
91

JINI LEASE UTILITIES SPECIFICATION, version 1.1 81

moot by intervening calls on the renewal manager. For example, the renewal man-

ager may deliver events regarding leases that were removed from the managed set

after the calls that removed the leases in question completed. Implementations

should keep the window where such notifications could occur as small as possible.

The equals method for this class returns true if and only if two instances of

this class refer to the same object. That is, x and y are equal instances of this class

if and only if x == y has the value true.
The constructor has two forms:

9 The first form of the constructor takes no arguments. This form of the con-

structor instantiates a LeaseRenewal Manager object that initially manages
no leases.

o The second form of the constructor creates a LeaseRenewal Manager that

initially manages a single lease. This form of the constructor requires that a

reference to the initial lease be supplied as an argument. This form of the

constructor also takes a desi red Expi ration argument that represents the

desired expiration time for the lease and a reference to a LeaseLi stener

object that should receive notifications of events associated with the lease.

Creating a LeaseRenewal Manager using the second form of the constructor is

equivalent to invoking the no-argument constructor followed by an invocation of

the three-argument form of the renewUntil method (described later).

The renewUntil method adds a lease to the set of leases being managed by

the LeaseRenewal Manager. There are two versions of this method: a four-argu-

ment form that allows the client to specify the renewal duration directly, and a

three-argument form that infers the renewal duration from the desired expiration

argument. The four-argument form will be described first.

This method takes as arguments: a reference to the lease to manage, the

desired expiration time of the lease, the renewal duration time for the lease, and a

reference to the LeaseLi stener object that will receive notification of events

associated with this lease. The LeaseLi stener argument may be null.

If null is passed as the lease parameter, a Null PointerException will be

thrown. If the desi redExpi ration parameter is Lease. FOREVER, the

renewDu ration parameter may be Lease .ANY or any positive value; otherwise,

the renewDu ration parameter must be a positive value. If the renewDu ration

parameter does not meet these requirements, an IllegalArgumentExcepti on
will be thrown.

If the lease passed to this method is already in the set of managed leases, the

listener object, the desired expiration, and the renewal duration associated with

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

91



92

82 THE SEMANTICS

that lease will be replaced with the new listener, desired expiration, and renewal
duration.

A lease will remain in the set of managed leases until one of the following
occurs:

9 The lease’s desired expiration time is reached; this will generate a desired

expiration reached event.

0 An explicit removal of the lease from the set is requested via a cancel,

clear, or remove call on the renewal manager.

0 The lease’s actual expiration time is reached before its desired expiration;

this will generate a renewal failure event.

0 The renewal manager tries to renew the lease and gets a definite exception;

this will generate a renewal failure event.

The renewUntil method interprets the value of the desi redExpi ration

parameter as the desired absolute system time after which the lease is no longer

valid. This argument provides the ability to indicate an expiration time that

extends beyond the actual expiration of the lease. If the value passed for this argu-

ment does indeed extend beyond the lease’s actual expiration time, then the lease

will be systematically renewed at appropriate times until one of the conditions

listed above occurs. If the value is less than or equal to the actual expiration time,

nothing will be done to modify the time when the lease actually expires. That is,

the lease will not be renewed with an expiration time that is less than the actual

expiration time of the lease at the time of the call.

The renewDu ration parameter is interpreted as the renewal duration, in milli-

seconds, to associate with the lease.

If a non-null object reference is passed in as the LeaseLi stener parameter,

this object will receive notification of exceptional conditions occurring upon a

renewal attempt of the lease. In particular, exceptional conditions include the

reception of a definite exception or the lease’s actual expiration being reached

before its desired expiration. If the listener implements the interface

Desi redExpi rati onL1' stener it will also receive notification if the lease’s

desired expiration is reached while the lease is still in the set.

If a definite exception occurs during a lease renewal request, the exception

will be wrapped in an instance of the LeaseRenewal Event class (described later)

and sent to the listener’s notify method.

If an indefinite exception (see Introduction to Helper Utilities and Services,

Section US.2.6, “What Exceptions Imply about Future Behavior”) occurs during a

renewal request for a particular lease, renewal requests will continue to be made

for that lease until: the lease is renewed successfiilly, a renewal attempt results in a

92



93

JINI LEASE UTILITIES SPECIFICATION, version 1.1 83

definite exception, or the lease’s actual expiration time has been exceeded. If the

lease cannot be successfully renewed before its actual expiration is reached, the

exception associated with the most recent renewal attempt will be wrapped in an

instance of the LeaseRenewal Event class and sent to the listener’s notify

method.

If the lease’s actual expiration is reached before the lease’s desired expiration

time and either (1) the last renewal attempt succeeded or (2) there have been no

renewal attempts, a LeaseRenewal Event containing a null exception will be sent

to the listener’s notify method. Case 1 can occur if the extension granted by the

last renewal was very short. Case 2 can occur if the client adds a lease that has

already expired (or is about to) to the managed set of leases.

If null is passed as the value of the LeaseLi stener parameter, then no noti-
fications will be delivered.

Calling the three-argument form of renewUntil with a desi redExpi ration

of Lease . ANY is equivalent to making the following call:

renewUntil (lease, Lease. FOREVER, Lease .ANY, listener);

Otherwise, the three-argument form is equivalent to:

renewUntil (lease, desi redExpi ration, Lease. FOREVER,

listener) ;
 

Usage Note: Unless an application has a good reason for doing otherwise, it should

use Lease .ANY or Lease . FOREVER for the renewal duration of a given lease.

Using these values gives the grantor of the lease the most flexibility in the length of

time for which it grants renewals. In most cases, the grantor of a lease is in a better

position than the lease holder to make trade-offs between renewal frequency and the

risk of holding on to resources longer than necessary. Specifying a value for the

renewal duration of a lease might make sense if the holder of the lease has more

information on the value of the leased resource than the grantor, or if the holder needs

to ensure that there is an upper bound on how long the lease will remain valid. 

The renewFor method adds a lease to the set of leases being managed by the

LeaseRenewal Manager. Like renewUntil this method has both three- and four-

argument forms. The four-argument form of this method takes as parameters:

lease, a reference to the lease to manage; desi redDu rati on, a long represent-

ing the desired duration of lease; renewDu rati on, a long representing the

renewal duration; and listener, a reference to a LeaseLi stener object that will
receive notifications of events associated with this lease. Both desi redDu rati on

and renewDu rati on are expressed in milliseconds.

The semantics of the four-argument form of renewFor are similar to those of

the four-argument form of renewUntil, with desi redDu rati on + current time

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

93



94

84 THE SEMANTICS

being used for the value of the desi redExpi ration parameter of renewUnti l.

The only exception is that, in the context of renewFo r, the value of the

renewDu rati' on parameter may be Lease.ANY only if the value of the

desi redDu rat1' on parameter is exactly Lease. FOREVER.

This method tests for arithmetic overflow in the desired expiration time com-

puted from the value of desi redDu rat1' on parameter (des1' redDu rat1' on + cur-

rent time). Should such overflow be present, a value of Lease. FOREVER is used to

represent the lease’s desired expiration time.

The three-argument form of this method is equivalent to the following call:

renewForClease, des1' redDuration, Lease.FOREVER,

listener);

Note that for both versions of renewFo r, a value of Lease .ANY for the

desi redDu ration parameter does not have any special semantics associated with

it. Calling either version of renewFor with a desi redDu ration of Lease.ANY

will result in the lease having a desired expiration one millisecond in the past,

causing the lease to be immediately dropped from the managed set. The method

will not throw an exception in this circumstance. A renewal failure event will be

generated if the actual expiration is before the desired expiration; otherwise a

desired expiration reached event will be generated.

The getExpi ration method returns the current desired expiration time

requested for a particular lease, not the actual expiration that was granted when

the lease was created or last renewed. The only argument to this method is the ref-

erence to the lease object. If the lease is not in the set of managed leases, an

Unknown LeaseExcepti on will be thrown.

The setExpi ration method replaces the current desired expiration of a given

lease contained in the set of managed leases with a new desired expiration time.

The only arguments to this method are the reference to the lease object and the

new expiration time.

An invocation of this method with a lease that is currently a member of the

managed set is equivalent to an invocation of the renewUntil method with the

lease’s current listener input to the 11' stene r parameter. In particular, if the value

of the expiration parameter is less than or equal to the lease’s current actual

expiration, this method takes no action.

An invocation of this method with a lease that is not in the set of managed

leases will result in an UnknownLeaseExcepti on.

The remove method removes a given lease from the set of managed leases.

The only argument to this method is the reference to the lease object. If the lease

is not in the set of managed leases, an Unknown LeaseExcepti on will be thrown.

Note that this method does not cancel the given lease; activities such as lease

cancellation are left the for the client to manage.

94



95

JINI LEASE UTILITIES SPECIFICATION, version 1.1 85

The cancel method both removes a given lease from the set of managed

leases and cancels the given lease. The only argument to this method is the refer-

ence to the lease object. If the lease is not in the set of managed leases, an

Unknown LeaseExcepti on will be thrown.

Any exception (definite or otherwise) occurring during the cancellation of the

lease will have no effect on the removal of the lease from the managed set. That is,

even if an exception occurs during the cancel operation, the lease will have been

removed from the managed set upon return from this method.

Any exception thrown by the cancel method of the lease object itself may

also be thrown by this method.

The cl ear method removes all leases from the set of managed leases. It does

not request the cancellation of those leases. This method takes no arguments.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

95



96

86

96

THE SEMANTICS



97

JINI LEASE UTILITIES SPECIFICATION, version 1.1

  
  

LM.5 Supporting Interfaces and Classes

THE LeaseRenewalManager utility class depends on the interfaces
LeaseLi stener and Desi redExpi rati onLi stene r. Both of these interfaces ref-

erence one class, LeaseRenewa'l Event.

LM.5.1 The LeaseLi stener' Interface

The public methods specified by the LeaseLi stener interface are as follows:

package net .ji ni .lease;

public interface LeaseLi stener extends EventListener

{

void noti fyCLeaseRenewal Event e);

}

The LeaseLi stener interface defines the mechanism through which the cli-

ent receives notification of renewal failure events generated by the renewal man-

ager. These events are delivered using the notify method. Renewal failure events

are generated when the LeaseRenewal Manager has failed to renew one of the

leases that it is managing. Such renewal failures typically occur because one of

the following conditions is met:

9 After successfully renewing a lease any number of times and experiencing

no failures, the LeaseRenewal Manager determines—prior to the next

renewal attempt—that the actual expiration time of the lease has passed;

implying that any further attempt to renew the lease would be fruitless.

9 An indefinite exception occurs during each attempt to renew a lease from the

point that the first such exception occurs until the point when the

LeaseRenewal Manager determines that lease’s actual expiration time has

passed.

9 A definite exception occurs during a lease renewal attempt.

87

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

97



98

88 SUPPORTING INTERFA CES AND CLASSES

It is the responsibility of the client to pass into the LeaseRenewa'l Manager a

reference to an object that implements the LeaseListener interface, which

defines the actions to take upon receipt of a renewal failure event notification.

When one of the above conditions occurs, the LeaseRenewalManager will send

an instance of LeaseRenewal Event to that listener object.

LM.5.1.1 The Semantics

The notify method is invoked by the LeaseRenewalManager when it fails to
renew a lease because one of the conditions described above has occurred. This

method takes one parameter, an instance of the LeaseRenewal Event class, which

contains information about the lease on which the failed renewal attempt was
made and information on what caused the failure.

Note that prior to invoking the notify method, the LeaseRenewal Manager

removes the lease that could not be renewed from the managed set of leases. Note

also that because of the reentrancy guarantee made by the

LeaseRenewa'l Manager, new leases can be added safely from within the notify
method.

LM.5.2 The Desi redExpi ration Li stener Interface

The public methods specified by the Desi red Expi rati on Li stener interface
are as follows:

package net.jini.lease;

public interface Desi redExpi rati onLi stener

extends LeaseListener

void expi rationReachedCLeaseRenewalEvent e);

}

The expi rati onReached method receives desired expiration reached events.

These are generated when the LeaseRenewal Manager removes a lease from the

managed set because the lease’s desired expiration has been reached. Note that

any object that has been registered to receive desired expiration reached events
will also receive renewal failure events.

It is the responsibility of the client to pass into the LeaseRenewa'l Manager a

reference to an object that implements the Desi redExpi rationLi stener inter-

98



99

JINI LEASE UTILITIES SPECIFICATION, version 1.1 89

face, which defines the actions to take upon receipt of a desired expiration reached
event notification.

LM.5.2.1 The Semantics

The expi rationReached method is invoked by the LeaseRenewal Manager

when a lease in the managed set reaches its desired expiration. This method takes

one parameter: an instance of the LeaseRenewal Event class, which contains

information about the lease who’s desired expiration has been reached.

Note that prior to invoking the expi rationReached method, the

LeaseRenewalManager removes the affected lease from the managed set of

leases. Note also that because of the reentrancy guarantee made by the

LeaseRenewal Manager, callbacks into the renewal manager can be made safely

from within the expi rati onReached method.

LM.5.3 The LeaseRenewal Event Class

This class defines the local event that is sent by the LeaseRenewal Manager to the

client’s registered listener when the LeaseRenewal Manager generates a renewal

failure event or desired expiration reached event. As previously stated, a renewal

failure event typically occurs because the actual expiration time of a lease has

been reached before a successful renewal request could be made, or a renewal

request resulted in a definite exception. A desired expiration reached event occurs

when a lease reaches its desired expiration time at or before its actual expiration.

The LeaseRenewal Event class encapsulates information about the lease on which

such an event occurs and, if it is a renewal failure, the cause.

package net .ji ni .lease;

public class LeaseRenewal Event extends EventObject

{

public LeaseRenewalEvent(LeaseRenewalManager source,

Lease lease,

long expiration,

Throwable ex) {m}

public Lease getLeaseC) {m}

public long getExpirationC) {m}

public Throwable getExceptionC) {m}

}

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

99



100

90 SUPPORTING INTERFA CES AND CLASSES

The LeaseRenewa'I Event class is a subclass of the EventObject class, add-

ing the following additional items of abstract state: a reference to the associated

Lease object; a long value representing the desired expiration of the lease; and

the exception (if any) that caused the event to be sent. In addition to the methods

of the EventObject class, this class defines methods through which this addi-

tional state may be retrieved.

LM.5.3.1 The Semantics

The constructor of the LeaseRenewa'I Event class takes the following parameters

as input:

9 A reference to the instance of the LeaseRenewa'I Manage r that generated the
event

9 The lease associated with this event

9 The desired expiration time of the lease

0 The Th rowabl e associated with the last renewal attempt (if any)

The getLease method returns a reference to the Lease object associated with

the event. This method takes no arguments.

The getExp1' ration method returns a long value representing the desired

expiration of the Lease object associated with the event. This method takes no

arguments.

The getException method returns the exception, if any, that is associated

with the event. This method takes no arguments. If the LeaseRenewa'I Event rep-

resents a desired expiration reached event this method will return null.

If the LeaseRenewa1 Event represents a renewal failure event the

getExcepti on method will return the exception that caused the event to be sent.

The conditions under which a renewal failure event may be sent, and the related

values returned by this method, are as follows:

9 When any lease in the managed set has passed its actual expiration time, and

either the most recent renewal attempt was successful or there have been no

renewal attempts, the LeaseRenewal Manager will cease any further

attempts to renew the lease, and will send a LeaseRenewa1 Event with no

associated exception. In this case, invoking this method will return nu] 1 .

o For any lease from the managed set for which the most recent renewal

attempt was unsuccessful because of the occurrence of a indefinite excep-

tion, the LeaseRenewa'I Manager will continue to attempt to renew the

100



101

JINI LEASE UTILITIES SPECIFICATION, version 1.1 9]

affected lease at the appropriate times until: the renewal succeeds, the lease’s

actual expiration time has passed, or a renewal attempt throws a definite

exception. If a definite exception is thrown or the lease expires, the

LeaseRenewal Manager will cease any further attempts to renew the lease,

and will send a LeaseRenewal Event containing the exception associated

with the last renewal attempt.

9 If, while attempting to renew a lease from the managed set, a definite excep-

tion is encountered, the LeaseRenewal Manage r will cease any further

attempts to renew the lease, and will send a LeaseRenewa1 Event containing

the particular exception that occurred.

LM.5.4 Serialized Forms

(Kass serialVersionUID Seriafized Fields

LeaseRenewal Event -626399341646348302L Lease 'lease

long expiration
Throwable ex

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

101



102

92

102

SUPPORTING INTERFA CES AND CLASSES



103

JU

Jini Join Utilities

Specification

  

 

JU.1 Introduction

THIS specification defines helper utility classes, along with supporting inter-
faces and classes, that encapsulate functionality that can help Jini services demon-

strate good behavior in their discovery and registration related interactions with

Jini lookup services. In particular, the Jini join utilities perform functions related

to lookup service discovery and registration (joining), as well as lease renewal and

attribute management, which the Jini technology programming model requires of

a well-behaved Jini technology-enabled service. Currently, this specification

defines only one helper utility class:

9 The Joi nManage r helper utility

103

93



104

94

104

INTRODUCTION



105

JINIJOIN UTILITIES SPECIFICATION, version 1.1 95

  
  

JU.2 The JoinManager'

THE goal of any well-behaved Jini technology-enabled service (Jini service),
implemented within the bounds defined by the Jini technology programming

model, is to advertise the service it provides by requesting residency within at

least one Jini lookup service. Making such a request of a Jini lookup service is

known as registering with, orjoining, a lookup service. To demonstrate this good

behavior, a service must comply with both the multicast discovery protocol and

the unicast discovery protocol to discover the lookup services it is interested in

joining. The service must also comply with the join protocol to register with the

desired lookup services. The details of the discovery and join protocols are

described in, The Jini Technology Core Platform Specification, “Discovery and
Join”.

For the service to maintain its residency in the lookup services it has joined,

the service must provide for the coordination, systematic renewal, and overall

management of all leases on that residency. In addition to handling all discovery

and join duties, as well as managing all leases on lookup residency, the service

must provide for the coordination and management of any attribute sets with

which it may have registered.

With respect to the duties described above, a Jini service may perform all but

the attribute set management duties by using the helper utility classes

LookupDi scove ryManager and LeaseRenewal Manager. (For information on

these classes, refer to The Jini Technology Core Platform Specification, “Discov-

ery and Join” and Jini Lease Renewal Service Specification).

Rather than writing a service to use these classes in a coordinated fashion (in

addition to providing for attribute management), the service may be written to

employ the 301' nManager class from the net. ji ni .1ookup package. This utility

class performs all of the functions related to discovery, joining, service lease

renewal, and attribute management that the Jini technology programming model

requires of a well-behaved Jini service. Each of these activities is intimately

involved with the maintenance of a service’s residency in one or more lookup ser-

vices (the service’sjoin state), hence the name 301' nManager.

The 301' nManager class provides an implementation of the functionality

described above. The use of this class in a wide variety of services can help mini-

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

105



106

96 THE J01”nManager

mize the work resulting from having to repeatedly implement this required func-

tionality in each service.

The 301' nManager is a utility class, not a remote service. Jini services that

wish to use this utility will create an instance of the 301' nManager in the service’s

address space to manage the entity’s join state locally.

Note that when the term service is used, it refers to the object that has created

an instance of the 301' nManage r and avails itself of the public methods of that util-

ity class.

JU.2.1 Other Types

The types defined in the specification of the 301' nManager utility class are in the

net. j1' n1" .1ookup package. The following types may be referenced in this chap-

ter. Whenever referenced, these object types will be referenced in unqualified
form:

net.jini.core.1ease.Lease

net.jini.core.entry.Entry

net.jini.core.100kup.ServiceID

net.jini.core.1ookup.ServiceRegistrar

net.j1ni.core.1ookup.ServiceRegistration

net.jini.discovery.DiscoveryListener

net.j1ni.discovery.DiscoveryManagement

net.jini.lookup.entry.ServiceControlled

net.jini.1ease.LeaseRenewaTManager

net.j1ni.discovery.LookupLocatorDiscovery

net.jini.discovery.LookupDiscoveryManager

java.io.IOException

java.rmi.Marsha11ed0bject

java.util.EventListener

106



107

JINIJOIN UTILITIES SPECIFICATION, version 1.1 97

  
  

JU.3 The Interface

THE public methods provided by the Joi nManager class are as follows:

package net.jini.lookup;

public class JoinManager {

public JoinManagerCObject obj,

Entry[] attrSets,

ServiceIDListener callback,

DiscoveryManagement discoveryMgr,

LeaseRenewalManager leaseMgr)

throws IOException {m}

public JoinManagerCObject obj,

Entry[] attrSets,

ServiceID serviceID,

DiscoveryManagement discoveryMgr,

LeaseRenewalManager leaseMgr)

throws IOException {m}

public DiscoveryManagement getDiscoveryManagerC) {m}

public LeaseRenewalManager getLeaseRenewalManagerC) {m}

public ServiceRegistrarE] getJoinSetC) {m}

public Entr‘y[] getAttributesO{...}

public void addAttributesCEntryU attrSetS) {---}

public void addAttributesCEntFYE] attrSets,

boolean checkSC) {m}

public void setAttributesCEntFYEJ attrSets) {m}

public void modifyAttributeSCEntFYE] attrSetTemPlateS’

EntryEJ attrSets) {...}

public void modifyAttributeSCEntFYE] attrSetTemPlateS’

EntFYE] attrSetS,

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

107



108

98

pub1ic void terminateC) {m}

108

THE INTERFACE

boo1ean checkSC) {m}



109

JINIJOIN UTILITIES SPECIFICATION, version 1.1 99

  
  

JU.4 The Semantics

THE 301' nManager helper utility class defines a number of public methods in
addition to the constructor. This utility defines an accessor method that allows the

entity to retrieve the set of lookup services with which the entity has been regis-

tered (by the 301' nManager), as well as methods that allow the entity to retrieve

references to the objects the 301' nManager uses for discovery management and

lease renewal management. Additionally, the 301' nManager class defines methods

the entity may use to manage the attributes associated with the entity, and a

method that allows the entity to terminate the join processing being performed on
its behalf.

The equals method for the 301' nManager class returns true if and only iftwo

instances of this class refer to the same object. That is, x and y are equal instances

of this class if and only if x == y has the value true.

The constructor of the 301' nManager class has two forms. Each form of the

constructor throws IOExcepti on because construction of a 301' nManager may ini-

tiate the multicast discovery process, which can throw IOExcepti on.

The first form of the constructor takes the following parameters as input:

9 A reference to the service requesting the services of the 301' nManager

9 An array containing the service’s attributes

o A reference to an object that implements the Se rvi ceIDL1' stene r interface

(belonging to the package net. ji m' . lookup)

o A reference to an object that implements the D1' scove ryManagement inter-
face

9 An instance of the LeaseRenewal Manager utility class

Passing null as the value of the attrSets parameter is equivalent to passing an

empty Entry array.

The assignment of a service ID to the service will result in an event notifica-

tion being sent to the listener object that was passed as the Se rv1' ceIDLi stener

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

109



110

100 THE SEMANTICS

argument (cal l back). If a null value is passed in through this argument, then no
such notification will be sent.

To use the 301' nManager, the service supplies an object through which notifi-

cations that indicate a lookup service has been discovered or discarded will be

received. At a minimum, this object must satisfy the contract defined in the

D1" scove ryManagement interface. That is, this object must provide the

301' nManager with the ability to set discovery listeners and to discard previously

discovered lookup services when they are found to be unavailable.

The Di scoveryManagement argument may be set to a value of null. If null

is the value of this argument, then an instance of the LookupDi scove ryManager

utility class will be constructed to listen for events announcing the discovery of

only those lookup services that are members of the public group.

The LeaseRenewal Manager argument may be set to a value of null. If null

is the value of this argument, an instance of the LeaseRenewal Manager class will

be created, initially managing no Lease objects. This feature allows a service that

employs the 301' nManager either to use a single entity to manage all of its leases,

or to use separate entities: one to manage the leases unrelated to the join process,

and one to manage the leases that result from the join process and that are accessi-

ble only within the 301' nManager.

The first form of the constructor is typically used by services that have not yet

been assigned a service ID, but that have been pre-configured to join lookup ser-

vices that the service identifies through the initialization of a discovery manager.

The second form of the constructor takes the same arguments as the first,

except that an instance of the Se rv1' ceID replaces an instance of the
Serv1' ceIDLi stener interface. Note that the Serv1' ceID class is defined in The

Jim' Technology Core Platform Specification, “Lookup Service”, and the
Se rv1' ceIDLi' stene r interface is described later.

The second form of the constructor applies the same semantics to the attr—

Sets, d1" scove ryMg r, and leaseMgr arguments as is applied by the first form of
the constructor.

The second form of the constructor should be used by services that have

already been assigned a service ID (possibly by the service provider or as a result

of a prior registration with some lookup service), and that may or may not have

been pre-configured to join lookup services identified by group or by specific
location.

The getDi scove ryManager method returns the instance of

D1' scove ryManagement that was either passed into the constructor by the entity or

that was created as a result of null being passed as that parameter. This method

takes no arguments as input.

110



111

JINIJOIN UTILITIES SPECIFICATION, version 1.1 101

The object returned by this method encapsulates the mechanism by which

either the 301' nManager or the entity itself can set discovery listeners and discard

previously discovered lookup services when they are found to be unavailable.

The getLeaseRenewalManager method returns an instance of the

LeaseRenewa1 Manager class. This method takes no arguments as input.

The object returned by this method manages the leases requested and held by

the 301' nManager. Although it may also manage leases unrelated to the join pro-

cess that are requested and held by the service itself, the leases with which the

301' nManager is concerned are the leases that correspond to the service registra-

tion requests the 301' nManager has made with each lookup service the service

wishes to join.

The get] 01' nSet method returns an array of Se rvi ceRegi st rar objects,

each corresponding to a lookup service with which the service is currently regis-

tered (joined). If there are no lookup services with which the service is currently

registered, this method returns the empty array. This method takes no arguments

as input and will return a new array upon each invocation.

The getAttri butes method returns an array containing the set of attributes

currently associated with the service. If the service is not currently associated with

an attribute set, this method returns the empty array. This method takes no argu-

ments as input and will return a new array upon each invocation.

Note that although a new array is returned by getAtt r1" butes, the elements

of that array are not copies. Thus, it important that the elements of the array

returned by getAtt r1' butes not be modified; doing so could cause the state of the

301' nManager to become corrupted or inconsistent. This potential for corruption

or inconsistency is why the effects of modifying the elements of the array returned

by getAttri butes are undefined.
The addAtt r1' butes method associates a new set of attributes with the ser-

vice, in addition to the service’s current set of attributes. The association of this

new set of attributes with the service will be propagated to each lookup service

with which the service is registered. This propagation must be performed asyn-

chronously, so there is no guarantee that the propagation of the attributes to all

lookup services with which the service is registered will have completed upon
return from this method.

The set of attributes consisting of the union of the new set with the old set will

be associated with the service in all future join processing.
There are two forms of the addAttri butes method. Both forms of this

method take as input an argument (attrSets) representing the set of attributes to

associate with the service. This set is represented as an array of Entry objects,

none of whose elements may be nul 1. If at least one element of this input set is

ml 1 , a Nu11Po1'nterExcept1'on is thrown.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

‘I‘I‘I



112

102 THE SEMANTICS

An invocation of either form of this method with duplicate elements in the

attrSets parameter (where duplication means attribute equality as defined by

calling the Marshal l edObject . equal 5 method on field values) is equivalent to

performing the invocation with the duplicates removed from that parameter. If

null is passed in as the value ofthis parameter, a Null Poi nterExcepti on will be
thrown.

The second form of this method also takes as input a flag indicating whether

or not this method should determine if the attributes in the input set are instances

of the Se rvi ceCont rol l ed interface, which is a marker interface that is used to

control which entities may modify a service’s attribute set. For more information

on this interface, refer to Jini Lookup Attribute Schema Specification,

Section LS.4.1, “Indicating User Modifiability”. If the value of this flag is true
and at least one of the attributes to be added is an instance of the

Se rvi ceCont rol l ed interface, a Secu ri tyExcepti on will be thrown and propa-

gated through this method.

Note that because there is no guarantee that attribute propagation will have

completed upon return from this method, services that invoke this method must

take care not to modify the contents of the input array. Doing so could cause the

service’s attribute state to be corrupted or inconsistent on a subset of the lookup

services with which the service is registered as compared with the state reflected

on the remaining lookup services. It is for this reason that the effects of modifying

the contents of the input array, after this method is invoked, are undefined.

The setAttributes method replaces the service’s current set of attributes

with the given new set of attributes. This method takes a single argument as input:

an array of Entry objects, none of whose elements may be null, which represents

the set of attributes that will replace the current set of attributes. If at least one ele-

ment ofthis input set is null, a Nul l Poi nterExcepti on is thrown.

The replacement of the service’s current set of attributes with the new set of

attributes will be propagated to each lookup service with which the service is reg-

istered. This propagation must be performed asynchronously, so there is no guar-

antee that the propagation of the attributes to all lookup services with which the

service is registered will have completed upon return from this method.
The service’s new set of attributes will be associated with the service in all

future join processing.

An invocation of this method with duplicate elements in the att rSets param-

eter (where duplication means attribute equality as defined by calling the

Marshal l edObj ect . equal 5 method on field values) is equivalent to performing

the invocation with the duplicates removed from that parameter. If null is input to

setAttri butes, a Null Poi nterException will be thrown.

112



113

JINIJOIN UTILITIES SPECIFICATION, version 1.1 103

For the same reason as noted above in the description of the addAttri butes

method, the effects of modifying the contents of the input array after the method

setAttr1' butes is invoked, are undefined.

The mod1' fyAtt r1' butes method changes the service’s current set of attributes

using the same semantics as the modi fyAttri butes method of the class

Servi ceRegist ration (see The Jini Technology Core Platform Specification,

“Lookup Service”). This method has two forms. The first form takes two argu-

ments, the second form takes three arguments. Both forms will take an array of

templates in the first argument and an array of attributes in the second argument.

The templates are used to identify which elements to modify from the service’s

current set of attributes. The attribute array contains the actual modifications to be

made. The additional argument in the signature of the second form of

mod1' fyAttr1' butes is a flag indicating whether or not this method should deter-

mine if the attributes in the input set are instances of the Se rv1' ceCont rolled

interface, which is a marker interface used to control which entities may modify a

service’s attribute set (see Jini Lookup Attribute Schema Specification,

Section LS.4.1, “Indicating User Modifiability”). If the value of this flag is true
and at least one of the attributes to be modified is an instance of the

Se rv1' ceCont r01 1 ed interface, a Secu r1" tyExcepti on will be thrown and propa-

gated through this method.

The association of the new set of attributes with the service will be propagated

to each lookup service with which the service is registered. This propagation must

be performed asynchronously. Because of this asynchronous behavior, there is no

guarantee that the propagation of the attributes to all lookup services with which

the service is registered will have completed upon return from this method.

The set of attributes that results after the modifications have been applied will

be associated with the service in all future join processing.

The modi' fyAttri' butes method throws an IllegalArgumentException if

one of the following conditions is satisfied:

9 The length of the array containing the templates does not equal the length of

the array containing the attributes

9 Any element of either array is not an instance of a valid Entry class (for

example, the class is not public, does not contain a no-arg constructor, or has

at least one public field which is a non-static, non-final primitive)

o The class of attrSets[1'] is neither the same as, nor a super class of, the

class of attrSetsTemp'l ate [1']

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

113



114

104 THE SEMANTICS

For the same reason as that noted above in the description of the

addAtt r1" butes method, the effects of modifying the contents of the attrSets

parameter, after modi fyAtt r1' butes is invoked, are undefined.

The terminate method performs cleanup duties related to the termination of

the lookup service discovery event mechanism, as well as to the lease and thread

management performed by the 301' nManager. This method will cancel all of the

service’s managed leases that were granted by the lookup services with which the

service is registered, and will terminate all threads that have been created.

If the discovery manager employed by the 301' nManager was created by the

301' nManager itself, this method will terminate all discovery processing being

performed by that manager object on behalf of the service; otherwise, the discov-

ery manager supplied by the service is still valid.

Whether an instance of the LeaseRenewal Manager class was supplied by the

service or created by the 301' nManage r itself, any reference to that object obtained

by the service prior to termination will still be valid after termination.

The 301' nManager makes certain concurrency guarantees with respect to an
invocation of the terminate method while other method invocations are in

progress. The termination process described above will not begin until completion

of all invocations of the methods defined in the public interface of the

301' nManager. Upon completion of the termination process, the semantics of all

current and future method invocations on the current instance of the 301' nMan age r

are undefined, although the reference to the LeaseRenewal Manager object

employed by the 301' nManager is still valid.

114



115

JINIJOIN UTILITIES SPECIFICATION, version 1.1 105

  
  

JU.5 Supporting Interfaces and Classes

THE 301' nManager class depends on the interfaces Di scove ryManagement and
Se rvi ceIDLi stener discussed below.

301' nManager also references the concrete classes LookupD1' scove ryManager

and LeaseRenewal Manager, each described in a separate specification.

JU.5.1 The D'i scover'yManagement Interface

Although it is not necessary for the 301' nManager itself to execute the discovery

process, it does need to be notified when one of the lookup services it wishes to

join is discovered or discarded. Thus, at a minimum, the 301' nManager requires

access to the discovery events sent to the listeners registered with the discovery

process’ event mechanism. The instance of D1" scove ryManagement that is passed

as an argument to the constructor of the 301' nManager provides a mechanism for

acquiring access to those events. For a complete description of the semantics of

the methods of this interface, refer to the Jini Discovery Utilities Specification.

One noteworthy item about the semantics of the 301' nManager is the effect

that invocations of the discard method of D1' scove ryManagement will have on

any discovery listeners created by the 301' nManager. The Di scoveryManagement

interface specifies that the discard method will remove a particular lookup ser-

vice from the managed set of lookup services that have already been discovered,

allowing that lookup service to be rediscovered. Invoking this method will result

in the flushing of the lookup service from the appropriate cache, ultimately caus-

ing a discard notification to be sent to all Di scove ryLi stener objects registered

with the event mechanism of the discovery process, including all listeners regis-

tered by the 301' nManager.

The receipt of an event notification indicating that a lookup service has been

discarded ultimately results in the removal (but not cancellation) of the registra-

tion lease granted by the discarded lookup service, and that is managed by the

LeaseRenewal Manager on behalf of the 301' nManager. After removal occurs, the

lease will eventually expire.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

115



116

106 SUPPORTING INTERFA CES AND CLASSES

JU.5.2 The Ser'V'i ceIDL'i stener' Interface

The Se rvi ceIDL1' stener interface defines the methods used by a service to regis-

ter a request for notification from the 301' nManager upon the assignment of a

serv1' ceID by a lookup service. It is the responsibility of the service to create and

pass into the 301' nManager an object that implements this interface. That imple-

mentation must provide the definition of the actions to take upon receipt of the

notification. Typically, the action taken will be to persist the assigned servi ceID
reference.

package net.jini.1ookup;

public interface ServiceIDListener extends EventListener {

public void serviceIDNot‘ifyCServiceID serviceID);

}

The intent of this interface is to allow the entity to receive the Se rvi ceID

instance assigned to it by the lookup service. It is not part of the semantics of the

call that the return from the Se rv1' ceIDNot1' fy method can be delayed While the

recipient of the call processes the information delivered by the method. Thus, it is

highly recommended that implementations of this interface avoid time consuming

operations, and return from the method as quickly as possible. For example, one

strategy might be to simply notify a separate thread, operating asynchronously,

which is designed to place the Se rvi ceID instance in persistent storage.

116



117

SD

Jini Service Discovery

Utilities Specification

  

 

SD.1 Introduction

THIS specification defines helper utility classes, along with supporting inter-
faces and classes, that encapsulate functionality that can help a Jini technology-

enabled service or client (Jinz‘ service or Jini client) in acquiring services of inter-

est that are registered with the various lookup services with which the service or

client wishes to interact. Currently, the service discovery utilities specification

defines only one helper utility class:

9 The Se rv1' ceD1' scove ryManager helper utility

117

107



118

108 INTRODUCTION

118



119

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 09

  
  

SD.2 The Se r'V'i ceD'i scover'yManager'

THE interactions of an entity that operates in a client-like fashion within a Jini
application environment are generally distinguished by the fact that the entity first

discovers one or more Jini lookup services, then queries one or more of the dis-

covered lookup services for references to Jini services that the entity may employ

in some task. This process, in which Jini services as well as Jini clients may par-

ticipate, is often referred to as service discovery. Since services and clients can

perform both lookup discovery and service discovery, the primary characteristic

that distinguishes a Jini service from a client is the service’s ability to be regis-

tered with a lookup service. Thus, with respect to service discovery, there is no
difference between a Jini service and a Jini client.

Because there is no need to make such a distinction, the terms entity and

client-like entity will be used interchangeably throughout this specification to
refer to Jini clients or services that create an instance of the

Servi ceD1' scoveryManager (from the package net.j1' n1' .lookup) and use the

public methods of that class to perform and manage their service discovery duties.

Once a client-like entity discovers a set of lookup services and retrieves refer-

ences to desired services from those lookup services, the entity may choose to dis-

continue query-related discovery processing. That is, having obtained references

to all of the services it wishes to employ, the entity may view the references it

holds to the lookup services as no longer necessary.

But over the execution life of any such entity, partial failures such as system

crashes or network outages may intermittently affect the availability of some of

those services of interest. This results in a need to re-query the lookup services to

find references to new instances of the service that can replace the unavailable

instance. Such scenarios make it desirable for a client-like entity to maintain its

references to the lookup services it queries. If an instance of a service is found to

be unavailable, the entity can query those lookup services to obtain an instance of
the service that is available.

Since a query on a lookup service is a remote call, such calls are much more

costly in terms of overhead and failure risk than are local calls. This cost is magni-

fied when an entity must make frequent queries for multiple services, so an entity

may find it desirable to cache the services it obtains from the original queries on

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

119



120

110 THE Se r'vi ceDi scove ryManager

the lookup services. Furthermore, by populating the cache with multiple instances

of the desired services, redundancy in the availability of those services can be pro-

vided. Thus, if an instance of a service is found to be unavailable when needed,

the entity can execute a local query on the cache rather than one or more remote

queries on the lookup services to obtain an instance which is available.

Typically, an entity will request the creation of a separate cache for each ser-

vice type of interest. The cache provides a method with which the entity can

retrieve an element of the cache. In general, the particular service reference that is

returned should not matter to the entity. It should only matter that a service refer-

ence has been returned, not which service reference. If for some reason it does

matter to an entity which service reference is returned, then the cache also pro-

vides a mechanism that will allow the entity to retrieve all elements of the cache.

The entity can then iterate through each element, selecting the particular reference
it desires.

Although interacting with a local cache of services in this way can be very

useful to entities that need frequent access to multiple services, some client-like

entities may wish to interact with the cache in a reactive manner. For example, an

entity such as a service browser typically wishes to be notified of the arrival of

new services of interest as well as any changes in the state of the current services

in the cache. Polling for such changes is usually viewed as undesirable. If the

cache were to also provide an event mechanism with notification semantics, the

needs of both types of entity could be satisfied.

From the scenarios discussed above, one could conclude that when acting in a

client-like fashion, it is desirable for an entity to maintain, as much as possible,

up-to-date knowledge of the availability of the lookup services of interest as well

as the state information associated with all other types of services in which the

entity is interested. By maintaining current service state information, the entity

can implement efficient mechanisms for service access and usage.

The Se rv1' ceDi scove ryManager class is a helper utility class that any entity

can use to create and populate a cache such as that described previously, and with

which the entity can register for notification of the availability of services of inter-

est. Like the Joi nManager utility class, this class needs to be notified when a

desired lookup service is discovered. For information on the 301' nManager utility

class, refer to the Jini Join Utilities Specification.

Unlike the 301' nManager, the Serv1' ceDiscoveryManager does not register

the entity as a service with discovered lookup services. Although both the

301' nManager and the Se rv1' ceD1' scove ryManager perform lookup discovery

event handling for the entities that employ them, the 301' nManager performs join

processing for Jini services, while the Se rv1' ceD1' scove ryManager performs ser-

vice discovery and management processing both for clients and for services. Thus,

typical usage patterns for Jini services wishing to find and use other Jini services

120



121

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 1 1

generally indicate the employment of both the 301' nManager and the

Servi ceDiscoveryManager utilities, whereas Jini clients would typically use

only the Se rv1' ceDi scove ryManage r.

The Se rvi ceDi scove ryManager class can be asked to “discover” services an

entity is interested in using, and to cache the references to those services as each is

found. The cache can be viewed as a set of service references that the entity can

access locally as needed through one of the public, non-remote methods provided
in the cache’s interface. A service reference added to the cache will be removed

from the cache when all of the lookup services with which that service is regis-
tered have been discarded.

The Se rv1' ceDi scove ryManager class also provides a mechanism for an

entity to request that it be notified when a service of interest is discovered for the

first time or has encountered a state change such as removal from all lookup ser-

vices or attribute set changes.

For convenience, this class also provides versions of a method named Tookup,

which employs invocation semantics similar to the semantics of the lookup

method of the Se rv1' ceRegi st rar interface defined in The Jini Technology Core

Platform Specification, “Lookup Service”. This method may be useful to entities

that need to find services on an infrequent basis, or when the cost of making a

remote call is outweighed by the overhead of maintaining a local cache (for exam-

ple, because of limited resources).

All three mechanisms described above—local queries on the cache, service

discovery notification, and remote lookups—employ the same template matching

scheme as that described in The Jini Technology Core Platform Specification,

“Lookup Service”. Additionally, each mechanism allows the entity to supply an

object referred to as a filter. Such an object is a non-remote object that defines

additional matching criteria that the Se rvi ceD1' scove ryManager applies when

searching for the entity’s services of interest. This filtering facility is particularly

useful to entities that wish to extend the capabilities of the standard template

matching scheme.

The Se rv1' ceDi scove ryManager is a utility class, not a remote service. Cli-

ent-like entities that wish to use this utility will create an instance of the

Servi ceDi scoveryManager in the entity’s address space so as to manage the

entity’s “lookup state” locally.

SD.2.1 The Object Types

The types defined in the specification of the Se rvi ceDi scove ryManager utility

class are in the net.j1' n1' .lookup package. The following types may be refer-

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

121



122

112 THE Se r'v1' ceDi scove ryManager

enced in this chapter. Whenever referenced, these object types will be referenced

h1unquahfiedfbnn:

net.

net.

net.

net.

net.

net

net.

net.

net.

net.

net.

net.

net.

net.

net.

java

java

java

java

java

java

java

jjnj.

jjnj.
.core

jjnj

jjnj.
.core.

.1ookup.ServjceRegjstrar

jjnj

.jjnj.
.core.

.djscovery.Djscoverijstener

.djscovery.DjscoveryManagement

.djscovery.LookuijscoveryManager

.1ease.LeaseRenewa1Manager

.1ookup.LookupCache

.1ookup.ServjceDjscoveryEvent

.1ookup.ServiceDjscoverijstener

.1ookup.ServjceIteij1ter

jjnj

jjnj

jjnj

jjnj

jjnj

jjnj

jjnj

jjnj

jjnj

COPE

COPE

COPE

.djscovery.LookupLocator
core.

.1ookup.ServjceEvent

.1ookup.ServjceItem

1ease.Lease

1ookup.ServjceMatches

1ookup.ServjceTemp1ate

.jo.IOExceptjon

.rmj.server.UnjcastRemoteObject

.rmj.Marsha11ed0bject

.rmj.RemoteExceptjon

.ut11.EventLjstener

.utj1.EventObject

.ut11.Set

122



123

JHUSERVKIJMSCOVERYUTUJHFSSPECHUCHTKNWvwswnlj 113

  
  

SD.3 The Interface

THE public interface provided by the Se rvi ceDi scove ryMan ager class defines
methods that allow an entity to request that references to services matching crite-

ria defined by the entity be found in discovered lookup services and cached for

local retrieval. This interface also defines methods for retrieving the manager

objects employed by this utility, and for performing termination processing.

package net.jini.lookup;

public class ServiceDiscoveryManager {

public ServiceDiscoveryManager

(DiscoveryManagement discoveryMgr,

LeaseRenewalManager leaseMgr)

throws IOException {m}

public LookupCache createLookupCache

(ServiceTemplate tmpl,

ServiceItemFilter filter,

ServiceDiscoveryListener listener)

throws RemoteException {m}

public ServiceItem lookupCServiceTemplate tmpl,

ServiceItemFilter filter) {m}

public ServiceItem lookupCServiceTemplate tmpl,

ServiceItemFilter filter,

long waitDur)

throws InterruptedException,

RemoteException {m}

public ServiceItemE] lookup

(ServiceTemplate tmpl,

int maxMatches,

ServiceItemFilter filter) {m}

public ServiceItemE] lookupCServiceTemplate tmpl,

int minMatches,

int maxMatches,

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

123



124

114 THELNTERFACE

ServiceItemFi1ter fi1ter,

1on9 waitDur)

throws InterruptedException,

RemoteException {m}

pub1ic DiscoveryManagement getDiscoveryManagerC) {m}

pub1ic LeaseRenewa1Manager getLeaseRenewa1ManagerC) {m}

pub1ic void terminateC) {m}

124



125

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 1 5

  
  

SD.4 The Semantics

THE Se rvi ceD1' scove ryManager makes certain concurrency guarantees with
respect to the methods it defines. When a method of Se rv1' ceD1' scove ryManager

invokes a remote method, although such an invocation may block other remote

calls made in the Se rv1' ceD1' scove ryManage r, invocations of local methods will

not be blocked.

SD.4.1 The Methods

The Se rv1' ceD1' scove ryManager helper utility class defines a number of public

methods in addition to its constructor. This utility defines a factory method that

allows the entity to create a local cache for storing references to desired services

that have been previously discovered. Additionally, this class defines a set of

methods that the entity may use to query (remotely) each discovered lookup ser-

vice for other services that are of interest to the entity.

The equals method for the Se rv1' ceD1' scove ryManager class returns true if

and only if two instances of this class refer to the same object. That is, x and y are

equal instances of this class if and only if x == y has the value true.

SD.4.1.1 The Constructor

The constructor of the Se rv1' ceD1' scove ryManager takes two arguments: an

object that implements the D1' scove ryManagement interface and a reference to a

LeaseRenewal Manager object. The constructor throws an IOExcepti on because

construction of a Se rvi ceD1' scove ryManager may initiate the multicast discov-

ery process, a process that can throw IOExcepti on.

To use the Se rvi ceD1' scove ryManage r, an entity supplies an object through

which notifications that indicate a lookup service has been discovered or dis-

carded will be received. At a minimum, this object must satisfy the contract

defined in the D1' scove ryManagement interface. That is, this object must provide

the Se rvi ceD1' scove ryManager with the ability to set discovery listeners and to

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

125



126

116 THE SEMANTICS

discard previously discovered lookup services when they are found to be unavail-
able.

A value of nu11 may be passed as the Di scove ryManagement argument. If

the value of the argument is nu11, an instance of the LookupDi scove ryManager

utility class will be constructed to discover only those lookup services that are

members of the public group.

A value of nu11 may be passed as the LeaseRenewa1 Manager argument. If

the value of the argument is nu11, an instance of the LeaseRenewa1 Manager class

will be created, initially managing no Lease objects.

SD.4.1.2 The createLookupCache Method

The createLookupCache method allows an entity to request that the

Se rv1' ceD1' scove ryManager create a new managed set (or cache) and populate it

with services, which match criteria defined by the entity, and whose references are

registered with one or more of the lookup services the entity has targeted for dis-

covery.

This method returns an object of type LookupCache. Through this return

value, the entity can query the cache for services of interest, manage the cache’s

event mechanism for service discoveries, or terminate the cache. The definition of

the LookupCache interface is presented later in this specification.

An entity typically uses the object returned by this method to provide local

storage of, and access to, references to services that it is interested in using. Enti-

ties that need frequent access to numerous services will find the object returned by

this method quite useful because acquisition of those service references is pro-

vided through local method invocations. Additionally, because the object returned

by this method provides an event mechanism, it is also useful to entities wishing

to simply monitor, in an event-driven manner, the state changes that occur in the
services of interest.

The createLookupCache method takes three arguments: an instance of

Servi ceTemp1 ate, an instance of Servi ceItemF1'1ter, and an instance of

Se rv1' ceD1' scove ryLi stene r. Both the interfaces Se rvi ceItemFi 1 ter and

Se rv1' ceD1' scove ryLi' stene r are presented later in this chapter.

Together, the tmp1 and the fi1ter arguments define the criteria with which

service-matching should be performed. The 11' stener argument references an

object that will receive notifications when services matching the input criteria are

discovered for the first time, or have encountered a state change such as removal

from all lookup services or attribute set changes. If nu11 is input to the 11'stener

argument for a particular invocation of this method, the cache resulting from that
invocation will send no such notifications.

126



127

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version I. I

The tmpl argument employs template matching semantics that are identical to

the semantics described in The Jini Technology Core Platform Specification, “Ser-

viceTemplate and Item Matching”) to identify the service(s) to acquire from

lockup services in the managed set. The object passed to the f1' 1 ter argument is

then used to apply additional matching criteria to any service references found

through template matching. The additional matching criteria defined by the

fi 1 ter parameter are application-specific, and therefore must be defined by the

client-like entity itself (as described in Section SD.5.2, “The ServiceItemFilter

Interface”). Furthermore, once an instance of the cache is created, the filter associ-

ated with that instance will not change during the life of that particular cache. If

the filter is changed so that its original behavior is modified, the effect on the
cache is undefined.

As a convenience, a null reference input to the tmpl argument is treated as

equivalent to inputting a Se rvi ceTempl ate constructed with all null arguments

(all wildcards). That is, the cache will attempt to discover all services contained in

each lookup service in the managed set. If a null value is passed as the filter argu-

ment, then only template matching will be employed to find the desired services.

Entities that invoke this method must take care not to modify the contents of

the object input through the tmpl parameter after the cache has been created.

Doing so could cause the state of the cache to become corrupted or inconsistent. It

is for this reason that the effects of modifying the contents of the tmpl parameter,

after this method is invoked, are undefined.

Events and the Cache

To keep its contents up to date, the cache must register with the event mechanism

of each lookup service in the managed set. From the point of view of the cache, a

service is “discovered” when it receives a remote event from one of those lookup

services notifying the cache of the existence of a service matching the input crite-

ria. In addition, whenever one of the cache’s discovered services experiences a

state change in one of the lookup services in which it is registered, the cache will

receive a remote event identifying that state change whenever the change satisfies

the matching criteria.

For a number of reasons the cache may receive multiple events corresponding

to the same Jini service. For example, a particular Jini service may be registered

with more than one lookup service from the managed set. If the cache requests

events from each lookup service using a template configured with no restriction

along the service ID search axis and little or no restriction along the attribute

search axis, the cache will receive a notification each time one of the following

events occurs at any of the those lookup services:

117

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

127



128

118 THE SEMANTICS

9 The service, matching the template, is registered with one of the lookup ser-
vices.

o The lease of the matching service is cancelled or expires.

9 An attribute set associated with the matching service is modified in some

way.

Just as the cache requests that it be notified of state changes in matching ser-

vices occurring within each lookup service, an entity may request that the cache

deliver events that indicate analogous state changes in the service references
stored in the cache.

There are two significant differences in the event mechanism between the

lookup services and the cache, and the event mechanism between the cache and

the client-like entity. First and foremost, the events sent from the lookup services

to the cache are remote events, whereas the events sent from the cache to the entity

are local events. Second, each registration or state-change event sent from the

cache to the entity may actually have been a result of multiple corresponding

events received by the cache from a set of lookup services. Thus, there is a many-

to-one relationship between the events received by the cache and the events sent

by the cache.

For many entities that use the cache’s event mechanism to interact with the

cache’s discovered services, knowledge of the number of distinct service refer-

ences, as well as identification of the lookup services with which those references

are registered, is of no interest. Such entities typically are interested only in

acquiring a reference—not all references—to the desired services. Thus, the rela-

tionship between the two event mechanisms described previously allows the

Servi ceDiscover‘yManager to hide the lookup services with which the cache

interacts from the entity. For entities that are interested in the additional informa-

tion, the cache provides methods separate from the event mechanism for obtaining
such information.

To summarize, although the cache may receive multiple events signaling a

state change related to a particular matching service, the cache will typically send

only a single corresponding event to the entity. That is, for any matching service:

0 The cache will send a service discovery event to the entity only once: after

the cache acquires thefirst reference to the matching service.

0 The cache will send a service removal event to the entity only once: after

every reference to the service has had its lease expire or cancelled; that is,

only after all references to the matching service have been removed from

every lookup service in the cache’s managed set.

128



129

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 1 9

9 For each set of event(s) notifying the cache that a particular modification has

been made to the attribute set associated with one of the service references,

one service modification event will be sent to the entity, but only if the

attribute set state reflected in the received event represents an actual change

in the service’s current attribute set state (as maintained by the cache).

With respect to the state of the attribute sets associated with the service refer-

ences stored in the cache, the cache should be viewed as maintaining a single

attribute set state for each collection of service references that represent the same

service. That single state will always be equivalent to the state reflected in the last

attribute set modification event received by the cache.

For example, suppose each of three different references to a service that

matches the input criteria is registered with three lookup services in the managed

set. Suppose the attribute sets associated with each service reference are modified

in exactly the same way. For this specific case, the cache would receive three

events—one from each lookup service—signaling these modifications. Upon

receipt of the first event, the cache modifies its current notion of the service’s

attribute set state, and then notifies the entity of the change, but only if the state

reflected in the event represents a change in the current state. Because the remain-

ing two events received by the cache represent the same state change as that repre-

sented in the first event, the cache sends no other notification.

Next, suppose a second modification, different from the first, is made on only

two of the service references, and a third unique modification is made on the

remaining service reference. In this case, the cache will still receive three events,

but how the cache handles the events is dependent on the order of arrival of the

events. For simplicity, call the three events e1 , e2 , and e3 . Use 3 to represent the

cache’s current notion of the service’s attribute set state, and use s1 and s2 to rep-

resent the states resulting after each attribute modification has occurred. In this

example, e1 and e2 will be sent to the cache after the each of the service’s

attribute sets is modified to s1 in their respective lookup services. Event e3 is sent

after the service’s attribute sets are modified to s2 in the remaining lookup service.

If the order of arrival is e1 , e2 , and then e3 , the cache will change s into s1

and notify the entity after the arrival of e1 but will do nothing upon the arrival of

e2 . Upon the arrival of e3 , the cache will change 3 (which is now s1 ) into 32. If

the order of arrival of the events is e1 , e3 , and then e2 , the cache will first change

3 into s1 , then into s2 , and then back into s1 again. Furthermore, for each state

change made, the cache will send a notification to the entity.

Thus, the events generated by the cache’s event mechanism and sent by the

cache to the entity are more representative of the state changes that occur in the

cache than in the lookup services.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

129



130

120 THE SEMANTICS

An entity may register for events from the cache in one of two ways. The

entity may supply an instance of Se rvi ceD1' scove ryL1' stener to the listener

argument of the createLookupCache method, or it may invoke a method on the

cache to add a listener to the cache. Thus, an entity may register for events from

the cache at any time during the execution life of the cache.

Similarly, the cache provides a method that an entity, which is currently regis-

tered for events from the cache, may use at any time to unregister with the cache’s
event mechanism.

SD.4.1.3 The 1ookup Method

The 1ookup method queries each available lockup service in the managed set for

service reference(s) that match criteria defined by the entity that invokes this

method. Entities typically employ this method when they need infrequent access

to services and when the cost of making remote queries is outweighed by the over-

head of maintaining a local cache (for example, because of resource limitations).

The 1ookup method has four versions, each version falling into one of two

categories: those versions of this method that return a single instance of

Se rv1' ceItem and those versions that return a set of service references as an array

of Se rv1' ceItem objects.

Two arguments are common to all versions of this method: an instance of

Se rv1' ceTemp1 ate and an instance of Se rv1' ceItemFi 1 te r.

Within each category, the versions of 1ookup differ only in whether or not a

particular version provides what is referred to as a “wait” (or blocking) feature.

That is, each category contains both a non-blocking version of 1ookup which

returns immediately when unable to find the desired service, and a blocking ver-

sion which returns only after waiting a specified amount of time for the desired

service to be discovered. The particular version of 1 ookup that an entity employs

is typically determined by the entity’s intended usage pattern.

The descriptions that follow refer to all versions of the 1ookup method, except

where explicitly noted.

The tmp1 argument and the f1"1te r argument both have semantics identical to

that defined for these arguments in the description of the createLookupCache

method above. In particular,

9 A nu11 reference value for the tmp1 parameter is treated as the equivalent of

a “wildcarded” Se rv1' ceTemp1 ate.

9 If nu11 is the value for the fi1ter parameter, only template matching will

be employed to find the desired services.

130


