
41

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 31

If the managedset of groups is empty, this method will return an empty array.
If there is no managedset of groups, then nu11 (ALL_GROUPS)is returned, indicat-
ing that any lookup service within range—even those that have no groupaffilia-
tion—are to be discovered.

If an empty array is returned, that array is guaranteedto be referentially equal
to the NO_GROUPSconstant; that is, the array returned from that method and the
NO_GROUPSconstant can be tested for equality using the == operator.

This method takes no arguments as input and, provided the managedset of
groups currently exists, will return a new array upon each invocation.

The addGroups method adds a set of group namesto the managed set. The
array input to this method contains the group namesto be addedtotheset.

This method throws IOException because an invocation of this method may
result in the re-initiation of the discovery process, which can throw IOException
when socket allocation occurs.

This method throws an UnsupportedOperationException if there is no

managed set of groups to augment, and it throws a Nul1PointerException if
nul] (ALL_GROUPS)is input. If an empty array (NO_GROUPS)is input, the managed
set of groups will not change.

The setGroups method replacesall of the group names in the managed set
with names from a new set. The array input to this method contains the group
names with which to replace the current names in the managedset.

Once a new group namehasbeen placed in the managedset, no event will be
sent to the entity’s listener for the lookup services belonging to that group that
have already been discovered, although attempts to discoverall (as yet) undiscov-
ered lookup services belongingto that group will continue to be made.

If nul] (ALL_GROUPS)is input to setGroups, then attempts will be made to
discover all (as yet) undiscovered lookup services located within the multicast
radius (Section DU.3, “LookupDiscovery Utility”) of the implementation object,
regardless of group membership.

If an empty array (NO_GROUPS)is input to setGroups, then group discovery
will be halted until the managedset of groups is changed—through a subsequent
call to this method or to addGroups—to a set that is either a non-empty set of
group names or nul11 (ALL_GROUPS).

This method throws IOException. This is because an invocation of this

method mayresult in the re-initiation of the discovery process, a process that can
throw IOException whensocketallocation occurs.

The removeGroups methoddeletes a set of group names from the managed
set of groups. The array input to this method contains the group names to be
removed from the managedset.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

41

42

32 THE DISCOVERY MANAGEMENTINTERFACES

This method throws an UnsupportedOperationException if there is no

managed set of groups from which to remove elements. If nu11 (ALL_GROUPS)is
input to removeGroups, a Nu11PointerException will be thrown.

If any element of the set of groups to be removedis not contained in the man-
aged set, removeGroupstakes no action with respect to that element. If an empty
array (NO_GROUPS)is input, the managedset of groups will not change.

Once a new group nameis added to the managedsetas a result of an invoca-
tion of either addGroups or setGroups, attempts will be made—using the multi-
cast request protocol—to discoverall (as yet) undiscovered lookup services that
are membersofthat group. If there are no responses to the multicast requests, the
implementation object will stop sending multicast requests, and will simply listen
for multicast announcements containing the new groupsofinterest.

Anyalready discovered lookupservice that is a memberof one or moreofthe
groups removed from the managed set as a result of an invocation of either
setGroups or removeGroupswill be discarded and will no longer be eligible for
discovery, but only if that lookup service satisfies both of the following condi-
tions:

@ the lookup service is not a memberofany group in the new managedsetthat
resulted from the invocation of setGroups or removeGroups, and

@ the lookup service is not currently eligible for discovery through other
means(such as locator discovery).

DU.2.5 The DiscoveryLocatorManagement Interface

The public methodsspecified by the DiscoveryLocatorManagement interface are
as follows:

package net.jini.discovery;

public interface DiscoveryLocatorManagement {

public LookupLocator[] getLocators();

public void addLocators(LookupLocator[] locators);

public void setLocators(LookupLocator[] locators);

public void removeLocators(LookupLocator[] locators);

42

43

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 33

DU.2.5.1 The Semantics

The DiscoveryLocatorManagement interface defines methods related to the
managementof the set of LookupLocator objects corresponding to the specific
lookupservicesthat are to be discovered using the unicast discovery protocol; that
is, lookup services that are discovered by way of locator discovery. The methods
of this interface define how an entity retrieves or modifies the managed set of
locators to discover. Phrases such as “the locators to discover” and “discovering
the desired locators” refer to the discovery of the lookup services that are associ-
ated with those locators.

The methodsthat modify the managedset of locators each take a single input
parameter: an array of LookupLocator objects, none of whose elements may be
null. Each of these methods throws a Nu11PointerException whenat least one

element of the input array is nu11.
Invoking any of these methods with an input array that contains duplicate

locators (as determined by LookupLocator.equals) is equivalent to performing
the invocation with the duplicates removed from thearray.

The getLocators method returns an array containing the set of
LookupLocator objects in the managed set of locators; that is, the locators of the
specific lookup services that the implementation object is currently interested in
discovering.

The returned set includes both the set of locators corresponding to lookupser-
vices that have already been discovered and the set of those that have not yet been
discovered.

If the managedset is empty, this method returns an empty array. This method
takes no arguments as input, and returns a new array upon each invocation.

The addLocators methodaddsa set of locators to the managed set. The array
input to this method contains the set of LookupLocatorobjects to add to the man-
agedset.

If nu11 is input to addLocators, a Nul1PointerExceptionwill be thrown.If
an empty array is input, the managedset of locators will not change.

The setLocators method replacesall of the locators in the managedset with
LookupLocator objects from a new set. The array input to this method contains
the set of LookupLocator objects with which to replace the current locators in the
managedset.

If nu11 is input to setLocators, a Nul1PointerExceptionwill be thrown.
If an empty array is input to setLocators, then locator discovery will be

halted until the managed set of locators is changed—through a subsequentcall to
this method or to addLocators—toa set that is non-nu11 and non-empty.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

43

44

34 THE DISCOVERY MANAGEMENTINTERFACES

The removeLocators method deletes a set of locators from the managedset.
The array input to this method contains the set of LookupLocator objects to
remove from the managedset.

If null is input to removeLocators, a Nul]lPointerException will be
thrown.

If any elementofthe set of locators to removeis not contained in the managed
set, removeLocatorstakes no action with respect to that element. If an empty
array is input, the managedset of locators will not change.

Anyalready discovered lookup service, corresponding to a locator that is a
memberofthe set of locators removed from the managedset as a result of an invo-
cation of either setLocators or removeLocators,will be discarded and will no

longer be eligible for discovery; but onlyif it is not currently eligible for discov-
ery through other means(such as group discovery).

DU.2.6 Supporting Interfaces and Classes

Discovery management depends on the interfaces DiscoveryListener and
DiscoveryChangeListener, and on the concrete class DiscoveryEvent.

DU.2.6.1 The DiscoveryListener Interface

The public methods specified by the DiscoveryListener interface are as fol-
lows:

package net.jini.discovery;

public interface DiscoveryListener extends EventListener {

public void discovered(DiscoveryEvent e);

public void discarded(DiscoveryEvent e);

Whenanentity employs an object that implements one or more ofthe discov-
ery managementinterfaces to perform and managethe entity’s discovery duties,
the entity often will want that object—generally referred to as a discovery utility—
to notify the entity when a desired lookup service is either discovered or dis-
carded. The DiscoveryListener interface defines a mechanism through which
an entity may receive such notifications from a discovery utility. When an entity
registers interest in these notifications, an implementation of this interface must be
providedto the discovery utility being employed. Throughthis registered listener,

44

45

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1

the entity may then receive instances of the DiscoveryEvent class, which encap-
sulate the required information associated with the desired notifications.

The Semantics

The events received by listeners implementing the DiscoveryListener interface
can be the result of either group discovery or locator discovery. These events con-
tain the discovered or discarded registrars, as well as the set of member groups
corresponding to each registrar (see the specification of the DiscoveryEvent
class).

The discovered methodis called whenever a new lookupservice is discov-
ered or a discarded lookupservice is re-discovered.

The discarded methodis called whenever a previously discovered lookup
service is discarded because the lookup service was determined to be either
unreachable or no longer interesting to the entity, and the discard process wasini-
tiated by either the entity itself (an active discard) or the discovery utility
employed by the entity (a passive discard).

This interface makes the following concurrency guarantee. For any givenlis-
tener object that implements this interface or any sub-interface, no two methods
(either the same two methods or different methods) defined by the interface (or
sub-interface) can be invoked at the same time. For example, the discovered
method must not be invoked while the invocation of anotherlistener’s discarded

methodis in progress.

DU.2.6.2. The DiscoveryChangeListener Interface

The DiscoveryChangeListener interface specifies only one public method:

package net.jini.discovery;

public interface DiscoveryChangeListener

extends DiscoveryListener

public void changed(DiscoveryEvent e);

In addition to being notified when a desired lookup service is discovered or
discarded, some entities may also wish to be notified when a lookup service expe-
riences changes in its group membership. The DiscoveryChangeListener inter-
face defines an extension to the DiscoveryListener interface, providing a
mechanism through which an entity may receive these additional notifications—

35

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

45

46

36 THE DISCOVERY MANAGEMENTINTERFACES

referred to as changed events. As with the DiscoveryListener interface, when
an entity wishes to receive changed events in addition to discovered and discarded
events, an implementation of this interface must be providedto the discovery util-
ity being employed.It is through that registered listener that the entity receives the
desired notifications encapsulated in instances of the DiscoveryEventclass.

The Semantics

Whenthe entity receives a DiscoveryEvent object through an instance of the
DiscoveryChangeListener interface, the event contains the discovered, dis-
carded, or changed registrars, as well as the set of member groups corresponding
to each registrar. In the case of a changed event, each set of groups referenced in
the event contains the new groups in which the corresponding registrar is a mem-
ber.

The changed method is called whenever the discovery utility encounters
changesin the set of groups in which a previously discovered lookup service is a
member.

It is important to note that instances of this interface are eligible to receive
changedevents for only those lookup services that the entity has requested be dis-
covered by(at least) group discovery. That is, if the entity requests that only loca-
tor discovery be used to discover a specific lookup service, the listener will
receive no changed events for that lookup service. This is because the semantics
of this interface assumethat since the entity expressed no interest in discovering
the lookup service through its group membership,it must also have nointerest in
any changesin that lookup service’s group membership. Thus, if an entity wishes
to receive changed events for one or more lookupservices, the entity must request
that those lookup services be discovered by either group discovery alone, or by
both group andlocator discovery.

DU.2.6.3 The DiscoveryEvent Class

The public methods provided by the DiscoveryEventclass are as follows:

package net.jini.discovery;

public class DiscoveryEvent extends EventObject {

public DiscoveryEvent(Object source, Map groups) {...}

public DiscoveryEvent(Object source,

ServiceRegistrar[] regs) {...}

46

47

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 37

public Map getGroups() {...}

public ServiceRegistrar[] getRegistrars() {..}

The DiscoveryEvent class provides an encapsulation of event information
that discovery utilities can use to notify an entity of the occurrence of an event
involving one or more ServiceRegistrar objects (lookup services) in which the
entity has registered interest. Discovery utilities pass an instance of this class to
the entity’s discovery listener(s) when oneof the following events occurs:

@ Each lookup service referenced in the event has been discoveredforthe first
time, or re-discovered after having been discarded.

@ Each lookupservice referenced in the event has beeneither actively or pas-
sively discarded.

For each lookup service referenced in the event, the set of groups in which
the lookup service is a memberhas changed.

The DiscoveryEventclass is a subclass of EventObject, adding the follow-
ing additional itemsofabstract state: a set of ServiceRegistrar instances(regis-
trars) referencing the affected lookup services, and a mapping from each of those
registrars to their current set of member groups. Methods are defined through
which this additional state may be retrieved upon receipt of an instance of this
class.

The Semantics

The equals method for this class returns true if and only if two instances of this
class refer to the same object. That is, x and y are equal instances ofthis class if
and only if x == y has the value true.

The constructor for this class has two forms, where both forms expect two
input parameters. Each form ofthe constructor takes, as its first input parameter, a
reference to the source of the event; that is, the discovery utility object that created
the event instance andsent it to the entity’s listener(s) through the invocation of
the discovered, discarded, or changed method oneachlistener. Note that nei-

ther form of the constructor makes a copy of the second parameter. That is, the
reference input to the second parameteris shared with the invoking entity.

Depending on the constructor employed, the second parameter is one of the
following:

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

47

48

38 THE DISCOVERY MANAGEMENTINTERFACES

@ A Mapinstance in which each elementofthe map’s key set is a Servi ceReg-
istrar instance that references one of the lookup services to be associated
with the event being constructed. Each element of the map’s valueset is a
String array, containing the namesof the groups in which the correspond-
ing lookup service is a member.

@ Anarray of ServiceRegistrar instances in which each element references
one of the lookup servicesto be associated with the event being constructed.

It is important to note that when this form of the constructor is used to con-
struct a DiscoveryEvent,although the resulting event contains a non-nu11
registrars array, the registrars-to-groups map is null. Therefore, discovery
utilities should no longer use this constructor to instantiate the events they
send.

The getGroups method returns the mapping from each registrar referenced
by the event to the registrar’s current set of member groups. If the event was
instantiated using the constructor whose second parameter is an array of Ser-
viceRegistrar instances, this method will return nu11.

The returned map’s key set is made up of ServiceRegistrar instancescorre-
sponding to the lookup services for which the event was constructed and sent.
Each element of the returned map’s value set is a String array, containing the
namesof the membergroupsof the corresponding lookupservice.

On each invocation of this method, the same Map objectis returned; thatis, a
copy is not made.

The getRegistrars method returns an array of ServiceRegistrar
instances, in which each element references one of the lookup services for which
the event was constructed andsent.

On each invocation of this method, the samearray is returned; that is, a copy
is not made.

DU.2.7 Serialized Forms

Class serialVersionUID Serialized Fields

DiscoveryEvent 5280303374696501479L ServiceRegistrar[] regs
Map groups

48

49

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 39

DU.3 LookupDiscovery Utility

ly a Jini application environmentthe multicast discovery protocols are often col-
lectively referred to as multicast discovery or group discovery. The entities that
participate in the multicast discovery protocol are a discovering entity (Jini client
or service) and a Jini lookup service, which acts as the entity that is to be discov-
ered. When the discovering entity starts, it uses the multicast request protocol to
announce its interest in finding lookup services within range. After a specified
amountoftime, the entity stops sending multicast requests, and simply listens for
multicast announcements from any lookup services within range that may be
broadcasting their availability. Through either of these protocols, the discovering
entity can obtain references to lookup services belonging to member group in
which the entity is interested. For the details of the multicast discovery protocols,
refer to the The Jini Technology Core Platform Specification, “Discovery and
Join”.

The LookupDiscovery helper utility in the package net.jini.discovery
encapsulates the functionality required of an entity that wishes to employ multi-
cast discovery to discover a lookup service located within the entity’s multicast
radius (roughly, the number of hops beyond whichneither the multicast requests
from the entity, nor the multicast announcements from the lookup service, will
propagate). This utility provides an implementation that makes the process of
acquiring lookup service instances, based on no information other than group
membership, much simpler for both services andclients.

DU.3.1 Other Types

The types defined in the specification of the LookupDiscovery utility class are in
the net. jini.discovery package. The following additional types may also be
referenced in this specification. Whenever referenced, these object types will be
referenced in unqualified form:

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

49

50

LookupDiscovery UTILITY

net.jini.core.discovery.LookupLocator

net.jini.discovery.DiscoveryManagement

net.jini.discovery.DiscoveryGroupManagement

net.jini.discovery.DiscoveryPermission

java.io.IOException

java.io.Serializable

java.security.Permission

DU.3.2 The Interface

The public methods provided by the LookupDiscoveryclassare as follows:

package net.jini.discovery;

public class LookupDiscovery

implements DiscoveryManagement,

Di scoveryGroupManagement
{

public static final String[] ALL_GROUPS

= DiscoveryGroupManagement.ALL_GROUPS;

public static final String[] NO_GROUPS

= DiscoveryGroupManagement .NO_GROUPS;

public LookupDiscovery(String[] groups)

throws IOException {...}

}

DU.3.3 The Semantics

The only new public method of the LookupDiscovery helperutility class is the
constructor. All other public methods implementedby this class are specified in
the DiscoveryManagement and the DiscoveryGroupManagement interfaces.

Each instance of the LookupDiscovery class must behave asif it operates
independently ofall other instances.

The equals method for this class returns true if and only if two instances of
this class refer to the same object. That is, x and y are equal instances ofthis class
if and only if x == y has the value true.

50

51

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1

For convenience,this class defines the constants ALL_GROUPS and NO_GROUPS,

which represent no set and the empty set respectively. For more information on
these constants, refer to the specification of the DiscoveryGroupManagement
interface.

The constructor of the LookupDiscoveryclass takes a single input parameter:
a String array, none of whose elements may be nu11. If at least one element of
the input array is nul1, a Nul1PointerException is thrown.

Constructing this class using an input array that contains duplicate group
namesis equivalent to constructing the class using an array with the duplicates
removed.

If nul] (ALL_GROUPS) is input to the constructor, then attempts will be made
to discoverall lookup services located within the current multicast radius, regard-
less of group membership.

Although discovery events will not be sent by this class until a listener is
added through an invocation of the addListener method, discovery processing
usually starts as soon as an instance ofthis class is constructed. However, if an
empty array (NO_GROUPS) is passed to the constructor, discovery will not be
started until the addGroups or setGroups methodis called to change theinitial
empty set of groups to either a non-empty set, or nul] (ALL_GROUPS).

The constructor can throw an IOException because the creation of a

LookupDiscovery object causes the initiation of the discovery process, a process
that can throw IOException when socket allocation occurs.

DU.3.4 Supporting Interfaces and Classes

The LookupDiscovery helper utility class depends on the interfaces
DiscoveryManagement and DiscoveryGroupManagement, and on the concrete
class DiscoveryPermission.

DU.3.4.1 The DiscoveryManagement Interfaces

The LookupDiscovery class implements both the DiscoveryManagement and the
DiscoveryGroupManagement interfaces, which together define methods related
to the coordination and management of all group discovery processing. See
Section DU.2, “The Discovery ManagementInterfaces” for more information on
those interfaces.

41

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

51

52

42 LookupDiscovery UTILITY

DU.3.4.2 Security and Multicast Discovery: The DiscoveryPermission
Class

When an instance of the LookupDiscovery class is constructed, the entity that
creates the instance must be granted appropriate discovery permission. For exam-
ple, if the instance of LookupDiscoveryis currently configured to discover a non-
empty, non-nu11 set of groups, then the entity that created the instance must have
permission to attempt discovery of each of the groups in that set. If the set of
groups to discover is nul] (ALL_GROUPS), then the entity must have permission to
attempt discovery of all possible groups. If appropriate permissions are not
granted, the constructor of LookupDiscovery, as well as the methods addGroups
and setGroups,will throw a java. lang. SecurityException.

Discovery permissions are controlled in security policy files using the per-
mission class DiscoveryPermission. The public methods provided by the
DiscoveryPermissionclass are as follows:

package net.jini.discovery;

public final class DiscoveryPermission extends Permission

implements Serializable

{

public DiscoveryPermission(String group) {...}

public DiscoveryPermission(String group,

String actions) {..}

}

The DiscoveryPermission class is a subclass of Permission, adding no
additional items of abstractstate.

The Semantics

The equals method for this class returns true if and only if two instances ofthis
class have the same group name.

The constructor for this class has two forms: one form expecting one input
parameter, the other form expecting two input parameters. Each form of the con-
structor takes, as its first input parameter, a String representing one or more
group namesfor whichto allow discovery.

The second parameter of the second form of the constructor is a String value
that is currently ignored becausethere are no actions associated with a discovery
permission.

52

53

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1

DiscoveryPermission Examples

A number of examples that illustrate the use of this permission are presented.
Note that each example representsaline in a policyfile.

permission net.jini.discovery.DiscoveryPermission "*";

Grant the entity permission to attempt discovery ofall possible groups

permission net.jini.discovery.DiscoveryPermission ;

Grant the entity permission to attempt discovery of only the “public” group

permission net.jini.discovery.DiscoveryPermission "foo";

Grant the entity permission to attempt discovery of the group named “foo”
Wha

permission net.jini.discovery.DiscoveryPermission "*.sun.com";

Grant the entity permission to attempt discovery ofall groups whose names
end with the substring “.sun.com”

Each of the above declarations grants permission to attempt discovery of one
name. A name doesnot necessarily correspond to a single group. Thatis, the fol-
lowing should be noted:

@ The name “*” grants permission to attempt discovery ofall possible groups.

@ A name beginning with “*.” grants permission to attempt discovery ofall
groups that match the remainder of that name; for example, the name
"* example.org" would match a group named "foonly.example.org"
and also a group named "sf.ca.example.org”.

@ The empty name ""denotes the public group.

@ All other namesare treated as individual groups and must match exactly.

Finally, it is important to note that a restriction of the Java platform security
model requires that appropriate DiscoveryPermission be granted to the Jini
technology infrastructure software codebase itself, in addition to any codebases
that may use Jini technology infrastructure software classes.

DU.3.5 Serialized Forms

Class serialVersionUID Serialized Fields

DiscoveryPermission —3036978025008149170L none

43

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

53

54

44

54

LookupDiscovery UTILITY

55

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 45

DU.4 The LookupLocatorDiscovery Utility

DU.4.1 Overview

Ti The Jini Technology Core Platform Specification, “Discovery and Join’,
states that the “unicast discovery protocol is a simple request-response protocol.”
In a Jini application environment, the entities that participate in this protocol are a
discovering entity (Jini client or service) and a Jini lookupservice that acts as the
entity to be discovered. The discovering entity sends unicast discovery requests to
the lookup service, and the lookup service reacts to those requests by sending uni-
cast discovery responsesto the interested discovering entity.

The LookupLocatorDiscovery helper utility (belonging to the package
net.jini.discovery) encapsulates the functionality required of an entity that
wishes to employ the unicast discovery protocol to discover a lookup service. This
utility provides an implementation that makes the process of finding specific
instances of a lookup service much simpler for both services andclients.

Because the LookupLocatorDiscoveryhelperutility class will participate in
only the unicast discovery protocol, and because the unicast discovery protocol
imposesnorestriction on the physical location of a service or client relative to a
lookup service, this utility can be used to discover lookup services running on
hosts that are located far from, or near to, the hosts on which the service is run-

ning. This lack of a restriction on location brings with it a requirement that the
discovering entity supply specific information about the desired lookup servicesto
the LookupLocatorDiscoveryutility; namely, the location of the device(s) host-
ing each lookup service. This information is supplied through an instance of the
LookupLocator utility, defined in The Jini Technology Core Platform Specifica-
tion, “Discovery and Join”.

It may be of value to note the difference between LookupLocatorDiscovery
and the LookupDiscovery helper utility for group discovery (defined earlier).
Although both are non-remote utility classes that entities can use to discover at
least one lookup service, the LookupLocatorDiscoveryutility is designed to pro-
vide discovery capabilities that satisfy different needs than those satisfied by the
LookupDiscoveryutility. These twoutilities differ in the following ways:

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

55

56

46

¢

THE LookupLocatorDiscovery UTILITY

Whereas the LookupLocatorDiscoveryutility is used to discover lookup
services by their /Jocators, employing the unicast discovery protocol, the
LookupDiscoveryutility uses the multicast discovery protocols to discover
lookupservices by the groups to which the lookupservices belong.

Whereasthe LookupLocatorDiscoveryutility requires that the discovering
entity supply the specific location—or address—ofthe desired lookupser-
vice(s) in the form of a LookupLocatorobject, the LookupDiscoveryutil-
ity imposesnosuchrestriction on the discovering entity.

Whereasthe LookupLocatorDiscoveryutility can be used by a discovering
entity to discover lookup services that are both “near” and “far,” the
LookupDiscoveryutility can be used to discover only those lookup services
that are located within the same multicast radius as that of the discovering
entity.

DU.4.2. Other Types

The types defined in the specification of the LookupLocatorDiscovery utility
class are in the net. jini.discovery package. The following additional types
may also be referenced in this specification. Whenever referenced, these object
types will be referenced in unqualified form:

net.jini.core.discovery.LookupLocator

net.jini.discovery.DiscoveryManagement

net.jini.discovery.DiscoveryLocatorManagement

DU.4.3. The Interface

The public methods provided by the LookupLocatorDiscoveryclassare as fol-
lows:

package net.jini.discovery;

public class LookupLocatorDiscovery

implements DiscoveryManagement

DiscoveryLocatorManagement

public LookupLocatorDiscovery

(LookupLocator[] locators) {..}

56

57

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 47

public LookupLocator[] getDiscoveredLocators() {...}

public LookupLocator[] getUndiscoveredLocators() {..}

DU.4.4 The Semantics

Including the constructor, the LookupLocatorDiscovery helper utility class
defines three new public methods. All other public methodsare inherited from the
DiscoveryManagement and DiscoveryLocatorManagement interfaces.

Each instance of the LookupLocatorDiscovery class must behaveasifit

operates independently ofall other instances.
The equals method for this class returns true if and only if two instances of

this class refer to the same object. That is, x and y are equal instancesofthis class
if and only if x == y has the value true.

The constructor of the LookupLocatorDiscoveryclass takes a single input
parameter: a set of locators represented as an array of LookupLocator objects,
none of whose elements may be nu11. Each elementin the input set corresponds
to a specific lookup service the discovering entity wishes to be discovered.
Althoughit is acceptable to input nu11, if a non-nu11 array containing at least one
nul] elementis input, a Nu11PointerExceptionwill be thrown.

Invoking the constructor with an input array that contains duplicate locators
(as determined by LookupLocator. equals) is equivalent to performing the invo-
cation with the duplicates removed from thearray.

Although discovery events will not be sent by this class until a listener is
added through an invocation of the addListener method, discovery processing
usually starts as soon as an instance ofthis class is constructed. However, if nu11
or an empty array is passed to the constructor, discovery will not be started until
the addLocators or setLocators methodis called to change the managedset of
locators to a set of locators that is non-nu11 and non-empty.

The getDiscoveredLocators method returns the set of LookupLocator
objects representing the desired lookup services that are currently discovered. If
the set is empty, this method will return an empty array. This method takes no
arguments as input, and will return a new array upon eachinvocation.

The getUndiscoveredLocators method returns the set of LookupLocator

objects representing the desired lookup services that have not yet been discovered.
If the set is empty, this method will return an empty array. This method takes no
arguments as input, and will return a new array upon each invocation.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

57

58

48 THE LookupLocatorDiscovery UTILITY

DU.4.5 Supporting Interfaces

The LookupLocatorDiscovery helper utility class depends on the following
interfaces: DiscoveryManagement and DiscoveryLocatorManagement.

DU.4.5.1 The DiscoveryManagement Interfaces

The LookupLocatorDiscovery class implements the DiscoveryManagement and
DiscoveryLocatorManagement interfaces, which together define methods
related to the coordination and managementof all locator discovery processing.
See Section DU.2, “The Discovery ManagementInterfaces” for more information
on those interfaces.

58

59

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 49

DU.5 The LookupDiscoveryManagerUtility

DU.5.1 Overview

Arnoucn the goals of any well-behaved Jini client or service are application-
specific, the goals of such entities with respect to their interaction with Jini lookup
services generally begin with employing the Jini discovery protocols (defined in
The Jini Technology Core Platform Specification, “Discovery and Join’”’) to obtain
a reference to at least one lookup service. Because the discovery duties performed
by such entities may require the managementofsignificant amounts ofstate infor-
mation, those duties can becomequite tedious.

The LookupDiscoveryManager is a helper utility class (belonging to the
package net.jini.discovery) that organizes and managesall discovery-related
activities on behalf of a Jini client or service. Rather than providing its own facil-
ity for coordinating and maintaining all of the necessary state information related
to group names, LookupLocatorobjects, and DiscoveryListener objects, such
an entity can employthis class to provide thosefacilities on its behalf.

DU.5.2. Other Types

The types defined in the specification of the LookupDiscoveryManager utility
class are in the net. jini.discovery package. The following additional types
may also be referenced in this specification. Whenever referenced, these object
types will be referenced in unqualified form:

net. jini.core.discovery.LookupLocator

net.jini.discovery.DiscoveryEvent

net.jini.discovery.DiscoveryListener

net. jini.discovery.DiscoveryManagement

net.jini.discovery.DiscoveryGroupManagement

net.jini.discovery.DiscoveryLocatorManagement

java.io.IOException

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

59

60

50 THE LookupDiscoveryManager UTILITY

DU.5.3. The Interface

The only new public method of the LookupDiscoveryManager helperutility class
is the constructor. All other public methods implemented bythis class are speci-
fied in the discovery managementinterfaces.

package net.jini.discovery;

public class LookupDiscoveryManager

implements DiscoveryManagement,

DiscoveryGroupManagement,

DiscoveryLocatorManagement
{

public LookupDiscoveryManager(String[] groups,

LookupLocator[] locators,

DiscoveryListener listener)

throws IOException {...}

}

DU.5.4 The Semantics

The equals method for this class returns true if and only if two instances ofthis
class refer to the same object. That is, x and y are equal instances ofthis class if
and only if x == y has the value true.

The constructor for the LookupDiscoveryManager takes the following argu-
ments as input:

@ A String array, none of whose elements may be nu11, in which each ele-
ment is the name of a group whose membersare lookup services the entity
wishesto be discovered through group discovery

@ An array of LookupLocatorobjects, none of whose elements may be nu11,
in which each element correspondsto a specific lookup service the entity
wishes to be discovered through locator discovery

@ Areference to an instance of DiscoveryListener that will be notified when

a targeted lookupservice is discovered, is discarded, or—undercertain con-
ditions—has experienced a changein its group membership

The LookupDiscoveryManager will, on behalf of any entity that constructs
an instance ofthis utility, employ the Jini discovery protocols defined in The Jini
Technology Core Platform Specification, “Discovery and Join” to attempt to find

60

61

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 51

all lookup servicesthat satisfy the criteria set forth by the contents ofthe first two
arguments, and it will maintain and manage any lookupservicesthat it does dis-
cover.

If the constructor is invoked with a set of group namesanda set of locators in
which either or both sets contain duplicate elements (where duplicate locators are
determined by LookupLocator.equals), the invocation is equivalent to con-
structing this class with no duplicates in eitherset.

If nul] (DiscoveryGroupManagement.ALL_GROUPS) is input to the groups
argument, then attempts will be made through group discovery to discoverall
lookup services located within the multicast radius of the entity, regardless of
group membership.

Typically, group discovery is initiated as soon as an instanceofthis class is
created. However, if an empty array (Di scoveryGroupManagement.NO_GROUPS)is
passed to the groups argument of the constructor, no lookup service will be dis-
covered through group discovery until the addGroups or setGroups method is
called to change the managed set of groups to either a non-empty set, or nul]
(DiscoveryGroupManagement.ALL_GROUPS).

If at least one element of the groups argument is null, a
Nu11PointerException is thrown.

Typically, locator discovery processing is initiated as soon as an instance of
this class is constructed. However, if an empty or null array is input to the
locators argument, no attempt will be made to discover specific lookup services
through locator discovery until the addLocators or setLocators methodis
called to change the managedset of locators to a set of locators that is non-nu11
and non-empty.

If at least one element of the locators argument is null, a
Nu11PointerException is thrown.

The last argument to the constructoris a reference to a listener object that will
be registered to receive discovery event notifications. If a nu11 reference is input
to this argument, then the entity will receive no discovery events until addDis-
coveryListener is invoked with a non-nu11 instance of DiscoveryListener.

Oncealistener is registered with the LookupDiscoveryManager, it will be
notified of all lookup services discovered through either group or locator discov-
ery, and will be notified wheneverthose lookup services are discarded. Thus,if an
entity wishes to receive discovered and discarded events from the
LookupDiscoveryManager,it is the responsibility of the entity to provide an
implementation of the DiscoveryListener (or the DiscoveryChangeListener)
interface; an implementation that defines the actions to take upon the receipt of
those types of events.

If a listener registered with the LookupDiscoveryManager is also an instance
of DiscoveryChangeListener, then in addition to receiving events related to dis-

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

61

62

52 THE LookupDiscoveryManager UTILITY

covered and discarded lookupservices, that listener will also be notified of group
membership changesthat occur in any of the lookup services targeted for at least
group discovery. That is, although such listeners are eligible to receive changed
events, they will receive no changed events for lookup services for which the
entity has requested only locator discovery.

Note that if an entity wishes to receive changed events in addition to the dis-
covered and discarded events it receives from the LookupDiscoveryManager,the

entity must provide an implementation of DiscoveryChangeListener that
defines the actions to take uponthe receipt of any of the three possible discovery
event types. That is, if the entity provides only an implementation of
DiscoveryListener, the entity will receive no changed events for any ofthe dis-
covered lookup services, regardless of the discovery mechanism employed for
those lookup services.

The constructor throws IOException. This is because construction of a

LookupDiscoveryManager may initiate the multicast discovery process, which
can throw IOException.

Once a lookup service is discovered, there is no longer any need to perform
discovery processing with respect to that lookup service. This means that if a
lookup service becomes unreachable after it has been discovered, the
LookupDiscoveryManager will not know when the lookup service becomes
reachable again until that lookup service is discarded.

Although the LookupDiscoveryManager will monitor the multicast
announcements for indications of unavailability, it will discard only those
unreachable lookup services for which the entity requested discovery through at
least group discovery. That is, if the LookupDiscoveryManager determinesthat a
previously discovered lookup service has become unreachable, but the entity
requested that it be discovered by locator discovery alone, then the
LookupDiscoveryManager will not discard the lookup service.

Thus, whenever the entity itself determines that a previously discovered
lookup service has become unreachable, it should not rely on_ the
LookupDiscoveryManager to discard the lookup service. Instead, the entity
should inform the LookupDiscoveryManager—through the invocation of the
discard method—that the previously discovered lookup service is no longer
available, and that attempts should be madeto re-discover that lookup service.
Typically, an entity determinesthat a lookupservice is unavailable whenthe entity
attempts to use the lookup service but receives an exception or error
(RemoteException,for example)as a result of the attempt.

62

63

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1

DU.5.5 Supporting Interfaces and Classes

The LookupDiscoveryManager helper utility class depends on the interfaces
DiscoveryManagement, DiscoveryGroupManagement, and
DiscoveryLocatorManagement, and on the concrete class
DiscoveryPermission.

DU.5.5.1 The DiscoveryManagement Interfaces

The LookupDiscoveryManager class implements the DiscoveryManagement, the
DiscoveryGroupManagement, and the DiscoveryLocatorManagement inter-
faces, which together define methodsrelated to the coordination and management
of all group and locator discovery processing. See Section DU.2, “The Discovery
ManagementInterfaces” for more information on those interfaces.

DU.5.5.2. Security and Multicast Discovery: The DiscoveryPermission
Class

As is the case for the LookupDiscovery class, when an instance of the

LookupDiscoveryManager class is constructed, the entity that creates the
instance must be granted appropriate discovery permission to perform the group
discovery duties that instance attempts to perform on behalfof the entity. If appro-
priate permissions are not granted, the constructor of LookupDi scoveryManager,
as well as the methods addGroups and setGroups, will throw a
java. lang.SecurityException.

Discovery permissions are controlled in security policy files using the per-
mission class DiscoveryPermission. The specification of that class, as well as
useful examples related to that class, are presented in the specification of the
LookupDiscoveryutility (see Section DU.2, “The Discovery ManagementInter-
faces’’).

53

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

63

64

54

64

THE LookupDiscoveryManager UTILITY

65

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 55

DU.6 Low-Level Discovery Protocol Utilities

Tue utilities presented in this section of the specification are useful when imple-
menting higher-levelutilities or other entities or components that will be involved
in the Jini discovery process. These utilities encapsulate functionality that allow
one to exercise more control when interacting with the Jini discovery protocols.
Anyone wishingto provide their own implementation of the Jini lookup service or
their own implementation of the discovery utilities presented previously in this
specification, may find the utilities presented in this section useful whencreating
those alternate implementations.

DU.6.1 The Constants Class

DU.6.1.1 Overview

The Constantsclass provides easy access to defined constants that may be useful
whenparticipating in the discovery process.

DU.6.1.2 Other Types

The types defined in the specification of the Constants class are in the
net. jini.discovery package. The following additional types mayalso berefer-
enced in this specification. Whenever referenced, these object types will be refer-
enced in unqualified form:

java.net. InetAddress

java.net.UnknownHostException

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

65

66

56 LOW-LEVEL DISCOVERY PROTOCOL UTILITIES

DU.6.1.3. The Class Definition

The public constants defined by the Constantsclass are as follows:

package net.jini.discovery;

public class Constants {

public static final short discoveryPort = 4160;

public static final InetAddress getRequestAddress()

throws UnknownHostException {...}

public static final InetAddress getAnnouncementAddress()
throws UnknownHostException {...}

DU.6.1.4 The Semantics

The Constants class cannot be instantiated. This class has one public variable
and two public accessor methods; each isstatic and final. The constant value asso-
ciated with the variable, as well as the values returned by the methods, may be
useful in the discovery process.

The value of the discoveryPort constant serves two purposes:

@ The UDP port numberover which the multicast request and announcement
protocols operate

@ The TCP port numberover whichthe unicast discovery protocol operates by
default

The getRequestAddress method returns an instance of InetAddress that
contains the address of the multicast group over whichthe multicast request proto-
col takes place.

The getAnnouncementAddress method returns an instance of InetAddress

that contains the address of the multicast group over which the multicast
announcementprotocol takesplace.

Note that either getRequestAddress or getAnnouncementAddress may
throw an UnknownHostException if called in a circumstance under which multi-

cast address resolution is not permitted.

66

67

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1

DU.6.2. The OutgoingMulticastRequest Utility

DU.6.2.1 Overview

The OutgoingMulticastRequest class provides facilities for marshalling multi-
cast discovery requests into a form suitable for transmission over a network for
the purposes of announcing one’s interest in discovering a lookup service. This
class is useful when building componentsthat participate in the multicast request
protocol as part of a group discovery mechanism. This utility should be viewed
from the perspective of an entity that wishes to transmit multicast requests in
order to discover a lookup service belonging to a set of groups in whichtheentity
is interested.

DU.6.2.2 Other Types

The types defined in the specification of the OutgoingMulticastRequestutility
class are in the net. jini.discovery package. The following additional types
may also be referenced in this specification. Whenever referenced, these object
types will be referenced in unqualified form:

net.jini.core.discovery.ServiceID

java.io. IOException

java.net.DatagramPacket

java.net.InetAddress

DU.6.2.3. The Interface

The public methods provided by the OutgoingMulticastRequest class are as
follows:

package net.jini.discovery;

public class OutgoingMulticastRequest {

public static DatagramPacket[] marshal(Cint port,

String[] groups,

ServiceID[] heard)

throws IOException {...}

57

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

67

68

58 LOW-LEVEL DISCOVERY PROTOCOL UTILITIES

DU.6.2.4 The Semantics

The OutgoingMulticastRequest class cannot be instantiated. This class has
only one public method, whichisstatic.

The marshal method takes as input the following arguments, none of which
may be nul1:

@ The port to which respondents should connectin order to start unicast dis-
covery

@ A String array, none of whose elements may be nu11, in which each ele-
mentis the nameofa group the requesting entity is interested in discovering

@ An array of ServiceID objects, none of whose elements may be nu11, in
which each element corresponds to a lookup service the requesting entity
has already heard from

Since implementations are not required to check for duplicated elements, the
arguments represented as arrays must not contain such elements.

The marshal method returns an array whose elements are instances of
DatagramPacket. The array returned will always contain at least one element,
and will contain more if the request is not small enoughto fit in a single packet.
The array returned by this method is fully initialized; it contains a multicast
request as payloadandis ready to send over the network.

In the event of error, the marshal method maythrow an IOExceptionifmar-
shalling fails. In some instances the exception thrown may be a morespecific sub-
class of that exception.

DU.6.3. The IncomingMulticastRequest Utility

DU.6.3.1 Overview

The IncomingMulticastRequestclass providesfacilities that are useful when a
requesting entity’s announcedinterest in discovering a lookup serviceis received.
The facilities provided by this class encapsulate the details of the process of
unmarshalling such received multicast discovery requests into a form in which the
individual parameters of the request may be easily accessed. This class is useful
when building components that participate in the multicast request protocol as
part of a group discovery mechanism, where an entity that uses such a component
wishes to receive multicast requests in order to be discovered through its group
membership; for example, an entity such as a lookupservice.

68

69

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 59

DU.6.3.2 Other Types

The types defined in the specification of the IncomingMulticastRequestutility
class are in the net. jini.discovery package. The following additional types
may also be referenced in this specification. Whenever referenced, these object
types will be referenced in unqualified form:

net.jini.core.discovery.ServiceID

java.io.IOException

java.net.DatagramPacket

java.net. InetAddress

DU.6.3.3. The Interface

The public methods provided by the IncomingMulticastRequest class are as
follows:

package net.jini.discovery;

public class IncomingMulticastRequest {

public IncomingMulticastRequest(DatagramPacket dgram)

throws IOException {...}

public InetAddress getAddress() {...}

public int getPortQ {...}

public String[] getGroups() {...}

public ServiceID[] getServiceIDs(Q) {...}

DU.6.3.4 The Semantics

Including the constructor, the IncomingMulticastRequestclass defines five new
public methods.

The equals method for this class returns true if and only if two instances of
this class have the same address, port, groups, and service ID values.

The constructor of the IncomingMul1ticastRequestclass takes a single input
parameter: an instance of DatagramPacket. The payload of this parameter is
assumedto contain nothing but a marshalled discovery request.

If the marshalled request contained in the input parameter is corrupt, an
IOException or a ClassNotFoundException will be thrown. In some such

instances, a more specific subclass of either exception may be thrown that will
give more detailed information.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

69

70

60 LOW-LEVEL DISCOVERY PROTOCOL UTILITIES

The getAddress method returns an instance of InetAddress that represents
the address of the host to contact in orderto start unicast discovery.

The getPort method returns an int valuethat is the port number to connect
to on the remote host in orderto start unicast discovery.

The getGroups method returns an array consisting of the names of the groups
in which the requesting entity (the originator of this request) is interested. The
array returned by this method maybeof zero length, none ofits elements will be
null, and elements in the returned array may or may not be duplicated. Further-
more,the set reflected in the returned array may not be complete, but other incom-
ing packets should contain the rest of theset.

The getServiceIDs method returns an array of ServiceID instances in
which each element of the array correspondsto a lookup service from which the
requesting entity has already heard. The array returned by this method may be of
zero length, none of its elements will be nu11, and elements in the returned array
may or maynot be duplicated. Furthermore, the set returned by this method may
not be complete. That is, there may be more lookup services from which the
requesting entity has already heard, but the set returned by this method will not
exceed the capacity of a packet.

DU.6.4 The OutgoingMul ticastAnnouncement Utility

DU.6.4.1 Overview

The OutgoingMulticastAnnouncementclass encapsulates the details of the pro-
cess of marshalling multicast discovery announcements into a form suitable for
transmission over a network for the purposes of announcing the availability of a
lookup service to interested parties. This class is useful when building compo-
nents that participate in the multicast announcement protocol as part of a group
discovery mechanism. This utility should be viewed from the perspective of an
entity that wishes to transmit multicast announcements in order to be discovered
as a lookup service belongingto a set of groups in which other discovering entities
maybeinterested.

DU.6.4.2. Other Types

The types defined in the specification of the OutgoingMulticastAnnouncement
utility class are in the net.jini.discovery package. The following additional

70

71

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 61

types may also be referenced in this specification. Whenever referenced, these
object types will be referenced in unqualified form:

net.jini.core.discovery.LookupLocator

net.jini.core.discovery.ServiceID

java.io. IOException

java.net.DatagramPacket

DU.6.4.3. The Interface

The public methods provided by the OutgoingMulticastAnnouncementclass are
as follows:

package net.jini.discovery;

public class OutgoingMulticastAnnouncement {

public static DatagramPacket[] marshal(ServiceID id,

LookupLocator loc,

String[]groups)

throws IOException {...}

DU.6.4.4 The Semantics

The OutgoingMulticastAnnouncement class cannot be instantiated. This class
has only one public method, whichisstatic.

The marshal method takes as input the following arguments, none of which
may be nu11:

@ The instance of ServiceID that corresponds to the lookup service being
advertised

@ The instance of LookupLocator through which the lookup service being
advertised may be discovered through unicast discovery

@ A non-null String array, none of whose elements may be nu11, in which
each elementis the nameofa group in which the lookup service being adver-
tised is a member

The marshal method returns an array whose elements are instances of
DatagramPacket, the contents of which represents a marshalled multicast
announcement. The packets created by this method, as represented by the ele-
ments of the returned array, are guaranteed to contain all of the groups in which

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

71

72

62 LOW-LEVEL DISCOVERY PROTOCOL UTILITIES

the lookup service being advertised is a member. Note that the set of groups
reflected in the returned collection of datagram packets maybe distributed among
those packets.

Each elementof the array returned by this methodis initialized such thatit is
ready for transmission to the appropriate multicast address and UDP port.

In the event of error, the marshal method maythrow an IOExceptionifmar-
shalling fails. In some instances, the exception thrown may be a morespecific
subclass of that exception.

DU.6.5 The IncomingMulticastAnnouncement Utility

DU.6.5.1 Overview

The IncomingMulticastAnnouncementclass encapsulates the details of the pro-
cess of unmarshalling multicast discovery announcements into a form in which
the individual parameters of the announcement maybeeasily accessed. This class
is useful when building components that participate in the multicast announce-
ment protocol as part of a group discovery mechanism. This utility should be
viewed from the perspective of an entity that wishes to receive multicast
announcements in order to discover a lookupservice belonging to a set of groups
in which the entity is interested.

DU.6.5.2 Other Types

The types defined in the specification of the IncomingMulticastAnnouncement
utility class are in the net.jini.discovery package. The following additional
types mayalso be referenced in this specification. Whenever referenced, these
object types will be referenced in unqualified form:

net.jini.core.discovery.LookupLocator

net.jini.core.discovery.ServiceID

java.io.IOException

java.net.DatagramPacket

72

73

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 63

DU.6.5.3. The Interface

The public methods provided by the IncomingMulticastAnnouncementclass are
as follows:

package net.jini.discovery;

public class IncomingMulticastAnnouncement {

public IncomingMulticastAnnouncement (DatagramPacket p)

throws IOException {...}

public ServiceID getServiceID() {...}

public LookupLocator getLocator() {...}

public String[] getGroups() {...}

DU.6.5.4 The Semantics

Including the constructor, the IncomingMulticastAnnouncement class defines
four new public methods.

The equals methodforthis class returns true if and only if two instances of
this class have the sameservice ID values.

The constructor of the IncomingMulticastAnnouncement class takes a sin-

gle input parameter: an instance of DatagramPacket. The constructor attempts to
unmarshal the input parameter, storing the results in the various fields of this
class.

If the contents of the datagram packet cannot be successfully unmarshalled,
either an IOException or a ClassNotFoundExceptionis thrown. In some such

instances, a more specific subclass of either exception may be thrown that will
give more detailed information.

The getServiceID method returns the ServiceID instance corresponding to
the lookup service that sent the announcement.

The getLocator methodreturns the LookupLocator instance corresponding
to the lookupservice that sent the announcement.It is through the object returned
by this methodthat the lookup service maybe discoveredvia unicast discovery.

The getGroups methodreturns an array consisting of the names of the groups
in which the lookup service that sent the announcement is a member. The array
returned by this method is never nu11, will contain no nul11 elements, or may be
empty. Additionally, elements in the returned array may or may notbe duplicated.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

73

74

64 LOW-LEVEL DISCOVERY PROTOCOL UTILITIES

DU.6.6 The OutgoingUnicastRequest Utility

DU.6.6.1 Overview

The OutgoingUnicastRequest class encapsulates the details of the process of
marshalling unicast discovery requests into a form suitable for transmission over a
network to attempt discovery of a specific lookup service. This class is useful
when building components that participate in the unicast request protocolas part
of either a group or a locator discovery mechanism. This utility should be viewed
from the perspective of an entity that wishes to transmit unicast requests in order
to discover a specific lookup service in whichthe entity is interested.

DU.6.6.2 Other Types

The types defined in the specification of the OutgoingUnicastRequest utility
class are in the net. jini.discovery package. The following additional types
mayalso be referenced in this specification. Whenever referenced, these object
types will be referenced in unqualified form:

java.io.IOException

java.io.OutputStream

DU.6.6.3. The Interface

The public methods provided by the OutgoingUnicastRequest class are as fol-
lows:

package net.jini.discovery;

public class OutgoingUnicastRequest {

public static void marshal (OutputStream str)

throws IOException {...}

DU.6.6.4 The Semantics

The OutgoingUnicastRequestclass cannot be instantiated. This class has only
one public method, whichisstatic.

The marshal method takes only one parameter as input: an instance of
OutputStream, whichis the stream to which the unicast request is written. After
the unicast request is written to the stream, the stream is flushed.

74

75

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 65

In the event of error, the marshal method may throw an IOExceptionifwrit-
ing to the stream fails. In some instances, the exception thrown may be a more
specific subclass of that exception.

DU.6.7 The IncomingUnicastRequest Utility

DU.6.7.1 Overview

The IncomingUnicastRequest class encapsulates the details of the process of
unmarshalling unicast discovery requests into a form in which the individual
parameters of the request may be easily accessed. This class is useful when build-
ing components that participate in the unicast request protocol as part of either a
group or a locator discovery mechanism. This utility should be viewed from the
perspective of an entity—suchas a lookup service—that wishesto receive unicast
requests in order to be discovered through direct, unicast communication.

DU.6.7.2 Other Types

The types defined in the specification of the IncomingUnicastRequestutility
class are in the net. jini.discovery package. The following additional types
may also be referenced in this specification. Whenever referenced, these object
types will be referenced in unqualified form:

java.io.InputStream

java.io. IOException

DU.6.7.3. The Interface

The public methods provided by the IncomingUnicastRequestclass are as fol-
lows:

package net.jini.discovery;

public class IncomingUnicastRequest {

public IncomingUnicastRequest (InputStream str)

throws IOException {...}

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

75

76

66 LOW-LEVEL DISCOVERY PROTOCOL UTILITIES

DU.6.7.4 The Semantics

The only new public method defined by the IncomingUnicastRequestclass is
the constructor.

The constructor of the IncomingUnicastRequestclass takes a single input
parameter: an instance of InputStream, whichis the stream from which the uni-
cast requestis read.

In the event of error, an IOException may be thrownif reading from the
stream fails. In some instances, the exception thrown may be a morespecific sub-
class of that exception.

DU.6.8 The OutgoingUnicastResponse Utility

DU.6.8.1 Overview

The OutgoingUnicastResponseclass encapsulates the details of the process of
marshalling a unicast discovery response into a form suitable for transmission
over a networkto respond to a unicast discovery request. This class is useful when
building components that participate in the unicast request protocol as part of
either a group or a locator discovery mechanism. This utility should be viewed
from the perspective of a entity—such as a lookup service—that wishesto trans-
mit responses to unicast requests in order to be discovered through direct, unicast
communication.

DU.6.8.2. Other Types

The types defined in the specification of the OutgoingUnicastResponseutility
class are in the net. jini.discovery package. The following additional types
mayalso be referenced in this specification. Whenever referenced, these object
types will be referenced in unqualified form:

net. jini.core. lookup.ServiceRegistrar

java.io.IOException

java.io.QOutputStream

76

77

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 67

DU.6.8.3. The Interface

The public methods provided by the OutgoingUnicastResponseclassare as fol-
lows:

package net.jini.discovery;

public class OutgoingUnicastResponse {

public static void marshal (OutputStream s,

ServiceRegistrar reg

String[] groups)
throws IOException {...}

DU.6.8.4 The Semantics

The OutgoingUnicastResponseclass cannot be instantiated. This class has only
one public method, whichisstatic.

The marshal method takes as input the following arguments, none of which
may be nul11:

@ An instance of OutputStream, which is the stream to which the unicast

responseis written.

@ An instance of ServiceRegistrar that references the proxy to the lookup
service that will be marshalled and written to the stream.

@ A non-null String array, none of whose elements may be nu11, in which
each elementis the nameof a group in whichthe lookupservice referenced
by the reg parameter is a member. Note that duplicate elements are allowed
in this parameter.

The marshal method marshals the reg parameter and writes the result to the
stream. It then writes each element of the groups parameter to the stream. After
the complete unicast response is written to the stream, the stream is flushed.

This method may throw an IOExceptionif a failure occurs while marshalling
or writing to the stream. In some instances, the exception thrown may be a more
specific subclass of that exception.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

77

78

68 LOW-LEVEL DISCOVERY PROTOCOL UTILITIES

DU.6.9 The IncomingUnicastResponse Utility

DU.6.9.1 Overview

The IncomingUnicastResponse class encapsulates the details of the process of
unmarshalling a unicast discovery response into a form in which the individual
parameters of the request may be easily accessed. This class is useful when build-
ing components that participate in the unicast request protocol as part of either a
group or a locator discovery mechanism. This utility should be viewed from the
perspective of an entity that wishes to receive unicast responses in order to dis-
cover lookup services through direct, unicast communication.

DU.6.9.2 Other Types

The types defined in the specification of the IncomingUnicastResponseutility
class are in the net. jini.discovery package. The following additional types
mayalso be referenced in this specification. Whenever referenced, these object
types will be referenced in unqualified form:

net. jini.core. lookup.ServiceRegistrar

java.io.InputStream

java.io. IOException

DU.6.9.3. The Interface

The public methods provided by the IncomingUnicastResponseclassare asfol-
lows:

package net.jini.discovery;

public class IncomingUnicastResponse {

public IncomingUnicastResponse(InputStream s)

throws IOException, ClassNotFoundException {...}

public ServiceRegistrar getRegistrarQ {..}

public String[] getGroups() {..}

DU.6.9.4 The Semantics

Including the constructor, the IncomingUnicastResponseclass defines three new
methods.

78

79

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 69

The equals method for this class returns true if and only if two instances of
this class reference the same lookup service proxy (registrar).

The constructor of the IncomingUnicastResponseclass takes a single input
parameter: an instance of InputStream, which is the stream from which the con-
tents of the unicast responseis read.

An IOException may be thrown if reading from the stream fails. A
ClassNotFoundException maybe thrownif failure occurs while unmarshalling
the proxy to the lookup service contained in the unicast response. In some such
instances, a more specific subclass of either exception may be thrown that will
give more detailed information.

The getRegistrar method returns an instance of ServiceRegistrar that

references the proxy to the lookupservice sent in the unicast response.
The getGroups methodreturns an array consisting of the names of the groups

in which the lookup service referenced in the response is a member. The array
returned by this method is never nu11, will contain no nu11 elements, or may be
empty. Additionally, elements in the returned array may or may notbe duplicated.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

79

80

70

80

LOW-LEVEL DISCOVERY PROTOCOL UTILITIES

81

EU

Jini Entry Utilities
Specification

EU.1 Entry Utilities

Enxras are designed to be used in distributed algorithms for which exact-
match lookup semantics are useful. An entry is a typed set of objects, each of
which may be tested for exact match with a template. The details of entries and
their semantics are discussed in The Jini Technology Core Platform Specification,
“Entry”.

When designing entries, certain tasks are commonly done in similar ways.
This specification defines a utility class for such commontasks.

EU.1.1 AbstractEntry

The class net.jini.entry.AbstractEntry is a specific implementation of
Entry that provides useful implementations of equals, hashCode, and toString:

package net.jini.entry;

public abstract class AbstractEntry implements Entry {

public boolean equals(Object o) {...}

public int hashCode) {...}

public String toStringQ®{..}

public static boolean equals(Entry el, Entry e2) {..}

public static int hashCode(Entry entry) {...}

public static String toString(Entry entry) {...}

71

81

82

72 ENTRY UTILITIES

The static method AbstractEntry.equals returns true if and only if the two
entries are of the sameclass and for each field F;, the two objects’ values for F are
either both nu11 or the invocation of equals on one object’s value for F' with the
other object’s value for F as its parameter returns true. The static method
hashCode returns zero XOR the hashCode invoked on each non-nu11 field of the

entry. The static method toString returns a string that contains each field’s name
and value. The non-static methods equals, hashCode, and toString return a

result equivalent to invoking the corresponding static method with this as the
first argument.

EU.1.2 Serialized Form

Class serialVersionUID Serialized Fields

AbstractEntry 5071868345060424804L none

82

83

LM

Jini Lease Utilities

Specification

LM.1 Introduction

Tus specification defines helper utility classes, along with supporting inter-
faces and classes, that encapsulate functionality which provides for the coordina-
tion, systematic renewal, and overall managementof a set of leases associated
with someobject on behalf of another object. Currently, this specification defines
only one helperutility class:

@ The LeaseRenewalManager helperutility

83

73

84

74

84

INTRODUCTION

85

JINI LEASE UTILITIES SPECIFICATION, version 1.1 75

LM.2 The LeaseRenewal Manager

Tue LeaseRenewalManager class (belonging to the package net. jini. lease)
encapsulates functionality that provides for the systematic renewal and overall
managementof a set of leases associated with one or more remote entities on
behalf of a local entity.

The concept of leased resources is fundamental to the Jini technology pro-
gramming model. Providing a leasing mechanism helps to prevent the accumula-
tion of outdated and unwantedresources in time-based distributed systems, such
as the Jini technology infrastructure. The leasing model for Jini network technol-
ogy (Jini technology), defined in The Jini Technology Core Platform Specifica-
tion, “Leasing and Distributed Systems”, requires renewed proof of interest to
continue the existence of a leased resource. Thus, any Jini technology-enabledcli-
ent (Jini client) or Jini technology-enabled service (Jini service) that requests the
use of the leased resources provided by another Jini service may be granted access
to those resources for a negotiated period of time, and must continue to request
renewal of the lease on each resourcefor as long as the client or service wishes to
have accessto the resource.

For example, the Jini lookup service leases two resources: residency in its
database andregistration with its event notification mechanism. Thus,if a service
that is registered with a Jini lookup service wishes to continue its residency
beyond the length of the current lease, the service must request a lease renewal
from that lookup service. This renewal process must be repeated for as long as the
service wishes to maintain its residency in the lookup service. Similarly,if a client
has requested that a lookup service notify it of events of interest, then prior to the
expiration of the lease on the event registration, the client must request that the
lookup service continue to send such events. As with residency in the lookupser-
vice, these renewal requests must be repeated for as long as the client wishes to
receive eventnotifications.

Another example of a Jini service providing leased resources would bea ser-
vice that implements The Jini Technology Core Platform Specification, “Transac-
tion” to manage transactions on behalf of registered participants. That
specification requires that a transaction must be a leased resource. Therefore, any
entity that creates such a transaction object is required to negotiate (with an entity

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

85

86

76 THE LeaseRenewalManager

referred to as a transaction manager)a lease on that object, repeatedly requesting
lease renewals prior to the lease’s expiration, for as long as the transaction is to
remain in effect.

The LeaseRenewalManager class is designed to be a simple mechanism that
provides for the systematic renewal and overall managementof leases granted on
resources that are provided by Jini services and for which a Jini client or service
has registered interest. The LeaseRenewalManager is a utility class, not a remote
service. In orderto use this utility, an entity must create, in its own address space,
an instance of the LeaseRenewalManager to managethe entity’s leases locally.

LM.2.1 Other Types

The types defined in the specification of the LeaseRenewalManager utility class
are in the net. jini. lease package. The following types may bereferenced in
this specification. Wheneverreferenced, these types will be referenced in unquali-
fied form:

net.jini.core.lease.Lease

net.jini.core. lease.UnknownLeaseException

net.jini.core. lease.LeaseDeniedException

java.rmi.RemoteException

java.rmi .NoSuchObjectException

java.util.EventObject

java.util.EventListener

86

87

JINI LEASE UTILITIES SPECIFICATION, version 1.1 77

LM.3 The Interface

Tue public methods provided by the LeaseRenewalManager classare:
package net.jini. lease;

public class LeaseRenewalManager
{

public LeaseRenewalManager() {...}

public LeaseRenewalManager(Lease lease,

long desiredExpiration,
LeaseListener listener) {...}

public void renewUntil (Lease lease,

long desiredExpiration,

long renewDuration,

LeaseListener listener) {...}

public void renewUntil (Lease lease,

long desiredExpiration,
LeaseListener listener) {...}

public void renewFor(Lease lease,

long desiredDuration,

long renewDuration,

LeaseListener listener) {...}

public void renewFor(Lease lease,

long desiredDuration,
LeaseListener listener) {...}

public long getExpiration(Lease lease)

throws UnknownLeaseException {...}

public void setExpiration(Lease lease,

long desiredExpiration)

throws UnknownLeaseException {...}

public void remove(Lease lease)

throws UnknownLeaseException {...}

public void cancel(Lease lease)

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

87

88

78 THE INTERFACE

throws UnknownLeaseException, RemoteException {...}

public void clear() {...}

88

89

JINI LEASE UTILITIES SPECIFICATION, version 1.1 79

LM.4 The Semantics

Tue term client is used in this specification to refer to the local entity that is
using the LeaseRenewalManager to manage a collection of leases on its behalf.
This collection is referred to as the managedset.

The LeaseRenewalManager distinguishes between two time values associated
with lease expiration: the desired expiration time for the lease and the actual expi-
ration time granted when the lease is created or last renewed. The desired expira-
tion represents when the client would like the lease to expire. The actual
expiration represents when the lease is going to expire if it is not renewed. Both
time values are absolute times, not relative time durations. The desired expiration
time can beretrieved using the renewal manager’s getExpiration method, which
is described below. The actual expiration time of a lease object can be retrieved by
invoking the getExpiration method directly on the lease (see the Lease inter-
face defined in The Jini Technology Core Platform Specification, “Distributed
Leasing”’).

Each lease in the managed set also has two other associated attributes: a
renewalduration and a remaining desired duration. The remaining desired dura-
tion is alwaysthe desired expiration less the current time. The renewal duration is
usually a positive numberandis the new duration that will be requested when the
renewal managerrenewsthe lease, unless the renewal duration is greater than the
remaining desired duration. If the renewal duration is greater than the remaining
desired duration, then the remaining desired duration will be requested when
renewing the lease. One exception is that when the desired expiration is
Lease.FOREVER, the renewal duration may be Lease.ANY, in which case
Lease.ANY will be requested when renewing the client lease, regardless of the
value of the remaining desired duration.

For example, if the renewal duration associated with a given lease is 360,000
milliseconds, then when the renewal manager renewsthe lease, it will ask for a
new duration of 360,000 milliseconds—unless the lease is going to reach its
desired expiration in less than 360,000 milliseconds. If the lease’s desired expira-
tion is within 360,000 milliseconds, the renewal managerwill ask for the differ-
ence between the current time and the desired expiration. If the renewal duration

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

89

90

80 THE SEMANTICS

had been Lease. ANY, the renewal manager would haveasked for a new duration of
Lease. ANY.

The term definite exception is used to refer to exceptions that result from oper-
ations on a lease (such as a renewal attempt) that are indicative of a permanent
failure of the lease. For the purposes of this document, all bad object exceptions,
bad invocation exceptions, and LeaseExceptions are considered to be definite
exceptions (see Introduction to Helper Utilities and Services, Section US.2.6,
“What Exceptions Imply about Future Behavior’).

The LeaseRenewalManager generates two kinds of local events. The first
kind is a renewalfailure event that is generated when the renewal managerfinds
that it can’t renew a lease. The second kindis a desired expiration reached event,
which is generated when a lease’s desired expiration is reached. Each eventsig-
nals that the renewal manager has removed a lease from the managed set without
an explicit request by the client. When placing a lease in the managedset,the cli-
ent can provide either a LeaseListener object that will receive any renewalfail-
ure events associated with the lease, or a DesiredExpirationListener (a
subinterface of LeaseListener) object that will receive both renewal failure and
desired expiration reached events associated with the lease. Both kinds of event
are represented by LeaseRenewalEventobjects.

The LeaseRenewalManager makes a concurrency guarantee. When the
LeaseRenewalManager makes a remote call (for example, when requesting the
renewal of a lease), any invocations made on the methods of the
LeaseRenewalManager will not be blocked. Because of these concurrency guar-
antees, it is not possible for the various methods that remove leases from the man-
aged set (for example, remove, cancel, and clear) to guarantee that the renewal
managerwill not attempt to renew leases that have just been removed. Similarly, it
is not possible for the methods that change the desired expiration or renewal dura-
tion associated with a lease (for example, renewUntil, renewFor, and
setExpiration) to guarantee that the next renewal of the lease will request a
duration that is consistent with the new desired expiration and/or renewal duration
(it will be consistent with either the old pair or the new pair). However, implemen-
tations should keep the window wheresuch renewals could occur as small as pos-
sible.

The LeaseRenewalManager makes a similar reentrancy guarantee with
respect to LeaseListener and DesiredExpirationListener objects registered
with the LeaseRenewalManager. Should the LeaseRenewalManager invoke a
method ona registered listener(a local call), calls from that method to any method
of the LeaseRenewalManager are guaranteed not to result in a deadlock condi-
tion. One implication of this guarantee is that the delivery of events is asynchro-
nous with respect to any call (or sequence of calls) made on the renewal manager
after the event occurs; this allows events to be delivered after they have been made

90

