
206

196 THE INTERFACE

will not be longer. The value of the leaseDu rati on argument must be positive,

Lease.FOREVER,orLease.ANY;oflunwvfie,an.IllegalArgumentException “dfl

be thrown. Two calls to the createLeaseRenewal Set method will never return

objects that are equal. The set's lease is obtained through a method provided by
file set

LeaseRenewal Set defines the interface to the sets created by the lease

renewal service. This interface is not a remote interface. Each implementation of

the renewal service exports proxy objects that implement the LeaseRenewal Set

interface local to the client and use an implementation-specific protocol to com-

municate with the actual remote server. All of the proxy methods obey normal

RMI remote interface semantics except where explicitly noted. The proxy objects

for two sets are equal (using the equals method) if they are proxies for the same

set created by the same renewal service. Any method that communicates with the

remote server should throw a NoSuchObj ectExcepti on if the set no longer exists.

If a client receives a NoSuchObjectException from one of the operations on a

lease renewal set, the client can infer that the set has been destroyed; however, it

should not infer that the renewal service has been destroyed.

package net.jini.lease;

public interface LeaseRenewalSet {

final public static long RENEWAL_FAILURE_EVENT_ID = 0;

final public static long EXPIRATION_WARNING_EVENT_ID = 1;

public void renewForCLease leaseToRenew,

long desi redDuration,

long renewDuration)

throws RemoteExcepti on;

public void renewForCLease leaseToRenew,

long desi redDuration)

throws RemoteExcepti on;

public EventRegi strati on setExpi rati onWarni ngLi stener(

RemoteEventLi stener listener,

long mi nWarni ng,

MarshalledObject handback)

throws RemoteExcepti on;

public void clearExpi rationWarningLi stenerO

throws RemoteExcepti on;

206

207

JINI LEASE RENEWAL SER VICE SPECIFICA TION, version 1.1 197

public EventRegistration setRenewal FailureListener(

RemoteEventListener listener,

MarshalledObject handback)

throws RemoteExcepti on;

public void cl earRenewal Fa1' 'I ureLi stenerO

throws RemoteExcepti on;

public Lease remove(Lease 'IeaseToRemove)

throws RemoteExcept'i on;

public Lease[] getLeasesO

throws LeaseUnmarsha'l Exception, RemoteException;

public Lease getRenewalSetLeaseO;

}

Leases can be added to the set through the renewFor methods. There are two

forms of this method: a three-argument form and a two-argument form. The three-

argument form will be described first. The leaseToRenew argument specifies the

lease to be renewed. An 11 l egalArgumentExcepti on will be thrown if the lease

has not expired and was granted by the renewal service itself. An

11 1 egalArgumentExcepti on will also be thrown if the lease is currently a mem-

ber of another set allocated by the same renewal service. If leaseToRenew is

ml 1 , a Null Poi nterException will be thrown.

The desi redDu ration parameter is the number of milliseconds that the client
would like for the client lease to remain in the set. It is used to calculate the client

lease’s desired expiration by adding desi redDu ration to the current time (as

viewed by the service). If this causes an overflow, a desired expiration of

Long.MAX_VALUE will be used. Unlike a lease duration, the desired duration is

unilaterally specified by the client, not negotiated between the client and the ser-

vice. Note that a negative value for desi redDu ration (including Lease . ANY) will

result in a desired expiration that is in the past. This will cause the client lease to

be dropped immediately from the set and will not result in an exception. A

renewal failure event will be generated if and only if the client’s actual expiration

is before its desired expiration.

If the actual expiration time of the client lease being added to the set is before

both the current time (as viewed by the renewal service) and the client lease’s

desired expiration time, the method will return normally. However, the client lease

will be dropped from the set, and a renewal failure event will be generated. If the

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

207

208

198 THE INTERFACE

actual expiration time is before the current time and equal to or after the desired

expiration time, the method will return normally, the client lease will be dropped

from the set, and no event will be generated.

A des1' redDu ran" on of Long . MAX_VALUE does not imply that the client lease

will remain in the set forever. The client lease will be ejected from the set if the set

is destroyed, the client lease itself expires, the client lease is removed from the set,

or the renewal service makes a renewal attempt on the client lease that results in a

definite exception.
The renewDu rati on is the renewal duration to associate with the client lease

(in milliseconds). If des1' redDu rati on is exactly Long . MAX_VALU E, the

renewDu rati on may be any positive number or Lease.ANY; otherwise it must be

a positive number. If these requirements are not met, the renewal service will

throw an I] l ega'l ArgumentExcepti on.

Calling renewFo r with a lease that is equivalent to a client lease already in the

set will associate the existing client lease in the set with the new desired duration

and renew duration. The original copy of the client lease is not replaced with the

new one. These semantics also allow renewFor‘ to be used in an idempotent fash-
ion.

The two-argument form of renewFor‘ is equivalent to

renewForCleaseToRenew, desi redDuration, Lease.FOREVER)

Client leases get returned to clients in a number of ways (via remove and

getLeases calls, as components of events, etc.). The serial format of client leases

returned to clients may be either Lease . DURATION or Lease.ABSOLUTE. In partic-

ular it may be necessary to use the Lease .ABSOLUTE format if the implementation

has access to the client lease only in marshalled form and is unable to unmarshal

the client lease before sending it to the client.

Whenever a client lease gets returned to a client, its actual expiration should
reflect either:

9 The result of the last recorded successful renewal of the client lease per-

formed by the renewal service; or

o The expiration time the client lease originally had when it was added to the

set, if the renewal service has been unable to successfully renew the client
lease and record the result

Although it is impossible for a renewal service to guarantee that all renewal

attempts will be recorded, persistent implementations should attempt to keep the

interval between the renewal of a client lease and the logging of the result to a
minimum.

208

209

JINI LEASE RENEWAL SER VICE SPECIFICA TION, version 1.1 1 99

Client leases are removed from the set by using the remove method. Removal
from the set will not cause the lease to be cancelled. The method will return the

lease that is being removed. If the lease is not in the set, nul l will be returned; and

this call will not be blocked by in-progress renewal attempts. As a result, a client

lease removed by this method might be renewed after the method has returned.

Implementations should keep the window where renewals of removed leases

could occur as small as possible.

The getLeases method returns all the client leases in the set at the time of the

call, as an array of type Lease. If one or more of the Leases in the array cannot be

deserialized, a LeaseUnmarshal Exception is thrown.

package net .ji ni .lease;

public class LeaseUnmarshalException extends Exception {

public LeaseUnmarshal Exception(

Lease[] leases,

MarshalledObject[] marshalledLeases,

ThrowableE] exceptions) {m}

public LeaseUnmarshalExceptionC

Lease[] leases,

MarshalledObject[] marshalledLeases,

Throwable[] exceptions,

String message) {m}

public Lease[] getLeasesO {...}

public MarshalledObjectE] getMarshalledLeasesO {...}

public ThrowableE] getExceptionsO {...}

}

The leases that could be successfully deserialized will be returned by the

getLeases method of the exception. If no leases could be deserialized, a zero-

length array will be returned. The leases that could not be deserialized will be

returned in the form of MarshalledObjects by the getMarshalledLeases

method of the exception. For each element of the array returned by the

getMarshal l ed Leases method, the corresponding element of the array returned

by the getExceptions method will hold a Th rowable that indicates why the

given lease could not be deserialized.

Throwing a LeaseUnmarshal Exception represents a (possibly transient) fail-

ure in the ability to unmarshal one or more client leases in the set; it does not nec-

essarily imply anything about the state of the renewal service or the set that threw

the exception.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

209

210

200 THE INTERFACE

The getRenewal SetLease method of LeaseSet returns the lease associated

with the set itself. This method does not make a remote call.

LR.2.1 Events

The lease renewal service does not support multiple simultaneous event listener

registrations for the same kind of event. Although it would be useful in some lim-

ited circumstances, to do so would require event registrations to be leased sepa-

rately from the set they are associated with. For the average client of the lease

renewal service, this ability would increase the number of leases that it would

have to manage. Since the renewal service is based on the premise that some cli-

ents have difficulty managing their own leases, increasing the number of leases

that a client would need to manage could significantly complicate the implemen-
tation of those clients. Because there can be at most one listener for each kind of

event, a given set provides a set/c1 ear interface instead of the more common

addL1' stener/removeLi stener or addL1' stener/l ease . cancel interfaces.

The source field of each event generated by a lease renewal service is the

renewal set that the event is associated with. In the case of an expiration warning

event, this is the set that is about to expire. In the case of a renewal failure event,
this is the set the client lease was in when the event occurred. Note that the value

of the source field will in general be a copy of the set in question, the equals

method will return true for any other copies of the set the client has in its posses-

sion, but in general it will not be the same object (that is, comparing two sets

using == will usually return false).

The event ID LeaseRenewa'l Set.EXPIRATION_WARNING_EVENT_ID is used

for all expiration warning events. One event ID is used because there is only one

kind of expiration warning event. Similarly, all renewal failure events will have

the event ID LeaseRenewa'l Set . RENEWAL_FAILURE_EVENT_ID.

Because all of the expiration warning events generated by a given set will

have the same source and event ID, the sequence number of any given expiration

warning event generated by the set will be different from the sequence number of

any other expiration warning event generated by the set. Similarly, the sequence

number of any renewal failure event generated by a given set will be different

from the sequence number of any other renewal failure event generated by the set.
Two different events with the same source and event ID will have different

sequence numbers even if different event registration were in effect when each

event was generated.

If a RemoteEventListener registered for a renewal failure or expiration

warning event throws an Unknown EventExcepti on, this action will only clear the

specific event registration. It will not cancel the lease on the renewal set or affect

210

211

JINI LEASE RENEWAL SER VICE SPECIFICA TION, version 1.1 20 1

any other event registration on the set. If the listener throws a bad object excep-

tion, the renewal service may clear that specific event registration; it will not clear

any registration associated with other listeners, nor will it cancel the lease on the
associated renewal set.

If an event listener is replaced and one or more event delivery attempts on the

original listener failed, implementations may choose to send some or all of these
events to the new listener.

Event listeners may receive notification of events that they are no longer regis-

tered to receive, if those events occurred before they were unregistered. Imple-

mentations should keep the window where such notifications could occur as small

as possible.

The setExpi rationWar‘m' ngL1' stener method of LeaseRenewa1 Set allows

the client to register for notification of the approaching expiration of the set ’s

lease. Expiration warning events are not generated for client leases. The 1 1' stene r

argument specifies which listener should be notified when the set’s lease is about

to expire. The m1' nWarn‘i ng argument specifies the minimum number of millisec-

onds before set lease expiration that the first event delivery attempt should be

made by the service. The service may also make subsequent delivery attempts if

the first and any subsequent attempts resulted in an indefinite exception. The

mi nWa rn1' ng argument must be zero or a positive number; if it is not, an

I1 1 ega1ArgumentExcept1' on must be thrown. If the current expiration of the

set’s lease is less than mi nWa rn1' ng milliseconds away, the event will occur imme-

diately (though it will take time to propagate to the handler).

The handback argument to setExpi rationWar‘m'ngLi stener specifies an

object that will be part of the expiration warning event notification. This mecha-

nism is detailed in The Jini Technology Core Platform Specification, “Distributed
Events

The setEXp'l rationWarm' ngL1' stener method returns the event registration

for this event. The Lease object associated with the registration will be equivalent

(in the sense of the equa1s method) to the Lease on the renewal set. Because the

event registration shares a lease with the set, clients that want to just remove their

expiration warning registration without destroying the set should use the

c1earExp1' rati onWarni ngL1' stener method described below, instead of cancel-

ling the registration’s lease. The event ID returned with the registration will be

LeaseRenewa1 Set . EXPIRATION_WARNING_EVENT_ID. The source of the registra-

tion will be the set. The method will throw a Nu11Po1'nterExcept1'on if the

11' stene r argument is nu11 . If an event handler has already been specified for this

event, the current registration is replaced with the new one. Because both registra-

tions are for the same kind of event, the events sent to the new registration must be

in the same sequence as the events sent to the old registration.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

211

212

202 THE INTERFACE

The clearExpirationWarningListener rnefluxl of LeaseRenewalSet

removes the event registration currently associated with the approaching expira-

tion of the set’s lease. It is acceptable to call this method even if there is no active

registration.
ThesetRenewalFailureListenerrnefluxlofLeaseRenewalSetaHowsthe

client to register for the event associated with the failure to renew a client lease in

the set. These events are generated when a client lease in the set reaches its actual

expiration before its desired expiration or when the service attempts to renew a

client lease and gets a definite exception. The listener argument specifies the
listener to be notified if a client lease could not be renewed.

ThehandbackangnnmfitosetRenewalFailureListenerspanfiesanobfimt

that will be part of the renewal failure event notification. This mechanism is

detailed in The Jim' Technology Core Platform Specification, “Distributed
Evenm”.

The setRenewal Fai l ureLi stener method returns the event registration for

this event. The Lease object associated with the registration will be equivalent (in

the sense of the equals method) to the Lease on the renewal set. Because the

event registration shares a lease with the set, clients that want to just remove their

expiration warning registration without destroying the set should use the

cl ea rRenewal Fai l u re Li stene r method (described below) instead of cancelling

the registration’s lease. The registration ID returned with the registration will be

LeaseRenewalSet.RENEWAL_FAILURE_EVENT_ID.Thesounx30ftheregfifiafion

\vfllbetheset'ThernmhodxvfllflnoulNullPointerExceptionifthelistener

argument is null . If an event handler has already been specified for this event, the

current registration is replaced with the new one. Because both registrations are

for the same kind of event, the events sent to the new registration must be in the

same sequence as the events sent to the old registration.
The cl earRenewal Fai l ureLi stener method of LeaseRenewal Set removes

the event registration currently associated with the failure to renew client leases. It

is acceptable to call this method even if there is no active registration.

package net.jini.lease;

public class ExpirationWarningEvent extends RemoteEvent {

public ExpirationWarningEvent(

LeaseRenewalSet source,

long seqNum,

MarshalledObject handback) {m}

public Lease getRenewalSetLeaseC) {m}

212

213

JINI LEASE RENEWAL SER VICE SPECIFICA TION, version 1.1 203

Expi rati onWarni ngEvent objects are passed to the event handlers specified

incaflstotheLeaseRenewalSetrnmhod,setExpirationWarningListener.The

Expi rationWarni ngEvent is a subclass of RemoteEvent and adds no additional

state. Because the source of a Expi rati onWarni ngEvent is the set that is about to

expire, the lease that needs to be renewed can be obtained by: calling getSou rce,

casting the result to a LeaseRenewal Set and then invoking the set’s

getRenewalSetLease nufihod.11K:convmnenceinefluxlgetRenewalSetLease

in Expi rati onWarni ngEvent uses this technique to retrieve the lease on the set.

The Lease object returned will be equivalent (in the sense of the equals method)

to other Lease objects associated with the set but may not be the same object. One

notable consequence of having two different objects is that the getExpi ration

method of the Lease object returned by the event’s getRenewal SetLease method

may return a different time than the getExpi ration methods of other Lease

objects granted on the same set.

The expiration time associated with the Lease object returned by the

getRenewal Set Lease method will reflect the expiration the lease had when the

event occurred. Renewal calls may have changed the expiration time of the under-

lying lease between the time when the event was generated and when it was deliv-
ered.

Other aspects of the event’s state are described in The Jinz' Technology Core

Platform Specification, “Distributed Events Sequence numbers for a given

event ID are increasing. If there is no gap between two sequence numbers, no

events have been missed; if there is a gap, events might (but might not) have been
nfissed.

package net .ji ni .lease;

public abstract class RenewalFailureEvent

extends RemoteEvent

{

public RenewalFailureEventCLeaseRenewalSet source,

long seqNum,

MarshalledObject handback) {m}

abstract public Lease getLeaseC)

throws IOException, ClassNotFoundException;

abstract public Throwable getThrowableC)

throws IOException, ClassNotFoundException;

}

Renewal Fail ureEvent objects are passed to the event handlers specified in

calls to the LeaseRenewal Set method, setRenewal FailureListener. The

Renewal FailureEvent is a subclass of RemoteEvent, adding two additional

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

213

214

204 THEZNTERFACE

items of abstract state: the client lease that could not be renewed before expiration

and the Th rowab1 e object that was thrown by the last recorded renewal attempt (if

any). The client lease is returned by the getLease method, and the Th rowab1e

object is returned by the getTh rowab1 e method. If the Th rowab1 e object is nu11,

it can be assumed that during the time between the last-recorded, successful

renewal (or when the client lease was added to the set if there have been no renew-

als) and the actual expiration time of the client lease the renewal service was

either unable to attempt a renewal of the client lease, or that it attempted a renewal
but was unable to record the result.

Both the getLease and getTh rowab1e methods may throw IOExcepti on or

C1 assNotFoundExcepti on. This declaration allows implementations to delay

unmarshalling this state until it is actually needed. Once either method of a given

Renewa1 Fa1' 1 ureEvent object returns normally, future calls on that method must

return the same object and may not throw an exception.
If the renewal service was able to renew the client lease and record the result

before the event occurred, the expiration time of the Lease object returned by the

event’s getLease method will reflect the result of the last-recorded successful

renewal call. Note that this time may be distorted by clock skew between hosts if

it is currently set to use the Lease.ABSOLUTE serial format. If the Lease object is

using the Lease . DURATION serial format, and the event only unmarshals the lease

when getLease is called, the expiration time may be distorted if a long time has

passed between the time the event was generated by the renewal service and when

the client called getLease. When a renewal failure event is generated for a given

lease, that lease is removed from the set.

The event’s other state is described in The Jini Technology Core Platform

Specification, “Distributed Events Sequence numbers for a given event ID are

increasing. If there is no gap between two sequence numbers, no events have

been missed; if there is a gap, events might (but might not) have been missed.

LR.2.2 Serialized Forms

Class ser- 'i a1 Versi onUID Serialized Fields

Renewa1Fai1ureEvent 889145704195932943L none

ExpirationWarningEvent -2020487536756927350L none

LeaseUnmarsha1 Exception -6736107321698417489L Lease[]unmarsha11edLeases

Marsha11ed0bject[]
sti11Mar‘sha11edLeases

Th r'owab1 e [] exceptions

214

215

EM

Jini Event Mailbox Service

Specification

EM.1 Introduction

THE The Jim' Technology Core Platform Specification, “Distributed Events”
states the ability to interpose third-party objects, or “agents,” into an event notifi-

cation chain as one of its design goals. This specification also describes a notifica-

tion mailbox object, which stores and forwards event notifications on behalf of

other objects, as an example of a useful third-party agent. These mailbox objects

can be particularly helpful for objects that need more control over how and when

they receive event notifications.

For example, it would be impossible to send event notifications to a transient

entity that has detached itself from a system of Jini technology-enabled services

and/or devices (Jim' system). In such a situation an entity could employ the ser-

vices of an event mailbox to store event notifications on its behalf before leaving

the system. Upon rejoining the Jini system, the entity could then contact the event

mailbox to retrieve any collected events that it would otherwise have missed. Sim-

ilarly, an entity that wishes to deactivate could use an event mailbox to collect
event notifications on its behalf while dormant.

Like other Jini technology-enabled services (Jini services), the event mailbox

service will grant its services only for a limited period of time without an active

expression of continuing interest. Therefore, event mailbox clients still need to

renew their leases if they intend to maintain the mailbox’s services beyond the ini-

tially granted lease period. Any resources (for example, remote objects or storage

space) associated with a particular client can be freed once the client’s lease has

expired or been cancelled. In the previous usage scenarios, it might also benefit a

transient or deactivatable entity to employ the services of a lease renewal service

215

205

216

206 INTRODUCTION

(see the Jini Lease Renewal Service Specification) to help mitigate the issue of
lease maintenance.

The remainder of this specification defines the requirements, interfaces, and

protocols of the event mailbox service.

EM.1.1 Goals and Requirements

The requirements of the set of interfaces specified in this document are:

0 To define a service that is capable of storing event notifications on behalf of

its clients and capable ofdelivering stored event notifications to those clients

upon request

9 To provide this service in such a way that it can be used by entities that are

temporarily unable or unwilling to receive event notifications

9 To provide a service that complies with the policies embodied in the Jini

technology programming model

The goals of this specification are:

9 To describe the event mailbox service

0 To provide guidance in the use and deployment of the event mailbox service

EM.1.2 Other Types

The types defined in the specification of the event mailbox service are in the

net.j1'n1' .event package. This specification assumes knowledge of The Jini

Technology Core Platform Specification, “Distributed Events” and The Jini Tech-

nology Core Platform Specification, “Distributed Leasing”. The following object

types may be referenced in this chapter. Whenever referenced, these object types

will be referenced in unqualified form:

java.rmi.NoSuchObjectException

java.rmi.RemoteException

net.jini.core.event.RemoteEvent

net.jini.core.event.RemoteEventListener

net.jini.core.lease.Lease

net.jini.core.lease.LeaseDeniedException

216

217

JINI EVENT MAILB0X SER VICE SPECIFICA TION, version 1. 1 207

EM.2 The Interface

THE EventMai1 box defines the interface to the event mailbox service. Through
this interface, other Jini services and clients may request that event notification

management be performed on their behalf. This interface belongs to the

net.j1'n1' .event package, and any service implementing this interface must

comply with the definition of a Jini service. This interface is not a remote inter-

face; each implementation exports a proxy object that implements this interface

local to the client, using an implementation-specific protocol to communicate with

the actual remote server. All of the proxy methods obey normal Java Remote

Method Invocation (RMI) interface semantics and can therefore be implemented

directly using RMI (except where explicitly noted). Two proxy objects are equal

(using the equals method) if they are proxies for the same event mailbox service.

package net.jini.event;

public interface EventMai 1 box

{

MailboxRegistration registerClong leaseDurat'ion)

throws RemoteExcept'i on, LeaseDen‘iedException;

Event mailbox clients Wishing to use the mailbox service first register them-

selves with the service using the register method. Clients then use the methods

of the returned Mai 1 boxRegi st ration object (a registration) in order to:

9 Manage the lease for this particular registration

9 Obtain a Remote EventLi stener reference that can be registered with event

generators (that is, objects that support event notification for changes in

their abstract state). This listener will store any received notifications for this

particular registration.

9 Enable or disable the delivery of any stored notifications for this particular

registration

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

217

218

208 THE INTERFACE

218

219

JINI EVENT MAILB0X SER VICE SPECIFICA TION, version 1. 1 209

EM.3 The Semantics

TO employ the event mailbox service, a client must first register with the event
mailbox service by invoking the EventMai 1 box interface’s only method,

regi ste r. Each invocation of the regi ster‘ method produces a new registration.

The register method may throw a RemoteException or a

LeaseDeniedException. Typically, a RemoteException occurs when there is a
communication failure between the client and the event mailbox service. If this

exception does occur, the registration may or may not have been successful. A

LeaseDeni edExcepti on is thrown if the event mailbox service is unable or

unwilling to grant the registration request. It is implementation specific as to

whether or not subsequent attempts (with or without the same argument) are likely
to succeed.

Each registration with the event mailbox service is persistent across restarts or

crashes of the event mailbox service, until the lease on the registration expires or
is cancelled.

The register method takes a single parameter of type long that represents

the requested initial lease duration for the registration, in milliseconds. This dura-

tion value must be positive (except for the special value of Lease .ANY). Other-

wise, an 11 'I egalArgumentException is thrown.

Every method invocation on an event mailbox service (whether the invocation

is directly on the service, or indirectly on a Mai 'I boxRegi st ration that the ser-

vice has created) is atomic with respect to other invocations.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

219

220

2 1 0 THE SEMANTICS

220

221

JINI EVENT MAILB0X SER VICE SPECIFICA TION, version 1. 1 2 1 1

EM.4 Supporting Interfaces and Classes

THE register method returns an object that implements the interface
Mai 1 boxRegi st ration. It is through this interface that the client controls its reg-

istration and notification management with the event mailbox service.

package net.jini.event;

public interface MailboxRegi stration

{

Lease getLeaseC);

RemoteEventListener getListenerC);

void enableDeliveryCRemoteEventListener target)

throws RemoteException;

void disableDeliveryC) throws RemoteException;

}

The Mai 'I boxRegi st ration interface is not a remote interface. Each implementa-

tion of the event mailbox service exports proxy objects that implement this inter-

face local to the client. These proxies use an implementation-specific protocol to

communicate with the remote server. All of the remote proxy methods obey nor-

mal RMI interface semantics and can therefore be implemented using RMI. Two

proxy objects are equal (using the equals method) if they are proxies for the same

registration, created by the same event mailbox service.

Each remote method of this interface may throw a RemoteExcepti on. Typi-

cally, this exception occurs when there is a communication failure between the
client and the event mailbox service. Whenever a method invocation results in a

Remote Excepti on, the method may or may not have successfully completed.

Any invocation of a remote method defined in this interface will result in a

NoSuchObjectExcepti on if the client’s registration with the event mailbox ser-

vice has expired or has been cancelled. Note that upon receipt of a

NoSuchObjectExcepti on, the client can assume that the registration no longer

exists; the client cannot assume that the event mailbox service itself no longer
exists.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

221

222

212 SUPPORTING INTERFA CES AND CLASSES

EM.4.1 The Semantics

The getLease method returns the Lease object associated with the registration.

The client can renew or cancel the registration with the mailbox service through

the Lease object returned by this method (see The Jini Technology Core Platform

Specification, “Distributed Leasing”). This method is not remote and takes no

arguments.

The getL1' stener method returns an object that implements the interface

RemoteEventLi stener. This object, referred to as a mailbox listener, can then be

submitted as the RemoteEventLi stener argument to an event generator’s regis-

tration method(s) (see The Jini Technology Core Platform Specification, “Distrib-

uted Events”). Subsequent calls to this method will return equivalent objects (in

the equals sense). Note that mailbox listeners generated by different registrations

will not be equal. This method is not remote and takes no arguments.

The valid period of use for a mailbox listener is tied to the associated registra-

tion’s lease. A NoSuchObjectExcepti on will be thrown if an attempt is made to

invoke the notify method on a mailbox listener whose associated lease has termi-

nated.

Mailbox listener references, just like their associated registrations, are persis-

tent across server restarts or crashes until their associated registration’s lease ter-
minates.

The enabl eDel 1' ve ry method allows a client to initiate delivery of event noti-

fications (received on its behalf by this particular registration) to the client-speci-

fied listener, referred to as the target listener. This method takes a single argument

of type RemoteEventLi stene r. Subsequent calls to this method simply replace

the registration’s existing target listener, if any, with the specified target listener.

Passing null as the listener argument has the same effect as disabling delivery

(see below).

Resubmitting a mailbox listener back to the same mailbox service that gener-

ated it will result in an 11 'I egalArgumentExcepti on being thrown. This is neces-

sary to prevent a recursive event notification chain. Therefore, the event mailbox

service must keep track of any listener objects that it generates and reject the

resubmission of those objects.

Once enabled, event delivery remains enabled until it is disabled. Any events

received while delivery is enabled will also be scheduled for delivery.

Event delivery guarantees with respect to exception handling, ordering, and

concurrency are implementation specific and are not specified in this document.

However, implementations are encouraged to support the following functionality.

If an event delivery attempt produces an indefinite exception, then reasonable

efforts should be made to successfully redeliver the event until the associated reg-

istration’s lease terminates. On the other hand, if an event delivery attempt pro-

222

223

JINI EVENT MAILB0X SER VICE SPECIFICA TION, version 1. 1 213

duces a definite exception, then event delivery should be disabled for the

associated registration until it is explicitly enabled again.

Also, implementations may concurrently deliver event notifications to the

same target listener, which implies that events may be sent in a different order

than the order in which they were originally received. Hence, it is the target lis-

tener’s responsibility to guard against potential concurrent, out-of—order event

delivery.

Similarly, implementations are encouraged to support this method’s intended

semantics regarding listener replacement. That is, a mailbox client can reasonably

assume that listener replacement has occurred upon successful return from this

method and can therefore safely unexport the previous listener object. This also

implies that any in-progress delivery attempts to the previous listener are either

successfully cancelled before returning from this method (blocking), or subse-

quently retried using the replacement listener after returning from this method

(non-blocking). Note that the non-blocking case can potentially allow the previous

listener to be notified after successfully returning from this method.

The d1" sabl eDe1 1' very method allows the client to cease event delivery to the

existing target listener, if any. It is acceptable to call this method even if no target

listener is currently enabled. This method takes no arguments.

Again, event delivery guarantees are implementation specific and are not

specified in this document. Implementations are encouraged to support the

method’s intended semantics regarding delivery suspension. That is, a mailbox

client can reasonably assume that event delivery has been suspended upon suc-

cessful return from this method and can therefore safely unexport the previously

enabled listener object if desired. This also implies that any in-progress delivery

attempts to the previously enabled listener are either successfully cancelled before

returning from this method (blocking), or subsequently retried using the next

enabled listener after returning from this method (non-blocking). Note that the

non-blocking case can potentially allow the previously enabled listener to be noti-

fied after successfully returning from this method.

The event mailbox service does not normally concern itself with the attributes
of the RemoteEvents that it receives. The one circumstance about which it must

concern itself is when a target listener throws an Unknown EventExcepti on during

an event delivery attempt. The event mailbox service must maintain a list, on a

per-registration basis, of the particular combinations of event identifier and source

reference (obtained from the offending RemoteEvent object) that produced the

exception. The event mailbox must then propagate an Unknown EventExcepti on

back to any event generator that attempts to deliver a RemoteEvent with an identi-

fier-source combination held in a registration’s unknown exception list. The ser-

vice will also skip the future delivery of any stored events that have an identifier-
source combination held in this list.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

223

224

214 SUPPORTING INTERFA CES AND CLASSES

A registration’s unknown exception list is cleared upon re-enabling delivery

with any target listener. This list is persistent across service restarts or crashes,

until the associated registration’s lease terminates.

Note that the act of comparing event source objects for equality poses a secu-

rity risk because source objects are potentially given references to other source

objects that are currently using the mailbox. If security is a concern, then care

should be taken to prevent independent event sources from obtaining information
about each other.

Again, although implementation details are not specified in this document,

service implementations need to carefully weigh the trade-offs of taking a particu-

lar security approach. For example, a low-security implementation could simply

compare source objects using the equals method. This approach assumes well-

behaved equals methods that pose no security risk. A more secure implementa-

tion might compare only source objects (using equals) that have the same code-

base on the assumption that classes from the same codebase are trusted.

Unfortunately, this approach will not work for services that evolve by changing

their codebase (presumably to the location of the upgraded class files).

The event mailbox does not support multiple, concurrent notification targets

per registration. As a result, the interface supports only a set/clear model rather
than the more common add/remove model.

Event persistence guarantees are not specified in this document because no

single policy can cover all the possible design trade-offs between reliability, effi-

ciency, and performance. It is expected that operational parameters—controls for

how the event mailbox deals with issues such as persistence guarantees, storage

quotas, and low space behavior—will be exposed through an administration inter-

face, which can vary across different event mailbox implementations.

224

