associated with it
an expiration warning event that occursat a client-specified time before the lease

204

205

JINI LEASE RENEWAL SERVICE SPECIFICATION, version 1.1

on the set expires. Clients can register for warning events using methods provided
by the set. A registration for warning events does not have its own lease, but
instead is covered by the same lease under whichthe set was granted.

The term definite exception is used to refer to an exception that could be
thrownby an operation on a client lease (such as a remote methodcall) that would
be indicative of a permanentfailure of the client lease. In this specification,all bad
object exceptions, bad invocation exceptions, and LeaseExceptionsare consid-
ered to be definite exceptions (see [Introduction to Helper Utilities and Services,
Section US.2.6, “What Exceptions Imply about Future Behavior’).

Each lease renewalset has associated with it a renewal failure event that will

occurin either of two cases: if any client lease in the set reachesits actual expira-
tion before its desired expiration is reached, or if the renewal service attempts to
renew a client lease and gets a definite exception. Clients can register for failure
events using methodsprovidedbythe set. A registration for failure events does
not have its ownlease but instead is covered by the samelease under whichtheset
was granted.

Onceplacedin a set, a client lease will stay there until one or moreofthe fol-
lowing occurs:

@ Thelease on theset itself expires or is cancelled, causing destruction of the
set.

@ The client lease is removedbytheclient.

Theclient lease’s desired expiration is reached.

@ The client lease’s actual expiration is reached; this will generate a renewal
failure event.

@ A renewalattempt on the client lease results in a definite exception;this will
generate a renewalfailure event.

Eachclient lease in a set will be renewed aslongasit is in the set. If a renewal
call throws an indefinite exception (see Introduction to Helper Utilities and Ser-
vices, Section US.2.6, “What Exceptions Imply about Future Behavior”), the
renewal service should retry the lease renewal until the lease would otherwise be
removedfrom the set. The preferred method of cancelling a client lease is for the
client to first remove the lease from the set and then call cancel onit. It is also

permissible for the client to cancel the lease without first removing the lease from
the set, althoughthis is likely to result in additional networktraffic.

The client creates a set by calling the createLeaseRenewalSet methodof a
LeaseRenewalService. The leaseDuration argument specifies how long (in
milliseconds) the client wants the set's initial lease duration to be. The duration
initially granted for the set's lease will be equal to or shorter than this request; it

195

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

205

